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Abstract
Regular decision processes (RDPs) are a subclass of non-
Markovian decision processes where the transition and reward
functions are guarded by some regular property of the past
(a lookback). While RDPs enable intuitive and succinct rep-
resentation of non-Markovian decision processes, their ex-
pressive power coincides with finite-state Markov decision
processes (MDPs). We introduce omega-regular decision pro-
cesses (ODPs) where the non-Markovian aspect of the transi-
tion and reward functions are extended to an ω-regular looka-
head over the system evolution. Semantically, these looka-
heads can be considered as promises made by the decision
maker or the learning agent about her future behavior. In par-
ticular, we assume that if the promised lookaheads are not
fulfilled, then the decision maker receives a payoff of ⊥ (the
least desirable payoff), overriding any rewards collected by the
decision maker. We enable optimization and learning for ODPs
under the discounted-reward objective by reducing them to
lexicographic optimization and learning over finite MDPs. We
present experimental results demonstrating the effectiveness
of the proposed reduction.

Introduction
Markov decision processes (MDPs) are canonical models to
express decision making under uncertainty, where the opti-
mization objective is defined as a discounted sum of scalar
rewards associated with various decisions. The optimal value
and the optimal policies for MDPs can be computed effi-
ciently via dynamic programming (Puterman 1994). When
the environment is not explicitly known but can be sampled
in repeated interactions, reinforcement learning (RL) (Sutton
and Barto 2018) algorithms combine stochastic approxima-
tion with dynamic programming to compute optimal values
and policies. RL, combined with deep learning (Goodfel-
low, Bengio, and Courville 2016), has emerged as a lead-
ing human-AI collaborative programming paradigm gener-
ating novel and creative solutions with “superhuman” effi-
ciency (Silver et al. 2016; Wurman et al. 2022; Mirhoseini
et al. 2020). A key shortcoming of this approach is the dif-
ficulty of translating designer’s intent into a suitable reward
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signal. To help address this problem, we extend MDPs with
a modeling primitive—called promises—that improves the
communication between the agent and the programmer. We
dub these processes ω-regular decision processes (ODPs).

Motivation. A key challenge in posing a decision prob-
lem as an MDP is to define a scalar reward signal that is
Markovian (history-independent) on the state space. While
some problems, such as reachability and safety, naturally lend
themselves to a reward-based formulation, such an interface
is often cumbersome and arguably error-prone. This difficulty
has been well documented, especially within the RL litera-
ture, under different terms including misaligned specification,
specification gaming, and reward hacking (Pan, Bhatia, and
Steinhardt 2022; Amodei et al. 2016; Yuan et al. 2019; Skalse
et al. 2022; Clark and Amodei 2016).

To overcome this challenge, automata and logic-based
reward gadgets—such as reward machines, ω-regular lan-
guages, and LTL—have been proposed to extend the MDP in
the context of planning (Baier and Katoen 2008) and, more re-
cently, of RL (Icarte et al. 2018; Camacho et al. 2019; Sadigh
et al. 2014; Hahn et al. 2019; Fu and Topcu 2014). In these
works, an interpreter provides a reward for the actions of the
decision maker by monitoring the action sequences with the
help of the underlying reward gadget. While such reward
interface is convenient from the programmer’s perspective, it
limits the agency of the decision maker in claiming rewards
for her actions by making it opaque.

The formal study of non-Markovian MDPs in the plan-
ning setting was initiated by Brafman and De Giacomo
(2019), who proposed regular decision processes (RDPs)
as a tractable representation of non-Markovian MDPs. Abadi
and Brafman (2021) further extended this work by combining
Mealy machine learning with RL. In an RDP, the agent can
choose a given action and collect its associated reward as
long as the partial episode satisfies a certain regular property
provided as the guard for that action. This modeling feature
both permits and anticipates the agent to retain regular infor-
mation about the past, enabling her to make optimal choices
when selecting her actions. Augmenting MDPs with such ret-
rospective memory offers a succinct and transparent modeling
approach. However, adding memory as a regular language
does not increase the expressive power of MDPs and RDPs
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Figure 1: A grid-world model of a biological lab with clean and dirty areas. The strategy shown here is computed by RL based
on the method proposed in this paper. The rewards satisfy ξ > 0 and 0 < f1 < f2 < ρ. Promises and guards are specified in
LTL (Pnueli 1977), with future and past operators. R denotes the releases operator: decontamination removes the constraint
¬clean lab. S denotes the since operator: the robot comes from the clean lab and has not been to the dirty lab since.

can be compiled into finite MDPs (Abadi and Brafman 2021)
recovering the tractability of optimization and learning.

