
A Case for Feminism in Programming Language
Design

Felienne Hermans
f.f.j.hermans@vu.nl

Vrije Universiteit Amsterdam
Amsterdam, The Netherlands

Ari Schlesinger
ari.schlesinger@uga.edu
University of Georgia
Athens, Georgia, USA

Abstract
Two critical and interrelated questions regarding the design
and study of programming languages are: 1) What does it
mean to design a programming language? and 2) Why does
minimal demographic diversity persist in the programming
language community? In this paper, we present feminism
as a philosophical lens for analyzing the programming lan-
guages field in order to help us understand and answer the
motivating questions above. By using a feminist lens, we are
able to explore how the dominant intellectual and cultural
norms have both shaped and constrained programming lan-
guages. A key contribution of this analysis is the explana-
tion of how marginalization in the programming language
community limits the intellectual and demographic makeup
of the field. We see this paper as an invitation to everyone
in the programming languages field to deepen our collective
understanding of the forces shaping our field. Our goal is
to illustrate opportunities for more inclusive practices that
will introduce greater diversity to the design of program-
ming languages and the demographic makeup of the pro-
gramming language community.

CCS Concepts: • Social and professional topics → Gen-
der; • Software and its engineering→General program-
ming languages.

Keywords: Programming Languages, Feminism
ACM Reference Format:
Felienne Hermans and Ari Schlesinger. 2024. A Case for Feminism
in Programming Language Design. In Proceedings of the 2024 ACM
SIGPLAN International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software (Onward! ’24), Oc-
tober 23–25, 2024, Pasadena, CA, USA. ACM, New York, NY, USA,
18 pages. https://doi.org/10.1145/3689492.3689809

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for com-
ponents of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Onward! ’24, October 23–25, 2024, Pasadena, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-1215-9/24/10
https://doi.org/10.1145/3689492.3689809

1 Introduction
For as long as I1 can remember, I have been in love with pro-
gramming. As a pre-teen, I excitedly taughtmyself program-
ming with BASIC books from the local library, and as a late
teenager, I joined my high school’s computer club, and my
high school capstone project was a rudimentary machine
learning algorithm. In university, I chose compiler courses
as electives, and my final MSc project included the develop-
ment of a small programming language for SAT solving. It
seemed a logical next step, when given the opportunity, to
pursue a PhD in the direction of programming languages
(PL). I am, for all intents and purposes, a very normal pro-
gramming languages person, with one notable exception: I
am female. For the longest part of my career, I did not want
to think about this fact; it was painful to even see myself as
different from my peers: I just wanted to blend in, do the
things I liked doing, and not cause a stir.

I tried to control surface aspects ofmyself in order to fit in:
no earrings, no dresses, no nail polish, and certainly no knit-
ting. Even though knitting, like programming, uses formal
languages and requires mathematical thinking and extreme
levels of care and preciseness and would in theory be a fit-
ting hobby. I thought things would be easiest if I would just
be ‘one of the boys’.

Over time though, me and the PL community parted
ways, and I drifted to Software Engineering and to Com-
puter Science Education, but I always kept a loose connec-
tion to the PL community, which was fitting because I ended
up living my dream late in my career: I created a program-
ming language. Yet, I never really fit into the PL community.
It turned out that the surface aspects ofmy identitywere not
the only thing that made me different—I was interested in
different things.

Only recently, I began to understand that theway the field
is shaped is not welcoming to people who are interested in
studying the contexts and cultures of programming—people
like me.

Many of my feelings were vague and ill-defined, and it re-
quired the liberation of formally being a programming lan-
guage designer for me to be brave enough to fully embrace
and question my discomfort: How come I, lover of grammars
and parsers, creator of a programming language, do not feel
at home in the PL community? What are the dynamics that
cause this feeling, and who else might feel left out? I found

205

https://orcid.org/0000-0003-0722-0156
https://orcid.org/0000-0003-0895-2148
https://doi.org/10.1145/3689492.3689809
https://doi.org/10.1145/3689492.3689809
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3689492.3689809&domain=pdf&date_stamp=2024-10-17


Onward! ’24, October 23–25, 2024, Pasadena, CA, USA Felienne Hermans and Ari Schlesinger

answers in a place I would never have thought to look: fem-
inism.

1.1 Why Feminism?
I understand thinking of feminism is confusing for PL peo-
ple, trust me, it did not come naturally to me either! I
thought feminism was just about gender. How can gender,
of all things, play a role in programming language design?
Yes, programming languages are mostly made by men, but
how can that matter?

Feminism, as I understood it, concerned itself with in-
equality; it encouraged people to start Women in Tech
groups and such2, things I did not think I needed. After all,
I had not needed anyone’s permission or encouragement to
study Computer Science (CS). Feminismwas something that
others needed, not me—embracing that would be embracing
my gender, and I wanted to rid myself of it. And because
of my interests and studies, most of my friends were male,
so in my social circle and in my workplace, feminism was
not looked upon with great admiration or praise, making
it even more unlikely that I would think that it could be
of any value to me. When I sometimes cited feminist work
that I found interesting, I wasn’t met with enthusiasm, so I
stopped bringing feminism up in those circles. It wasn’t un-
til I met more women in science (outside of CS) and in my
personal life (I joined a knitting group) that I found spaces
to learn about feminism and how it can help us understand
the world, including the PL world.

Why Do We Value ‘Hard’? This brings us to a central
point of this essay, the evidence standards of the PL commu-
nity explicitly value quantitative work, making qualitative
work much less likely to be published—a topic we cover in
more depth in Section 4.

As I re-entered the academic field of PL in the early 2020s,
now with some understanding of feminism, I started to see
dynamics I could not see before. As I came to the field to talk
about Hedy, a multi-lingual programming language I cre-
ated for programming education, it struck me that the type
of questions coming from the community centered around
the hardness of my work. Why is it hard to build a program-
ming language in Arabic? Is that not trivial, since English
ones already exist. Creating one in Arabic would be, in the-
ory, trivial? Why would that be worth your time?

Initially, I went along with the questions, explaining why
indeed it was very challenging to build a non-English lan-
guage [121], but I felt weird while doing it. I realized I did
not care all that much about it being hard! Why wasn’t I
asked about things that I did care about, about emails I had
received from teachers all around the world about how they
used Hedy? Or about the sense of belonging I felt in the
Hedy community of 400+ people who volunteered to trans-
late, to run Hedy events? Or about the day our website went
down because 600 kids in South-Africa logged in at the same

time? Reflecting upon conversations I had in the PL space, it
became clear to me that my value systems were not aligned.
PL, I saw, values work that is difficult. Hard work, which is
understood as mathematical work such as writing proofs, or
work that pushed the boundaries of programming in ways
that requires difficult tools that not everyone can use, like
proof assistants. Doing those things was hard because not
everyone can do it, while the work I was doing was doing
the exact opposite thing: I was trying to make programming
easier. What made my heart warm was not that Hedy was
hard to build (even if it was!) but that people were genuinely
loving a thing I made.

Feminism helped me to understand that what academic
communities value is a social system inwhich some people’s
values are more represented than others.

Feminism Can Help Question Values and Priorities
of Programming Languages. As I was trying to under-
stand my mismatch with the PL community, I started to
see that the current state of the art in PL research and de-
sign prioritizes machines over people, there is a focus on
programming languages that are easy to read for the ma-
chine, rather than easy for people. The current standards of
evaluation in the PL community are set from a masculine
perspective as well, valuing formalism and formal methods
over user studies, quantitative over qualitative work, and
the examining of technical aspects over context and people.
Feminism in PL is an invitation to consider different ways
of designing and studying programming languages. Femi-
nism in PL introduces interesting and exciting challenges
that will require the deliberate work of examining different
perspectives; seeking out users from a variety of different
backgrounds and identities, and carefully investigating our
programming languages and systems from diverse perspec-
tives.

Feminism Can To Better Us Understand Science.
While I was reflecting on my experiences, I read the paper
we based our methodology on called ‘Glaciers, gender and
science’. This paper helped me to understand the feelings
of otherness I was experiencing in the ‘hard is good’ con-
versations. I found this paper when it was first published in
2016, and I became curious what feminism could mean for
glaciers. At the time I thought it was an interesting way to
look at the world, but nothing more. But when I recently
reread the paper, when thinking about the value system of
PL research, and with new eyes, I could see how this paper
can be the start of a conversation for our field.

In this paper, Carey et al. write: “Most research, and hence
discourse and discussions … stems from information … with
manly characteristics and within masculine discourses” [18].
Reading Carey’s paper I was struck by similar undercur-
rents in the PL community. Valuing hard, technical, work
over work done for the sake of helping others is a mascu-
line discourse.

206



A Case for Feminism in Programming Language Design Onward! ’24, October 23–25, 2024, Pasadena, CA, USA

The impact of men on PL research goes beyond what
Carey et al. describe, since programming languages are not
discovered out in the wild but are made by and for people.
With that I decided I wanted to write a paper deeply engag-
ing with Carey’s work applied to our field.

1.2 What Is Feminism?
To explain how feminism can help us improve the design
of programming languages, we need to address the ques-
tion: What is feminism? One way to characterize feminism
is as “a world view that values women and that confronts
systemic injustices based on gender” [20]. According to the
Stanford Encyclopedia of Philosophy feminism is an “in-
tellectual commitment and a … movement that seeks
an end to gender-based oppression”[91]. Oppression and
discrimination can be explicit (e.g., the right to vote or have
a bank account) or implicit (e.g., preferring things that are
deemed hard as described above). In an academic context,
feminism helps us understand and address discrimination
that is harder to see and identify, implicit and systemic dis-
crimination.

Feminism as a word carries a lot of weight; you might
want to think of the term as being like an overloaded oper-
ator; it can mean different things in different contexts. Fem-
inism as a social movement is associated with the struggle
for the right of individual women for more gender equality;
from suffragettes to birth control to workplace harassment
to closing the pay gap. Academically, feminism focuses on
a broad range of topics, from feminist social movements to
feminist theory, from the rights of individual women to the
wider mechanisms of inequality in society [3, 7, 26, 63, 93].
Over the years, there have been many different ways to de-
scribe feminism (and many different types of feminism).

A central principle in feminism, particularly in feminist
philosophy and feminist science and technology studies, is
that knowledge is shaped by the context in which it is
made, by the people who are creating knowledge, and that
knowledge shapes our world (physically and ideologically)
[25, 51, 83]. Knowledge has power.

Feminist standpoint theory argues that knowledge is so-
cially constructed and that people from marginalized social
standpoints (like women) have lived experiences that pro-
vide perspectives in the construction of knowledge that are
valuable (despite often being undervalued) [52, 54, 82]. An
important point for feminist standpoint theory is that even
within a social group like women, there are many different
contexts and standpoints—gender, race, class, sexuality, abil-
ity, nationality or historical period. All of these impact one’s
standpoint.3

In the context of PL, the programming languages that
have been created and the ways we study programming
languages reflect the values of the creators and their so-
cial context. A programming language, as all technology,
“bears the imprimatur of social context” [69]. In aggregate,

programming language knowledge creation reflects implicit
and explicit values of their creators—creators who have
historically belonged to a relatively homogeneous commu-
nity.Thatnarrowwindowof acceptable knowledge cre-
ation is limiting programming language research and de-
sign.

Feminism Is About MoreThan Gender. Feminism starts
from a place of ending gender-based oppression, but gener-
alizes this to think about systems of values, and hope those
shape and are shaped by the discourse of dominant groups,
in many places and in PL, men.

In this paper, we are drawing from an inclusive and ex-
pansive view of feminism and feminist theory (including
intersectionality and third-world feminism [3, 27, 28, 63,
93, 96]). From this lens, feminism takes into account
how discrimination across many different social and
cultural identities is interconnected. To address and re-
duce discrimination we need to understand how gender,
race, class, sexuality, (dis)ability, nationality, etc. intersect.
Feminism is invested in mitigating the oppression of all
marginalized peoples. As American Civil Rights activist Fan-
nie Lou Hammer famously said, “Nobody’s free until every-
body’s free” [49]. Moreover, to truly address discrimination,
we need people from dominant and marginalized groups to
work together. In an academic and programming languages
context, the means that looking to the connections between
feminism and programming languages is an opportunity to
pursue more diverse and inclusive intellectual and cultural
practices.

Feminism Is For Everyone. One common misconception
about feminism that we want to address up front is about
who feminism is for—about the roles people of all gen-
ders (including men) play in feminism. Feminist scholar
bell hooks famously asserts that feminism is for every-
one [64]. 4 Gender-based oppression negatively impacts ev-
eryone (men, women, and folks outside the gender binary).
We all benefit in a world that is free from systems of oppres-
sion. Likewise, in this paper when we talk about the roles
of masculinity and men in perpetuating current discrimi-
natory norms, we want to clarify that we are discussing
the normative patriarchal and hegemonic representations of
masculinity. As discussed by bell hooks in her bookTheWill
to Change [65], masculinity does not need to be hegemonic
or dominating. Feminism provides insights and opportuni-
ties for everyone to end systemic injustices.

