
Ç√F544
RESEARCH INSTITUTE IN
VERIFIED TRUSTWORTHY SOFTWARE SYSTEMS
UK’s second research institute in cyber-security
Annual Report 2020/2021

Ç√

Research Institute in Verified Trustworthy Software Systems 2

FOREWORD
Philippa Gardner, Director of VeTSS

The Research Institute in Verified Trustworthy Software Systems (VeTSS) is the UK's second

Academic Research Institute in cyber security, funded by the Engineering and Physical Sciences

Research Council (EPSRC) for five years, from April 2017. The purpose of VeTSS is to bring together

and support world-class UK academics, industrialists and government employees, unified by a

common interest in software analysis, testing and verification. VeTSS stands at the forefront of

research developments in fundamental theories and industrial-strength tools, targeting real-world

applications. It succeeds the previous three-year Research Institute in Automated Program Analysis

and Verification, funded by EPSRC and GCHQ.

The National Cyber Security Centre (NCSC) anticipates giving approximately £2.5 million to VeTSS

over five years to support academic research projects in software analysis, testing and verification.

This annual report provides a description of the projects funded over the first four years, from

2017 to 2020. It demonstrates the deep connection between the VeTSS academic research, the

standard bodies and industry. For example, Batty’s two VeTSS projects on understanding the

concurrent behaviour of C++ have directly influenced the ISO C++ standard, and Livshits’s and

Donaldson’s VeTSS project relates to an academic start-up of Donaldson that was bought by

Google in 2018. This report also describes how VeTSS funding has led directly to a total of more

than £10M of further funding from EPSRC, the EU, government bodies, and industry. For example,

Yoshida’s work on her VeTSS project played a crucial part in her obtaining a £1.46M UKRI

Established Career Fellowship, 2020-2025. Furthermore, the interaction between NCSC and VeTSS

has led to an additional invited call by NCSC on “Verified High Assurance Software” in 2019.

We have held a number of events since the start of VeTSS, including our main annual workshop

“Formal Methods and Tools for Security” at Microsoft Cambridge in September 2017 and 2018.

This workshop was renamed into “Verified Software” and held at the Isaac Newton Institute in

Cambridge in September, 2019 in preparation of the 2020 Newton Institute programme on

“Verified Software” (delayed until 2022), organised by de Moura (Microsoft Redmond), Farzan

(Toronto), Hoare (Microsoft), Gardner (Imperial), Larsen (Aalborg), Leroy (Inria Paris), McMillan

(Microsoft Redmond), O'Hearn (Facebook and UCL), Sewell (Cambridge), Shankar (SRI, California,

lead organiser) and Vardi (Rice). This meeting will bring international academics and industrialists

to the UK for six weeks, laying the groundwork for the next generation of verification grand

challenges. In anticipation of that meeting, two virtual workshops on “Verified Software: from

Theory to Practice” will be held by the Newton Institute in the first half of 2021.

I hope that you will find this annual report of interest.

Professor Philippa Gardner

Director of VeTSS

F544 2017/2018

MECHANISING THE
METATHEORY OF SQL

WITH NULLS

James Cheney
University of Edinburgh

VERIFYING EFFICIENT
LIBRARIES IN CAKEML

Scott Owens
University of Kent

MECHANISED ASSUME-
GUARANTEE REASONING

FOR CONTROL LAW
DIAGRAMS VIA CIRCUS

Jim Woodcock
University of York

SUPERVECTORIZER

Greta Yorsh
Queen Mary Univ. of London

AUTOMATED TESTING FOR
WEB BROWSERS

Benjamin Livshits
Imperial College London

AUTOMATED REASONING
WITH FINE-GRAINED

CONCURRENT
COLLECTIONS

Ilya Sergey
University College London

PRIDEMM
WEB INTERFACE

Mark Batty
University of Kent

EASTEND: EFFICIENT
AUTOMATIC SECURITY
TESTING FOR DYNAMIC

LANGUAGES

Johannes Kinder
Royal Holloway Univ. of London

Research Institute in Verified Trustworthy Software Systems 4

MECHANISING THE METATHEORY
OF SQL WITH NULLS

JAMES CHENEY

WILMER RICCIOTTI

• SQL is the standard query language used by the multi-billion-dollar relational database industry

• SQL semantics is notoriously subtle, written in natural language, and inconsistent across implementations

• Previous attempts to verify SQL transformations have ignored widely-used features, such as null values

• We present the first mechanised semantics that models these features, making it possible to formally
verify that real query optimisers are correct for real-world databases.

The Structured Query Language, SQL, is by far the most common language used by relational databases, which

are the basis of a multi-billion-dollar industry. The SQL standard is described by a large and comprehensive

definition (ISO/IEC 9075:2016), based on natural language rather than a formal specification; due to the lack of

an agreed-on formal semantics, commercial SQL implementations interpret the standard in different ways, so

that the same query can yield different results on the same input data depending on the SQL system it is run on.

SQL systems first run a query optimiser which applies a set of rewrite rules to obtain an equivalent query that

can be processed more efficiently. However, due to the lack of a well-understood formal semantics, it is very

difficult to validate the soundness of such rewrite rules, and incorrect implementations are known in the

literature. Bugs in query optimisers could lead to corruption or errors in critical data.

Among SQL's features, its ability to deal with incomplete information, in the form of null values, accounts for a

great deal of semantic complexity. To express uncertainty, logical predicates on tuples containing null values

employ three truth values: true, false, and unknown. As a consequence, queries equivalent in the absence of

null values can produce different results when applied to tables with incomplete data, as illustrated in the

diagram below.

Although when this project was carried out there were some previous formalizations of SQL or relational query
languages, all of them ignored null values, so they “proved” query equivalences that are unsound in the presence
of these features.  Our project built on a recent (on-paper) formal semantics for SQL with nulls
by Guagliardo and Libkin, providing the validation of key metatheoretic properties in the Coq proof assistant.
We view this as a first step towards a future in which query optimizers are certified.  Our development, which
can be publicly accessed at its GitHub repository (https://github.com/wricciot/nullSQL), provided us with a
reliable reference which has guided us in our further work on querying databases in functional programming
languages, published in leading conferences on programming languages and formal methods.

PUBLICATIONS. [1] Strongly Normalizing Higher-Order Relational Queries. Wilmer Ricciotti and James Cheney.

FSCD 2020. [2] Query Lifting: Language-integrated query for heterogeneous nested collections. Wilmer Ricciotti

and James Cheney. ESOP 2021.

RELATED GRANTS. Dr James Cheney, ERC Consolidator Grant: “Skye: Bridging theory and practice for scientific

data curation”, 2016-2021, £1.75M.

https://github.com/wricciot/nullSQL

vetss.org.uk 5

IMPACT STATEMENT. “Database queries and query languages are widely used in industry, yet their

implementations and optimisation rules are error-prone due to complications, such as the semantics of nulls.

This can easily lead to subtle bugs in relational database engines or incorrect queries, and work on formalising

the semantics of existing query languages, including the real-world semantics of nulls, is very important and

likely to have a tangible impact on making systems more reliable. For example, optimisation rules proposed in

Kim’s seminal work on query un-nesting contained the famous count bug, which led to incorrect query results

in the presence of null values and could have been prevented if formal verification techniques were used.”

– Matthias Brantner, Oracle –

AUTOMATED TESTING FOR
WEB BROWSERS

BENJAMIN LIVSHITS

ALASTAIR DONALDSON

• Web browsers are among the most critical infrastructure on which society depends

• Testing web browsers to find semantic defects is fundamentally challenging

• We have employed mutation-based structural fuzzing to help address this problem, focussing on testing
WebGL implementations inside major web browsers

The research work undertaken on this project at Imperial College London led to the development of an

automated approach to finding defects in web browsers using mutation-based structural fuzz testing. The

investigators decided to focus on testing components of web browsers related to high-performance graphics

processing via the WebGL API, because the interaction between web browsers and graphics processing units

has become a prominent attack surface in recent years. Two complementary approaches were explored:

applying semantics-preserving transformations to WebGL pages to detect rendering problems, where a

semantics-preserving change (which, by definition, should have no impact) leads to a change in what is rendered,

and applying semantics-changing mutations to a well-formed page in order to test the browser's robustness to

adversarial inputs. This led to the discovery and reporting of a number of issues in the Firefox and Chrome

browsers, triggered by underlying defects in GPU drivers from a range of vendors. The associated tool in which

the techniques are implemented will be open sourced in due course.

The funding from VeTTS was incredibly useful in allowing

us to explore this emerging area. The work undertaken will

form the basis for future publications, and has put us in a

good position to apply for follow-on projects – a research

grant from the Google Chrome University Research

Program has already been secured (more details below).
The work is strongly related to a line of work Donaldson

has been pursuing for several years on metamorphic

testing for graphics compilers, which led to the

GraphicsFuzz start-up company (www.graphicsfuzz.com)

that was acquired by Google and has since been open-

sourced (https://github.com/google/graphicsfuzz). The

VeTTS work on fuzzing WebGL has been integrated into

GraphicsFuzz, which is actively being used to find defects

in the Chrome web browser, including the vulnerabilities

linked to below, which have all now been fixed (link).

A crash in Firefox caused by a driver bug discovered by our
techniques

https://bugs.chromium.org/p/chromium/issues/list?q=metzman_graphicsfuzz_crash_fuzzer%20status%3AVerified&can=1

Research Institute in Verified Trustworthy Software Systems 6

PUBLICATIONS. [1] Putting Randomized Compiler Testing into Production (Experience Report). Alastair F.

Donaldson, Hugues Evrard, Paul Thomson, ECOOP 2020.

RELATED GRANTS. Dr A. Donaldson, EPSRC Fellowship “Reliable Many-Core Programming”, 10/2016-09/2021,

£1M. Dr A. Donaldson (Co-I), with C. Cadar (PI), EPSRC Grant “Automatically Detecting and Surviving Exploitable

Compiler Bugs”, 01/2018-12/2020, £672K. Dr A. Donaldson, Google Chrome University Research Program

project “Automatic Detection of Rendering-Related Security Vulnerabilities in Web Browsers”, 01/2018-

04/2019, £130K.

IMPACT STATEMENT. “From a technical standpoint, the GraphicsFuzz work to which this VeTTS project is closely

related has been highly successful in developing basic technologies for improving the security and reliability of

billions of deployed mobile devices. From a broader point of view, this work has gotten widespread visibility

and, of course, was seen by Google as being so valuable that they bought it.”

– John Regehr, Professor, University of Utah –

PRIDEMM
WEB INTERFACE

 MARK BATTY RADU GRIGORE

• Prose specifications of relaxed memory behaviour are imprecise and lead to bugs in language
specifications, processors, compilers and vendor-endorsed programming idioms

• Mechanised formal models have been used in academia to unambiguously specify and verify relaxed
memory behaviour

• PrideMM is a Solver for Relaxed Memory Models, which improves on state-of-the-art descriptions of the
concurrency behaviour of programming languages

• PrideMM provides a platform for comparison, testing, and refinement of relaxed memory models

Modern computer systems have relaxed memory: they

exhibit highly unintuitive memory behaviour as a result

of aggressive processor and compiler optimisations. At

the same time, these systems are specified with relatively

imprecise prose specifications, leading to bugs in

language specifications, deployed processors, compilers

and vendor-endorsed programming idioms. A push from

academia has, in place of prose, introduced mechanised

formal models that unambiguously specify relaxed

memory behaviour, together with proofs and simulation

tools that allow the validation of key design goals.

This project concerns PrideMM: a solver that allows one

to run tests over state-of-the-art descriptions of the

concurrency behaviour of programming languages.

Previous relaxed memory simulators were based on ad-

hoc backends or SAT solvers. Additional computational

complexity arises in cutting-edge language models that

must consider multiple paths of control flow, so the

PrideMM screenshot. One specifies a test, model, and outcome
and PrideMM works out whether the outcome is allowed or not.
“True” indicates the outcome is allowed, and the graph indicates
the underlying mathematical structure justifying this outcome.

vetss.org.uk 7

simulator backend embodies a problem outside of the scope of SAT. The problem is, however, within the scope

of rapidly improving QBF solvers, atop which PrideMM is built.

The Web Interface to PrideMM, available at https://www.cs.kent.ac.uk/projects/prideweb/, is an essential

outcome of this project. It allows one to run large batteries of automatically generated tests, and compare its

runtime to those of the existing state of the art. The goal of PrideMM is to facilitate discussion with the specifiers

of industrial concurrency models, promoting the latest academic solutions to open problems faced by industry.

PUBLICATIONS. [1] M. Batty et al. “PrideMM: A Solver for Relaxed Memory Models”, draft paper detailing

representations of key memory models, a proof-of-concept backend, and a specification language that marries

expressiveness and ease of solving. [2] M. Janota, R. Grigore, V. Manquinho. “On the Quest for an Acyclic Graph”,

draft paper on finding acyclic graphs under a set of constraints, a general problem central to PrideMM.

RELATED GRANTS. Dr Mark Batty, EPSRC Grant: “Compositional, dependency-aware C++ concurrency”, PI,

£98,786, 04/2018-03/2020. Dr Mark Batty, EPSRC Grant “Verifiably Correct Transactional Memory”, Co-I,

£82,904, 07/2018-06/2021. PrideMM is the starting point for tools envisaged by these two grants.