Prospective Memory. As a dual capability to the retrospec-
tive memory, we propose extending the RDP framework with
the “prospective memory” (McDaniel and Einstein 2007)
(also known as memory for intentions) to allow the agent to
make promises about the future behavior and collect rewards
based on this promise. We posit that such an abstraction will
allow the agent to declare her intent to the environment and
collect reward, and will result in more explainable and trans-
parent behavior. This is the departure point for ω-regular
decision processes, which we now introduce with the help of
the following example. We note that while this example is
little busy, it showcases multiple features of our framework.
Example 1 (Navigating a Biological Lab). Consider the grid
world shown in Fig. 1, where a robot has to repeatedly visit
two labs, one clean (blue) and one dirty (red). Whenever
the robot passes through the dirty area—highlighted with a
rose background—it has to visit a decontamination station
(in one of the two cells marked with an eraser) before it can
re-enter the clean lab. Every time the robot visits the dirty
lab, it collects a reward if it just arrived from the clean lab.

The two decontamination stations charge different fees.
The cheaper one requires a detour from the shortest route.
Both charge less than the robot earns by visiting the two
labs. The clean lab has two doors. The one on the south side,
however, is equipped with a “zapper” that has to be disabled
on first crossing. If the robot manages to disable the zapper,
it secures a shorter route and collects rewards more often;
if it fails, it cannot complete its task. If the probability that
the robot is put out of commission is sufficiently low, then a
strategy that maximizes the expected cumulative reward will
try to disable the zapper, while a strategy that maximizes the
probability of carrying out the task will choose the longer,
safer route. Let us assume the latter is desired. Finally, let
us also assume that the robot should not re-enter its initial
location more than a finite number of times.

Fig. 1 summarizes the specifications and details how they

are expressed as rewards and promises. In this case, promises
are associated to states; i.e., to all transitions emanating from
the designated states. No lookbacks are necessary, though
the promise made in the dirty area could be turned into a
guard on the entrance to the clean lab.

The combination of ω-regular properties and rewards
makes for a flexible and natural way to describe the objective
of the decision maker. There may seem to be redundancy
in the specification: why rewarding the robot for visiting
the labs if it is already forced to visit them by the GF re-
quirements? However, a proper combination of ω-regular
and quantitative specifications may give strategies that si-
multaneously optimize short-term (discounted) reward and
guarantee satisfaction of long-term goals (when such strate-
gies exist). Without the ω-regular requirement, the robot of
Fig. 1 would try its luck with the zapper. Without the reward
collected on each visit to the dirty lab, the robot would only
have ε-optimal strategies, which would postpone satisfaction
of the ω-regular part of the specification to avoid the decon-
tamination fees. Such postponement strategies are seldom
practically satisfactory. Formulating the problem as an ω-
regular decision process helps one prevent their occurrence.
The strategy shown in Fig. 1 is computed using formal RL tool
MUNGOJERRIE (Hahn et al. 2023a) based on the techniques
presented in this paper.

Contributions. This paper introduces ω-regular decision
processes (ODPs) that generalize regular decision processes
with prospective memory (promises) modeled as ω-regular
lookaheads. We show decidability (Theorem 2) of the opti-
mal discounted reward optimization problem for ODPs. In
particular, we show that computing ε-optimal strategies is: 1)
EXPTIME-hard when the lookaheads are given as universal
co-Büchi automata (UCW) and 2) 2EXPTIME-hard when
they are expressed in LTL.

A key construction of the paper is the translation of the
lookaheads to a lexicographic optimization problem over
MDPs. This construction creates a nondeterministic Büchi
automaton (NBA) to test whether all promises made are
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almost surely fulfilled. This procedure involves a comple-
mentation procedure from UCAs to NBA. To be able to use
this reduction for model checking or reinforcement learning,
a critical requirement is to design an NBA that is good-for-
MDP (GFM) (Hahn et al. 2020). We provide a rank based
complementation construction to demonstrate that the result-
ing automata are GFM. We also show that leading rank-based
complementation procedures all deliver GFM automata, en-
abling off-the-shelf complementation constructions to be
used for OMDPs.

We have also implemented the proposed construction to re-
move ω-regular lookaheads from the MDPs. To demonstrate
the experimental performance of our reduction, we present
experiments on randomly generated examples. Some proof
details have been omitted due to space limitations; the full
version can be found on arXiv (Hahn et al. 2023b).

Preliminaries
Before we introduce ω-regular decision processes in the next
section, we recall some basic definitions and notation in the
simpler setting of Markov decision processes.

Markov Decision Processes
Let D(S) denote the set of all probability distributions over S.
A Markov decision process M is a tuple (S, s0, A, T,AP,L)
where S is a finite set of states, s0 ∈ S is the initial state, A is
a finite set of actions, T : S ×A → D(S) is the probabilistic
transition function, AP is the set of atomic propositions
(observations), and L : S → 2AP is the labeling function.

For any state s ∈ S, we let A(s) denote the set of ac-
tions that can be selected in state s. An MDP is a Markov
chain if A(s) is singleton for all s ∈ S. For states s, s′ ∈ S
and a ∈ A(s), T (s, a)(s′) equals Pr(s′|s, a). A run of M
is an ω-word ⟨s0, a1, s1, . . .⟩ ∈ S × (A × S)ω such that
Pr(si+1|si, ai+1)>0 for all i ≥ 0. A finite run is a finite such
sequence. We write RunsM(FRunsM) for the set of runs
(finite runs) of the MDP M and RunsM(s)(FRunsM(s))
for the set of runs (finite runs) of the MDP M starting from
the state s. We write last(r) for the last state of finite run r.