1.3 Structure of This Essay
By examining the PL community through a feminist lens
(inspired by the framework of Carey et al. [18]) this essay
will explore how different factors of masculinity currently
define PL design and research in three ways: 1) by constrain-
ing the type of PL research that is accepted and acceptable,
and 2) by creating structural systems of exclusion, and 3) by

207



Onward! ’24, October 23–25, 2024, Pasadena, CA, USA Felienne Hermans and Ari Schlesinger

limiting the stories we share on the contributions of both
women in the PL field and what it means to create a pro-
gramming language. The essay closes with the fourth as-
pect of Carey et al.: exploring alternative representations
that can widen participation and the scope of PL work.

We will work within this Thesis statement: Diversity in
both the design of PL and the demographics of the commu-
nity are limited because of the dominant culture that prior-
itizes theory and formalism over people and social impact.
By using a feminist lens, we can take steps to build a more
inclusive intellectual and social culture in PL that will ben-
efit the the scholarship we create, the languages we design,
and the experiences of all members of the PL community.

2 Setting the Scene: Why Feminism and
PL?

2.1 Exclusion in Modern PL Design
Building on ideas introduced in Section 1.2, knowledge is
not absolute and neutral; knowing cannot and should not
be separated from context, from the ‘knower’ who is doing
the knowing [25, 37, 50, 70, 80, 83]. This leads us to question
what type of knowledge and knowers exist in PL, and how
that shapes the resulting languages?

This might be a hard to grasp statement for people with a
CS background, because, 1+1 = 2 whatever you think about
it, right? However, so much knowledge is contextualized
without people realizing it, even in PL. Knowledge creation
and technology design are impacted by the context, norms,
and values of the people and culture that create them.

For example, western PL designers might disregard cul-
tural aspects of non-Western languages, like non-English
numerals (a finding I myself encountered when building my
language Hedy [43, 44, 56]). Let’s consider a definition in a
simple grammar: digit : 0..9.
I had never realized before I started to work in localized PL
design, that this does not include all people’s experiences!
In Arabic, digits are not 0-9 but 0 ..9 .5 These numerals are
not included in most programming languages, creating a sit-
uation in which none of the languages in the TIOBE top
10 6 can be used to calculate 1 + 1 (1+1) in Arabic (or in
the dozens of other numerals around the world). Even what
may sounds like the most plain building blocks of program-
ming languages are built on the knowledge that we have,
the life we have lived, and the norms of the context we live
in.

Likewise, PL designers often fail to take visually impaired
programmers into account. system.cout>> is not a great
user interface (UI) if you are consuming code via screen
reader, which might read this as: ‘system dot cout greater
than greater than’, or even ‘system <pause> c out greater
than greater than’, since a full stop is not read in regular text.

At the moment, accessible programming languages that en-
sure usability by people with disability, like the language
Quorum, are uncommon [115, 118]. Accessibility is not a
frequent feature or value embedded into PL design.

Error messages are another PL design feature shaped by
peoples’ standpoint, by their lived experiences and values.
For many programming language designers, error messages
are an afterthought. Other aspects of design will likely over-
power the careful crafting of error messages, such as an op-
timized compiler or an elegant syntax. Many language de-
signers, explicitly or implicitly, take the stance that ‘users
will just have to deal with error messages when they oc-
cur’. Error messages in many languages explicitly do not
include the user in their phrasing, saying things like ‘miss-
ing bracket’ or ‘unknown variable’, which leaves the user
out of the equation. For a person with the lived experience
of being told they don’t belong in programming and being
afraid of failure in the programming world (a common expe-
rience for women in computing), unclear or unhelpful error
messages are more likely to have negative impacts. More
readable error messages are not just helpful for those with
less prior knowledge, clear error messages are a better ex-
perience and will help all users—even professional develop-
ers. A recent study on error messages in Elm showed that
their well-phrased error messages were the most-named
positive experience of professionals working with the lan-
guage [108].

The absence of non-western numerals, of accessibility, of
inclusive error messages, and other PL design choices con-
tribute to larger systems of discrimination within PL and
computing at large. Feminism can compliment and extend
prior efforts around user-centered design by clarifying and
centering the needs, experiences, and values of underrepre-
sented and marginalized people. The researchers that cur-
rently form our community both miss out on the lived expe-
rience of people not currently in the community, and miss
out the many tools (many of which are qualitative) needed
to elicit and factor in those experiences into their design.
Throughout this paper, we will explore many different ways
that feminism can help us understand and mitigate discrim-
ination in the design and study of programming languages.

2.2 Exclusion of Women in CS
Programming in general used to be considered women’s
work (something we explore more in Section 3.4) [2, 35].
However, this perception has changed. More recent data
paints a picture of under-representation and exclusion of
women in computing. In 2015 only 20% of people receiving
a PhD in the US were women [14], and female researchers
are estimated to only have authored about 10% of CS pa-
pers [89]. Underrepresented problems are magnified when
considering the intersection between race and gender [104].
Not all subfields of Computer Science share the same gender
makeup either; the average percentage of women CS faculty

208



A Case for Feminism in Programming Language Design Onward! ’24, October 23–25, 2024, Pasadena, CA, USA

members in the U.S. is almost 17%, but the programming lan-
guages (PL) community is second lowest with 14% (second
only to theorywith 13%) [74]. Counting the first 20 Dagstuhl
seminars found by searching for ‘programming languages’
reveals only 10 female organizers out of 78, a percentage of
13%.

A Childhood of Missed Opportunities and Experi-
ences. With such disparities, it is easy to believe that
women simply do not like working in CS and PL, and that
innate differences are contributing to or creating this dis-
parity. However, it is much more likely that the experi-
ences of women and men growing up with technology are
so different, and this causes long-lasting differences in how
people of different genders approach computers. In fact,
there are many studies that explain how culture and experi-
ence greatly impact who chooses to study CS, who stays
in CS, and what motivates why someone is interested in
CS [6, 12, 13, 41, 124, 128].7

Girls are less likely to participate in out-of-school pro-
gramming clubs than boys [4] and activities that girls and
women enjoy are less likely to be labeled technical, such
as sewing and embroidering [120, 131]. Therefore, girls as
a group tend to have less prior knowledge about program-
ming, and thus they have different perspectives on comput-
ing, which can influence their understanding of, and experi-
ences with, programming. Girls are socialized into working
with technology differently, Hallström et al. show that “girls
and boys learn to approach and handle technology differently,
thereby confirming rather than dissolving gender boundaries”
[48]. Turkle further explains that girls feel that they can-
not enter the world of computers without endangering their
sense of femininity [127]. Hallström also finds that teachers
encourage boys’ technological play in different ways than
they do girls’ [48].

These experiential differences also persist in the domain
of mathematics [9, 132]. Prior research has found teachers
view girls as successful in mathematics thanks to their hard
work [67, 111], while they believe boys’ success comes from
their talent.

Stereotype and Stereotype Threat. Stereotypes around
gender and CS/STEM contribute to an environment where
women often have a different experience with technology,
computing, and programming [17, 39, 59, 86]. For exam-
ple, reminding women that stereotypes say they are bad at
math will often induce worse performance on math eval-
uations, a principle called negative stereotype threat. How-
ever, introducing a positive stereotype by telling women
that women perform as well as or better than men on a
math exam will often induce performance improvements
on math evaluations [29, 45, 81, 113]. There is a wealth of
literature empirically observing and exploring mitigation
strategies for stereotype threat across marginalized iden-
tities [77, 97, 101, 102, 129]. This illustrates how culture

and society frame and constrain the (academic) career suc-
cess of people from mar-ginalized groups, because stereo-
types and stereotype threat impact performance, achieve-
ment, and sense of belonging.The impact of people’s beliefs
on discriminatory career outcomes is further demonstrated
by research showing that STEM fields where people believe
that innate talent is essential for success are more likely to
have gender imbalances than fields that believe hard work
is important for success [79].

A Lifetime of Different Opportunities and Experi-
ences. Simone de Beauvoir famously said that “One is not
born, but becomes a woman” [8] which seems to fit here too;
girls are, in various ways, encouraged out of working with
technology and programming.

These small differences build up to larger patterns of
how people view technology later in life. Programming
self-efficacy, the belief that one can achieve success in pro-
gramming, is lower for girls and women than for boys and
men [98].

Recent work in Denmark has shown that gender-based
preferences impact their choices in a CS context: when uni-
versity students were given the choice between equivalent
coursework, female students favor assignments around peo-
ple and male students prefer those around things [85], and
high-school-aged students show similar preferences [21].
Gender stereotypes shape people’s interests and behaviors
starting at a young age and continue to impact academic
and career choices throughout people’s lifetimes [87]. No-
tably, there are also examples where women choose to ac-
tively participate with programming and object/technology
focused work. For example, the community around the Lily-
Pad, an Arduino variant that can be used to add electronics
to clothing (e-textiles) is 65% female [16]. Critically, inter-
est and behavior is malleable, even in light of factors like
gender. It has been observed that gender-based differences
in interest disappear in more demographically balanced and
culturally inclusive settings [12, 13].

In summary, women andmen are seen differently both by
themselves and by others, resulting from different stereo-
types around women and men (and technology), and as
such, the women and men have different experiences with
computing. These factors continue to influence the experi-
ences (and career outcomes) of women inside and outside
of the PL community.

2.3 Research Method
In this paper, we analyze PL through a feminist lens. But
what is a feminist lens exactly? Let’s first unpack the word
‘lens’: a lens is a filter through which we view the world.
Much like in photography, different lenses provide different
ways to view the world, bringing some things into focus
while obscuring others. We are always looking at the world
through a lens, even if we are not aware of the lens bywhich

209



Onward! ’24, October 23–25, 2024, Pasadena, CA, USA Felienne Hermans and Ari Schlesinger

we see the world. Bringing awareness to the lens we are
using, either by default or intentional choice, allows us to
critically assess, analyze, and build our understanding of the
subjects that we are examining.

In this paper, we are not creating, but reusing an existing
feminist lens, namely the feminist framework that Carey et
al. previously used when analyzing the academic glaciology
community. I will apply this lens both fromwithin and from
outside of the field.

Social scientists, particularly qualitative researchers, of-
ten makes the distinction between work where the re-
searcher is part of the community (an insider), and work
where the researcher is explicitly outside of it (an out-
sider) [33]. Generally speaking, the distinction between in-
sider/outsider is important because pre-existing relation-
ships a researcher has to a community shapes how a commu-
nity interacts with the researchers and how researchers in-
teract with and study a community. Insiders can gain better
access to a community, allowing them to better understand
the experiences, norms, and beliefs of the community be-
ing studied; however, the researcher’s closeness may leave
things certain things unexplained or unexamined because of
their familiarity. Outsiders, on the other hand, can examine
a community with fresh eyes, allowing them to see things
that insiders may not notice as noteworthy due to being a
part of a community; however, outsiders can struggle with
restricted access to community members or to the genuine
experiences and beliefs of community members. Being a fe-
male programming language designer, I have both the in-
sider and the outsider perspective at the same time, which
allows me to both deeply understand the workings of the
community but also allows me to see what we are currently
missing.

2.4 Goals Of This essay
Coming back to my insider-outsider perspective, I some-
times wonder what we are even researching. What exactly
is a programming language for? What does it mean to de-
sign a programming language? And I keep coming back
the the question: why are women of all colors8 so under-
represented in the programming languages community?

Applying a feminist lens, questioning the shape of the
field through systems of power, we can better understand
how the PL field operates, what type of research is valued,
and which people feel welcomed.This essay will not answer,
but raise questions about how we can make the field inclu-
sive of more types of research, and more types of people,
including all genders.

In the remainder of this essay, we will apply the four-part
feminist framework of Carey et al. [18] to programming lan-
guage design, to examine where perspectives are missing,
and why.

3 Gendered Science and Knowledge
The first aspect of Carey et al.’s framework that we are ex-
amining in the context of PL is the way that science aggre-
gates, weights, and evaluates collected data. They write: “…
natural science fields have historically been defined by, and
their credibility built upon manly attributes” [19]. In glaciol-
ogy these manly attributes are triumphs over hostile lands;
in programming, these are triumphs over complex maths.
Like glaciology, the PL culture is largely masculine, which
you can see in a number of distinct ways.

3.1 What Aspects of PL Do We Study?
Programming languages have a wide range of aspects, from
their syntax and semantics to the way they are used in
different fields, how they are extended with libraries, how
they change over time and how people prefer to use them.
Research in dominant PL conferences, however, most no-
tably POPL or PLDI, focuses on language features and to a
much lesser extent on, for example, applications, adoption,
or the needs of users. Kaijanaho studied over 2000 papers au-
thored between 1973 and 2012 in PL conferences, and only
identified 65 empirical studies into aspects of language de-
sign [68]. PL research of course is much broader than POPL
or PLDI, there are conferences like <PROGRAMMING> and
workshops like PPIG, PX, PLATEAU or PAINT. However,
only POPL and PLDI are A* conferences according to 2023’s
CORE ranking9, so researchers, especially in their early ca-
reer, will feel the need to publish there, which means follow-
ing the ways of doing research in those spaces.

A problem with this limited view is the fact that it is not
clear where the other topics can be studied. Views of users
on programming languages and their accompanying tools
for example are sometimes situated in Software Engineer-
ing, either by explicit rejection at PL venues, or by implicit
consideration of authors. Let’s consider, for example, static
analysis tools. Construction of these tools is in scope of PL
(POPL 2022 has two tracks on Static analysis, POPL 2023 had
one such track), but understanding the use of static analysis
tools is published in software engineering [66]. If the build-
ing of such tools is in scope of PL, why isn’t understand-
ing of how they are perceived by users? Other work study-
ing programming languages, like large-scale analyses of pro-
gramming language features, does sometimes appear in PL
venues [73, 76], but also in Information Systems [99], Soft-
ware Maintenance [90], Software Testing and Analysis [60]
or Mining Software Repositories [133].