IMPACT STATEMENT. “I believe that a well-reasoned memory model is the most important feature of any parallel

programming platform, and that Mark Batty’s work has contributed to building confidence in these models more

than anyone else’s.”

– Olivier Giroux, Distinguished Architect at NVIDIA, Chair of Concurrency & Parallelism for ISO C++ –

VERIFYING EFFICIENT LIBRARIES
IN CAKEML

SCOTT OWENS

• CakeML is a functional programming language and an ecosystem of
associated proofs and tools, including a formally verified compiler to
various processor architectures

• CakeML currently lacks support for verifying libraries that use unsafe
features, for example, array accesses w/o bounds checks

• The RustBelt project uses the Iris framework to reason about unsafe
features of Mozilla’s Rust language

• This exploratory project investigated the feasibility of using RustBelt’s Iris
to verify CakeML programs: we established that it is not possible to use
Iris as-is, and that it one must develop an Iris-like logic for CakeML

CakeML is a dialect of the ML family of programming languages and was originally
designed to play a central role in trustworthy software systems. The CakeML

project is an ongoing collaboration between S. Owens (Kent, UK), M. Myreen

(Chalmers, Sweden), and J. Pohjola and M. Norrish (Data61, Australia). The

project’s main accomplishment is the first fully verified compiler for a practical,

functional programming language.

The RustBelt project aims to put the safety of Mozilla’s Rust programming

language on a firm semantic foundation. Rust’s standard libraries make

widespread internal use of unsafe blocks, which enable them to opt out of the

type system when necessary. The hope is that such unsafe code is properly CakeML Infrastructure

https://www.cs.kent.ac.uk/projects/prideweb/

Research Institute in Verified Trustworthy Software Systems 8

encapsulated, preserving language-level safety guarantees from Rust’s type system. However, subtle significant

bugs with such code have already been discovered by RustBelt.

This project explored the way in which fundamental mathematical insights from RustBelt could be incorporated

into CakeML’s suite of verification tools, setting the foundation for follow-up projects with greater scope for

more advanced unsafe features, such as C’s malloc and free, or passing CakeML data to C functions. Such

features are important, as they bring end-to-end verification to performance-critical areas, such as uni-kernel

operating systems, or distributed systems where even (non-end-to-end) verified systems are known to be buggy.

We have established, while Iris technology can, in principle, solve the problems observed in CakeML, we would

need to re-design the logical foundations of Iris to accommodate the CakeML proof ecosystem. In particular, the

HOL4 theorem prover of CakeML has foundational differences from RustBelt’s Coq theorem prover. This is the

subject of our subsequent VeTSS project.

RELATED GRANTS. Dr Scott Owens, EPSRC Grant: “Trustworthy Refactoring”, 09/2016-03/2020, £728,766.

PUBLICATIONS. H. Férée, J. Å. Pohjola, R. Kumar, S. Owens, M. O. Myreen, and S. Ho “Program Verification in the

Presence of I/O Semantics, verified library routines, and verified applications”, VSTTE 2018.

IMPACT STATEMENT. “At Rockwell Collins, we use CakeML in projects to build avionics components with formally

proven behavioural guarantees: these components have to exhibit high performance. In some cases, this can be

achieved by algorithmic transformations already justifiable in CakeML. Beyond that, a great deal more

performance can be obtained by unsafe (formally verified) compilation steps, and we are eager to take

advantage of such advances when they become available.”

– Konrad Slind, Senior Industrial Logician, Rockwell Collins –

SUPERVECTORIZER

GRETA YORSH

• Optimising compilers for Single-Instruction-Multiple-Data (SIMD) architectures rely on sophisticated

program analyses and transformations

• Correctness hard to prove due to interaction between optimisation passes and SIMD semantics/costs

• Supervectorizer: integration of unbounded superoptimization with auto-vectorisation enables software

to take full advantage of SIMD capabilities of existing and new microprocessor designs

• Potential for fundamental advances in SMT solvers and industrial-strength SIMD optimizing compilers

Optimising compilers for Single Instruction Multiple Data (SIMD) architectures rely on sophisticated program

analyses and transformations. In particular, auto-vectorisation is designed to automatically identify and exploit

data-level parallelism. To deliver expected performance improvements, compiler writers resort to changing

optimisation passes, heuristics, and cost models. This process is highly challenging even for the few experts who

possess the required range of skills, and any errors introduced affect the entire software stack, likely

compromising its reliability and security.

Ensuring correctness of these compiler optimisations is hard due to implicit interactions between optimisation

passes and abstruse details of SIMD instructions semantics and costs. It results in missed optimisation

opportunities and subtle bugs, such as miscompiled code, which might remain undiscovered for a long time and

manifest themselves in obscure ways across abstraction layers of a software stack.

vetss.org.uk 9

This project aimed at enabling software to take full advantage of SIMD capabilities of microprocessor designs,

without modifying the compiler. In particular, we integrate unbounded superoptimization with auto-

vectorisation. This approach reduces the engineering effort needed to tune a production compiler for new SIMD

architectures and improves compiler reliability without compromising the performance of generated code. We

believe that this approach will lead to fundamental advances in SMT solvers and industrial-strength optimising

compilers targeting SIMD architectures.

The work done in this project has had the following impact:

• Initial results were presented, by invitation, at Intel’s

Compiler, Architecture and Tools Conference (CATC).

• Postdoctoral research assistant, Julian Nagele, who

joined in January 2018, has been working on a robust

prototype implementation and experiments with

SIMD instructions. Julian is engaged with the LLVM

community and obtained valuable early-stage

feedback from developers at EuroLLVM 2018.

• The work on this project has led directly to the award

to Dr Yorsh of ERC Starting Grant. Initial results

obtained under VeTSS funding demonstrated feasibility of the proposed ERC plan and the work under ERC

will build on the infrastructure and experimental results obtained under VeTSS funding.

• The quantitative trading firm Jane Street expressed interest in incorporating techniques developed under

this grant into the compiler for OCaml.

• Amazon invited Dr Yorsh to join as Amazon Scholar to work with Amazon Video on tools for improving

correctness and performance of their code.

RELATED GRANTS. Dr Greta Yorsh, ERC Starting Grant, £1.25M, 2018-2022.

EASTEND: EFFICIENT AUTOMATIC
SECURITY TESTING FOR DYNAMIC LANGUAGES

JOHANNES KINDER

• Dynamic languages like JavaScript and Python are immensely popular

• Dynamic types and non-standard semantics make security bugs difficult to spot

• EASTEND focused on automated security testing for dynamic languages, in particular JavaScript.

• EASTEND improves the applicability of dynamic symbolic execution for JavaScript code and develops a
flexible specification and testing methodology for security properties

EASTEND is based on the hypothesis that inherently dynamic languages are best served by a dynamic approach

to verification that points to errors in the code without restricting the freedom of the developer. It uses test

generation via dynamic symbolic execution (DSE) to systematically cover paths through programs and check

security properties along those paths. The two main research objectives of EASTEND were: improving the

applicability of dynamic symbolic execution (DSE) for real-world JavaScript code (RO1); and developing a flexible

specification and testing methodology for security properties that goes beyond simple assertion checking (RO2).

Structure of the preliminary prototype

Research Institute in Verified Trustworthy Software Systems 10

Regular expressions (REs) limit applicability of DSE to testing code security in practical client- and server-side

web applications, as modern solvers cannot reason about real-world REs as used by developers. We developed

an encoding of complex REs and with a refinement scheme that soundly translates REs into the subset supported

by state-of-the-art solvers. We implemented our approach in our DSE engine for JavaScript, ExpoSE [1], and

evaluated it on 1,131 Node.js packages, demonstrating that the encoding is effective and can increase line

coverage by up to 30%, meaning that more parts of the program can be reached, increasing the analysis surface

for detecting bugs/vulnerabilities, e.g., using the specification and testing methods developed as part of RO2.

We have developed a methodology for specification-based testing of cryptographic applications based on type-

like tags attached to runtime values that we call “Security Annotations” (SAs) [2]. We have developed explicit

SAs for the widely-used JavaScript library Crypto.JS, which implements common cryptographic algorithms and

primitives. These will allow developers using Crypto.JS to automatically inject our annotations into their testing

environment at runtime without any expert knowledge required. By using DSE with ExpoSE on a program using

an appropriately annotated API, developers will be able automatically detect cryptographic bugs without

additional annotation requirements. The code and data that resulted from the project can be found here.

PUBLICATIONS. [1] B. Loring, D. Mitchell, J. Kinder.

“ExpoSE: Practical Symbolic Execution of Standalone

JavaScript”. In Proc. Int. Symp. on Model Checking of

Software (SPIN), pp. 196–199, ACM, 2017. [2] D.

Mitchell, L. T. van Binsbergen, B. Loring, and J. Kinder.

“Checking Cryptographic API Usage with Composable

Annotations”. In ACM SIGPLAN Workshop on Partial

Evaluation and Program Manipulation (PEPM), 2018.

[3] D. Mitchell, J. Kinder. A Formal Model for Checking

Cryptographic API Usage in JavaScript. ESORICS (1)

2019: 341-360. [3] B. Loring, D. Mitchell, and J. Kinder.

Sound Regular Expression Semantics for Dynamic Symbolic Execution of JavaScript. In Proc. ACM SIGPLAN Conf.

on Programming Language Design and Implementation (PLDI), pp. 425–438, ACM, 2019.

IMPACT STATEMENT. “We have started using ExpoSE as a key component of a research project on privacy-

preserving proxy servers. To the best of my knowledge, it is the only existing tool for dynamic symbolic execution

of modern real-world JavaScript code.”

– Prof. James Mickens, Harvard University –

AUTOMATED REASONING WITH FINE-
GRAINED CONCURRENT COLLECTIONS

ILYA SERGEY

NIKOS

GOROGIANNIS

• A domain-specific language (DSL) for concurrent implementations of distributed protocols.

• Prototype DSL implementations of consensus protocols: Two-Phase Commit, Paxos, Multi-Paxos.

• An extension of Disel, a higher-order separation logic for distributed systems to handle concurrent per-
node implementations of distributed protocols.

As per the original proposal, the funding has been used to host Kristoffer Just Andersen as a visiting student at

the CS department of UCL, where he has worked under our supervision on the applications of techniques for

Parallel testing architecture of ExpoSE

https://github.com/ExpoSEJS

vetss.org.uk 11

logic-based reasoning about concurrency to the verification of distributed systems with internal multi-threaded

parallelism. The project thus naturally evolved from the initially proposed research, elaborating and extending

it for the distributed setting. The artefacts produced to date include the runnable prototype (in Haskell) as well

as a (partially) mechanised logical development for the verification of multithreaded distributed programs.

During Andersen’s stay at UCL, Sergey and Andersen developed a domain-specific language for specifying,

implementing, randomised testing and visual debugging of distributed protocols.

We have developed Distributed Protocol Combinators (DPC), a declarative programming framework that aims
to bridge the gap between specifications and runnable implementations of distributed systems, as well as
facilitate their modelling, testing, and execution. DPC builds on the ideas from the state-of-the art logics for
compositional systems verification. DPC contributes with a novel family of program-level primitives, which
allows construction of larger distributed systems from smaller components, streamlining the usage of the most
common asynchronous message-passing communication patterns, and providing machinery for testing and
user-friendly dynamic verification of systems. The approach has been implemented in a form of a reusable
Haskell library, as well as a tool for visual debugging of asynchronous systems.

Declarative programming over distributed proto-

cols is possible and could lead to new insights,

such as better understanding on how to structure

systems implementations. Even though there are

several known limitations to the design of DPC

due to the chosen linguistic foundations (i.e.,

Haskell), we consider our approach beneficial and

illuminating for the purposes of prototyping,

exploration, and teaching distributed system

design. In future, we will explore the opportu-

nities, opened by DPC, for randomised protocol testing and lightweight verification with refinement types.

PUBLICATIONS. [1] K. J. A. Andersen, I. Sergey, “Distributed Protocol Combinators”, PADL’19. [2] N. Polikarpova,

I. Sergey. “Structuring the Synthesis of Heap-Manipulating Programs”, POPL’19. [3] K. J. A. Andersen, I. Sergey,

“Protocol Combinators for Modelling, Testing, and Execution of Distributed Systems”, J. Funct. Program. 2021.

[4] Distributed Protocol Combinators, Kristoffer Just Arndal Andersen, and Ilya Sergey, PADL 2019.

RELATED GRANTS. Dr Ilya Sergey, EPSRC Grant “Program Logics for Compositional Specification and Verification

of Distributed Systems”, 01/2017-11/2018, £101,009. Dr. Ilya Sergey, Google Faculty Research Award,

“Distributed System Optimisations as Network Semantics Transformations”, 2018.

MECHANISED ASSUME-GUARANTEE

REASONING FOR CONTROL LAW

DIAGRAMS VIA CIRCUS

JIM WOODCOCK

SIMON FOSTER

• Theoretical reasoning framework for discrete-time part of control-law block diagrams (such as Simulink),
based on mathematical semantics of diagrams and capable of dealing with large state spaces

• Contract-based compositional reasoning using refinement for verification of large systems

• Supports reasoning about diagrams with algebraic loops, ignored by most other verification approaches

• Verification of a subsystem of an industrial aircraft cabin-pressure control application

This is coherent with with the first example we envisioned wrt. the protocol:

there is (1) the init ial state; (2) the state with the client await ing response, but

the message undelivered; (3) the state with the client wait ing and the server

having sent a response; and finally, (4) a terminal state with the client done.