We write Σ
def
= 2AP for the alphabet of the set of labels.

For a run r = ⟨s0, a1, s1, . . .⟩ we define the corresponding
labeled run as L(r) = ⟨L(s0), L(s1), . . .⟩ ∈ (Σ)ω .

Strategies. A strategy in M is a function σ : FRuns →
D(A) such thatsupp(σ(r)) ⊆ A(last(r)), where supp(d)
denotes the support of the distribution d. A strategy σ is pure
if σ(r) is a point distribution for all runs r ∈ FRunsM

and is mixed if supp(σ(r)) = A(last(r)) for all runs
r ∈ FRunsM. Let RunsMσ (s) denote the subset of runs
RunsM(s) that correspond to strategy σ with initial state s.
Let ΠM be the set of all strategies. We say that σ is station-
ary if last(r) = last(r′) implies σ(r) = σ(r′) for all finite
runs r, r′ ∈ FRunsM. A stationary strategy can be given as
a function σ : S → D(A). A strategy is positional if it is
both pure and stationary.

Probability Space. An MDP M under a strategy σ re-
sults in a Markov chain Mσ. If σ is finite memory, then

Mσ is a finite-state Markov chain. The behavior of M un-
der a strategy σ from s ∈ S is defined on the probability
space (RunsMσ (s),FRunsMσ (s),Pr

M
σ (s)) over the set of infi-

nite runs of σ with starting state s. Given a random variable
f : RunsM → R, we denote by EM

σ (s) {f} the expectation
of f over the runs of M originating at s that follow σ.

Reward Machines. The learning objective over MDPs in
RL is often expressed using a Markovian reward function, i.e.,
a function ρ : S×A×S → R assigning utility to transitions.
A rewardful MDP is a tuple M = (S, s0, A, T, ρ) where
S, s0, A, and T are defined as for MDP, and ρ is a Markovian
reward function. A rewardful MDP M under a strategy σ de-
termines a sequence of random rewards ρ(Xi−1, Yi, Xi)i≥1,
where Xi and Yi are the random variables denoting the i-th
state and action, respectively. For λ ∈ [0, 1[, the discounted
reward EDisct(λ)Mσ (s) from a state s ∈ S under strategy σ
is defined as

lim
N→∞

EM
σ (s)

{ ∑
1≤i≤N

λi−1ρ(Xi−1, Yi, Xi)
}
. (1)

We define the optimal discounted reward EDisctM∗ (s) for
a state s ∈ S as EDisctM∗ (s)

def
= supσ∈ΠM

EDisctMσ (s). A
strategy σ is discount-optimal if EDisctMσ (s) = EDisctM∗ (s)
for all s∈S. The optimal discounted cost can be computed in
polynomial time (Puterman 1994).

Often, complex learning objectives cannot be expressed
using Markovian reward signals. A recent trend is to resort
to finite-state reward machines (Icarte et al. 2022). A reward
machine is a tuple R = (Σ, U, u0, δ, ρ) where U is a finite
set of states, u0∈U is the starting state, δ : U×Σ → 2U is the
transition function, and ρ : U×Σ×U → R is the reward func-
tion. Given an MDP M = (S, s0, A, T,AP,L) and a reward
machine R = (2AP , U, u0, δ, ρ), their product M×R =
(S×U, (s0, u0), (A×U), T×, ρ×) is a rewardful MDP where
the transition function T×((s, u), (a, u′))((s′, u′)) equals
T (s, a)(s′) if u′∈δ(u, L(s)) and equals 0 otherwise. More-
over, the reward function ρ×((s, u), (a, u′), (s′, u′)) equals
ρ(u, L(s), u′) if (u, L(s), u′) ∈ δ and is 0 otherwise. For
discounted objectives, the optimal strategies of M×R are
positional on M×R, inducing finite memory strategies over
M maximizing the learning objective given by R.

Omega-Regular Languages
A deterministic finite state automaton (DFA) is a tuple A =
(Σ, Q, q0, δ, F ), where Σ is a finite alphabet, Q is a finite
set of states, δ : Q× Σ → 2Q is the transition function, and
F ⊂ Q is the set of accepting (final) states. A run r of A
on w = w0 . . . wn−1 ∈ Σ∗ from an initial state q0 ∈ Q is a
finite word r0, w0, r1, w1, . . . , rn in Q× (Σ×Q)∗ such that
r0 = q0 and, for 0 < i ≤ n, ri ∈ δ(ri−1, wi−1). We write
last(r) for the last state of the finite run r. A run r of A is
accepting if last(r) ∈ F . The language L(A, q) of A is the
set of words in Σ∗ with accepting runs in A from q.