The spread-out nature of research on programming lan-
guages is problematic, since it prevents the PL community
from having a more holistic view of programming language
use. We are robbing ourselves of a place for conversations
on the different perspectives on the ways people use with
programming languages.

210



A Case for Feminism in Programming Language Design Onward! ’24, October 23–25, 2024, Pasadena, CA, USA

3.2 How Do We Study PL?
In addition to the choice of research topics, we can also con-
sider the methods that are in scope in PL, a more subtle is-
sue. In many subfields of computer science, a wide range of
different methods is accepted. The call for papers of ICSE
mentions two types of evaluation criteria for papers: “The
soundness, clarity and depth of a technical or theoretical con-
tribution, and the level of thoroughness and completeness of
an evaluation.”. Such formulation leaves room for user stud-
ies, which are also published in SE [55, 66].

However, what is accepted in PL are overwhelmingly
quantitative methods and formal methods. For example, the
SPLASH call for papers seems to invite a broad range of sub-
missions: “The paper presents sufficient evidence supporting
its claims, such as proofs, implemented systems, experimental
results, statistical analyses, case studies, and anecdotes”. Ex-
perimental results could, in theory, refer to controlled exper-
iments involving users, a case study could report on an im-
plementation of a new feature, and anecdotes might include
reports of user experiences. But in practice what we see
in PL papers are new features of programming languages:
“Mathematical approaches play an essential role in many of
these papers – for example, the authors describe a new lan-
guage construct, define its semantics and a type system for it,
and then show a proof of type soundness” [117] (see further
Section 5.1 for the structural impact of research methods in
PL).

There have been PL researchers arguing for the need to
study of human factors of programming language features,
most notably Stefik and Hanenberg [116, 118, 119]. In it-
self, the goal of taking users’ views into account is entirely
aligned with feminist beliefs that perspectives of diverse
stakeholders should be taken into account. However, from
the broad arguments that Stefik and Hanenberg made to col-
lect and present more evidence, only the quantitative parts
were published and discussed. Other methods that could be
used for a deeper understanding of the experiences of users
like diary studies, observations and the application of the-
oretical lenses have not been published at all in the main-
stream PL community.

Feminism can help us to understand the narrow and nu-
merical methodological practices; Research methods and
practices that do not fall within the masculine discourse of
hard, are seen as less valuable. These are frequently associ-
ated with women/feminity, such as research involving peo-
ple and qualitative work more generally. That means that
our community does not employ these research methods,
even though they could shed a different light on how to im-
prove the state of the art for all people that work with pro-
gramming languages and systems.This view not only limits
our view, excludes people of all genders, who are interested
in not only building things, but seeing them through, trying
their tools with users, and iterating over their tools.

But because that work is so tied to programming lan-
guages, it also does not fit in today’s PL community, and
sadly it also does also not easily fit in other subfields of com-
puter science, unless it is applied to education, where more
diverse research methods are in scope.

3.3 PL as Mathematical
Onemore system of scientific framing in PL is the dominant
view that programming ismath and that to demonstrate that
a new feature of a programming language is valuable, what
is needed is a proof.

It is tempting to respond by saying ‘of course PL is mathe-
matical, it came frommath!’, as I have heard many people in
my circle of friends exclaimwhile I was working on this line
of reasoning. I too believed for a long time that mathemat-
ics is the true origin of PL and CS. Many computer science
departments were part of mathematics departments before
they became separate departments, although the history of
CS and math is long and complicated [125], and not true all
CS programs are part of math; MIT CS originated as part of
the Electrical Engineering department, and Harvard’s came
from Applied Mathematics, part of Engineering.

However, programming did not start off as mathematics;
it had to be made mathematical. Programming started as an
activity closely related to electrical engineering, when pro-
grams were created by connecting wires. Only later was it
reinvented in academia as mathematical, for example, Dijk-
stra argued in the mid-70s, decades after programming lan-
guages were created, that it must be understood as math-
ematical [31]—he also argued that ‘soft sciences’ had no
place in software engineering, that it required ‘hard sci-
ence’ [32]. For programming to be a hard science, other sci-
ences needed to be put at a distance; Dijkstra argues that
“the soft scientists make themselves even more ridiculous …
by claiming that they can contribute to software engineer-
ing”. This is interesting in the light of the large contribu-
tions made to PL by social scientists, like Noah Chomsky.
Mahoney and van Toen reflect on the role of formalism in
the exclusion of women in computing; they have argued
that there exists a common notion of “‘hard’ computing: com-
puting that is technically demanding, mathematical, formal”
and that this notion marginalizes other less-mathematical
aspects of computing [84].

Taking a position that centers mathematics is not without
its benefits: Edwards argues that “by associationwith themir-
acles of its machinery, computer work is taken to require vast
mental powers, a kind of genius with formalism akin to that
of the mathematician” [34]. Clegg adds “University comput-
ing established itself in relation to the dominant mores of the
academy: intellectually challenging, tough, abstract.” [23].

And this undercurrent is still very much alive today. At
SPLASH ’23 I witnessed a senior academic jokingly say that
a paper was rejected because ‘it did not have enough Greek

211



Onward! ’24, October 23–25, 2024, Pasadena, CA, USA Felienne Hermans and Ari Schlesinger

letters for POPL’. Papers at POPL, they meant, need for-
mal mathematical notation of the sort used for presenting
proofs, and such formal notation and proofs are considered
hard to understand. Similarities to the higher value assigned
to data gathered by climbing inhospitable mountains as out-
lined by Carey et al. [18] are easy to draw.

The mathematical nature of programming was further
stressed by explicitly disregarding experimentation as a
form of gathering knowledge. Turing award winner Hart-
manis argues in his 1994 award lecture that “in computer
science, there is no history of critical experiments that decide
between the validity of various theories” and “the underly-
ing mathematical model of digital computing is not seriously
challenged by theory or experiments”. Such statements rein-
force the mathematical nature of programming and limit
what type of research is in scope. And this is not lim-
ited to the methods we can use, but it also impacts the re-
search questions we can ask. Studies examining, for exam-
ple, whether programmers prefer curly braces over inden-
tation, or whether programmers make more mistakes in an
untyped language, which experiments could certainly help
us with, are explicitly placed outside of relevant PL work by
Hartmanis.

3.4 PL as Masculine
The field of programming languages was not only made
mathematical and theoretical, but also masculine. When
programming started, all computation depended on the
manual labor of (mostly) female ‘computers’. As Ensmenger
describes, the early days of computing were “unusually open
to females … [because of the] lack of a fully established sci-
entific or engineering discipline identity left space open for
women” [36]. However, the computing labor these women
performed became automated (resulting in the job loss)
when electronic computers became commonplace. The ad-
dition of male programmers to the field of programming co-
incided with a shift in how the field saw itself, and program-
ming became aligned with mathematics and with engineer-
ing since those fields had prestige. However, with that shift,
existing stereotypes and hurdles (such as needing a formal
degree) started to hamper women to the point that partici-
pation was reduced to the percentages around 10% that we
see today [2, 36]

Hence, if we talk about the lack of representation of
women in programming today, we should keep in mind
that it was once, not even so long ago, seen as women’s
work. People used to believe that women are good at pro-
gramming because they are fastidious, “they worry how all
the details fit together while still keeping the big picture in
mind” [22] and “programming requires patience and persis-
tence and these are traits that many girls (sic.) have” [47].
In this regard, programming differs fundamentally from
glaciology and other subfields in engineering and academia,

in that programming started female and became male, while
other fields were male from the outset and remained as such.

Modern feminist work in the computer science space
aptly describes how the fact that CS is male-coded presents
issues for women. Kronberger and Horwath find that
women experience lower degrees of social acceptance and
belonging in the academic environment [72]. Tassabehij de-
scribes that software development puts women in “the am-
bivalent position of being either female or a coder, but not
both” [123]. Reading that work, I remembered my rejection
of knitting, of earrings and of dresses, and I sawmy own his-
tory through new eyes. This too is the power of feminism, it
connects women through time and space and gives them a
deeper understanding of themselves. In a field with so little
women, it is hard to gain this understanding.

There aremany goals formore feminism in PL: one reason
is that I believe that allowing more room for different per-
spectives will make programming languages more usable
and more interesting. But another reason is that when our
field as a whole knows more about feminism, that will make
it easier for women to fit in; I was never exposed to feminist
or inclusion research before I deliberately went looking for
it, and yet reading about the experiences of all those other
women, in different times and places who were also strug-
gling with belonging in a field that they love, made me un-
derstand a part of me I that was never able to before. By
excluding feminist discourse from PL, we are withholding
women (and other non-traditional PL creators) knowledge
about themselves, and we are requiring them to do deep
work to understand these dynamics.

4 Systems of Scientific Domination
This essay so far has described ways in which scientific
practice in PL uses masculine discourses. The next part of
Carey’s framework explains that this is not a stable situ-
ation, but rather an ongoing phenomenon, and invisible
powers—definitely not always intentional—are at play to en-
sure the system remains in its current state. Collins [26]
separates the forces of domination into four forms: Struc-
tural how domination happens through formal structure,
such as laws or regulation, and disciplinary domination in
the enforcement of laws and regulations.There is alsoHege-
monic domination, on how what is included discourse
shapes dominated alternatives, and finally interpersonal
domination concerns how people as individuals reproduce
systems of domination.

4.1 Structural
Structural domination in an academic field does not occur
as formal laws, but rather as a set of norms—implicit and ex-
plicit agreements about the field which the field itself sets.
However, these certainly aren’t unwritten rules. For exam-
ple, since 2017, PLDI mentions seven guidelines in their Call
of Papers that authors are encouraged to use.10 These seven

212



A Case for Feminism in Programming Language Design Onward! ’24, October 23–25, 2024, Pasadena, CA, USA

guidelines are very clearly underpinned by a quantitative
way of thinking. For example, one of the seven guidelines
reads ‘appropriate metrics’: meaning that we should mea-
sure relevant things.Ways of knowing that aren’t numerical
are hard to fit into this list; there are no guidelines about ap-
propriate observations, or appropriate interviews. Another
category is named ‘appropriate comparison’, detailing how
authors should compare ‘against an appropriate baseline’.
This does not apply to, for example, papers using a theo-
retical lens to look at systems (such as this paper) or pa-
pers that use observations or interviews in which subjects
discuss the differences between systems. That is not to say
they can never be accepted, but reviewers then cannot use
this checklist and are thus required to decide on their own
on acceptable evidence.

POPL in their principles11 describe that reviewers should
focus on “whether the approach is fundamentally sound” and
“whether the paper contains sufficient information for others
to reproduce and build on the results”. This strongly points
in the direction of formal proofs and places several types of
work as out of scope, including a lot of qualitative work that
cannot be reproduced, since its goals aren’t to be reproduced
but to inform further thought.

4.2 Disciplinary
A critical reader might say, yes, all these guidelines exist,
but it is merely an advice on what an author or reviewer
should do, these guidelines do not prevent other types of
work from being included. But the community also upholds
the guidelines, representing the disciplinary domination.
While indeed, papers can be accepted that deviate from the
norm, the lists very clearly delineate the out-group from
the in-group, and presenting qualitative work will be a lot
harder than quantitative and formal work. One could also
argue that these rules can be changed; they come from the
community itself. However, the people who reach the se-
niority to be allowed in decision making are very likely to
have done mainstream work, as we argued above.

4.3 Hegemonic
The hegemonic domination, or domination of discourse
happens in everything that we produce: in papers, journals,
conferences and anything that can be considered representa-
tive of the PL community. In all those expressions, a certain
way of thinking is common, and other perspectives are less
likely to be included.

The system stays in play, because people in the field (in
any academic field) research not only what they love and
what they think is valuable, but also what they know will
advance their career. If you want to have a shot at a research
career in PL, it is clear that you will need a PLDI or POPL pa-
per every year, and a safe path towards that is to do types or
performance work, and not work outside of the mainstream
papers, which reviewers are less likely to accept and other
researchers are less likely to cite.

4.4 Interpersonal
Finally, there are patterns of interpersonal domination.
This should not be seen as the dynamic in which people
speak over each other, or actively exclude some voices from
the discussion. Often it is a lot more subtle but still causes
people who fall outside of the current way of doing things
to be either excluded or ‘absorbed’ into regular discourse.

One way in which this happens is by disallowing non-
traditional PL researchers deep discussions, for example at
conferences. A person researching a traditional PL topic
such as dependent types is quite likely to be greeted at a con-
ference with immediate deep questions about their work:
‘Have you seen this paper?’ or ‘Do you know such and
such?’. From their perspective, conferences are rife with op-
portunities to learn.

In contrast, those who are working outside of regular top-
ics, as I have personally experienced both when working on
spreadsheets and on non-English programming languages,
are only presented with entry-level questions: ‘Why is that
interesting?’ or ‘Why is that hard?’–the latter question ty-
ing into the notion that hard is valuable and valuable is
hard. Answering similar entry-level questions for years at
end is not only boring and thus emotionally draining, but it
also robs those researchers from learning more. Colleagues
mentioning to me that attending a conference is valuable
because they always come back with new perspectives has
largely felt foreign to me: I was in so many cases the person
providing the new perspectives and not receiving them.