The non-determinism can be similarly resolved by enumerat ing all possible

paths through a protocol, up to a certain t race length if the execut ion space is

not finite. If the state space of a network is finite, this can yield actual finite-

space model checking procedures. In the following subsect ion, we will explore

another alternat ive to resolving the non-determinism, yielding an unusual yet

very useful execut ion method.

2.4 I nt eract ive Explor at ion wit h GU I

F igur e 2. The interact ive explorat ion tool, loaded

with the calculator protocol.

By delegat ing the decision

of which transit ion to fol-

low to the user of an ap-

plicat ion that performs this

simulat ion, we can allow the

client of the framework to ex-

plore the network behaviour

interact ively. The DPC li-

brary provides a command-

line GUI applicat ion facilitat -

ing interact ive explorat ion of

dist ributed networks step-by-

step. Provided an init ial network specificat ion like the one described previously,

one can start the session by typing the following:

> runGUI addNetwork

This yields the interface displayed in Figure 2. By choosing specific t ransit ions in

sequence, the user can evolve and inspect the network at each step of execut ion.

This is useful for protocol design and debugging, and can help understand the

dynamics of a protocol, and the kinds of communicat ion pat terns it describes.

Addit ionally, as can be seen in Figure 2, in the interact ive tool we enrich the

possible t ransit ions at every step with the possibility of a node to go o↵-line.

In e↵ect , it means it will stop processing messages, modelling a benign (non-

byzant ine) fault . Other nodes cannot observe this and will “ perceive” the node

as not responding. This, however, becomes very useful when we move to explore

protocols that allow for part ial responses among a collect ion of nodes, as in the

case of crash-resilient consensus protocols.

2.5 Pr ot ocol-A war e D ist r ibut ed I mplement at ions

Dist ributed systems protocols serve as key components of some of the largest

software systems in use. The act ions taken in the protocol are governed by pro-

grams outside the key protocol primit ives, so it is vital that implementat ions

can integrate with software components in real general-purpose languages. We

here present such a language, by enriching the monadic core language of Haskell

with primit ives for sending and receiving messages. This allows use of the en-

7

Visual debugging of asynchronous systems using DPC

Research Institute in Verified Trustworthy Software Systems 12

Control-law diagrams are used in industry to

model complex engineering systems, such as

the many components of modern aircrafts.

These systems must be built to the very

highest standards possible, and their control

laws must be verified to ensure that they

behave as required. Our project proposes a

general methodology based on mathematical

descriptions of diagrams. It is expressive

enough both to capture the full range of

behaviours required and to be used with

other engineering techniques and their own

diagrams and notations. Our techniques scale

up to tackle verification of large-scale

systems. In this VeTSS-funded project, we

developed a theoretical reasoning framework

for discrete-time blocks of control-law

diagrams. As well as giving a mathematical meaning to Simulink (an industry-standard diagrammatic notation

for depicting control laws), our framework links to Modelica (another industry standard notation) for multi-

model descriptions. Our verification technique relies on computer programs that automatically follow human

patterns of reasoning.

We used our framework to verify the control laws for a subsystem used in aircrafts that controls the cabin

pressure after landing. Specifically, the cabin-pressure system must keep working until the aircraft has made a

successful landing and the cabin doors have been open for a minimum amount of time. The subsystem is made

by Honeywell and we worked with colleagues at D-RisQ. Our technique revealed a vulnerable block that should

be improved. The outcomes of this project include a theory to reason about block diagrams using mathematical

contracts, mechanisation of the theory in the Isabelle theorem prover, as well as the verification of the cabin-

pressure control subsystem. A technical report is available online at http://eprints.whiterose.ac.uk/129640/.

PUBLICATIONS. K. Ye, S. Foster, J. Woodcock. “Compositional Assume-Guarantee Reasoning of Control-Law

Diagrams using UTP”, From Astrophysics to Unconventional Computation, pp. 215-254, Springer International

Publishing, 2020.

RELATED GRANTS. Dr Simon Foster, EPSRC UKRI Innovation Fellowship: “CyPhyAssure: Com-positional Safety

Assurance for Cyber-Physical Systems”, £562,549, 06/2018–05/2021, with project partners ClearSy and D-RisQ.

IMPACT STATEMENT. “Simulink is a language highly applied by industry in the development of safety-critical

embedded, real-time, and cyber-physical systems, where the establishment of accessible verification support

can have substantial impact. This VeTSS project has made a crucial step forward in this area by provision of

theorem proving technology in Isabelle/UTP, validated by its application to a real-world aircraft cabin-pressure

control application from our company.”– Colin O’Halloran, CEO, D-RisQ –

Requirement 1 A	finalize	event	will	be	broadcast after	the	aircraft	
door	has	been	open	continuously	for	
door_open_time seconds	while	the	aircraft	is	
on	the	ground	after	a	successful	landing

Requirement	2 The	finalize	event	is	broadcast only	while	the	
aircraft	is	on	the	ground

Requirement	3 The	finalize	event	will	not	occur	during flight

Requirement	4 The	finalize	event	will	not	be	enabled	while	the	
aircraft door	is	closed

Verified

Verified

Verified

Verified

No:	correct	diagram	and	retry

Yes:	verification	successful

encode

e
n
co
d
e

Workflow: from textual representation to formal verification

TRUSTWORTHY SOFTWARE
FOR NUCLEAR ARMS

CONTROL

Andy King
University of Kent

A FOUNDATION FOR
TESTING AND VERIFYING

C++ TRANSACTIONS

John Wickerson
Imperial College London

F544

AUTOMATED BLACK-BOX
VERIFICATION OF

NETWORKING SYSTEMS

Alexandra Silva
University College London

SUPERVECTORIZER
(PHASE II)

Greta Yorsh
Queen Mary University of London

GENERATING EXPLOITABLE
CRASHES

Daniel Kroening
Oxford University

BUILDING VERIFIED
APPLICATIONS IN CAKEML

Scott Owens
University of Kent

OPERATING SYSTEM
COMPONENTS AS

VERIFIED LIBRARIES

Tom Ridge
University of Leicester

FORMAL VERIFICATION OF
QUANTUM SECURITY

PROTOCOLS USING COQ

Raja Nagarajan
Middlesex University London

SPECIFICATION AND
VERIFICATION OF C++

DATA-STRUCTURE LIBRARIES

Mark Batty
University of Kent

2018/2019
SESSION-TYPE-BASED

VERIFICATION FRAMEWORK
FOR MESSAGE-PASSING IN GO

Nobuko Yoshida
Imperial College London

Research Institute in Verified Trustworthy Software Systems 14

A FOUNDATION FOR TESTING AND

VERIFYING C++ TRANSACTIONS

JOHN WICKERSON

• Concurrent programming is hard, but transactional memory promises to make it simpler.

• Transactional memory lets programmers make a group of instructions execute ‘instantaneously’ by
marking them as a ‘transaction’.

• However, transactional memory is notoriously hard to specify and implement correctly in compilers.

• The aim of this project is to build a framework for testing whether or not compilers are implementing
this form of concurrency correctly.

The scope of this project has broadened considerably compared to the original workplan. The original focus was
on testing the compilation of transactional C/C++ concurrency. However, we soon realised that the proposed

approach could be applied to test the compilation of any C/C++ concurrency, in a way that has never been tried

before, but which has the potential to be a hugely valuable technique for improving compiler reliability. This

generalisation has the potential to greatly amplify the impact of our work.

We have developed a prototype tool that uses a combination of techniques (automatic testcase generation,

semantics-preserving code mutation, and exhaustive simulation) to search for bugs in the way mainstream

compilers translate concurrent C/C++ (including atomic operations). The tool is open-sourced and available

under a permissive licence (https://c4-project.github.io/). It has generated and run hundreds of thousands of

tests on several mainstream compilers targeting a range of architectures. Our efforts have revealed

concurrency-related bugs in historic versions of the GCC compiler, as well as two non-concurrency-related bugs

in recent versions of GCC and the IBM XL compiler. The diagram below illustrates the structure of the tool.

PUBLICATIONS. Our prototype tool has been presented at a scientific meeting at the UCL Computer Science

department (November 2018) and at the S-REPLS programming languages workshop (February 2019). An article

about its design is currently (February 2021) under submission at a leading conference in the field.

RELATED GRANTS. This project is also being partially funded by the EPSRC Programme Grant “IRIS: Interface

Reasoning for Interacting Systems” (£6.1M, 2018–2023).

IMPACT STATEMENT. “The programmability of concurrent systems, especially under weak-memory models, is an

important challenge for Arm. This is an active area of interest to Arm, and we are delighted to see work that
looks at a fuller formalisation of C++ transactional memory.”

– Nathan Chong, formerly Principal Researcher at Arm, now Principal Engineer at Amazon Web Services –

https://c4-project.github.io/

vetss.org.uk 15

SESSION-TYPE BASED VERIFICATION FRAMEWORK
FOR MESSAGE-PASSING IN GO

NOBUKO YOSHIDA

• Concurrent programs introduce a specific class of bugs relating to memory safety and deadlocks.

• Detection of concurrency bugs in Go and other concurrent languages often relies on runtime analysing
with fuzzing techniques, making it unreliable and allowing bugs to make it to the production software.

• Static detection frameworks allow to reduce the fraction of those bugs that make it to production
stages, by consistently analysing a session types model of the source code against properties based on
behavioural and memory models of the target language.

• Coupling both techniques allows for an increase in robustness for the development chain of trusted
software, ensuring a lesser number of critical bugs end up in production.

Go is a concurrent programming language developed in recent years by Google. It is used by various projects,

including cloud service providers like Twitter and Dropbox, open source projects including Docker, Kubernetes

and CoreOS. This increasing popularity is reflected on Go’s position in several programming language’s rankings,

including IEEE Spectrum Top Programming Languages (from place 20 in 2014 to 9 in 2017), StackOverflow’s most

loved and most wanted languages (5th and 3rd place resp., in 2018), and Github’s top growing languages (where

it ranked 7th in 2018). Go’s most appreciated features are notably its concurrency features, including channel-

based message-passing and lightweight thread creation features. These features, however, make programmers

struggle with bugs such as communication deadlocks, message mismatches or memory safety issues.

This project builds on the foundations laid by works on detection of channel-based concurrency issues, and

brings them further by proving the theoretical base of these works and extending it greatly. Our recent work

tackles both channel-based concurrency issues (including deadlocks and safe channel usage) and shared

memory-based issued, especially revolving on the correct usage of mutual exclusion locks and data race

detection. We use Go’s official memory model detailed in the documentation of the language, extracting from

it a happens-before relation that is used to define how a data race can be statically detected.

We also formally prove the equivalence between properties of our abstracted types and properties of the source

language, defining precisely what conditions programs need to meet so they can be correctly analysed by our

framework. This framework is then implemented in a tool, Godel 2, the workflow of which is described in the

figure on the right. It uses the mCRL2 model checker and the KiTTEL termination checker to verify the properties

we extract from the code against the model behavioural-types we infer from program source code.

PUBLICATIONS. [1] J. Gabet and N. Yoshida, Static Race Detection and Mutex Safety and Liveness for Go Programs,

ECOOP 2020. [2] R. Griesemer, R. Hu, W. Kokke, J. Lange, I.L. Taylor, B. Toninho, P. Wadler and N. Yoshida,

Featherweight Go, OOPSLA 2020. [3] D. Castro, R. Hu, S. Jongmans, N. Ng and N. Yoshida, Distributed

Programming Using Role Parametric Session Types in Go, POPL 2019.

Research Institute in Verified Trustworthy Software Systems 16

RELATED GRANTS. Nobuko Yoshida, PI, EPSRC Established Career Fellowship: “POST: Protocols, Observabilities

and Session Types”, 04/2020-03/2025, £1.46M; JSPS Invitation Fellowship for Research in Japan, £7,000, 07-

08/2019.

IMPACT. The approach used in this project can be extended to a toolchain, Scribble, a protocol description

language based on Multiparty Session Types, that is used to design and verify protocols and their

implementations. Scribble is used by teams and projects in companies such as Red Hat and Estafet to generate
deadlock-free microservices in Go (http://estafet.com/scribble/).

"I want to thank you and your team for all the type theory work on Go so far — it really helped clarify our

understanding to a massive degree. So thanks!"

– R. Griesemer, Google USA, to P. Wadler about the work on Featherweight Go. –

SPECIFICATION AND VERIFICATION OF C++
DATA-STRUCTURE LIBRARIES

MARK BATTY

• Concurrency in the C++ language is ill-specified in the current International Standards Organisation (ISO)
definition: it allows values to be conjured out of thin air (OOTA).

• Working towards verification of C++ code, we fixed this problem with a proposed change to the standard
called Modular Relaxed Dependencies (MRD).

• We presented our proposal to the ISO, and they voted unanimously to pursue it.

• We developed a refinement relation that can be used to verify C++ code.

• Further flaws recently uncovered in the standard must be rectified before full verification of data
structure libraries is possible.

C AND C++ SEMANTICS: AN ONGOING ACADEMIC/INDUSTRIAL EFFORT. The memory behaviour of modern systems is

extremely subtle. Processor vendors avoid the cost of fully hiding micro-architectural details, such as buffering

and speculation, by permitting unintuitive program executions. Compiler optimisations alter accesses to

memory to similar effect. The end result is a system with relaxed memory behaviour: behaviour that deviates

from sequential consistency (SC), where concurrent memory accesses are simply interleaved.

