
Simon Bliudze
Laura Bocchi (Eds.)

LN
CS

 1
21

34

22nd IFIP WG 6.1 International Conference, COORDINATION 2020
Held as Part of the 15th International Federated Conference
on Distributed Computing Techniques, DisCoTec 2020
Valletta, Malta, June 15–19, 2020, Proceedings

Coordination Models
and Languages

Lecture Notes in Computer Science 12134

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Simon Bliudze • Laura Bocchi (Eds.)

Coordination Models
and Languages
22nd IFIP WG 6.1 International Conference, COORDINATION 2020
Held as Part of the 15th International Federated Conference
on Distributed Computing Techniques, DisCoTec 2020
Valletta, Malta, June 15–19, 2020
Proceedings

123

Editors
Simon Bliudze
Project-team SPIRALS
Inria Lille – Nord Europe
Villeneuve d’Ascq, France

Laura Bocchi
School of Computing
University of Kent
Canterbury, UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-50028-3 ISBN 978-3-030-50029-0 (eBook)
https://doi.org/10.1007/978-3-030-50029-0

LNCS Sublibrary: SL2 – Programming and Software Engineering

© IFIP International Federation for Information Processing 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-7900-5271
https://orcid.org/0000-0002-7177-9395
https://doi.org/10.1007/978-3-030-50029-0

Foreword

The 15th International Federated Conference on Distributed Computing Techniques
(DisCoTec 2020) took place during June 15–19, 2020. It was organized by the
Department of Computer Science at the University of Malta, but was held online due to
the abnormal circumstances worldwide affecting physical travel.

The DisCoTec series is one of the major events sponsored by the International
Federation for Information Processing (IFIP). It comprises three conferences:

– The IFIP WG6.1 22nd International Conference on Coordination Models and
Languages (COORDINATION 2020)

– The IFIP WG6.1 20th International Conference on Distributed Applications and
Interoperable Systems (DAIS 2020)

– The IFIP WG6.1 40th International Conference on Formal Techniques for
Distributed Objects, Components and Systems (FORTE 2020)

Together, these conferences cover a broad spectrum of distributed computing sub-
jects, ranging from theoretical foundations and formal description techniques to sys-
tems research issues. As is customary, the event also included several plenary sessions
in addition to the individual sessions of each conference, that gathered attendants from
the three conferences. These included joint invited speaker sessions and a joint session
for the best papers from the respective three conferences.

Associated with the federated event, two satellite events took place:

– The 13th International Workshop on Interaction and Concurrency Experience
(ICE 2020)

– The First International Workshop on Foundations of Consensus and Distributed
Ledgers (FOCODILE 2020)

I would like to thank the Program Committee chairs of the different events for their
help and cooperation during the preparation of the conference, and the Steering
Committee and Advisory Boards of DisCoTec and their conferences for their guidance
and support. The organization of DisCoTec 2020 was only possible thanks to the
dedicated work of the Organizing Committee, including Davide Basile and Francisco
“Kiko” Fernández Reyes (publicity chairs), Antonis Achilleos, Duncan Paul Attard,
and Ornela Dardha (workshop chairs), Lucienne Bugeja (logistics and finances), as
well as all the students and colleagues who volunteered their time to help. Finally, I
would like to thank IFIP WG6.1 for sponsoring this event, Springer’s Lecture Notes in
Computer Science team for their support and sponsorship, EasyChair for providing the
reviewing framework, and the University of Malta for providing the support and
infrastructure to host the event.

June 2020 Adrian Francalanza

Preface

This volume contains the papers presented at COORDINATION 2020, the 22nd
International Conference on Coordination Models and Languages, organized online by
the University of Malta in Valletta during June 15–19, 2020, as part the federated
DisCoTec conference.

The COORDINATION conference provides a well-established forum for the
growing community of researchers interested in coordination models and
languages, architectures, verification, and implementation techniques necessary to cope
with the complexity induced by the demands of today’s software development.
COORDINATION 2020 had two dedicated sessions for special topics: Microservices
(in collaboration with the Microservices Community) and Techniques to reason about
interacting digital contracts.

For the second year in a row, COORDINATION called for tool papers describing
experience reports, technological artefacts, and innovative prototypes, as well as
educational tools in the scope of the research topics of the conference. Tool papers
were selected according to the combination of an extended abstract and a short video
demonstration, after which full papers were produced to be included in these pro-
ceedings following a light-weight review. In addition, seeking to further reinforce the
practical applicability aspects of the COORDINATION community research, we have
explicitly included among the topics of interest the industry-led efforts in coordination
and industrial case studies.

The Program Committee of COORDINATION 2020 comprised 27 researchers from
13 countries. We received 21 full paper submissions, 4 short paper submissions, and 5
tool paper submissions. Each paper was evaluated by at least three reviewers and this
process was supplemented by an in-depth discussion phase during which the merits of
all the papers were considered. The contributions published in this volume were
selected according to their quality, originality, clarity, and relevance. The final program
comprised 12 full papers, 6 short papers, and 4 tool papers. The program also included
two invited tutorials and one invited talk. The invited talk was given by Peter Kriens
from aQute and the OSGi Alliance. A short abstract of this talk is included in this
volume under the title “Formal Specifications to Increase Understanding.”

We are grateful to all authors who have submitted their work, to the members of the
Program Committees and their sub-reviewers for their help in evaluating the papers,
and to all the participants for their interest in the conference. We would particularly like
to express our gratitude to Hugo Torres Vieira and Omar Inverso, the chairs of the Tool
Track, to Stephanie Balzer and Anastasia Mavridou, the organizers of the special topic
on digital contracts, and Ivan Lanese and Alberto Lluch Lafuente, the organizers of the
special topic on microservices. Their strong involvement was a key enabling factor for
the preparation of the conference. Furthermore, we wish to thank the Steering
Committee of COORDINATION and the Steering Board of DisCoTec for their
support.

DisCoTec 2020 – the federated conference whereof COORDINATION is
part – took place during the Covid-19 pandemics with many countries having imposed
travel restrictions and some of the participants being in lock-down. The decision to
maintain the dates and hold the conference online imposed radical changes in the
required infrastructure. In the name of all COORDINATION participants, we thank the
Organizing Committee chaired by Adrian Francalanza for having quickly and effi-
ciently adapted to the new circumstances and allowing the conference to proceed
smoothly despite the inherent difficulties of holding it online. Personal thanks go to
Kiko Fernández-Reyes and Davide Basile for their help with the conference publicity
and running the website.

Simon Bliudze thanks the Hauts-de-France region for the financial support provided
in the framework of the Soutiens aux Talents de la Recherche Scientifique program.

Finally, we would like to thank the International Federation for Information
Processing (IFIP) WG6.1 for the financial support, to Springer Nature for their spon-
sorship and personally Anna Kramer for the support during the production phase of the
proceedings, EasyChair for the paper collection, reviewing, and proceedings prepara-
tion environment, the University of Malta for providing the infrastructure, and the
Microservices Community for the additional publicity they provided.

May 2020 Simon Bliudze
Laura Bocchi

viii Preface

Organization

Program Committee Chairs

Simon Bliudze Inria Lille - Nord Europe, France
Laura Bocchi University of Kent, UK

Steering Committee

Gul Agha University of Illinois at Urbana Champaign, USA
Farhad Arbab CWI and Leiden University, The Netherlands
Wolfgang De Meuter Vrije Universiteit Brussels, Belgium
Rocco De Nicola IMT - School for Advanced Studies, Italy
Giovanna di

Marzo Serugendo
Université de Genève, Switzerland

Tom Holvoet KU Leuven, Belgium
Jean-Marie Jacquet University of Namur, Belgium
Christine Julien The University of Texas at Austin, USA
Eva Kühn Vienna University of Technology, Austria
Alberto Lluch Lafuente Technical University of Denmark, Denmark
Michele Loreti University of Camerino, Italy
Mieke Massink ISTI CNR, Italy
Jose Proença University of Minho, Portugal
Rosario Pugliese Università di Firenze, Italy
Hanne Riis Nielson DTU, Denmark
Marjan Sirjani Reykjavik University, Iceland
Carolyn Talcott SRI International, USA
Emilio Tuosto University of Leicester, UK, and Gran Sasso Science

Institute, Italy
Vasco T. Vasconcelos University of Lisbon, Portugal
Mirko Viroli University of Bologna, Italy
Gianluigi Zavattaro (Chair) University of Bologna, Italy

Program Committee

Stephanie Balzer CMU, USA
Chiara Bodei Università di Pisa, Italy
Marius Bozga Université Grenoble Alpes, France
Roberto Bruni Università di Pisa, Italy
Ornela Dardha University of Glasgow, UK
Fatemeh Ghassemi University of Tehran, Iran
Roberto Guanciale KTH, Sweden
Ludovic Henrio CNRS, France

Omar Inverso Gran Sasso Science Institute, Italy
Jean-Marie Jacquet University of Namur, Belgium
Eva Kühn Vienna University of Technology, Austria
Ivan Lanese University of Bologna, Italy
Alberto Lluch Lafuente Technical University of Denmark, Denmark
Michele Loreti University of Camerino, Italy
Anastasia Mavridou NASA Ames Research Center, USA
Mieke Massink ISTI CNR, Italy
Hernán Melgratti Universidad de Buenos Aires, Argentina
Claudio Antares Mezzina Università degli Studi di Urbino, Italy
Rumyana Neykova Brunel University London, UK
Luca Padovani Università di Torino, Italy
Kirstin Peters TU Darmstadt, Germany
Danilo Pianini University of Bologna, Italy
Rene Rydhof Hansen Aalborg University, Denmark
Gwen Salaün Université Grenoble Alpes, France
Meng Sun Peking University, China
Hugo Torres Vieira C4 - Universidade da Beira Interior, Portugal
Emilio Tuosto University of Leicester, UK, and Gran Sasso Science

Institute, Italy

Tool Track Chairs

Omar Inverso Gran Sasso Science Institute, Italy
Hugo Torres Vieira C4 - Universidade da Beira Interior, Portugal

Special Session Organizers

Microservices:

Ivan Lanese University of Bologna, Italy
Alberto Lluch Lafuente Technical University of Denmark, Denmark

Techniques to reason about interacting digital contracts:

Stephanie Balzer CMU, USA
Anastasia Mavridou NASA Ames Research Center, USA

x Organization

Additional Reviewers

Giorgio Audrito
Claudia Chirita
Giovanni Ciatto
Stefan Crass
Ankush Das
Gerson Joskowicz
Ajay Krishna
Alexander Kurz
Diego Latella

Yuteng Lu
Stefano Mariani
Agustín Eloy Martinez Suñé
Zeynab Sabahi Kaviani
Larisa Safina
Martina Sengstschmid
Catia Trubiani
Xiyue Zhang

Sponsors

Organization xi

Formal Specifications to Increase
Understanding (Invited Talk)

Peter Kriens

aQute and OSGi Alliance
peter.kriens@aqute.biz

Abstract. I’ve been active in the Alloy (MIT, Daniel Jackson) community for
the last few years. Alloy is an interactive formal specification tool using SAT
and SMT to find counterexamples. However, despite my enthusiasm, I am also
quite frustrated with how the focus is on the least interesting aspects for me:
‘proving’ the correctness of a specification. It is for me the least interesting
because it requires the spec to be correct, which is very hard. However, even
harder, it requires the implementation to follow the spec exactly. The people
involved in this area seem to leave these all-important aspects as a detail for the
practitioners. Instead, they focus on the more and more esoteric things like
beating the combinatorial explosion in the proving aspects. I think ‘something’
like Alloy could be eminently useful if it is used to define the semantics of APIs.
Today, we define those semantics in comments or, worse, some external Word
document. Formally defining service APIs seems a low hanging fruit that would
boost development productivity significantly. As a developer you spend most of
your time trying to understand the domain and testing (the tool could generate
test case data). Using the service API as an anchor point of such a tool would
make it modular, allowing larger specifications that could still be proven. This
presentation will explore how such a tool could look like.

Contents

Tutorials

CHOReVOLUTION: Hands-On In-Service Training
for Choreography-Based Systems . 3

Marco Autili, Amleto Di Salle, Claudio Pompilio, and Massimo Tivoli

Choreographic Development of Message-Passing Applications: A Tutorial . . . 20
Alex Coto, Roberto Guanciale, and Emilio Tuosto

Coordination Languages

ARx: Reactive Programming for Synchronous Connectors 39
José Proença and Guillermina Cledou

Towards Energy-, Time- and Security-Aware Multi-core Coordination 57
Julius Roeder, Benjamin Rouxel, Sebastian Altmeyer,
and Clemens Grelck

Message-Based Communication

Team Automata@Work: On Safe Communication . 77
Maurice H. ter Beek, Rolf Hennicker, and Jetty Kleijn

Choreography Automata . 86
Franco Barbanera, Ivan Lanese, and Emilio Tuosto

A Choreography-Driven Approach to APIs: The OpenDXL Case Study. 107
Leonardo Frittelli, Facundo Maldonado, Hernán Melgratti,
and Emilio Tuosto

Communications: Types and Implementations

Implementing Multiparty Session Types in Rust . 127
Nicolas Lagaillardie, Rumyana Neykova, and Nobuko Yoshida

GoPi: Compiling Linear and Static Channels in Go 137
Marco Giunti

SFJ: An Implementation of Semantic Featherweight Java 153
Artem Usov and Ornela Dardha

Service-Oriented Computing

Event-Based Customization of Multi-tenant SaaS Using Microservices. 171
Espen Tønnessen Nordli, Phu H. Nguyen, Franck Chauvel,
and Hui Song

Quality of Service Ranking by Quantifying Partial Compliance
of Requirements . 181

Agustín Eloy Martinez Suñé and Carlos Gustavo Lopez Pombo

Large-Scale Decentralised Systems

Time-Fluid Field-Based Coordination . 193
Danilo Pianini, Stefano Mariani, Mirko Viroli, and Franco Zambonelli

Resilient Distributed Collection Through Information Speed Thresholds. 211
Giorgio Audrito, Sergio Bergamini, Ferruccio Damiani,
and Mirko Viroli

Refined Mean Field Analysis: The Gossip Shuffle Protocol Revisited 230
Nicolas Gast, Diego Latella, and Mieke Massink

Smart Contracts

A True Concurrent Model of Smart Contracts Executions 243
Massimo Bartoletti, Letterio Galletta, and Maurizio Murgia

Renegotiation and Recursion in Bitcoin Contracts . 261
Massimo Bartoletti, Maurizio Murgia, and Roberto Zunino

Modelling

Architecture Modelling of Parametric Component-Based Systems 281
Maria Pittou and George Rahonis

Weighted PCL over Product Valuation Monoids . 301
Vagia Karyoti and Paulina Paraponiari

Operational Representation of Dependencies in Context-Dependent
Event Structures . 320

G. Michele Pinna

Verification and Analysis

Towards a Formally Verified EVM in Production Environment 341
Xiyue Zhang, Yi Li, and Meng Sun

xvi Contents

On Implementing Symbolic Controllability. 350
Adrian Francalanza and Jasmine Xuereb

Combining SLiVER with CADP to Analyze Multi-agent Systems 370
Luca Di Stefano, Frédéric Lang, and Wendelin Serwe

Formal Modeling and Analysis of Medical Systems 386
Mahsa Zarneshan, Fatemeh Ghassemi, and Marjan Sirjani

Author Index . 403

Contents xvii

Tutorials

CHOReVOLUTION: Hands-On
In-Service Training

for Choreography-Based Systems

Marco Autili , Amleto Di Salle , Claudio Pompilio(B) ,
and Massimo Tivoli

University of L’Aquila, L’Aquila, Italy
{marco.autili,amleto.disalle,claudio.pompilio,massimo.tivoli}@univaq.it

Abstract. CHOReVOLUTION is a platform for the tool-assisted devel-
opment and execution of scalable applications that leverage the dis-
tributed collaboration of services specified through service choreogra-
phies. It offers an Integrated Development and Runtime Environment
(IDRE) comprising a wizard-aided development environment, a system
monitoring console, and a back-end for managing the deployment and
execution of the system on the cloud. In this tutorial paper, we describe
the platform and demonstrate its step-by-step application to an indus-
trial use case in the domain of Smart Mobility & Tourism.
(Demo Video: youtu.be/ae2jI9SYsvg)
(GitHub: https://github.com/chorevolution/CHOReVOLUTION-

IDRE)

Keywords: Service choreographies · Automated synthesis ·
Distributed computing · Distributed coordination · Adaptation

1 Introduction

The Future Internet [15] is now a reality that reflects the changing scale of
the Internet. The expanding network infrastructure is supporting the today’s
trend toward the fruitful cooperation of different business domains through the
interorganizational composition of a virtually infinite number of software ser-
vices1. This vision is embodied by reuse-based service-oriented systems, in which
services play a central role as effective means to achieve interoperability among
different parties of a business process, and new systems can be built by reusing
and composing existing services.

Service choreographies are a form of decentralized composition that model
the external interaction of the participant services by specifying peer-to-peer
message exchanges from a global perspective. When third-party (possibly black-
box) services are to be composed, obtaining the distributed coordination logic

1 http://www.fiware4industry.com.

c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
S. Bliudze and L. Bocchi (Eds.): COORDINATION 2020, LNCS 12134, pp. 3–19, 2020.
https://doi.org/10.1007/978-3-030-50029-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50029-0_1&domain=pdf
http://orcid.org/0000-0001-5951-1567
http://orcid.org/0000-0002-0163-9784
http://orcid.org/0000-0002-7925-6943
http://orcid.org/0000-0001-9290-1997
http://youtu.be/ae2jI9SYsvg
https://github.com/chorevolution/CHOReVOLUTION-IDRE
https://github.com/chorevolution/CHOReVOLUTION-IDRE
http://www.fiware4industry.com
https://doi.org/10.1007/978-3-030-50029-0_1

4 M. Autili et al.

required to enforce the realizability of the specified choreography is non-trivial
and error prone. Automatic support is then needed [1,3].

The CHOReVOLUTION H2020 EU project2 develops a platform for the gen-
eration and execution of scalable distributed applications that leverage the dis-
tributed collaboration of services and things by means of service choreographies.
In particular, it realizes an Integrated Development and Runtime Environment
(IDRE) that comprises a wizard-aided development environment, a system mon-
itoring console, and a back-end for managing the deployment and execution of
the system on the cloud.

The CHOReVOLUTION IDRE makes the realization of choreography-based
smart applications easier by sparing developers from writing code that goes
beyond the realization of the internal business logic related to the provisioning
of the single system functionalities, as taken in isolation. That is, the distributed
coordination logic, which is needed to realize the global collaboration prescribed
by the choreography specification, is automatically synthesized by the IDRE,
without requiring any specific attention by developers for what concerns coor-
dination aspects. Furthermore, developers can also more easily reuse existing
consumers/providers services. These aspects have been appreciated by the indus-
trial partners in that the approach permits to develop distributed applications
according to their daily development practices.

The IDRE is open-source and free software, available under Apache license.
The binaries and the source code of version 2.2.0 can be downloaded at the
following URL https://github.com/chorevolution/CHOReVOLUTION-IDRE/
releases. Documentation3 is also available.

The paper is organized as follows. Section 2 briefly introduces the problem
solved by the CHOReVOLUTION IDRE together with a brief discussion on
related work. Section 3 describes the overall approach supported by CHOReV-
OLUTION, and Sect. 4 describes the actual development process supported by
IDRE. Section 5 gives an overview of the main components constituting the
IDRE. Section 6 presents the IDRE at work on an industrial use case in the
Smart Mobility and Tourism domain, and Sect. 7 concludes the paper.

2 Problem Statement and Related Works

Choreographies model peer-to-peer communication by defining a multiparty pro-
tocol that, when put in place by the cooperating participants, allows reaching
the overall choreography goal in a fully distributed way. In this sense, chore-
ographies differ significantly from other forms of service composition such as
orchestrations, where all participants (but the orchestrator) play the passive
role of receiving requests by the orchestrator only.

So far, choreographies have been solely used for design purposes, simply
because there was no technological support for enabling a smooth transition
from choreography design to execution. In the literature, many approaches have

2 http://www.chorevolution.eu.
3 https://github.com/chorevolution/CHOReVOLUTION-IDRE/wiki/User-Guide.

https://github.com/chorevolution/CHOReVOLUTION-IDRE/releases
https://github.com/chorevolution/CHOReVOLUTION-IDRE/releases
http://www.chorevolution.eu
https://github.com/chorevolution/CHOReVOLUTION-IDRE/wiki/User-Guide

A Tutorial on Automated Synthesis of Choreography-Based Systems 5

been proposed to deal with the foundational problems of checking choreography
realizability, analyzing repairability of the choreography specification, verifying
conformance, and enforcing realizability [4,8,10,11,14,18,19]. These approaches
provide researchers with formal means to address fundamental aspects of chore-
ographies. They are based on different interpretations of the choreography inter-
action semantics, concerning both the subset of considered choreography con-
structs, and the used formal notations.

The need for practical approaches to the realization of choreographies was
recognized in the OMG’s BPMN 2.04 standard, which introduces dedicated
Choreography Diagrams, a practical notation for specifying choreographies that,
following the pioneering BPMN process and collaboration diagrams, is amenable
to be automatically treated and transformed into actual code. BPMN2 chore-
ography diagrams focus on specifying the message exchanges among the par-
ticipants from a global point of view. A participant role models the expected
behavior (i.e., the expected interaction protocol) that a concrete service should
be able to perform to play the considered role.

When considering choreography-based systems, the following two problems
are usually taken into account: (i) realizability check – checks whether the chore-
ography can be realized by implementing each participant so as it conforms to
the played role; and (ii) conformance check – checks whether the set of services
satisfies the choreography specification. In the literature, many approaches have
been proposed to address these problems, e.g., [8,9,11,13,16,17,19–21].

However, to put choreographies into practice, we must consider realizing them
by reusing third-party services. This leads to a further problem: the automatic
realizability enforcement problem. It can be informally phrased as follows.

Problem statement: given a choreography specification and a set of existing
services, externally coordinate and adapt their interaction so to fulfill the
collaboration prescribed by the choreography specification.

By taking as input a BPMN2 Choreography Diagram, and by exploiting a
service inventory where existing services are published in order to be reused for
choreography realization purposes, a set of software artefacts are automatically
generated in order to implement the adaptation and distributed coordination
logic prescribed by the choreography specification. These artefacts adapt and
coordinate the interaction among the services – selected as suitable choreogra-
phy participants – in order to ensure that their distributed cooperation runs
by performing the flows specified in the BPMN2 Choreography Diagram only,
hence preventing both interface and interoperability mismatches (application-
and middleware-level adaptation) and the execution of possible flows violat-
ing the specification (correct coordination). Furthermore, when needed, specific
security policies can be enforced on the participants interaction so to make the
choreography secure. These policies concern correct inter-process authentication
and authorization. The generated artefacts are:

4 http://www.omg.org/spec/BPMN/2.0.2/.

http://www.omg.org/spec/BPMN/2.0.2/

6 M. Autili et al.

– Binding Components (BCs) serve to ensure middleware-level interoper-
ability among the possibly heterogenous services involved in the choreography.
For instance, a BC can be generated in order to make a SOAP web service
able to communicate with a REST service.

– When needed, Security Filters (SFs) secure the communication among
involved services by enforcing specified security policies.

– Abstract services defined in the choreography specification characterizes the
expected interface of the choreography participants. When using the IDRE to
implement the specified choreography participants, concrete services (possibly
black-box) are selected from a service inventory and reused. Thus, a concrete
service has to match the interface of the participants it has to realize. Here,
Adapters (As) come into place. That is, if needed, an Adapter is used to
adapt the interface of a concrete service in order to match the one of the
abstract service it implements.

– Coordination Delegates (CDs) supervise the interaction among the
involved participants in order to enforce the service coordination logic pre-
scribed by the choreography specification in a fully-distributed way. In other
words, CDs act as distributed controllers. That is, they ensure that the dis-
tributed interaction among the reused concrete services will run according to
the execution flows described by the choreography specification, hence pre-
venting distributed interactions that could violate the specification.

Fig. 1. BPMN2 choreography diagram example

For those readers new to choreographies, Fig. 1 shows a simple example of a
BPMN2 Choreography Diagram. Choreography diagrams define the way busi-
ness participants coordinate their interactions. The focus is on the exchange
of messages among the involved participants. A choreography diagram models
a distributed process specifying activity flows where each activity represents a
message exchange between two participants. Graphically, a choreography task
is denoted by a rounded-corner box. The two bands, one at the top and one at
the bottom, represent the participants involved in the interaction captured by
the task. A white band is used for the participant initiating the task that sends
the initiating message to the receiving participant in the dark band that can
optionally send back the return message.

The choreography in Fig. 1 involves four participants, A, B, C, and D, for the
execution of four sequential tasks, T1, T2, T3 and T4. Specifically, A sends the
message M1 to D, enabling it for the execution of T1. After that, D replies to A by
sending the message M2. At this point, A sends M3 to B that, after the execution of
T2, replies M4 to A and sends M5 to C. Only when M5 is received by C, it executes
T3, replies M6 to B and sends M7 to D. Finally, D executes T4 and the choreography
ends.

A Tutorial on Automated Synthesis of Choreography-Based Systems 7

By analyzing the choreography, we can distinguish three different types
of participants: consumer, provider, and prosumer (i.e., both consumer and
provider). For instance, considering a reuse-based development scenario in which
existing services are published in a suitable service inventory, the consumer par-
ticipant A might be played by an existing Client App; the provider participant D
by an existing Web Service, e.g., Google Maps; B and C might be two prosumers
that have to be developed from scratch in order to realize the choreography.

Fig. 2. Choreography architectural style (a sample instance of)

Figure 2 shows architecture of the system that realizes the choreography spec-
ified in Fig. 1, and that is automatically generated by the IDRE. The top-most
layer contains the services representing the business logic. In particular, a:A
denotes that the role of the consumer participant A is played by a, the Client
App in our example; d:D denotes that the role of the provider participant D is
played by d, an existing provider service to be reused, whereas, concerning the
participants B and C, we do not make use of the notation x:X simply to indi-
cate that they are not existing prosumer services and thus they can be either
implemented from scratch or partially reused (for the provider part). Then, the
second layer contains the BCs to cope with possibly needed middleware-level
protocol adaptation, e.g., REST versus SOAP adaptation. It is worth mention-
ing that SOAP is the default interaction paradigm for the underlying layers.
Finally, the last two layers include the Adapter and CD artefacts for adaptation
and coordination purposes, respectively. Note that Fig. 2 shows the case in which
the participants B and C are implemented from scratch, and hence BCs together
with As are not needed.

The generated artefacts are not always required; rather, it depends on the
specified choreography and the characteristics of the existing services (e.g.,
application-level interaction protocols, interface specifications, middleware-level
interaction paradigms) that have been selected to instantiate the roles of the
choreography participants. For instance, for this illustrative example, no secu-
rity policy is specified and, hence, no SF is generated.

3 CHOReVOLUTION Approach

This section describes the CHOReVOLUTION approach for realizing service
choreographies by possibly reusing existing services. The approach distinguishes
two main phases: “From idea to model” and “From model to runtime”.

8 M. Autili et al.

Fig. 3. From idea to model

From Idea to Model. As shown in Fig. 3, system modelers seat together and
cooperate to set what are the business goals of the system they have in mind.
For instance, a possible goal might be: assisting travelers from arrival, to staying,
to departure. For that purpose, system modelers identify the tasks and the par-
ticipants that will perform them so as to achieve the goal, e.g., reserving a taxi
from the local company, purchasing digital tickets at the train station, perform-
ing transactions through services based on near field communication in a shop
(step 1). Once business tasks have been identified, system modelers specify how
the involved participants must collaborate as admissible flows of the identified
tasks, hence producing an high-level specification of the system to be (steps 2 and
3). Note that the definition of the high-level specification is not covered by the
CHOReVOLUTION approach. Thus, system modelers can use the notation they
are more comfortable with. After the complete workflow among tasks has been
established, the high-level specification is concretized into a BPMN2 Choreogra-
phy Diagram (step 4), which, as introduced above, represents the choreography
model the IDRE requires to start with in order to realize the specified system.

From Model to Runtime. As shown in Fig. 4, starting from the choreography
diagram, the developer interacts with the IDRE in order to generate the code
of the needed Binding Components, Adapters and Coordination Delegates, that
are used to correctly implement the specified choreography. As already intro-
duced, a service inventory is also accounted for. It contains services published
by providers that, for instance, have identified business opportunities in the
domain of interest. Providers can be transportation companies, airport retailers,
local municipalities, etc., which can be reused in the resulting choreographed
system. By exploiting the Enactment Engine provided by the IDRE, the pro-

A Tutorial on Automated Synthesis of Choreography-Based Systems 9

Fig. 4. From model to runtime

duced software artefacts are deployed over the Cloud infrastructure, the resulting
choreography is enacted and executed.

4 CHOReVOLUTION Development Process

The CHOReVOLUTION development process consists of a set of core code gen-
eration phases (see Fig. 5) that takes as input a choreography specification and
automatically generates the set of additional software entities previously men-
tioned. When interposed among the services, these software entities “proxify”
the participant services to externally coordinate and adapt their business-level
interaction, as well as to bridge the gap of their middleware-level communication
paradigms and enforce security constraints.

Validation. This activity validates the correctness of the choreography speci-
fication against the constraints imposed by the BPMN2 standard specification.
The goal is to check practical constraints concerning both choreography realiz-
ability and its enforceability.

Choreography Projection. Taking as input the BPMN2 Choreography Dia-
gram and the related Messages XML schema, this activity automatically extracts
all the choreography participants and applies a model-to-model (M2M) trans-
formation to derive the related Participant Models, one for each participant. A
participant model is itself a BPMN2 Choreography Diagram. It contains only
the choreography flows that involve the considered participant. The generated
participant models will be then taken as input by the Coordination Delegate
(CD) Generation activity.

10 M. Autili et al.

Fig. 5. CHOReVOLUTION development process

Selection. This activity is about querying the Service Inventory in order to
select concrete services that can play the roles of the choreography participants.
Once the right services have been selected, the related description models will
be used to generate the Binding Components (BCs), Adapters (As), and Coor-
dination Delegates (CDs).

BC Generation. BCs are generated when the middleware-level interaction
paradigm of a selected service is different from SOAP5, which is used by the
CDs as the middleware-level interaction paradigm.

SF Generation. SFs are generated for those (selected) services having security
policies associated. SFs filter the services interactions according to the specified
security requirements.

Adapter Generation. When needed, adapters allow to bridge the gap between
the interfaces and interaction protocols of the selected services and the ones of
the (respective) participant roles they have to play, as obtained via projection.
In other words, adapters solve possible interoperability issues due to operation
names mismatches and I/O data mapping mismatches (see [6,22]).

CD Generation. CDs are in charge of coordinating the interactions among
the selected services so as to fulfill the global collaboration prescribed by the
choreography specification, in a fully distributed way (see [2,3,5,7]).

Choreography Architecture Generation. Considering the selected services
and the generated BCs, As, and CDs, an architectural description is automat-
ically generated, and a graphic representation of the choreographed system is
5 http://www.w3.org/TR/soap/.

http://www.w3.org/TR/soap/

A Tutorial on Automated Synthesis of Choreography-Based Systems 11

provided, where all the system’s architectural elements and their interdependen-
cies are represented.

Choreography Deployment Generation. The last activity of the develop-
ment process concerns the generation of the Choreography Deployment Descrip-
tion (called ChorSpec) out of the Choreography Architecture model. The deploy-
ment description will be used for deploying and enacting the realized choreog-
raphy.

5 CHOReVOLUTION IDRE

As depicted in Fig. 6, the CHOReVOLUTION IDRE is layered into: a front–end
layer (1), a back–end layer (2), and a cloud layer (3).

Fig. 6. CHOReVOLUTION IDRE overview

The Front-end layer (1)
consists of two components:
a development studio and a
web console.

The CHOReVOLU-
TION Studio is an Eclipse-
based IDE that allows for (i)
designing a BPMN2 Chore-
ography Diagrams; (ii) defin-
ing all the details required to
instrument the interaction
among the services involved
in the choreography (e.g.,
service signatures, identity
attributes and roles); (iii)
wizarding the code genera-
tion phases.

The CHOReVOLU-
TION Console is a web
application based on Apache
Syncope6. It allows to (i)
configure, administer, and
trigger actions on running
services and choreographies;
(ii) monitor the execution of
a choreography with respect
to relevant parameters, such
as execution time of choreography tasks, number of messages exchanged, end-
to-end deadlines, etc.

6 https://syncope.apache.org/.

https://syncope.apache.org/

12 M. Autili et al.

The Back-end layer (2) consists of the following components.
The Synthesis Processor is realized by a set of REST services that imple-

ment the model transformations to generate BCs, SFs, CDs, As, the architecture,
and the deployment descriptor, as described in previous sections.

The Enactment Engine (EE) is a REST API that extends the Apache
Brooklyn project7. It automatically deploys the choreography according to its
deployment description by using the Cloud Layer. The EE also interacts with the
Identity Manager to include into the deployment description the actual deploy-
ment and runtime details. Then, once a choreography is deployed and running,
the EE listens for command requests from the Identity Manager for runtime
choreography control. It is worth noticing that, although choreography moni-
toring and control is performed by centralized IDRE components (e.g., EE and
IdM), the realization and running of the choreography is fully distributed into
the various artefacts generated by the Synthesis Processor.

The Federation Server handles the runtime authentication and authoriza-
tion for services that uses different security mechanism at the protocol level by
storing various credentials on behalf of the caller.

The Identity Manager (IdM) is based on Apache Syncope project also.
It is responsible for managing users and services. In particular, the IdM is able
to query the services for supported application contexts and played roles; force
a specific application context for a certain service (put in “maintenance” or
disable/enable). The Service Inventory is a sub-component of the IdM. It acts
as a central repository for the description models of the services and things that
can be used during the synthesis process.
The Cloud layer (3) executes choreography instances on a cloud infrastructure
and adapts their execution based on the actual application context.

At execution time, for each choreography, in the CHOReVOLUTION cloud,
there are (i) a set of choreography instances at different execution states; (ii) a set
of virtual machines executing a custom-tailored mix of services and middleware
components to serve different parts of the choreography. Virtual Machines are
installed and configured with services according to selectable policies. Due to the
fact that EE is based on Apache Brooklyn, the CHOReVOLUTION IDRE can
integrate with different Infrastructure as a Service (IaaS) platforms (e.g., Open
Stack8, Amazon EC29).

6 Illustrative Example

This section describes the CHOReVOLUTION IDRE at work on a Smart Mobil-
ity and Tourism (SMT) use case. Figure 7 shows the specified BMPN2 choreog-
raphy diagram. The SMT choreography is used to realize a Collaborative Travel
Agent System (CTAS) through the cooperation of several content and service
providers, organizations and authorities. It involves a mobile application as an
7 https://brooklyn.apache.org/.
8 https://www.openstack.org/.
9 https://aws.amazon.com.

https://brooklyn.apache.org/
https://www.openstack.org/
https://aws.amazon.com

A Tutorial on Automated Synthesis of Choreography-Based Systems 13

“Electronic Touristic Guide” that exploits CTAS to provide both smart mobility
and touristic information.

Fig. 7. Smart mobility and tourism choreography

The choreography starts with the mobile application STApp detecting the
current position of the user, and asking for which type of point of interest to
visit and which type of transport mode to use. From this information, Tourist
Agent initiates two parallel flows in order to retrieve the information required
by the “Electronic Touristic Guide” (see the parallel branch with two outgoing
arrows after the choreography task Get Tourist Guide). In particular, in the left-
most branch of the choreography, Mobility Information Planner is in charge
of the retrieval of smart mobility information according to the selected transport
mode (see the conditional branching), while in the right-most branch, Tourism
Information Planner is responsible for gathering touristic information. After
that, the two parallel flows are joined together to produce the data needed for
the “Electronic Touristic Guide” (see the merging branch with two incoming
arrows in the bottom side of the choreography). Finally, the guide is shown to
the user by means of STApp.

In the remainder of this section, the application of the IDRE to the SMT
use case is discussed by distinguishing the actions performed by the two possi-
ble types of users: service providers and choreography developers. A user guide
to replicate the example can be found at https://github.com/chorevolution/
CHOReVOLUTION-IDRE/wiki/User-Guide.

Service Provider. A service provider uses the IDRE to publish the description
models of the services into the Service Inventory. The IDRE allows to deal with
heterogeneous services. It provides a uniform description for any service, given by
means of the Generic Interface Description Language (GIDL) [12] or the WSDL10

in case of SOAP services. GIDL supports interface description for any kind
of possible services (e.g., REST services). As introduced above, the published

10 https://www.w3.org/TR/wsdl20-primer/.

https://github.com/chorevolution/CHOReVOLUTION-IDRE/wiki/User-Guide
https://github.com/chorevolution/CHOReVOLUTION-IDRE/wiki/User-Guide
https://www.w3.org/TR/wsdl20-primer/

14 M. Autili et al.

services are selected in order to play the participants roles of a choreography.
Then, the next phases will use the services’ models to generate BCs, SFs, CDs,
and As.

Referring to the SMT example, the service provider has to create a Ser-
vice/Thing project inside the CHOReVOLUTION Studio by using a GIDL
description for the following services: Journey Planner, Parking, Traffic,
Public Transportation, Personal Weather Stations, Poi and News.

Choreography Developer. A developer uses the CHOReVOLUTION Stu-
dio to model a choreography and to realize it. The developer has to create a
CHOReVOLUTION Synthesis project. Then, she models the BPMN2 choreog-
raphy diagram by using the Eclipse BPMN2 choreography modeler11 embedded
in the Studio. Afterwards, the developer starts the synthesis process. The first
two activities of the process (i.e., Validation and Choreography Projection) do
not require any user interaction. The other activities are supported by suitable
wizards, as discussed in the following.

Fig. 8. BC generation activity

– Selection. For each participant, the developer selects the corresponding con-
crete service, as published into the Service Inventory. For instance, for the
SMT choreography, the above seven mentioned services.

– BC Generation. Figure 8 shows the wizard that is used to configure the BCs
generator for those selected services that do not rely on SOAP. Considering
the SMT example, all the selected services are REST services. Thus, in Fig. 8,
they are all listed in the wizard together with their GIDL description.

– SF Generation. None of the services for the SMT choreography defines secu-
rity policies. Therefore, the SF Generation step is skipped.

– Adapter Generation. We recall that some mismatches can arise due to pos-
sible heterogeneities between the interfaces of the abstract services in the
specification and the ones of the concrete services selected from the inventory
(e.g., operation names mismatches and I/O data mapping mismatches).

11 https://www.eclipse.org/bpmn2-modeler/.

https://www.eclipse.org/bpmn2-modeler/

A Tutorial on Automated Synthesis of Choreography-Based Systems 15

Fig. 9. Adapter generation activity

Fig. 10. Adapter mapping

Regarding the SMT choreography, all the selected services exhibit some
mismatches with respect to the corresponding choreography participants. The
Adapter Generation wizard asks the developer for specifing the needed adap-
tation logic. In particular, the wizard shows all the choreography tasks that
require adaptation, they are grouped by their initiating participant, see the left-
most column in Fig. 9. By clicking on the button labeled with “...” a new dialog
window is opened, as shown in Fig. 10.