A similar dynamic happens for those using non-
traditional research methods: basic questions about qualita-
tive research rob qualitative researchers of the experience of
learning (if I never again get a question about small sample
sizes, it’ll be too soon) and cause PL conferences to be ex-
hausting rather than fun. When you then also do not look
like a traditional PL researcher, for instance if you are fe-
male, or non-binary, or if you are a researcher with disabil-
ities, or if you are not white, you face one more distract-
ing dynamic, and that is to be confronted with questions
about yourself. It is not rare for me to have been asked in PL
spaces where the women are, and what I personally thought
of the reasons for the lack of women, or to be asked to give
a lecture on gender, or have breakfast with female students.
While I sometimes enjoy these activities—and while this pa-
per shows that those conversations are necessary and can
be surely valuable—participating in such conversations al-
ways comes at the opportunity costs of discussing research
work. This type of diversity-based service work has shown
to be often uncompensated [103], especially for women of
color, their race and gender become their identity, whether
they choose this or not [94]. None of this is new: the first fe-
male police officer in the US embarked on a national tour to
promote female participation in policing, in addition to her

213



Onward! ’24, October 23–25, 2024, Pasadena, CA, USA Felienne Hermans and Ari Schlesinger

police work [88]. Such diversity work is not just an unfortu-
nate consequence of being the first, but is often an ongoing
process. As Morrison says “Know the function, the very seri-
ous function of racism, is distraction. It keeps you from doing
your work. It keeps you explaining, over and over again, your
reason for being… None of that is necessary. There will always
be one more thing.”12 Ahmed similarly notes that so much
feminist and antiracist work is the work of trying to con-
vince others that sexism and racism have not ended; which
this essay, and my life in programming over the last two
decades, are clear examples of [3].

These three interpersonal dynamics are all connected
in intricate ways. Women are more likely to study non-
traditional PL contexts, such as end-user programming ed-
ucation or widely used languages seen as less valuable, and
are more likely to use non-traditional methods such as qual-
itative work centered more around people, meaning they
will spend large parts of their professional lives educating
others in these topics rather than learning.

5 Knowledge Production
Another aspect of Carey et al. is knowledge production: who
is involved in gathering data and what data is being gath-
ered? Carey et al. name examples of exclusionary data gath-
ering around glaciers: more data is collected about hard-
to-climb mountains, while data from women in agriculture,
whose data is not an adventure, is collected to a lesser ex-
tent, distorting our views on glaciers. We apply this aspect
of Carey to PL; whose stories do we collect, and what do
those stories concern?

5.1 Whose Stories Are Collected?
Women have been involved in the creation of program-
ming languages for decades. To name just a few: Kath-
leen Booth (Assembly-1949), Grace Hopper (FLOWMATIC-
1955, COBOL-1959), Jean E. Sammet (FORMAC-1962), Cyn-
thia Solomon (LOGO-1966), Adele Goldberg (Smalltalk-
1972), Barbara Liskov (CLU-1973), Sophie Wilson (BBC
BASIC-1981), Christine Paulin-Mohring (Coq-1989), Patri-
cia Hill (Gödel-1992), Audrey Tang (Raku/PERL 6-2000),
Crista Lopes (AspectJ-2001) and Heather Miller (Scala-2004).
However, if we look at writing about programming lan-
guages, one might be inclined to believe that only men have
created widely used languages. Someone looking at the pro-
ceedings of the ACM SIGPLAN conference on History of
programming languages 2020 (HOPL IV) [1] for example:
Only 4 female authors contributed, out of 46, who authored
2 out of 20 papers.13 Or let’s consider the 2009 book ‘Mas-
terminds of Programming’(MoP)[10], which interviews the
creators of 17 different programming languages, all 27 of
them male.

We see a familiar dynamic at work: men are labeled ex-
perts, while female contributions are erased from history.
This phenomenon is common in the history of science and

technology [114], also called the Matilda effect [106]. Be-
cause of this reframing, we come to believe that the field
of programming is shaped by men, and that women simply
don’t have a place in it. This type of exclusion of women
from technology is both a cause and a result of a gendered
interpretation of what programming is and what contribu-
tions matter, a phenomenon that Cockburn calls the circuit
of technology [120].

5.2 What Stories Are Collected?
There is a second question about the stories of program-
ming as collected in books such as HOPL IV or MoP: why
do they only collect stories on the creation of programming
languages?

HOPL aims to collect “contributions that discuss and an-
alyze the historical development of individual programming
languages, programming language families, language fea-
tures, design themes, and other strong influences on the direc-
tion of programming language design, implementation, and
usage” but then presents 18 papers that discuss only the im-
plementation of programming languages, one that discusses
a more generic PL idea (macros) and only one that discusses
what a programming language is (the only one authored by
a woman alone). None of the papers explicitly aim to study
the usage of a language.Where design is discussed, it is done
from the eyes of a language creator. The authors of MoP
explicitly choose to interview PL creators, but then labels
them ‘Masterminds of Programming’, and not ‘Masterminds
of Programming Languages’.

Highlighting language creators reinforces the story that
only building the programming language is where themean-
ingful work is. This singular focus means that we are miss-
ing other research directions around programming, such
as the meaning or semiotics of programming by Tanaka-
Ishii [122] or the history of programming in a broader sense
by Sammet [107]. The missing perspectives are not limited
to the perspectives of female authors, but also other broader
views. For example, voices critical of technology, such as
Lanier [78] are also missing.

The erasure of female contributions thus happens in two
ways: directly, by failing to include female PL creators, and
indirectly by shaping the perspective of what a mastermind
of programming is, a language creator—not a user of lan-
guage, an extender of language, a thinker about language,
or a historian of such languages. We could instead also fo-
cus on the design team or the design process, or on the com-
munity of people impacted by the language rather than lan-
guage creator.

5.3 How Do We Develop Languages?
Developing languages, variants and libraries is a large part
of the knowledge production of PL. But how do we go about
that? A common practice in technology, wider than PL, but

214



A Case for Feminism in Programming Language Design Onward! ’24, October 23–25, 2024, Pasadena, CA, USA

certainly also in PL is called ‘dogfooding’: meaning to use
your own tools (in our case: a programming language) as
much as possible, and to ‘bootstrap’ this, to be able to use it
as early as possible. Prior research termed this I methodology
[5, 100].

Such a methodology suffers from several limitations that
are rarely addressed. Firstly there is the unspoken assump-
tion that the original creator can take on the viewpoint of all
potential users.This of course has the risk of becoming a self-
fulfilling prophecy, surely people who think like the original
creator will feel more at home in such a language or system.
This again ties into the current community, which is homo-
geneous in gender, and also in race and abilities. As such,
creators stemming from the PL community might make as-
sumptions about what their users know, and what they care
about that do not generalize to a wider population. Further-
more, a creator of a systemwill, by building it, have somuch
more understanding of a system than any other users (even
a user similar in gender, race and ability) that it becomes
harder, over time, to identify with novice or casual users, a
form of the ‘curse of expertise’ [61].

5.4 What Counts As a Programming Language?
Afinal dynamic present in the PL community is gatekeeping
about what even is, and isn’t a programming language. An
interesting example are spreadsheets [58]. While having a
number of characteristics of a programming language, like
allowing users to perform calculations with variables and
conditionals, spreadsheets are excluded from the dominant
discourses in PL, as I have experienced extensively when
I worked on them early in my career. This can be under-
stood through the lens of masculinity: many people can use
spreadsheets. “The Dutch Bureau of Statistics has reported a
rise in people able to use formulas in spreadsheets from 44%
in 2006 to 54% in 2013.” [130], as reported in on [57]. This
undercuts the belief that programming languages are hard
to learn, and require special training or a mathematical way
of thinking, it thus goes against the idea that programming
is seen as hard, which is desirable.

Reflecting again on MoP shows how easy the goalposts
can be moved; for some of the languages included it can
be argued they are not a programming language, such as
UML, AWKor SQL. UML is not executable, so could easily be
disregarded as a programming language, but is not. HTML,
which is executable however, is not seen as a programming
language in regular PL discourse [46].

Even Python, at a certain point in time, was seen as
a ‘scripting language’ and not a real programming lan-
guage. My own experience supports the consistent moving
of the ‘real programming’ goalposts. When I was working
on spreadsheets, Excel being not Turing complete was an
often-heard argument. My creation of a Turing machine in
spreadsheet formulas however did not convince [38], but
only led to ‘yes but…’. A recent paper review I received (mid

2023) included the sentence “I am uncomfortable with the
definition of Excel as a programming language, despite many
considering it as such.” Observe how the discomfort of this
reviewer overpowers both the evidence presented and as
well as the opinion of others.

Overlooking spreadsheets as a programming system has
an impact in the real world. A recent paper that investigated
how to best teach programming to people in the prison sys-
tem describes a struggle to install the right software to do
so [62]. When at their conference presentation they were
asked why they did not consider Excel (which in addition
to formulas includes a VBA interpreter), which was avail-
able, the audience burst out in laughter.14

In addition to executable computer languages like spread-
sheets being excluded from programming language dis-
course, so are other formal languages that are coded as fe-
male, including but not limited to patterns for knitting, cro-
chet, weaving or sewing, and recipes. Not seen as formal
languages they are excluded from study, even while having
a history connected to programming; Jacquard looms were
the original use case of punch cards [53], and early forms of
computer memory were woven by hand (e.g., women hand-
threaded wire rope “through and around magnetic ferrite
cores” for NASA’s Apollo Guidance Computer) [105].15

6 Alternative Representations
In the final aspect of the work of Carey et al., they argue for
inclusion of “greater plurality in knowledge about and repre-
sentations”. Our paper also aims to explore such diversifica-
tion. Firstly, the expansions of the diversity of the people
in the community through expanding the methodology by
which programming languages are created, to attract peo-
ple with different interests and backgrounds into the conver-
sation. Secondly, exploring diversification of programming
languages themselves, aimed at including more ways of pro-
gramming, and attracting people that value those kinds of
programming languages.

6.1 Methodological Diversity
This essay is by no means the first essay to address the lack
of diversity in research methods in the PL community, other
researchers have argued for different methods too, or have
simply applied non-traditionalmethods and got their results
published.

SocioPLT. One notable initiative was the SocioPLT re-
search program of LeoMeyerovich et al. from Berkeley, who
studied what factors lead to programming languages being
adopted and found that these are often social and not tech-
nical factors [92]. Meyerovich’s paper won best paper at
OOPSLA 2013 and most influential paper in 2023, so to a
certain extent, we can call this work successful; the PL com-
munity recognized that sociological work into understand-
ing the human aspects of language adoption is important.

215



Onward! ’24, October 23–25, 2024, Pasadena, CA, USA Felienne Hermans and Ari Schlesinger

However, if we look at change in the field, the impact seems
to be smaller; Meyerovich’s paper only has two dozen cita-
tions, most of which fall outside of PL. In terms of changing
the methods for papers, this paper seems not to have made
a dent in getting review guidelines to accept more human-
centric work (e.g. by explicitly helping reviewers to under-
stand how to review such work). Ultimately Meyerovich
decided not to pursue this line of research further, as he
thought in the long term there would not be enough change
in the community enabling the mainstream acceptance of
such work.16

(Controlled) Experiments. A more explicit argument for
different research methods came from Tichy [126], who
called for more experimentation in computer science, he ar-
gued it is needed to get a better understanding of the field
we study in addition to proofs and theories. Tichy points
out that claims regarding the productivity and quality im-
provements of using functional or object-oriented program-
ming have not been tested in systematic ways despite ex-
isting for 30 years. A related line of papers came from re-
searchers Stefik and Hanenberg, more than a decade later
at Onward 2010, as we discussed above. They argued that
the programming languages community should focus not
only on technical aspects of systems, but should also be
studied through people’s experiences with the languages,
echoing the sentiments made by Tichy. Stefik and Hanen-
berg’s work did not havemuch impact in themainstream PL
community; while in software engineering empirical work
is relatively mainstream17 in mainstream PL there is hardly
more human-centric research done today than there was in
2010.18

User-centeredDesign. Some researchers have also argued
for more user-centered design in PL, suggesting a large
number of different research methods, including qualitative
work, theory building and experimentation [24], and some
of these authors have also reflected critically on how to per-
form user studies [30]. These suggestions are valuable and
I think PL should take these to heart, however, it should be
noted that [24], which is explicitly about designing program-
ming languages, is published in a human-computer interac-
tion venue, and not in PL.There are programming languages
created outside of academic PL that explicitly use a user-
centered design methodology. For example, Elm designed
their error messages to be understandable, with the explicit
goal of making them understandable to novices, arguing
that people with the least access to mentorship, and those
with low confidence are most likely to drop out because of
confusing error messages, and encouraging the community

to share their struggles with error messages so the language
designers could learn from them [108].

6.2 Programming Language Diversity
In addition to people inside and outside of PL arguing for
different methods for creating and evaluating languages,
some researchers have also built languages serving different
needs, or designed languages in more inclusive ways. These
new ways of programming open the discussion of what is
a programming language, and force us to deeply reflect on
that.