Relaxed memory breaks intuitions about system behaviour leading to bugs in language specifications, deployed

processors, compilers, and vendor endorsed programming idioms – it is clear that current engineering practice

is severely lacking.

We have an ongoing academic/industrial partnership with the International Standards Organisation (ISO) that

has exposed fundamental flaws in the way we specify programming languages. We have shown that the state-

of-the-art definitions of C and C++ concurrency are broken -- a problem that stems from a tension between

performance and the strength of ordering guarantees provided to programmers. Compilers optimise away some

syntactic dependencies, but these programming patterns are an idiomatic way to provide ordering in machine

code, and if they are left in place, they serve as a cheap source of ordering at the language level. The language

definition must specify which dependencies are left in place: too many, and useful optimisations will be

forbidden, as in Java Hotspot; too few, and the semantics of the language permits bizarre behaviour, as in C++.

It is provably impossible to strike this balance in C++ by making only minor changes to the concurrency design,

so a different approach was necessary. To reason about code, we must fix these problems.

As part of this VeTSS project, we developed Modular Relaxed Dependencies, a model for C++ concurrency which

is recognised by the ISO as the best solution to the pernicious OOTA problem. We went on to develop a

http://estafet.com/scribble/

vetss.org.uk 17

refinement relation for this model that allows one to verify the correctness of C++ code. Most data structures

use pointers, and as part of this work, we started to examine further newly-recognised flaws in the specification

of pointers in C++.

PUBLICATIONS. M. Batty, S. Cooksey, S. Owens, A. Paradis, M. Paviotti, and D. Wright. Modular relaxed

dependencies: A New Approach to the Out-of-Thin-Air Problem. ESOP 2020.

IMPACT STATEMENT. The ISO unanimously passed the following motion endorsing our semantics: “OOTA is a

major problem for C++, modular relaxed dependencies is the best path forward we have seen, and we wish to

continue to pursue this direction.”

TRUSTWORTHY SOFTWARE FOR

NUCLEAR ARMS CONTROL

 ANDY KING

• We have developed new analysis techniques that are able to correctly handle machine arithmetic for
integers of various width.

• This is crucial for reasoning about how paths can be taken, and cannot be taken, through binary programs.

• Our approach allows the model checker itself to be verified by using a classic bit-vector solver, which does
not need to support interpolation.

The project focuses on the problem of how to automatically compare two AVR binaries. Using one given binary

as the reference semantics, the problem is to determine whether the other binary has the same behaviour (even

if it syntactically different), or whether it has been tampered with. We use interpolation-based model-checking

to search for a path in one binary which does not exist in the other.

We have developed a new interpolation method for bit-vector formulae by leveraging on existing interpolation

techniques for linear integer arithmetic, and integrated this method into the Impact interpolation algorithm,

demonstrating how it improves on interpolation techniques which do not reason about the wrap-around nature

of machine arithmetic. Interpolation is used to relax a sequence of symbolic formulae which represent a path

through a program to give a more general sequence that describes, not just one path, but many.

We have also shown how interpolant methods can be extended beyond systems of linear constraints, and also

how to take an interpolant which is a system of linear inequalities and always encode it as a compact bit-vector

formula. We have improved an existing interpolation algorithm for bit-vectors by adapting computer algebra

techniques to work over modulo arithmetic rather than the field of real numbers. Paradoxically, modulo

arithmetic makes it easier, not harder, to automatically reason about the behaviour of the program.

Our analysis work is built on atop a tool-chain for

decompiling AVR binaries which is, in turn, build on the

QEMU toolkit for emulating various architectures. While

undertaking our project, we have made contributions to

the AVR support for QEMU, both making it both more

robust and extending its functionality.

This research is of key importance to AWE's work on treaty

veri-fication in an arms control context. It will pro-vide

tools and techniques to verify the authenticity of

monitoring equipment that could be deployed for future

arms control treaties.

Integer solutions to the inequality 𝑥 + 𝑦 − 4 ≤ 3. In linear integer
arithmetic (LIA), these are the same as the solutions to 𝑥 + 𝑦 ≤ 7, but
its modulo solutions (in this case, mod 8) are easier to represent as bit-
vector formulae. This gives way to converting LIA interpolants into bit-
vector interpolants.

Research Institute in Verified Trustworthy Software Systems 18

PUBLICATIONS. [1] Mind the Gap: Bit-vector Interpolation recast over Linear Integer Arithmetic, T. Okudono and

A. King, International Conference on Tools and Algorithms for the Construction and Analysis of Systems

(TACAS'20); (2) Polynomial Analysis of Modulo Arithmetic, T. Seed, C. Coppins, A. King and N. Evans (under

review); [3] Improved AVR support for QEMU, S. Harris, E. Robbins (signed off by M. Rolnik),

https://lists.sr.ht/~philmd/qemu/, 2019.

RELATED GRANTS. Atomic Weapons Establishment. Follow-on funding, Dec 2019–Apr 2020, £20K.

IMPACT STATEMENT. “As a professional reverse engineer and binary analysis tool developer with 16 years of
experience, I believe that the future of binary analysis lies in the further adoption and advancement of
techniques in mathematical program analysis. In my estimation, the research group at the University of Kent is
one of the only remaining groups – certainly the most prolific one – that is regularly attempting to tackle the
theoretical issues plaguing the scalability of binary analysis. Not only are they "attempting" to tackle these
issues, they have published a number of deep and fascinating papers, which offered truly novel contributions to
binary analysis.”
– Rolf Rolles, Möbius Strip Reverse Engineering –

BUILDING VERIFIED APPLICATIONS
IN CAKEML

OLAF CHITIL

SCOTT OWENS

• CakeML is a functional programming language and ecosystem of associated proofs and tools, including an

end-to-end, formally verified compiler targeting several processor architectures.

• CakeML lacks support for verifiably safe composition of user code with libraries that use “unsafe” features

such as array accesses without bounds checks.

• To integrate “unsafe” features we are building a semantic type system by applying the technique of step-

indexed Kripke logical relations to a CakeML-style lambda calculus in the simply-typed logic of HOL4.

• This is a three-year project supporting a PhD student, the results of which will be applied to CakeML itself.

CakeML is an ML-like programming language, intended to play a central role in trustworthy software systems.

The CakeML project is an ongoing collaboration between researchers at the University of Kent (UK), Chalmers

University of Technology (Sweden), and Data61 (Australia). The key contribution of the project is the first end-

to-end verified, optimising compiler for a practical, functional programming language. However, CakeML lacks

support for verifiably safe composition of user code with libraries that use “unsafe” features (such as array

accesses without bounds checks).

We aim to solve this problem by producing a semantic type soundness result for CakeML, taking inspiration from

the RustBelt project (Dreyer et al.). The latter aims to develop rigorous formal foundations for the Rust

programming language, leveraging the Iris theorem-prover to verify that “unsafe” code (which opts out of Rust’s

type system) from standard libraries is safely encapsulated, and does not violate the safety guarantees intended

by the type system. The RustBelt team have already discovered and fixed subtle, significant bugs. Our previous

VeTSS project found that the mathematical insights behind the Iris logic are not straightforwardly ported to the

logic of HOL4 for use in CakeML.

The PhD student (H. Kanabar) built a System F-like calculus in HOL4 in the style of CakeML, and established a

semantic type soundness result via a logical relation, identifying several application areas for technology once

applied to CakeML. The introduction of general references to the logical relation is the key problem in HOL4; the

student is continuing to explore techniques and is engaging with experienced researchers in the field.

https://lists.sr.ht/~philmd/qemu/

vetss.org.uk 19

The PhD student is also pursuing other avenues to strengthen the guarantees offered by the CakeML project.

During an internship at Arm, he investigated the Sail ecosystem (Sewell et al.) and its applications in formal

reasoning about the semantics of the Arm instruction set architecture. He has made progress in verifying the

existing Arm ISA model used in CakeML proofs against the official machine-checked model released by Arm,

automatically extracted to HOL4 via Sail. He is also contributing to PureCake, a pure language in the style of

Haskell (Peyton Jones et al.) , which will compile to CakeML to permit end-to-end verification.

RELATED GRANTS. Dr Scott Owens, EPSRC Grant: “Trustworthy Refactoring”, 09/2016-03/2020, £728,766.

PUBLICATIONS. [1] H. Férée, J. Å. Pohjola, R. Kumar, S. Owens, M. O. Myreen, and S. Ho “Program Verification in

the Presence of I/O Semantics, verified library routines, and verified applications”, VSTTE 2018. [2] O.

Abrahamsson, S. Ho, H. Kanabar, R. Kumar, M. O. Myreen, M. Norrish, and Y. K. Tan, “Proof-Producing Synthesis

of CakeML from Monadic HOL Functions”, JAR 2020.

IMPACT STATEMENT. CakeML is an important strategic research project for Data61. The ‘strategic’ tag means that

we support it as a future-looking endeavour that does not necessarily have a short-term payoff, nor necessarily

receives external funding. Instead, we pursue such projects because of our belief that they have high potential

for future impact. That said, some of our work on CakeML does receive external funding in the form of money

from a multi-million dollar DARPA-funded research projects. This project sees CakeML being integrated into

high-assurance systems development, in collaboration with staff at Collins Aerospace. CakeML’s ongoing

development makes it a stronger and stronger component (better performing and more featureful) in existing

and future systems of this sort. As we work with research collaborators around the world and continue to

produce CakeML-related publications in the academic press, we also continue to demonstrate our commitment

to the CakeML project as a vehicle for pure research.”

– Michael Norrish, Principal Researcher, Data61, Australia –

OPERATING SYSTEMS COMPONENTS

TOM RIDGE

• Core operating system functionality has been verified in projects such as L4.verified, which targeted the

seL4 microkernel.

• However, two other major components should also be verified: the network stack and the file system.

• A few verified file systems already exist, but their performance is slow compared to traditional file systems

such as ext4 and ZFS. Moreover, they also lack important modern features, such as file system snapshots.

• We aim to develop a verified file system “ImpFS”, constructed from small, well-defined components.

ImpFS should match or exceed existing file systems, both in terms of performance and features. It will be

available both as a desktop file system and as a library of components suitable for use in other software,

and even in library-based unikernels such as MirageOS.

In previous work, we developed SibylFS, a formal model of POSIX and real-world file systems. The formal
specification was usable directly as a test oracle, to check conformance of existing file systems. We now aim to

actually implement a verified file system.

Building a file system is hard. Building a high-performance file system with advanced features is extremely
difficult: the BTRFS file system has been in development by a team of engineers for around 10 years and is still

Research Institute in Verified Trustworthy Software Systems 20

not considered stable enough for production use. Thus, we should expect that

building a verified high-performance file system will be extremely challenging.

The most important components that we have developed so far are:

• A high-performance novel B-tree-like data-structure with both Copy-

on-Write and Mutate-in-place semantics. This is formalised in
Isabelle/HOL and extracted to OCaml for execution.

• A persistent cache, offering transactional-log-like functionality.

• A persistent key-value store.

These components are freely available online from http://www.tom-
ridge.com/filesystems.html. All the components are implemented in a purely-

functional style, which is a pre-requisite for easy verification. The performance
of the components is extremely good. For example, the key-value store

matches the performance of the well-regarded LMDB key-value store.

At OCaml'2020 we demonstrated a working file system. We are now in the
process of tuning the implementation. We are confident that the file system

will out-perform existing file systems in many areas. We are now working with

industry collaborators and the MirageOS project to push this work into production. More importantly, the
components will serve as the basis for many further interesting file system designs.

The VeTSS funding has been critical for securing research time for the author. Most of the work has involved

high-level design and low-level component implementation. In addition, a lot of effort has been put into
performance engineering of the components. This work is lengthy and would not have been possible without

the financial support provided by VeTSS.

PUBLICATIONS. [1] A B-tree library for OCaml. T. Ridge. ICFP 2017, OCaml’17 workshop; [2] Towards verified file

systems. A. Giugliano, 2018. PhD thesis; [3] A Key-Value store for OCaml. T. Ridge. ICFP 2019, OCaml’19
workshop. [4] The ImpFS filesystem. T. Ridge. IFCP2020, OCaml'20 workshop.

IMPACT STATEMENT. “I have been working, with a PhD student, on a verified copy-on-write filesystem. In the

course of our work, we have relied heavily on Dr. Ridge’s ImpFS work. The availability of an existing verified

copy-on-write B-Tree implementation has been of great help. We continue to use it heavily as a reference point

for not only our implementation, but also for an example of formally specifying this crucial class of data

structures.”

– Colin S. Gordon, Drexel University, Pennsylvania –

FORMAL VERIFICATION OF QUANTUM

SECURITY PROTOCOLS USING COQ

RAJAGOPAL

NAGARAJAN

WITH

JAAP BOENDER

RICHARD BORNAT

FLORIAN

KAMMÜLER

• Quantum computing and communication systems are increasingly becoming practical and are likely to
revolutionise modern technology

• Formal methods have been extremely valuable in ensuring correctness as well as security of classical
systems and are widely used in industry

• The aim of this project has been to use the proof assistant Coq to verify quantum communication and
cryptographic protocols

• Qtpi, our implementation of the quantum process calculus CQP, allows for rapid prototyping

The Design of ImpFS

http://www.tom-ridge.com/filesystems.html
http://www.tom-ridge.com/filesystems.html

vetss.org.uk 21

This project uses the proof assistant Coq to verify quantum communication and cryptographic protocols. In

earlier work, we formalised qubits and quantum operations in Coq. In this project, we implemented a Quantum

IO monad in Coq for the specification of the protocols. In addition to quantum gates and measurement, the

monad gives us a lightweight process calculus which supports sequencing of operations and keeping of state.