At this stage, the developer can map task messages to service operations mes-
sages. The elements identified with the red shapes are mandatory to be mapped,
whereas those in orange are optional. In order to ease the mapping definition,
the wizards provides a “AUTO-MAP” functionality to automatically generate the
mappings by performing a syntactic binding to be refined afterwards.

–CD Generation. The last step of the wizard concerns the Coordination Dele-
gates generation (Fig. 11).

If needed, the developer can specify “causality” correlations between different
choreography tasks. Two tasks are correlated when they respectively represent
an asynchronous request (the first task) and the subsequent callback (the second

16 M. Autili et al.

task). This also means that the initiating (resp., receiving) participant of the first
task must be the receiving (resp., initiating) one of the second task. Consider-
ing the SMT choreography, the mobile application starts the choreography by
sending the user preferences (current position, type of transport mode to use,
etc.) and finally it gets back all the information needed to show an “Electronic
Touristic Guide” to the user. Thus, the developer has to specify a correlation
between the task Get Tourist Guide and the task Set Tourist Guide.

Fig. 11. CD generation activity

By clicking on the Finish button, all the software artefacts (BCs, SFs, ADs,
CDs) are generated. In addition, for each participant that acts as both an initiat-
ing participant in some task and a receiving participant in a different task (i.e.,
Tourist Agent, Mobility Information Planner, and Tourism Information Plan-
ner), the skeleton code of its business logic is generated to be then completed
by the developer. This is the construction logic for the messages sent by the
participant.

Figure 12 shows the code completed by the developer for building the message
getMobilityInfoResponse (see local variable result). The implemented logic
starts with the retrieval of the message tripsResponse sent by Journey Planner
within the task Get Trips Information (line 297). The content of this message
is used to set the trip information of getMobilityInfoResponse (line 298). Then
getMobilityInfoRequest sent by Tourist Agent is retrieved (lines 300–301).
Based on the transportation mean chosen by the user, which is contained in the
transportMode element of the message, different data can be used to construct
the response message getMobilityInfoResponse.

A Tutorial on Automated Synthesis of Choreography-Based Systems 17

Fig. 12. Prosumer business logic implementation

Choreography Architecture Generation - Finally, considering the selected services
and the generated BCs, SFs, ADs, and CDs, an architectural description is
automatically generated in both a textual and a graphical form.

7 Conclusion

This paper has presented the CHOReVOLUTION IDRE, an integrated plat-
form for developing, deploying, executing and monitoring choreography-based
distributed applications.

In this tutorial paper, an industrial use case, in the Smart Mobility and
Tourism domain, has been used to show the CHOReVOLUTION IDRE at work.
The industrial partners that provided us with the use case have experienced with
its modeling and automatic development and enactment, by using the IDRE.
While interacting with the IDRE software development facilities and wizards
discussed in this paper, the involved industrial partners experienced a signifi-
cant time decrease with respect to realizing the use case by exploiting their daily
development approaches. Their feedbacks on that indicate that the CHOReVO-
LUTION IDRE has a great potential in developing choreography-based applica-
tions and the use case got a full benefit from it.

More pilots and development cases will allow to consolidate the technical
maturity of the product and pose the basis for a commercial validation.

Acknowledgments. Supported by: (i) EU H2020 Programme grant no. 644178
(CHOReVOLUTION - Automated Synthesis of Dynamic and Secured Choreographies
for the Future Internet), (ii) the Ministry of Economy and Finance, Cipe resolution
n. 135/2012 (INCIPICT), and (iii) the SISMA national PRIN project (contract no.
201752ENYB).

18 M. Autili et al.

References

1. Autili, M., Inverardi, P., Tivoli, M.: Automated synthesis of service choreographies.
IEEE Softw. 32(1), 50–57 (2015). https://doi.org/10.1109/MS.2014.131

2. Autili, M., Inverardi, P., Perucci, A., Tivoli, M.: Synthesis of distributed and adapt-
able coordinators to enable choreography evolution. In: de Lemos, R., Garlan, D.,
Ghezzi, C., Giese, H. (eds.) Software Engineering for Self-Adaptive Systems III.
Assurances. LNCS, vol. 9640, pp. 282–306. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-74183-3 10

3. Autili, M., Inverardi, P., Tivoli, M.: Choreography realizability enforcement
through the automatic synthesis of distributed coordination delegates. Sci. Com-
put. Program. 160, 3–29 (2018). https://doi.org/10.1016/j.scico.2017.10.010

4. Autili, M., Di Ruscio, D., Di Salle, A., Inverardi, P., Tivoli, M.: A model-based
synthesis process for choreography realizability enforcement. In: Cortellessa, V.,
Varró, D. (eds.) FASE 2013. LNCS, vol. 7793, pp. 37–52. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-37057-1 4

5. Autili, M., Ruscio, D.D., Salle, A.D., Perucci, A.: Choreosynt: enforcing choreogra-
phy realizability in the future internet. In: Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, (FSE-22), Hong
Kong, China, 16–22 November 2014, pp. 723–726 (2014). https://doi.org/10.1145/
2635868.2661667

6. Autili, M., Salle, A.D., Gallo, F., Pompilio, C., Tivoli, M.: Model-driven adaptation
of service choreographies. In: Proceedings of the 33rd Annual ACM Symposium on
Applied Computing, SAC 2018, pp. 1441–1450 (2018). https://doi.org/10.1145/
3167132.3167287

7. Autili, M., Salle, A.D., Gallo, F., Pompilio, C., Tivoli, M.: On the model-driven syn-
thesis of evolvable service choreographies. In: 12th European Conference on Soft-
ware Architecture: Companion Proceedings, ECSA, pp. 20:1–20:6 (2018). https://
doi.org/10.1145/3241403.3241425

8. Basu, S., Bultan, T.: Choreography conformance via synchronizability. In: Pro-
ceedings of the 20th International Conference on World Wide Web, WWW 2011,
Hyderabad, India, March 28–April 1 2011, pp. 795–804 (2011). https://doi.org/10.
1145/1963405.1963516

9. Basu, S., Bultan, T.: Automatic verification of interactions in asynchronous sys-
tems with unbounded buffers. In: ACM/IEEE International Conference on Auto-
mated Software Engineering, ASE 2014, Vasteras, Sweden - 15–19 September 2014,
pp. 743–754 (2014). https://doi.org/10.1145/2642937.2643016

10. Basu, S., Bultan, T.: Automated choreography repair. In: Stevens, P., W ↪asowski,
A. (eds.) FASE 2016. LNCS, vol. 9633, pp. 13–30. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49665-7 2

11. Basu, S., Bultan, T., Ouederni, M.: Deciding choreography realizability. In: Pro-
ceedings of the 39th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 2012, Philadelphia, Pennsylvania, USA, 22–28 Jan-
uary, pp. 191–202 (2012). https://doi.org/10.1145/2103656.2103680

12. Bouloukakis, G.: Enabling emergent mobile systems in the IoT: from middleware-
layer communication interoperability to associated QoS analysis. Ph.D. thesis,
Inria, Paris, France (2017)

13. Calvanese, D., De Giacomo, G., Lenzerini, M., Mecella, M., Patrizi, F.: Automatic
service composition and synthesis: the Roman model. IEEE Data Eng. Bull. 31(3),
18–22 (2008)

https://doi.org/10.1109/MS.2014.131
https://doi.org/10.1007/978-3-319-74183-3_10
https://doi.org/10.1007/978-3-319-74183-3_10
https://doi.org/10.1016/j.scico.2017.10.010
https://doi.org/10.1007/978-3-642-37057-1_4
https://doi.org/10.1145/2635868.2661667
https://doi.org/10.1145/2635868.2661667
https://doi.org/10.1145/3167132.3167287
https://doi.org/10.1145/3167132.3167287
https://doi.org/10.1145/3241403.3241425
https://doi.org/10.1145/3241403.3241425
https://doi.org/10.1145/1963405.1963516
https://doi.org/10.1145/1963405.1963516
https://doi.org/10.1145/2642937.2643016
https://doi.org/10.1007/978-3-662-49665-7_2
https://doi.org/10.1145/2103656.2103680

A Tutorial on Automated Synthesis of Choreography-Based Systems 19

14. Carbone, M., Montesi, F.: Deadlock-freedom-by-design: multiparty asynchronous
global programming. In: Proceedings of 40th Symposium on Principles of Program-
ming Languages, pp. 263–274 (2013). https://doi.org/10.1145/2429069.2429101

15. European Commission: Digital agenda for Europe - Future Internet Research
and Experimentation (FIRE) initiative (2017). https://ec.europa.eu/digital-single-
market/en/future-internet-research-and-experimentation

16. Gössler, G., Salaün, G.: Realizability of choreographies for services interacting
asynchronously. In: Arbab, F., Ölveczky, P.C. (eds.) FACS 2011. LNCS, vol.
7253, pp. 151–167. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-35743-5 10

17. Güdemann, M., Poizat, P., Salaün, G., Ye, L.: Verchor: a framework for the design
and verification of choreographies. IEEE Trans. Serv. Comput. 9(4), 647–660
(2016). https://doi.org/10.1109/TSC.2015.2413401

18. Lanese, I., Montesi, F., Zavattaro, G.: The evolution of Jolie: from orchestrations
to adaptable choreographies. In: De Nicola, R., Hennicker, R. (eds.) Software, Ser-
vices, and Systems. LNCS, vol. 8950, pp. 506–521. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-15545-6 29

19. Poizat, P., Salaün, G.: Checking the realizability of BPMN 2.0 choreographies.
In: Proceedings of the ACM Symposium on Applied Computing, SAC 2012, Riva,
Trento, Italy, 26–30 March 2012, pp. 1927–1934 (2012). https://doi.org/10.1145/
2245276.2232095

20. Salaün, G.: Generation of service wrapper protocols from choreography specifi-
cations. In: Sixth IEEE International Conference on Software Engineering and
Formal Methods, SEFM 2008, Cape Town, South Africa, 10–14 November 2008,
pp. 313–322 (2008). https://doi.org/10.1109/SEFM.2008.42

21. Salaün, G., Bultan, T., Roohi, N.: Realizability of choreographies using process
algebra encodings. IEEE Trans. Serv. Comput. 5(3), 290–304 (2012). https://doi.
org/10.1007/978-3-642-00255-7 12

22. Di Salle, A., Gallo, F., Perucci, A.: Towards adapting choreography-based service
compositions through enterprise integration patterns. In: Bianculli, D., Calinescu,
R., Rumpe, B. (eds.) SEFM 2015. LNCS, vol. 9509, pp. 240–252. Springer, Heidel-
berg (2015). https://doi.org/10.1007/978-3-662-49224-6 20

https://doi.org/10.1145/2429069.2429101
https://ec.europa.eu/digital-single-market/en/future-internet-research-and-experimentation
https://ec.europa.eu/digital-single-market/en/future-internet-research-and-experimentation
https://doi.org/10.1007/978-3-642-35743-5_10
https://doi.org/10.1007/978-3-642-35743-5_10
https://doi.org/10.1109/TSC.2015.2413401
https://doi.org/10.1007/978-3-319-15545-6_29
https://doi.org/10.1007/978-3-319-15545-6_29
https://doi.org/10.1145/2245276.2232095
https://doi.org/10.1145/2245276.2232095
https://doi.org/10.1109/SEFM.2008.42
https://doi.org/10.1007/978-3-642-00255-7_12
https://doi.org/10.1007/978-3-642-00255-7_12
https://doi.org/10.1007/978-3-662-49224-6_20

Choreographic Development
of Message-Passing Applications

A Tutorial

Alex Coto1(B) , Roberto Guanciale2 , and Emilio Tuosto1

1 Gran Sasso Science Institute, L’Aquila, Italy
{alex.coto,emilio.tuosto}@gssi.it

2 KTH, Stockholm, Sweden
robertog@kth.se

Abstract. Choreographic development envisages distributed coordina-
tion as determined by interactions that allow peer components to harmo-
niously realise a given task. Unlike in orchestration-based coordination,
there is no special component directing the execution. Recently, chore-
ographic approaches have become popular in industrial contexts where
reliability and scalability are crucial factors. This tutorial reviews some
recent ideas to harness choreographic development of message-passing
software. The key features of the approach are showcased within Chor-
Gram, a toolchain which allows software architects to identify defects of
message-passing applications at early stages of development.

1 Introduction

Choreographic approaches advocate model-driven engineering (MDE) based on
two different views of distributed applications. A global view specifies the inter-
actions among the various distributed components (aka participants) while a
local view models each component of the system.

This tutorial illustrates how global and local views enable both top-down
and bottom-up engineering of message-passing applications. This interplay can
be described by the following diagram:

Global
view

Local
view

projection

compatibility

In the top-down engineering approach, designers provide the global view which
can then be “projected” to obtain local views. Developers can independently

Research partly supported by the EU H2020 RISE programme under the Marie
Sk�lodowska-Curie grant agreement No. 778233 and by the MIUR project PRIN
2017FTXR7S “IT-MaTTerS” (Methods and Tools for Trustworthy Smart Systems).

c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
S. Bliudze and L. Bocchi (Eds.): COORDINATION 2020, LNCS 12134, pp. 20–36, 2020.
https://doi.org/10.1007/978-3-030-50029-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50029-0_2&domain=pdf
http://orcid.org/0000-0003-1427-4099
http://orcid.org/0000-0002-8069-6495
http://orcid.org/0000-0002-7032-3281
https://doi.org/10.1007/978-3-030-50029-0_2

Choreographic Development of Message-Passing Applications 21

realise components and test their “compliance” with the corresponding local
view. In the bottom-up approach, one can extract the local view from existing
components, check for their compatibility, and generate a global view. Besides
documenting the composition and enhancing program comprehension, global
views yield an abstract model that can be used to evolve the system.

Choreographic development of message-passing applications offers, among
others, the following advantages:

– Global views are amenable to being expressed using visual languages under-
standable to lay stakeholders (akin to BPMN [11] or UML diagrams [21],
message-sequence charts [17], etc.).

– Local views can be algorithmically projected from global specifications. Also,
projected local views:

• come with correctness guarantees when global views satisfy sufficient con-
ditions (well-formedness) for communication soundness,

• are typically executable models that can be developed independently.
– The execution model of local views is close to several programming languages

and environments like Golang, Erlang, Elixir, Akka, or JMS.

Model-driven approaches provide some support, but require care: models
may be incomplete or have subtle issues that can lead to misbehaviour such as
deadlocks or message loss.

Structure of the Paper. Section 2 surveys the models used in the tutorial.
Section 3 shows how the top-down approach works in a simple scenario. Section 4
highlights some of the problems that a “bad design” may cause. Section 5 dis-
cusses how to analyse and fix design errors. Section 6 demonstrates the support
that choreographic development may provide when amendments are necessary.
Section 7 shows choreographic bottom-up engineering. Section 8 draws some con-
clusions.

2 Our Models

A global view can be represented in terms of a distributed workflow (e.g.,
BPMN [11] diagrams) or as specifications (similar to UML sequence diagrams or
message-sequence charts). We survey the formal models that we use to represent
global and local views of choreographies. This is an informal presentation; the
referred literature yields the technical details.

Hereafter, we assume two disjoint sets: participants and messages, respec-
tively ranged over by A, B, etc. and by m.

2.1 Partially Ordered Multisets

Pomsets [24] model concurrency in terms of partial orders of multisets of events.
Pomsets provide a general model of concurrency; for instance message-sequence

22 A. Coto et al.

charts are a particular class of pomsets. We use pomsets of communication events
as defined in [25] (which also provide a formal overview of pomsets).

Roughly speaking, we consider pomsets as directed-acyclic graphs where
nodes are labelled by communication actions and edges capture causality among
communications. A simple example illustrates this. The following diagram

r(1) =
AB!int AB?int

AB!bool AB?bool (1)

represents a pomset r(1) capturing the causality relations among the communi-
cation events between participants A and B; in (1), horizontal arrows establish
the causality relations induced by the interactions of participants, while verti-
cal arrows order the communications events of each participant (marked with
background colours for the sake of illustration). More precisely, A sends to B a
message of type int and one of type bool; the two leftmost nodes are indeed
the output events labelled with AB!int and AB!bool while the rightmost nodes
are the corresponding input events AB?int and AB?bool . Moreover, the edges
establish that the each output event precedes the corresponding input event (the
horizontal edges in (1)) and that the events involving integers precede those
involving booleans. Intuitively, r(1) models process A that first sends a int and
then a bool message to B, which on turn receives the messages in the sending
order.

To represent alternative executions we simply take collections of pomsets.
For instance, the set made of the following two pomsets

AB!int AB?int

AB!int AB?int

AB!bool AB?bool

AB!bool AB?bool (2)

represents a system where A sends B either two int or two bool messages.
We remark that events involving the same participants are not ordered unless

explicitly stated by the pomset. For instance, if we remove the rightmost vertical
edge imposing an order of the input events from the pomset (1) then the messages
sent by A can be received in any order by B.

2.2 A Workflow Model

The global view of a choreography can be suitably specified as workflows. We
use global choreographies [12,25] (g-choreographies for short), a structured ver-
sion of global graphs [8,20]. This model is appealing as it has a syntactic and
diagrammatic presentation amenable of a formal semantics in terms of pomsets.

Choreographic Development of Message-Passing Applications 23

source node

sink node

A→−− B : m

G

G′

G G′

|

|

fork gate

join gate

G G′

+

+

branch gate

merge gate

empty interaction sequential parallel branching

Fig. 1. A visual presentation of g-choreographies

The syntax of g-choreographies is given by the following grammar:

G ::= (o) empty
∣
∣ A−→B : m interaction
∣
∣ G;G sequential
∣
∣ G | G fork
∣
∣ sel {G + · · · + G} choice

Productions are given according to the
decreasing order of precedence of connectives.
Curly brackets can modify precedence. Itera-
tive g-choreographies are omitted since they
are not used in this tutorial.
The grammar of data types is left implicit; in
examples we will assume that m ranges over
basic types such as int, bool, string, etc.

The empty g-choreography (o) yields no interactions; trailing occurrences of (o)
may be omitted. An interaction A−→B : m represents the exchange of a message
of type m between A and B, provided that A �= B. We remark that data val-
ues are abstracted away: the payload m in A−→B : m is not a value and should
rather be thought of as (the name of) a data type. G-choreographies can be
composed sequentially or in parallel (G;G′ and G | G′). A (non-deterministic)
choice sel {G1 + · · · + Gn} specifies the possibility to continue according to
either of the g-choreographies G1, . . . ,Gn.

The syntax of g-choreographies can be visually depicted as in Fig. 1. A global
graph G is represented as a rooted graph with a single “enter” and “exit” nodes,
respectively called source (graphically ◦) and sink (graphically �). Special nodes,
dubbed gates, are used for branch and fork points (respectively depicted as +

and |). Each fork or branch gate in our visual notation will have a corresponding
join and merge “closing” gate.

The semantics of a global graph is a family of pomsets; each pomset in the
family partially orders the communication events on a particular “trace” of g-
choreography. For instance, the semantics [[(o)]] is simply the set {ε} containing
the empty pomset ε while for interactions we have

[[A−→B : m]] =
{

[AB!m AB?m]
}

24 A. Coto et al.

namely, the semantics of an interaction is a pomset where the output event
precedes the input event. The semantics of the other operations is basically
obtained by composing the semantics of sub g-choreographies. More precisely,

– for a choice we have [[G + G′]] = [[G]] ∪ [[G′]];
– the semantics of the parallel composition G | G′ is essentially built by taking

the set of the disjoint union of each pomset in [[G]] with each one in [[G′]];
– the semantics of the sequential composition [[G;G′]] is the set of the disjoint

union of each pomset in [[G]] with each one in [[G′]] and adding causal relations
from events in [[G]] to those in [[G′]] if they are executed by the same participant
(i.e., making the former precede the latter).

3 When All Goes Fine

We use a simple yet representative application to highlight a top-down choreo-
graphic approach to the design and prototyping of message-passing applications.

A server S allows client C to convert strings into a date format and vice versa
(we assume a basic data type dateFmt to represent formats). Both C and S use
a logger service L to record their requests and responses respectively; for this,
data types reqLog and resLog are used.

We first consider a couple of solutions that straightforwardly model the sce-
nario above. Take the global specification

s e l {
{C −→ L : logReq | C −→ S : dateFmt} ; . . d a t e 2 s t r i n g & l o g g i n g

S −→ L : l ogRes ;
S −→ C : s t r i n g

+
{C −→ L : logReq | C −→ S : s t r i n g } ; . . s t r i n g 2 d a t e & l o g g i n g

S −→ L : l ogRes ;
S −→ C : dateFmt

}
Despite its simplicity, it is not immediate that the g-choreography above is sound.
To illustrate this, consider that

– the first interaction between the client C and the server allows S to determine
which service is requested (convert a date to a string or vice versa),

– the logger behaves uniformly through the choice (since it first receives the log
message of a request and then the one of a response).

Notice that, although L is oblivious of the choice, its behaviour cannot be syn-
tactically factored out without violating some dependencies among communica-
tions.

A variant of the above g-choreography is

s e l {
{C −→ L : logReq | C −→ S : dateFmt} ;

s e l {

Choreographic Development of Message-Passing Applications 25

S −→ L : l ogRes
+ . . S may send l e s s i n f o rma t i v e l o g s
S −→ L : ba s i cLog

} ;
S −→ C : s t r i n g

+
{C −→ L : logReq | C −→ S : s t r i n g } ;

S −→ L : l ogRes ;
S −→ C : dateFmt

}
where, once a request to transform a date into a string is made, S may decide
to log the response either fully or send L less information with basicLog. Note
that C is now unaware of this choice between S and L while L can discern the
initial choice made by C.

Once the soundness of a g-choreography is attained, local behaviours can be
automatically projected either to local specifications or to executable code. For
instance, ChorGram can generate communicating finite-state machines [6] that
specify the behaviour of each component of the system as well as executable
Erlang code implementing the communication pattern of the g-choreography.
Notably, this approach is an instance of a correctness-by-design principle: the
projected behaviour is communication sound in the sense that it does not exhibit
misbehaviour such as deadlocks or loss of messages (provided that the commu-
nication infrastructure does not fail).

4 Designing Problems

Models featuring distributed workflows (such as BPMN or the g-choreographies
adopted here) may introduce inconsistency related to distributed choices. In
scenario-based models, the designer may overlook cases that may lead to run-
time errors. This is illustrated with the following examples.

Consider the protocol specified by the following two pomsets

AB!tx start AB?tx start

BA?tx abort BA!tx abort

AB!tx start AB?tx start

BA?string BA!string

BA?tx commit BA!tx commit

BC!int BC?int (3)

Participant A starts a transaction with B by sending message tx start and then
engages in a distributed choice where either B aborts the transaction immedi-
ately, or it send a string with A and commits the transaction before sending an
integer with C. This specification leaves C uncertain about whether the integer
from B is going to be sent or not. Hence C could locally decide to

26 A. Coto et al.

AC!l1

AB!int

AC!r1

AB!int

BC!l2

AB?int

BC!l3

BC!r2

AB?int

BC!r3

BC?l2

AC?l1

BC?l3

BC?r2

AC?r1

BC?r3

Threads of B Threads of CThreads of A

Fig. 2. Inter-participant closure

(a) terminate immediately and not receive the integer from B or
(b) to wait for the integer, even if B opted to abort the transaction.

Relying on the pomset semantics of g-choreographies, in [25] we defined ter-
mination awareness in order to avoid reaching run-time configurations where
non-terminating participants unnecessarily lock resources once the coordination
is completed. This condition requires that in no accepting configuration the par-
ticipants of interest have input transitions. More precisely, a set of pomsets R
violates the terminating condition for participant A if there are two pomsets
r and r′ in R such that an execution trace of A in r is a prefix of an execu-
tion trace of A in r′ and the difference between the two traces starts with an
input. Basically, the designer can specify which participants should be aware of
the termination of the choreography. Note that, depending on the application
requirements, termination awareness may be important for B, but not for C; in
the example above for instance, the termination of C is not crucial if it is not
locking resources or if it is immaterial that such resources are left locked.

In [25], besides the terminating condition above, we identified two other
pomset-based conditions dubbed CC2-POM and CC3-POM to check realisabil-
ity of global specifications. We briefly describe those closure conditions.

Intuitively, CC2-POM takes into consideration the executions emerging from
“confusion” caused by different threads in a pomset (such as the one in (4)). For a
given set of pomsets R, the satisfaction of CC2-POM ensures that if an execution
trace t cannot be distinguished by any of the participants from a valid trace of
R then t is a trace of R. To check CC2-POM, one needs to compute a closure
set of pomsets out of R; the closure set yields the pomsets characterising the
execution traces due to inter-participants’ concurrency. This closure generates
all “acceptable” matches between output and input events entailed by a pomset
capturing the behaviour of a participant. We borrow and adapt Fig. 2 from [25]
to give an intuition of this construction. The participants A, B, and C there
have each two threads, the “left” and the “right” thread; those are identified
by sorts li and ri which are meta-variables on sorts immaterial here (with the
only assumption that li �= ri for each i ∈ {1, 2, 3}). The bottom-most solid edges

Choreographic Development of Message-Passing Applications 27

from the threads of A to those of B represent the causality relations specified
in the original design. The closure of the original design however yields also the
execution with the causality relations given by the bottom-most dashed edges.

The condition CC3-POM accounts for implied executions that may break
distributed choices. It is similar to CC2-POM barred that the closure set is
built by checking all the prefixes of the traces of the pomsets.

We remark that our framework focuses on the identification of communica-
tion problems that are data-oblivious. For this reason the implementations of
some specifications may exhibit unintended interactions even if they satisfy the
verification conditions. Consider the following example:

AB!int AB?int

AB!bool AB?bool

AB!string AB?string

AB!bool AB?bool (4)

which specifies two concurrent threads1 whereby A (threads with green back-
ground) and B (threads with orange background) exchange two boolean values
after exchanging an integer and a string. In an asynchronous setting, the boolean
values may “swap”, namely the one sent by the thread which sent the integer
is received by the thread which received the string, and vice-versa. Notice that
this does not yield communication problems, but may violate the dependencies
among data induced by the causal dependencies specified in the pomset.

To sum up, we address termination awareness, thread confusion (CC2), and
undetermined choices (CC3). The violation of termination awareness could lead
to participants oblivious of the termination of the protocol, the violation of CC2
could make messages to be consumed by a unintended threads of a participant,
CC3 could lead to participants to follow one branch of a choice while other
participants are executing another branch.

5 When Something Goes Wrong

We now consider some examples where development is not as straightforward as
in the examples of Sect. 3. More precisely, we consider scenarios where the closure
properties CC2-POM or CC3-POM may be violated, or termination awareness
does not hold for some participants. For the analysis we rely on PomCho, part of
the ChorGram tool chain that supports choreographic development through the
models discussed in Sect. 2.

Let us start with the following (erroneous) g-choreography giving another
variant of the protocol in Sect. 3 where a less informative log message is sent
when C requests to transform a date in a string and a more informative one
otherwise:

1 Note the bracketing here: enclosing the two groups of events in different brackets
would correspond to specifying a choice between the pomsets.

28 A. Coto et al.

s e l {
{C −→ L : logReq | C −→ S : dateFmt} ;

L −→ S : ba s i cLog ; . . oops
S −→ C : s t r i n g

+
{C −→ L : logReq | C −→ S : s t r i n g } ;

S −→ L : l ogRes ;
S −→ C : dateFmt

}
The attentive reader may have noticed a problem: the exchange of basicLog

should go the other way around. This intentional mistake is instrumental to illus-
trate the analysis of the g-choreography above, summarised by the screenshots in
Fig. 3. Before doing so, we briefly digress about the GUI. After loading, ChorGram
computes the g-choreography to analyse as shown in the left-most screenshot in
Fig. 3. The other screenshot presents a counterexample of the violation of ter-
mination awareness once such analysis is executed. Note that the hierarchical
menu in the left pane is dynamically expanded to include clickable references to
the results of the operations. The right-hand side pane of the second screenshot,
represents the pomset of the first branch of the previous g-choreography. This
pomset is a counterexample showing the violation of CC3-POM (as shown on
the hierarchical menu). The events performed by each participant are grouped
with a box to make the pomset clearer to the user.

Let us return to our analysis. The screenshots in Fig. 3 show that while
the closure properties are satisfied, termination awareness is violated for L. By
inspecting the pomset in the top-right screenshot we can notice that the logging
information in the two branches wrongly goes from L to S (instead of going
the other way around). This is immediately evident from the projection on L
reported in the bottom-most screenshot of Fig. 3; notice that state 1 is a mixed-
choice state, namely that it has both input and output outgoing transitions.

Swapping the sender and the receiver in the introduced interaction solves all
the issues (which results in ChorGram displaying empty lists of counterexamples).
One could argue that this is such a blunt glitch that one could spot it immediately
and without the use of tools. While this might be true for simple examples like
this one, these mishaps might not be as obvious in larger designs.

The next variant of our protocol exhibits a subtle problem. Consider

s e l {
{C −→ L : logReq | C −→ S : dateFmt} ;

S −→ L : ba s i cLog ;
S −→ L : logReqExt ;
S −→ C : s t r i n g

+
{C −→ L : logReq | C −→ S : s t r i n g } ;

S −→ L : logReqExt ;
S −→ L : ba s i cLog ;
S −→ C : dateFmt

}

Choreographic Development of Message-Passing Applications 29

The left-hand pane allows the user to select the model onto which to apply the
next operation; results are displayed in the pane on the right-hand side.

A possible way of representing local
views is by communicating finite-state
machines [6] which basically are finite-
state automata where transitions are la-
belled by communication actions. A pro-
jection function of ChorGram can gen-
erate CFSMs of participants from a g-
choreography as illustrated for L here.

Fig. 3. Violation of termination awareness and projection on L

The output of logReqExt precedes the one of
basicLog (implying that S opted for the left-most
branch of the g-choreography). However, the cor-
responding input events of L are in the opposite
order (making L follow the right-most branch).

Fig. 4. Problems with non-FIFO asynchrony

The analysis must take into account the semantics of communication. In
particular, asynchronous communications require care. In fact, if the mes-
sages are buffered and accessed according to a FIFO discipline, in the above
g-choreography the message basicLog is before (resp. after) the message

30 A. Coto et al.

logResExt in the buffer from S to L when the first (resp. second) branch is
chosen. However, when the order of sent messages is not guaranteed problems
may arise, as highlighted by the screenshots of PomCho in Fig. 4. Although the
screenshot on the left suggests that the interactions happen in the order specified
in the g-choreography, L may “misunderstand” the choice taken by C. In fact,
suppose that C selects the left branch and that the message basicLog may reach
L before the message logResExt and, consequently, L may behave according to
the branch on the right. Both closure properties are violated because the order
of messages no longer allows L to distinguish which branch S opted for. The
pomset depicted in the screenshot on the right shows possible executions where
the order of outputs is not preserved.

The above problem can be fixed by letting L acknowledge the first message
from the server S, namely

s e l {
{C −→ L : logReq | C −→ S : dateFmt} ;

S −→ L : ba s i cLog ;
L −→ S : ack ; . . L acknowledges S
S −→ L : logReqExt ;
S −→ C : s t r i n g

+
{C −→ L : logReq | C −→ S : s t r i n g } ;

S −→ L : logReqExt ;
L −→ S : ack ; . . L acknowledges S
S −→ L : ba s i cLog ;
S −→ C : dateFmt

}
This variant enjoys all our closure conditions.

6 Suggesting Amendments

This section illustrates an experimental feature recently added to ChorGram.
As seen earlier, the top-down approach of choreographic design requires g-
choreographies to enjoy well-formedness properties. For instance, the closure
properties surveyed in Sect. 4 ensure the realisability of g-choreographies by com-
ponents coordinating through asynchronous message-passing.

Attaining well-formedness requires some ingenuity. In fact, designers can eas-
ily overlook problems and introduce defects leading to communication problems
such as those in the scenarios of Sect. 5. When this happens, as seen in the pre-
vious examples, ChorGram identifies counterexamples that highlight defects. It
may therefore be helpful to have advice on how to possibly fix problems.

Possible amendments are suggested by ChorGram as a g-choreography, deter-
mined out of the initial one and the counterexample identified in the analysis.
We demonstrate this by considering a further variation of the application used in
Sect. 5. The following g-choreography models a protocol where a less informative
log message is sent when C requests to transform a date into a string:

Choreographic Development of Message-Passing Applications 31

Fig. 5. An unexpected execution

s e l {
{C −→ L : logReq | C −→ S : dateFmt} ;

L −→ S : bas icFmt ;
S −→ L : ba s i cLog ;
S −→ C : s t r i n g

+
{C −→ L : logReq | C −→ S : s t r i n g } ;

L −→ S : logFmt ;
S −→ L : l ogRes ;
S −→ C : dateFmt

}
Notice that L informs S about the format of the log. The analysis in Fig. 5
shows that, while CC2-POM is satisfied (since no counterexample exists), CC3-
POM is however violated due to an unsound choice. In fact, the screenshot
on the right of Fig. 5 represents the pomset missing from the semantics of the
global model. In this counterexample, S gets stuck after receiving the two parallel
inputs from C and L. Here, the problem arises because L cannot identify which
message should be sent to S, since L receives the same message in both branches.
Accordingly, L is not informed about the branch selected by C. This problem is
evident in the screenshots of Fig. 6, which report the projection of L, the g-
choreography corresponding to the counterexample, and a model consisting of a
suggested amendment. This model maps the counterexample back to the initial
g-choreography. This is attained by computing the “minimal” transformation
required on the original design to match the counterexample. More precisely,
ChorGram applies an edit-distance algorithm to the (part of the) original design
to be changed so that it corresponds to the counterexample. The algorithm can
be tuned up by setting a cost to edit operations.

The edit operations are

32 A. Coto et al.

Fig. 6. A possible amendment (Color figure online)

– node insertion/deletion
– edge insertion/deletion
– modifications to sender/receivers/payload of interactions.

Pictorially, nodes and edges in green represent unchanged elements, those in blue
represent additions to make, and those in dashed gray represent elements to be
deleted. For instance, the amendment in Fig. 6 suggests to preserve the right-
most branch and change the left-most branch by removing the nodes and edges
in gray, adding the blue edges, and modifying the payload of the communication
from C to S (from string to dateFmt).

Note that the suggested amendments are computed without “interpreting”
the g-choreography and therefore they may not be meaningful. The designer still
needs to vet and approve them. As said, this is an experimental feature added
to ChorGram, and we plan to investigate how to improve it. For instance, an
interesting development could be to identify how to assign costs depending on
the applications at hand. In fact, in some cases it may not be reasonable to apply
some of the operations above. This can be improved upon by properly assigning
costs (undesired operations should have a higher cost than admissible ones).

7 Going Bottom-Up

We now consider how choreographies can support bottom-up engineering. There
are two key motivations for which this support is appealing. Firstly, the vali-
dation of composition of distributed components. For instance, service-oriented
architectures such as micro-services envisage software development as the com-
position of publicly available services. One would like to validate that such com-
positions communicate as expected. Secondly, software evolution possibly com-
promises the communication soundness of an application.

In the rest of the section, such a scenario is used to show the kind of support
offered by choreographies in bottom-up engineering. To this purpose we look
at a possible evolution of the last g-choreography in Sect. 5: Suppose that the
developers want to deploy a new version of the logger service L that requires

Choreographic Development of Message-Passing Applications 33

Fig. 7. The system with the evolved L

specific formats for the log information sent by the server S. Therefore, developers
implement a new version of L, say Lfmt, that behaves according to the CFSM in
Fig. 7. (Note that the CFSMs of C and S do not change.) After the request of the
client, the new logger informs S of the format (transitions q1→q2 and q1→q3 of
Lfmt). The server reacts accordingly with transitions from its initial state.

It is worth remarking that what usually happens is that the code implement-
ing L evolves without modifying the corresponding models (if any). After a new
version of a component is released, one could extract2 a model like the CFSM
on the left to describe its behaviour. This is what we assume in this scenario.

Figure 7 yields a problematic system: The bottom-up analysis of ChorGram
(done before deploying Lfmt) flags the problem with the message:

Branching representability: [Bp "C" "q4", Bp "C" "q5", Bp "C" "q6",

Bp "L" "q1",Bp "L" "q2",Bp "L" "q3",Bp "L" "q4",

Bp "S" "q0",Bp "S" "q1",Bp "S" "q3",Bp "S" "q4",

Bp "S" "q5",Bp "S" "q6",Bp "S" "q7"]

which we now decipher. This message basically reports the CFSMs whose tran-
sitions are not reflected in their parallel composition due to some branching.

For instance, in our model, Bp"S" "q0" states that some transitions expected
from state q0 of the server S cannot be fired in a configuration of the systems
where the local state of S is q0; in fact, in configuration q4 of the system, the
local machine of S is in state q0, which has the transition S L!basicLog (not
reflected in the system).

2 This operation can be done either by inferring the model from the code (if possible)
or by learning it by observing the behaviour of the new version of the component.

34 A. Coto et al.

Fig. 8. G-choreography and transition system determined by bottom-up analysis

Fig. 9. An amended S

This analysis can be conducted in a more user-friendly way by inspecting the
models in Fig. 8, also provided by ChorGram.

The g-choreography contains the “sound” interactions only. In fact, the tran-
sition system in Fig. 8 highlights two configurations, q4 and q5, that violate the
branching property. This is due to the fact that S is not aware of the choice
taken in the local state q1 of the CFSM Lfmt in Fig. 7. This problem can be
solved by modifying S, as illustrated in the CFSM of Fig. 9.

8 Concluding Remarks

Tool support for analyzing realisability of global specifications is necessary to
enable model-driven development of choreographies. Indeed, as observed in [1], a
source of problems is that there could be some specifications that are impossible

Choreographic Development of Message-Passing Applications 35

to implement using the local views in a given communication model. Several
works addressed the realisability of scenario-based global models, like message-
sequence charts (MSCs) [2,9,14–16,22,23].

A mechanism to statically detect realisability in MSCs is proposed in [4].
The notions of non-local choices and of termination considered in [4] are less
permissive than our verification conditions since intra-participant concurrency
is not allowed and termination awareness is not enforced. Closure conditions for
realisability have been initially proposed in [1] to study realisability of MSC and
have been extended in [13] to handle sets of pomsets (the latter were reviewed in
Sect. 2). This extension yields more general results and more efficient analyses,
since it enables multi-threaded participants and does not require to explicitly
compute all possible executions (which can be large due to the number of possible
interleaving of concurrent threads) of the global model.

In the context of choreographies, the integration of ChorGram features in
the CHOReVOLUTION platform [3] is of particular interest to us. In fact,
CHOReVOLUTION is a rather sophisticated platform for the top-down devel-
opment featuring many important aspects complementary to the functionalities
of ChorGram (e.g., low-level binding of components, or security aspects).

Other possible integrations are with tools based on behavioural types [19].
The tools proposed in this context (see [10] for a survey) are typically based on
theories defining constraints aimed to guarantee the soundness of the projections
of global specifications (as e.g., in [5,7,18]). A peculiarity of ChorGram is that it
can provide some feedback to support model-driven engineering of applications.
This is not usually the case in other contexts based on behavioural types where,
for instance, behavioural type checkers do not provide feedback.