ω-Automata. A (nondeterministic) Büchi automaton
(NBA) is a tuple A = (Σ, Q, q0, δ, γ), where Σ is a finite
alphabet, Q is a finite set of states, δ : Q×Σ → 2Q is the tran-
sition function, and γ : Q× Σ → 2Q with γ(q, σ) ⊆ δ(q, σ)
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for all (q, σ) ∈ Q× Σ are the accepting transitions. A run ρ
of A on w ∈ Σω from the initial state q0 ∈ Q is an ω-word
ρ0, w0, ρ1, w1, . . . in (Q × Σ)ω such that ρ0 = q0 and, for
all i > 0, ρi ∈ δ(ρi−1, wi−1). We write inf(ρ) for the set of
transitions that appear infinitely often in the run ρ. A run ρ of
an NBA A is accepting if inf(ρ) contains a transition from γ.
The language L(A, q) of A is the subset of words in Σω that
have accepting runs in A from q. A language is ω-regular if
it is accepted by a nondeterministic Büchi automaton.

A universal co-Büchi automaton (UCA) A =
(Σ, Q, q0, δ, γ) is the dual of an NBA and its language can
be defined using the notion of rejecting runs. We call a
transition in γ rejecting and any runs with a transition in
γ occurring infinitely often rejecting runs. The language
L(A, q) of a UCA A is the set of ω-words starting from q
that do not have a rejecting run. A UCA therefore recognizes
the complement of a structurally identical NBA.

Good-for-MDP Automata. Given an MDP M and a NBA
automaton A, the probabilistic model checking problem is to
find a strategy that maximizes the probability of generating
words in the language of A. Automata-based tools provide
an algorithm for probabilistic model checking when the NBA
satisfies the so-called good-for-MDP property (Hahn et al.
2020). An NBA A is called good-for-MDPs if, for any MDP
M, controlling M to maximize the chance that its trace is
in the language of A and controlling the syntactic product
M×A (defined next) to maximize the chance of satisfying
the Büchi objective are the same. In other words, for any
MDP, the nondeterminism of A can be resolved on-the-fly.

Given an MDP M = (S, s0, A, T,AP,L) and an (UCA or
NBA) automaton A = (2AP , Q, q0, δ, γ), their product M×
A = (S×Q, (s0, q0), A×Q,T×, F×) is an MDP where
the transition function T×((s, q), (a, q′))((s′, q′)) equals
T (s, a)(s′) if (q, L(s, a, s′), q′)∈δ and it is 0 otherwise. The
set of accepting transitions in the case of NBA or rejecting
transitions in the case of UCA, F× ⊆ (S × Q) × (A ×
Q) × (S × Q), is defined by ((s, q), (a, q′), (s′, q′)) ∈ F×

iff (q, L(s, a, s′), q′) ∈ F and T (s, a)(s′) > 0. A strategy σ
on the product induces a strategy σ′ on the MDP with the
same value, and vice versa. Note that for a stationary σ on
the product, the strategy σ′ on the MDP needs memory.

An end-component of an MDP M is a sub-MDP M′ s.t.
for every state pair (s, s′) in M′ there is a strategy to reach s′

from s with positive probability. A maximal end-component
is an end-component that is maximal under set-inclusion. An
accepting/rejecting end-component is an end-component that
contains an accepting/rejecting transition.

Omega-Regular Decision Processes
The Regular decision processes (RDPs) (Abadi and Braf-
man 2021) depart from the Markovian assumption of MDPs
by allowing transitions and reward functions to be guarded
(retrospective memory) by a regular property of the history.
To build on this idea, we propose ω-regular decision pro-
cesses (ODPs), where transitions and rewards are not only
constrained by regular properties on the history but where
the decision maker may also make promises (prospective
memory) to limit their future choices in exchange for a better

reward or evolution. ODPs offer a convenient framework for
non-Markovian systems by allowing the decision maker to
combine ω-regular objectives and scalar rewards.

For an automaton of any type, an automaton schema
A = (Σ, Q, δ, F ) (for DFA) or A = (Σ, Q, δ, γ) (for NBAs
or UCAs) is defined as an automaton without an initial state.
For an automaton schema A = (Σ, Q, δ, γ) and a state q ∈ Q,
we write Aq = (Σ, Q, q, δ, γ) as the automaton with q as ini-
tial state and L(A, q) for its language. We express various
transition guards using a DFA schema (lookback automa-
ton) and various promises using a UCA schema1 (lookahead
automaton).
Definition 1 (Omega-Regular Decision Processes). An
ω-regular decision process (ODP) M is a tuple
(S, s0, A, T, r,Aa,Ab, AP, L) where:

• S is a finite set of states,
• s0 ∈ S is the initial state,
• A is a finite set of actions,
• AP is the set of atomic propositions,
• L : S → 2AP is the labeling function,
• Ab = (2AP , Qb, δb, Fb) is a lookback DFA schema,
• Aa = (2AP , Qa, δa, γa) is the lookahead UCA schema,
• T : S×Qb×A×Qa→D(S) is the transition function,
• and r : S×Qb×A×Qa→R is the reward function.