We have proved this monad has the necessary properties. The process simulation function that gives the QIO

monad its semantics has also been written. We have been proving properties of simple quantum protocols.

As an example, we show the

formalisation of the main

theorem in Coq that proves

that the quantum telepor-

tation protocol actually transmits Alice’s qubit φ to Bob. We do not show the formalisation of Alice and Bob

here, but the aim is to show that the combination of Alice’s and Bob’s functions results in a triple of qubits whose

last element is the same as φ. The theorem states that, for each of the four possible outcomes for q which is an

instance of φ, a suitable z exists.

In preparation for the Coq verification, teleportation and many other protocols were specified and analysed

using Microsoft's Q# and our own symbolic evaluator, Qtpi, which has been developed within the timeframe of

this project. Qtpi is an implementation of the quantum process calculus CQP. It is more suited to modelling

distributed computation than Q#. It also uses symbolic rather than numeric quantum calculation. Programs are

checked statically, before they run, to ensure that they obey real-world restrictions on the use of qubits (e.g. no

cloning, no sharing). Qtpi should be of independent interest as a quantum programming language

implementation and is available from GitHub (https://github.com/mdxtoc/qtpi).

IMPACT. “Quantum Technologies are set to play a big role in the development of technology and modern society.

Novel work done by Prof. Nagarajan and his collaborators on quantum programming and formal verification,

such as in his VeTTS project, is likely to make a strong impact in making quantum systems safe and secure.

– Bob Coecke, Chief Scientist at Cambridge Quantum Computing, formerly Professor of Quantum Foundations,

Logics and Structures, Head of the Quantum Group, Department of Computer Science, University of Oxford." –

PUBLICATIONS. [1] R. Bornat, J.Boender, F. Kammueller, G. Poly and R. Nagarajan, “Describing and Simulating

Concurrent Quantum Systems”, Tool Demonstration Paper, TACAS 2020. An extended version of this paper will

appear in Samson Abramsky on Logic and Structure in Computer Science and Beyond, Palmigiano and Sadrzadeh

(eds.), Outstanding Contributions to Logic Series, Springer, 2021.

TOWARDS OPTIMISED TAINT ANALYSIS

DANIEL KROENING

JOHN GALEA

• Generic Taint Analysis is a flexible technique that enables the enforcement of different taint policies via

the same underlying taint tracking system.

• However, generic taint analysis incurs severe performance overheads.

• We introduce the Taint Rabbit, an optimized generic taint engine capable of analysing x86 binary

applications. Its enhanced performance is based on optimizations that we have investigated and relate to

fast path generation and vectorization. Overall, the work done acts as a foundation for further research

on security vulnerabilities.

• Results show that with our optimizations, the Taint Rabbit performs faster than existing generic trackers.

https://github.com/mdxtoc/qtpi

Research Institute in Verified Trustworthy Software Systems 22

Dynamic taint analysis is a pivotal technique in software security that enables the tracking of

interesting/suspicious data as it flows during execution. With the essential funding provided by VETSS, we have

researched approaches for optimizing an expensive but generic variant of the analysis. Crucially, the analysis

supports various user-defined policies via the same underlying taint tracking system. The research is carried out

in an effort towards our long-term goal of automatically detecting and analysing software vulnerabilities and

reasoning over their exploitation.

The main performance bottleneck of taint analysis stems from the execution of taint propagation code that is

intensively instrumented into the target application at instruction granularity. Unlike specialised bitwise tainting,

a generic taint tracker cannot be optimised for a specific taint policy. Instead, it must perform elaborate

propagation in order to be versatile. We adopt two strategies to address the performance issue. First, we

aggressively elide the execution of propagation routines whenever possible, by generating fast paths that result

in basic blocks being instrumented based on frequent taint contexts identified at runtime. Second, we directly

optimize the code that is responsible for actually conducting taint propagation, leveraging vectorization so that

all taint information pertaining to source operands of a given instruction are processed simultaneously.

Our research has led to the development of the Taint Rabbit, a novel generic taint tracker that uses our proposed

techniques. We evaluated our approach on a number of real-world applications including Apache, PHP, and

bzip2, as well as on CPU-intensive benchmarks such as SpecCPU 2017. Results indicate that the Taint Rabbit is

the fastest generic taint engine amongst those we assessed. Furthermore, to demonstrate the flexibility of the

Taint Rabbit, we also developed several taint-based applications using our versatile system despite their

dependence on different taint propagation policies. In particular, we considered Use-After-Free debugging,

control-flow hijack detection, and vulnerability discovery through fuzzing. Overall, VETSS has given us the

opportunity to engage in imperative research which resulted in generic taint tracking to scale better for binaries

than the current state-of-the-art. The Taint Rabbit serves as a vital stepping-stone to automatically analyse and

understand security-critical software vulnerabilities.

PUBLICATIONS. [1] John Galea and Daniel Kroening. 2020. The Taint Rabbit: Optimizing Generic Taint Analysis

with Dynamic Fast Path Generation. ASIACCS '20.

IMPACT. The Taint Rabbit and all tools built upon it will be made open-source upon publication. We have also

made several contributions to DynamoRIO, the open-source DBI system that the Taint Rabbit uses. In this regard:

“John has had significant impact on the open-source DynamoRIO project: he has contributed numerous fixes

and features to the code base; he has joined the small set of core developers who voluntarily help maintain the

continuous integration testing and other infrastructure; he has influenced design decisions for new features by

other developers; and he has helped to build the community around this project.”

 – Derek Bruening, Software Engineer, Google –

SUPERVECTORIZER (PHASE II)

GRETA YORSH

• Optimising compilers for Single-Instruction-Multiple-Data (SIMD) architectures rely on sophisticated

program analyses and transformations

• Correctness hard to prove due to interaction between optimisation passes and SIMD semantics/costs

• Supervectorizer: integration of unbounded superoptimization with auto-vectorisation enables software

to take full advantage of SIMD capabilities of existing and new microprocessor designs

• Potential for fundamental advances in SMT solvers and industrial-strength SIMD optimising compilers

vetss.org.uk 23

The original aim of the project was to apply unbounded superoptimization to the problem of generating SIMD

code. This approach results in faster code than what can be generated using traditional compiler optimization

technique called vectorization. With this approach, the problem is encoded in first-order constraints and solved

using an SMT solver which has to be extended with special heuristics.

As a prerequisite, the PI started the theoretical development of a framework for symbolic cost models of modern

compute architecture, targeting ARM8 as the first experimental platform. The RA supported by this grant, Julian

Nagele, worked on the improvement of the initial prototype to make it more reconfigurable and extensible, and

evaluation on small, but important benchmarks.

Unfortunately, the PI had substantial health problems, and could not continue to be involved in the work.

Without the support of the PI, the RA was not able to carry out the work on SIMD code generation, which

required expert knowledge of vectorization, ARM architecture, and SMT solvers.

However, the RA realised the potential of applying this technology to smart contracts. He took a leading role on

this research, identifying the direction of blockchain, and brought the work to completion. The PI provided high-

level guidance, but was not actively involved in this work. The RA independently established a collaboration at

UCL with a group interested in start contracts verification, which motivated this work on optimization. The paper

has been accepted for publication at LOPSTR'19. The reviewers recognised the importance of the application

domain of smart contracts, novelty of superoptimization in this context, the extensive specification and

benchmarking produced by the authors. The prototype and benchmarks are available as open-source

(https://github.com/juliannagele/ebso). The RA and the PhD student are preparing a journal version of the

paper. Recently, there has also been interest in this prototype from industry (https://www.embecosm.com).

Upon completion of this project, the PI has gone on to work at the global proprietary trading firm Jane Street,

whereas the RA has gone on to work at Bank of America.

PUBLICATIONS. Blockchain Superoptimizer. Julian Nagele, Maria A. Schett. LOPSTR 2019.

RELATED GRANTS. Dr Greta Yorsh, ERC Starting Grant, £1.25M, 2018-2022.

AUTOMATED BLACK-BOX

VERIFICATION OF NETWORKING

SYSTEMS

ALEXANDRA

 SILVA

 MATTEO

SAMMARTINO

• Modern technology relies on complex and safety-critical networking systems

• Automated verification techniques can detect unintended network behaviour and security vulnerabilities

• Our approach incrementally learns a state-based model from a network by observing its behaviour

• Long-term objectives include achieving scalability of learning and verification of network programs

As complex networking systems, such as Software Defined Networks, Cloud Computing and the Internet of

Things, become more and more popular, automated verification tools capable of assessing the security and

reliability of such systems are in high demand.

Classical approaches to verification tasks require the existence of a model of the system of interest, able to

express all its relevant behaviour. Unfortunately, in reality such a model rarely exists, as networking systems

may be extremely heterogeneous and parts may lack a formal specification, or the manual construction of a

model is simply unfeasible.

https://github.com/juliannagele/ebso
https://www.embecosm.com/

Research Institute in Verified Trustworthy Software Systems 24

Our approach aims to address this issue by

automatically inferring a model of a

network in a black-box fashion, by

observing its behaviour. The goal is to

provide a modular framework for learning

and verifying networking systems, based

on the NetKat language, which provides a

compositional programming abstraction of

networking behaviour. The envisioned

framework is shown in the diagram: the

learner interacts with the system via

queries, aiming to gather observations

(membership query) and to check the correctness of the model (equivalence query); the oracle includes a

verification component, which compares the current model against NetKat policies, allowing one to check for

specific properties incrementally, as the model is being learnt.

The main objectives for this project are taming the complexity of networks and achieving scalability of learning

and verification. One of the key challenges is the fact that NetKAT models are non-deterministic, hence they lack

canonical representatives; this hinders convergence of learning.  To tackle this issue, we have investigated a

general framework that allows deriving canonical representatives for a wide class of non-deterministic systems.

One journal paper [2] is being finalised; another paper to be submitted to a top conference is in preparation.

PUBLICATIONS. [1] Learning weighted automata over principal ideal domains. Gerco van Heerdt, Clemens Kupke,

Jurriaan Rot and Alexandra Silva. FOSSACS 2020. [2] S. Zetzsche, A. Silva, and M. Sammartino, "Bases for algebras

over a monad", arXiv preprint arXiv:2010.10223, 2020.

RELATED GRANTS. EPSRC Standard Grant "Verification of Hardware Concurrency via Model Learning (CLeVer)"

(EP/S028641/1), £693K.

IMPACT STATEMENT. “The completeness, fidelity, and trustworthiness of models is an important challenge for

Arm. Arm is highly interested in the development of techniques that offer the potential to make the design of

these models more automatic - both tools that provide a design aid for human designers, and tools that

automate the modelling process altogether.”

– Dominic Mulligan, Staff Research Engineer, Arm Research –

HIGHER-ORDER PROGRAM
INVARIANTS AND HIGHER-

ORDER CONSTRAINED
HORN CLAUSES

Steven Ramsay
University of Bristol

F544

PERSISTENT SAFETY AND
SECURITY

Brijesh Dongol
University of Surrey

FLUID SESSION TYPES: END-
TO-END VERIFICATION OF

COMMUNICATION
PROTOCOLS

Nobuko Yoshida
Imperial College London

GENERALISED STATIC
CHECKING FOR TYPE AND

BOUNDS ERRORS

Stephen Kell
University of Kent

FORMAL VERIFICATION OF
INFORMATION FLOW

SECURITY FOR RELATIONAL
DATABASES

Andrei Popescu
Middlesex University London

MECHANISING THE THEORY
OF BUILD SYSTEMS

James McKinna
University of Edinburgh

2019/2020
VERIFYING PERFORMANCE

IMPACTS OF MICRO-
ARCHITECTURE VULNERABILITY

MITIGATIONS

David Aspinall
University of Edinburgh

RELIABLE HIGH-LEVEL
SYNTHESIS

John Wickerson
Imperial College London

Research Institute in Verified Trustworthy Software Systems 26

HIGHER-ORDER PROGRAM INVARIANTS AND

HIGHER-ORDER CONSTRAINED HORN CLAUSES

 STEVEN RAMSAY LUKE ONG

• Higher-order programming is gaining traction, especially in financial and scientific industries.

• There is no consensus around a mathematical foundation for higher-order program verification.

• We propose higher-order constrained Horn clauses as a unifying logical paradigm.

• We look to exploit logical techniques to provide practical program verification technologies.

• We presented a highly efficient pattern-match safety analysis based on logical resolution and verified a

number of widely-used, open source Haskell libraries.

First-order program verification benefits enormously from a shared lexicon of notions of program invariant, such

as inductive invariants and procedure summaries. In contrast, there are no generally accepted notions of

invariant in the higher-order verification literature. The goal of this studentship is to initiate the development of

a unifying theory of higher-order program invariants. A theory which can express the common, logical

underpinnings of the subject and yet supports effective and reusable automated reasoning tools.

In the last year, we have developed a new compositional reasoning technique for formally verifying that a given

functional program is free from pattern-match safety exceptions, based on a restricted form of logical resolution.