Acknowledgments. We warmly thank Simon Bliudze for his helpful comments which
allowed us to improve the presentation of this paper.

References

1. Alur, R., Etessami, K., Yannakakis, M.: Inference of message sequence charts. IEEE
Trans. Softw. Eng. 29(7), 623–633 (2003)

2. Alur, R., Holzmann, G.J., Peled, D.: An analyzer for message sequence charts. In:
Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS, vol. 1055, pp. 35–48. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-61042-1 37

3. Autili, M., Di Salle, A., Gallo, F., Pompilio, C., Tivoli, M.: CHOReVOLUTION:
automating the realization of highly–collaborative distributed applications. In: Riis
Nielson, H., Tuosto, E. (eds.) COORDINATION 2019. LNCS, vol. 11533, pp. 92–
108. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22397-7 6

4. Ben-Abdallah, H., Leue, S.: Syntactic detection of process divergence and non-
local choice in message sequence charts. In: Brinksma, E. (ed.) TACAS 1997.
LNCS, vol. 1217, pp. 259–274. Springer, Heidelberg (1997). https://doi.org/10.
1007/BFb0035393

5. Bocchi, L., Melgratti, H., Tuosto, E.: Resolving non-determinism in choreographies.
In: Shao, Z. (ed.) ESOP 2014. LNCS, vol. 8410, pp. 493–512. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-54833-8 26

https://doi.org/10.1007/3-540-61042-1_37
https://doi.org/10.1007/978-3-030-22397-7_6
https://doi.org/10.1007/BFb0035393
https://doi.org/10.1007/BFb0035393
https://doi.org/10.1007/978-3-642-54833-8_26

36 A. Coto et al.

6. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2),
323–342 (1983)

7. Carbone, M., Honda, K., Yoshida, N.: A calculus of global interaction based on
session types. Electron. Notes Theor. Comput. Sci. 171(3), 127–151 (2007)

8. Deniélou, P.-M., Yoshida, N.: Multiparty session types meet communicating
automata. In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp. 194–213. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-28869-2 10

9. Gaudin, E., Brunel, E.: Property verification with MSC. In: Khendek, F., Toeroe,
M., Gherbi, A., Reed, R. (eds.) SDL 2013. LNCS, vol. 7916, pp. 19–35. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38911-5 2

10. Gay, S., Ravara, A. (eds.): Behavioural Types: From Theory to Tools. Automation,
Control and Robotics. River, Gistrup (2009)

11. Object Management Group: Business Process Model and Notation (2011). http://
www.bpmn.org

12. Guanciale, R., Tuosto, E.: An abstract semantics of the global view of choreogra-
phies. In: Interaction and Concurrency Experience, pp. 67–82 (2016)

13. Guanciale, R., Tuosto, E.: Realisability of pomsets. J. Log. Algebr. Methods Pro-
gram. 108, 69–89 (2019)

14. Gunter, E.L., Muscholl, A., Peled, D.A.: Compositional message sequence charts.
In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 496–511.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45319-9 34

15. Gunter, E.L., Muscholl, A., Peled, D.: Compositional message sequence charts.
Int. J. Softw. Tools Technol. Transfer 5(1), 78–89 (2002). https://doi.org/10.1007/
s10009-002-0085-2

16. Harel, D., Marelly, R.: Come, Let’s Play: Scenario-Based Programming Using LSCs
and the Play-Engine. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-
642-19029-2

17. Harel, D., Thiagarajan, P.: Message sequence charts. In: Lavagno, L., Martin, G.,
Selic, B. (eds.) UML for Real, pp. 77–105. Springer, Boston (2003). https://doi.
org/10.1007/0-306-48738-1 4

18. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. J.
ACM 63(1), 9:1–9:67 (2016). Extended version of a paper presented at POPL08

19. Hüttel, H., et al.: Foundations of session types and behavioural contracts. ACM
Comput. Surv. 49(1), 3:1–3:36 (2016)

20. Lange, J., Tuosto, E., Yoshida, N.: From communicating machines to graphical
choreographies. In: SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pp. 221–232 (2015)

21. Micskei, Z., Waeselynck, H.: UML 2.0 sequence diagrams’ semantics. Technical
report, LAAS (2008)

22. Formal description techniques (FDT) - Message Sequence Chart (MSC). Recom-
mendation ITU-T Z.120 (2011). http://www.itu.int/rec/T-REC-Z.120-201102-I/
en

23. Muscholl, A., Peled, D.: Deciding properties of message sequence charts. In: Leue,
S., Systä, T.J. (eds.) Scenarios: Models, Transformations and Tools. LNCS, vol.
3466, pp. 43–65. Springer, Heidelberg (2005). https://doi.org/10.1007/11495628 3

24. Pratt, V.: Modeling concurrency with partial orders. Int. J. Parallel Prog. 15(1),
33–71 (1986)

25. Tuosto, E., Guanciale, R.: Semantics of global view of choreographies. J. Log.
Algebr. Methods Program. 95, 17–40 (2018)

https://doi.org/10.1007/978-3-642-28869-2_10
https://doi.org/10.1007/978-3-642-38911-5_2
http://www.bpmn.org
http://www.bpmn.org
https://doi.org/10.1007/3-540-45319-9_34
https://doi.org/10.1007/s10009-002-0085-2
https://doi.org/10.1007/s10009-002-0085-2
https://doi.org/10.1007/978-3-642-19029-2
https://doi.org/10.1007/978-3-642-19029-2
https://doi.org/10.1007/0-306-48738-1_4
https://doi.org/10.1007/0-306-48738-1_4
http://www.itu.int/rec/T-REC-Z.120-201102-I/en
http://www.itu.int/rec/T-REC-Z.120-201102-I/en
https://doi.org/10.1007/11495628_3

Coordination Languages

ARx: Reactive Programming
for Synchronous Connectors

José Proença1(B) and Guillermina Cledou2(B)

1 CISTER, ISEP, Porto, Portugal
pro@isep.ipp.pt

2 HASLab/INESC TEC, Universidade do Minho, Braga, Portugal
mgc@inesctec.pt

Abstract. Reactive programming (RP) languages and Synchronous
Coordination (SC) languages share the goal of orchestrating the execu-
tion of computational tasks, by imposing dependencies on their execution
order and controlling how they share data. RP is often implemented as
libraries for existing programming languages, lifting operations over val-
ues to operations over streams of values, and providing efficient solutions
to manage how updates to such streams trigger reactions, i.e., the execu-
tion of dependent tasks. SC is often implemented as a standalone formal-
ism to specify existing component-based architectures, used to analyse,
verify, transform, or generate code. These two approaches target differ-
ent audiences, and it is non-trivial to combine the programming style of
RP with the expressive power of synchronous languages.

This paper proposes a lightweight programming language to describe
component-based Architectures for Reactive systems, dubbed ARx,
which blends concepts from RP and SC, mainly inspired to the Reo
coordination language and its composition operation, and with tailored
constructs for reactive programs such as the ones found in ReScala. ARx
is enriched with a type system and with algebraic data types, and has
a reactive semantics inspired in RP. We provide typical examples from
both the RP and SC literature, illustrate how these can be captured by
the proposed language, and describe a web-based prototype tool to edit,
parse, and type check programs, and to animate their semantics.

1 Introduction

This paper combines ideas from reactive programming languages and from syn-
chronous coordination languages into a new reactive language that both enriches
the expressiveness of typical reactive programs and facilitates the usage of typical
synchronous coordination languages.

Reactive programming languages, such as Yampa [14], ReScala [11], and
Angular1, address how to lift traditional functions from concrete data values to

1 https://angular.io/.
c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
S. Bliudze and L. Bocchi (Eds.): COORDINATION 2020, LNCS 12134, pp. 39–56, 2020.
https://doi.org/10.1007/978-3-030-50029-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50029-0_3&domain=pdf
https://angular.io/
https://doi.org/10.1007/978-3-030-50029-0_3

40 J. Proença and G. Cledou

streams of values. These face challenges such as triggering reactions when these
streams are updated, while avoiding glitches in a concurrent setting (temporarily
inconsistent results), distinguishing between continuous streams (always avail-
able) and discrete streams (publishing values at specific points in time), and
avoiding the callback hell [15] resulting from abusing the observable patterns
that masks interactions that are not explicit in the software architecture.

Synchronous coordination languages, such as Reo [2], Signal Flow
Graphs [7], or Linda [9], address how to impose constraints over the interac-
tions between software objects or components, restricting the order in which the
interactions can occur, and where data should flow to. These face challenges
such as how to balance the expressivity of the language—capturing, e.g., real-
time [16], data predicates [18], and probabilities [3]—with the development of
tools to implement, simulate, or verify these programs.

Both programs in Reactive Programming (RP) and Synchronous Coordi-
nation (SC) provide an architecture to reason about streams: how to receive
incoming streams and produce new outgoing ones. They provide mechanisms
to: (1) calculate values from continuous or discrete data streams, and (2) con-
straint the scheduling of parallel tasks. RP is typically more pragmatic, focused
on extending existing languages with constructs that manage operations over
streams, while making the programmer less aware of the stream concept. SC is
typically more fundamental, focused on providing a declarative software layer
that does not address data computation, but describes instead constraints over
interactions that can be formally analysed and used to generate code.

This paper provides a blend of both worlds, by proposing a language—ARx—
with a syntactic structure based on reactive programs, and with a semantics that
captures the synchronisation aspects of synchronous coordination programs. This
paper starts by providing a better context overview of reactive and synchronous
programs (Sect. 2). It then introduces the toolset supporting ARx in Sect. 3,
available both to use as a web-service2 or to download and run locally. The rest
of the paper formalises the ARx language, without providing correctness results
and focusing on the tools. It presents the core features of ARx in Sect. 4, intro-
ducing an intermediate language to give semantics to ARx of so-called stream-
builders and providing a compositional encoding of ARx into stream-builders.
Two extensions to ARx are then presented. The first consists of algebraic data
types, in Sect. 5, making the data values more concrete. The second, in Sect. 6,
enriches the syntax of ARx and of stream-builders, and introduces new rules to
the operational semantics, to support the notion of reactivity.

2 Overview over Reactive and Synchronous Programs

This section selects a few representative examples of reactive programs and of
synchronous coordinators. It uses a graphical notation to describe these pro-
grams, partially borrowed from Drechsler et al. [11], and explains the core chal-
lenges addressed by both approaches.
2 http://arcatools.org/#arx.

http://arcatools.org/#arx

ARx: Reactive Programming for Synchronous Connectors 41

Fig. 1. Example of typical Reactive Programs.

Reactive Programs. Figure 1 includes 3 examples of reactive programs:

(top-left) A simple arithmetic computation, used by Bainomugisha et al. [5],
with the program “c = a × b; d = a + c” using reactive variables.

(right) A controller of a fan switch for embedded systems, used by Sakurai et
al. [19], with the program “di = 0.81 × tmp + 0.01 × hmd × (0.99 × tmp −
14.3) + 46.3 ; fan = di >= th ; th = 75 + if fan@last then −0.5 else 0.5”.

(bottom-left) A GUI manager that selects which information to display, either
from the continuous stream of mouse coordinates, or from the continuous
stream of current time, with the program ‘disp = if sel then mouse else time”.

Consider the arithmetic computation example. It has 4 (reactive) variables,
a, b, c, d, and the sources (depicted as triangles) may fire a new value. Firing
a new value triggers computations connected by arrows; e.g., if b fires 5, the
× operation will try to recompute a new product, and will update c, which in
turn will fire its new value. So-called glitches can occur, for example, if a fires a
value, and + is calculated with the old value of c (before × updates its value).
Different techniques exist to avoid glitches, by either enforcing a scheduling of
the tasks, or, in a distributed setting, by including extra information on the
messages used to detect missing dependencies. Languages that support reactive
programming often include operations to fire a variable (e.g., a.set("abc") in
ReScala), to react to a variable update (e.g., d.observe(println) in ReScala), to
ask for a value to be updated and read (e.g., d.now in ReScala), and to read or
update a value without triggering computations. Hence the effort is in managing
the execution of a set of tasks, while buffering intermediate results, and propagate
updates triggered by new data.

Consider now the fan controller. It includes a loop with dashed arrows, cap-
turing the variable fan@last , i.e., the previous value of fan. This is a solution
to handle loops, which are either forbidden or troublesome in RP. Consequently,
the system must know the initial value of fan using a dedicated annotation.

Finally, consider the GUI example. This includes dashed triangles, which
denote continuous streams of data (often refer to as behaviour in functional RP,
as opposed to signal). This means that updates to the mouse coordinates or

42 J. Proença and G. Cledou

Fig. 2. Example of typical Synchronous Coordinators: variations of an alternator.

to the time passing do not trigger a computation. Here sel can fire a boolean
that will trigger data to flow from either mouse or time to disp. Furthermore,
the computation may not depend on all of its inputs, as opposed to the other
operations seen so far. Hence, the composing operation depends, at each phase,
on either mouse or time, and not on both.

Synchronous Coordinators. Synchronous coordinators provide a finer control
over the scheduling restrictions of each of the stream updates, as illustrated in
the two examples of Fig. 2. These represent different coordinators that have two
inputs, a and b, and alternate their values to an output stream o. In RP a
similar behaviour could be captured by “o = if(aLast) then b else a ; aLast =
not(aLast@last)”. Using a synchronous coordinator, one can exploit synchrony
and better control the communication protocol.

The coordinators of Fig. 2 use the blocks fifo, barrier, and altBarrier, and
may connect streams directly. Unlike RP, these connections are synchronous,
meaning that all streams involved in an operation must occur atomically. E.g.,
each stream can fire a single message only if the connected block or stream is
ready to fire, which in turn can only happen if all their outputs are ready to
fire. In the left coordinator, the top a can output a message only if it can send
it to both o and the barrier. This barrier blocks a or b unless both a and b
can fire atomically. The fifo can buffer at most one value, blocking incoming
messages when full. The left coordinator receives each data message from both a
and b, sending the message from a to c atomically and buffering the value from
b; later the buffered message is sent to c, and only then streams a and b can fire
again. The right coordinator uses a altBarrier that alternates between blocking
a and blocking b, and it buffers the value temporarily to avoid o from having to
synchronise with a or b.

Remarks. In SC data streams can fire only once, and do not store this value
unless it is explicit in the coordinator. In RP, when a stream fires a value, this
value is stored for later reuse – either by the sender or by the computing tasks,
depending on the implementation engine. Also, the notion of synchronisation,
describing sets of operations that occur atomically, is not common in RP, since
RP targets efficient implementations of tasks that run independently.

The term reactive has also been applied in the context of reactive systems and
functional reactive systems. The former addresses systems that react to incom-
ing stimuli and are responsive, resilient, elastic and message driven, described

ARx: Reactive Programming for Synchronous Connectors 43

Fig. 3. Screenshot of the widgets in the online tool for ARx programs.

in the Reactive Manifesto [1]. The latter is a specific take on reactive program-
ming based on functions over streams that distinguish (continuous) behaviour
from (discrete) events [12]. Early work on synchronous languages for (real-time)
reactive systems has been focused on safety-critical reactive control system,
and includes synchronous programming and (synchronous) dataflow program-
ming [5]. Similarly to synchronous coordination, synchronous languages such
as Esterel [6] and StateCharts [13], assume that reactions are atomic and take
no time, simplifying programs and allowing their representation as finite state
machines which can be later translated into sequential programs.

3 ARx Toolset

We implemented an open-source web-based prototype tool to edit, parse, and
type check ARx programs, and to animate their semantics.3 These tools are
developed in Scala, which is compiled to JavaScript using ScalaJS.4 This section
starts by giving a quick overview on how to use the tools, using as running
example a version of the GUI manager from Fig. 1 in ARx. The toolset includes
several widgets, depicted in Fig. 3: 1 the editor to specify the program, 2 the
3 http://arcatools.org/#arx.
4 https://www.scala-js.org.

http://arcatools.org/#arx
https://www.scala-js.org

44 J. Proença and G. Cledou

architectural view of the program, 3 the type and semantic analysis of the
program, 4 a finite automaton capturing the reactive semantics of the program,
and 5 a set of predefined examples.

Most of the syntax in 1 in introduced in Sect. 4. Variables, such as mouse

and time, denote streams of data; line breaks are ignored; and the statements
“display←mouse display←time” mean that the stream display merges the data
from mouse and display. Extensions to the core syntax include (1) algebraic data
types (Sect. 5), deconstructed with match (line 5), and (2) a reactive variable
introduced by the arrow �in line 4 (Sect. 6).

The semantics of an ARx program is given by a guarded command lan-
guage, which we call stream builders (Sect. 4.2), following the ideas from Dokter
and Arbab’s stream constraints [10]. An instance of this intermediate language is
illustrated in 3 , and includes not only stream variables from ARx, but also mem-
ory variables (e.g., m0). Guarded commands include the guards (1) get(mouse)

to denote a destructive read from the mouse stream, (2) isFalse(m0) as a pred-
icate introduced in our first extension, and ask(m0) is a non-destructive read
introduced in our second extension.

Stream builders have an operational semantics: they evolve by consuming
input streams and memory variables, and by writing to output streams. Further-
more, the reactive extension in Sect. 6 adds an extra step to signal the interest
in writing-to or reading-from a stream. This reactive semantics is animated in
an automata view, depicted in 4 . Note that this automata grows quickly, but
it is usually unnecessary, as the stream builders act as a compact and symbolic
representation of the automata.

4 Core ARx

4.1 ARx: Syntax

A program is a statement, according to the syntax in Fig. 4. Expressions are
either terms t, or names of so-called stream builders bn parameterised by a
sequence of variables x. In turn, terms can be stream variables x, data values d,
or function names parameterised by variables x.

So far we leave open the notions of stream builders and functions. Stream
builders will be introduced in Sect. 4.2, and will give semantics to ARx programs.
Functions are assumed to be deterministic and total with an interpretation I
that maps closed terms to values; in Sect. 5 we will restrict to constructors of
user-defined algebraic data types, as in our prototype implementation.

Regarding the remaining constructions, a statement is either an assignment
a, a stream expression e, a builder definition d, or a parallel composition of
statements s s. An assignment assigns a stream expression e to a non-empty
sequence of stream variables x. A builder definition def introduces a name bn
associated to a new stream builder of a given block of statements s.

Examples. The examples below assume the existence of stream builders fifo

and barrier,5 and the function ifThenElse with some interpretation. Consider
5 barrier is known as drain in our tools.

ARx: Reactive Programming for Synchronous Connectors 45

Fig. 4. ARx’ basic syntax, where bn ranges over names of stream builders, fn ranges
over names of functions, and x over stream variables.

the alternator definition, capturing the program from the left of Fig. 2. This has
two input streams as parameters: a and b, which must fire together because of
the barrier. Their values are redirected to c: the one from a flows atomically,
and the one from b is buffered until a follow-up step. The stream c is the only
output of the definition block.

def alternator(a,b) = {
barrier(a,b) c←a
c←fifo(b) c

}

def gui(sel,mouse,time) = {
display ←

ifThenElse(sel,mouse,time)
}

Stream builders are typed, indicating the data types that populate the each
input and output stream. Our implementation uses a type-inference engine that
unifies matching streams and uses type variables. In our example from Fig. 3, the
inferred type of the guibuilder is Bool×p×p → p, meaning that its first argument
has type Bool, and all other ports must have the same type p. The type system
also imposes all input stream variables inside def clauses to be parameters. We
leave the type rules out of the scope of this paper, which focuses on the tools
and on the semantics of ARx.

4.2 Stream Builders: Syntax

Programs in ARx express functions from streams to streams, and describe the
(non-strict) order between consuming and producing values. ARx’s semantics is
given by stream builders, defined below, which are closely inspired on Dokter
and Arbab’s stream constraints [10].

Definition 1 (Stream builder). A stream builder sb follows the grammar:

sb :: = upd ∧ [gc] (stream builder)

gc :: = guard → upd (guarded command)
guard :: = get(v) | und(v) | t (guard)

upd :: = v := t (update)

where v is a variable name, t is a term, and x is a sequence of elements from x.

Each variable v can represent an input stream or an output stream (or both),
as in ARx, or internal memory. Terms t are the same as in ARx, but with

46 J. Proença and G. Cledou

variables also over the internal memory, and we write fv(t) to denote the set
variables in t. Let s be a variable pointing to a stream and m a memory variable.
Intuitively, a guard get(s) means that the head of s, denoted by s(0), is ready
to be read; a guard get(m) means that the memory variable m is defined; and a
guard und(x) means that x has no value yet or is undefined.

A stream builder consists of an initial update that initialises memory vari-
ables and a set of guarded commands of the form g → u that specify a set of
non-deterministic rules, such that the update u can be executed whenever guard
g holds. When executing an update from a guarded command with a guard
that succeeds, each s := t sets s(0) to the value obtained from t, each m := t
sets m to be the value from t; every stream s with get(s) in the guard is updated
to s′ (the head of s is consumed), and every memory m with get(m) in the
guard—and not set in the update—becomes undefined. As a side-remark, these
constructions get, und, and v := t are analogue to the operations get, nask, and
tell, respectively, over shared tuple-spaces in Linda-like languages, well studied
in the literature in that context [8].

We further restrict which streams can be used in updates and guards based
on whether they are input streams I—that can be read—or output streams O—
that can be built. This is formalised by the notion of well-definedness below.
Intuitively, in addition to the previous restrictions, the initial updates can be
only over memory variables and use terms with no variables, i.e., memory vari-
ables can only be initialized with data values rather than streams; and for every
guarded command, undefined variables cannot be “gotten”, both guards and
terms in updates can only use defined memory and input stream variables, and
assignments in guarded commands cannot have cycles (which can occur since
input and output stream variables may intersect). We use the following nota-
tion: given a stream builder sb, we write sb.I, sb.O, and sb.M to denote its
input streams, output streams, and memory variables; and we write get(v) (and
analogously for und) to denote a set of occurrences of get(v), for every v ∈ v.

Definition 2 (Well-defined stream builder). Let sb be the stream builder:

vinit := tinit ∧ [get(vget), und(vund), tguard → vout := tout, . . .].

We say sb is well-defined if vinit ⊆ sb.M and fv(tinit) = ∅, and if for every
guarded command, the following conditions are met:

vget ∩ vund = ∅ vget ∪ vund ⊆ sb.I ∪ sb.M vout ⊆ sb.O ∪ sb.M

fv(tguard) ⊆ vget fv(tout) × vout is acyclic fv(tout) ⊆ vget

Examples. We omit the initial updates of a stream builder when empty, and
write builder〈v1, v2, . . .〉 = upd ∧ gc in the examples below to define a stream
builder builder as upd∧gc over variables {v1, v2, . . .}, using the convention that i

ARx: Reactive Programming for Synchronous Connectors 47

denotes an input stream, o denotes an output stream, and m denotes a memory.

sbadd〈i1, i2, o〉 = [get(i1), get(i2) → o := i1 + i2]
sbxor 〈i, o1, o2〉 = [get(i) → o1 := in , get(i) → o2 := in]
sbfifo〈i, o,m〉 = [get(i), und(m) → m := i , get(m) → o := m]

sbfifoFull42 〈i, o,m〉 = m := 42 ∧ sbfifo〈i, o,m〉
sbbarrier 〈i1, i2〉 = [get(i1), get(i2) → ∅]

sbalternator 〈i1, i2, o,m〉 =
[
get(i1), get(i2), und(m) → o := i1,m := i2

get(m) → o := m

]

Informally, the sbadd stream builder receives values from two streams and
outputs their sum. At each round, it atomically collects a value from each input
stream and produces a new output value. In sbxor there are two non-deterministic
options at each round: to send data to one output stream or to a second output
stream. In sbfifo the two options are disjoint: if m is undefined only the left
rule can be triggered, and if m is defined only the right rule can be triggered,
effectively buffering a value when m is undefined, and sending m when m is
defined (becoming undefined again). The formal behaviour is described below.
Later in the paper, we will present a composition operator for stream builders,
allowing sbalternator to be built out of simpler builders.

4.3 Stream Builders: Operational Semantics

Consider a stream builder sb = init∧gc with an interpretation I of closed terms
as data values. The semantics of sb is given by a rewriting rule over the state of
a stream builder. This state consists of a map σm that assigns memory variables
to their data values, and is initially set to 〈init〉. We use the following notation:
t[σ] captures the substitution on t of σ, dom(σ) is the domain of σ, σ − X is
the map σ excluding the keys in X, σ1 ∪ σ2 is the map σ1 extended with σ2,
updating existing entries, and gets(g) returns the variables within get constructs
in the guard g. We use σi and σo to represents the current mapping from (the
first element of) input and output stream variables to data values, respectively.

Definition 3 (Guard satisfaction). Given a guard g and the current state
of a system, given by σm and σi, the satisfaction of g, denoted σm, σi |= g, is
defined as follows.

σm, σi |= get(v) if v ⊆ dom(σm) ∪ dom(σi)
σm, σi |= und(v) if v ∩ σm = ∅

σm, σi |= t if I(t[σm][σi]) = true
σm, σi |= g if ∀gi∈g · σm, σi |= gi

Definition 4 (Operational semantics). The semantics of a stream builder
sb = init ∧ gc is given by the rule below, with an initial configuration 〈init〉.

(g → u) ∈ gc

σm, σi |= g

σo =
{

v �→ d | (v := t) ∈ u, v ∈ sb.O, d = I(t[σm][σi])
}

σ′
m =

{
v �→ d | (v := t) ∈ u, v ∈ sb.M, d = I(t[σm][σi])

}
〈σm〉 σi,σo−−−→ 〈(σm − gets(g)) ∪ σ′

m〉

48 J. Proença and G. Cledou

Intuitively, 〈σ〉 σi,σo−−−→ 〈σ′〉 means that, for every variable i and data value d
such that σ(i) = d, the state evolves by reading the value d from the head of
the stream i, and by adding a value to each stream o ∈ dom(σo), given by σo(o).
The internal state is captured by σm that stores values of memory variables in
sb.M , which is updated based on σi. Furthermore, the system can only evolve by
executing an active guarded command. Intuitively, a guarded command is active
if the current state of memory (σm) and input stream (σi) variables satisfy the
guard g, such that: each term guard has an interpretation that evaluates to true;
all required input stream variables coincide with the set of defined input stream
variables; all required memory variables are contained in the defined memory
variables; and all required undefined memory variables are indeed undefined.
For example, the following are valid runs of the stream builders of Sect. 4.2.

sbalternator : 〈∅〉 {in1 �→5,in2 �→8},{out1 �→5}−−−−−−−−−−−−−−−−−→ 〈m �→ 8〉 ∅,{out�→8}−−−−−−−→ 〈∅〉

sbadd : 〈∅〉 {in1 �→3,in2 �→2},{out�→3+2}−−−−−−−−−−−−−−−−−−→ 〈∅〉 {in1 �→2,in2 �→7},{out�→2+7}−−−−−−−−−−−−−−−−−−→ 〈∅〉

4.4 Composing Stream Builders

The composition of two stream builders yields a new stream builder that merges
their initial update and their guarded commands, under some restrictions. I.e.,
the memory variables must be disjoint, some guarded commands can be included,
and some pairs of guarded commands from each stream builder can be combined.
This is formalised below in Definitions 5 and 6 after introducing some prelimi-
nary concepts. In the following we use the following auxiliary functions: out(gc)
returns the output streams assigned in the RHS of gc, in(gc) returns the input
streams inside get statements of gc, and vars(gc) returns out(gc) ∪ in(gc).

The composition of stream builders follows the same principles as the com-
position of, e.g., constraint automata (CA) [4]. But unlike CA and most Reo
semantics, it supports explicit many-to-many composition. I.e., a builder with
an input stream i can be composed with another builder with the same input
stream i, preventing individual guarded commands from each builder to use i
without involving the other stream builder. Similarly, a builder with an output
stream o can be combined with another one with the same output stream o,
although only one builder can write to o at a time. A builder with an input
stream x can be composed with another with an output stream with the same
name x, making x both an input and an output in further compositions. The
composition rules were carefully designed to keep the composition commutative
and associative, which we do not prove in this paper.

We introducing the following auxiliary predicates used in the composition,
using gci to range over guarded commands and I1 to range over stream variables
(meant to be from the same stream builder as gc1).

ARx: Reactive Programming for Synchronous Connectors 49

matchedOuts(I1, gc1, gc2) ≡ I1 ∩ out(gc2) ⊆ in(gc1)
matchedIns(I1, gc1, gc2) ≡ I1 ∩ in(gc2) ⊆ vars(gc1)
exclusiveOut(gc1, gc2) ≡ out(gc1) ∩ out(gc2) = ∅
noSync(I1, gc2) ≡ I1 ∩ vars(gc2) = ∅

The predicate matchedOuts(I1, gc1, gc2) means that any input stream in I1
that is an output of gc2 must be read by gc1, i.e., must be an input stream
used by gc1. Its dual matchedIns(I1, gc1, gc2) is not symmetric: it means that
any input stream in I1 that is an input gc2 must either be written-to or read-
by gc1. This reflects the fact that input streams replicate data, and that input
streams may also be output streams that could be used to synchronise. The
predicate exclusiveOut(gc1, gc2) states that gc1 and gc2 do not share output
streams, reflecting the fact that only one rule can write to a stream at a time.
The last predicate noSync(I1, gc2) states that gc2 will not affect any of the input
streams in I1. Intuitively this means that gc2 may read-from or write-to streams
from another builder sb1 if they can also be written by sb1, but not if they are
read by sb1.

The composition of guarded commands and of stream builders is defined
below, based on these predicates.

Definition 5 (Composition of guarded commands (gc1 �� gc2)). For i ∈
{1, 2}, let gci = get(vgi), und(vui), tgi → voi := toi be two guarded commands.
Their composition yields gc1 �� gc2 defined below.

get((vg1 ∪ vg2) − (vo1 ∪ vo2)) , und(vu1 ∪ vu2) , tg1 ∪ tg2 → vo1 := to1 ∪ vo2 := to2

Definition 6 (Composition of stream builders (sb1 �� sb2)). For i ∈ {1, 2},
let sbi = initi ∧ [gci] be two stream builders. Their composition yields sb = sb1 ��
sb2 = (init1 ∪ init2) ∧ [gcs], where sb.O = sb1.O ∪ sb2.O, sb.I = sb1.I ∪ sb2.I,
sb.M = sb1.M ∪ sb2.M , and gcs is given by the smallest set of guarded commands
that obeys the rules below, which are not exclusive.

(Com1)

gc ∈ gc1
noSync(sb2.I, gc)

gc

(Com2)

gc ∈ gc2
noSync(sb1.I, gc)

gc
(Com3)

∀i, j ∈ {1, 2} , i �= j : gci ∈ gci

matchedOuts(sbi.I, gci, gcj)
matchedIns(sbi.I, gci, gcj)
exclusiveOut(gci, gcj)

gc1 �� gc2

Intuitively, any guarded command can go alone, unless it must synchronise on
shared streams. Any two guarded commands can go together if their synchro-
nization is well-defined and do not perform behaviour that must be an exclu-
sive choice. Observe that the composition of two well-defined stream builders
(c.f. Definition 2) may not produce a well-defined stream builder (e.g. cyclic
assignments), in which case we say that the stream builders are incompatible
and cannot be composed.

50 J. Proença and G. Cledou

Example. The sequential composition of two fifo builders is presented below,
annotated with the rule name that produced it. The get(b) guard was dropped
during composition (Definition 5), but included here to help understanding. The
last two guarded commands, in gray, denote scenarios where the middle stream
b remains open for synchronization. These are needed to make the composition
operator associative, but can be discarded when hiding the internal streams like
b. This is not explained here, but is implemented in our prototype tool. Following
a similar reasoning, the stream builder sbalternator can be produced by composing
the stream builders sbbarrier 〈a, b〉, sbfifo〈b, c,m〉, and sbsync〈a, c〉, which has no
internal streams.

sbfifo〈a, b,m1〉 �� sbfifo〈b, c,m2〉=⎡
⎢⎢⎢⎢⎢⎢⎣

get(a), und(m1) → m1 := a (Com1)

get(b), get(m1), und(m2) → b :=m1 , m2 := b (Com3)

get(a), und(m1), get(m2) → m1 := a , c :=m2 (Com3)

get(m2) → c :=m2 (Com2)

get(a), und(m1), get(b), und(m2) → m1 := a,m2 := b (Com3)

get(b), und(m2) → m2 := b (Com2)

⎤
⎥⎥⎥⎥⎥⎥⎦

4.5 ARx’s Semantics: Encoding into Stream Builders

Fig. 5. Semantics: encoding of statements of ARx as a stream builder.

A statement in ARx can be encoded as a single stream builder under a context
Γ of existing stream builders. More precisely, Γ maps names of stream builders
bn to triples (sb, xI , xO) of a stream builder sb, a sequence of variables for input
streams xI of sb, and a sequence of variables for output streams xO. Given a

ARx: Reactive Programming for Synchronous Connectors 51

statement s and a context Γ , we define the encoding of s as �s�Γ , defined in Fig. 5.
Evaluating �s�Γ results in a pair (sb, xO) containing the encoded stream buffer
and a sequence of variables. This sequence captures the output stream variables
of sb. In the encoding definition we write [x/y] to mean that y substitutes x.
Our implementation further applies a simplification of guarded commands in
the def clause, by hiding output streams not in xO and guarded commands that
consume streams that are both input and output; but we do omit this process
in this paper.

The composition exemplified in Sect. 4.4, regarding the alternator, is used
when calculating the encoding of “barrier(a,b) c←fifo(b) c←a” below, where
Γ =

{
fifo �→ (sbfifo〈i, o〉, i, o), barrier �→ (sbbarrier〈i1,i2〉, i1 · i2, ∅)

}
.

�barrier(a,b)�Γ = ([get(a), get(b) → ∅], ∅) (sb1)
�fifo(b)�Γ = ([get(b), und(y1) → y1 := b, get(y1) → y2 := y1], y2)

�c←fifo(b)�Γ = ([get(b), und(y1) → y1 := b, get(y1) → c := y1], ∅) (sb2)
�c←a�Γ = ([get(a) → c := a], c) (sb3)

�

�
barrier(a,b)

c←fifo(b)

c←a

�

�

Γ

= (sb1 �� sb2 �� sb3, ∅) = (sbalternator 〈a, b, c, y1〉, ∅)

5 Extension I: Algebraic Data Types

This section extends our language of stream builders with constructs for algebraic
data types, allowing types to influence the semantics. The grammar, presented
in Fig. 6, extends the grammar from Fig. 4 with declarations of Algebraic Data
Types (ADTs), build and match primitive stream builders, and type annotations
for builder definitions. For simplicity, we use the following notation: we omit X,
〈X〉, and (X) when X is empty; we write build, match, and bn(x) instead of
build〈α〉, match〈α〉, and bn(x : α), respectively, when α is a type variable not
used anywhere else; and we omit the output type T in builder definitions to
denote a sequence of fresh type variables, whose dimension is determined during
type-checking (when unifying types).

Fig. 6. Syntax: extending the syntax from Fig. 4 with ADTs, where α ranges over type
variables, D over type names, and Q over data constructors.

52 J. Proença and G. Cledou

A program starts by a list of definitions of algebraic data types, such as the
ones below, which we will assume to be included in the header of all programs.

data Unit = U
data Bool = True | False

data Nat = Zero | Succ(Nat)
data List〈α〉 = Nil | Cons(α, List〈α〉)

These ADTs are interpreted as the smallest fix-point of the underlying func-
tor, i.e., they describe finite terms using the constructors for data types.
All constructors Q must have at least one argument, but we write Q with-
out arguments to denote either Q(Unit) or Q(U). Each definition of an ADT
data D〈T 〉 = Q1(g) | . . . | Qn(g), e.g., data List〈α〉 = Nil | Cons(α, List〈α〉),
introduces:

– Term constructors Qi to build new terms, e.g. Nil and Cons(True,Nil);
– Term inspectors isQi(x) that check if x was built with Qi, e.g. isNil and

isCons return True only if their argument has shape Nil or Cons, respectively;
– Term projections getQi,j that given a term built with Qi return the j-th

argument, e.g. getCons2(Cons(True,Cons(False,Nil))) = Cons(False,Nil);

Fig. 7. Semantics of match and build, considering that D is defined as data D〈T 〉 =
Q1(g1,1, . . . , g1,k1) | . . . | Qn(gn,1, . . . , gn,kn).

Given these new constructs the new semantic encodings is presented in Fig. 7.
For example, �match〈List〈α〉〉� yields the builder below, and �match〈α〉� is unde-
fined unless the type-inference can instantiate α with a concrete ADT.

[
get(in), isNil(in) → out1,1 := getNil1(in);
get(in), isCons(in) → out2,1 := getCons1(in), out2,2 := getCons2(in)

]

6 Extension II: Reactive Semantics

In reactive languages, produced data is typically kept in memory, possibly trig-
gering consumers when it is initially produced. In this section we provide a finer
control about who can trigger the computation, and a notion of memory that is

ARx: Reactive Programming for Synchronous Connectors 53

read without being consumed. This will allow us to have memory variables that
trigger computations, and others that do not.

In the semantics of stream builders we add a notion of active variables,
whereas a guarded command can only be selected if one of its variables is active,
and adapt the operational semantics accordingly. We also introduce a new ele-
ment to the guards: ask(v), that represents a non-destructive read.

Syntax: asking for data The extension for our language updates the grammar
for assignments:

Assignment a ::= x ← e | x �e

whose squiggly arrow is interpreted as a creation of a reactive variable: the values
from e are buffered before being used by x, and this values can be read (non-
destructively) when needed using the new guard ask. This is formalised below.

�x �e�Γ =
�
(y ← e) (x �y)

	
Γ

for some fresh y

�x �y�Γ =
([
ask(m) → x := m , get(y) → m := y

]
, ∅

)

Observe that “get(m) → x := m,m := m” is very similar to “ask(m) → x := m”.
The former consumes the variable m and defines it with its old value, and the
latter reads m without consuming it. This subtle difference has an impact in our
updated semantics, defined below, by marking assigned variables as “active”. In
the first case m becomes active, allowing guarded commands that use m to be
fired in a follow up step. In the second case m will become inactive, and guarded
commands using m with no other active variables will not be allowed to fire.

Semantics: Active/Passive Variables. The reactive semantics for a stream
builder sb = init∧gc is given by the rules below. The state is extended with two
sets of so-called active input and output variables, with initial state 〈init, ∅, ∅〉. A
system can evolve in two ways: (1) by evolving the program as before, consuming
and producing data over variables, or (2) by an update to the context that
becomes ready to write to (push) or read from (pull) a stream. Below we write
“out(u)” to return the assigned variables in u (c.f. Sect. 4.4), “ in(g)” to return
the variables of g within get and ask constructs, and 〈σ〉 x−→g,u 〈σ′〉 to denote the
step from state σ to σ′ by x when selecting the guarded command g → u.