An ODP with trivial lookahead L(Aa, q) = Σω, for every
q ∈ Qa, is a regular decision process (RDP). An ODP with
trivial lookback L(Ab, q) = Σ∗, for every q ∈ Qb, is a looka-
head decision process (LDP). An ODP with trivial lookahead
and lookback is simply an MDP. In these special cases, we
will omit the trivial language from its description.

A run ⟨s0, (β1, a1, α1), s1, (β2, a2, α2), . . .⟩ ∈ S ×
((Qb × A × Qa) × S)ω of M is an ω-word such
that Pr(si+1|si, (βi+1, ai+1, αi+1))>0 for all i ≥ 0.
A finite run is a finite such sequence. We say that a
run ⟨s0, (β1, a1, α1), s1, (β2, a2, α2), . . .⟩ ∈ S × ((Qb ×
A × Qa) × S)ω is a valid run if for every i ≥ 1
we have that L(s0)L(s1) · · ·L(si−1) ∈ L(Ab, βi) and
L(si)L(si+1) · · · ∈ L(Aa, αi). The concepts of strategies,
memory, and probability space are defined for the ODPs in
an analogous manner to MDPs. We say that a strategy σ for
an ODP is a valid strategy if the resulting runs are almost
surely valid. Let ΠM be the set of all valid strategies of M.

1Why UCAs? We have opted for the use of UCAs, instead of
NBAs, in our ODP framework due to the accumulation of promises
during a run of an ODP. As new promises are made, previous
promises must also be satisfied, leading to a straightforward opera-
tion on UCAs. However, this same operation on NBAs would result
in alternating automata, adding an additional exponential blow-up to
our construction. UCAs are becoming increasingly prevalent in both
the formal methods (Finkbeiner and Schewe 2013; Filiot, Jin, and
Raskin 2009; Dimitrova, Ghasemi, and Topcu 2018) and AI (Cama-
cho et al. 2018; Camacho and McIlraith 2019) communities. They
are often referred to as NBAs that recognize the complement lan-
guage. It is worth noting that if an NBA A recognizes the models
of an LTL or QPTL formula ϕ, or any other specification logic with
negation, then A, read as a UCA, recognizes ¬ϕ and vice versa.
Therefore, the same automata translations can be applied to these
specification languages.
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The expected discounted reward EDisct(λ)Mσ (s) for a
strategy in an ODP M is defined as in (1). We define the
optimal discounted reward EDisctM∗ (s) for a state s ∈ S

as EDisctM∗ (s)
def
= supσ∈ΠM

EDisctMσ (s). A strategy σ is
discount-optimal if EDisctMσ (s) = EDisctM∗ (s) for all s∈S.
Given ε > 0, we say that a strategy σ is ε-optimal if
EDisctMσ (s) ≥ EDisctM∗ (s) − ε for all s∈S. The key op-
timization problem for ODPs is to compute the optimal dis-
counted reward and a discount-optimal strategy. However,
such strategy may not always exist as shown next.
Example 2. Consider an ODP where one can freely choose
the next letter from the alphabet {a, b} and have a reward
of 1 for a and 0 for b. With each transition the lookback
is trivial L(Ab, q) = Σ∗ and the lookahead is Σ∗(bΣ∗)ω

(infinitely many b’s). While we cannot achieve the discounted
reward of

∑∞
i=0 λ

i = 1
1−λ with any valid strategy, we can

get arbitrarily close to this value by, e.g., choosing a’s until
a reward > 1

1−λ−ε is collected for any given ε>0, and
henceforth choose b’s. While the optimal Büchi-discounted
value is 1

1−λ , no strategy can attain this value.

Throughout the rest of this paper, we will focus on the prob-
lem of computing optimal discounted values and ε-optimal
strategies for ODPs. Before we dive into the general problem,
it is helpful to examine some important subclasses of ODPs.
Theorem 1 (Removing Lookbacks (Abadi and Brafman
2021)). For any given RDP M = (S, s0, A, T, r,Ab), we
can construct an MDP N = (S′, s′0, A

′, T ′, r′) such that the
optimal discounted value starting from s0 in M, denoted
by EDisctM∗ (s0), is equal to the optimal discounted value
starting from s′0 in N , denoted by EDisctN∗ (s′0). Moreover, a
finite-memory optimal strategy for M can be computed from
an optimal strategy for N .

Proof. Simulating the lookback automaton Ab is a straight-
forward process. Without loss of generality, we can assume
that (Ab, p) is deterministic for all p ∈ Qb. We can simulate
Ab by computing, for each state p ∈ Qb, the state α(p) ∈ Qb

that has been reached so far by (Ab, p) on the current prefix
(if it exists; otherwise, α(p) is undefined). A transition of
(S, s0, A, T, r,Ab) with a lookback r ∈ Qb can be triggered
whenever Fb ∩ α(r) ̸= ∅.

Moving forward, we will assume that the ODP we are
working with has a trivial lookback.