Such exceptions can arise whenever a program does not handle all the cases that can arise in practice, such as

data arriving in an unexpected format or when a defective component interacts using a wider variety of actions

than are advertised in its protocol.

The technique is designed to be lightweight and usable by the average programmer. Our prototype tool is fully

automatic, but we have avoided the “push a button and hope for the best” user-experience that can hinder

adoption by giving strong guarantees on predictability:

• compositionality ensures the running time of our analysis scales linearly in the size of the analysed program

and, in practice, large Haskell packages can be verified in a few hundred milliseconds.

• the power of the analysis is characterised by an intuitive extension of the Haskell type system, so

programmers are readily able to understand why a component may not be verifiable.

PUBLICATIONS. E. Jones and S. Ramsay. 2021. Intensional datatype refinement with application to scalable

verification of pattern-match safety. POPL 21.

RELATED GRANTS. Higher-order Constrained Horn Clauses: A New Approach to Verifying Higher-order Programs.

(EPSRC EP/T006595/1).

IMPACT. Our tool is packaged as a GHC plugin and available on the Hackage package repository at

https://hackage.haskell.org/package/intensional-datatys. It has been used to verify that a number of widely-

used, open-source Haskell libraries (such as aeson, containers, and time) are free from pattern-match safety

exceptions.

vetss.org.uk 27

WHERE SOFTWARE MEETS HARDWARE: VERIFYING

PERFORMANCE IMPACTS OF MICRO-ARCHITECTURE

VULNERABILITY MITIGATIONS

DAVID ASPINALL

VASHTI GALPIN

• Transient execution vulnerabilities (such as Spectre) take place at micro-architecture level in out-of-order

processors with speculation.

• Attacks leveraging these vulnerabilities can undermine the security of all system components built on top

of a susceptible micro-architecture.

• Mitigations for these vulnerabilities can be expensive in terms of loss of computing cycles due to a

reduction in speculation.

• Formal modelling of micro-architecture behaviour together with performance analysis is needed

• We present a cycle-level model of a generic out-of-order processor with speculation in CARMA, a

quantitative modelling language with Markov chain semantics.

We have developed a CARMA model of micro-architecture that includes pipeline details and hardware

speculation. We have developed a very generic ISA (instruction set architecture) that consists of instructions

that are similar to those found in RISC processors (such as ARM) and to the micro-ops that are obtained from

the ISA in x86 systems. This enables us to work with essentially a RISC ISA and to abstract from the more complex

ISA of x86. This model takes as input an abstract stream of instructions which indicates the dependence of an

instruction on the results of previous instructions. This allows for input to be created from profiles of actual code

rather than working with the code directly, and supports abstraction of program characteristics hence allowing

for performance analysis over a family of programs rather than specific executions. To ensure that attacks and

mitigations can be modelled, the ROB (reorder buffer) is an explicit component of the model. This gives sufficient

micro-architectural details that Spectre can be modelled as well as mitigations based on memory fences and

timing experiments can be conducted to understand performance. The model serves as a proof-of-concept for

the proposed approach.

PUBLICATIONS. The model developed and the software

tool to experiment with it can be found at

https://homepages.inf.ed.ac.uk/vgalpin1/.

RELATED GRANTS. V Nagarajan, S Ainsworth, TC Grosser,

D Aspinall, EPSRC Grant EP/V038699/1, Dijkstra's Pipe:

Timing-Secure Processors by Design, £535,239.

IMPACT. “One class of vulnerabilities that we hope the

Morello board will mitigate against is side-channel

attacks, whilst minimising any impact on performance.

In order for this to be fully assessed, we need to be able

to reason about and model both security properties and

performance at the micro-architecture level. The simulator that this proposal hopes to develop will be a valuable

asset in this regard. We also welcome the longer term aim of developing a compositional approach to micro-

architecture security, as deriving the properties of a full system from individual components will become

increasingly important as systems and interconnects get increasingly complex.”

– Matt Rivers-Latham, Senior Director of Operations, Arm Ltd. –

https://homepages.inf.ed.ac.uk/vgalpin1/

Research Institute in Verified Trustworthy Software Systems 28

MECHANISING THE THEORY
OF BUILD SYSTEMS

 JAMES MCKINNA PERDITA STEVENS

• Build systems form part of the critical infrastructure of modern software development

• Unlike for compilers, there has been little formal modelling or verification of build systems

• This is a pilot project to explore the development of formal models of some existing systems (make, pluto)

in an interactive theorem proving system

• The aim is to develop new conceptual, and formal foundations in this area

Build systems form part of the critical infrastructure of modern software development, but unlike compilers

they have not been so much the focus of formal modelling or verification. Many users might be familiar with the

Unix workhouse tool 'make', but notwithstanding superficial advances, progress beyond it has been slow. This

9-month pilot project aims to develop formal models of some existing systems (make, pluto) in an interactive

theorem proving system, with a view to providing more secure foundations for future work in this area. The

ultimate aim is to develop new conceptual, and formal foundations in this area, and use them to increase

confidence in contemporary software engineering practices.

The project focussed on the pluto build system, with the aim of formalising of the basic algorithm as a collection

of mutually inductive definitions, following McKinna et al. (2009) “Programming Reachability Algorithms in Coq”,

which is unusual in being an approach to imperative program verification in a type-theoretic setting. An initial

formalisation of the basic pluto algorithms and data-structures in Agda was created: this revealed many

subtleties resulting from the impedance (mis)match between the set-theoretic/object-oriented model

underlying pluto, and its realisation in constructive type theory. Further work was done on trying to match the

object-oriented model underlying pluto with the functional decomposition identified in the Mokhov et al. “A la

carte“ paper, with difficulties arising with respect to identifying a distinct “scheduler” component or scheduling

policy in the pluto model.

Little progress has been made on the general abstract proof search model of build systems, and its relation to

extensions of the ‘compiler forest’ model. In retrospect, the proposal was too ambitious in aiming to tackle

this problem at this stage.

PUBLICATIONS. P. Stevens, “Connecting Software Build with Maintaining Consistency between Models: Towards

Sound, Optimal, and Flexible Building from Megamodels”, Software and System Modelling (accepted).

vetss.org.uk 29

RELIABLE HIGH-LEVEL
SYNTHESIS

JOHN WICKERSON YANN HERKLOTZ

• The aim of this project is to make high-level synthesis (HLS) tools more reliable.

• Using fuzz-testing in the style of Csmith, we have demonstrated that existing HLS tools are not as

reliable as previously thought.

• In response, we are developing a new HLS tool whose correctness is formally proven in Coq.

High-level synthesis (HLS) is the process of automatically translating a software program (written in, e.g., C or

C++) into an equivalent hardware design (written in, e.g., Verilog) that can be implemented on a programmable

chip (e.g. an FPGA). HLS is attractive because it promises to let software engineers reap the huge performance

and energy-efficiency improvements that a custom hardware implementation can bring. This, together with the

increasing power and availability of FPGAs (e.g. in AWS clouds) explains why HLS is rapidly growing in popularity.

Conventional compilers have recently made great improvements in reliability thanks to rigorous testing (e.g.

with Csmith and other fuzz-testers) and formal verification using a proof assistant (e.g. CompCert). Yet HLS has

not received this attention. The aim of this project is to address that. We will build automatic fuzz-testers that

will assess and improve the reliability of existing HLS tools, and we will design and implement a new, formally

verified HLS tool that is bug-free by construction, thus setting a new standard for reliability in HLS.

On the testing front, we have fuzz-tested existing HLS tools such as Xilinx Vivado HLS and the Intel HLS Compiler

using randomly generated C programs from Csmith, suitably restricted to the language fragment supported by

those tools. This effort, led by MSc student Zewei Du and PhD student Yann Herklotz, showed that out of 6700

randomly generated test-cases, 1178 of them failed in at least one of the four tools that we tested. After

reducing the test-cases to find their minimal forms, we discovered at least 8 unique bugs, 5 of which have been

confirmed by the vendors, and 1 of which has now been fixed. This work emphasises the reliability shortcomings

of current HLS tools, and thus motivates the second part of the project.

On the verification front, Herklotz has built a prototype

HLS tool, called Vericert, fully verified in Coq. It is

implemented by extending CompCert with a new hard-

ware-oriented intermediate language and a new Verilog

backend. Initial benchmarking suggests that Vericert

generates hardware designs that are within an order of

magnitude, in terms of performance and area-efficiency,

of those generated by an existing state-of-the-art HLS tool, called LegUp. We intend to close this gap in the near

future by implementing various optimisations in Vericert, such as operator scheduling and pipelined arithmetic.

PUBLICATIONS. [1] Z. Du, Y. Herklotz, N. Ramanathan, and J. Wickerson. Fuzzing High-Level Synthesis Tools.

ACM/SIGDA 2021. (Poster) [2] A paper about the design and implementation of Vericert is under review for a

top-tier programming languages venue.

IMPACT. "Dr Wickerson’s interests mesh with [...] Xilinx’s view that robust HLS tools are a technology critical to

our future success. The proposal [...] to add support for Verilog as a CompCert target would be a significant

contribution to the research community. Its principal value lies in the definition of the formal chain of

correctness transformations unique to high-level synthesis compilers targeting hardware. Success in defining

these transformations and proofs for even a small subset of C would provide a locus for research activity."

– Dr Samuel Bayliss, Principal Engineer, Xilinx Research Labs, San Jose. –

Research Institute in Verified Trustworthy Software Systems 30

FLUID SESSION TYPES: END-
TO-END VERIFICATION OF

COMMUNICATION PROTOCOLS

NOBUKO

YOSHIDA

RUMYANA
NEYKOVA

NICOLAS
LAGAILLARDIE

• The first library, MultiCrusty, for multiparty programming in Rust. MultiCrusty leverages Scribble

toolchain and Rusts type system for deadlock detection

• Formalisation of our implementation and proof of correctness, including a type system for affine channels

with deadlock-freedom guarantees

• Performance evaluation shows MultiCrusty scales better than existing stats-of-the-art implementations

The advantage of message-passing concurrency is well-understood: it allows cheap horizontal scalability at a

time when technology providers have to adapt and scale their tools and applications to various devices and

platforms. Multiparty session types (MPST) is a type-based discipline that ensures that concurrent and

distributed systems are safe by design. It guarantees that message-passing processes following a predefined

communication protocol, are free from communication errors and deadlocks. Rust is a particularly appealing

language for the practical embedding of session types. Its affine type system allows for static typing of linear

resources -- an essential requirement for the safety of session type systems. Despite the interest in the Rust

community for verification techniques handling multiple communicating processes, the existing Rust

implementations are limited to binary (two-party) session types.

We have designed and implemented multiparty session types

in Rust, visualised on the right. Our design follows a state-of-

the-art encoding of multiparty into binary session types. We

generate local types in Rust, utilising the Scribble toolchain.

Our library for MPST programming in Rust, MultiCrusty, is

implemented as a thin wrapper over an existing binary session

types library. Differently from other MPST implementations

that check linear usage of channels at runtime, we rely on the

Rust affine type system to type-check MPST programs. Ours is

the first formalisation of a multiparty session type system for

affine processes. In addition, as we generate the local types from a readable global specification, errors caused

by an affine (and not linear) usage of channels, a well-known limitation of the previous libraries, are easily

avoided. Our library is available here.

PUBLICATIONS. [1] F. Zhou, F. Ferreira, R. Hu, R. Neykova, N. Yoshida. Statically Verified Refinements for

Multiparty Protocols. OOPSLA’20. [2] N. Lagaillardie, R. Neykova, N. Yoshida. Implementing Multiparty Session

Types in Rust. Coordination’20.

RELATED GRANTS. Nobuko Yoshida, PI, EPSRC Standard Grant: “Session Types for Reliable Distributed Systems”,

10/2020-09/2024, £697,651; W Vanderbauwhede, PI (Nobuko Yoshida, Co-I) EPSRC Standard Grant:

“AppControl: Enforcing Application Behaviour through Type-Based Constraints”, 09/2020-06/2024, £1.4M.

IMPACT. “One core challenge at Actyx is to give average programmers and automation engineers software tools

for successfully digitising this world’s factories. Achieving this in a safe and modular way requires a behavioural

typing discipline for static protocol verification such as the one Nicolas, Rumyana, and Nobuko develop and

refine in close collaboration with us.”

– Dr. Roland Kuhn, CTO & co-founder of Actyx AG –

https://github.com/NicolasLagaillardie/mpst_rust_github

vetss.org.uk 31

GENERALISED STATIC CHECKING FOR TYPE AND

BOUNDS ERRORS

STEPHEN KELL

• Much critical code continues to be written in C and other lower-level languages that include unsafe

operations. These can lead to security vulnerabilities.

• Existing approaches to gain assurance tend to be inflexible, targeting very specific scenarios.

• This project seeks ways to increase flexibility, while retaining the accessibility and `explainability' of

dynamic tools.

• We built a prototype tool built atop Frama-C and KLEE which can slice C code down to smaller

programmes which are in some cases loop-free and therefore symbolically execute to termination.

Critical code continues to be written in C and other lower-level languages that include unsafe operations, such

as unchecked array accesses and pointer casts, leading to security vulnerabilities. Many approaches exist for

gaining assurance about these, but each is inflexible and target specific scenarios.