Wordplay. A recent example of a programming language
that is built to include non-traditional users is Amy J. Ko’s
Wordplay.19 In the essay in which Ko describes the cre-
ation of Wordplay, she echoes feminist notions: “In hind-
sight, I wondered how such a small, privileged group of West-
ern, mostly white peoplemanaged to shape somuch of comput-
ing, and through computing, so much of our modern world.”20
The result of Ko’s exploration is a programming language
in which we can manipulate emoji and letters, where a pro-
gram is called a ‘performance’ catering to people with an
interest in writing and text. It is a lovely exploration of pro-
gramming that stretches the limits of the traditional defini-
tion of programming languages.

Non-English programming languages. One line of work
which has been questioning who has the power to create
programming languages—and hence fits perfectly in a femi-
nist PL tradition—is work on non-English programming lan-
guages. A well-known example is I. Ê �̄ 21 an Arabic vari-
ant of Lisp.22 Another example is WenYan in classical Chi-
nese.23 Research arguing for non-English programming lan-
guages in a more generic sense, without creating and dis-
cussing an implementation of a non-English programming
language, has also been appearing, for example by Laiti [75].
Laiti argues that because currently keyboards and programs
are lacking support for indigenous languages, we are miss-
ing valuable perspectives. It is again interesting to note that
this work appears in a Computing Education venue. The
case study they present is situated in education, but the
point that PL misses these perspectives should also be dis-
cussed within the PL community. Something similar hap-
penedwith I was working onHedy [56], a programming lan-
guage for teaching. I was in doubt of where to send the paper
describing Hedy, and I chose to send it to a CSed venue, be-
cause I was afraid of reception in PL. Interestingly enough,
the paper was almost desk rejected because the chair found
it too PL centered! Hedy has recently also incorporated non-
English programming [121], and the response of the PL com-
munity to that work has contributed to the creation of this

216



A Case for Feminism in Programming Language Design Onward! ’24, October 23–25, 2024, Pasadena, CA, USA

essay, because I saw the dynamics of pushback against my
earlier work on spreadsheets, and against my interest in do-
ing empirical, qualitative work, were all connected to an un-
derlying belief system.

A final form of work examining the role of natural lan-
guages is the programming language Pegasus [71] which al-
lows for ‘naturalistic programming’, i.e. programming using
natural languages and supports both German and English.

Exploring programming in feminine coded for-
malisms. Activities associated strongly with women are
typically not covered in the programming languages con-
text, unless used as a way to make programming languages
more relatable for the layperson, for example in [110]
where in a recipe is used to demonstrate a formal language
like a computer language.

By diversification of PL to include female coded for-
malisms into the PL discourse, we allow ourselves to learn
from formalisms that now fall outside of our view, such as
weaving. As Harlizius-Klück [53] summarizes in her excel-
lent paper on the history of weaving (with and without ma-
chines), weaving is a form of binary computation: “To con-
trol a weave means to decide whether a warp thread is to be
picked up or not.”

Feminine coded formalisms are not entirely out of
scope, a recent Onward! paper has examined machine cro-
chet [109], but it takes the reverse approach: it brings for-
malism coming from PL to crochet patterns, rather than
learning from existing patterns. This view is common, other
work on knitting also aims for proof properties of patterns,
and points at aspects of patterns as having issues, i.e. “ex-
isting representations for machine-knitted objects are incom-
plete (do not cover the complete domain of machine-knittable
objects) or overly specific (do not account for symmetries and
equivalences among knitting instruction sequences).” It is in-
teresting to see how the researchers take their norms about
formalisms (they must be complete and not too specific)
and push them on an existing world, rather than learning
from the way the existing formalism currently works. This
is a common, hegemonic form of reasoning, dismissing and
rejecting knowledge made by people from different back-
grounds [25, 37, 112]. As Buck et al.[15] note in their reflec-
tions on Gender and Geoengineering, traditional, masculine
research in the natural sciences has a strong tendency to
“classify, measure, map, and, ideally, dominate, and control”.
Such tendencies fit the PL world too, controlling an actual
machine, without looking at a programming language in its
context with users, libraries, mods, and human confusion,
where it becomes more dynamic and chaotic and messy.

7 What Came Before; What Comes Next?
We are by no means the first people to discuss the history
of women in programming languages, or to report on the

effect of the ‘mathematicalization’ of our field on gender di-
versity, or even the impact that feminism could have on CS
and PL. Diving into this topic, I was surprised how much
there was to read: from books and papers detailing the his-
tory of women in our field [2, 36] to papers deeply engaging
with feminism and computing such as [11, 23]. All of these
are recommended for those who want to know more. If you
want to gain a more basic understanding of feminism and
technology you might want to start with the introduction
of Gill and Grint [42] who explain the different forms of
feminism and how they relate to technology and program-
ming.

Seeing the amount of researchers who have explored fem-
inism and programming in so many ways, including dozens
of women I had never heard of, was as much comforting
as it was painful. How is it that I can exist in CS for over
two decades and never hear about any of this work; in my
education, in conferences, in books and talks?

This paper has summarized research directions and ideas
of what research to read if you want to know more, and
all referenced papers can get you started in understanding
feminism and programming, but the most important thing
is where we go from here.

Our hope is that this essay gives space for others who
want to broaden PL in any imaginable way: by widening
the definitions of what a programming language is, includ-
ing parts of programming currently populated by women,
such as end-user programming, scientific computing and e-
textiles, by allowing PL papers to study things that are not
just the language itself, such as error messages, IDEs, or
ways of thinking that programming languages encourage,
and by allowing qualitative work seeking to understand, to
challenge, to document and to exist alongside the formal
and quantitative work we have seen in the past.

Here’s to a future that is more inclusive of people of all in-
terests, genders and races, bound by a love for programming
and all that it brings us.

Notes
1Wherever the first person is used in this essay, the first author is writ-

ing from their personal experience.The second author’s contributions were
in shaping the paper by developing the argumentation, adding sources, and
contextualizing the experiences of the first author.

2I now understand this is only one of the forms of feminism, called
liberal feminism. For an overview of different forms, see Gill and Grint
[42].

3Said another way, there is no single, essential standpoint for the cate-
gory of women.

4It is customary to use all lowercase when writing about the scholar
bell hooks as this is the capitalization style used by the author herself.

5Formally, numerals used in Arabic today are called Hindu–Arabic nu-
merals. 0-9 as commonly used in English are, confusingly, referred to as
Arabic numerals since they reached Europe through the Arabic world.

6https://www.tiobe.com/tiobe-index/
7Moreover, much research about gender differences tends to reinforce

discriminatory stereotypes and assumptions, often suffering from confir-
mation bias and issues with study design, see [39, 40] for more.

217

https://www.tiobe.com/tiobe-index/


Onward! ’24, October 23–25, 2024, Pasadena, CA, USA Felienne Hermans and Ari Schlesinger

8The term women often implicitly connotes the experiences of white
women, excluding the experiences and needs of women of color. We use
the term women of all colors to acknowledge this history of exclusion in
activism and feminism, and to clarify that we are approaching this work
from an inclusive and intersectional lens.

9https://portal.core.edu.au/conf-ranks/?search=4612&by=all&sort=
arank

10https://www.sigplan.org/Resources/EmpiricalEvaluation/
11https://www.sigplan.org/Conferences/POPL/Principles/
12From a 1975 lecture at Portland State University called ‘A Humanist

View’
13It must be noted that it is somewhat remarkable that there even is a

small subfield on the history of programming languages at all. SIGPLAN is
the only SIG of ACM which has such a conference. There is no History of
Operating Systems or History of Computer Architecture conference. Jean
Sammet, the first chair of HOPL, devoted considerable effort to create a
space where people could share stories of creation of languages, and earlier
editions of HOPL considered the human side more.

14Personal correspondence with an attendee
15Racial and gender stereotypes have played a key role in the way this

type of knowledge (and labor) is undervalued. For more information, we
encourage you to explore the historic exploitation of Navajo women in
early electronics manufacturing [95].

16Personal correspondence with the author.
17Although not all of empirical SE is experiments, a lot of it is large-scale

data analysis
18Again, we acknowledge the work done in workshops and smaller con-

ference on human-centric PL work, but we also note that these are not
comparable to the career building work published in A* conferences work-
shops.

19https://wordplay.dev/learn
20https://medium.com/bits-and-behavior/wordplay-accessible-

language-inclusive-interactive-typography-e4b9027eaf10
21Pronounced as ‘elb’ or ‘qelb’ and meaning heart in Arabic, see https:

//www.theregister.com/2013/01/25/arabic_programming_language
22It took the authors of this paper considerable effort and knowledge of

the Arabic alphabet to properly typeset I. Ê
�̄ in Latex, a case in point. This

is also the reason we use endnotes rather than footnotes; footnotes are not
compatible with arabtex.

23https://wy-lang.org/

Acknowledgments
Thanks to Leo Meyerovich and Walter Tichy for their input
on their work on diverse research methods and its impact.
Thanks to Neil C.C. Brown for his words of encouragement
and extensive comments on several drafts. And finally, to
Andreas Stefik and Stefan Hanenberg: words do not suffice
to cover your impact on my thinking. You are the academic
friends I needed to feel welcome in PL, and without you, I
would not be here today to write all of this.

References
[1] 2020. HOPL IV. Proc. ACM Program. Lang. 4, HOPL (2020). Publisher:

Association for Computing Machinery.
[2] Janet Abbate. 2012. Recoding Gender: Women’s Changing Participa-

tion in Computing. The MIT Press. https://www.jstor.org/stable/j.
ctt5vjp2p

[3] Sara Ahmed. 2017. Living a Feminist Life. Duke University Press.
[4] Efthimia Aivaloglou and Felienne Hermans. 2019. How is program-

ming taught in code clubs? Exploring the experiences and gender
perceptions of code club teachers. In Proceedings of the 19th Koli Call-
ing International Conference on Computing Education Research. 1–10.

[5] Madeleine Akrich. 1995. User Representations: Practices, Methods
and Sociology. In Managing Technology in Society. The Approach of
Constructive Technology Assessment. Pinter, 167. https://shs.hal.
science/halshs-00081749

[6] Christine Alvarado and Zachary Dodds. 2010. Women in CS:
An Evaluation of Three Promising Practices. In Proceedings of the
41st ACM Technical Symposium on Computer Science Education
(SIGCSE10). ACM. https://doi.org/10.1145/1734263.1734281

[7] Sonya Andermahr, Terry Lovell, and Carol Wolkowitz. 1997. A Con-
cise Glossary of Feminist Theory (1st edition ed.). Hodder Education
Publishers, London.

[8] Simone De Beauvoir. 1949. The Second Sex. Knopf Doubleday Pub-
lishing Group. Google-Books-ID: _hywlrNuYvIC.

[9] Joanne Rossi Becker. 1981. Differential treatment of females and
males in mathematics classes. Journal for research in Mathematics
Education 12, 1 (1981), 40–53. Publisher: National Council of Teach-
ers of Mathematics.

[10] Federico Biancuzzi and Shane Warden. 2009. Masterminds of
Programming: Conversations with the Creators of Major Pro-
gramming Languages. Theory in Practice (O’Reilly). https:
//www.amazon.com/Masterminds-Programming-Conversations-
Creators-Languages/dp/0596515170

[11] Christina Björkman. 2005. Feminist research and computer science:
Starting a dialogue. Journal of Information, Communication and
Ethics in Society 3 (Nov. 2005), 179–188. https://doi.org/10.1108/
14779960580000271

[12] Lenore Blum and Carol Frieze. 2005. The Evolving Culture of Com-
puting: Similarity Is the Difference. Frontiers: A Journal of Women
Studies 26, 1 (2005), 110–125. https://doi.org/10.1353/fro.2005.0002

[13] Lenore Blum, Carol Frieze, Orit Hazzan, and M. Bernardine Dias.
2007. A Cultural Perspective on Gender Diversity in Computing. Re-
configuring the firewall. Recruiting women to information technology
across cultures and continents (2007), 109–133.

[14] Kevin S. Bonham and Melanie I. Stefan. 2017. Women are under-
represented in computational biology: An analysis of the scholarly
literature in biology, computer science and computational biology.
PLOS Computational Biology 13, 10 (Oct. 2017), e1005134. https:
//doi.org/10.1371/journal.pcbi.1005134 Publisher: Public Library of
Science.

[15] Holly Jean Buck, Andrea R. Gammon, and Christopher J. Pre-
ston. 2014. Gender and Geoengineering. Hypatia 29, 3
(2014), 651–669. https://doi.org/10.1111/hypa.12083 _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1111/hypa.12083.

[16] Leah Buechley and Benjamin Mako Hill. 2010. LilyPad in the wild:
how hardware’s long tail is supporting new engineering and design
communities. In Proceedings of the 8th ACM Conference on Design-
ing Interactive Systems (DIS ’10). Association for Computing Machin-
ery, New York, NY, USA, 199–207. https://doi.org/10.1145/1858171.
1858206

[17] Tracy Camp. 2012. ’Computing, We Have a Problem…’. ACM Inroads
3, 4 (Dec. 2012), 34–40. https://doi.org/10.1145/2381083.2381097

[18] Mark Carey, M. Jackson, Alessandro Antonello, and Jaclyn Rushing.
2016. Glaciers, gender, and science: A feminist glaciology frame-
work for global environmental change research. Progress in Hu-
man Geography 40, 6 (Dec. 2016), 770–793. https://doi.org/10.1177/
0309132515623368 Publisher: SAGE Publications Ltd.