Complexity. It is easy to see that the optimization problem
for ODPs is EXPTIME-hard, even for lookahead MDPs. This
is due to the special case where the initial state of a lookahead
MDP has no incoming transitions, and we can assign a payoff
of 1 for the promise to satisfy a property given by a UCA and
a 0 reward in all other cases. The problem then reduces to
checking if the MDP can be controlled to create a word in the
language of the UCA (or a model of the LTL formula) almost
surely. If the specification can be satisfied almost surely, the
expected reward will be 1, while it will be 0 otherwise. When
this property is expressed in LTL, the complexity increases
to 2EXPTIME-hard (Courcoubetis and Yannakakis 1995).
Using the standard translation from LTL to NBAs and UCAs

(e.g., (Somenzi and Bloem 2000; Babiak et al. 2012)), the
complexity becomes EXPTIME-hard for the former.

Theorem 2 (Lower bounds). Finding an ε-optimal strategy
for a lookahead decision process Ma = (S, s0, A, T, r,Aa)
is EXPTIME-hard in the size of Aa. If Aa is given as an LTL
formula, the problem becomes 2EXPTIME-hard.

Removing Lookaheads
The objective of this section is to establish a matching upper
bound for Theorem 2. To meet the technical requirement of
satisfying the ω-regular promises, we will translate them to
good-for-MDP automata (Hahn et al. 2020). As the objec-
tives are represented as universal co-Büchi automata, two
operations are required: promise collection and translation
to good-for-MDP NBAs. Promise collection is a simple op-
eration for universal automata that does not impact the state
space. However, translating an ordinary nondeterministic au-
tomaton to a good-for-MDP automaton, or even checking
if an automaton has this property, can be a challenging task
(Schewe, Tang, and Zhanabekova 2023). Complementation
alone is a costly operation (Schewe 2009a).

We show that leading rank-based complementation pro-
cedures can be used to produce good-for-MDP (GFM) au-
tomata. Therefore, any standard implementation for automata
complementation can be utilized. However, we suggest using
a strongly limit-deterministic variant to avoid unnecessary
nondeterminism, which is known (Hahn et al. 2020) to af-
fect the efficiency of RL. Recall that an NBA is called limit
deterministic if it is deterministic after seeing the first final
transition. A limit deterministic automaton is strongly limit
deterministic if it is also deterministic before taking the first
final transition.

Definition 2. An automaton is strongly limit deterministic
if its state set Q can be partitioned into sets Q1 and Q2,
such that |δ(q, σ) ∩Q1| ≤ 1 for all q ∈ Q1 and σ ∈ Σ and
|δ(q, σ)| ≤ 1 and δ(q, σ) ⊆ Q2 for all q ∈ Q2 and σ ∈ Σ,
and the image of γ is a subset of Q2.

From Ordinary to Collecting UCAs
We need to construct a GFM automaton that checks whether
all promises made on the future development of the MDP are
almost surely fulfilled. The first step is to transform the given
UCA schema for testing individual promises into a UCA that
checks whether all promises are fulfilled. When the promises
are provided as states (or, indeed as sets of states) of a given
UCA schema A = (Σ, Q, δ, γ) and a fresh state q′0 /∈ Q
and Q′ = Q ∪ {q′0}, we define the collection automaton
C = (Σ × Q,Q′, q′0, δ

′, γ′), whose inputs Σ × 2Q contains
the ordinary input letter and a fresh promise,

• δ′(q, (σ, q′)) = δ(q, σ) and γ′(q, (σ, q′)) = γ(q, σ) for
all q, q′ ∈ Q, that is, for states in Q, the promise is ignored,
and

• γ′(q′0, (σ, q)) = δ(q, σ) and δ′(q′0, (σ, q)) = {q′0} ∪
δ(q, σ), that is, from the fresh initial state q′0, we have
a non-final transition back to q′0 as well as transitions that,
broadly speaking, reflect the fresh promise q ∈ Q.
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Note that promises can be restricted to be exactly or at
most one state. The reason that the transitions from q′0 to other
states are final is that this provides slightly smaller automata
in the complementation (and determinisation) procedure we
discuss in this section; as they can be taken only once on
a run, it does not matter whether or not they are accepting,
which can be exploited in a ‘nondeterministic determinisation
procedure’ as in (Schewe 2009b).

Note that this automaton is easy to adjust to pledging
acceptance from sets of states by using γ′(q′0, (σ, S)) =⋃

q∈S δ(q, σ) and δ′(q′0, (σ, S)) = γ′(q, (σ, S)) ∪ {q′0}; the
proofs in this section are easy to adjust to this case.
Theorem 3. For a given UCA schema A, the automaton C
from above accepts a word ϖ = (σ0, q0)(σ1, q1)(σ2, q2) . . .
if, and only if, it satisfies all promises.