Static type-checking can be viewed as a program analysis that is baked into the host language design. Conversely,

dynamic checking can be made `partially static' by integrating it into a symbolic execution engine. This project

explored this continuum in search of a configurable program analysis of which traditional static type-checking is

just one configuration. We framed the problem as seeking methods that would allow a relatively dynamic

approach to become terminating, hence ̀ static', given the right program abstraction. Our insight is that program

slicing offers such an abstraction; it retains or discards code based on a slicing criterion, which in our case is

“Does this code affect whether the type assertions will pass”? For syntactically type-checkable programs, only a

loop-free program should remain, roughly encoding “Might this raise a type error?”. Syntactic type assignments

are loop-invariant by definition, and indeed this is how syntax-directed type-checking scales; in effect, we

recover this fact during slicing, rather than enforcing it by construction in the language design.

We built a tool, Slice & Run, which encodes type-based properties as assertions which can be interpreted by the

KLEE symbolic execution engine. Before feeding the program to KLEE, we apply a slicing-based abstraction whose

goal is to recover a smaller version of the program whose exploration by KLEE terminates /in those cases that

would also be statically type-checkable/, but is still (non-terminatingly) useful in those that would not. The tool

is built using Frama-C and takes unmodified C code as input.

Besides considerable basic tool-building effort, the main challenge addressed in the 13 months of the project

has been to accommodate patterns of polymorphic code. This requires careful design of the invariant protocol

i.e. the rules for inserting assertions. This exercise mirrors the design of the language-level type-checking rules,

but is separated from the base language, so can likely be applied largely independently of the source language.

This contrasts with conventional type-checking innovations, whose benefits are conferred only on new source

code written in new languages.

Symbolic execution is itself a technique offering a configurable depth of analysis, profiting from much

complementary work. Meanwhile, it is likely that even programs that do not slice perfectly would benefit

opportunistically from slicing, yielding greater coverage per unit time.

Were the project able to continue, we would be exploring the benefits and practicalities around these

approaches.

PUBLICATIONS: J. Adam, S. Kell. Type checking beyond type checkers with Slice & Run. TAPAS workshop at
SPLASH 2020.

Research Institute in Verified Trustworthy Software Systems 32

FORMAL VERIFICATION OF

INFORMATION FLOW SECURITY FOR

RELATIONAL DATABASES

ANDREI POPESCU

PETER LAMMICH

• Our society relies increasingly on systems that handle sensitive information by storing it in databases

and offering selective access to it.

• Expressive policies and mechanisms are needed to prevent information leaks while not inhibiting

legitimate flows.

• In this project, we formalise a framework for reasoning about the information flow security of web-

based database-backed systems.

• Our objective is the creation of concepts and tools for specifying and formally proving fine-grained

policies, addressing confidentiality needs of real-world systems.

In this project, we design and implement a framework for reasoning about the information flow security of user

interactions with relational databases–where the possible interactions are prescribed by input/output reactive

programs that query and update the data.

An important characteristic of this framework is that its policy language is extremely flexible, allowing to express

not only the absence of certain flows, often captured by variants of non-interference, but also controlled release

of information, also known as declassification, in a very fine-grained manner. For example, in an employee

database one could be allowed to query the employee salary field, but only collectively, and nothing should be

made available beyond the average salary. As another example, a medical insurance agent should be able to

query a medical database for aspects of a patient’s treatment, but only in a manner that does not reveal whether

the patient suffers from a terminal illness. Another characteristic of the framework is the support for both fully

automatic reasoning when possible and partly interactive reasoning when necessary, using a compositionality

infrastructure developed in the proof assistant Isabelle/HOL.

We validate the framework on two case studies of secure-by-design systems: CoCon, a conference management

system, and CoSMed, a social media platform. These systems have been previously verified for confidentiality

in an ad hoc manner. Using our framework, we further automate and uniformise their verification code base.

PUBLICATIONS. [1] A. Popescu, P. Lammich, P. Hou. CoCon: A Conference Management System with Formally

Verified Document Confidentiality. Journal of Automated Reasoning 2021. [2] A. Popescu, T. Bauereiss, P.

Lammich. Bounded-Deducibility Security. ITP 2021 (to appear). [3] A paper, reporting on the formalisation of a

sizable fragment of the SQL standard in the Isabelle/HOL proof assistant, is under preparation.

IMPACT. The guest editorial in the special issue of the Journal of Computer Security (volume 25, Issue 4-5)

dedicated to verified information-flow security notes: “The past few years have seen the seeds of information

flow security sown in the preceding three decades bear practical fruit. A number of real-world systems with

formally verified guarantees of information flow security now exist.” and goes on to cite nine such systems, two

of which are the verified web applications CoCon and CoSMed.

vetss.org.uk 33

PERSISTENT SAFETY AND

SECURITY

BRIJESH DONGOL

FRANCOIS DUPRESSOIR JOHN DERRICK

• Computing architectures have recently shifted towards new persistent or non-volatile memory

technologies (NVRAM), whose state is preserved even in case of a system crash or loss of power.

• NVRAM closes the latency gap between different forms of storage and has the potential to vastly improve

system speed and stability in systems ranging from personal devices to large data clusters.

• Rebooting from persistent memory can leave the system in an unsafe/insecure state, as persistent me-

mory writes are controlled by the system and the programmer, introducing several research challenges.

• Information must be persisted in the correct order (in case of a system crash), and moreover, any secrets

stored in persistent storage must not be available to unauthorised parties.

• Our focus is the rigorous development of concurrent programs in systems that use persistent memory.

Our main aim is to develop correctness conditions, programming abstractions and verification methods that

enable developers to build safe and secure persistent memory systems. To support scalability, we focus on

verified libraries implementing concurrent objects, which form basic software components developers can re-

use. To future-proof our results, we conduct our research in the context of cutting-edge techniques on weak

memory semantics and associated verification methodologies (including mechanisation in the Isabelle/HOL

theorem prover), software libraries (including concurrent objects and transactional memory), and security

verification techniques. We work across the hardware/software interface and consider the impact of low-level

read/write primitives on high-level concurrency abstractions. In particular, the work is being conducted in the

context of weak memory models for both programming languages (C/C++11) and hardware (Intel-TSO, ARM).

To better understand the atomicity requirements and associated safety properties for NVRAM-based systems,

we have developed verification methods for concurrent objects (e.g., stacks, queues). For software transactional

memory, we have developed a new notion of atomicity (called durable opacity) and the associated verification

techniques. We are developing high-level logics for reasoning about systems that combine persistency with

relaxed accesses from weak memory, forming the first step towards program verification. We are also

investigating the interaction between concurrency abstractions and hyper-properties, including within our

recent VETSS small grant. Our current works are mechanised within the Isabelle/HOL and KIV theorem provers.

PUBLICATIONS. [1] J. Derrick, S. Doherty, B. Dongol, H. Wehrheim, G. Schellhorn: Verifying Correctness of Persi-

stent Concurrent Data Structures: A Sound and Complete Method. Formal Aspects of Computing (2021). [2] E.

Bila, J. Derrick, S. Doherty, B. Dongol, G. Schellhorn, H. Wehrheim: Modularising Verification of Durable Opacity.

(under review). [3] E. Bila, S. Doherty, B. Dongol, J. Derrick, G. Schellhorn, H. Wehrheim: Defining and Verifying

Durable Opacity: Correctness for Persistent Software Transactional Memory. FORTE 2020, best paper award.

RELATED GRANTS. VeTSS small grant on Transactional Memory Security (£30k). EPSRC Cross Research Institute

Grant on Verifiably Correct Swarm Attestation (£514k): Brijesh Dongol (PI), Santanu Dash (co-I), Helen Treharne

(co-I) and Liqun Chen (co-I), with project partners Arm, Thales, NTU, and SRI.

IMPACT. Software correctness and security are two fundamental properties that need to be addressed as

systems transition to using Non-Volatile Memory (NVM). While program logics, design patterns, and libraries

exist for traditional weak-consistent memory, these techniques have to be revised and adapted in the context

of NVM. Arm believes that progress on methodologies to guarantee correctness and security of NVM programs

is of paramount importance to realize the benefits of NVM.

– Gustavo Petri, Staff Research Engineer, Arm Research –

AION: VERIFICATION OF
CRITICAL COMPONENTS’
TIMELY BEHAVIOUR IN

PROBABILISTIC ENVIRONMENTS

Vincent Rahli
University of Birmingham

F544

QUANTITATIVE ALGEBRAIC
REASONING FOR HYBRID
PROGRAMS: REASONING

PRECISELY ABOUT IMPRECISIONS

Alexandra Silva
University College London

CONVENER: CONTINUOUS
VERIFICATION OF NEURAL

NETWORKS

Ekaterina Komendantskaya
Heriot Watt University

2020/2021
MECHANISING
CONCURRENT

WEBASSEMBLY

Neel Krishnaswami
University of Cambridge

FIXING THE THIN-AIR
PROBLEM: ISO
DISSEMINATION

Mark Batty
University of Kent

VALIDATING THE
FOUNDATIONS OF VERIFIED
PERSISTENT PROGRAMMING

Azalea Raad
Imperial College London

vetss.org.uk 35

AION: VERIFICATION OF CRITICAL

COMPONENTS’ TIMELY BEHAVIOR IN

PROBABILISTIC ENVIRONMENTS

VINCENT RAHLI

DAVID PARKER

• Distributed critical information infrastructures need to behave correctly and in a timely fashion, while

tolerating faults and attacks.

• We use the Coq proof assistant to prove the correctness of such systems, in particular their timeliness.

• We are developing models and proof methods to verify timing properties of such systems.

• We are using these tools to verify correctness of real-time Byzantine fault-tolerant broadcast protocols.

Our society strongly depends on distributed critical information infrastructures such as electrical grids,

autonomous vehicles, blockchain applications, IoT critical infrastructures, etc.. Such systems need to behave

correctly, even in the face of faults and attacks. For time-critical systems, one correctness criteria is that

operations are performed within a certain time bound. For example, in the context of a SCADA system, a

desirable property is that actuators receive commands reliably and punctually.

One state-of-the-art technique to ensure that services in general are secure against faults and attacks is to use

Byzantine Fault Tolerant State Machine Replication (BFT-SMR) that replicates a service and masks faults behind

the behaviour of correct replicas. Some protocols have been proposed that can provide timing guarantees in

synchronous environments (where message transmission delays are bounded by a known bound), while others

work in asynchronous environments (where message transmissions are unbounded) but do not provide timing

guarantees. We have developed in [1] a collection of protocols that provide timing guarantees in probabilistic

synchronous networks, where messages have a low probability of being delivered late. We have informally

proved that these protocols satisfy timeliness properties, in addition to standard BFT properties.

Many formal theory tools have been developed to

verify the correctness of BFT-SMR protocols.

However, none support the kind of protocols

developed in [1]. Therefore, as part of this project

we are developing within the Coq theorem prover,

models and verification techniques to guarantee the

correctness of real-time BFT-SMR protocols, and in

particular, to prove timeliness properties in

probabilistic synchronous environments. Towards

this goal we have developed a probabilistic model of

distributed computations, where messages are

assigned a probability of getting lost or delayed, and where a faction of the nodes can behave arbitrarily (i.e.,

are Byzantine). We are now using this model to verify properties of distributed systems, some of which only hold

with high probability. In particular, we are now using it to verify properties of the real-time Byzantine fault

tolerant protocols developed in [1], such as timeliness.

PUBLICATIONS. D. Kozhaya, J. Decouchant, V. Rahli, and P. Verissimo. PISTIS: An Event-Triggered Real-Time

Byzantine-Resilient Protocol Suite. IEEE Transactions on Parallel and Distributed Systems, 2021

Research Institute in Verified Trustworthy Software Systems 36

MECHANISING CONCURRENT

WEBASSEMBLY

NEEL KRISHNASWAMI

CONRAD WATT JEAN PICHON

• WebAssembly is the first new programming language to be supported on the Web in over 20 years.

• We have developed WasmCert-Coq, a new mechanisation of the WebAssembly language in Coq.

• We mechanise WebAssembly's linking and allocation phase for the first time.

• We investigate WebAssembly's proposed relaxed memory concurrency model.

WebAssembly is a new language supported by all major Web browsers, intended to be an efficient compilation

target for low-level languages such as C++ and Rust, with the aim that the resulting compiled program can be

executed in the browser with near-native performance. WebAssembly is unusual in that its standards body

maintains a full, normative formal specification for the language, and all features must be fully formalised before

they are accepted as extensions to the standard. WebAssembly was initially single-threaded, but an in-progress

extension to the language introduces threads and concurrent memory operations, including atomic accesses.

Concurrent access to memory in WebAssembly can give rise to "relaxed memory" behaviours, allowing program

results that cannot be explained by considering only naive sequential interleavings of the operations of

individual threads. The WebAssembly concurrency proposal includes a formal model of the permitted relaxed

memory behaviour. This project aims to investigate areas of the WebAssembly semantics which interact with

the proposed concurrent extension, and develop a Coq mechanisation of the language to complement the

existing Isabelle mechanisation, which was based on an earlier draft of the WebAssembly semantics.

We have completed a Coq mechanisation of WebAssembly's core sequential semantics, and extended both the

Coq and Isabelle mechanisations to model “instantiation” for the first time. Instantiation is a linking and

allocation phase of the WebAssembly program lifecycle not described in the initially published semantics.