(g → u) ∈ gc 〈σm〉 σi,σo−−−→g,u 〈σ′
m〉(

in(g) ∩ Ai �= ∅
)

∨
(
out(u) ∩ Ao �= ∅

)
A′

i = (Ai − in(g)) ∪ (out(u) ∩ sb.M)
A′

o = Ao − out(u)

〈σm,Ai ,Ao〉 σi,σo−−−→ 〈σ′
m, A′

i, A
′
o〉

〈σm〉 � 〈σ′
m〉 x ∈ sb.I

〈σm,Ai ,Ao〉 push(x)−−−−→ 〈σ′
m,Ai ∪ {x} ,Ao〉

〈σm〉 � 〈σ′
m〉 x ∈ sb.O

〈σm,Ai ,Ao〉 pull(x)−−−−→ 〈σ′
m,Ai ,Ao ∪ {x}〉

The previous semantic rules must be accommodated to take the ask construc-
tor into account. This is done by redefining the guard satisfaction definition

54 J. Proença and G. Cledou

in Sect. 4.3 to incorporate a new rule, presented below, and vars in Sect. 4.4 to
include also the ask variables.

σm, σi |= ask(v) v ⊆ dom(σm)

Example: ADT and Reactivity. We illustrate the encoding and semantics
of reactive stream builders using the GUI manager example (Fig. 1 and Fig. 3).
The equality below depicts the adapted system following the ARx syntax (left)
and its semantics (right).

This encoding also returns the sequence of output streams, which in this case
is display. The stream builder is further simplified by our toolset by removing
intermediate stream variables last, t, and f from the updates, as depicted in the
screenshot of Fig. 3- 3 .

The following transitions are valid runs of this program.

〈∅, ∅, ∅〉 pull(display)−−−−−−−−−−−−−−−−−−−−−−→ 〈∅, ∅, {display}〉
push(sel)−−−−−−−−−−−−−−−−−−−→ 〈∅, {sel} , {display}〉
sel �→True−−−−−−−−−−−−−−−−−−−→ 〈{m �→ True} , {m} , {display}〉

mouse�→(2,3);display�→(2,3)−−−−−−−−−−−−−−−−−−−→ 〈{m �→ True} , ∅, ∅〉
pull(display)−−−−−−−−−−−−−−−−−−−−−−−→ 〈{m �→ True} , ∅, {display}〉

mouse�→(5,8);display�→(5,8)−−−−−−−−−−−−−−−−−−−→ 〈{m �→ True} , ∅, ∅〉

7 Conclusions

We proposed ARx, a lightweight programming language to specify component-
based architecture for reactive systems, blending principles from reactive pro-
gramming and synchronous coordination languages. ARx supports algebraic
data types and is equipped with a type checking engine (not introduced here)
to check if streams are well-composed based on the data being streamed.

Programs are encoded into stream builders, which provide a formal and com-
positional semantics to build programs out of simpler ones. A stream builder
specifies the initial state of a program and a set of guarded commands which
describe the steps (commands) that the program can perform provided some

ARx: Reactive Programming for Synchronous Connectors 55

conditions (guards)—over the internal state and the inputs received from the
environment—are satisfied.

We built an online tool to specify, type check, and analyse the semantics of
ARx programs, and visualize both the architectural view of the program and its
operational reactive semantics.

Future work plans include the verification of properties, the addition of new
semantic extensions, and the development of code generators. These proper-
ties could be specified using hierarchical dynamic logic and verified with model
checkers such as mCRL2, following [17], or could address the possibility of infi-
nite loops caused by priorities of push and pulls from the environment. The
semantic extensions could target, e.g., notions of variability, probability, time,
and quality of service.

Acknowledgment. This work was partially supported by National Funds through
FCT/MCTES (Portuguese Foundation for Science and Technology), within the CIS-
TER Research Unit (UIDB/04234/2020); by the Norte Portugal Regional Operational
Programme (NORTE 2020) under the Portugal 2020 Partnership Agreement, through
the European Regional Development Fund (ERDF) and also by national funds through
the FCT, within project NORTE-01-0145-FEDER-028550 (REASSURE); and by the
Operational Competitiveness Programme and Internationalization (COMPETE 2020)
under the PT2020 Partnership Agreement, through the European Regional Develop-
ment Fund (ERDF), and by national funds through the FCT, within projects POCI-
01-0145-FEDER-029946 (DaVinci) and POCI-01-0145-FEDER-029119 (PReFECT).

References

1. The reactive manifesto v2.0 (2014). https://www.reactivemanifesto.org
2. Arbab, F.: Reo: a channel-based coordination model for component composition.

Math. Struct. Comput. Sci. 14(3), 329–366 (2004)
3. Baier, C.: Probabilistic models for Reo connector circuits. J. Univ. Comput. Sci.

11(10), 1718–1748 (2005)
4. Baier, C., Sirjani, M., Arbab, F., Rutten, J.J.M.M.: Modeling component connec-

tors in Reo by constraint automata. Sci. Comput. Program. 61(2), 75–113 (2006)
5. Bainomugisha, E., Carreton, A.L., Cutsem, T.V., Mostinckx, S., De Meuter, W.:

A survey on reactive programming. ACM Comput. Surv. 45(4), 52:1–52:34 (2013)
6. Berry, G.: The foundations of Esterel. In: Plotkin, G.D., Stirling, C., Tofte, M.

(eds.) Proof, Language, and Interaction, pp. 425–454. The MIT Press (2000)
7. Bonchi, F., Sobocinski, P., Zanasi, F.: Full abstraction for signal flow graphs. In:

Proceedings of the 42nd Annual Symposium on Principles of Programming Lan-
guages, POPL 2015, pp. 515–526. ACM, New York (2015)

8. Brogi, A., Jacquet, J.-M.: On the expressiveness of coordination via shared datas-
paces. Sci. Comput. Program. 46(1–2), 71–98 (2003)

9. Cridlig, R., Goubault, E.: Semantics and analysis of linda-based languages. In:
Cousot, P., Falaschi, M., Filé, G., Rauzy, A. (eds.) WSA 1993. LNCS, vol. 724, pp.
72–86. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57264-3_30

10. Dokter, K., Arbab, F.: Rule-based form for stream constraints. In: Di Marzo Seru-
gendo, G., Loreti, M. (eds.) COORDINATION 2018. LNCS, vol. 10852, pp. 142–
161. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92408-3_6

https://www.reactivemanifesto.org
https://doi.org/10.1007/3-540-57264-3_30
https://doi.org/10.1007/978-3-319-92408-3_6

56 J. Proença and G. Cledou

11. Drechsler, J., Salvaneschi, G., Mogk, R., Mezini, M.: Distributed REScala: an
update algorithm for distributed reactive programming. In: Black, A.P., Millstein,
T.D. (eds) Proceedings of the 2014 ACM International Conference on Object Ori-
ented Programming Systems Languages & Applications, OOPSLA 2014, Part of
SPLASH 2014, Portland, OR, USA, 20–24 October 2014, pp. 361–376. ACM (2014)

12. Elliott, C., Hudak, P.: Functional reactive animation. In: International Conference
on Functional Programming (1997)

13. Harel, D.: Statecharts: a visual formalism for complex systems. Sci. Comput. Pro-
gram. 8(3), 231–274 (1987)

14. Hudak, P., Courtney, A., Nilsson, H., Peterson, J.: Arrows, robots, and functional
reactive programming. In: Jeuring, J., Jones, S.L.P. (eds.) AFP 2002. LNCS, vol.
2638, pp. 159–187. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-
540-44833-4_6

15. Maier, I., Rompf, T., Odersky, M.: Deprecating the observer pattern, p. 18 (2010)
16. Meng, S., Arbab, F.: On resource-sensitive timed component connectors. In: Bon-

sangue, M.M., Johnsen, E.B. (eds.) FMOODS 2007. LNCS, vol. 4468, pp. 301–316.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72952-5_19

17. Hojjat, H., Massink, M. (eds.): FSEN 2019. LNCS, vol. 11761. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-31517-7

18. Proença, J., Clarke, D.: Interactive interaction constraints. In: De Nicola, R.,
Julien, C. (eds.) COORDINATION 2013. LNCS, vol. 7890, pp. 211–225. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38493-6_15

19. Sakurai, Y., Watanabe, T.: Towards a statically scheduled parallel execution of an
FRP language for embedded systems. In: Proceedings of the 6th ACM SIGPLAN
International Workshop on Reactive and Event-Based Languages and Systems,
REBLS 2019, pp. 11–20. Association for Computing Machinery, New York (2019)

https://doi.org/10.1007/978-3-540-44833-4_6
https://doi.org/10.1007/978-3-540-44833-4_6
https://doi.org/10.1007/978-3-540-72952-5_19
https://doi.org/10.1007/978-3-030-31517-7
https://doi.org/10.1007/978-3-642-38493-6_15

Towards Energy-, Time- and Security-
Aware Multi-core Coordination

Julius Roeder1, Benjamin Rouxel1, Sebastian Altmeyer2,
and Clemens Grelck1(B)

1 University of Amsterdam, Science Park 904, 1098XH Amsterdam, Netherlands
{j.roeder,b.rouxel,c.grelck}@uva.nl

2 University of Augsburg, Universitätsstr. 2, 86159 Augsburg, Germany
altmeyer@informatik.uni-augsburg.de

Abstract. Coordination is a well established computing paradigm with
a plethora of languages, abstractions and approaches. Yet, we are not
aware of any adoption of the principle of coordination in the broad
domain of cyber-physical systems, where non-functional properties, such
as execution/response time, energy consumption and security are as cru-
cial as functional correctness.

We propose a coordination approach, including a functional coordi-
nation language and its associated tool flow, that considers time, energy
and security as first-class citizens in application design and development.
We primarily target cyber-physical systems running on off-the-shelf het-
erogeneous multi-core platforms. We illustrate our approach by means of
a real-world use case, an unmanned aerial vehicle for autonomous recon-
naissance mission, which we develop in close collaboration with industry.

Keywords: Cyber-physical systems · Non-functional properties ·
Real-time · Energy · Security

1 Introduction

Cyber-physical systems (CPS) deeply intertwine software with physical compo-
nents, such as sensors and actuators that impact the physical world. Broadly
speaking the software controls the actuators of a physical system based on input
from the sensors and specified policies. Our world is full of cyber-physical sys-
tems, ranging from washing machines to airplanes. Designing secure, safe and
correct cyber-physical systems requires a tremendous amount of verification,
validation and certification.

A common characteristic of cyber-physical systems is that non-functional
properties of the software, such as time, energy and security, are as important
for correct behaviour as purely functional correctness. Actuators must react on

This work is supported and partly funded by the European Union Horizon-2020
research and innovation programme under grant agreement No. 779882 (TeamPlay).

c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
S. Bliudze and L. Bocchi (Eds.): COORDINATION 2020, LNCS 12134, pp. 57–74, 2020.
https://doi.org/10.1007/978-3-030-50029-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50029-0_4&domain=pdf
https://doi.org/10.1007/978-3-030-50029-0_4

58 J. Roeder et al.

sensor input within a certain time limit, or the reaction might in the worst case
become useless. In addition to general environmental concerns, energy consump-
tion of computing devices becomes crucial in battery-powered cyber-physical
systems. Security concerns are paramount in many cyber-physical systems due
to their potentially harmful impact on the real world. However, more security
typically requires more computing effort. More computing effort takes more time
and consumes more energy. Thus, time, energy and security are connected in the
triangle of non-functional properties.

The multi-core revolution has meanwhile also reached the domain of cyber-
physical systems. A typical example is the ARM big. LITTLE CPU architecture
that features four energy-efficient Cortex A7 cores and four energy-hungry, but
computationally more powerful, Cortex A15 cores. Many platforms complement
this heterogeneous CPU architecture with an on-chip GPU. Such architectures
create previously unknown degrees of freedom regarding the internal organisa-
tion of an application: what to compute where and when. This induces a global
optimisation problem, for instance minimising energy consumption, under bud-
get constraints, for instance in terms of time and security.

We propose the domain-specific functional coordination language TeamPlay
and the associated tool chain that consider the aforementioned non-functional
properties as first-class citizens in the application design and development pro-
cess. Our tool chain compiles coordination code to a final executable linked with
separately compiled component implementations. We combine a range of anal-
ysis and scheduling techniques for the user to choose from like in a tool box.
The generated code either implements a static (offline) schedule or a dynamic
(online) schedule. With static/offline scheduling all placements and activation
times are pre-computed; with dynamic/online scheduling certain decisions are
postponed until runtime.

Both options are driven by application-specific global objectives. The most
common objective is to minimise energy consumption while meeting both time
and security constraints. A variation of the theme would be to maximise security
while meeting time and energy constraints. Less popular, but possible in princi-
ple, would be the third combination: minimising time under energy and security
constraints.

Both offline and online scheduling share the concept of making conscious
and application-specific decisions as to what compute where and when. Our
work distinguishes itself from, say, operating system level scheduling by the
clear insight into both the inner workings of an application and into the available
computing resources.

The specific contribution of this paper lies in the design of the energy-, time-
and security-aware coordination language and the overall approach. Due to space
limitations we can only sketch out the various elements of our tool chain and
must refer the interested reader to future publications to some degree.

The remainder of the paper is organised as follows: In Sect. 2 we explain
our view on coordination followed by a detailed account of our (domain-specific)
coordination language in Sect. 3. In Sect. 4 we illustrate our approach by means of

Energy-, Time and Security-Aware Multi-core Coordination 59

a real-world use-case, and in Sect. 5 we sketch out our tool chain implementation.
We discuss related work in Sect. 6 and conclude in Sect. 7.

2 Coordination Model

The term coordination goes back to the seminal work of Gelernter and Car-
riero [13] and their coordination language Linda. Coordination languages can be
classified as either endogenous or exogenous [5]. Endogenous approaches provide
coordination primitives within application code. The original work on Linda falls
into this category. Exogenous approaches fully separate the concerns of coordi-
nation programming and application programming

We pursue an exogenous approach and foster the separation of concerns
between intrinsic component behaviour and extrinsic component interaction.
The notion of a component is the bridging point between low-level functionality
implementation and high-level application design.

2.1 Components

We illustrate our component model in Fig. 1. Following the keyword component
we have a unique component name that serves the dual purpose of identifying a
certain application functionality and of locating the corresponding implementa-
tion in the object code.

contracts:

time
energy

security

input
output
state

component
code

state*

Functional
contracts:

* *input outputNon−functional

<name>

Fig. 1. Illustration of component model

A component interacts with
the outside world via component-
specific numbers of typed and
named input ports and output
ports. As the Kleene star in Fig. 1
suggests, a component may have
zero input ports or zero output
ports. A component without input
ports is called a source component ;
a component without output ports
is called a sink component. Source
components and sink components
form the quintessential interfaces between the physical world and the cyber-
world representing sensors and actuators in the broadest sense. We adopt the
firing rule of Petri-nets, i.e. a component is activated as soon as data (tokens)
are available on each of its input ports.

Technically, a component implementation is a function adhering to the C
calling and linking conventions [21]. Name and signature of this function can be
derived from the component specification in a defined way. This function may
call other functions using the regular C calling convention. The execution of a
component (function), including execution of all subsidiary regular functions,
must be free of side-effects. In other words, input tokens must map to output
tokens in a purely functional way. Exceptions are source and sink components
that are supposed to control sensors and actuators, respectively.

60 J. Roeder et al.

2.2 Stateful Components

Our components are conceptually stateless. However, some sort of state is very
common in cyber-physical systems. We model such state in a functionally trans-
parent way as illustrated in Fig. 1, namely by so-called state ports that are short-
circuited from output to input. In analogy to input ports and output ports, a
component may well have no state ports. We call such a component a (practi-
cally) stateless component.

Our approach to state is not dissimilar from main-stream purely functional
languages, such as Haskell or Clean. They are by no means free of state either, for
the simple reason that many real-world problems and phenomena are stateful.
However, purely functional languages apply suitable techniques to make any
state fully explicit, be it monads [28] in Haskell or uniqueness types [1] in Clean.
Making state explicit is key to properly deal with state and state changes in a
declarative way. In contrast, the quintessential problem of impure functional and
even more so imperative languages is that state is potentially scattered all over
the place. And even where this is not the case in practice, proving this property
is hardly possible.

2.3 ETS-aware Components

We are particularly interested in the non-functional properties of code execution.
Hence, any component not only comes with functional contracts, as sketched out
before, but additionally with non-functional contracts concerning energy, time
and security (and potentially more in the future).

These three non-functional properties are inherently different in nature. Exe-
cution time and energy consumption can be measured, depend on a concrete exe-
cution machinery and vary between different hardware scenarios. In contrast,
security, more precisely algorithmic security, depends on the concrete imple-
mentation of a component, for example using different levels of encryption, etc.
However, different security levels almost inevitably incur different computational
demands and, thus, are likely to expose different runtime behaviour in terms of
time and energy consumption as well.

Knowledge about non-functional properties of components is at the heart
of our approach. It is this information that drives our scheduling and mapping
decisions to solve the given optimisation problem (e.g. minimising energy con-
sumption) under constraints (e.g. execution deadlines and minimum security
requirements).

2.4 Multi-version Components

As illustrated in Fig. 2, a component may have multiple versions with identi-
cal functional behaviour, but with different implementations and, thus, differ-
ent energy, time and (possibly) security contracts. Multi-version components
add another degree of freedom to the scheduling and mapping problem that we
address: selecting the best fitting variant of a component under given optimisa-
tion objectives and constraints.

Energy-, Time and Security-Aware Multi-core Coordination 61

output
state

code<name>

ETS−contracts

code<name>

ETS−contracts

component

state*

Functional
contracts:

* *input output

input

<name>

Fig. 2. Multi-version component with individ-
ual energy, time and security contracts

Take as an example our recon-
naissance drone use case, that
we will explore in more detail
in Sect. 4. A drone could adapt
its security protocol for commu-
nication with the base station in
accordance with changing mission
state: low security while taking off
or landing, medium security while
navigating to/from mission area,
high security during mission. Con-
tinuous adaptation of security lev-
els results in less computing and,

thus, in energy savings that could be exploited for longer flight times.
Our solution is to provide different versions of the same component (similar to

[24]) and to select the best version regarding mission state and objectives based
on the scheduling strategy. For the time being, we only support off-line version
selection, but scenarios with online version control, as sketched out above, are
on our agenda.

2.5 Component Interplay

Components are connected via FIFO channels to exchange data, as illustrated in
Fig. 3. Depending on application requirements, components may start computing
at statically determined time slots (when all input data is guaranteed to be
present) or may be activated dynamically by the presence of all required input
data. Components may produce output data on all or on selected output ports.

output
state

input
output
state

input
output
state

data

data

data

data

code<name>

ETS−contracts

code<name>

ETS−contracts

code<name>

ETS−contracts

code<name>

ETS−contracts

code<name>

ETS−contracts

code<name>

ETS−contracts
code<name>

ETS−contracts

code<name>

ETS−contracts

component

Functional
contracts:

component

Functional
contracts:

component
ObjectDetection

Functional
contracts:

component

Functional
contracts:

ImageCapture

OpticalFlow

input

DecisionMaking

output
state

input

Fig. 3. Illustration of data-driven component interplay via FIFO channels

62 J. Roeder et al.

3 Coordination Language

Our coordination language focuses on the design of arbitrary synchronous data-
flow-oriented applications. It describes a graph structure where vertices are com-
ponents (actors, tasks) while edges represent dependencies between components.
A dependency/edge defines a data exchange between a source and a sink through
a FIFO channel. Such a data item, called token, can have different types, from
primitive types to more elaborate structures.

Similar to periodic task models [18] a data-flow graph instance is called an
iteration. A job is a component instance inside an iteration. As usual we require
graphs to be acyclic (i.e. DAGs). The DAG iteratively executes until the end
of time (or platform shutdown). The job execution order follows the (aforemen-
tioned) constraint that job i must finish before job i+1. However, iteration j+1
can start before the completion of iteration j as long as dependencies are satisfied.
This allows us to exploit job parallelism, e.g. pipelining [26].

Figure 4 presents the grammar of our coordination language written in
pseudo-Xtext style. In the following we describe each production rule in more
detail.

3.1 Program Header

Rule Application (Fig. 4, line 1) describes the root element of our application. It
is composed of the application name, a deadline and a period. All times refer to
one iteration of the graph; they can be given in, for instance, hours, milliseconds,
hertz or clock cycles.

Rule Datatype (Fig. 4, line 9) declares the data types used throughout the
coordination specification. One data type declaration consists of the type’s name,
followed by a string representation of its implementation in user code (i.e. the
actual C type like int or struct FooBar) and, optionally, by the size in bytes. The
size information allows for further analysis, e.g. regarding memory footprint. The
string representation of the type’s implementation is needed for code generation.

3.2 (Multi-version) Components

A component in our coordination DSL (Fig. 4, line 11) consists of a unique
name, three sets of ports and a number of additional properties. Multi-version
components (see Sect. 2.4) feature a number of versions, where each version
consists of a unique name and the additional properties, now specific to each
version. The simplified syntax for single-version components is motivated by
their abundance in practice.

Ports represent the interface of a component. The inports specify the data
items (or tokens) consumed by a component while the outports specify the data
items (or tokens) that a component (potentially) produces. The third set of ports,
introduced by the keyword state, are both input ports and output ports at the
same time, where the output ports are short-circuited to the corresponding input
ports, as explained in Sect. 2.2.

Energy-, Time and Security-Aware Multi-core Coordination 63

Fig. 4. Coordination language pseudo-Xtext grammar

64 J. Roeder et al.

A port specification includes a unique name, the token multiplicity and a
data type identifier. Token multiplicities are optional and default to one. They
allow components to consume a fixed number of tokens on an input port at
once, to produce a fixed number of tokens on an output port at once or to keep
multiple tokens of the same type as internal (pseudo) state. The firing rule for
components is amended accordingly and requires (at least) the right number
of tokens on each input port. Typing ports is useful to perform static type
checking and to guarantee that tokens produced by one component are expected
by a subsequent component connected by an edge. To start with we require type
equality, but we intend to introduce some form of subtyping at a later stage,

Our three non-functional properties behave differently. While the security
level is an algorithmic property of a component (version), energy and time crit-
ically depend on the execution platform. Therefore, we encode the (application-
specific) security (level) as an integer number in the code, but not energy and
time information. We keep the coordination code platform-independent and
obtain energy and time information from a separate data base (to be elaborated
on in Sect. 5).

3.3 Dependencies

Dependencies (or edges) represent the flow of tokens in the graph. Their spec-
ification is crucial for the overall expressiveness of the coordination language.
We support a number of constructions to connect output ports to input ports
(Fig. 4, line 27). In the following we illustrate each such construction with both
a graphical sketch and the corresponding textual representation.

Fig. 5. Various edge construction examples

Figure 5a presents a simple edge between the output port x of component A
and the input port y of component B. In our example the output port has a
multiplicity of one token while the input port has a multiplicity of two tokens.
We show token multiplicities in Fig. 5a for illustration only. In the coordination
program token multiplicities are part of the port specification (Fig. 4, line 18),

Energy-, Time and Security-Aware Multi-core Coordination 65

not the edge specification (line 30). Coming back to the example of Fig. 5a,
component A produces one output token per activation, but component B only
becomes activated once (at least) two tokens are available on its input port.
Thus, component A must fire twice before component B becomes activated.

Figure 5b shows an extension of the previous dependency construction where
component A produces a total of four tokens: one on port x and three on port y.
Component B expects two tokens on input port z while sink component C expects
a total of six tokens on input port q. These examples can be extended to fairly
complex dependency graphs.

Figure 5c shows a so-called broadcast edge between a source component A pro-
ducing one token and two sink components B and C consuming two tokens and
one token, respectively (corresponding to Fig. 4, line 32). This form of compo-
nent dependency duplicates the token produced on the output port of the source
component and sends it to the corresponding input ports of all sink components.
Token multiplicities work in the very same way as before: any tokens produced
by a source component go to each sink component, but sink components only
become activated as soon as the necessary number of tokens accumulate on their
input ports. A broadcast edge does not copy the data associated with a token,
only the token itself. Hence, components B and C in the above example will
operate on the same data and, thus, are restricted to read access.

Components with a single input port or a single output port are very com-
mon. In these cases port names in edge specifications can be omitted, as they
are not needed for disambiguation.

Fig. 6. Data-, scheduler- and environment-dependent edges

Figure 6a illustrates a data-driven conditional dependency (corresponding to
Fig. 4, line 34). In this case, component B and component C are dependent on
component A, but only one is allowed to actually execute depending on which
output port component A makes use of. If at the end of the execution of A a
token is present on port x then component B is fired; if a token is present on

66 J. Roeder et al.

port y then component C is fired. If no tokens are present on either port at
the end of the execution of A then neither B nor C are fired. This enables a
powerful mechanism that can be used in control programs where the presence
of a stimulus enables part of the application. For example, in a face recognition
system an initial component in a processing pipeline could detect if there are
any person on an image. If so, the image is forwarded to the subsequent face
recognition sub-algorithms; otherwise, it is discarded.

Figure 6b allows conditional dependencies driven by the scheduler (corre-
sponding to Fig. 4, line 37. Similar to the previous case, component B and com-
ponent C depend on component A, but only one is allowed to actually exe-
cute depending on a decision by the scheduler. For example, if the time budget
requested by component B is lower than that requested by component C, the
scheduler can choose to fire component B instead of C. Such a decision could
be motivated by the need to avoid a deadline miss at the expense of some loss
of accuracy.

Figure 6c allows conditional dependencies driven by the user (corresponding
to Fig. 4, line 39). In this case components B and C again depend on compo-
nent A, but this time the dependency is guarded by a condition. If the condition
evaluates to true then the token is sent to the corresponding route. There is no
particular evaluation order for conditions, and tokens are simultaneously sent
to all sink components whose guards evaluate to true. Like in the case of the
broadcast edge all fired components receive the very same input data. If no guard
returns true, the token is discarded.

The guards come in the form of strings as inline C code. The code generator
will literally place this code into condition positions in the generated code. The
user is responsible for the syntactic and semantic correctness of these C code
snippets. This is not ideal with respect to static validation of coordination code,
but similar to, for instance, the if-clause in OpenMP. On the positive side, this
feature ensures maximum flexibility in application design without the need for
a fully-fledged C compiler frontend, which would be far beyond our means.

For example, the Cexpr could contain a call to a function get battery that
enquires about the battery charge status. The coordination program may choose
to fire all subsequent components as long as the battery is well charged, but only
some as the battery power drains. Or, it may fire different components altogether,
changing the system behaviour under different battery conditions.

4 Example Use Case Reconnaissance Drone

We illustrate our coordination approach by means of a use case that we develop
jointly with our project partners University of Southern Denmark and Sky-
Watch A/S [25]. Fixed-wing drones can stay several hours in the air, making
them ideal equipment for surveillance and reconnaissance missions. In addition
to the flight control system keeping the drone up in the air, our drone is equipped
with a camera and a payload computing system. Since fixed-wing drones are
highly energy-efficient, computing on the payload system does have a noticeable

Energy-, Time and Security-Aware Multi-core Coordination 67

impact on overall energy consumption and, thus, on mission length. We illus-
trate our coordination approach in Fig. 7; the corresponding coordination code
is shown in Fig. 8. We re-use the original application building blocks developed
and used by Sky-Watch A/S.

Fig. 7. Reconnaissance drone use case coordination model

The drone’s camera system takes pictures in predefined intervals. Our Image-
Capture component represents this interface to the physical world. Global period
and deadline specifications correspond to the capture frequency of the camera.
The non-standard data types declared in the datatypes section of the coordi-
nation program are adopted from the original application code. We use the C
types in string form for code generation and require that corresponding C type
definitions are made available to the backend C compiler via header files.

Images are broadcast to three subsequent components. The VideoEncryption
component encrypts the images of the video stream and forwards the encrypted
images to follow-up component SaveVideo that stores the video in persistent
memory for post-mission analysis and archival. Video encryption comes with
three different security levels. For simplicity we just call them Encryption1,
Encryption2 and Encryption3. Different encryption levels could be used, for
instance, for different mission environments, from friendly to hostile.

The drone also performs on-board analyses of the images taken. These are
represented by our components ObjectDetector and GroundSpeed. Object detec-
tion can choose between three algorithms with different accuracy, time and
energy properties: Darknet1, Tiny Darknet2, OpenCV. The ground speed esti-
mator works by comparing two subsequent images from the video stream. This
is the only stateful component in our model. The results of object detection and
ground speed estimation are synchronised and fed into the follow-up component

1 https://pjreddie.com/darknet/.
2 https://pjreddie.com/darknet/tiny-darknet/.

https://pjreddie.com/darknet/
https://pjreddie.com/darknet/tiny-darknet/

68 J. Roeder et al.

Fig. 8. Coordination program for drone use case

Energy-, Time and Security-Aware Multi-core Coordination 69

Decision that combines all information and decides whether or not to notify the
base station about a potentially relevant object detected.

Transmission of the message is modelled by the sink component SendMes-
sage, where the action returns to the physical world. To implement dynamic
adaptation to dynamically changing mission phases, as sketched out in Sect. 2.4,
we would need multiple versions of this component with different security levels
as well. However, we leave dynamic adaptation to future work for now.

As Fig. 8 demonstrates, our coordination language allows users to specify
non-trivial cyber-physical applications in a concise and comprehensible way. The
entire wiring of components only takes a few lines of code. Our approach facili-
tates playing with implementation variations and, thus, enables system engineers
to explore the consequences of design choices on non-functional properties at an
early stage. Note that all ports in our example have a token multiplicity of one,
and we consistently make use of default ports where components only feature a
single input port or a single output port.

5 Coordination Tool Chain

Fig. 9. Coordination workflow

Figure 9 illustrates our coordina-
tion tool chain; its four main inputs
are:

1. the coordination program, as
described in Sect. 3;

2. timing and energy information
per component : provided by
timing/energy harvesting tools
such as AbsInt aiT [12] for a spe-
cific architecture;

3. object files: provided by a C-
compiler such as WCC [10], con-
taining binary code for each
component (version).

4. a config file with configura-
tion information, e.g. target
hardware, security-level mission
specifications, compiler passes
to apply, etc.

For syntactic and semantic analysis, we use the parser generator ANTLR to
derive a C++ parser from an Xtext grammar specification that is very similar to
the one shown in Fig. 4. This implementation choice provides us with a graphical
editor plug-in for the Eclipse IDE for free3. The resulting parser validates the
syntax and creates an abstract syntax tree (AST), on which we validate a number
of semantic rules:
3 https://www.eclipse.org/Xtext/.

https://www.eclipse.org/Xtext/

70 J. Roeder et al.

– ports refer to well defined data types;
– edges connect existing components;
– edges connect output ports with input ports;
– versions target available architectures.

Type checking entails validating that output and input ports connected by
an edge use equivalent types. Using standard graph terminology this can be
formalised as

∀src, sink ∈ E : srctype = sinktype (1)

Deadlock checking in our context entails static detection of stable token con-
sumption/production rates. Formally, the number of tokens produced by a com-
ponent (vertex) must coincide with the sum of tokens expected by all successor
components:

∀v ∈ V : vprod =
∑

p∈Vsucc

pcons (2)

Likewise, the number of tokens consumed by a component must match the
sum of tokens produced by all predecessor components:

∀v ∈ V : vcons =
∑

p∈vpred

pprod (3)

The second block of our coordination tool chain in Fig. 9 is the scheduling pol-
icy generator, which depends on configuration parameters provided by the user.
In the case of static offline scheduling, the scheduling policy generator generates
a schedule table with locations and release times for each component [22,23].
In the case of dynamic online scheduling it performs a schedulability analysis
for which we have adapted the techniques of Melani et al. [19] or, alternatively,
those of Casini et al. [8].

Offline and online schedulers both have their specific benefits and drawbacks:
offline schedulers are easy to implement (e.g. with alarms) and, as all release times
are decided a-priori, scheduling overhead is minimal. However, offline schedulers
are not work-conserving. Should a component finish quicker than suggested by its
worst-case execution time, the corresponding core stays idle until the subsequent
release time of some component. In contrast, online schedulers are work-conserving
and, thus, more efficient in practice. However, this efficiency comes at the cost of
higher runtime overhead and implementation difficulty since we need a mechanism
that decides at runtime which component to execute next.

Whether to opt for offline or online scheduling depends on the application
scenario at hand. Our tool chain merely facilitates users to make this choice. For
offline scheduling we provide both an ILP-based solution [22] and a heuristic for
larger use cases, where the solving an ILP proves to be too time-consuming.

Code generation is the final step in our tool flow. For the coordination part
of an application, we generate C-code that manages components and their inter-
action through threads and processes according to the configured scheduling
policy, including releasing, synchronisation, and communication of components.

Energy-, Time and Security-Aware Multi-core Coordination 71

In a final step the generated C-code is compiled by a platform-specific C com-
piler and linked with the likewise compiled component implementations into an
executable binary, ready to be deployed to the platform of choice.

We successfully applied our tool chain to the drone use-case presented in
Sect. 4. At the time of writing we are able to generate a static schedule (both
ILP- and heuristics-based) that optimises the overall energy consumption while
meeting all time and security constraints. Our project partner Sky-Watch A/S
successfully tested this code on an actually flying drone. We are still in the
process of evaluating the outcome of these experiments compared to the original
hand-coded software of Sky-Watch A/S. We envision in the very near future to
have our code generator ready to produce dynamically scheduled applications.

6 Related Work

Coordination is a well established computing paradigm with a plethora of lan-
guages, abstractions and approaches, surveyed in [9]. Yet, we are neither aware
of any adoption of the principle in the broader domain of mission-critical cyber-
physical systems, nor are we aware of energy-, time- or security-aware approaches
to coordination similar to our approach.

In the area of exogenous coordination languages we mention the work on Reo
[4]. The objective of Reo is in the modelling and formal property verification of
coordination protocols. Reo has a graphical syntax, in which every Reo program
is a labeled directed hypergraph. Reo further has a (or rather many) formal
semantics [17]. Compared to our work, Reo is a much more theoretical approach
to exogenous coordination, whereas our objective lies in the creation of a practi-
cal (and pragmatic) DSL to create executable energy-, time- and security-aware
programs running on concrete machinery.

Another example of an exogenous coordination language is S-Net [14], from
which we draw inspiration and experience for our proposed design. However,
S-Net merely addresses the functional aspects of coordination programming and
has left out any non-functional requirements, not to mention energy, time and
security, in particular.

A notable exception in the otherwise fairly uncharted territory of resource-
aware (functional) languages is Hume [16]. Hume was specifically designed with
real-time systems in mind, and, thus, guarantees on time (and space) consump-
tion are key. However, the main motivation behind Hume was to explore how
far high-level functional programming features, such as automatic memory man-
agement, higher-order functions, polymorphism, recursion, etc can be supported
while still providing accurate real-time guarantees.

Bondavalli et al. [7] present a simple in-the-large programming language to
describe the structure of a graph-based application. However, they only model
what we call components and simple edges, whereas their simple language neither
accounts for multi-version components nor for complex communication struc-
tures, not to mention any notion of non-functional properties.

A term related to coordination is algorithmic skeletons. Merely as examples
we mention FastFlow [2] and Musket [20]. Again, all work in this area that we

72 J. Roeder et al.

are aware of in one way or another focuses on the trade-off between programming
efficiency and execution performance, whereas our focus is on energy, time and
security as non-functional properties.

Lustre [6,15] was designed to program reactive system, such as automatic
control and monitoring systems. In contrast to general-purpose programming
language, Lustre models the flow of data. The idea is to represent actions done
on data at each time tick, like in an electronic circuit. The tick can be extended
to represent periods and release times for tasks, but still an action is required
to describe outputs for each tick (like reusing the last produced data).

Lustre is synchronous which seems necessary for time-sensitive applications.
However, Lustre does not decouple the program source code from its structure.
The flow of data is extracted by the compiler through data dependencies of
variables. We aim at expressing the flow of data with a much simpler and more
explicit approach. We also act at a higher level by focusing on the interaction of
components considered as black boxes.

In [3] Lustre is extended by meta-operators to integrate a complete model-
based design tool from a high-level Simulink model to a low-level implementa-
tion. Still, this extension, called Lustre++, does not separate the design of the
program structure from actual feature implementation and remains at a too low
level to only represent application structure as we intend to do.

The StreamIT [27] language also describes graph-based streaming applica-
tions, but it is restricted to fork-join graphs while we need to support arbitrary
graphs, possibly with multiple sources and/or sinks.

The Architecture Analysis & Design Language (AADL) [11] targets real-
time system design. It provides formal modeling concepts for the description
and analysis of application architectures in terms of distinct components and
their interactions. AADL supports early prediction and analysis with respect to
performance, schedulability and reliability.

7 Conclusion

We propose the TeamPlay coordination language and component technology for
the high-level design and development of cyber-physical systems. Our coordina-
tion DSL allows users to specify non-trivial streaming applications in a few lines
of code while treating crucial non-functional properties such energy, time and
security as first-class citizens throughout the application design process.

We describe a complete tool flow from syntactic and semantic validation of
coordination programs to code generation for typical off-the-shelf heterogeneous
multi-core hardware for cyber-physical systems. Our tool flow includes a variety
of offline and online scheduling and mapping techniques that form a tool box,
from which the user can choose the most appropriate combination with respect
to application needs.

We apply our approach to a real-world use case: a mission-critical reconnais-
sance drone. We demonstrate the merits of our approach in terms of specification
conciseness. An initial version of our tool chain is functional, and we have run

Energy-, Time and Security-Aware Multi-core Coordination 73

preliminary experiments on an actually flying drone. However, the outcome of
these experiments is still under analysis and beyond the scope of this paper.

Our work continues in multiple directions. We currently work on a number
of further application use cases, among others a car park monitoring system,
a satellite communication system and a camera pill application from the medi-
cal domain. Further experience with these additional use cases will most likely
motivate us to refine the design of our coordination DSL.

Implementation-wise we plan to extend and refine the various scheduling and
mapping options. Our code generator currently expects a Linux-like environment
with a certain level of operating system support. This is a realistic assumption
for many cyber-physical systems, but others run in more bare-metal environ-
ments, e.g. where the form factor requires minimal computing hardware. Our
more long-term vision is to adapt our coordination technology for safety-critical
applications that must be secured against component failure or cyber attacks.