[19] Mark Carey, M. Jackson, Alessandro Antonello, and Jaclyn Rushing.
2016. Glaciers, Gender, and Science: A Feminist Glaciology Frame-
work for Global Environmental Change Research. Progress in Hu-
man Geography 40, 6 (July 2016), 770–793. https://doi.org/10.1177/
0309132515623368

[20] P. L. Chinn and C. E. Wheeler. 1985. Feminism and nursing. Nursing
Outlook 33, 2 (1985), 74–77.

218

https://portal.core.edu.au/conf-ranks/?search=4612&by=all&sort=arank
https://portal.core.edu.au/conf-ranks/?search=4612&by=all&sort=arank
https://www.sigplan.org/Resources/EmpiricalEvaluation/
https://www.sigplan.org/Conferences/POPL/Principles/
https://wordplay.dev/learn
https://medium.com/bits-and-behavior/wordplay-accessible-language-inclusive-interactive-typography-e4b9027eaf10
https://medium.com/bits-and-behavior/wordplay-accessible-language-inclusive-interactive-typography-e4b9027eaf10
https://www.theregister.com/2013/01/25/arabic_programming_language
https://www.theregister.com/2013/01/25/arabic_programming_language
https://wy-lang.org/
https://www.jstor.org/stable/j.ctt5vjp2p
https://www.jstor.org/stable/j.ctt5vjp2p
https://shs.hal.science/halshs-00081749
https://shs.hal.science/halshs-00081749
https://doi.org/10.1145/1734263.1734281
https://www.amazon.com/Masterminds-Programming-Conversations-Creators-Languages/dp/0596515170
https://www.amazon.com/Masterminds-Programming-Conversations-Creators-Languages/dp/0596515170
https://www.amazon.com/Masterminds-Programming-Conversations-Creators-Languages/dp/0596515170
https://doi.org/10.1108/14779960580000271
https://doi.org/10.1108/14779960580000271
https://doi.org/10.1353/fro.2005.0002
https://doi.org/10.1371/journal.pcbi.1005134
https://doi.org/10.1371/journal.pcbi.1005134
https://doi.org/10.1111/hypa.12083
https://doi.org/10.1145/1858171.1858206
https://doi.org/10.1145/1858171.1858206
https://doi.org/10.1145/2381083.2381097
https://doi.org/10.1177/0309132515623368
https://doi.org/10.1177/0309132515623368
https://doi.org/10.1177/0309132515623368
https://doi.org/10.1177/0309132515623368


A Case for Feminism in Programming Language Design Onward! ’24, October 23–25, 2024, Pasadena, CA, USA

[21] Ingrid Maria Christensen, Melissa Høegh Marcher, Paweł Grabar-
czyk, Therese Graversen, and Claus Brabrand. 2021. Computing Ed-
ucational Activities Involving People Rather Than Things Appeal
More to Women (Recruitment Perspective). In Proceedings of the
17th ACM Conference on International Computing Education Research
(ICER 2021). Association for Computing Machinery, New York, NY,
USA, 127–144. https://doi.org/10.1145/3446871.3469758

[22] Wendy Hui Kyong Chun. 2011. Programmed Visions: Software
and Memory. The MIT Press. https://doi.org/10.7551/mitpress/
9780262015424.001.0001

[23] Sue Clegg. 2001. Theorizing the Machine: Gender, Education and
Computing. Gender and Education 13, 3 (2001), 307–24. ERIC Num-
ber: EJ634060.

[24] Michael Coblenz, Gauri Kambhatla, Paulette Koronkevich, Jenna L.
Wise, Celeste Barnaby, Joshua Sunshine, Jonathan Aldrich, and
Brad A. Myers. 2021. PLIERS: A Process that Integrates User-
Centered Methods into Programming Language Design. ACM Trans-
actions on Computer-Human Interaction 28, 4 (Aug. 2021), 1–53.
https://doi.org/10.1145/3452379

[25] Lorraine Code. 1991. What Can She Know?: Feminist Theory and the
Construction of Knowledge. Cornell University Press, Ithaca.

[26] Patricia Hill Collins. 2000. Black Feminist Thought: Knowledge, Con-
sciousness, and the Politics of Empowerment (second ed.). Routledge,
New York.

[27] Patricia Hill Collins. 2019. Intersectionality As Critical Social Theory.
Duke University Press. 376 pages.

[28] Kimberlé Crenshaw. 1989. Demarginalizing the Intersection of Race
and Sex: A Black Feminist Critique of Antidiscrimination Doctrine,
Feminist Theory and Antiracist Politics. University of Chicago Legal
Forum (1989), 139–167.

[29] Kelly Danaher and Christian S. Crandall. 2008. Stereotype Threat
in Applied Settings Re-Examined. Journal of Applied Social Psy-
chology 38, 6 (May 2008), 1639–1655. https://doi.org/10.1111/j.1559-
1816.2008.00362.x

[30] Matthew C. Davis, Emad Aghayi, Thomas D. Latoza, Xiaoyin Wang,
Brad A. Myers, and Joshua Sunshine. 2023. What’s (Not) Working
in Programmer User Studies? ACM Transactions on Software Engi-
neering and Methodology 32, 5 (Sept. 2023), 1–32. https://doi.org/10.
1145/3587157

[31] Edsger W. Dijkstra. 1973. Programming as a discipline of math-
ematical nature (EWD 361). https://www.cs.utexas.edu/~EWD/
transcriptions/EWD03xx/EWD361.html

[32] Edsger W. Dijkstra. 1975. How do we tell truths that might hurt?
(EWD498). https://www.cs.utexas.edu/users/EWD/transcriptions/
EWD04xx/EWD498.html

[33] Sonya Corbin Dwyer and Jennifer L. Buckle. 2009. The Space be-
tween: On Being an Insider-Outsider in Qualitative Research. In-
ternational Journal of Qualitative Methods 8, 1 (March 2009), 54–63.
https://doi.org/10.1177/160940690900800105

[34] Paul N. Edwards. 1990. The Army and the Microworld: Comput-
ers and the Politics of Gender Identity. Signs 16, 1 (1990), 102–
127. https://www.jstor.org/stable/3174609 Publisher: University of
Chicago Press.

[35] Nathan Ensmenger. 2010. The Computer Boys Take Over: Computers,
Programmers, and the Politics of Technical Expertise. The MIT Press,
Cambridge, Mass.

[36] Nathan Ensmenger. 2010. Making Programming Mascu-
line. In Gender Codes. John Wiley & Sons, Ltd, 115–141.
https://doi.org/10.1002/9780470619926.ch6 Section: 6 _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470619926.ch6.

[37] Arturo Escobar, Carlos Frederico Marés de Souza Filho, João Ar-
riscado Nunes, João Paulo Borges Coelho, Laymert Garcia dos
Santos, Lino João de Oliveira Neves, Luis Carlos Arenas, Mar-
garita Flórez Alonso, Maria Paula Meneses, Mauricio Pardo, et al.
2020. Another Knowledge Is Possible: Beyond Northern Epistemologies.

Verso Books.
[38] felienne. 2013. Excel Turing Machine. https://www.felienne.com/

archives/2974
[39] Cordelia Fine. 2005. Delusions of Gender. Icon Books, New York.

Description based upon print version of record.
[40] Cordelia Fine. 2017. Testosterone Rex. W.W. Norton & Company. De-

scription based on publisher supplied metadata and other sources..
[41] Allan Fisher and Jane Margolis. 2002. Unlocking the Clubhouse: The

Carnegie Mellon Experience. SIGCSE Bulletin 34, 2 (2002), 79–83.
[42] Rosalind Gill and Keith Grint. 1995. The Gender-Technology Relation:

Contemporary Theory And Research: An Introduction. Routledge.
https://www.routledge.com/The-Gender-Technology-Relation-
Contemporary-Theory-And-Research-An-Introduction/Gill-
Grint/p/book/9780748401611

[43] Marleen Gilsing and Felienne Hermans. 2021. Gradual Program-
ming in Hedy: A First User Study. In 2021 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC). 1–9. https:
//doi.org/10.1109/VL/HCC51201.2021.9576236 ISSN: 1943-6106.

[44] Marleen Gilsing, Jesús Pelay, and Felienne Hermans. 2022. Design,
implementation and evaluation of the Hedy programming language.
Journal of Computer Languages 73, 101158 (Dec. 2022), 1–17. https:
//doi.org/10.1016/j.cola.2022.101158

[45] Catherine Good, Joshua Aronson, and Michael Inzlicht. 2003. Im-
proving Adolescents' Standardized Test Performance: An Interven-
tion to Reduce the Effects of Stereotype Threat. Journal of Ap-
plied Developmental Psychology 24, 6 (Dec. 2003), 645–662. https:
//doi.org/10.1016/j.appdev.2003.09.002

[46] Olivia Guest and Samuel H. Forbes. 2023. Teaching coding inclu-
sively: if this, then what? (Sept. 2023). https://doi.org/10.31235/osf.
io/3r2ez Publisher: OSF.

[47] Denise Gürer. 2002. Women in computing history. ACM SIGCSE
Bulletin 34, 2 (June 2002), 116–120. https://doi.org/10.1145/543812.
543843

[48] Jonas Hallström, Helene Elvstrand, and Kristina Hellberg. 2015. Gen-
der and technology in free play in Swedish early childhood educa-
tion. International Journal of Technology and Design Education 25, 2
(May 2015), 137–149. https://doi.org/10.1007/s10798-014-9274-z

[49] Fannie Lou Hamer. 2010. “Nobody’s Free Until Everybody’s Free,”:
Speech Delivered at the Founding of the National Women’s Political
Caucus, Washington, D.C., July 10, 1971. University Press of Mis-
sissippi, 0. https://doi.org/10.14325/mississippi/9781604738223.003.
0017

[50] Donna Haraway. 1988. Situated Knowledges: The Science Question
in Feminism and the Privilege of Partial Perspective. Feminist Studies
14, 3 (1988), 575–599. https://doi.org/10.2307/3178066

[51] Sandra Harding. 1986. The Science Question in Feminism. Cornell
University Press, Ithica. https://doi.org/10.1080/00201748708602126

[52] SandraG.Harding. 2004.TheFeminist StandpointTheory Reader: Intel-
lectual and Political Controversies. Psychology Press. Google-Books-
ID: qmSySHvIy5IC.

[53] Ellen Harlizius-Klück. 2017. Weaving as Binary Art and the Algebra
of Patterns. TEXTILE 15 (April 2017), 176–197. https://doi.org/10.
1080/14759756.2017.1298239

[54] Nancy C. M. Hartsock. 1983. The Feminist Standpoint: Develop-
ing the Ground for a Specifically Feminist Historical Materialism.
In Discovering Reality: Feminist Perspectives on Epistemology, Meta-
physics, Methodology, and Philosophy of Science, Sandra Harding and
Merrill B. Hintikka (Eds.). Springer Netherlands, Dordrecht, 283–310.
https://doi.org/10.1007/0-306-48017-4_15

[55] Felienne Hermans. 2013. Analyzing and visualizing spreadsheets.
PhD Thesis. Delft University of Technology.

[56] Felienne Hermans. 2020. Hedy: A Gradual Language for Program-
ming Education. In Proceedings of the 2020 ACM Conference on In-
ternational Computing Education Research (ICER ’20). Association

219

https://doi.org/10.1145/3446871.3469758
https://doi.org/10.7551/mitpress/9780262015424.001.0001
https://doi.org/10.7551/mitpress/9780262015424.001.0001
https://doi.org/10.1145/3452379
https://doi.org/10.1111/j.1559-1816.2008.00362.x
https://doi.org/10.1111/j.1559-1816.2008.00362.x
https://doi.org/10.1145/3587157
https://doi.org/10.1145/3587157
https://www.cs.utexas.edu/~EWD/transcriptions/EWD03xx/EWD361.html
https://www.cs.utexas.edu/~EWD/transcriptions/EWD03xx/EWD361.html
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD04xx/EWD498.html
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD04xx/EWD498.html
https://doi.org/10.1177/160940690900800105
https://www.jstor.org/stable/3174609
https://doi.org/10.1002/9780470619926.ch6
https://www.felienne.com/archives/2974
https://www.felienne.com/archives/2974
https://www.routledge.com/The-Gender-Technology-Relation-Contemporary-Theory-And-Research-An-Introduction/Gill-Grint/p/book/9780748401611
https://www.routledge.com/The-Gender-Technology-Relation-Contemporary-Theory-And-Research-An-Introduction/Gill-Grint/p/book/9780748401611
https://www.routledge.com/The-Gender-Technology-Relation-Contemporary-Theory-And-Research-An-Introduction/Gill-Grint/p/book/9780748401611
https://doi.org/10.1109/VL/HCC51201.2021.9576236
https://doi.org/10.1109/VL/HCC51201.2021.9576236
https://doi.org/10.1016/j.cola.2022.101158
https://doi.org/10.1016/j.cola.2022.101158
https://doi.org/10.1016/j.appdev.2003.09.002
https://doi.org/10.1016/j.appdev.2003.09.002
https://doi.org/10.31235/osf.io/3r2ez
https://doi.org/10.31235/osf.io/3r2ez
https://doi.org/10.1145/543812.543843
https://doi.org/10.1145/543812.543843
https://doi.org/10.1007/s10798-014-9274-z
https://doi.org/10.14325/mississippi/9781604738223.003.0017
https://doi.org/10.14325/mississippi/9781604738223.003.0017
https://doi.org/10.2307/3178066
https://doi.org/10.1080/00201748708602126
https://doi.org/10.1080/14759756.2017.1298239
https://doi.org/10.1080/14759756.2017.1298239
https://doi.org/10.1007/0-306-48017-4_15


Onward! ’24, October 23–25, 2024, Pasadena, CA, USA Felienne Hermans and Ari Schlesinger

for Computing Machinery, New York, NY, USA, 259–270. https:
//doi.org/10.1145/3372782.3406262 event-place: Virtual Event, New
Zealand.