The WebAssembly concurrency proposal does not include a mechanism for thread creation. Instead,

WebAssembly is embedded within a "host language" (such as JavaScript on the Web) which is responsible for

the creation of threads running WebAssembly code. As an initial step towards mechanising this behaviour, we

mechanised an abstract host language which is intended to capture the capabilities of JavaScript's WebAssembly

API. We are currently investigating integration with the Iris framework (Jung et al, ICFP 2016), which facilitates

the specification of higher-order concurrent program logics.

We discovered two deficiencies in WebAssembly's concurrency model. First, WebAssembly and the related

JavaScript model were incorrectly specifying the atomic compare-exchange operation, making its synchronisa-

tion guarantees too strong in the case that the comparison fails. This issue was corrected in both specifications.

More seriously, we discovered that the intended compilation scheme from concurrent C++11 to WebAssembly

is formally unsound due to an issue with the WebAssembly model related to the notorious "out-of-thin-air"

problem. Luckily, this issue is primarily theoretical, as no real system is expected to exhibit thin-air executions.

IMPACT. As interest grows around WebAssembly as a bytecode format for smart contracts, we're excited about
WasmCert-Coq and hope to use it in future verification efforts!
 – Vilhelm Sjöberg, Research Scientist at CertiK –

With WebAssembly, we strove to design a high-assurance platform, which includes a specification with a formal
semantics. Mechanisation is vital both for building confidence in this specification and its proposed extensions
and for formal reasoning about WebAssembly programs. I'm very pleased that this work has brought new parts
of the WebAssembly semantics into Coq.
– Andreas Rossberg, WebAssembly Specification Editor –

vetss.org.uk 37

CONVENER: CONTINUOUS VERIFICATION

OF NEURAL NETWORKS

 EKATERINA

KOMENDANTSKAYA

DAVID

ASPINALL

• Conflict between continuous methods (that enable data classification in multi-dimensional real space)

and discrete methods (used by solvers and provers) poses a challenge for neural network (NN) verification

• This project aims to turn this from a disadvantage to a capability

• A continuum of models can serve as suitable classifiers for NNs and give reasonable prediction accuracy.

• Given the task of verifying a neural network, we are no longer required to think of the object as

immutable, i.e. we are allowed to verify and deploy a different NN instead.

Most challenges encountered in neural network verification are due to the conflict between continuous and

discrete methods. Conventionally, we assume that the object we verify is uniquely defined, often hand-written,

and therefore needs to be verified as-is. Neural networks are different—often there is a continuum of models

that can serve as suitable classifiers, and we usually do not have much preference for any of them, as long as

they give reasonable prediction accuracy. Given the task of verifying a neural network, we are no longer required

to think of the object as immutable, i.e., we are allowed to verify and deploy a different neural network instead.

This opens up new possibilities for verification and

justifies several methods of NN transformation,

including NN size reduction, piece-wise linearisa-

tion of activation functions either during or after

training, and use of constraint-aware loss functions

during training or interleave verification with adversarial training, which improves NN safety. Thus, verification

becomes part of the object construction. We also assume that the training-verification cycle may repeat poten-

tially indefinitely, especially if NNs are retrained using new data. We call this approach continuous verification.

However, to be truly successful, this methodology needs proper programming language support. Ideally, the

programmer should only need to specify basic neural network parameters and the desired verification

constraints, leaving the work of fine-tuning of the training-verification cycle to the integrated tools.

We cast a type-theoretic view on these problems, and have conducted our first successful experiments at

building a verification infrastructure based around these ideas. For this, we initially used F* and Liquid Haskell,

functional languages with refinement types. We have also explored different ways of integrating neural network

verification into other mainstream languages (e.g., our Z3 verifier that works with TensorFlow models in Python

and the Agda extension that allows us to perform neural network verification via refinement type

In the second half of the project, we explored the problem of NN verification as program synthesis. We

performed an in-depth comparison of approaches to improving NN robustness, including their relationship,

assumptions, interpretability and after-training verifiability. We also looked at constraint-driven training, a gene-

ral approach designed to encode arbitrary constraints, and showed that not all of these definitions are directly

encodable. Finally, we performed experiments to compare applicability and efficacy of the training methods at

ensuring the network obeys these different definitions. These results highlight that even the encoding of such a

simple piece of knowledge, such as robustness of an NN, training is fraught with difficult choices and pitfalls.

PUBLICATIONS. [1] W. Kokke, E. Komendantskaya, D. Kienitz, R. Atkey, and D. Aspinall. Neural Networks, Secure

by Construction: An Exploration of Refinement Types. APLAS’20

Research Institute in Verified Trustworthy Software Systems 38

VALIDATING THE FOUNDATIONS OF
VERIFIED PERSISTENT PROGRAMMING

 AZALEA RAAD

JOHN WICKERSON

• Non-volatile memory (NVM) is fast becoming mainstream.

• Therefore, we need to be able to write programs that exploit it, correctly and efficiently.

• In order to verify that these programs are correct, we need formal models of how CPUs interact with

NVM, able to answer questions like "is my data guaranteed to become persistent in the same order as it

is written to memory?"

• This project will design and implement techniques for empirically validating these models against

mainstream architectures such as Armv8 and Intel x86.

The emergence of non-volatile memory (NVM) is expected to

revolutionise how software is written. NVM provides storage

persistence across power failures, yet offers performance close

to that of traditional (volatile) memory. As such, programs that

require data persistence (e.g. databases) can achieve an orders-

of-magnitude lower latency by storing their data on NVM rather

than on standard disks. It is widely believed that NVM will

supplant volatile memory entirely, allowing efficient access to

persistent data.

However, writing correct persistent programs is a difficult task. A key challenge for the programmer is correctly

accounting for the "persistency semantics" of the hardware, which describes the order in which writes

performed by the CPU become persistent. Volatile caches between the CPU and the NVM can make

persistency semantics quite counterintuitive, and motivates the need for formal verification.

Prior work has developed models of how persistency works in mainstream hardware such as Arm and Intel-x86.

These models have been developed by studying specifications and interviewing designers, but have not yet been

validated empirically on real-world hardware.

This project aims to address that shortcoming. Validating persistency models on hardware is challenging

because in order to test whether data is truly persistent we need to power-cycle the test machine, yet doing so

for every test-case would led to infeasibly low testing throughput. To get around this difficulty, we have obtained

a specialised hardware device called a "DDRDetective", which is able to monitor the data traffic to and from the

persistent memory while our test-cases are being executed. Work is expected to start imminently on using the

DDRDetective to validate the persistency models for the Armv8 and Intel-x86 architectures.

RELATED GRANTS. This project is also being partially funded by the EPSRC Programme Grant "IRIS: Interface

Reasoning for Interacting Systems" (£6.1M, 2018–2023).

IMPACT. “The correctness of programs that exploit non-volatile memory is an important challenge to Arm. The

formal semantics for how persistent memory works will be key in addressing this challenge. Practical methods

to run litmus test for persistent memory empirically on real chips would help validate microarchitectural

implementations of Arm persistency models."

– Andrea Kells, Director, Research Ecosystem, Arm Ltd. –

vetss.org.uk 39

FIXING THE THIN-AIR PROBLEM:
ISO DISSEMINATION

MARK BATTY

SIMON COOKSEY

• Concurrency in the C++ language is ill-specified in the current International Standards Organisation (ISO)

definition: it allows values to be conjured out of thin air (OOTA). Working towards verification of C++

code, we fixed this problem with a proposed change to the standard, called Modular Relaxed

Dependencies (MRD).

• The ISO has acknowledged our approach as its best path forward to fix the problems of C and C++.

• COVID-19 interrupted ISO meetings quite severely. We pivoted in this project, reallocating travel

resources that could not be spent to equipment for remote and future in-person demos, and hiring

Abigail Pattenden to develop a web-based interface to our executable model, MRDer, for remote

experimentation by committee members.

• Pattenden, Cooksey, Batty attended ISO meetings, presenting MRDer to the concurrency subgroup.

• Following this project, we secured a larger grant for studying C semantics.

The path taken in this project was radically different than

proposed because of COVID-19. When ISO meetings were

cancelled, we pivoted from planning in-person travel to the

development of online interactive tools. We have previous

experience of making changes to the ISO definitions of C and C++,

and instrumental to our changes was the CPPMem tool. CPPMem

allows one to explore the behaviour of small test programs online,

under the C++ concurrency specification. ISO committee members

use CPPMem to answer their own questions about corner cases of

the concurrency specification.

We have exposed further problems in the concurrency specification of C++, problems that require more

fundamental change. MRD is a possible solution to those problems, and ISO SG1 voted to pursue this direction.

To present the finer details of MRD at a time with no in-person meeting, we developed an online variant of our

new model, following the familiar style of the previous CPPMem tool (see above). The tool itself is available at

https://www.cs.kent.ac.uk/projects/MRDer/.

RELATED GRANTS. Mark Batty, PI; S. Kell, Co-I. UKRI DSbD grant “CapC: Capability C semantics, tools and

reasoning” (EP/V000470/1), 08/2020-07/2023, £485,168.

IMPACT. The ISO unanimously passed the following motion endorsing our semantics: “OOTA is a major problem

for C++, modular relaxed dependencies is the best path forward we have seen, and we wish to continue to

pursue this direction”

https://www.cs.kent.ac.uk/projects/MRDer/

Research Institute in Verified Trustworthy Software Systems 40

QUANTITATIVE ALGEBRAIC

REASONING FOR HYBRID

PROGRAMS: REASONING

PRECISELY ABOUT IMPRECISIONS

ALEXANDRA
SILVA

FREDRIK
DAHLQVIST

RENATO
NEVES

• It is usually insufficient to tell whether two programs are equivalent or not.

• In cyber-physical programming, particularly, it is important to tell “how close” are two programs of being

equivalent to each other.

• Our approach uses algebraic reasoning mechanisms to achieve precisely that.

• Applications of our work include real-time and probabilistic programs.

Championed as a core ingredient of the twenty-first century technology, cyber-physical systems intertwine

digital computation with continuous, physical processes and possess a wide range of application domains. They

are found not only in small medical devices, such as pacemakers and insulin pumps, but also in networks of

autonomous vehicles and district-wide electric grids. They are also used in the analysis of biological mechanisms

such as disease propagation and personalised treatments against cancer. The presence of physical processes,

however, hinders an effective use of classical programming notions and techniques. A most basic case is the

classical notion of program equivalence, which in the presence of continuous behaviour becomes too strict, for

it requires that two programs behave in exactly the same way for a continuous range of possible values.

Whilst there have been recent important developments in cyber-physical program semantics there are currently

no algebraic methods for telling `how close' are two programs of being equivalent to each other. This is where

our project aims to make progress.  Specifically, we aim at providing useful notions of distance between cyber-

physical programs and subsequently developing corresponding axiomatisations for reasoning about

approximate program equivalence.

We are targeting two specific families of cyber-physical programs: real-time and probabilistic programs. In the

first case it is useful to tell how close are the execution times of two programs, for instance in the setting where

time constraints and synchronisation mechanisms are a main concern (e.g. cruise control systems and platoon

vehicles). In the second case it is useful to tell how close are the probabilities of two programs producing a

specific output, with applications in e.g., machine learning and noise-aware quantum programming.

Our current results include a complete, generic algebraic system for reasoning about approximate equivalence

that is applicable to both real-time and probabilistic programs.

PUBLICATIONS. Two papers are in preparation, to be submitted to top conferences.

IMPACT. This project proposal is concretely motivated by R. Neves' participation in the scientific projects DaVinci

and Klee, which have extensive industrial collaborations. The former concerns coordination of components in

the cyber-physical domain and collaborates with the Belgian company Altreonic (specialised in the development

of vehicular systems). The latter concerns synthesis and analysis of biological systems via hybrid programming

techniques, and collaborates with Silicolife (a company specialised in industrial biotechnology). Notions of

approximate equivalence are critical in vehicular systems (for instance to compare the speeds attained by two

cruise controllers) and in biological systems due to the presence of noise in sensors and actuators.

VERIFIED PROGRAM
SYNTHESIS FOR

REFACTORING RUST
PROGRAMS

Meng Wang
University of Bristol

F544 2021/2022
TYPE-DRIVEN DATA-SCIENCE

INFRASTRUCTURE
FOR IDRIS2

Ohad Kammar
University of Edinburgh

NEURAL NETWORK
VERIFICATION: IN SEARCH
OF THE MISSING SPEC

Ekaterina Komendantskaya
Heriot Watt University

SAFE AND RELIABLE
CONCURRENT ROBOTICS
PROGRAMMING WITH

CHOREOGRAPHIES
Nobuko Yoshida

Imperial College London

SYMBOLIC COMPUTATION
FOR MAINSTREAM

VERIFICATION

Budi Arief
University of Kent

Ç√

CONTACT US

E-MAIL: VeTSS@imperial.ac.uk

PETAR MAKSIMOVIĆ
Academic Program Manager

Ç√F544
RESEARCH INSTITUTE IN
VERIFIED TRUSTWORTHY SOFTWARE SYSTEMS
UK’s second research institute in cyber-security

RESEARCH INSTITUTE IN VERIFIED TRUSTWORTHY SOFTWARE SYSTEMS
Department of Computing, Imperial College London
South Kensington Campus, London SW7 2AZ
United Kingdom

TERESA CARBAJO GARCÍA
Administrative Program Manager

PHONE: +44 (0)20 759 43140