References

1. Achten, P., Plasmeijer, M.: The ins and outs of Clean I/O. J. Funct. Program.
5(1), 81–110 (1995)

2. Aldinucci, M., Danelutto, M., Kilpatrick, P., Torquati, M.: Fastflow: high-level
and efficient streaming on multicore. In: Programming Multi-core and Many-core
Computing Systems. Wiley (2017)

3. Alras, M., Caspi, P., Girault, A., Raymond, P.: Model-based design of embedded
control systems by means of a synchronous intermediate model. In: International
Conference on Embedded Software and Systems, pp. 3–10. IEEE (2009)

4. Arbab, F.: Reo: a channel-based coordination model for component composition.
Math. Struct. Comput. Sci. 14(3), 329–366 (2004)

5. Arbab, F.: Composition of interacting computations. In: Goldin, D., Smolka, S.,
Wegner, P. (eds.) Interactive Computation, pp. 277–321. Springer, Heidelberg
(2006). https://doi.org/10.1007/3-540-34874-3 12

6. Benveniste, A., Caspi, P., Edwards, S.A., Halbwachs, N., Le Guernic, P., De
Simone, R.: The synchronous languages 12 years later. Proc. IEEE 91(1), 64–83
(2003)

7. Bondavalli, A., Strigini, L., Simoncini, L.: Dataflow-like languages for real-time
systems: issues of computational models and notation. In: 11th Symposium on
Reliable Distributed Systems (SRDS 1992), pp. 214–221. IEEE (1992)

8. Casini, D., Biondi, A., Nelissen, G., Buttazzo, G.: Partitioned fixed-priority
scheduling of parallel tasks without preemptions. In: 2018 IEEE Real-Time Sys-
tems Symposium (RTSS 2018), pp. 421–433. IEEE (2018)

9. Ciatto, G., Mariani, S., Louvel, M., Omicini, A., Zambonelli, F.: Twenty years
of coordination technologies: state-of-the-art and perspectives. In: Di Marzo Seru-
gendo, G., Loreti, M. (eds.) (COORDINATION’18). LNCS, vol. 10852, pp. 51–80.
Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-92408-3 3

10. Falk, H., Lokuciejewski, P., Theiling, H.: Design of a WCET-aware C compiler. In:
2006 IEEE/ACM/IFIP Workshop on Embedded Systems for Real Time Multime-
dia (ESTIMedia 2006), pp. 121–126. IEEE (2006)

11. Feiler, P.H., Gluch, D.P., Hudak, J.J.: The architecture analysis and design lan-
guage (AADL): an introduction. Technical report, Carnegie-Mellon University,
Pittsburgh, USA, Software Engineering Institute (2006)

https://doi.org/10.1007/3-540-34874-3_12
https://doi.org/10.1007/978-3-319-92408-3_3

74 J. Roeder et al.

12. Ferdinand, C., Heckmann, R.: aiT: worst-case execution time prediction by static
program analysis. In: Jacquart, R. (ed.) Building the Information Society. IIFIP,
vol. 156, pp. 377–383. Springer, Boston (2004). https://doi.org/10.1007/978-1-
4020-8157-6 29

13. Gelernter, D., Carriero, N.: Coordination languages and their significance. Com-
mun. ACM 35(2), 97–107 (1992)

14. Grelck, C., Scholz, S.B., Shafarenko, A.: Asynchronous stream processing with S-
Net. Int. J. Parallel Prog. 38(1), 38–67 (2010). https://doi.org/10.1007/s10766-
009-0121-x

15. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous data flow
programming language LUSTRE. Proc. IEEE 79(9), 1305–1320 (1991)

16. Hammond, K., Michaelson, G.: Hume: a domain-specific language for real-time
embedded systems. In: Pfenning, F., Smaragdakis, Y. (eds.) GPCE 2003. LNCS,
vol. 2830, pp. 37–56. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-
540-39815-8 3

17. Jongmans, S.S., Arbab, F.: Overview of thirty semantic formalisms for Reo. Sci.
Ann. Comput. Sci. 22(1), 201–251 (2012)

18. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-
real-time environment. J. ACM (JACM) 20(1), 46–61 (1973)

19. Melani, A., Bertogna, M., Bonifaci, V., Marchetti-Spaccamela, A., Buttazzo, G.C.:
Response-time analysis of conditional dag tasks in multiprocessor systems. In:
27th Euromicro Conference on Real-Time Systems (RTS 2015), pp. 211–221. IEEE
(2015)

20. Rieger, C., Wrede, F., Kuchen, H.: Musket: A domain-specific language for high-
level parallel programming with algorithmic skeletons. In: 34th ACM Symposium
on Applied Computing (SAC 2019), pp. 1534–1543. ACM, New York (2019)

21. Ritchie, D.M., Kernighan, B.W., Lesk, M.E.: The C Programming Language. Pren-
tice Hall, Englewood Cliffs (1988)

22. Roeder, J., Rouxel, B., Altmeyer, S., Grelck, C.: Interdependent multi-version
scheduling in heterogeneous energy-aware embedded systems. In: 13th Junior
Researcher Workshop on Real-Time Computing (JRWRTC 2019) of the 27th Inter-
national Conference on Real-Time Networks and Systems (RTNS 2019) (2019)

23. Rouxel, B., Skalistis, S., Derrien, S., Puaut, I.: Hiding communication delays in
contention-free execution for SPM-based multi-core architectures. In: 31st Euromi-
cro Conference on Real-Time Systems (ECRTS 2019) (2019)

24. Rusu, C., Melhem, R., Mossé, D.: Multi-version scheduling in rechargeable energy-
aware real-time systems. J. Embed. Comput. 1(2), 271–283 (2005)

25. Seewald, A., Schultz, U.P., Roeder, J., Rouxel, B., Grelck, C.: Component-based
computation-energy modeling for embedded systems. In: Proceedings Companion
of the 2019 ACM SIGPLAN International Conference on Systems, Programming,
Languages, and Applications: Software for Humanity. SPLASH Companion 2019.
ACM, New York (2019)

26. Tendulkar, P., Poplavko, P., Galanommatis, I., Maler, O.: Many-core scheduling
of data parallel applications using SMT solvers. In: 17th Euromicro Conference on
Digital System Design (DSD 2014), pp. 615–622. IEEE (2014)

27. Thies, W., Karczmarek, M., Amarasinghe, S.: StreamIt: a language for streaming
applications. In: Horspool, R.N. (ed.) CC 2002. LNCS, vol. 2304, pp. 179–196.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45937-5 14

28. Wadler, P.: The Essence of Functional Programming. In: 19th ACM Symposium on
Principles of Programming Languages (POPL 1992), pp. 1–14. ACM Press (1992)

https://doi.org/10.1007/978-1-4020-8157-6_29
https://doi.org/10.1007/978-1-4020-8157-6_29
https://doi.org/10.1007/s10766-009-0121-x
https://doi.org/10.1007/s10766-009-0121-x
https://doi.org/10.1007/978-3-540-39815-8_3
https://doi.org/10.1007/978-3-540-39815-8_3
https://doi.org/10.1007/3-540-45937-5_14

Message-Based Communication

Team Automata@Work: On Safe
Communication

Maurice H. ter Beek1(B) , Rolf Hennicker2, and Jetty Kleijn3

1 ISTI–CNR, Pisa, Italy
maurice.terbeek@isti.cnr.it

2 Ludwig-Maximilians-Universität München, Munich, Germany
hennicker@ifi.lmu.de

3 LIACS, Leiden University, Leiden, The Netherlands
h.c.m.kleijn@liacs.leidenuniv.nl

Abstract. We study requirements for safe communication in systems
of reactive components in which components communicate via synchro-
nised execution of common actions. These systems are modelled in the
framework of team automata in which any number of components can
participate—as a sender or as a receiver—in the execution of a communi-
cation action. Moreover, there is no fixed synchronisation policy as these
policies in general depend on the application. In this short paper, we
reconsider the concept of safe communication in terms of reception and
responsiveness requirements, originally defined for synchronisation poli-
cies determined by a synchronisation type. Illustrated by a motivating
example, we propose three extensions. First, compliance, i.e. satisfaction
of communication requirements, does not have to be immediate. Second,
the synchronisation type (and hence the communication requirements)
no longer has to be uniform, but can be specified per action. Third,
we introduce final states to be able to distinguish between possible and
guaranteed executions of actions.

1 Introduction

For the correct functioning of systems built from reactive components which col-
laborate by message exchange, it is important to exclude communication failures
during execution, like message loss or indefinite waiting for input. This requires a
thorough understanding of their synchronisation policies [5,8,11,17,18] to estab-
lish compatibility of communicating components [1,3,4,9,10,12,15]. Compatibil-
ity in multi-component systems was studied in [12] for services and in [10] for
team automata, in both cases with the assumption that systems are full syn-
chronous products of their components. Thus global states are Cartesian prod-
ucts of local states and all system transitions that represent the execution of an
action leading from one global state to a next global state, involve all and only
those component automata that have that action. A main reason to focus first
on this kind of systems is that synchronous product automata are known for

c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
S. Bliudze and L. Bocchi (Eds.): COORDINATION 2020, LNCS 12134, pp. 77–85, 2020.
https://doi.org/10.1007/978-3-030-50029-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50029-0_5&domain=pdf
http://orcid.org/0000-0002-2930-6367
http://orcid.org/0000-0001-9506-4071
https://doi.org/10.1007/978-3-030-50029-0_5

78 M. H. ter Beek et al.

their appealing compositionality and modularity properties [6,7,14,16,18] and
are thus easier to analyse.

Team automata, introduced in [2,5,13], represent a useful model to specify
different forms of intended behaviour of reactive systems and they were shown
to form a suitable formal framework for lifting the concept of compatibility to
a multi-component setting. Explorations on generalising compatibility notions
from full synchronous products to arbitrary synchronisation policies in the frame-
work of team automata can be found in [3,4].

In [3], synchronisation types are used to classify synchronisation policies that
can be realised in team automata. A synchronisation type is a pair (snd, rcv) that
specifies the ranges for the number of senders and the number of receivers taking
part in the transitions (communications) of the team automaton. A synchronisa-
tion type thus defines the transitions of the team automaton (its synchronisation
policy). On the other hand, if at a given global state an appropriate number of
components are ready to send (receive) an action, there is the requirement of syn-
chronisation with a suitable number of other components that will receive (send,
respectively) that action. Thus for output actions, requirements for reception at
a given global state can be formulated. Conversely, locally enabled input actions
give rise to responsiveness requirements. In [3], we have introduced a formal
notation for expressing communication requirements and we have shown how
such requirements can automatically be generated from a given synchronisation
type. A team automaton is said to be compliant with a given set of communi-
cation requirements if in each reachable state of the team the requirements are
met (the communication is safe).

Contribution. In this paper, we discuss, by means of an informal example,
situations that can be seen as an impediment to this approach, in the sense that
the application of the communication requirements appears to be too restrictive.
As a solution, we propose the following three extensions to the idea of safe
communication.

Compliance: the notion of compliance is made less restrictive by allowing inter-
mediate transitions by other components before a particular communication
requirement is fulfilled.

Actions: we propose an individual assignment of synchronisation types to com-
munication actions to fine tune the number of participating sending and
receiving components per action.

States: it may be the case that (local) enabledness of an action indicates
only readiness for communication and not so much that communication is
required; to make this distinction between possible and required communi-
cation explicit, we propose to add final states to components.

Outline. The paper starts with a brief summary of the principal notions of team
automata, followed by a discussion of communication safety and compliance that
is illustrated by an example from [3]. We point out some issues not covered by the

Team Automata@Work: On Safe Communication 79

original definition of communication requirements, based on which we formulate
extensions to make compliance a more liberal concept still following our intuition.

2 Team Automata

In the team automata framework, a system S = {Ai | i ∈ {1, . . . , n}} consists
of a (finite) set of reactive components modelled by component automata Ai.
Each component automaton has its own set of—local—states (with distinguished
initial states), an alphabet of actions that are either input or output (not both)1

to that component, and a labelled transition relation. The alphabet of actions of
S consists of all actions of the Ai. An action is called communicating (in S) if it
occurs in some automata of S as an output action and in some (other) automata
of S as an input action. The state space of S is the Cartesian product of the state
spaces of all Ai, i.e. global states are tuples q = (q1, . . . , qn) with local states qi.
The initial states of S are those global states that have only initial states as
their local states. The possible transitions from one global state to another are
described by labelled system transitions. The label of a system transition from q
to p is an action a from the alphabet of S such that, for all i, whenever qi �= pi,
component Ai has an a-labelled transition from qi to pi. Thus any number of
components in which a is locally enabled at qi can participate simultaneously in
a system transition from q. An a-labelled transition in which both a component
of which a is an output action (a sender) and one which has a as an input action
(a receiver) participate, is a communication (via a).

One of the strengths of the team automata approach is that no a priori
restrictions are imposed on system transitions. In general, it depends on the
application which transitions from the set of all possible system transitions are
relevant. Formally, a synchronisation policy is a subset δ of the system transitions
of S. Such policy δ determines a team automaton T over S which has as its state
space the set of all global states of S that are reachable by δ from the initial
states of S.

In [3], synchronisation types are proposed to specify synchronisation policies
for team automata. A synchronisation type (snd, rcv) determines ranges for the
number of senders and the number of receivers that may take part in commu-
nications. For instance, if snd = [k, l] (with 0 ≤ k ≤ l) and rcv = [m,n] (with
0 ≤ m ≤ n) then at least k and at most l senders and at least m and at most n
receivers are allowed. The synchronisation policy δ generated by (snd, rcv), con-
sists of all system transitions that satisfy this constraint. While k,m are always
natural numbers, the delimiters l, n can also be given as ∗ which indicates that
no upper limit is imposed. Important synchronisation types are, eg., ([1, 1], [1, 1])
which expresses binary communication, and ([1, 1], [1, ∗]) for multicast commu-
nication in which exactly one component outputs a communicating action while
arbitrarily many (but at least one) components input that action.2

1 For simplicity of presentation, we do not consider internal actions here.
2 In [3], we have also introduced notations for (strong and weak) broadcast commu-

nication and for full synchronisation, amongst others, which are not used here.

80 M. H. ter Beek et al.

3 On Safe Communication

The idea underlying a communication-safe team automaton is that, in every
(reachable) global state, whenever a communicating action is enabled (accord-
ing to the prevailing synchronisation policy) at some of the local states of its
components, these components can execute this action from these local states
as a communication of the team.

As an example, let us consider a team automaton T with synchronisation
type ([1, 1], [1, ∗]). Then, to guarantee that at a global state q = (q1, . . . , qn),
output action a of component Ai, which is locally enabled at qi, can be received
by at least one other component, one would impose a receptiveness requirement,
written as rcp(i, a)@q. If T is compliant with (satisfies) this requirement, it is
guaranteed that a can be executed by T at q. Note that in case Ai could also
execute another output action b at state qi, also subject to the receptiveness
requirement, the two requirements would be combined through a conjunction,
denoted by rcp((i, a) ∧ (i, b))@q. The reason for this is that components control
their output actions and execution of either of them should lead to a reception.

For input actions one could require responsiveness with the intuition that
enabled inputs should be served by appropriate outputs. Unlike output actions,
however, input actions are controlled by the environment. Guaranteeing that for
a choice of enabled inputs, one of them is provided by an output of the environ-
ment suffices for the progress of a component waiting for a signal from its environ-
ment. Hence, if component Aj enables input actions a and b in its local state qj ,
then the responsiveness requirements, denoted by rsp(j, a)@q and rsp(j, b)@q,
respectively, would be combined with a disjunction as rsp((j, a) ∨ (j, b))@q.

In general, a team automaton T over a system S is called communication-
safe if it is compliant with all communication requirements (at all states of T)
derived from its synchronisation type. We refer to [3] for the formal definition of
compliance and the general procedure for deriving communication requirements.

Motivating Example
Consider a distributed chat system where buddies can interact once registered.
There are three types of components: clients, servers, and arbiters; see Fig. 1,
where input actions are annotated by ? and output actions by !. Initial states are
marked with an incoming arrowhead. A server controls new entries into the chat
as well as exits from the chat (actions join and leave, respectively). It also coor-
dinates the main activities in the chat. The overall messaging protocol assumes
registered clients to communicate messages to servers (action msg) which, upon
arbiter approval (action grant), send the received messages to clients in the chat
(action fwdmsg).

The chat system S considered here consists of two clients, one server, and
one arbiter. The team automaton Tchat over S is defined by the synchronisation
type ([1, 1], [1, ∗]), as the reception of forwarded messages may involve more than
one component. Also in [3], this synchronisation type was applied. The states
of Tchat are tuples (q1, q2, q3, q4) in which the first and second entries are client
states, the third entry is a server state, and the fourth state is an arbiter state.

Team Automata@Work: On Safe Communication 81

Fig. 1. [from left to right] Component automata for clients, servers, arbiters

An example of a receptiveness requirement, for all (reachable) states of Tchat
with the server being in state 5, would be the following:

rcp(Server , fwdmsg)@(q1, q2, 5, q4)

Tchat is compliant with this requirement since one of the clients locally enables
fwdmsg . This is because, whenever the server is in state 5, at least one of the
clients is in its state 2 (and the arbiter must be in state 0).

An example of a responsiveness requirement would be the following:

rsp((Server , join) ∨ (Server , leave) ∨ (Server ,msg))@(q1, q2, 0, q4)

Tchat is compliant with this requirement too, since whenever the server is in
state 0 then each of the clients is in state 0 or in state 2. Hence there is always
a client in a state that enables one of the required outputs for communication
with the server (join in state 0 and msg or leave in state 2).

Extending Communication Safety
Using this example to illustrate our motivations, we will now introduce three
useful extensions of the concept of communication-safety discussed so far.

Compliance: Intermediate Communications. First consider state
(2, 0, 5, 0) of Tchat , where the second client locally enables the execution of its
output action join. According to the synchronisation type that defines Tchat ,
the output action join can be executed from local state 0 with the receptiveness
requirement at this state being as follows:

rcp(Client2, join)@(2, 0, 5, 0)

Tchat is not compliant with this requirement. Output action join of the second
client has to be received as input by at least one of the other components. The
only component with join as an input action is the server, but join is not enabled
at its local state 5. The server can however transit from state 5 to state 0 (by
a communication with the first client) after which it is ready to execute join in
a communication with the second client. Hence, we propose a generalisation of
the compliance notion along the following lines:

82 M. H. ter Beek et al.

Given a receptiveness requirement for a component Ai and the actions
a1, . . . , ak at a reachable state q = (q1, . . . , qn), there should be a state p
reachable from q by a sequence of zero or more team transitions in which
Ai does not participate, and then, from p, each of the actions a1, . . . , ak

can be executed by Ai in a team transition.

A similar loosening of responsiveness requirements can be formulated (now
requiring that at least one of the actions a1, . . . , an can be executed by Ai in a
team transition from p).

Actions: Individual Synchronisation Types. Next, consider again the state
(2, 0, 5, 0) of Tchat , but now with the following receptiveness requirement:

rcp((Client1, leave) ∧ (Client1,msg))@(2, 0, 5, 0)

This requirement expresses that the first client in state 2 can (internally) decide
to execute either its output action leave or its output action msg , and for each,
there should be at least one other component be ready (possibly after some
team transitions not involving the first client, as discussed above) to execute
this action as an input action. The server, that is in state 5, has only its output
action fwdmsg locally enabled. Hence, by the synchronisation type ([1, 1], [1, ∗])
of Tchat , this requires a communication with a client. That client has to be the
second client, which however currently is in state 0 with only output action
join locally enabled. Consequently, the team automaton does not satisfy the
receptiveness requirement of the first client at (2, 0, 5, 0).

If, instead, we would have ([1, 1], [0, ∗]) as a synchronisation type for the chat
system, then the server would be allowed to move to state 0 by executing its out-
put action fwdmsg on its own (rather than in a communication) after which the
server would be ready to accept inputs as required. Thus it would be allowed that
not every occurrence of fwdmsg will be received. However, ([1, 1], [0, ∗]) is not an
acceptable synchronisation type for other actions (like join, leave, etc). Indeed,
a client performing a join action without acceptance by the server should not be
permitted. Therefore, we propose to no longer require a uniform synchronisation
type for all actions of the system, but rather to assign synchronisation types
individually for each single action. In our example, this leads to the following
action synchronisation types:

stype(join) = . . . = stype(reject) = ([1, 1], [1, 1])
stype(fwdmsg) = ([1, 1], [0, ∗])

With this assignment we would also solve another issue with a chatting sys-
tem which was also mentioned in [3]: Assume that, in order to increase robust-
ness, we were to extend the system and let it consist of two servers and, as
before, two clients and the arbiter. In case we would use the synchronisation
type ([1, 1], [0, ∗]) (or ([1, 1], [1, ∗])) for the whole system, a client may send a
message to two servers, who both forward the message (upon approval from
the arbiter). The assignment of synchronisation types per action would solve

Team Automata@Work: On Safe Communication 83

the problem of duplicate message forwarding, because we can now assign to the
action msg the synchronisation type ([1, 1], [1, 1]).

Hence, as exemplified above, the idea is to introduce the syntactic concept
of a synchronisation type specification. Such a specification is a mapping stype,
which assigns to each communicating action a of the system a synchronisation
type stype(a) = (snd, rcv) that determines ranges for the number of senders
and receivers that may take part in a synchronisation (communication) on the
action a. Each synchronisation type specification stype over a system S gener-
ates a unique team automaton T (stype) over S with a synchronisation policy
that comprises all system transitions that—if labelled by a communicating action
a—satisfy the synchronisation type stype(a). It remains to establish what this
allows us to say about the communication safety of T (stype). Communica-
tion safety concerns receptiveness and responsiveness. Therefore, the systematic
derivation of receptiveness and responsiveness requirements for a team automa-
ton from a given uniform synchronisation type as developed in [3] has to be
generalised by deriving receptiveness and responsiveness requirements individu-
ally per action.

States: Final States. Finally, assume that the behaviour of a client terminates
after leaving the chat. In that case, input action confirmL would lead from state 3
to a new state 4. When all clients have terminated, the following responsiveness
requirement of the server (in its state 0) could not be satisfied anymore:

rsp((Server , join) ∨ (Server , leave) ∨ (Server ,msg))@(4, 4, 0, 0)

This is, however, not a problem if the input actions join, leave, and msg are seen
as no more than services offered by the server: whether or not these services are
called is irrelevant, clients are free to use or not to use a service. On the other
hand, in its local state 4 the server definitely wants to get a response, reject
or grant , from the arbiter. Hence, we need formal means to discriminate the
quality of the two server states 0 and 4. Our idea is to declare some states of a
component automaton as final states. Similarly to automata theory, where final
states are accepting states which, nevertheless, may have outgoing transitions,
in our framework a final state would be a state where execution can stop but
may also continue.

In the example, state 0 of the server would be declared as final with the
consequence that the server is no longer required to continue, i.e. there is no
responsiveness requirement that one of its inputs join, leave, or msg must be
served. (Still, the server offers these actions as input and thus can satisfy recep-
tion requirements from clients.) On the other hand, state 4 of the server should
not be final because the server intends to proceed from this state. It is expect-
ing a response from the arbiter which can be formalised, e.g., by the following
responsiveness requirement:

rsp((Server , reject) ∨ (Server , grant))@(2, 0, 4, 1)

This requirement is indeed fulfilled.

84 M. H. ter Beek et al.

Of course, also the symmetric case has to be considered, i.e. what does the
combination of final and non-final states with outputs mean. As an example,
consider state 1 of the arbiter with the two outgoing transitions for the out-
put of grant and reject , respectively. If this state were a final state, then this
would mean that the arbiter may internally decide to stop here. Then the above
responsiveness requirement of the server would not be satisfied anymore. There-
fore, this state should definitely be a non-final state. Now consider state 0 of a
client. If this were a final state, then a client might decide to never join a chat.
This is not a problem if the server is not expecting any client to join, i.e. if the
server’s state 0 is declared to be final as discussed above.

Outlook. In summary, the addition of final states to component automata
has significant consequences for the derivation of communication requirements
and for our compliance notions, which must be adjusted accordingly. This is
an important next step of our work. Another issue concerns the modelling of
open systems and the composition of open team automata. We are specifically
interested in investigating conditions under which communication safety of team
automata is preserved by composition. This should eventually lead to a method-
ology for the modelling and analysis of large distributed systems with a signifi-
cant communication behaviour.

Acknowledgements. The work of the first author was partially supported by the
MIUR PRIN 2017FTXR7S project IT MaTTerS (Methods and Tools for Trustworthy
Smart Systems). We thank the reviewers for their useful comments.

References

1. Bauer, S.S., Mayer, P., Schroeder, A., Hennicker, R.: On weak modal compatibility,
refinement, and the MIO workbench. In: Esparza, J., Majumdar, R. (eds.) TACAS
2010. LNCS, vol. 6015, pp. 175–189. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-12002-2 15

2. ter Beek, M.H.: Team automata: a formal approach to the modeling of collaboration
between system components. Ph.D. thesis, Leiden University (2003). http://hdl.
handle.net/1887/29570

3. ter Beek, M.H., Carmona, J., Hennicker, R., Kleijn, J.: Communication require-
ments for team automata. In: Jacquet, J.-M., Massink, M. (eds.) COORDINA-
TION 2017. LNCS, vol. 10319, pp. 256–277. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-59746-1 14

4. ter Beek, M.H., Carmona, J., Kleijn, J.: Conditions for compatibility of compo-
nents. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952, pp. 784–
805. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47166-2 55

5. ter Beek, M.H., Ellis, C.A., Kleijn, J., Rozenberg, G.: Synchronizations in team
automata for groupware systems. Comput. Sup. Coop. Work 12(1), 21–69 (2003).
https://doi.org/10.1023/A:1022407907596

6. ter Beek, M.H., Kleijn, J.: Team automata satisfying compositionality. In: Araki,
K., Gnesi, S., Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 381–400.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45236-2 22

https://doi.org/10.1007/978-3-642-12002-2_15
https://doi.org/10.1007/978-3-642-12002-2_15
http://hdl.handle.net/1887/29570
http://hdl.handle.net/1887/29570
https://doi.org/10.1007/978-3-319-59746-1_14
https://doi.org/10.1007/978-3-319-59746-1_14
https://doi.org/10.1007/978-3-319-47166-2_55
https://doi.org/10.1023/A:1022407907596
https://doi.org/10.1007/978-3-540-45236-2_22

Team Automata@Work: On Safe Communication 85

7. ter Beek, M.H., Kleijn, J.: Modularity for teams of I/O automata. Inf. Process.
Lett. 95(5), 487–495 (2005). https://doi.org/10.1016/j.ipl.2005.05.012

8. Brim, L., Cerná, I., Vareková, P., Zimmerova, B.: Component-interaction automata
as a verification-oriented component-based system specification. ACM Softw. Eng.
Notes 31(2) (2006). https://doi.org/10.1145/1118537.1123063

9. Carmona, J., Cortadella, J.: Input/Output compatibility of reactive systems. In:
Aagaard, M.D., O’Leary, J.W. (eds.) FMCAD 2002. LNCS, vol. 2517, pp. 360–377.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36126-X 22

10. Carmona, J., Kleijn, J.: Compatibility in a multi-component environment. Theor.
Comput. Sci. 484, 1–15 (2013). https://doi.org/10.1016/j.tcs.2013.03.006

11. de Alfaro, L., Henzinger, T.A.: Interface automata. In: ESEC/FSE 2001, pp. 109–
120. ACM (2001). https://doi.org/10.1145/503209.503226

12. Durán, F., Ouederni, M., Salaün, G.: A generic framework for n-protocol compat-
ibility checking. Sci. Comput. Program. 77(7–8), 870–886 (2012). https://doi.org/
10.1016/j.scico.2011.03.009

13. Ellis, C.A.: Team automata for groupware systems. In: GROUP 1997, pp. 415–424.
ACM (1997). https://doi.org/10.1145/266838.267363

14. Gössler, G., Sifakis, J.: Composition for component-based modeling. Sci. Comput.
Program. 55, 161–183 (2005). https://doi.org/10.1016/j.scico.2004.05.014

15. Hennicker, R., Bidoit, M.: Compatibility properties of synchronously and asyn-
chronously communicating components. Log. Methods Comput. Sci. 14(1), 1–31
(2018). https://doi.org/10.23638/LMCS-14(1:1)2018

16. Jonsson, B.: Compositional specification and verification of distributed systems.
ACM Trans. Program. Lang. Syst. 16(2), 259–303 (1994). https://doi.org/10.1145/
174662.174665

17. Larsen, K.G., Nyman, U., W ↪asowski, A.: Modal I/O automata for interface and
product line theories. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp.
64–79. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71316-6 6

18. Lynch, N.A., Tuttle, M.R.: An introduction to input/output automata. CWI Q.
2(3), 219–246 (1989). https://ir.cwi.nl/pub/18164

https://doi.org/10.1016/j.ipl.2005.05.012
https://doi.org/10.1145/1118537.1123063
https://doi.org/10.1007/3-540-36126-X_22
https://doi.org/10.1016/j.tcs.2013.03.006
https://doi.org/10.1145/503209.503226
https://doi.org/10.1016/j.scico.2011.03.009
https://doi.org/10.1016/j.scico.2011.03.009
https://doi.org/10.1145/266838.267363
https://doi.org/10.1016/j.scico.2004.05.014
https://doi.org/10.23638/LMCS-14(1:1)2018
https://doi.org/10.1145/174662.174665
https://doi.org/10.1145/174662.174665
https://doi.org/10.1007/978-3-540-71316-6_6
https://ir.cwi.nl/pub/18164

Choreography Automata

Franco Barbanera1(B), Ivan Lanese2, and Emilio Tuosto3,4

1 Department of Mathematics and Computer Science, University of Catania,
Catania, Italy

barba@dmi.unict.it
2 Focus Team, University of Bologna/INRIA, Bologna, Italy

ivan.lanese@gmail.com
3 Gran Sasso Science Institute, L’Aquila, Italy

emilio.tuosto@gssi.it
4 University of Leicester, Leicester, UK

Abstract. Automata models are well-established in many areas of com-
puter science and are supported by a wealth of theoretical results includ-
ing a wide range of algorithms and techniques to specify and anal-
yse systems. We introduce choreography automata for the choreographic
modelling of communicating systems. The projection of a choreography
automaton yields a system of communicating finite-state machines. We
consider both the standard asynchronous semantics of communicating
systems and a synchronous variant of it. For both, the projections of
well-formed automata are proved to be live as well as lock- and deadlock-
free.

1 Introduction

Choreographies are gaining momentum in the design and implementation of dis-
tributed applications also in the ICT industrial sector. This is witnessed by the
effort of defining standards for specification languages such as WS-CDL [31] or
BPMN [40] as well as the recognition of choreographies as suitable approaches
to describe modern architectures such as microservices [2,12]. Choreographic
approaches to the modelling, analysis, and programming of message-passing
applications abound. For instance, in [5,34] abstract models have been applied
to verify and debug BPMN specifications. Also, behavioural types have been
proposed as suitable formalisations of choreographies [29] and for the analysis of
properties such as liveness or deadlock freedom (e.g., [20,45] and the survey [30]

Research partly supported by the EU H2020 RISE programme under the Marie
Sk�lodowska-Curie grant agreement No. 778233, by the MIUR project PRIN
2017FTXR7S “IT-MaTTerS” (Methods and Tools for Trustworthy Smart Systems).
and by the Piano Triennale Ricerca - UNICT 2016–19. The first and second authors
have also been partially supported by INdAM as members of GNCS (Grup po Nazionale
per il Calcolo Scientifico). The authors thanks the reviewers for their helpful comments
and also M. Dezani for her support.

c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
S. Bliudze and L. Bocchi (Eds.): COORDINATION 2020, LNCS 12134, pp. 86–106, 2020.
https://doi.org/10.1007/978-3-030-50029-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50029-0_6&domain=pdf
https://doi.org/10.1007/978-3-030-50029-0_6

Choreography Automata 87

to mention but few), while other approaches have considered syntax-free models
[48]. At a programming level, choreographic programming has been explored in
[35,39].

A distinguished trait of choreographies is the coexistence of two distinct but
related views of a distributed system: the global and the local views. The former
is an abstraction that yields a holistic description of the system. A global view
indeed describes the coordination necessary among the various components of
the system “altogether”. In contrast, the local views specify the behaviour of the
single components in “isolation”.

In this paper we revisit the use of finite state automata to formally specify
(and analyse) global views of message-passing systems, following an intuition
similar to conversation protocols (CP) [16,26,27], a formalism where choreogra-
phies for asynchronous systems are described by means of Büchi automata. Our
model, dubbed choreography automata (c-automata, for short), differs from CP
in spite of the similarities in the syntax adopted for the choreographies. In par-
ticular, conversation protocols and c-automata differ both in their semantics and
in the underlying communication models. Moreover, unlike for CPs, our condi-
tions for realisability do not require any communication properties, rather they
imply several communication properties. This is further discussed in Sect. 6. The
transitions of c-automata are labelled with interactions. As in most approaches,
an interaction states that participant sends message to participant
, which in turn receives it. For instance, consider the c-automaton

used to illustrate our model and as our working example through the paper.
The c-automaton Cref specifies the coordination among participants , , and

whereby a request from client is served by server which replies with a
message (of type) and logs some meta-information on a service (e.g.,
for billing purposes). Client may acknowledge a response of (i) with an
message to restart the protocol, or (ii) by requiring a refinement of the response
with a message, or else (iii) by ending the protocol with a message which

forwards to . In the second case, sends either a message if no
refinement is possible or another (with the corresponding to).

Note that Cref has nested as well as entangled loops. The support for entan-
gled loops is a distinguishing and expressive feature of automata-based models,
not present in many existing models of choreographies or multiparty session
types (MST), and that we shall discuss in Sect. 6.

We argue that c-automata provide a number of benefits. An advantage of
c-automata is that finite state automata are well-known structures used both
in theoretical and applied computer science. For instance, the c-automaton

88 F. Barbanera et al.

Cref above can be easily understood by practitioners while retaining rigour.
Another advantage is that c-automata are syntax-independent ; they do not rely
on complex linguistic constructs (such as the process algebraic constructs usu-
ally adopted in behavioural types). More crucially, we can re-use well-known
results of the theory of automata and formal languages (e.g., we use determin-
isation and trace equivalence) as well as related algorithms. We discuss these
advantages more extensively in Sect. 6.

Choreographies enable a so called top-down approach whereby local views
can be projected from the global view. Projections are expected to reflect the
global specification without spoiling communication soundness (e.g., deadlock
freedom, liveness, etc.). These results do not hold in general. In fact, global
views abstract away from “low level” peculiarities and projections may exhibit
unintended behaviour.

The realisability of a global specification is a natural question to ask:

Can global views such as Cref be realised by distributed components , ,
and coordinating with each other without intermediaries?

The answer to such question (obviously) depends on the communication infras-
tructure the distributed components use for the coordination. In fact, global
views in general abstractly specify the coordination disregarding several details.
For instance, the c-automaton Cref in (1) is oblivious of the communication
infrastructure used by the participants to coordinate with each other. Are the
communications among , , and synchronous or asynchronous? In the lat-
ter case, are messages received in their sending order? How is the sequencing
reflected at the local level? For instance, should the messages that sends from
state 3 in (1) be sent after receives the message from ?

Tackling the realisability of global views is not a trivial endeavour. For
instance, the recent analysis done in [45] highlights glitches in several projection
operations of behavioural types. Also, some decidability results on the realisabil-
ity of CPs [9], the only other automata-based choreographic setting that we are
aware of, have been recently proved erroneous [24].

One would also like to understand whether the distributed components real-
ising a choreography enjoy nice communication properties, e.g., will a component
ready to engage in a communication eventually progress? Will a message sent by
a participant eventually be received? We will consider such problems, showing
that a set of conditions we define on c-automata do guarantee the choreography
both to be realisable and to enjoy a number of relevant communication properties
such as liveness and deadlock freedom.

Contributions and Structure. After a preliminary section (Sect. 2) recalling the
main notions we deal with in the paper, in Sect. 3 we formalise c-automata and
their projections. We adopt communicating systems [13] (reviewed in Sect. 2) for
the local views of choreographies.

We consider both the case of synchronous and asynchronous communications
for the local views. The projection from c-automata to communicating systems
is defined in Sect. 3 while in Sect. 4 we define the class of well-formed c-automata

Choreography Automata 89

for the synchronous case. There we show that, on well-formed c-automata, our
notion of projection is correct (cf. Theorem 4.14) and guarantees liveness, lock-
and deadlock-freedom in the synchronous semantics (cf. Theorem4.15). In Sect. 5
we generalise the above results to the case of asynchronous communications
(cf. Theorems 5.6 and 5.7). Concluding remarks, related and future work are
discussed in Sect. 6. Additional material and complete proofs can be found in [7].

Some interesting technical points are worth noticing. Firstly, most of our con-
structions and results rely on basic notions of formal languages and automata
theory. This greatly simplifies the presentation and the proofs. The generali-
sation from synchronous to asynchronous communications requires only a mild
strengthening of our notion of well-formedness and no changes to c-automata or
their projection. These are further advantages of the use of finite-state automata.

2 Preliminaries

A Labelled Transition System (LTS) is a tuple A = 〈S, s0,L,→〉 where

– S is a set of states (ranged over by s, q, . . .) and s0 ∈ S is the initial state;
– L is a finite set of labels (ranged over by , λ, . . .);
– →⊆ S × (L ∪ { ε }) × S is a set of transitions where ε �∈ L is a distinguished

label.

We define a Finite-State Automaton (FSA) as an LTS where S is finite. We use
the usual notation s1

λ−→ s2 for the transition (s1, λ, s2) ∈−→, and s1 −→ s2 when
there exists λ such that s1

λ−→ s2, as well as −→∗ for the reflexive and transitive
closure of −→. The set of reachable states of A is R(A) = { s | s0 −→∗ s }.

Remark 2.1. Our definition of FSA omits the set of accepting states since we
consider only FSAs where each state is accepting (which is the normal case in
LTSs). We discuss this point further at the end of the paper. 	

We recall standard notions on LTSs.

Definition 2.2 (Traces and Trace equivalence). A run of an LTS A =
〈S, s0,L,→〉 is a (possibly empty) finite or infinite sequence of consecutive tran-

sitions starting at s0. The trace (or word) w of a run (si−1
λi−1−−−→ si)1≤i≤n of

A is the concatenation of the labels of the run (assume n = ∞ if the run is infi-
nite), namely w = λ0 · λ1 · · · λn; label ε, as usual, denotes the identity element
of concatenation; if the run is empty then w = ε.

The language L(A) of A is the set of the traces of the runs of A. Two LTSs
A and B are trace equivalent iff L(A) = L(B). Also, A accepts w if w ∈ L(A),
A accepts w from s if w ∈ L(〈S, s,L,→〉), and an s-run (resp. s-trace) of A is
a run (resp. trace) of 〈S, s,L,→〉.

The notion of language in the definition above includes infinite words; this
extends the standard notion of language accepted by an FSA. In particular, we
consider an infinite word to be accepted by an FSA if each of its prefixes is
accepted in the standard way. This is equivalent to look at an FSA both as a
standard FSA and as a Büchi automaton where all the states are final.

90 F. Barbanera et al.

Definition 2.3 (Deterministic LTSs). An LTS A = 〈S, s0,L,→〉 is deter-
ministic if
− it is ε-free, i.e. there is no transition of the form q

ε−→ q′, and
− whenever q

λ−→ q1 and q
λ−→ q2 then q1 = q2.

We denote the determinisation of A (i.e. the translation of a nondeterministic
LTS/FSA to a deterministic one) as det(A)1.

We adopt communicating finite-state machines (CFSMs) [13] to model the
local behaviour of systems of distributed components. The following definitions
are borrowed from [13] and adapted to our context.

Let P be a set of participants (or roles, ranged over by , , etc.) and a
set of messages (ranged over by , , etc.). We take P and disjoint.

Definition 2.4 (Communicating system). A communicating finite-state
machine (CFSM) is an FSA on the set

of actions. The subject of an output (resp. input) action (resp.)
is (resp.). A CFSM is -local if all its transitions have subject .

A (communicating) system is a map assigning an -local CFSM
to each participant such that is finite and any participant

occurring in a transition of is in .