From UCAs to (GFM) NBAs
Next, we consider a variation of the standard level rank-
ing (Kupferman and Vardi 2001; Friedgut, Kupferman, and
Vardi 2006; Schewe 2009a), which is producing a limit-
deterministic automaton. This automaton is a syntactic sub-
set in that it has the same states as (Schewe 2009a), but
only a subset of its transitions. Besides being strongly limit-
deterministic, we show that it retains the complement lan-
guage and is good-for-MDPs. Our construction follows the
intuitive data structure from (Schewe 2009a). It involves tak-
ing transitions away from the automaton resulting from the
construction in (Schewe 2009a), so that one side of the lan-
guage inclusions is obtained for free, while the other side is
entailed by the simulation presented in the Appendix D of
the full version (Hahn et al. 2023b) of this paper.

Construction. We call a level-ranking function f : S→N
from a finite set S ⊆ Q of states S-tight if, for some n ≤ |S|,
it maps S to {0, 1, . . . , 2n−1} and onto {1, 3, . . . , 2n−1}.
We write TS for the set of S-tight level-ranking functions.
We call rank(f) = max{f(q) | q ∈ S} (the 2n−1 from
above) the rank of f .
Definition 3 (Rank-Based Construction). For a given ω-
automaton A = (Σ, Q, I, δ, γ) with n = |Q| states, let C =
(Σ, Q′, {I}, δ′, γ′) denote the NBA where

• Q′ = Q1 ∪Q2 with Q1 = 2Q and Q2 = { (S,O, f, i) ∈
2Q × 2Q × TS × {0, 2, . . . , 2n− 2} | O ⊆ f−1(i) },

• δ′ = δ1 ∪ δ2 ∪ δ3 with
– δ1 : Q1 × Σ → 2Q1 with δ1(S, σ) = {δ(S, σ)},
– δ2 : Q1 × Σ → 2Q2 with (S′, O, f, i) ∈ δ2(S, σ) iff
S′=δ(S, σ), O=∅, and i=0,

– δ3 : Q2 × Σ → 2Q2 with (S′, O′, f ′, i′) ∈
δ3
(
(S,O, f, i), σ

)
iff the following holds:

S′ = δ(S, σ) and we define the auxiliary function
g : S′ → 2{0,...,2n−1} with g(q) equals{
j | q ∈ δ(f−1(j), σ)

}
∪
{
2⌊j/2⌋ | q ∈ γ(f−1(j), σ)

}
f ′ is the S′-tight function with f ′(q) = min{g(q)};
if this function is not S′-tight, the transition blocks.
Otherwise:

(1) we set O′′ = δ(O, σ) ∩ f ′−1
(i)

(2) if O′′ ̸= ∅, then O′ = O′′ and i′ = i;
(3) else i′=(i+2) mod (rank(f ′)+1) and O′=f ′−1

(i′)

• γ′ contains the transitions of δ3 from case (3) (the break-
points) as well as transitions from {∅}.

Theorem 4 (Schewe (2009a)). Given an NBA A, the NBA C
from Definition 3 recognizes a subset of the complement of
the language of A. i.e. L(C) ⊆ Σω \ L(A).

Corollary 1. Given a UCA A, the NBA C from Definition 3
recognizes a subset of the language of A, i.e. L(C) ⊆ L(A).

Showing inclusion in the other direction (and thus lan-
guage equivalence) can be done in two ways. One way is to
re-visit the similar proof from the complementation construc-
tion from (Schewe 2009a). It revolves around guessing the
correct level ranking once it is henceforth tight, and this guess,
and its corresponding run, is still possible. However, as we
need to establish that the resulting NBA C is good-for-MDPs,
we take a different approach: we start from determinising
the UCA A into a deterministic Streett automaton S, using
the standard determinisation from nondeterministic Büchi to
deterministic Rabin automata (Schewe 2009b). It is then easy
to see how an accepting run of S on a word can be simulated.
The proof details are provided in the full version.

Theorem 5. For a given UCA A, the NBA C from Definition 3
is a language equivalent good-for-MDPs NBA.

Noting that the construction in Definition 3 is a language
equivalent syntactic subset of (Schewe 2009a), which in turn
is a language equivalent syntactic subset for older construc-
tions (Kupferman and Vardi 2001; Friedgut, Kupferman, and
Vardi 2006; Schewe 2009a), we obtain that the classic rank-
based complementation algorithms result in GFM automata.

Corollary 2. Given an NBA A, the rank-based complemen-
tation algorithms from (Kupferman and Vardi 2001; Friedgut,
Kupferman, and Vardi 2006; Schewe 2009a) provide good-
for-MDP automata.

Appendix E of the full version (Hahn et al. 2023b) of this
paper provides optimizations for this construction, showing in
particular that (1) δ2 can be restricted to map all states to odd
ranks and that (2) the state q′0 from the collection automaton
can always be chosen to be the sole state with maximal rank.
Further, we argue that safety and reachability objectives lead
to subset and breakpoint constructions, respectively.

Putting It All Together
Combining the selection of promises and their efficient repre-
sentation as a GFM automaton, we have reduced our prob-
lem to a lexicographic optimization problem with an ω-
regular and discounted reward objective, for which one can
use model-checking and reinforcement learning approaches
(Bozkurt, Wang, and Pajic 2021; Hahn et al. 2023c).