[57] Felienne Hermans and Efthimia Aivaloglou. 2016. Do code smells
hamper novice programming? A controlled experiment on Scratch
programs. In 2016 IEEE 24th International Conference on Program
Comprehension (ICPC). IEEE, 1–10.

[58] Felienne Hermans, Bas Jansen, Sohon Roy, Efthimia Aivaloglou,
Alaaeddin Swidan, and David Hoepelman. 2016. Spreadsheets are
code: An overview of software engineering approaches applied to
spreadsheets. In 2016 IEEE 23rd International Conference on Software
Analysis, Evolution, and Reengineering (SANER), Vol. 5. IEEE, 56–65.

[59] Catherine Hill, Christianne Corbett, and Andresse St. Rose. 2010.
Why So Few? : Women in Science, Technology, Engineering, and Mathe-
matics. American Association of UniversityWomen (AAUW),Wash-
ington, D.C.

[60] Mark Hills, Paul Klint, and Jurgen Vinju. 2013. An empirical study
of PHP feature usage: a static analysis perspective. In Proceedings of
the 2013 International Symposium on Software Testing and Analysis
(ISSTA 2013). Association for Computing Machinery, New York, NY,
USA, 325–335. https://doi.org/10.1145/2483760.2483786

[61] Pamela J. Hinds. 1999. The curse of expertise:The effects of expertise
and debiasing methods on prediction of novice performance. Jour-
nal of Experimental Psychology: Applied 5, 2 (1999), 205–221. https:
//doi.org/10.1037/1076-898X.5.2.205 Place: US Publisher: American
Psychological Association.

[62] Emma Hogan, Ruoxuan Li, Adalbert Gerald Soosai Raj, William G.
Griswold, and Leo Porter. 2024. Challenges and Approaches to
Teaching CS1 in Prison. In Proceedings of the 55th ACM Technical
Symposium on Computer Science Education V. 1 (SIGCSE 2024). As-
sociation for Computing Machinery, New York, NY, USA, 512–518.
https://doi.org/10.1145/3626252.3630802

[63] bell hooks. 1984. Feminist Theory: From Margin to Center. South End
Press, Cambridge, MA.

[64] bell hooks. 2000. Feminism Is for Everybody: Passionate Politics. South
End Press. 120 pages.

[65] bell hooks. 2005. TheWill to Change (1 ed.). Washington Square Press,
New York. Hier auch später erschienene, unveränderte Nachdrucke.

[66] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert
Bowdidge. 2013. Why don’t software developers use static analysis
tools to find bugs?. In Proceedings of the 2013 International Conference
on Software Engineering (ICSE ’13). IEEE Press, San Francisco, CA,
USA, 672–681.

[67] Lee Jussim and Jacquelynne S Eccles. 1992. Teacher expectations: II.
Construction and reflection of student achievement. Journal of per-
sonality and social psychology 63, 6 (1992), 947. Publisher: American
Psychological Association.

[68] Antti-Juhani Kaijanaho. 2015. Evidence-based programming lan-
guage design : a philosophical and methodological exploration.
Jyväskylä studies in computing 222 (2015). https://jyx.jyu.fi/
handle/123456789/47698 Accepted: 2015-11-17T10:33:20Z ISBN:
9789513963880 Publisher: University of Jyväskylä.

[69] Anne Karpf. 1987. Work ; Gender relations in the construction of
jobs. In Gender and expertise. Free Association Books, London.

[70] Robin Wall Kimmerer. 2013. Braiding Sweetgrass. Milkweed Edi-
tions.

[71] Roman Knöll and Mira Mezini. 2006. Pegasus: first steps toward a
naturalistic programming language. In Companion to the 21st ACM
SIGPLAN symposium on Object-oriented programming systems, lan-
guages, and applications (OOPSLA ’06). Association for Computing
Machinery, New York, NY, USA, 542–559. https://doi.org/10.1145/
1176617.1176628

[72] Nicole Kronberger and Ilona Horwath. 2013. The ironic costs
of performing well: Grades differentially predict male and female
dropout from engineering. Basic and Applied Social Psychology

35, 6 (2013), 534–546. https://doi.org/10.1080/01973533.2013.840629
Place: United Kingdom Publisher: Taylor & Francis.

[73] Filip Křikava, Heather Miller, and Jan Vitek. 2019. Scala implicits are
everywhere: a large-scale study of the use of Scala implicits in the
wild. Proceedings of the ACM on Programming Languages 3, OOPSLA
(Oct. 2019), 1–28. https://doi.org/10.1145/3360589

[74] Nicholas Laberge, K. Hunter Wapman, Allison C. Morgan, Sam
Zhang, Daniel B. Larremore, and Aaron Clauset. 2022. Subfield pres-
tige and gender inequality among U.S. computing faculty. Commun.
ACM 65, 12 (Nov. 2022), 46–55. https://doi.org/10.1145/3535510

[75] Outi Laiti. 2016. The ethnoprogramming model. In Proceedings of
the 16th Koli Calling International Conference on Computing Educa-
tion Research (Koli Calling ’16). Association for Computing Machin-
ery, New York, NY, USA, 150–154. https://doi.org/10.1145/2999541.
2999545

[76] Wing Lam, StefanWinter, AnjiangWei, Tao Xie, DarkoMarinov, and
Jonathan Bell. 2020. A large-scale longitudinal study of flaky tests.
Proceedings of the ACM on Programming Languages 4, OOPSLA (Nov.
2020), 202:1–202:29. https://doi.org/10.1145/3428270

[77] Ruth A. Lamont, Hannah J. Swift, and Dominic Abrams. 2015. A Re-
view and Meta-Analysis of Age-Based Stereotype Threat: Negative
Stereotypes, Not Facts, Do the Damage. Psychology and Aging 30, 1
(March 2015), 180–193. https://doi.org/10.1037/a0038586

[78] Jaron Lanier. 2011. You Are Not a Gadget: AManifesto (reprint edition
ed.). Vintage, New York.

[79] Sarah-Jane Leslie, Andrei Cimpian, Meredith Meyer, and Edward
Freeland. 2015. Expectations of Brilliance Underlie Gender Distri-
butions across Academic Disciplines. Science 347, 6219 (Jan. 2015),
262–265. https://doi.org/10.1126/science.1261375

[80] Max Liboiron. 2021. Pollution Is Colonialism. Duke University Press.
224 pages.

[81] Songqi Liu, Pei Liu, Mo Wang, and Baoshan Zhang. 2021. Effec-
tiveness of Stereotype Threat Interventions: A Meta-Analytic Re-
view. Journal of Applied Psychology 106, 6 (June 2021), 921–949.
https://doi.org/10.1037/apl0000770

[82] Helen E. Longino. 1993. Feminist Standpoint Theory and the Prob-
lems of Knowledge. Signs: Journal of Women in Culture and Society
19, 1 (Oct. 1993), 201–212. https://doi.org/10.1086/494867

[83] Helen E. Longino. 2001. The Fate of Knowledge. Princeton University
Press.

[84] Karen Mahony and Brett Van Toen. 1990. Mathematical Formalism
As a Means of Occupational Closure in Computing — Why ‘Hard’
Computing Tends to Exclude Women. Gender and Education 2, 3
(Jan. 1990), 319–331. https://doi.org/10.1080/0954025900020306

[85] Melissa Høegh Marcher, Ingrid Maria Christensen, Paweł Grabar-
czyk, Therese Graversen, and Claus Brabrand. 2021. Computing Ed-
ucational Activities Involving People Rather Than Things Appeal
More to Women (CS1 Appeal Perspective). In Proceedings of the
17th ACMConference on International Computing Education Research.
ACM, Virtual Event USA, 145–156. https://doi.org/10.1145/3446871.
3469761

[86] Jane Margolis and Allan Fisher. 2003. Unlocking the Clubhouse:
Women in Computing. The MIT Press.

[87] Allison Master, Andrew N. Meltzoff, and Sapna Cheryan. 2021. Gen-
der Stereotypes about Interests Start Early and Cause Gender Dis-
parities in Computer Science and Engineering. Proceedings of the
National Academy of Sciences 118, 48 (Nov. 2021). https://doi.org/10.
1073/pnas.2100030118

[88] Nathan Masters. 2019. Pillars of Fire. https://medium.com/truly-
adventurous/pillars-of-fire-d442e8b8e9d

[89] Sandra Mattauch, Katja Lohmann, Frank Hannig, Daniel Lohmann,
and Jürgen Teich. 2020. A bibliometric approach for detecting the
gender gap in computer science. Commun. ACM 63, 5 (April 2020),
74–80. https://doi.org/10.1145/3376901

220

https://doi.org/10.1145/3372782.3406262
https://doi.org/10.1145/3372782.3406262
https://doi.org/10.1145/2483760.2483786
https://doi.org/10.1037/1076-898X.5.2.205
https://doi.org/10.1037/1076-898X.5.2.205
https://doi.org/10.1145/3626252.3630802
https://jyx.jyu.fi/handle/123456789/47698
https://jyx.jyu.fi/handle/123456789/47698
https://doi.org/10.1145/1176617.1176628
https://doi.org/10.1145/1176617.1176628
https://doi.org/10.1080/01973533.2013.840629
https://doi.org/10.1145/3360589
https://doi.org/10.1145/3535510
https://doi.org/10.1145/2999541.2999545
https://doi.org/10.1145/2999541.2999545
https://doi.org/10.1145/3428270
https://doi.org/10.1037/a0038586
https://doi.org/10.1126/science.1261375
https://doi.org/10.1037/apl0000770
https://doi.org/10.1086/494867
https://doi.org/10.1080/0954025900020306
https://doi.org/10.1145/3446871.3469761
https://doi.org/10.1145/3446871.3469761
https://doi.org/10.1073/pnas.2100030118
https://doi.org/10.1073/pnas.2100030118
https://medium.com/truly-adventurous/pillars-of-fire-d442e8b8e9d
https://medium.com/truly-adventurous/pillars-of-fire-d442e8b8e9d
https://doi.org/10.1145/3376901


A Case for Feminism in Programming Language Design Onward! ’24, October 23–25, 2024, Pasadena, CA, USA

[90] Davood Mazinanian and Nikolaos Tsantalis. 2016. An Empirical
Study on the Use of CSS Preprocessors. In 2016 IEEE 23rd Interna-
tional Conference on Software Analysis, Evolution, and Reengineering
(SANER), Vol. 1. 168–178. https://doi.org/10.1109/SANER.2016.18

[91] Noëlle McAfee, Ann Garry, Anita Superson, Heidi Grasswick, and
Serene Khader. 2024. Feminist Philosophy. In The Stanford Ency-
clopedia of Philosophy (Spring 2024 ed.), Edward N. Zalta and Uri
Nodelman (Eds.). Metaphysics Research Lab, Stanford University.

[92] Leo A. Meyerovich and Ariel S. Rabkin. 2013. Empirical analysis of
programming language adoption. In Proceedings of the 2013 ACMSIG-
PLAN international conference on Object oriented programming sys-
tems languages & applications (OOPSLA ’13). Association for Com-
puting Machinery, New York, NY, USA, 1–18. https://doi.org/10.
1145/2509136.2509515

[93] Chandra Talpade Mohanty. 2003. Feminism without Borders: Decol-
onizing Theory, Practicing Solidarity. Duke University Press. 300
pages.

[94] Sheila Nair. 2014. Women of Color Faculty and the “Burden” of Di-
versity. International Feminist Journal of Politics 16, 3 (July 2014),
497–500. https://doi.org/10.1080/14616742.2014.929357 Publisher:
Routledge _eprint: https://doi.org/10.1080/14616742.2014.929357.

[95] Lisa Nakamura. 2014. Indigenous Circuits: Navajo Women and the
Racialization of Early Electronic Manufacture. American Quarterly
66, 4 (2014), 919–941. https://doi.org/10.1353/aq.2014.0070

[96] Jennifer C. Nash. 2019. Black Feminism Reimagined: After Intersec-
tionality. Duke University Press. 184 pages.