Note that CFSMs may contain ε-transitions. However, projection (see Defi-
nition 3.3 below) yields ε-free CFSMs.

Besides being a well-known and widely adopted model, CFSMs are equipped
with both synchronous and asynchronous semantics. This enables a uniform
treatment of both communication models. The use of CFMSs is also helpful to
compare c-automata with other models which are projected on CFSMs as well,
such as global graphs [37] and some versions of global types [23].

The synchronous semantics of communicating systems is an LTS where labels
are interactions:

Definition 2.5 (Synchronous semantics). Let be a communi-
cating system where for each participant . A syn-
chronous configuration of S is a map assigning a local state
to each . We denote by and may denote s by �q.

The synchronous semantics of S is the transition system
defined as follows

– S is the set of synchronous configurations of S, as defined above, and
is the initial configuration

– if
1 The result of det(A) may actually depend on the chosen algorithm, but that is

irrelevant for our results.

Choreography Automata 91

1. and , and
2. for all .

In this case, we say that and are
component transitions of .

– �q1
ε−→ �q2 if , and for all , .

Note that ε-transitions in the semantics of a communicating system are
induced by those of the constituent CFSMs. Also, is finite; in fact, it is
in general a non-deterministic automaton on the alphabet Lint.

As one would expect, the notion of synchronous semantics is invariant under
language equivalence of CFSMs.

Proposition 2.6. Let and be two communicating
systems. If for all then .

The asynchronous semantics of systems is defined in terms of transition sys-
tems which keep track of both the state of each machine and the content of
unbounded FIFO queues which are associated to each channel ,
where . The queue is where puts the
messages to and from which consumes the messages from . To avoid
cumbersome parenthesis, we write for .

Definition 2.7 (Asynchronous semantics). Let be a commu-
nicating system where for each participant . An
asynchronous configuration of S is a pair s = 〈�q ; �b〉 where with

and with ; we write for and denote by
ε the empty queue. The asynchronous semantics of S is the transition system

defined as follows

– S is the set of asynchronous configurations of S and s0 = 〈�q0 ; �b〉 is the initial
configuration where and all the queues are empty.

– if s = 〈�q ; �b〉, s′ = 〈�q′ ; �b′〉 and either (1) or (2) below holds:

In the first (resp. second) case we say that (resp.

) is a component transition of .
– 〈�q ; �b〉 ε−→ 〈�q′ ; �b′〉 if for some and for all ,

, and �b = �b′.

State keeps track of the state of the machine and buffer keeps track
of the messages sent from to (and not yet received by). In a transition

, participant adds message in the queue of the channel and
symmetrically, in a transition , participant consumes message from
the top of the queue of the channel . In both cases, any machine or queue
not involved in the transition is left unchanged.

The asynchronous semantics is also invariant under equivalence of CFSMs.

92 F. Barbanera et al.

Proposition 2.8. Let and be two communicating
systems. If for all then .

For both the synchronous and the asynchronous semantics we restrict the
attention to fair runs. An infinite run is fair if each transition which is con-
tinuously enabled is taken in a finite number of steps. A finite run is always
fair.

We are interested in standard properties of communicating systems which we
now recall. Definitions are alike in the synchronous and asynchronous semantics,
hence, to avoid repetitions, below stands for or .

Definition 2.9 (Communication properties). Let be a com-
municating system.

i) Liveness: S is live if for each configuration and each
with outgoing transitions from in there exists a run of from s
including a transition of as a component transition.

ii) Lock freedom: A configuration is a lock if
– there is with an outgoing transition t from in and
– there exists a run of starting from s, maximal w.r.t. prefix order, and

containing no transition t′ involving .
System S is lock-free if for each , s is not a lock.

iii) Deadlock freedom: A configuration is a deadlock if
– s has no outgoing transitions in and
– there exists such that has an outgoing transition in .
System S is deadlock-free if for each , s is not a deadlock.

Liveness, as in [41], establishes the progress of communicating systems we are
interested in. Lock freedom casts in our framework the idea that, similarly to
[32,33], certain communications happen, whereas deadlock freedom extends the
definition of deadlock in [19] to a setting which can be synchronous or asyn-
chronous (as done also in [37,48]).

3 Choreography Automata

We introduce choreography automata (c-automata) as an expressive and flexible
model of global specifications, following the styles of conversation protocols [27],
choreographies [14,31,40], global graphs [48] and multiparty session types [17,
28,30]. As customary in choreographic frameworks, we show how to project c-
automata on local specifications. As anticipated, our projection yields a system
of CFSMs formalising the local behaviour of the participants of a choreography.

C-automata (ranged over by CA, CB, etc.) are FSAs with labels in Lint.

Definition 3.1 (Choreography automata). A choreography automaton (c-
automaton) is an FSA on the alphabet Lint. Elements of L∗

int are choreography
words, subsets of L∗

int are choreography languages.

Choreography Automata 93

Remark 3.2. Definition 3.1 admits non-deterministic c-automata. This does not
increase the expressiveness of our framework. In fact, (i) the notions that we use
for our results rely on traces and (ii) our projection operation (cf. Definition 3.3)
is insensitive to non-determinism (cf. Proposition 3.6). Non-deterministic specifi-
cations are however desirable since they are easier to attain for the designer. 	

Given a c-automaton, our projection operation builds the corresponding com-
municating system consisting of the set of projections of the c-automaton on
each participant, each projection yelding a CFSM. Hereafter, is the set
of participants of c-automata; note that is necessarily finite.

Definition 3.3 (Automata Projection). The projection on of a transition
t = q

λ−→ q′ of a c-automaton, written is defined by:

The projection of a c-automaton CA = 〈S, q0,Lint,→〉 on a participant ,
denoted , is obtained by determinising and minimising up-to-language
equivalence the intermediate automaton

The projection of CA, written , is the communicating system .
The projection function trivially extends to choreography words and languages.

The projection defined above, apart for determinisation and minimisation,
is essentially homomorphic, as most of the projections in the literature. Other
approaches such as [25,43] add hidden communications to be able to deal with
larger classes of choreographies. We prefer the former approach for its simplicity.
Hidden communications can however be added directly at the choreographic level
as proposed in [36].

It is a simple observation that the projection on of CA is -local, deter-
ministic and hence ε-free. Thanks to the properties of determinisation and min-
imisation (as, e.g., in the partition refinement algorithm [42]), the states of
are sets of states of CA.

Example 3.4 (Projections of Cref). The projections of our working example are

94 F. Barbanera et al.

For instance, is obtained by determinising (minimisation is the iden-
tity in this case) the following intermediate automaton obtained as described in
Definition 3.3.

	
The following proposition relates the language of the projection with the

language of the original automaton.

Proposition 3.5. For all c-automata CA and , .

The projection operation is well-behaved with respect to trace equivalence.

Proposition 3.6. If CA and CA′ are trace-equivalent c-automata then
and are isomorphic for each participant .

4 Well-Formed Choreography Automata

To ensure that the communicating system obtained by projection of a c-
automaton is well-behaved, some conditions are necessary. Since the conditions
depend on the used communication infrastructure, we consider first synchronous
communication, leaving to Sect. 5 the case of asynchronous communication.

Definition 4.1 (Concurrent transitions). Let CA = 〈S, q0,L,→〉. Two tran-

sitions and are concurrent iff there is a state q′ ∈ S and tran-

sitions and .

Well-branchedness (cf. Definition 4.6) is a key notion which intuitively states
that each participant is aware of the choices made in the choreography when
its behaviour depends on those choices. The awareness of choice is checked on
spans, namely pairs of runs that may constitute alternative branches of choices.
Spans are formalised building on the notion of candidate branch which, in turn,
is defined in terms of pre-candidate branch.

Definition 4.2 (Candidate q-branch). Let q be a state of a c-automaton CA.
A pre-candidate q-branch of CA is a q-run of CA such that each cycle has at
most one occurrence within the whole run (i.e. any subsequence of the form q −→
. . . −→ q, where q occurs only at the beginning and at the end of the subsequence,
is not present more than once in the run). A candidate q-branch is a maximal
pre-candidate q-branch with respect to prefix order.

We often refer to a (pre-)candidate q-branch simply as “(pre-)candidate of q”.
Due to the condition about cycles in Definition 4.2, the following holds trivially.

Choreography Automata 95

Fig. 1. Runs of Cref.

Fact 1. Given a state q of a c-automaton CA, the set of its pre-candidates is
finite, and so is, a fortiori, that of its candidates.

Example 4.3 ((Pre-)candidate branches in Cref). The sequences in Fig. 1 are
runs of the c-automaton of our working example. They are all pre-candidates
of either 3 or 4, but run πe, which is not a pre-candidate of 4 since the cycle
4–3–4 occurs twice. Runs πb and πd are also candidates of 3, being maximal
pre-candidates with respect to prefix order. 	
Definition 4.4 (q-span). Given a state q of a c-automaton CA, a pair (σ, σ′)
of pre-candidate q-branches of CA is a q-span if σ and σ′ are

– either cofinal, with no common node but q and the last one;
– or candidate q-branches with no common node but q;
– or a candidate q-branch and a loop on q with no other common nodes.

A participant chooses at a q-span (σ, σ′) if the first transition of both σ
and σ′ has as sender.

Example 4.5 (Spans of Cref). The states with spans of our working example are
3 and 4. A span from 3 is (πa, πf), where πa and πf are as in Fig. 1. Indeed, πa

and πf are cofinal (in 2) pre-candidates of 3 with no common states but 3 and 2.
Participant chooses at (πa, πf). The pair (πb, πd), instead, is not a span from
3, since πb and πd are maximal, but share other nodes than 3. 	

Intuitively, a choice is well-branched when the participants other than the
one opting for alternative runs either behave uniformly in each branch, or can
ascertain which branch has been chosen from the messages they receive.

Definition 4.6 (Well-branchedness). A c-automaton CA is well-branched if
for each state q in and sender in a transition from q, all of the
following conditions must hold:

(1) all transitions from q involving , have sender ;

96 F. Barbanera et al.

(2) for each transition t from q whose sender is not and each transition t′

from q whose sender is , t and t′ are concurrent;
(3) for each q-span (σ, σ′) where chooses at and each participant ,

the first pair of different labels on the runs and (if any) is of the
form with or .

We dub a selector at q.

In the above definition loops are taken into account in item (3) since the
notion of span is defined in terms of candidate branch. The latter is a maximal
run where cycles can be considered at most once, as shown in Example 4.3.

In case of a nondeterministic c-automaton, the conditions of Definition 4.6
are checked after the c-automaton has been determinised. In fact, recalling
Remark 3.2, we consider properties of languages of c-automata, and determinisa-
tion, as well as minimisation, of FSA preserve languages. Also, both operations
preserve the system resulting from projection (cf. Proposition 3.6). (Observe that
here we exploit classical results of automata theory.) Also, by Fact 1 and the
obvious decidability of the conditions of Definitions 4.4 and 4.6 we get

Fact 2. Well-branchedness is a decidable property.

Example 4.7 (Well-branchedness of Cref). All the states of Cref satisfy the con-
ditions of Definition 4.6; the only non-trivial cases are states 3 and 4. Condition
(1) holds for , which is the selector of the choice at 3, and for , which is the
selector of the choice at 4; condition (2) holds vacuously, and condition (3) holds
for both and in all the spans from 3 and from 4. For instance, in the span
(πa, πf) from 3, described in Example 4.5, the first actions of on πa and πf are
the inputs from which have different messages, whereas, for what concerns ,
the condition holds vacuously. As a matter of fact, since πa and πf are cofinal in
2, the well-branchedness conditions on state 2 do guarantee to behave properly
afterwards, independently on whether πa or πf have been followed before. 	

Condition (2), vacuously true in our working example, is needed when mul-
tiple participants act as sender in the same state: this ensures that the only
possibility is that actions of different participants are concurrent so that possi-
ble choices at a state are not affected by independent behaviour.

We add a further condition to rule out c-automata having consecutive tran-
sitions involving disjoint participants and not actually concurrent.

Definition 4.8 (Well-sequencedness). A c-automaton CA is well-sequenced
if for each two consecutive transitions either

– they share a participant, that is , or
– they are concurrent, i.e. there is q′′′ such that .

Notice that, by finiteness of the transition relation of c-automata, we get

Fact 3. Well-sequencedness is a decidable property.

Choreography Automata 97

Fig. 2. Failure of well-sequencedness completion.

Notation. For the sake of readability, a well-sequenced c-automaton can be
represented by omitting, for each diamond, two of its consecutive transitions. We
call such representation compact. Notice that, given a compact representation,
it is always possible to recover the original c-automaton. So far and hereafter we
assume that all c-automata are compactly represented.

Example 4.9 (Well-sequencedness of Cref). It is not difficult to check that Cref
is well-sequenced because the first condition of Definition 4.8 holds for any pair
of consecutive transitions in Cref. 	

Well-sequencedness is necessary to establish a precise correspondence
between the language of a c-automaton and of its projection (cf. Theorem4.14
and the discussion following it).

Remark 4.10. We show that not all c-automata can be “completed” to well-
sequenced ones. Consider the c-automaton of Fig. 2(a), which is not well-
sequenced because of the transitions from state 0 to state 1 and from state 1 to 2.
By “completing the diamond” for such transitions (i.e., by adding the new state

3 and the transitions and we obtain the c-automaton of
Fig. 2(b). This is still not well sequenced, because of the transitions
and . So we try to make it well-sequenced by completing the diamond
once again and obtain the c-automaton of Fig. 2(c). The resulting c-automaton
is still not well-sequenced, because of the transitions and .
Again a vain attempt, because of the transitions and . It
is immediate to check that we could go on indefinitely.

It is impossible to complete the initial c-automaton since the intended com-
pleted automaton should generate a non-regular language (since it should gener-
ate strings with a number of interactions which is, roughly, double of the
number of interactions). It would hence be interesting to know whether,
in case the expected completed interaction language of a c-automaton is regular
and prefix-closed, it is possible to generate it also by means of a well-sequenced
c-automaton. It would be also interesting to establish a condition on cycles (if
any) that guarantees the effectiveness of the completion of a c-automaton. We
leave these questions for future work. 	

We show a closure property of the languages of well-sequenced c-automata.

98 F. Barbanera et al.

Definition 4.11 (Concurrency closure). The swap relation on choreography
words is the smallest equivalence relation ∼ satisfying

where . Given a choreography language L
close(L) = {w ∈ Lint

∣
∣ ∃w′ ∈ L. w ∼ w′ }

is the concurrency closure of L.

The above relation is reminiscent of the swapping relation introduced in [18],
with similar aims.

Proposition 4.12. Let CA be a well-sequenced c-automaton. Then L(CA) is
concurrency closed, i.e. L(CA) = close(L(CA)).

Notice that the converse of the above proposition does not hold in general.
In fact, consider the following c-automaton

we can check that L(CA) = close(L(CA)) but CA is not well-sequenced.
The notion of well-formedness below sums up the requirements needed in

order for a c-automaton to be projected to a well-behaved communicating
system.

Definition 4.13 (Well-formedness). A c-automaton is well-formed if it is
both well-branched and well-sequenced.

The next result in Theorem 4.14 establishes that the language of a well-
formed c-automaton coincides with the language of the communicating system
obtained by projection. This provides a correctness criterion for our projection
operation.

Theorem 4.14. for any well-formed c-automaton CA.

Notice that well-formedness is a necessary condition for the theorem above.
It is in fact easy to check that

when CA is one of the c-automata (a), (b) or (c) of Fig. 3. In particular, (a) is
not well-sequenced whereas (b) and (c) are not well-branched: for (b), item (2)
of well-branchedness (Definition 4.6) does not hold; (c) instead violates item (3).

We can now show that the projections of well-formed choreography automata
enjoy the communication properties of Definition 2.9.

Theorem 4.15. Given a well-formed c-automatonCA, its projection
is live, lock-free, and deadlock-free with respect to the synchronous semantics.

Choreography Automata 99

Fig. 3. Well-formedness is necessary for Theorem 4.14.

5 Asynchronous Communications

We now transfer the results of the previous sections to the asynchronous seman-
tics of communicating systems (Definition 2.7). Remarkably, the semantics does
not affect the definition of c-automata (and of projections) since it is independent
of the communication model. Hence, any result depending only on the definition
of c-automata still holds. Well-sequencedness instead needs updating.

Definition 5.1 (Asynchronous well-sequencedness). A c-automaton is
asynchronously well-sequenced if for each two consecutive transitions

either

– the sender of the second transition occurs in the first one, that is ,

– or they are concurrent, i.e. there is q′′′ such that .

Asynchronous well-sequencedness (Definition 4.8) implies the synchronous
one. Indeed, asynchronous well-sequencedness requires either two transitions to
be concurrent or that the sender of the second transition occurs in the first one.
The latter condition is weaker than having disjoint participants as required in
the synchronous case.

Note that our working example is well-sequenced but not asynchronously

well-sequenced (because e.g., of transitions . Thus, we
now consider it as the compact representation of the actual c-automaton accord-
ing to Notation on page 12.

Unlike well-sequencedness, the notion of well-branchedness has not to be
changed in case asynchronous communications are considered. So, in the asyn-
chronous setting, we define asynchronous well-formedness as the conjunction of
asynchronous well-sequencedness (Definition 5.1) and well-branchedness (Defini-
tion 4.6).

The correspondence result between the semantics of a c-automaton and of its
projection requires to decide which actions to observe on the projection. Indeed,
in a c-automaton, each interaction is seen as an atomic event, while in the
asynchronous semantics of communicating systems each interaction corresponds
to two events: a sending event and a receiving event. We opt to observe sending
events only because (internal) choices are determined by sending events. This
decision also plays well with the notion of well-branchedness, where most of the
conditions concern sender participants. Other possible options are discussed in
[35], in a process algebraic setting. This idea is formalised by sender traces.

100 F. Barbanera et al.

Definition 5.2 (Sender traces). The sender traces of a communicating
system S are obtained from its asynchronous traces by replacing each output label

with and each input label with ε.

The modification of well-sequencedness for the asynchronous case does imply
that we need to “update” the definition of concurrency closure as well.

Definition 5.3 (Asynchronous concurrency closure). The asynchronous
swap relation on choreography words is the smallest pre-order ≤ satisfying

The downward closure of a choreography language L with respect to ≤

closea(L) = {w ∈ Lint
∣
∣ ∃w′ ∈ L. w ≤ w′ }

is the asynchronous concurrency closure of L.

The condition for asynchronous concurrency closure is weaker than the one
in the synchronous case. This is due to the fact that sender-traces must be
closed under asynchronous concurrency (cf. Lemma 5.4 below), so to guarantee
that the traces of an automaton do coincide with the sender-traces of its pro-
jection (Theorem 5.6 below). We discuss such a necessity with an example after
Theorem 5.6.

Lemma 5.4. LetCA be a c-automaton. Then .

We now proceed to prove the correctness of projection for asynchronous
systems. We will reduce it to the corresponding result for synchronous systems
(Theorem 4.14). This is done by showing that all asynchronous runs are pairable
(see below), that is they can be put in a suitable normal form which directly
corresponds to a synchronous run. Notably, such a result is false for c-automata
which are not asynchronously well-formed.

Definition 5.5 (Pairable runs). Let CA be a c-automaton. A run σ in
is paired into a run σ′ in iff they are coinitial, produce the same sender
trace, and each output in σ′ is immediately followed by the corresponding
input . A run σ is pairable if it is paired into a run σ′.

Theorem 5.6. Let CA be an asynchronously well-formed c-automaton.

Similarly to Theorem4.14, asynchronous well-formedness is a necessary con-
dition for Theorem5.6. Examples (b) and (c) of Fig. 3 work the same also for the
asynchronous case, since we do not changed the definition of well-branchedness.
We changed instead the definition of well-sequencedness to a stricter version and
the c-automaton (a) of Fig. 3 is hence not enough to show the necessity of asyn-
chronous well-sequencedness; this can however be easily done using the following
c-automaton which is well-sequenced but not asynchronouly well-sequenced.

Choreography Automata 101

Since outputs of asynchronous CFSMs can always be fired, there is a run of
the projected system beginning with and producing the sender trace

which trivially does not belong to L(CA)
because the interactions cannot be swapped (cf. Definition 5.3).

The communication properties for projected systems can also be obtained.

Theorem 5.7. Given an asynchronous well-formed c-automaton CA, its pro-
jection is live, lock-free, and deadlock-free with respect to the asyn-
chronous semantics.

6 Conclusion, Related Work and Future Work

We introduced a model of choreographies based on FSAs whose transitions are
labelled by interactions. We showed relevant results both for a synchronous and
an asynchronous underlying communication infrastructure. We established a cor-
respondence between the language of an automaton and the one of its projection,
as well as proofs of liveness, lock, and deadlock freedom for the latter.

The adoption of an automata-based model brings in two main benefits.
Firstly, the constructions that we provided are based on set-theoretic notions
and are syntax-independent. This contrasts with syntax-driven models (such as
behavioural type systems [30]) where expressiveness may be limited and def-
initions may be more complex due to syntactic reasons. E.g., the example in
Sect. 1 cannot be modelled in many behavioural type systems since entangled
loops cannot be represented using a recursion operator. Secondly, we can re-use
well-known results of the theory of automata (e.g., we used notions of trace
equivalence and determinisation) and related tools.

Related Work. Automata-based models for specifying the local behaviour of dis-
tributed components are commonplace in the literature (see e.g., [13,21]). Less
so is for the global specifications of choreographies: to the best of our knowl-
edge, the conversation protocols (CP) in [9,26,27] (and references therein) are
the only such model in the literature. The realisability of CP has been first
studied in [27]; this is indeed the work closest to ours. Conversation protocols
are non-deterministic Büchi automata whose labels resemble our interactions
(barred the fact that, contrarily to our formalism, in [27] the sender and the
receiver of each message are determined by its content). Our c-automata are
basically finite-state automata where infinite words can be taken into account
by looking at them as Büchi automata where all states are actually final. It is
not immediate to provide a detailed comparison between conversation protocols
and c-automata because their semantics and underlying communication models
differ. As for the communication model, conversation protocols are realised in a
subclass of CFSMs (cf. Section 5 of [27]), whereas we consider the unrestricted
model of CFSMs, as well as a synchronous version of it. Concerning the seman-
tics, Definition 4 (item 3(b)) of [27] restricts the runs to those where all messages

102 F. Barbanera et al.

in queues are eventually consumed, that is they require by definition a form of
liveness. Instead, one of our goals is to identify conditions that guarantee rele-
vant liveness properties. We prove them in Theorem 5.7, and in Proposition D.1
in [7] we prove the exact property assumed in [27]. The realisability conditions
of conversation protocols are lossless join, synchronous compatibility, and auton-
omy. Those conditions cannot easily be compared with well-formedness, due to
the differences in the models and in the semantics. Furthermore, the style of the
conditions is very different, and it also induces very different proof strategies in
many cases. In particular,

– our well-sequencedness is checked on pairs of consecutive transitions and well-
branchedness on pairs of coinitial paths;

– lossless join is a global property, that is a condition on the automaton con-
sisting of the product of the languages of the local projections;

– synchronous compatibility is defined in terms of pairs of traces in the pro-
jection but verified with an algorithm that checks a global property of an
automata construction, and the same holds for autonomy.

Thus, while the conditions capture similar intuitions, a detailed comparison
is very hard. When restricting to the common part of the two models, well-
branchedness implies autonomy while the opposite does not hold. Indeed, by
well-branchedness the selector is output-ready (according to the terminology
in [27]), while any other participant either behaves uniformly in each branch
(and is thus either input-ready or output-ready or termination-ready) or it is
made aware of the choice by distinct inputs (that is it is input-ready). In all
the cases autonomy is satisfied. In the other direction, a choice between traces

and satisfies auton-
omy but not well-branchedness.

As for lossless join, we do not assume it. Actually, it is equivalent to one of our
results, namely the correctness of the projection in the synchronous case (The-
orem 4.14). Such a result is also used in the asynchronous case (Theorem 5.6),
which is proved by reduction to the synchronous one via paired runs. We leave
a detailed comparison of the two sets of constraints, in a common setting, for
future work. Later works on CP (see, e.g., [9]) changed the approach and relied
on model checking to show realisability instead of well-formedness conditions.
Unfortunately, some of their main decidability results were flawed [24].

Conditions similar to well-branchedness and well-sequencedness do naturally
arise in investigations related to choreographies and their realisability. A unique
sender driving a choice is a condition present in several multiparty session types
formalisms ([28] and [20] to cite just a couple of them), global graphs formalisms
[48], choreography languages in general (for instance see the notion of domi-
nant role in [44]). Conditions related to item (3) of Definition 4.6 can also be
found in multiparty session types formalisms [46] or in conversation protocols,
as discussed above. Also, notions close to well-sequencedness turn out to arise
quite naturally in “well-behaved” choreographies (see for instance the notion of
well-informedness of [15] in the context of collaboration diagrams).

Choreography Automata 103

Similarly to what discussed in Remark 4.10, some approaches propose tech-
niques to fix choreographies which are not well-behaved. This issue is consid-
ered in some multiparty session types [10,11], in algebraic and automata-based
frameworks for choreographies [8,36] as well as in the choreographic middleware
ChoreOS [3,4]. While they consider different conditions than ours, trying to
adapt their approaches to our setting is an interesting item for future work.

As said, most approaches are not based on automata. For instance, [22,35,44]
use algebraic operators to build larger choreographies from smaller ones, and give
conditions on such operations ensuring that the resulting choreography is “well-
behaved”. This technique is not applicable in our case, since, like most works on
automata, we do not consider an algebra to build automata.

While the main aim of c-automata is to provide a choreography model based
on FSAs, we remark here that it is rather expressive and complements exist-
ing models of choreographies or multiparty session types (MST). In particular,
the expressive power of c-automata is not comparable with the one of the MST
in [45], which subsumes most systems in the literature. More precisely, the c-
automaton Cref in Sect. 1 cannot be syntactically written in [45] due to the two
entangled loops. That example cannot be expressed in global graphs [48] either,
again due to the intersecting loops. We note that the infinite unfolding of the c-
automaton is regular and therefore it would fit in the session type system consid-
ered in [47]. However, this type system has not been conceived for choreographies
(it is a binary session type system) and does not allow non-determinism.

On the other side, examples such as [45, Example 2, Fig. 4] cannot be written
in our model (since we expect the same roles to occur in branches which are
coinitial, branches inside loops require that all participants in a loop are notified
when the loop ends). We conjecture that a refinement of well-branchedness is
possible to address this limitation. Global graphs are another model of global
specifications. Their advantage is that they feature parallel composition, which
c-automata lack. We note however that one could use the classical product of
automata on c-automata to model parallel composition in the case where the two
branches have disjoint sets of participants (as typically assumed in MST with
parallel composition). Mapping global graphs without parallel composition into
c-automata is trivial. The same considerations apply to choreography languages
where possible behaviours are defined by a suitable process algebra with parallel
composition such as [14,35].

Future Work. One of the main motivations to develop a choreography model
based on automata was to lift the compositional mechanism discovered in [6]
on CFSMs to global specifications, in such a way that composition of global
specifications preserves well-formedness. This is the problem we are currently
addressing.

An interesting future development is also to adopt Büchi automata as c-
automata. This extension is technically straightforward (just add accepting
states to Definition 3.1 and define ω-languages accordingly), but it probably
impacts greatly the underlying theory. An interesting yet not trivial effort is
the identification of well-formedness conditions on this generalised class of c-

104 F. Barbanera et al.

automata that guarantee a precise correspondence with the ω-languages of the
projections.

The interplay between FSAs and formal languages could lead to a theory
of projection of choreographies based on languages instead of automata. For
instance, one could try to characterise the languages accepted by well-formed
c-automata, similarly to what done in [1,38,48]. In those approaches global
specifications are rendered as partial orders and the distributed realisability is
characterised in terms of closure properties of languages.

A final direction for future work concerns the implementation of tool support
for the approach. We are currently working in this direction. A very preliminary
and partial implementation by Simone Orlando and Ivan Lanese is available at
https://github.com/simoneorlando/Corinne.

References

1. Alur, R., Etessami, K., Yannakakis, M.: Inference of message sequence charts. IEEE
Trans. Softw. Eng. 29(7), 623–633 (2003)

2. Ariola, W., Dunlop, C.: Testing in the API Economy. Top 5 Myths. https://
api2cart.com/api-technology/api-testing-myths-infographic/

3. Autili, M., Inverardi, P., Tivoli, M.: Choreography realizability enforcement
through the automatic synthesis of distributed coordination delegates. Sci. Com-
put. Program. 160, 3–29 (2018)

4. Autili, M., Di Ruscio, D., Di Salle, A., Perucci, A.: CHOReOSynt: enforcing chore-
ography realizability in the future internet. In: Cheung, S.-C., Orso, A., Storey,
M.-A.D. (eds.) Proceedings of the 22nd ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering (FSE-22), Hong Kong, China, 16–22
November 2014, pp. 723–726. ACM (2014)

5. Autili, M., Di Salle, A., Gallo, F., Pompilio, C., Tivoli, M.: CHOReVOLUTION:
automating the realization of highly–collaborative distributed applications. In: Riis
Nielson, H., Tuosto, E. (eds.) COORDINATION 2019. LNCS, vol. 11533, pp. 92–
108. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22397-7 6

6. Barbanera, F., De’Liguoro, U., Hennicker, R.: Connecting open systems of commu-
nicating finite state machines. J. Log. Algebraic Methods Program. 109, 100476
(2019)

7. Barbanera, F., Lanese, I., Tuosto, E.: Choreography automata, April 2020. http://
www.cs.unibo.it/∼lanese/choreography automata.pdf. Full version

8. Basu, S., Bultan, T.: Automated choreography repair. In: Stevens, P., W ↪asowski,
A. (eds.) FASE 2016. LNCS, vol. 9633, pp. 13–30. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49665-7 2

9. Basu, S., Bultan, T., Ouederni, M.: Deciding choreography realizability. In: Pro-
ceedings of the 39th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 2012, Philadelphia, Pennsylvania, USA, 22–28 Jan-
uary 2012, pp. 191–202 (2012)

10. Bocchi, L., Lange, J., Tuosto, E.: Amending contracts for choreographies. In: ICE,
volume 59 of EPTCS, pp. 111–129 (2011)

11. Bocchi, L., Lange, J., Tuosto, E.: Three algorithms and a methodology for amend-
ing contracts for choreographies. Sci. Ann. Comput. Sci. 22(1), 61–104 (2012)

https://github.com/simoneorlando/Corinne
https://api2cart.com/api-technology/api-testing-myths-infographic/
https://api2cart.com/api-technology/api-testing-myths-infographic/
https://doi.org/10.1007/978-3-030-22397-7_6
http://www.cs.unibo.it/~lanese/choreography_automata.pdf
http://www.cs.unibo.it/~lanese/choreography_automata.pdf
https://doi.org/10.1007/978-3-662-49665-7_2

Choreography Automata 105

12. Bonér, J.: Reactive Microsystems - The Evolution of Microservices at Scale.
O’Reilly, Sebastopol (2018)

13. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2),
323–342 (1983)

14. Bravetti, M., Zavattaro, G.: Towards a unifying theory for choreography confor-
mance and contract compliance. In: Lumpe, M., Vanderperren, W. (eds.) SC 2007.
LNCS, vol. 4829, pp. 34–50. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-77351-1 4

15. Bultan, T., Xiang, F.: Specification of realizable service conversations using col-
laboration diagrams. Serv. Oriented Comput. Appl. 2(1), 27–39 (2008). https://
doi.org/10.1007/s11761-008-0022-7

16. Bultan, T., Fu, X., Hull, R., Su, J.: Conversation specification: a new approach
to design and analysis of e-service composition. In: Hencsey, G., White, B., Chen,
Y.-F.R., Kovács, L., Lawrence, S. (eds.) Proceedings of the Twelfth International
World Wide Web Conference, WWW 2003, Budapest, Hungary, 20–24 May 2003,
pp. 403–410. ACM (2003)

17. Carbone, M., Honda, K., Yoshida, N.: Structured communication-centred program-
ming for web services. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp.
2–17. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71316-6 2

18. Carbone, M., Montesi, F.: Deadlock-freedom-by-design: multiparty asynchronous
global programming. In: Giacobazzi, R., Cousot, R. (eds.) POPL, pp. 263–274.
ACM (2013)

19. Cécé, G., Finkel, A.: Verification of programs with half-duplex communication.
I&C 202(2), 166–190 (2005)

20. Coppo, M., Dezani-Ciancaglini, M., Yoshida, N., Padovani, L.: Global progress for
dynamically interleaved multiparty sessions. Math. Struct. Comput. Sci. 26(2),
238–302 (2016)

21. de Alfaro, L., Henzinger, T.A.: Interface automata. In: Proceedings of the 8th
European Software Engineering Conference Held Jointly with 9th ACM SIGSOFT
International Symposium on Foundations of Software Engineering 2001, Vienna,
Austria, 10–14 September 2001, pp. 109–120 (2001)

22. Deniélou, P.-M., Yoshida, N.: Dynamic multirole session types. In: Ball, T., Sagiv,
M. (eds.) POPL, pp. 435–446. ACM (2011)

23. Deniélou, P.-M., Yoshida, N.: Multiparty session types meet communicating
automata. In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp. 194–213. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-28869-2 10

24. Finkel, A., Lozes, E.: Synchronizability of communicating finite state machines is
not decidable. In: ICALP, pp. 122:1–122:14 (2017)

25. Francalanza, A., Mezzina, C.A., Tuosto, E.: Reversible choreographies via moni-
toring in Erlang. In: Bonomi, S., Rivière, E. (eds.) DAIS 2018. LNCS, vol. 10853,
pp. 75–92. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93767-0 6

26. Fu, X., Bultan, T., Su, J.: Conversation protocols: a formalism for specification
and verification of reactive electronic services. In: Ibarra, O.H., Dang, Z. (eds.)
CIAA 2003. LNCS, vol. 2759, pp. 188–200. Springer, Heidelberg (2003). https://
doi.org/10.1007/3-540-45089-0 18

27. Xiang, F., Bultan, T., Jianwen, S.: Conversation protocols: a formalism for specifi-
cation and verification of reactive electronic services. Theor. Comput. Sci. 328(1–
2), 19–37 (2004)

28. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
Necula, G.C., Wadler, P. (eds.) POPL, pp. 273–284. ACM Press (2008)

https://doi.org/10.1007/978-3-540-77351-1_4
https://doi.org/10.1007/978-3-540-77351-1_4
https://doi.org/10.1007/s11761-008-0022-7
https://doi.org/10.1007/s11761-008-0022-7
https://doi.org/10.1007/978-3-540-71316-6_2
https://doi.org/10.1007/978-3-642-28869-2_10
https://doi.org/10.1007/978-3-319-93767-0_6
https://doi.org/10.1007/3-540-45089-0_18
https://doi.org/10.1007/3-540-45089-0_18

106 F. Barbanera et al.

29. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. J.
ACM 63(1), 9:1–9:67 (2016). Extended version of a paper presented at POPL08

30. Hüttel, H., et al.: Foundations of session types and behavioural contracts. ACM
Comput. Surv. 49(1), 3:1–3:36 (2016)

31. Kavantzas, N., Burdett, D., Ritzinger, G., Fletcher, T., Lafon, Y., Barreto, C.:
Web services choreography description language version 1.0. Technical report, W3C
(2005). http://www.w3.org/TR/ws-cdl-10/

32. Kobayashi, N.: A partially deadlock-free typed process calculus. ACM TOPLAS
20(2), 436–482 (1998)

33. Kobayashi, N.: Type-based information flow analysis for the pi-calculus. Acta Infor-
matica 42(4–5), 291–347 (2005)

34. Krishna, A., Poizat, P., Salaün, G.: Checking business process evolution. Sci. Com-
put. Program. 170, 1–26 (2019)

35. Lanese, I., Guidi, C., Montesi, F., Zavattaro, G.: Bridging the gap between
interaction- and process-oriented choreographies. In: Software Engineering and For-
mal Methods, SEFM 2008, pp. 323–332 (2008)

36. Lanese, I., Montesi, F., Zavattaro, G.: Amending choreographies. In: Ravara, A.,
Silva, J. (eds.) WWV, volume 123 of EPTCS, pp. 34–48 (2013)

37. Lange, J., Tuosto, E., Yoshida, N.: From communicating machines to graphical
choreographies. In: Rajamani, S.K., Walker, D. (eds.) POPL, pp. 221–232. ACM
(2015)

38. Lohrey, M.: Safe realizability of high-level message sequence charts*. In: Brim, L.,
Křet́ınský, M., Kučera, A., Jančar, P. (eds.) CONCUR 2002. LNCS, vol. 2421, pp.
177–192. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45694-5 13

39. Montesi, F.: Choreographic programming. Ph.D. thesis, University of Copenhagen
(2013)

40. OMG. Business Process Model and Notation (BPMN), Version 2.0, January 2011.
https://www.omg.org/spec/BPMN

41. Padovani, L., Vasconcelos, V.T., Vieira, H.T.: Typing liveness in multiparty com-
municating systems. In: Kühn, E., Pugliese, R. (eds.) COORDINATION 2014.
LNCS, vol. 8459, pp. 147–162. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-43376-8 10

42. Paige, R., Tarjan, R.: Three partition refinement algorithms. SIAM J. Comput.
16(6), 973–989 (1987)

43. Dalla Preda, M., Gabbrielli, M., Giallorenzo, S., Lanese, I., Mauro, J.: Dynamic
choreographies: theory and implementation. Log. Methods Comput. Sci. 13(2),
1–57 (2017)

44. Qiu, Z., Zhao, X., Cai, C., Yang, H.: Towards the theoretical foundation of choreog-
raphy. In: Williamson, C.L., Zurko, M.E., Patel-Schneider, P.F., Shenoy, P.J. (eds.)
Proceedings of the 16th International Conference on World Wide Web, WWW
2007, Banff, Alberta, Canada, 8–12 May 2007, pp. 973–982. ACM (2007)

45. Scalas, A., Yoshida, N.: Less is more: multiparty session types revisited. PACMPL
3(POPL), 30:1–30:29 (2019)

46. Severi, P., Dezani-Ciancaglini, M.: Observational equivalence for multiparty ses-
sions. Fundamenta Informaticae 170, 267–305 (2019)

47. Severi, P., Padovani, L., Tuosto, E., Dezani-Ciancaglini, M.: On sessions and infi-
nite data. Log. Methods Comput. Sci. 13(2), 1–39 (2017)

48. Tuosto, E., Guanciale, R.: Semantics of global view of choreographies. J. Log.
Algebraic Methods Program. 95, 17–40 (2018)

http://www.w3.org/TR/ws-cdl-10/
https://doi.org/10.1007/3-540-45694-5_13
https://www.omg.org/spec/BPMN
https://doi.org/10.1007/978-3-662-43376-8_10
https://doi.org/10.1007/978-3-662-43376-8_10

A Choreography-Driven Approach
to APIs: The OpenDXL Case Study

Leonardo Frittelli1, Facundo Maldonado1, Hernán Melgratti2(B),
and Emilio Tuosto3,4

1 McAfee Cordoba, Córdoba, Argentina
{leonardo frittelli,Facundo Maldonado}@mcafee.com

2 ICC - Universidad de Buenos Aires - Conicet, Buenos Aires, Argentina
hmelgra@dc.uba.ar

3 Gran Sasso Science Institute, L’Aquila, Italy
emilio.tuosto@gssi.it

4 University of Leicester, Leicester, UK

Abstract. We propose a model-driven approach based on formal data-
driven choreographies to model message-passing applications. We apply
our approach to the threat intelligence exchange (TIE) services provided
by McAfee through the OpenDXL industrial platform. We advocate a
chain of model transformations that (i) devises a visual presentation
of communication protocols, (ii) formalises a global specification from
the visual presentation that captures the data flow among services, (iii)
enables the automatic derivation of specifications for the single compo-
nents, and (iv) enables the analysis of software implementations.