Theorem 6. The problem of finding (near) optimal control
for a lookahead decision process Ma = (S, s0, A, T, r,Aa)
can be done in time polynomial in M and is EXPTIME-
complete in the size of Aa, and 2EXPTIME-complete in the
size of an LTL formula describing Aa.
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orig compl prune lumpd lang lumpa time
mean 4.09 48,367.45 3,748.94 23.80 7.77 7.03 0.40
stdev 2.91 760,963.32 129,045.67 211.58 10.39 8.70 6.39
max 34.00 25,107,909.00 9,152,588.00 9,958.00 327.00 320.00 269.61

Table 1: Statistics for randomly generated examples. orig: Number of states of the automaton generated by ltl2tgba, compl:
Number of states of the complement, prune: Number of states after removing states with empty language, lumpd: Number of
states after applying strong-bisimulation lumping in the final part of the automaton, lang: Number of states after we identify
language-equivalent states in the final part and redirect transitions from the initial part to a representative for each language,
lumpa: Number of states after applying strong bisimulation lumping for all states of the automaton, time: total time in seconds.

formula orig compl prune lumpd lang lumpa time

Fd U ((a <-> Gd) & (c <-> Fb)) 14 25,107,909 16,585 2,120 115 60 269.61
((c xor Fd) R F(b & c)) W Xd 13 20,484,339 59,150 1,005 30 13 127.77
F((a W (1 U (d xor Xd))) R (a W c)) 10 19,317,020 18,540 103 40 29 167.43
X(1 U a) R F(!Gb & (c W a)) 11 18,492,964 294,249 502 32 15 111.25
G(Xa xor (G(Gc xor Ga) M Xd)) 14 18,129,540 9,152,588 909 80 73 112.71

!G(a & c) | X!Xa 2 4 2 2 2 2 0.00
XG(Gd U (!a & (c M Ga))) 1 2 2 2 2 2 0.00
!(b M c) -> (c & X!b) 3 6 3 3 3 3 0.00
(Ga -> b) U c 4 8 6 6 6 6 0.01
(!c R Fb) U (Gd <-> GFb) 10 232,094 70,513 6,481 60 15 11.76

Table 2: Example formulas. For the legend, see Table 1.

Experimental Results
Our construction effectively reduces the optimization and
RL problem for ODPs to lexicographic optimization/RL over
MDPs. For our experiments, we focus on showing that what
could be a computational bottleneck (the size of resulting
Büchi automaton) is not a showstopper. Once the automaton
is produced, the scalability of our approach is similar to
that of the lexicographic planning and RL algorithms (Hahn
et al. 2023c). For instance, we combined our construction
with the lexicographic ω-regular and discounted objectives
RL algorithm introduced in (Hahn et al. 2023c) to compute
optimal policies shown in Figure 1. It took 20 mins on Intel
i7−8750H processor.

Efficiency of the Construction. To obtain an estimate of
the practical applicability of the complementation algorithm
(Definition 3), we implemented it and applied it to randomly
generated formulas. We generated a total of 10000 random
formulae using the SPOT (Duret-Lutz et al. 2016) 2.11.3
tool randltl with 4 atomic propositions each. We then
converted each of these formulas to Büchi automata using
ltl2tgba. We used our prototypical tool to complement
these automata with a timeout of 600 seconds and were suc-
cessful in 99.47% of the cases. We then applied several opti-
mizations to reduce the number of states in the complement,
all of which maintained the good-for-MDP property. Table 1
provides statistics on our results, and Table 2 provides indi-
vidual values for some example runs. The first 5 entries are
the ones for which the complementation led to the largest
number of states, while the next 5 were randomly selected

As seen in Table 1, the maximum number of complement
states is more than a million, while the mean is much lower.
The standard deviation is quite high. Looking at the data,
this is because in most cases the number of states generated
for the complement is relatively low, while in some cases it
is very big. As seen, all optimizations lead to a reduction,
although the effect of applying bisimulation lumping to all
states in the end is not as large as the other ones. As seen
in Table 2, in some cases the number of states was quite
large. However, after applying the optimizations described,
we were able to further reduce the number of states to make
the resulting automaton suitable for model checking or RL.

Conclusion
Reinforcement learning often relies on the design of a suit-
able reward signal. While it’s easy to design a reward signal
as a function of the state and action for simpler problems,
practical problems require non-Markovian rewards. We have
introduced omega-regular decision processes (ODPs) as a
formalism that provides great flexibility in specifying com-
plex, non-Markovian rewards derived from a combination of
qualitative and quantitative objectives. A key aspect of our ap-
proach is the ability for the decision maker to obtain rewards
contingent upon the fulfillment of “promises” in the language
of expressive ω-regular specifications. Our algorithm reduces
the ODP optimization to a lexicographic optimization prob-
lem over MDPs with ω-regular and discounted objectives.
This reduction is based on translating the collection seman-
tics of promises to a good-for-MDPs Büchi automaton, which
enables an automata-theoretic approach to optimization.
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