[97] Hannah-Hanh D. Nguyen and Ann Marie Ryan. 2008. Does Stereo-
type Threat Affect Test Performance of Minorities and Women? A
Meta-Analysis of Experimental Evidence. Journal of Applied Psychol-
ogy 93, 6 (2008), 1314–1334. https://doi.org/10.1037/a0012702

[98] Vidushi Ojha, Leah West, and Colleen M. Lewis. 2024. Computing
Self-Efficacy in Undergraduate Students: A Multi-Institutional and
Intersectional Analysis. In Proceedings of the 55th ACM Technical
Symposium on Computer Science Education V. 1 (SIGCSE 2024). ACM.
https://doi.org/10.1145/3626252.3630811

[99] Aleksandra Orlowska, Christos Chrysoulas, Zakwan Jaroucheh, and
Xiaodong Liu. 2021. Programming Languages: A Usage-based Sta-
tistical Analysis and Visualization. In Proceedings of the 4th Interna-
tional Conference on Information Science and Systems (ICISS ’21). As-
sociation for Computing Machinery, New York, NY, USA, 143–148.
https://doi.org/10.1145/3459955.3460614

[100] Nelly Oudshoorn, Els Rommes, and Marcelle Stienstra. 2004. Con-
figuring the User as Everybody: Gender and Design Cultures in In-
formation and Communication Technologies. Science, Technology,
& Human Values 29, 1 (2004), 30–63. https://www.jstor.org/stable/
1558005 Publisher: Sage Publications, Inc..

[101] Charlotte R. Pennington, Derek Heim, Andrew R. Levy, and Derek T.
Larkin. 2016. Twenty Years of StereotypeThreat Research: A Review
of Psychological Mediators. PLOS ONE 11, 1 (Jan. 2016), e0146487.
https://doi.org/10.1371/journal.pone.0146487

[102] Katherine Picho, Ariel Rodriguez, and Lauren Finnie. 2013. Explor-
ing the Moderating Role of Context on the Mathematics Perfor-
mance of Females under Stereotype Threat: A Meta-Analysis. The
Journal of Social Psychology 153, 3 (May 2013), 299–333. https:
//doi.org/10.1080/00224545.2012.737380

[103] Kamaria B. Porter, Julie R. Posselt, Kimberly Reyes, Kelly E. Slay, and
Aurora Kamimura. 2018. Burdens and benefits of diversity work:
emotion management in STEM doctoral students. Studies in Grad-
uate and Postdoctoral Education 9, 2 (Jan. 2018), 127–143. https:
//doi.org/10.1108/SGPE-D-17-00041 Publisher: Emerald Publishing
Limited.

[104] Yolanda A. Rankin and Jakita O.Thomas. 2020. The Intersectional Ex-
periences of Black Women in Computing. In Proceedings of the 51st
ACM Technical Symposium on Computer Science Education (SIGCSE
’20). Association for Computing Machinery, New York, NY, USA,

199–205. https://doi.org/10.1145/3328778.3366873
[105] Daniela K. Rosner, Samantha Shorey, Brock R. Craft, and Helen

Remick. 2018. Making Core Memory: Design Inquiry into Gendered
Legacies of Engineering and Craftwork. In Proceedings of the 2018
CHI Conference on Human Factors in Computing Systems (CHI ’18).
Association for Computing Machinery, New York, NY, USA, 1–13.
https://doi.org/10.1145/3173574.3174105

[106] Margaret W. Rossiter. 1993. The Matthew Matilda Effect in Science.
Social Studies of Science 23, 2 (1993), 325–341. http://www.jstor.org/
stable/285482 Publisher: Sage Publications, Ltd..

[107] Jean E. Sammet. 1969. Programming Languages: History and Funda-
mentals (first edition ed.). Prentice Hall.

[108] Ari Schlesinger. 2023. Addressing Computing’s Discrimination Prob-
lem: A Framework for Anti-Discriminatory Computing. GeorgiaTech.
https://grad.gatech.edu/events/phd-defense-ari-schlesinger

[109] Klara Seitz, Patrick Rein, Jens Lincke, and Robert Hirschfeld. 2022.
Digital Crochet: Toward a Visual Language for Pattern Description.
In Proceedings of the 2022 ACM SIGPLAN International Symposium on
New Ideas, New Paradigms, and Reflections on Programming and Soft-
ware (Onward! 2022). Association for Computing Machinery, New
York, NY, USA, 48–62. https://doi.org/10.1145/3563835.3567657

[110] John Shore. 1986. The Sachertorte Algorithm and Other Antidotes to
Computer Anxiety. Penguin Books. Google-Books-ID: CcjaAAAA-
MAAJ.

[111] Del Siegle and Sally M Reis. 1998. Gender differences in teacher and
student perceptions of gifted students’ ability and effort. Gifted Child
Quarterly 42, 1 (1998), 39–47. Publisher: Sage Publications Sage CA:
Thousand Oaks, CA.

[112] Rebecca Solnit. 2014. Men Explain Things to Me. Haymarket Books.
[113] Steven J. Spencer, Claude M. Steele, and Diane M. Quinn. 1999.

Stereotype Threat and Women’s Math Performance. Journal of Ex-
perimental Social Psychology 35, 1 (Jan. 1999), 4–28. https://doi.org/
10.1006/jesp.1998.1373

[114] Autumn Stanley. 1995. Mothers and Daughters of Invention: Notes for
a Revised History of Technology. Rutgers University Press. 708 pages.

[115] Andreas Stefik, Willliam Allee, Gabriel Contreras, Timothy Kluthe,
Alex Hoffman, Brianna Blaser, and Richard Ladner. 2024. Accessi-
ble to Whom? Bringing Accessibility to Blocks. In Proceedings of the
55th ACM Technical Symposium on Computer Science Education V. 1
(SIGCSE 2024). ACM. https://doi.org/10.1145/3626252.3630770

[116] Andreas Stefik and Stefan Hanenberg. 2014. The Programming Lan-
guage Wars: Questions and Responsibilities for the Programming
Language Community. In Proceedings of the 2014 ACM International
Symposium onNew Ideas, New Paradigms, and Reflections on Program-
ming & Software (Onward! 2014). Association for ComputingMachin-
ery, New York, NY, USA, 283–299. https://doi.org/10.1145/2661136.
2661156

[117] Andreas Stefik and Stefan Hanenberg. 2017. Methodological Irregu-
larities in Programming-Language Research. Computer 50, 8 (2017),
60–63. https://doi.org/10.1109/MC.2017.3001257 Conference Name:
Computer.

[118] Andreas Stefik and Richard Ladner. 2017. The Quorum Program-
ming Language (Abstract Only). In Proceedings of the 2017 ACM
SIGCSE Technical Symposium on Computer Science Education (SIGCSE
’17). ACM, New York, NY, USA, 641–641. https://doi.org/10.1145/
3017680.3022377 event-place: Seattle, Washington, USA.

[119] Andreas Stefik and Susanna Siebert. 2013. An Empirical Investiga-
tion into Programming Language Syntax. Trans. Comput. Educ. 13, 4
(Nov. 2013), 19:1–19:40. https://doi.org/10.1145/2534973

[120] Marilyn Strathern and Cynthia Cockburn. 1992. The circuit of
technology Gender, identity and power, Roger Silverstone and Eric
Hirsch (Eds.). Taylor & Francis, Abingdon, UK, 32–47. https://doi.
org/10.4324/9780203401491_chapter_2 Book Title: Consuming Tech-
nologies.

221

https://doi.org/10.1109/SANER.2016.18
https://doi.org/10.1145/2509136.2509515
https://doi.org/10.1145/2509136.2509515
https://doi.org/10.1080/14616742.2014.929357
https://doi.org/10.1353/aq.2014.0070
https://doi.org/10.1037/a0012702
https://doi.org/10.1145/3626252.3630811
https://doi.org/10.1145/3459955.3460614
https://www.jstor.org/stable/1558005
https://www.jstor.org/stable/1558005
https://doi.org/10.1371/journal.pone.0146487
https://doi.org/10.1080/00224545.2012.737380
https://doi.org/10.1080/00224545.2012.737380
https://doi.org/10.1108/SGPE-D-17-00041
https://doi.org/10.1108/SGPE-D-17-00041
https://doi.org/10.1145/3328778.3366873
https://doi.org/10.1145/3173574.3174105
http://www.jstor.org/stable/285482
http://www.jstor.org/stable/285482
https://grad.gatech.edu/events/phd-defense-ari-schlesinger
https://doi.org/10.1145/3563835.3567657
https://doi.org/10.1006/jesp.1998.1373
https://doi.org/10.1006/jesp.1998.1373
https://doi.org/10.1145/3626252.3630770
https://doi.org/10.1145/2661136.2661156
https://doi.org/10.1145/2661136.2661156
https://doi.org/10.1109/MC.2017.3001257
https://doi.org/10.1145/3017680.3022377
https://doi.org/10.1145/3017680.3022377
https://doi.org/10.1145/2534973
https://doi.org/10.4324/9780203401491_chapter_2
https://doi.org/10.4324/9780203401491_chapter_2


Onward! ’24, October 23–25, 2024, Pasadena, CA, USA Felienne Hermans and Ari Schlesinger

[121] Alaaeddin Swidan and Felienne Hermans. 2023. A Framework for
the Localization of Programming Languages. In Proceedings of the
2023 ACM SIGPLAN International Symposium on SPLASH-E (SPLASH-
E ’23). ACM. https://doi.org/10.1145/3622780.3623645

[122] Kumiko Tanaka-Ishii. 2010. Semiotics of Programming (1st ed.). Cam-
bridge University Press, USA.

[123] Rana Tassabehji, Nancy Harding, Hugh Lee, and Carine Dominguez-
Pery. 2021. From female computers tomale comput♂rs: Orwhy there
are so few women writing algorithms and developing software. Hu-
man Relations 74, 8 (Aug. 2021), 1296–1326. https://doi.org/10.1177/
0018726720914723 Publisher: SAGE Publications Ltd.

[124] Joy Teague. 2002. Women in Computing: What Brings Them to It,
What KeepsThem in It? ACM SIGCSE Bulletin 34, 2 (June 2002), 147–
158. https://doi.org/10.1145/543812.543849

[125] Matti Tedre. 2014. The Science of Computing. CRC Press.
[126] W.F. Tichy. 1998. Should computer scientists experiment more?

Computer 31, 5 (May 1998), 32–40. https://doi.org/10.1109/2.675631
Conference Name: Computer.

[127] Sherry Turkle. 1988. Computational reticence: why women fear the
intimate machine. In Technology and Women’s Voices. Routledge.
Num Pages: 17.

[128] Ruth van Veelen, Belle Derks, and Maaike Dorine Endedijk. 2019.
Double Trouble: How Being Outnumbered and Negatively Stereo-
typed Threatens Career Outcomes of Women in STEM. Frontiers in
Psychology 10 (2019).

[129] Hannah VanLandingham, Rachael L. Ellison, Aamir Laique, Andrea
Cladek, Humza Khan, Christopher Gonzalez, and Megan R. Dunn.
2021. A Scoping Review of Stereotype Threat for BIPOC: Cognitive
Effects and Intervention Strategies for the Field of Neuropsychology.
The Clinical Neuropsychologist 36, 2 (July 2021), 503–522. https://
doi.org/10.1080/13854046.2021.1947388

[130] Centraal Bureau voor de Statistiek Nederland. [n. d.]. StatLine - WO
voltijd; rendement en uitval, 1995 - 2005. https://opendata.cbs.nl/
statline/#/CBS/nl/dataset/71063ned/table?fromstatweb

[131] Judy Wajcman. 1991. Feminism Confronts Technology. The Pennsyl-
vania State University Press, University Park, PA.

[132] American Association of University Women. 1991. Shortchanging
girls, shortchanging America: A call to action. Vol. 4792. American
Association of University Women.

[133] Yi Yang, Ana Milanova, and Martin Hirzel. 2022. Complex Python
features in the wild. In Proceedings of the 19th International Confer-
ence on Mining Software Repositories (MSR ’22). Association for Com-
puting Machinery, New York, NY, USA, 282–293. https://doi.org/10.
1145/3524842.3528467

222

https://doi.org/10.1145/3622780.3623645
https://doi.org/10.1177/0018726720914723
https://doi.org/10.1177/0018726720914723
https://doi.org/10.1145/543812.543849
https://doi.org/10.1109/2.675631
https://doi.org/10.1080/13854046.2021.1947388
https://doi.org/10.1080/13854046.2021.1947388
https://opendata.cbs.nl/statline/#/CBS/nl/dataset/71063ned/table?fromstatweb
https://opendata.cbs.nl/statline/#/CBS/nl/dataset/71063ned/table?fromstatweb
https://doi.org/10.1145/3524842.3528467
https://doi.org/10.1145/3524842.3528467

	Abstract
	1 Introduction
	1.1 Why Feminism?
	1.2 What Is Feminism?
	1.3 Structure of This Essay

	2 Setting the Scene: Why Feminism and PL?
	2.1 Exclusion in Modern PL Design
	2.2 Exclusion of Women in CS
	2.3 Research Method
	2.4 Goals Of This essay

	3 Gendered Science and Knowledge
	3.1 What Aspects of PL Do We Study?
	3.2 How Do We Study PL?
	3.3 PL as Mathematical
	3.4 PL as Masculine

	4 Systems of Scientific Domination
	4.1 Structural
	4.2 Disciplinary
	4.3 Hegemonic
	4.4 Interpersonal

	5 Knowledge Production
	5.1 Whose Stories Are Collected?
	5.2 What Stories Are Collected?
	5.3 How Do We Develop Languages?
	5.4 What Counts As a Programming Language?

	6 Alternative Representations
	6.1 Methodological Diversity
	6.2 Programming Language Diversity

	7 What Came Before; What Comes Next?
	Acknowledgments
	References