1 Introduction

We propose a methodology for the modelling and analysis of (part of) OpenDXL,
a distributed platform that embraces the principles of the API-economy [10,17].
In this context applications are services built by composing APIs and made avail-
able through the publication of their own APIs. In fact, the APIs of OpenDXL
are paramount for enabling the openness of the platform, its growth in terms
of services (currently the platform offers hundreds of different services), and its
trustworthiness. The overall goal of OpenDXL is to provide a shared platform
for the distributed coordination of security-related operations. A key aspect of
the platform is to foster public APIs available to stakeholders for the provision
or consumption of cyber-security services.

Research partly supported by the EU H2020 RISE programme under the
Marie Sk�lodowska-Curie grant agreement No. 778233, by UBACyT projects
20020170100544BA and 20020170100086BA, PIP project 11220130100148CO, and by
MIUR project PRIN 2017FTXR7S IT MATTERS (Methods and Tools for Trustworthy
Smart Systems).

c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
S. Bliudze and L. Bocchi (Eds.): COORDINATION 2020, LNCS 12134, pp. 107–124, 2020.
https://doi.org/10.1007/978-3-030-50029-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50029-0_7&domain=pdf
https://doi.org/10.1007/978-3-030-50029-0_7

108 L. Frittelli et al.

A well-known issue in API-based development is that APIs interoperability
heavily depends on the (quality of) documentation: “An API is useless unless
you document it” [29]. Proper documentation of APIs is still a problem. The
current practice is to provide informal or semi-formal documentation that makes
it difficult to validate software obtained by API composition, to establish their
properties, and to maintain and evolve applications [2]. The OpenDXL platform
is no exception. The APIs of the platform is mostly described in plain English.

We advocate a more systematic approach that, turning informal documen-
tation of APIs in precise models, enables the application of formal methods to
develop and analysis services. We focus on threat intelligence exchange (TIE)
[23], one of the OpenDXL APIs for the coordination of activities such as assess-
ment of security-related digital documents or reaction to indicators flagging sus-
picious behaviour or data. The API of TIE is part of OpenDXL and it has
been designed to enable the coordination of distributed security-related activi-
ties. More precisely, TIE APIs support the management of crucial cyber-security
information about assets (digital or not) of medium-size to big organisations.

Components for TIE developed by third-party stakeholders sometimes
exhibit unexpected behaviour due to the ambiguity of the documentation of com-
munication protocols. In fact, TIE relies on an event-notification communication
infrastructure to cope with the high number of components and the volume of
the communication. This asynchronous communication mechanism requires the
realisation of a specific communication protocol (an application-level protocol)
for the various components of the architecture to properly coordinate with each
other. To address these issues, we propose a more rigorous approach to the
development and documentation of the APIs. We adopt a recent behavioural
type system [5] to give a precise model of some TIE services. Besides the reso-
lution of ambiguities in the API documentation, our model enables some static
and run-time verification of TIE services. We will discuss how these models could
be used to check that the communication pattern of components is the expected
one. Also, we will show how our behavioural types can be used to automatically
verify logs of executions that may flag occurrences of unexpected behaviour.

Summary of the Contributions. Our overall contribution is a methodology for
the design, rigorous documentation, and analysis message-passing applications.
We firstly introduce our methodology and describe the model-transformations it
entails. An original aspect of our approach is the combination of two models con-
ceived to tackle different facets of message-passing applications. More precisely
we rely on global choreographies (g-choreographies, for short; see e.g., [13,32] and
references therein) to specify the communication pattern of a message-passing
system and on klaimographies [5] to capture the data-flow and the execution
model of our application domain.

We aim to show how a model-driven approach can be conducive of a fruitful
collaboration between academics and practitioners. We draw some considerations
about this in Sect. 6. Our approach consists of the following steps:
1. Device a graphical model G representing the coordination among the compo-

nents of the application; for this we use global choreographies (cf. Sect. 2.1).

Monitoring APIs with Choreographies 109

2. Transform G into behavioural types formalising the protocol into a
behavioural type K representing the global behaviour of the application; for
this we use klaimographies (cf. Sect. 2.2).

3. Transform K into specifications of each component of the application; for this
we project K on local types (cf. Sect. 4).

4. Transform the local types into state machines from which to derive monitors
to check for possible deviations from expected behaviour and verify imple-
mentations of components (cf. Sect. 5).

Although, g-choreographies are crucial to settle a common ground between aca-
demics and practitioners, they do not capture the data-flow and the execution
model of OpenDXL. To cope with this drawback we formalise TIE with klaimo-
graphies, a data-driven model of choreographies.

Structure of the Paper. An overview of the TIE and an informal account of our
behavioural types system is given in Sect. 2.1 (we refer the reader to [5] for the
full details). The behavioural types of TIE are reported in Sect. 3; there we clarify
that our model falls in the setting of “top-down” choreographic approaches. This
amounts to say that we first give global specification that formally captures the
main aspects of the communication protocol of all TIE from a holistic point of
view. Then, in Sect. 4 we discuss how to automatically derive (by projection) the
local behaviour of each component of TIE. We consider a few real scenarios in
Sect. 5 and draw some conclusions in Sect. 6.

2 Preliminaries

We survey the two main ingredients of this paper, OpenDXL and klaimographies.
We focus on the part of OpenDXL relevant to our case study and only give an
informal account of klaimographies (see [5] for details).

2.1 An Informal Account of OpenDXL

The Open Data Exchange Layer (OpenDXL, https://www.opendxl.com/) is an
open-source initiative aiming to support the exchange of timely and accurate
cyber-security information in order to foster the dynamic adaptation of inter-
connected services to security threats. OpenDXL is part of the McAfee Security
Innovation Initiative [22], a consortium of about hundred ICT companies includ-
ing HP, IBM, and Panasonic.

A main goal of OpenDXL is to provide a shared platform to enable the
distributed coordination of security-related operations. This goal is supported
by the threat intelligence exchange (TIE) reputation APIs [23] designed to enable
the coordination of activities involving

– the assessment of the security threats of an environment (configuration files,
certificates, unsigned or unknown files, etc.);

– the prioritisation of analysis steps (focusing on malicious or unknown files);

https://www.opendxl.com/

110 L. Frittelli et al.

Fig. 1. Documenting TIE [23]

– the customisation of security queries based on reputation-based data (such
as product or company names);

– the reaction to suspicious indicators.

A key aspect of OpenDXL lays in its service-oriented nature. Providers use
the APIs to offer various services such as reporting services, firewalls, security
analytics, etc. Consumers of these APIs (typically companies or large institu-
tions) can either use existing services, or combine them to develop their own func-
tionalities. The basic communication infrastructure features an event-notification
architecture whereby participants subscribe to topics of interests to generate
events or query services. Such topics are also used to broadcast security infor-
mation of general interest. The main components of OpenDXL are clients (C),
servers (S), and brokers (B). The latter mediate interactions among clients and
servers in order to guarantee service availability. Brokers interact with each other
to dynamically assign servers to clients when default servers are unavailable.

The high-level workflow of the TIE APIs is specified by the sequence diagram
in Fig. 1 (borrowed from [23]). Together with other informal documentation, the
diagram guides the implementation of new components or the composition of
services available in the platform. For instance, the documentation describing
how clients can set the reputation of a file specifies that a client “must have per-
mission to send messages to the /mcafee/service/tie/reputation/set topic”.

2.2 Data-Driven Global Types

Unlike “standard” behavioural types, klaimographies model data flows in a com-
munication model not based on point-to-point interactions. Interactions in a
klaimography happen through tuple spaces in the style of Linda-like languages
[12]. Instead of relying on primitives for sending and receiving messages over a
channel, here there are primitives for inserting a tuple on a tuple space, for read-
ing (without consuming) a tuple from a tuple space, or for retrieving a tuple from
a tuple space. We call these interactions data-driven, as the coordination is based
on (the type of) the exchanged tuples and the roles played by components. In
fact, the communication model uses pattern matching to establish when a mes-
sage from a sender may be accessed by a receiver. Crucially, klaimographies also

Monitoring APIs with Choreographies 111

feature multi-roles, namely roles that may be enacted by an arbitrary number
of instances. Let us discuss these points with a simple example:

K = C→S : (bool · int)@ � .S→C : (int · str)@ �

The klaimography K specifies the communication protocol between (arbitrarily
many) clients C and (arbitrarily many) servers S. More precisely, each client
makes a request to a server by inserting a tuple consisting of a boolean and an
integer at the tuple space �, as indicated by the prefix C→S : (bool · int)@ �.
A server consumes the request and generates a response to be consumed by a
client, as specified by S→C : (int · str)@ �. Remarkably, K does not prescribe
that the particular client and server involved in the first interaction are also
the ones involved in the second interaction; K above establishes instead that
every client starts by producing a tuple to be consumed by a server and then
consumes a tuple generated by a server (also K stipulates that servers behave
dually). As a consequence, the participants in K cannot correlate messages in
different interactions. This can be achieved by using binders, e.g.,

K′ = C→S : (bool · νx : int)@ � .S→C : (x : int · str)@ �

The first interaction in K′ introduces a new name x for the integer value
exchanged in the first message. The use of x in the second interaction constraints
the instances of S and C to share a tuple whose integer expression matches the
integer shared in the first interaction. Consequently, the two messages in the
protocol are correlated by the integer values in the two messages.

Tuple spaces may simulate other communication paradigms such as multicast
or event-notification. For instance, a tuple space � can be thought of as a topic;
messages can be produced, read and consumed only by those roles that know such
topic. Binders can also be used to ensure the creation of new topics. Consider
the klaimography below:

K′′ = C→ S : (bool · int · ν�′ : loc)@ � .S→C : (int · str)@ �′

K′′ is similar to K but for the fact that each client communicates to the server a
new tuple space �′ known only to the particular client and server that commu-
nicate in the first interaction; the second interaction takes place by producing
and consuming messages on such new tuple space.

Broadcast can be achieved by producing persistent messages, e.g.,

K′′′ = C→ S : (bool · int)@ � .S!int · str@ r

where S!int · str@ r states that servers insert their responses at locality r. The
absence of round brackets around the tuple expresses that such tuple is read-only
(i.e., they cannot be removed from the tuple space); the absence of a receiver
expresses that any role can read the tuple; consequently, the generated tuple can
be read by any role “knowing” the locality r.

Additionally, klaimographies provide operators for sequential composition
(≺), choices (+) and recursion (μρ X.K), illustrated in the following section.

112 L. Frittelli et al.

3 Klaimographies for OpenDXL

The first problem we had to face in the modelling of the protocol was to find a
common ground between academic and industrial partners. This is important in
order to have enough confidence that the produced formalisation faithfully rep-
resent the protocol. To attain this we gave a first approximation of the protocol
as the g-choreography in Fig. 2 which we now describe. A client C and a server
S engage in a protocol where C may (repeatedly) either (i) send S meta-data
regarding some file x or (ii) request the analysis of a file x. A server S reacts to a
request from a client in four possible ways depending on the information S may
need to further acquire from the requesting client. In the protocol these alterna-
tives are encoded with a message Resbb′(x) where b and b′ are two boolean flags;
the first boolean is set to true when the server needs meta-data related to the file
x while b′ is set to true if more context information about the file is necessary.
The client reacts to this request from the sever as appropriate. For instance, if
C receives the message Restt(x) then it has to send both meta-data and context
information, while only the latter are sent if Resft(x) is received. Before iterating
back, the server may publish a new report1; this is modelled by the activity KNR

which we leave unspecified. This activity consists of a possible emission of a new
report about file x that the server S may decide to multi-cast to clients (not just
to clients currently engaging with the server).

We remark that the g-choreography in Fig. 2 represents the interactions
between clients and servers and has been introduced as a first step in the formal-
isation of the protocol to pave the way for its algebraic definition as klaimogra-
phies. Firstly, a graphical representation played a central rôle when validating
protocol interactions with industrial partners. Secondly, the graph was used as a
blueprint for the formalisation. Hence, we invite the reader to follow such graph
as the formal definitions unroll.

In the OpenDXL platform several clients and servers may interact by
exchanging messages. The interaction in TIE is always triggered by a client
which, as seen in Sect. 2.1, iteratively decides to either send some metadata on a
file or request for the reputation of a specific file. This can be defined as follows

KTIE � μC X.KBody ≺X (1)

where μC X.KBody ≺X is the recursive type to express iterative behaviour; it
indicates that role C is the one controlling the iteration. Namely, C decides
whether to repeat the execution of the body KBody or to end it. The sequential
composition KBody ≺ X is just syntax to express that, after the execution of KBody,
the iteration restarts.

Notation. We write � as “macros” so that occurrences of the left-hand
side of the equation are verbatim replaced for its right-hand side.

The body of the iteration in (1), defined as

KBody � (KMD(x, �)+ KREQ(x, �))≺ KNR(x) (2)
1 The server is actually multi-threaded and could issue new reports about files other

than x at any time; for simplicity, we do not model this aspect.

Monitoring APIs with Choreographies 113

C→−− S : MD(x) S→−− C : Restt(x)

C→−− S : MD(x)

C→−− S : File(x)

S→−− C : Resft(x)

C→−− S : File(x)

S→−− C : Restf(x)

C→−− S : MD(x)

S→−− C : Resff(x)

+

+

C→−− S : Req(x)

+
(i) (ii)

+

KNR

�

�

Fig. 2. A g-choreography for TIE APIs

specifies that each iteration consists of a choice between KMD(x, �) and KREQ(x, �)
followed by KNR(x):

– The branch KMD(x, �) accounts for the case in which a client sends new meta-
data to a server.

– The branch KREQ(x, �) describes the interaction for the case in which the client
sends a reputation request.

– The continuation KNR(x) describes the decision of the server of emitting a
reputation report.

Notation. In accordance with the previous notation, x and � above are just
meta-identifiers for the same syntactic identifier across equations.

Let b be a globally known location representing the public name on which a
client sends requests to a server. The branches of the body are defined as:

KMD(x, �) � C→ S : (MD · νx : Dgt · ν� : loc)@ b

Kreq(x, �) � C→ S : (Req · νx : Dgt · ν� : loc)@ b . Kinfo(x, �)
(3)

In both cases the first interaction takes place on the tuple space b.
In KMD(x, �), the client simply sends a tuple MD · νx : Dgt · ν� : loc made of

three fields. The first field has sort MD which is a tag for messages carrying
metadata. The second field is a named sort νx : Dgt, where (i) the sort Dgt
(after digest) types values that are hash codes of files and (ii) the identifier
x is introduced to establish the correlation that will be used in the following
interactions. This mechanism enables the tracking of data dependencies among
interactions. Finally, the third field is another named sort � : loc; basically, the
client communicates also the name � of a new tuple space, to be used in the
subsequent communications. For instance, the continuation type

KNR(x) � S!Report · x : Dgt@ b’+0

114 L. Frittelli et al.

describes the behaviour of a server that decides whether to emit a new report
about the received metadata or not. Type KNR(x) consists of a non-deterministic
choice between a branch S!Report · x : Dgt@ b’ and the empty type 0. The for-
mer specifies that the server publishes a new report for the file by emitting a
(persistent) tuple of type Report · x : Dgt on a publicly known2 tuple space b’.
Note that the use of x constraints the new report produced by server S to be
related to a file digest communicated earlier to S.

The interaction prefixes C→S : (...)@ � are quite different than the prefix
S!Report · x : Dgt@ �. This is a remarkable peculiarity of klaimographies that is
quite useful to model TIE. Firstly, the former kind of prefix describes an inter-
action between two roles: clients are supposed to produce messages of some sort
for servers. Instead, the behavioural type S!Report · x : Dgt@ � only prescribes
the expected communication from a single role, the server. This allows any role
to access the tuple types generated by this kind of prefixes.

Another important aspect is the other syntactic difference: the messages in
round brackets are produced to be consumed, while the ones not surrounded by
brackets are persistent and can only be read; moreover, the message can be read
by any role able to access the tuple space �. For instance, requests of clients are
eventually handled by a server, while any role can read, but not remove, reports.

Let us now return to the comment on the other branch in (2). In the klaimog-
raphy KREQ(x, �), a client sends a request for the reputation of a file by sending
a message whose tag is of type Req. In that message, the client sends the digest
Dgt that identifies the file and, analogously to KMD(x, �), a fresh locality �; the
correlation x and the locality � are used in the subsequent interactions, which
are described by Kinfo(x, �) below.

Kinfo(x, �) � S→C : (Restt · x : Dgt)@ � . Ktt(x, �)
+ S→C : (Restf · x : Dgt)@ � . Ktf(x, �)
+ S→C : (Resft · x : Dgt)@ � . Kft(x, �)
+ S→C : (Resff · x : Dgt)@ �

This klaimography corresponds to the inner-most choice of the graph in Sect. 2.1;
it prescribes the possible responses that the server may send to the client. We
start commenting on the last branch. If the server does not require further infor-
mation, it simply informs the client that the interaction for that request con-
cludes. The remaining branches of Kinfo(x, �) model the cases in which the server
requests both the metadata and the file (first branch), just the metadata (sec-
ond branch) or just the file (third branch). When both metadata and file are
requested, then the protocol continues as follows

Ktt(x, �) � C→ S : (MD · x : Dgt)@ � .C→ S : (File · x : Dgt)@ �

2 Here we simplify the actual implementation where the topic used to publish the
report is related to the file used in the request.

Monitoring APIs with Choreographies 115

And, when the server asks for either the metadata or the file, then

Ktf(x, �) � C→S : (MD · x : Dgt)@ �

Kft(x, �) � C→S : (File · x : Dgt)@ �

which is in accordance with the g-choreography in Sect. 2.1.

4 Projections

As commonplace in choreographic approaches, the description of the expected
behaviour of each participant in a protocol can be obtained by projection. In our
case, this is an operation that takes a klaimography and a role and generates
a description, dubbed local type, of the flow of messages sent and received by
that participant. Local types are meant to give an abstract specification of the
processes implementing the roles of the klaimography. We write the projection
of a klaimography K for the role ρ as K �ρ. Note that the projection operation is
completely automatic; given a klaimography the behaviour of each component
is algorithmically derived. We omit here the formal definition of K �ρ, which can
be found at [5], and illustrate its application to KTIE in (1).

We consider KTIE �C first. The projection operation is defined by induction
on the syntax of the klaimography; hence we focus on the constituent parts
of KTIE. Consider the branch KMD(x, �), which is defined in (3) as the interac-
tion C→ S : (MD · νx : Dgt · ν� : loc)@ b. The projection of this interaction on
the client role just consists of the behaviour that generates a message of type
MD · νx : Dgt · ν� : loc on the locality b; formally, this is written

KMD(x, �) �C= (MD · νx : Dgt · ν� : loc)!b

Note (a) the use of the round brackets to represent message consumption, and
(b) the projection is oblivious of the intended receiver (the server). In fact, the
behavioural type system of klaimographies ensures that if the actual components
abide by the klaimographies given in Sect. 3, then only components enacting the
role of the server will access those kind of tuples.

The projection for Kreq(x, �) (and all its constituents) is analogous:

Kreq(x, �) �C= (Req · νx : Dgt · ν� : loc)!b . Kinfo(x, �) �C

Kinfo(x, �) �C= (Restt · x : Dgt)?� . Ktt(x, �) �C
+ (Restf · x : Dgt)?� . Ktf(x, �) �C
+ (Resft · x : Dgt)?� . Kft(x, �) �C
+ (Resff · x : Dgt)?�

Ktt(x, �) �C= (MD · x : Dgt)!� .(File · x : Dgt)!�

Ktf(x, �) �C= (MD · x : Dgt)!�

Kft(x, �) �C= (File · x : Dgt)!�

116 L. Frittelli et al.

Observe that the projection for Kinfo is a choice in which C expects (and consumes)
one of the four possible messages produced by the server at locality �.

Finally, the projection of KNR(x) is

KNR(x) �C= Report · x : Dgt?b’+0

Differently from the projection of interactions in which the client consumes the
messages, the first branch of the above projection just reads the message at
the locality �. Note the difference between (t)?� (consumption) and t?� (read),
which reflects the usage of round bracket discussed in Sect. 3.

Projection works homomorphically on choices and sequential composition,
hence the projection of Kbody in (2) we have

Kbody �C= (KMD(x, �) �C + Kreq(x, �) �C)≺ KNR(x) �C

We now give the projection of KTIE, which is a recursive klaimography. Then,

KTIE �C =
(
μX(b) .〈stop〉!b .0+〈νy : loc〉!b . Kbody �C ≺ X〈y〉)〈b〉 (4)

The projection of a recursive klaimography is also a recursive local type. How-
ever, the projection introduces auxiliary interactions to coordinate the execution
of the loop. Since C is the role that coordinates the recursion in KTIE, in the projec-
tion C starts its body by communicating its decision to terminate or to continue.
Namely, the body of KTIE �C has two branches, 〈stop〉!b communicates the termi-
nation of the recursion, while the other starting with 〈νy : loc〉!b iterates (and
distributes a fresh localities for the next iteration).

Note that recursive variables X in the local types are parameterised variables
X(b) and X〈b〉. In general, a klaimography μρ X.K is projected as a recursive
local type

(
μX(x̃) . L

)〈̃�〉 where the formal parameters x̃ stand for the locations
used for coordination and �̃ are the initial values, in this case, b. The projection
for the behaviour of the server is obtained analogously.

5 Types at Work

Like data types, behavioural types can be regarded as specifications of the
intended behaviour of a system. As such they can check that the components
implementing the protocol abide by their specifications. Customarily, approaches
to behavioural types focus on static enforcement [9,15,16], i.e., the source code
implementing a role is type-checked against its local type and the soundness of
the type checking algorithm ensures that well-typed code behaves as prescribed
by its type. Also the dynamic enforcement of protocols based on local types
has been addressed in the literature [3,11,27]. In most cases, monitors dynam-
ically check that the messages exchanged by the components comply with the
protocol. Deviations from the expected behaviour are singled out and offending
components are blamed.

Monitoring APIs with Choreographies 117

2019-03-27T15:59:49, 649, clientA, server1, Req, file1
2019-03-27T15:59:49, 649, server1, clientA, Res, 1, 0, file1
2019-03-27T15:59:50, 649, clientA, server1, MD, file1
2019-03-27T15:59:50, 340, clientC, server1, Req, file2
2019-03-27T15:59:50, 340, server1, clientC, Res, 1, 1, file2
2019-03-27T15:59:50, 699, clientD, server1, MD, file2
2019-03-27T15:59:50, 340, clientC, server1, File, file2
2019-03-27T15:59:51, 021, clientE, server1, Req, file3
2019-03-27T15:59:51, 021, server1, clientE, Res, 0, 0, file3
2019-03-27T15:59:51, 370, clientF, server1, MD, file3
2019-03-27T15:59:51, 721, server1, broadcast, Report, file3
...

Fig. 3. A simplified snippet of a real (anonymised) log

In this work we explore the usage of local types for the off-line monitoring of
role implementations. In particular, we use projections to check that the different
implementations of the multirole C in TIE follow the protocol. We take advantage
of the fact that the communication infrastructure of TIE keeps a log with the
communication messages generated by the different roles.

In Fig. 3 we show an anonymised (and simplified) version of a few entries of a
real log. Each entry corresponds to an interaction between a client and a server
and it consists of a record of comma-separated fields which we now describe:

– the first field is a global timestamp used to order the entries chronologically;
– the second field is the locality, which is encoded by a three-digits number;
– the third and fourth fields are the identity of the sender and of the receiver

respectively (for obvious reasons, the real identities have been obfuscated;
Fig. 3 uses symbolic names clientA, server1, etc.);

– the remaining fields are the payloads of the message, which varies depending
on the type of the message.

The type of each message is identified by a tag: Req, MD, and File have analogous
meaning to the ones used in the specification of the protocol in Sects. 3 and 4. The
sorts such as Restf used in our specification are rendered in the implementation
with a payload consisting of three parts: the tag Res and two binary digits; used
to encode the subscript (with 1 representing true and 0 representing false);
for instance, the subscript tf above is encoded as the pair 1, 0. We use filei to
represent the different digests transmitted over the messages.

The first entry in the log of Fig. 3 is generated by the interaction

C→ S : (Req · νx : Dgt · ν� : loc)@ b

executed by Kreq(x, �), where the instance clientA of the role C sends to the
instance server1 of S a request for a reputation report about the file file1.
The second entry in the log corresponds to the selection of the branch

S→C : (Restf · x : Dgt)@ � . Ktf(x, �)

in Kinfo(x, �) in which the server asks the client for the metadata of the file; the
messages in which the client sends the metadata can be seen in the third line

118 L. Frittelli et al.

@startuml left to right direction

[*] --> S0
S0 --> S0: ’MD’@l @Dgt
S0 --> S1: ’Req’@l
S1 --> S2: (’Res’, ’1’, ’1’)@l -> @Dgt
S1 --> S3: (’Res’, ’0’, ’1’)@l -> @Dgt
S1 --> S4: (’Res’, ’1’, ’0’)@l -> @Dgt
S1 --> S0: (’Res’, ’0’, ’0’)@l
S2 --> S3: ’MD’@l -> @Dgt
S3 --> S0: ’File’@f
S4 --> S0: ’MD’@l

@enduml

Fig. 4. Kdxl �C as UML diagram (textual representation)

Fig. 5. Kdxl �C as UML diagram (graphical representation)

of the log. Obviously, the interactions among different instances need not to be
consecutive, as it is the case for the entries at locality 340 which are on the
lines 4, 5 and 7. Observe also that the last entry in Fig. 3 has broadcast as its
receiver. This message corresponds to the publication of a reputation report by
the server, which is defined in KNR(x) as Report · x : Dgt?�.

We have implemented in Python an off-line monitor that takes a log and
a local type in input and checks whether the log faithfully follows behaviour
described by the local type. Local types are turned into a textual represen-
tation of finite state automata that can be depicted as UML state machines.
For instance, the local type Ktie �C is defined as shown in Fig. 4, which can be
graphically represented as shown in Fig. 5.

These representations are obtained by “massaging” the projections defined
in Sect. 4. The main difference between the UML representation and the local
type (besides the obvious syntactic changes) is that the former does not contain
the messages for coordinating the recursion in (4) (i.e., stop and νy : loc); those
have been omitted because not explicitly exchanged by the components. As a
consequence, we assume that the client continues the loop if it keeps sending
messages and it finishes silently otherwise. Another simplification for the sake of
the presentation is the omission of KNR(x) �C, essentially because the observable
behaviour of the client is unaffected if it reads or not a report. In fact, the log
is not informative enough to discriminate on the choice made by the client.

Once such simplifications are in place, (4) can be easily matched with the
graphical representation in Fig. 5. The state S0 represents KTIE �C. The self-loop
stands for the selection of the branch KMD(x, �) �C, i.e., the client sends a message

Monitoring APIs with Choreographies 119

containing metadata, and then restart the loop. The transition from S0 to S1
represents instead the choice of the branch Kreq(x, �) �C, i.e., the client request
of a reputation report. The remaining states are in one-to-one correspondence
with the following projections defined in the previous section: S1 stands for
Kinfo(x, �) �C, S2 for Ktt(x, �) �C, S3 for Kft(x, �) �C, and S4 for Ktf(x, �) �C. All
the transitions are decorated with the associated messages sent or received by
a client. Note also that S1, S3 and S4 have transitions to the state S0 meaning
that execution of the body the is completed and that the body can be restarted.

With this implementation we have detected a few deviations from the
expected behaviour. In particular, some clients exhibit the following violations:

– files are sent for analysis without a prior request,
– requests for further information from the server are not honoured.

The first violation is detected by the presence of an entry of the log with a
message tagged File without a previous message from the server with tag Restt
or Resft. The second violation is due to the absence of an entry related to a
given hash used by the server for asking further information.

Our implementation can also check other properties. For example, TIE clients
should guarantee a so-called “time-window” property which requires that

“a request for the analysis of the same file from a client must not happen
before a given amount of time elapsed from the previous request from the
client for the same file.”

This property (as well as others) can be checked by monitor derived from the
local types as done in the examples above.

6 Conclusions, Related and Future Work

Summary. We reported on a collaboration between industrial and academic
partners which applied formal methods to address a key problem affecting APIs-
based software. More precisely, the problem that informal specifications of the
behaviour of services may lead to errors in message-passing applications. For
instance, third-party clients of TIE services exhibit anomalous when interacting
with the services developed at McAfee. To overcome this problem, TIE services
are engineered with a rather defensive approach to anticipate anomalous interac-
tions. Unintended behaviours are reported to third-parties after a “post-mortem”
analysis of execution logs.

We devised a model-driven approach to model and validate message-passing
software. We applied the methodology in the context of the OpenDXL plat-
form, an initiative of a consortium of industries conceived for the development
of cyber-security functionalities. The platform provides an API to allow develop-
ers to access and combine the functionalities of a service-oriented architecture.
In this context we applied the methodology to the threat intelligence exchange
(TIE) service provided by McAfee Cordoba for the assessment of security threats,
prioritisation of analysis steps, reputation-based data queries.

120 L. Frittelli et al.

Related Work. The use of behavioural types for the specification and analysis of
message-passing application is widespread (see [16] for a survey). Semantics of
behavioural types (operational or denotational) abstract the behaviour of sys-
tems and enables the use of formal methods and tools to check their properties.

Our proposal hinges on a form of choreographies in the vein of global type
systems [15], which formally capture the design of WSCDL [18]. In fact, the spec-
ification of a global view is the starting step of our methodology and the use of
a projection operation to (automatically) derive local views is a paramount step
in the model-transformation chain described in Sect. 1. The literature offers sev-
eral variants of choreographic models [4,6,8,14,30,32] (to mention but a few).
A common treat of those models is that they are grounded on point-to-point
communication in traditional settings (such as the use of the actor model [1] or
π-calculus [25,26,31]). A distinguished feature of OpenDXL is that it relies on
event-notification mechanisms. This is the main motivation for the adoption of
klaimographies [5]. In fact, unlike other choreographic approaches, klaimogra-
phies advocate a peculiar interpretation of interactions. More precisely, interac-
tions A−→B : m are generally interpreted as “an instance of A and an instance
of B exchange message m”. The interpretation of A−→B : m drastically changes
in klaimographies and becomes “any instance of A generates the message m
expected to be handled by any instance of B”. This interpretation is the corner-
stone for a faithful modelling of OpenDXL.

Lesson Learned. Although we are at an early stage of the collaboration, we can
draw some conclusions.

A first point worth remarking is about the effectiveness of our methodology.
On the one hand, the academic partners were oblivious of several current prac-
tices (such as the continuous defensive patching TIE servers). On the other hand,
the industrial partners acquired some notions about behavioural specifications
during the participation of a school [24] organised by the academic partners as
well as presented the OpenDXL platforms at the school. The methodology was
applied immediately after the school and the bulk of modelling and analysis of
TIE was concluded in about 3-persons month. In the chain of model transforma-
tions of our methodology, steps (1) and (4) were paramount for practitioners to
apply this methodology: the use of visual, intuitive, yet formal models enabled a
fruitful collaboration among stakeholders. In fact, g-choreographies were key to
tune up the model and to identify the main aspects of the intended communica-
tion protocol as well as to ease the collaboration between practitioners and aca-
demics. Basically, g-choreographies gave a first intuitive presentation capturing
the essential interactions of TIE. This has been instrumental for an effectual col-
laboration. Once the g-choreography expressing the intended behaviour has been
identified, the academic partners have devised the klaimographies formalising
the expected behaviour. The identification of the corresponding klaimographies
allowed us to automatically derive local specifications (step (iii)) and use them
as precise blue-prints of components as well as to automatically derive monitors
(step (iv)). Remarkably, the transformation from local types to state machines
was suggested by our industrial partners who saw it as a more streamlined way of

Monitoring APIs with Choreographies 121

sharing the specifications among practitioners (including those outside McAfee).
At this stage we do not have data to measure the impact of the enhanced doc-
umentation on the quality of the software produced.

This experience also highlights the importance of non-deterministic
abstractions and of visual tools in practice. We argue that these elements
are paramount for collaborations that could be beneficial to both academics and
practitioners. In fact, behavioural types (as many formal methods) may not be
easy for practitioners to handle. To tackle this issue we opted for models offering
a visual and intuitive presentations of the formal models used in the specifi-
cations. The specification in terms of g-choreographies and klaimographies was
attained in few days of man-power involving academics and practitioners. This
hints that our model-driven methodology can significantly reduce the steepness
of the learning curve that formal methods often require.

The problem of informal behavioural specification is ubiquitous in API-based
software. The approach we followed aimed at some generality: instead of devis-
ing ad-hoc formal methods for the OpenDXL case study, we decided to apply
existing frameworks. In fact, both g-choreographies and klaimographies had been
developed before and independently of this collaboration. The methodology pro-
posed here assumes only that components communicate through generative coor-
dination mechanisms [12]. As noted by one of the reviewers, “tuple-semantics are
well-suited not only for this use case but for the modern age of IoT, where event-
based middlewares are becoming the norm.”

A final note on the connection with other formal methods. Behavioural spec-
ifications offer also support to “bottom-up” engineering (see, e.g., [19,21]). This
would require to infer the behaviour to analyse from logs and, as noted by another
reviewer, one could spare “to model the whole behaviour [...] and focus on spe-
cific components.” We concur that our methodology can be complemented by
such technique (and this is indeed one of the goals within the BehAPI project).
Also, one may wonder if the methodology can be combined with model checking.
This is indeed the case since our models feature operation semantics amenable
to be model checked. A drawback of model checking is that practitioners would
find it hard to express the properties to check. Instead the top-down approach
allowed them to express such conditions in terms of state machines.

Future Work. Global graphs have been key to facilitate the collabora-
tion between academics and industrial partners for the former can use g-
choreographies precisely (since they come with a precise semantics) and the
latter can use the visual and intuitive presentation of g-choreographies. It is in
the scope of future work to use the formal framework of g-choreographies. In
fact, we can use g-choreographies to verify liveness properties of the communi-
cation protocols, or to generate executable template code to be refined by prac-
titioners. We plan to extend ChorGram [20], a tool based on g-choreographies,
to support the methodology. For instance, projection operations from global to
local views are a key feature of our choreographic framework. Here, we have
manually given klaimographies and their projections. This can be automatised
by algorithmically transforming g-choreographies into klaimographies. Another

122 L. Frittelli et al.

possibility is to exploit ChorGram to generate code; for instance, ChorGram
can map g-choreographies to (executable) Erlang code. These sort of functional-
ities are highly appealing to industrial stakeholders due (a) to the “correct-by-
construction” principle they support and (b) to the fact that each release of TIE
services requires the realisation of in-house clients for many different languages
and platforms. For instance, OpenDXL needs to develop several version of each
component for different execution environments. Also, TIE clients have to be
implemented in different programming languages or for operating systems; this
could be done by devising each software component by projection from a global
view. Having tools that generate template code for implementing the commu-
nication protocol of each component would speed up the development process
and reduce the time of testing (which would not need to focus on communica-
tions which would be correct-by-construction). In order to attain this, it could
be useful to “dress up” g-choreographies with existing industrial standards that
practitioners may find more familiar (and may be more appealing). An interest-
ing candidate for this endeavour is BPMN [28] since its coordination mechanisms
are very close to those of g-choreographies. In fact, BPMN is becoming popular
in industry and it has recently gained the attention of the scientific commu-
nity which is proposing formal semantics of its constructs. For instance, the
formal semantics in [7] could be conducive of a formal mapping from BPMN to
g-choreographies or global types. In this way practitioners may specify global
views within a context without spoiling the rigour of our methodology.

For simplicity in this paper we abstracted away from some aspects of TIE.
The extension of our approach to the complete protocol is not conceptually
complex, but it is scope for future work. This will include the analysis to fur-
ther properties expected of TIE components and that can be checked from the
logs. Following our methodology, we plan to devise monitors for the run-time
verification of those properties as well.

A final remark is about other advantages of behavioural types that we can
exploit in the future. For instance, one goal is to device tools for checking the
compliance of components to the TIE protocol. This can be achieved by type-
checking components against their projections.

Acknowledgments. We thank the anonymous reviewers for their many insightful
comments and suggestions.

References

1. Agha, G.: Actors: A Model of Concurrent Computation in Distributed Systems.
MIT Press, Cambridge (1986)

2. Ariola, W., Dunlop, C.: Testing in the API Economy. Top 5 Myths. https://alm.
parasoft.com/api-testing-myths

3. Bocchi, L., Chen, T.-C., Demangeon, R., Honda, K., Yoshida, N.: Monitoring net-
works through multiparty session types. In: Beyer, D., Boreale, M. (eds.) FMOOD-
S/FORTE -2013. LNCS, vol. 7892, pp. 50–65. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38592-6 5

https://alm.parasoft.com/api-testing-myths
https://alm.parasoft.com/api-testing-myths
https://doi.org/10.1007/978-3-642-38592-6_5
https://doi.org/10.1007/978-3-642-38592-6_5

Monitoring APIs with Choreographies 123

4. Bravetti, M., Zavattaro, G.: Contract compliance and choreography conformance
in the presence of message queues. In: Bruni, R., Wolf, K. (eds.) WS-FM 2008.
LNCS, vol. 5387, pp. 37–54. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-01364-5 3

5. Bruni, R., Corradini, A., Gadducci, F., Melgratti, H., Montanari, U., Tuosto, E.:
Data-driven choreographies à la Klaim. In: Boreale, M., Corradini, F., Loreti, M.,
Pugliese, R. (eds.) Models, Languages, and Tools for Concurrent and Distributed
Programming. LNCS, vol. 11665, pp. 170–190. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-21485-2 11

6. Busi, N., Gorrieri, R., Guidi, C., Lucchi, R., Zavattaro, G.: Choreography and
orchestration conformance for system design. In: Ciancarini, P., Wiklicky, H. (eds.)
COORDINATION 2006. LNCS, vol. 4038, pp. 63–81. Springer, Heidelberg (2006).
https://doi.org/10.1007/11767954 5

7. Corradini, F., Morichetta, A., Re, B., Tiezzi, F.: Walking through the semantics
of exclusive and event-based gateways in BPMN choreographies. In: Alvim, M.S.,
Chatzikokolakis, K., Olarte, C., Valencia, F. (eds.) The Art of Modelling Compu-
tational Systems: A Journey from Logic and Concurrency to Security and Privacy.
LNCS, vol. 11760, pp. 163–181. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-31175-9 10

8. Dalla Preda, M., Gabbrielli, M., Giallorenzo, S., Lanese, I., Mauro, J.: Dynamic
choreographies. In: Holvoet, T., Viroli, M. (eds.) COORDINATION 2015. LNCS,
vol. 9037, pp. 67–82. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
19282-6 5

9. Dezani-Ciancaglini, M., de’Liguoro, U.: Sessions and session types: an overview.
In: Laneve, C., Su, J. (eds.) WS-FM 2009. LNCS, vol. 6194, pp. 1–28. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-14458-5 1

10. Doerrfeld, B., Wood, C., Anthony, A., Sandoval, K., Lauret, A.: The API Economy
- Disruption and the Business of APIs. Nodic APIs (nordicapis.com), May 2016.
http://nordicapis.com/ebook-release-api-economy-disruption-business-apis

11. Francalanza, A., Mezzina, C.A., Tuosto, E.: Reversible choreographies via moni-
toring in Erlang. In: Bonomi, S., Rivière, E. (eds.) DAIS 2018. LNCS, vol. 10853,
pp. 75–92. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93767-0 6

12. Gelernter, D.: Generative communication in Linda. ACM Trans. Program. Lang.
Syst. 7(1), 80–112 (1985)

13. Guanciale, R., Tuosto, E.: Realisability of Pomsets via communicating automata.
In: Proceedings 9th Interaction and Concurrency Experience, ICE 2016, Heraklion,
Greece, 8–9 June 2016 (2018)

14. Guanciale, R., Tuosto, E.: Realisability of Pomsets via communicating automata.
J. Logic Algebraic Methods Program. (2019, to appear). Accepted for Publication

15. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. J.
ACM 63(1), 9:1–9:67 (2016). Extended version of a paper presented at POPL08

16. Hüttel, H., et al.: Foundations of session types and behavioural contracts. ACM
Comput. Surv. 49(1), 3:1–3:36 (2016)

17. The API-Economy. http://ibm.com/apieconom
18. Kavantzas, N., Burdett, D., Ritzinger, G., Fletcher, T., Lafon, Y.: http://www.

w3.org/TR/2004/WD-ws-cdl-10-20041217. Working Draft 17 December 2004
19. Lange, J., Tuosto, E.: Synthesising choreographies from local session types. In:

Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 225–239.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32940-1 17

20. Lange, J., Tuosto, E.: ChorGram: tool support for choreographic development
(2015). https://bitbucket.org/emlio tuosto/chorgram/wiki/Home

https://doi.org/10.1007/978-3-642-01364-5_3
https://doi.org/10.1007/978-3-642-01364-5_3
https://doi.org/10.1007/978-3-030-21485-2_11
https://doi.org/10.1007/978-3-030-21485-2_11
https://doi.org/10.1007/11767954_5
https://doi.org/10.1007/978-3-030-31175-9_10
https://doi.org/10.1007/978-3-030-31175-9_10
https://doi.org/10.1007/978-3-319-19282-6_5
https://doi.org/10.1007/978-3-319-19282-6_5
https://doi.org/10.1007/978-3-642-14458-5_1
http://nordicapis.com/ebook-release-api-economy-disruption-business-apis
https://doi.org/10.1007/978-3-319-93767-0_6
http://ibm.com/apieconom
http://www.w3.org/TR/2004/WD-ws-cdl-10-20041217
http://www.w3.org/TR/2004/WD-ws-cdl-10-20041217
https://doi.org/10.1007/978-3-642-32940-1_17
https://bitbucket.org/emlio_tuosto/chorgram/wiki/Home

124 L. Frittelli et al.

21. Lange, J., Tuosto, E., Yoshida, N.: From communicating machines to graphical
choreographies. In: POPL 2015, pp. 221–232 (2015)

22. McAfee. Mcafee Security Innovation Alliance. https://www.mcafee.com/
enterprise/en-us/partners/security-innovation-alliance.html

23. McAfee. Threat intelligence exchange recommended workflow. https://kc.mcafee.
com/corporate/index?page=content&id=KB86307

24. Melgratti, H.C., Tuosto, E.: Summer School on Behavioural Approaches for API-
Economy with Applications, 8–12 July 2019. https://www.um.edu.mt/projects/
behapi/leicester-summer-school-behavioural-approaches-for-api-economy-with-
applications

25. Milner, R.: Communicating and Mobile Systems: the π-Calculus. Cambridge Uni-
versity Press, Cambridge (1999)

26. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, I and II. Inf.
Comput. 100(1), 41–77 (1992)

27. Neykova, R., Bocchi, L., Yoshida, N.: Timed runtime monitoring for multiparty
conversations. Formal Aspects Comput. 29(5), 877–910 (2017). https://doi.org/
10.1007/s00165-017-0420-8

28. Object Management Group. Business Process Model and Notation. http://www.
bpmn.org

29. Orenstein, D.: Application Programming Interface. Computer World, Jan-
uary 2000. http://www.computerworld.com/article/2593623/app-development/
application-programming-interface.html

30. Qiu, Z., Zhao, X., Cai, C., Yang, H.: Towards the theoretical foundation of choreog-
raphy. In: Proceedings of the 16th International Conference on World Wide Web,
WWW 2007, pp. 973–982 (2007)

31. Sangiorgi, D., Walker, D.: The π-Calculus: A Theory of Mobile Processes. Cam-
bridge University Press, Cambridge (2002)

32. Tuosto, E., Guanciale, R.: Semantics of global view of choreographies. J. Log.
Algebraic Methods Program. 95, 17–40 (2018)

https://www.mcafee.com/enterprise/en-us/partners/security-innovation-alliance.html
https://www.mcafee.com/enterprise/en-us/partners/security-innovation-alliance.html
https://kc.mcafee.com/corporate/index?page=content&id=KB86307
https://kc.mcafee.com/corporate/index?page=content&id=KB86307
https://www.um.edu.mt/projects/behapi/leicester-summer-school-behavioural-approaches-for-api-economy-with-applications
https://www.um.edu.mt/projects/behapi/leicester-summer-school-behavioural-approaches-for-api-economy-with-applications
https://www.um.edu.mt/projects/behapi/leicester-summer-school-behavioural-approaches-for-api-economy-with-applications
https://doi.org/10.1007/s00165-017-0420-8
https://doi.org/10.1007/s00165-017-0420-8
http://www.bpmn.org
http://www.bpmn.org
http://www.computerworld.com/article/2593623/app-development/application-programming-interface.html
http://www.computerworld.com/article/2593623/app-development/application-programming-interface.html

Communications: Types and
Implementations

Implementing Multiparty Session Types
in Rust

Nicolas Lagaillardie1(B) , Rumyana Neykova2(B) ,
and Nobuko Yoshida1(B)

1 Imperial College London, London, UK
{n.lagaillardie19,n.yoshida}@imperial.ac.uk

2 Brunel University London, London, UK
rumyana.neykova@brunel.ac.uk

Abstract. Multiparty Session Types (MPST) is a typing discipline for
distributed protocols, which ensures communication safety and deadlock-
freedom for more than two participants. This paper reports on our
research project, implementing multiparty session types in Rust. Cur-
rent Rust implementations of session types are limited to binary (two-
party communications). We extend an existing library for binary session
types to MPST. We have implemented a simplified Amazon Prime Video
Streaming protocol using our library for both shared and distributed
communication transports.

1 Introduction

In the last decade, the software industry has seen a shift towards programming
languages that promote the coordination of concurrent and/or distributed soft-
ware components through the exchange of messages over communication chan-
nels. Languages with native message-passing primitives (e.g., Go, Elixir and
Rust) are becoming increasingly popular. In particular, Rust has been named
the most loved programming language in the annual Stack Overflow survey for
four consecutive years (2016–19)1.

The advantage of message-passing concurrency is well-understood: it allows
cheap horizontal scalability at a time when technology providers have to adapt
and scale their tools and applications to various devices and platforms. Message-
passing based software, however, is as vulnerable to errors as other concurrent
programming techniques [16]. Much academic research has been done to develop
rigorous theoretical frameworks for verification of message-passing programs.
One such framework is multiparty session types (MPST) [5] – a type-based dis-
cipline that ensures that concurrent and distributed systems are safe by design.
It guarantees that message-passing processes following a predefined communica-
tion protocol, are free from communication errors and deadlocks.

1 https://insights.stackoverflow.com/survey/2019.

c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
S. Bliudze and L. Bocchi (Eds.): COORDINATION 2020, LNCS 12134, pp. 127–136, 2020.
https://doi.org/10.1007/978-3-030-50029-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50029-0_8&domain=pdf
http://orcid.org/0000-0002-6431-4100
http://orcid.org/0000-0002-2755-7728
http://orcid.org/0000-0002-3925-8557
https://insights.stackoverflow.com/survey/2019
https://doi.org/10.1007/978-3-030-50029-0_8

128 N. Lagaillardie et al.

Rust is a particularly appealing language for the practical embedding of
session types. Its affine type system allows for static typing of linear resources –
an essential requirement for the safety of session type systems. Rust combines
efficiency with message-passing abstractions, thread and memory safety [15], and
has been used for the implementation of large-scale concurrent applications such
as the Mozilla browser, Firefox, and the Facebook blockchain platform, Libra.
Despite the interest in the Rust community for verification techniques handling
multiple communicating processes2, the existing Rust implementations [8,9] are
limited to binary (two-party) session types.

In this short paper, we present our design and implementation for multi-
party session types in Rust. Our design follows a state-of-the-art encoding of
multiparty into binary session types [13]. We generate local types in Rust, utilis-
ing the Scribble toolchain [12,18]. Our library for MPST programming in Rust,
mpst-rust, is implemented as a thin wrapper over an existing binary session
types library [9]. Differently from other MPST implementations that check the
linear usage of channels at runtime (e.g. [6,13]), we rely on the Rust affine type
system to type-check MPST programs. In addition, since we generate the local
types from a readable global specification, errors caused by an affine (and not
linear) usage of channels, a well-known limitation of the previous libraries [8,9],
are easily avoided.

This paper is organised as follows: Sect. 2 gives an overview of our framework
with a usecase; Sect. 3 shows our implementation and discusses the advantages
of our approach; and Sect. 4 concludes with related and future work. Our library
is available from https://github.com/NicolasLagaillardie/mpst rust github.

2 From Binary to Multiparty Sessions in Rust

Framework Overview: MPST in Rust. Our design resembles the top-down
methodology of multiparty session types, as illustrated in Fig. 1. It follows three
main steps [5,17]. First, a global type, also called a global protocol, is defined as a
shared contract between communicating endpoint processes. A global protocol
is then projected to each endpoint process, resulting in a local type. A local type
involves only the interactions specific to a given endpoint. Finally, each endpoint
process is type-checked against its projected local type.

The specific parts of our framework that distinguish it from other state-
of-the-art MPST works are highlighted in red, which corresponds to our new
library for MPST programming in Rust, mpst-rust. It is realised as a thin
wrapper on top of an existing Rust library for validation of binary (2-party-only)
session types. Developers use the MPST primitives provided by mpst-rust to
implement endpoint programs. Also, our framework allows the types for each
communication primitive to be either (1) generated from the Scribble toolchain;
or (2) written by the developers. The Scribble toolchain [18] provides facilities
for writing, verifying and projecting global protocols. Our framework guarantees
2 https://users.rust-lang.org/t/anybody-working-on-multiparty-session-types-for-
rust/10610.

https://github.com/NicolasLagaillardie/mpst_rust_github
https://users.rust-lang.org/t/anybody-working-on-multiparty-session-types-for-rust/10610
https://users.rust-lang.org/t/anybody-working-on-multiparty-session-types-for-rust/10610

Implementing Multiparty Session Types in Rust 129

Fig. 1. MPST Workflow (left) and Amazon Prime Video usecase (right)

that processes implemented using mpst-rust primitives with Scribble-generated
types are free from deadlocks, reception errors, and protocol deviations. Next,
we explain, via an example, how the framework of MPST can be applied to Rust.

Example: Amazon Prime Video Streaming. The Amazon Prime Video
streaming service is a usecase which can take full advantage of multiparty session
types. Each streaming application connects to servers, and possibly other devices,
to access services, and follows some specific protocol. To present our design,
we use a simplified version of the protocol, illustrated in the diagram in Fig. 1
(right). The diagram should be read from top to bottom. The protocol involves
three services – an Authenticator service, a Server and a Client. At first, Client
connects to Authenticator by providing an identifying id. If the id is accepted,
the session continues with a choice on Client to either request a video or end the
session. The first branch is, a priori, the main service provided by Amazon Prime
Video. Client cannot directly request videos from Server, and has to go through
Authenticator instead. On the diagram, the choice is denoted as the frame alt
and the choices are separated with the horizontal dotted line. The protocol is
recursive, and Client can request new videos as many times as needed. The
arrow going back on Client side in Fig. 1 represents this recursive behaviour. To
end the session, Client first sends Close message to Authenticator, which then
subsequently sends a Close message to Server.

Implementing the Authenticator role Using mpst-rust. Due to space lim-
itations, we only show the implementation of the Authenticator role (hereafter
role A), the implementations of the other roles (role B for the Server and role C

for the Client) are similar. The Rust code for role A using the mpst-rust library
is given in Fig. 2 (left). It closely follows the local protocol in Fig. 2 (right), that
is projected from the global protocol by the Scribble toolchain. First, line 1
declares a function authenticator that is parametric in a multiparty channel
s of type VideoP_A. The type VideoP_A specifies which operations are allowed
on s. This type can either be written by the developer, or generated by Scribble
(cf. Listing 1).

On line 3, A receives an identifying id from C. The function recv_mpst_a_to_c,
provided by mpst-rust library returns the received value (the id) and the new
multiparty channel, to be used in subsequent communications. Line 3 rebinds

130 N. Lagaillardie et al.

1 fn authenticator(s: VideoP_A<i32>)->
2 Result<(), Box<Error>> {
3 let (id, s) = recv_mpst_a_to_c(s)?;
4 let s = send_mpst_a_to_c(id + 1, s);
5 let result = authenticator_recurs(s)?;
6 Ok(result)
7 }
8
9 fn authenticator_recurs(

10 s: VideoPRec_A<i32>)
11 -> Result<(), Box<Error>> {
12 offer_mpst_a_to_c!(s,
13 ChoiceA::Video(
14 SessionMpst{ch_ab, ch_ac, q})
15 => {
16 let s = SessionMpst{ch_ab,ch_ac, q}
17 let (req, s) = recv_mpst_a_to_c(s)?;
18 let s = send_mpst_a_to_b(req, s);
19 let (v, s) = recv_mpst_a_to_b(s)?;
20 let s = send_mpst_a_to_c(v, s);
21 authenticator_recurs(s)},
22 ChoiceA::End(SessionMpst{ch_ab, ch_ac, q})
23 => {
24 let s = SessionMpst{ch_ab, ch_ac, q};
25 close_mpst(s)?;
26 Ok(())})?;...}

local protocol VideoP at A(
role B, role C)
{ Declare(int) from C;
Accept(string) to C;
do VideoPRec(B, C);

}

local protocol VideoPRec
at A(role B, role C){
choice at C {

VideoRequest(
string) from C;

VideoRequest(
string) to B;

SendVideo(Video) from B;
SendVideo(Video) to C;
do VideoPRec(B, C);

} or {

Close() from C;
Close() to B, C;

}}

Fig. 2. Rust implementation of role A (left) and its local Scribble protocol (right)

the multiparty channel s with the new channel that is returned. Then, on line
4, we send back the answer to C, by utilising another mpst-rust communica-
tion primitive, send_mpst_a_to_c. The variable s is rebound again to the newly
returned multiparty channel. Note that although the name of the function,
send_mpst_a_to_c, suggests a binary communication, the function operates on
a multiparty channel s. Our implementation follows the encoding, presented
in [13], which encodes a multiparty channel as an indexed tuple of binary chan-
nels. Internally, send_mpst_a_to_c extracts from s the binary channel established
between A and C and uses it for sending.

Lines 9–26 proceeds by implementing the recursive part of the protocol. The
implementation of authenticator_recurs realises an internal choice – A can either
receive a VideoRequest or a Close. This behaviour is realised by the mpst-rust
macro offer_mpst_a_to_c! (line 12), which is applied to a multiparty channel
s of a sum type between ChoiceA::Video and ChoiceA::End. The behaviour
of each branch in the protocol is implemented as an anonymous function. For
example, code in lines 13–21 supplies an anonymous function that implements
the behaviour when C sends a VideoRequest, while lines 22–26 handle the Close
request. Finally, close_mpst(s) closes all binary channels stored inside s. The
types of the multiparty channel, as well as the generic types in the declaration of
the mpst-rust communication functions, enable compile-time detection of pro-
tocol violations, such as swapping line 3 and line 4, using another communication
primitive or using the wrong payload type.

Implementing Multiparty Session Types in Rust 131

1 /// Binary session types for A and C
2 type InitA<N> = Recv<N, Send<N,
3 RecvChoice<N>>>;
4 type RecvChoice<N> =
5 Recv<ChoiceA<N>, End>;
6 type AtoCVideo<N> =
7 Recv<N, Send<N, RecvChoice<N>>
8 type AtoCClose = End;
9

10
11 /// Binary session types for A and B
12 type AtoBVideo<N> =
13 Send<N, Recv<N, End>>;
14 type AtoBClose = End;
15
16 /// Declare usage order of channels
17 type QueueAInit = RoleAtoC<RoleAtoC<
18 RoleAtoC<RoleEnd>>>;
19 type QueueAChoice = RoleAtoC<RoleEnd>;

20 /// Declare usage order of channels
21 type QueueAVideo =
22 RoleAtoC<RoleAtoB<RoleAtoB<
23 RoleAtoC<RoleAtoC<RoleEnd>>>>>;
24 type QueueAClose = RoleEnd;
25
26 /// Declare MPST
27 type VideoP_A<N> = SessionMpst<End,
28 InitA<N>, QueueAInit>;
29
30 type VideoPRec_A<N> = SessionMpst<
31 End, RecvChoice<N>, QueueAChoice>;
32
33 enum ChoiceA<N> {
34 Video(SessionMpst<AtoBVideo<N>,
35 AtoCVideo<N>, QueueAVideo>),
36 End(SessionMpst<AtoBClose,
37 AtoCClose, QueueAClose>)
38 }

Listing 1. Local Rust types for role A

Typing the Authenticator Role. The types for the Authenticator role, used
in Fig. 2 (left), are given in Listing 1. These types can be either written by the
developer or generated from a global protocol, written in Scribble. Reception
error safety is ensured since the underlying mpst-rust library checks statically
that all pairs of binary types are dual to each other. Deadlock-freedom is ensured
only if types are generated from Scribble since this guarantees that types are
projected from a well-formed global protocol.

Next, we explain a type declaration for the Authenticator role. Lines 27–37
specify the three SessionMpst types which correspond to the types of the session
channels used in Fig. 2 (left) – types VideoP_A (line 1), Video_PRec_A (line 9),
and the types used inside the offer construct – ChoiceA::Video (line 13), and
ChoiceA::End (line 22).

In the encoding of [13], which underpins mpst-rust, a multiparty channel
is represented as an indexed tuple of binary channels. This is reflected in the
implementation of SessionMpst, which is parameterised on the required binary
session types. For example, the VideoP_A<N> takes as a parameter the binary
types between A and C, and between A and B. At the beginning of the protocol
(lines 1–7 in Fig. 2 (left)) B and A do not interact, hence the binary type for B
is End. The type InitA<N> (line 2 in Listing 1) specifies the behaviour between
A and C, notably that A first receives a message, then it sends a message, and
later it continues as the type RecvChoice<N>. The binary session types between
A and B, and between A and C are given in lines 12–14 and lines 2–9 respectively;
we use the primitives declared in the existing binary session types library [9].
The generic parameter N refers to a trait such as i32.

The third parameter for VideoP_A<N> (line 27) is a queue-like data structure,
QueueAInit (line 17), that codifies the order of usage of each binary channel
inside a multiparty session channel. This is needed to preserve the causality,
imposed by the global protocol. The queues for the other SessionMpst types are
given in lines 21–24. For instance, the queue for the ChoiceA:Video branch of

132 N. Lagaillardie et al.

the protocol is QueueAVideo. Note that, according to the protocol, A first has to
receive a VideoRequest message from C, and then it has to forward that message
to B Hence, swapping of lines 17 and 18 from Fig. 2 is a protocol violation error.
We can detect such violations since the queue for the type ChoiceA::Video,
QueueAVideo (line 21), is specified as RoleAtoC<RoleAtoB ...>, which codifies
that first the channel for C and then the channel for B should be used. Note
that none of the defined queues is recursive. Recursion is implicitly specified on
binary types, while each queue is related to a SessionMpst type.

Distributed Execution Environment. The default transport of mpst-rust is
the built-in Rust communication channels (crossbeam channel). Also, to test our
example in a more realistic distributed environment, we have also connected each
process through MQTT (MQ Telemetry Transport) [7]. MQTT is a messaging
middleware for exchanging messages between devices, predominantly used in
IoT networks. At the start of the protocol, each process connects to a public
MQTT channel, and a session is established. Therefore, we have mapped binary
channels to MQTT sockets, in addition to the built-in Rust channels.

3 Design and Implementation of mpst-rust

Multiparty Channels as an Ordered Tuple of Binary Channels. The
main idea of the design of our framework is that a multiparty session can be
realised with two ingredients: (1) a list of separate binary sessions (one session
for each pair of participants) and (2) a queue that imposes the ordering between
the binary channels. Listing 2 (lines 2–3) shows the implementation of a multi-
party channel in a 3-party protocol. The SessionMpst structure holds two fields,
session1 and session2, that are of a binary session type. For an illustration
purpose, we show only the implementation of a multiparty channel for three
processes. The same approach can be generalised, using our code generation
tool, to any number of communicating processes. For example, in case of a pro-
tocol with four roles, each multiparty session will have four fields – a field for
the binary session between each pair of participants and a field for the queue.

The order of usage of the binary channels of a SessionMpst object is stored
inside the queue field. For instance, the behaviour that role A has to communicate
first with role B, then with a role C, and then the session ends can be specified
using a queue of type RoleAtoB<RoleAtoC<RoleEnd>>. Note that all queue types,
such as RoleAtoB, RoleAtoC, are generated.

MPST Communication Primitives as Wrappers of Binary Channels.
As explained in Sect. 2, programming with mpst-rust relies on communication
primitives, such as send_mpst_a_to_b, that have the sender and receiver roles
baked into their name. To ensure that the binary channels are used as specified
by the global protocol, each communication function is parametric on a generic
quadruple type <T, S1, S2, R> where T is a payload type, S1 and S2 are binary
session types and R is a type for a queue (MPST-queue type) that imposes the
order in which the binary sessions inside a multiparty session must be used.

Implementing Multiparty Session Types in Rust 133

1 // Basic structure for MPST
2 pub struct SessionMpst< S1: Session, S2: Session, R: Role> {
3 pub session1: S1, pub session2: S, pub queue: R }

4 // Implementation of a communication function from the mpst-rust library
5 pub fn send_mpst_a_to_b<T, S1, S2, R>(x: T,
6 s: SessionMpst<Send<T, S1>, S2, RoleAtoB<R>>,) -> SessionMpst<S1, S2, R>
7 where T: ..., S1: Session, S2: Session, R: Role,
8 { let new_session = send(x, s.session1);
9 let new_queue = next_a_to_b(s.queue); ... }

9 /// Offer a choice at A from C wrapped in an ‘enum‘
10 #[macro_export]
11 macro_rules! offer_mpst_a_to_c {($session ... => {
12 let (l, s) = recv_mpst_a_to_c($session)?; // receive a label l
13 cancel(s); // cancel the existing binary channels on s
14 match l { pat_i=>invoke...} // Call the associated function
15 // with a new SessionMpst
16 }
17
18 #[macro_export]
19 macro_rules! choose_mpst_c_to_all(s ...) {
20 ...// test for the choice condition ...and get the label l
21 let s = send_mpst_c_to_a(s, l); // send the label to A
22 let s = send_mpst_c_to_b(s, l), // send the label to B
23 cancel(s); // cancel the existing binary channels on s
24 // return new SessionMpst channel
25 ...
26 }

Listing 2. MPST Rust communication primitives

Listing 2 (lines 5–9) shows the implementation for send_mpst_a_to_b(). As
clear from the type parameters, the client of the function should supply a MPST-
queue type RoleAtoB<R>. The binary session type S1 should be encapsulated in a
Send<T, S1>. The body of the function sends the message of type T on the binary
channel stored in the first field, session1 (corresponding to the binary session
with role B), of the multiparty session s. Since the communication is on a binary
channel, we reuse the binary send primitive from [9].

External and internal choices are implemented as macros that require an
argument of type SessionMpst. The implementation of offer_mpst_a_to_c is
given in lines 11–14. In essence, a choice is implemented as a broadcast from one
role to the others. In our usecase, the active role that makes the choice is C. Hence,
the macro offer_mpst_a_to_c explicitly performs a receive (recv_mpst_a_-
to_c(s)) on the session channel s. The received value is pattern matched and
passed to any of the functions given as arguments to offer_mpst_a_to_c. Sim-
ilarly, choose_mpst_c_to_all in lines 19–26 is a macro that performs a select
operation. The active role C sends the selected label to all roles in the protocol.
In our particular example, C sends the selected label l to A and B.

Discussions. Our implementation, although intuitive, does not resolve the
inherent conflict between Rust, which is affine, and session types, which are
linear. The implementation suffers from the same drawback as [9]. However,
the MPST methodology is a step forward in terms of usability. Differently than
the Rust local types which can get convoluted, the syntax of global protocols

134 N. Lagaillardie et al.

is user-friendly and readable. Developers can use the global protocol as guid-
ance, and hence avoid errors such as prematurely ending of a session. Moreover,
as observed in Kokke’s library [9], most of the errors are caused by misuse of
methods and functions. Since we are code-generating the local types, the chance
of misspelling is significantly reduced. Another viable option for our framework
is to take the bottom-up approach: to check directly whether a set of manually-
written Rust local types satisfy safety/liveness properties by a model checker [14]
or the multiparty compatibility (a property which guarantees deadlock-freedom
of communicating automata, which are equivalent to local session types) [2,11].

4 Related and Future Work

The Rust library in [8] implements binary session types, following [4]. It checks
at compile-time that the behaviours of two endpoint processes are dual, i.e the
processes are compatible. The library in [9], based on the EGV calculus by
Fowler et al. [3], provides constructs for writing and checking binary session
types, and additionally supports exception handling constructs. We build on
top of the library in [9] since it offers several improvements in comparison to
[8]. Most importantly, the treatment of closing a channel prematurely in [8]
may lead to memory leaks. Both libraries suffer from a well-known limitation of
binary session types3. Notably, since deadlock-freedom is ensured only inside a
session, a Rust endpoint process, that communicates with more than one other
process, is prone to deadlocks and communication errors. Our framework solves
that limitation by expanding the scope of a session to multiple participants.

Our proposed design follows the methodology given by [6], which generates
Java communicating APIs from Scribble. This, and other multiparty session
types implementations, exploit the equivalence between local session types and
communicating automata to generate session types APIs for mainstream pro-
gramming languages (e.g., Java [6,10], Go [1], F# [13]). Each state from state
automata is implemented as a class, or in the case of [10], as a type state. To
ensure safety, state automata have to be derived from the same global specifi-
cation. All of the works in this category use the Scribble toolchain to generate
the state classes from a global specification and detect linearity violations at
runtime. This paper proposes the generation of protocol-specific APIs, which
promotes type checking of protocols at compile-time. This is done by projecting
the endpoints’ state space in those protocols to groups of channel types in the
desired language. In the future, we plan to implement the bottom-up approach,
in addition to the top-down approach outlined in this paper, as to compare their
productivity and scalability.

Acknowledgement. The work has been partially supported by the following
funding schemes VeTSS, EPSRC EP/K011715/1, EP/K034413/1, EP/L00058X/1,
EP/N027833/1, EP/N028201/1, EP/T006544/1 and, EP/T014709/1.

3 https://github.com/Munksgaard/session-types/issues/62.

https://github.com/Munksgaard/session-types/issues/62

Implementing Multiparty Session Types in Rust 135

References

1. Castro, D., Hu, R., Jongmans, S.S., Ng, N., Yoshida, N.: Distributed programming
using role parametric session types in Go. In: 46th ACM SIGPLAN Symposium
on Principles of Programming Languages, vol. 3, pp. 29:1–29:30. ACM (2019)

2. Deniélou, P.-M., Yoshida, N.: Multiparty compatibility in communicating
automata: characterisation and synthesis of global session types. In: Fomin, F.V.,
Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013. LNCS, vol. 7966, pp.
174–186. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39212-2
18

3. Fowler, S., Lindley, S., Morris, J.G., Decova, S.: Exceptional asynchronous session
types: session types without tiers. Proc. ACM Program. Lang. 3(POPL), 28:1–
28:29 (2019). https://doi.org/10.1145/3290341

4. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998). https://doi.org/
10.1007/BFb0053567

5. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types.
POPL 43(1), 273–284 (2008)

6. Hu, R., Yoshida, N.: Hybrid session verification through endpoint API generation.
In: Stevens, P., W ↪asowski, A. (eds.) FASE 2016. LNCS, vol. 9633, pp. 401–418.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49665-7 24

7. Hunkeler, U., Truong, H.L., Stanford-Clark, A.: MQTT-S-a publish/subscribe pro-
tocol for wireless sensor networks. In: 2008 3rd International Conference on Com-
munication Systems Software and Middleware and Workshops, COMSWARE 2008,
pp. 791–798. IEEE (2008)

8. Jespersen, T.B.L., Munksgaard, P., Larsen, K.F.: Session types for Rust. In: Pro-
ceedings of the 11th ACM SIGPLAN Workshop on Generic Programming, pp.
13–22. ACM (2015). https://doi.org/10.1145/2808098.2808100

9. Kokke, W.: Rusty variation: deadlock-free sessions with failure in Rust. In: Pro-
ceedings 12th Interaction and Concurrency Experience, ICE 2019, Copenhagen,
Denmark, 20–21 June 2019, pp. 48–60 (2019). https://doi.org/10.4204/EPTCS.
304.4

10. Kouzapas, D., Dardha, O., Perera, R., Gay, S.J.: Typechecking protocols with
Mungo and StMungo. In: PPDP, pp. 146–159 (2016). https://doi.org/10.1145/
2967973.2968595

11. Lange, J., Yoshida, N.: Verifying asynchronous interactions via communicating
session automata. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp.
97–117. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 6

12. Jespersen, T.B.L., Munksgaard, P., Larsen, K.F.: Session types for Rust. In: Pro-
ceedings of the 11th ACM SIGPLAN Workshop on Generic Programming, pp.
13–22. Association for Computing Machinery, New York (2015). https://doi.org/
10.1145/2808098.2808100. ISBN 9781450338103

13. Scalas, A., Dardha, O., Hu, R., Yoshida, N.: A linear decomposition of multiparty
sessions for safe distributed programming. In: 31st European Conference on Object-
Oriented Programming. LIPIcs, vol. 74, pp. 24:1–24:31. Schloss Dagstuhl (2017)

14. Scalas, A., Yoshida, N.: Less is more: multiparty session types revisited. In: 46th
ACM SIGPLAN Symposium on Principles of Programming Languages, vol. 3, pp.
30:1–30:29. ACM (2019)

https://doi.org/10.1007/978-3-642-39212-2_18
https://doi.org/10.1007/978-3-642-39212-2_18
https://doi.org/10.1145/3290341
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1007/978-3-662-49665-7_24
https://doi.org/10.1145/2808098.2808100
https://doi.org/10.4204/EPTCS.304.4
https://doi.org/10.4204/EPTCS.304.4
https://doi.org/10.1145/2967973.2968595
https://doi.org/10.1145/2967973.2968595
https://doi.org/10.1007/978-3-030-25540-4_6
https://doi.org/10.1145/2808098.2808100
https://doi.org/10.1145/2808098.2808100

136 N. Lagaillardie et al.

15. Klabnik, S., Nichols, C.: The Rust Programming Language. 1.35.0 edn. (2019).
https://doc.rust-lang.org/1.35.0/book/. Contributions from the Rust Community

16. Tu, T., Liu, X., Song, L., Zhang, Y.: Understanding real-world concurrency bugs
in Go. In: ASPLOS, pp. 865–878. ACM (2019)

17. Yoshida, N., Gheri, L.: A very gentle introduction to multiparty session types.
In: Hung, D.V., D’Souza, M. (eds.) ICDCIT 2020. LNCS, vol. 11969, pp. 73–93.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-36987-3 5

18. Yoshida, N., Hu, R., Neykova, R., Ng, N.: The scribble protocol language. In:
Abadi, M., Lluch Lafuente, A. (eds.) TGC 2013. LNCS, vol. 8358, pp. 22–41.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05119-2 3

https://doc.rust-lang.org/1.35.0/book/
https://doi.org/10.1007/978-3-030-36987-3_5
https://doi.org/10.1007/978-3-319-05119-2_3

GoPi: Compiling Linear and Static
Channels in Go

Marco Giunti(B)

NOVA LINCS, NOVA School of Science and Technology, Lisbon, Portugal
marco.giunti@gmail.com

Abstract. We identify two important features to enhance the design
of communication protocols specified in the pi-calculus, that are linear
and static channels, and present a compiler, named GoPi, that maps
high level specifications into executable Go programs. Channels declared
as linear are deadlock-free, while the scope of static channels, which
are bound by a hide declaration, does not enlarge at runtime; this is
enforced statically by means of type inference, while specifications do
not include annotations. Well-behaved processes are transformed into Go
code that supports non-deterministic synchronizations and race-freedom.
We sketch two main examples involving protection against message for-
warding, and forward secrecy, and discuss the features of the tool, and
the generated code. We argue that GoPi can support academic activities
involving process algebras and formal models, which range from the anal-
ysis and testing of concurrent processes for research purposes to teaching
formal languages and concurrent systems.

1 Introduction

Concurrent programming is nowadays pervasive to most software development
processes. However, it poses hard challenges to the developers, which must
envisage and try to solve without automatic support undesired behaviours like
security breaches, deadlocks, races, often leading to bugs of substantial impact
[11,22]. Automated techniques and tools are thus needed to analyse and ensure
secure and correct concurrent code. Formal methods have been advocated as an
effective tool to analyse and deploy secure communicating programs and proto-
cols [10]. Process calculi, in particular, allow to study prototype analysis tech-
niques that could be embedded into next generation compilers for distributed
languages, and to investigate high-level security abstractions that can be effec-
tively deployed into lower-level languages, thus providing for APIs for secure
process interaction (e.g., [2,5]).

This work is partially supported by the EU Horizon 2020 research and innovation pro-
gramme under the MSCA RISE grant agreement No 77823 (BehAPI), and by Fundacão
para a Ciência e a Tecnologia, Ministério da Ciência, Tecnologia e Ensino Superior, via
project PTDC/CCI-COM/32166/2017 (DeDuCe). Tool available at: https://github.
com/marcogiunti/gopi. Demo video available at: https://sites.fct.unl.pt/gopi.

c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
S. Bliudze and L. Bocchi (Eds.): COORDINATION 2020, LNCS 12134, pp. 137–152, 2020.
https://doi.org/10.1007/978-3-030-50029-0_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50029-0_9&domain=pdf
https://github.com/marcogiunti/gopi
https://github.com/marcogiunti/gopi
https://sites.fct.unl.pt/gopi
https://doi.org/10.1007/978-3-030-50029-0_9

138 M. Giunti

let Alice = priv?(c).c!helloAlice in

let Bob = priv?(c).c!helloBob.pub!priv in

let Carl = pub?(p).p?(c).c!helloCarl in

let Board = ∗chat?(message).print ::message in

let Setup = ∗priv!chat in
let Chat = [hide chat][Board | (new priv)(Setup | Alice | Bob) | Carl] in Chat

Fig. 1. Suspicious specification of a secret chat in the LSpi language

This paper presents a contribution towards this direction by introducing a
fully-automated tool, named GoPi [1], that allows to analyse and run communi-
cation protocols specified in a variant of the pi calculus featuring linear channels
that must be used exactly once for input and once for output, and static chan-
nels that are never extruded. Well-behaved high-level processes are mapped into
executable Go programs communicating through message-passing: rather than
enforcing the channels’ constraints at the target language level, GoPi performs
a static analysis of the specification and only generates executable Go code
that at runtime preserves the specified invariants. The analysis is based on type
inference, while the specification language does not include type decorations.
GoPi supports further non-trivial features, which include a contextual analysis
of static channels, and deadlock detection on linear channels, at the source lan-
guage level, and non-deterministic synchronizations, and race-freedom, at the
target language level.

The aim is twofold:

– to provide for an automated static analysis of processes described in a variant
of the linear pi-calculus without relying on annotations;

– to make available a message-passing runtime system for well-behaved pi-
calculus processes featuring static channels that are never extruded.

1.1 Message Forwarding Protection

To illustrate our approach, we consider the case when we want to study the
design of a messaging application supporting secret chats1 featuring message
forwarding protection. To this aim, we analyse an instance of a secret chat that
involves three users, and describe the protocol as follows: “Alice, Bob, and Carl
share a hidden chat channel with static scope including the users, the board, and
a setup process that distributes the channel to the users, where the scope of the
channel should never be enlarged”. The static scope invariant offers protection
against message forwarding, and only processes that are included in the scope of
the channel in the specification will be able to ever use the channel at runtime.

1 https://www.viber.com/blog/2017-03-13/share-extra-confidently-secret-chats.

https://www.viber.com/blog/2017-03-13/share-extra-confidently-secret-chats

GoPi: Compiling Linear and Static Channels in Go 139

Figure 1 presents a formal specification of the protocol in a variant of the pi-
calculus featuring secret channels. The program is based on message-passing
and builds around three main channels: the hidden channel chat , the distribution
channel priv , and a public channel pub. Base channels are noted in typewriter.
We use !, ?, . , ∗, and | to indicate output, input, sequence, loop and parallel
execution constructors, respectively; channels are created with the new and hide

constructors by indicating their scope with parentheses (new) and squares (hide).
The print imperative construct allows to print channels. In order to be safe,
the program in Fig. 1 should preserve the static scope invariant, that is: the
scope of the hidden channel must not be enlarged at runtime. The specification is
suspicious since Carl, who is left out of the distribution process, is invited to the
chat by receiving the private channel priv from the open channel pub, perhaps
because of a bad design choice.

By running GoPi, we verify that, when considered in isolation, the program
in Fig. 1 is safe: intuitively, this holds since all processes receiving the hidden
channel are included in its static scope (the squares). However, the protocol is
flagged as contextually unsafe: the reason is that there exists a process that, once
put in parallel with the Chat process, can break the static scope invariant by
receiving the hidden channel. That is, because of non-determinism, the private
channel priv can be received by a parallel process that is listening on the open
channel pub, rather than by Carl, thus allowing a process outside the squares to
receive the hidden channel chat. To fix to the program in Fig. 1 we can resort to
linear channels that must be used exactly once for input and once for output.
By declaring pub as linear, written as 〈pub〉, the protocol SafeChat � 〈pub〉Chat
gains protection from parallel (typed) processes, which are assumed to do not
break linearity, and in turn contextual safety, as established by GoPi.

The static analysis is relevant since, in general, detecting if a program may
extrude a secret channel by code inspection can be hard, because of channel
mobility, and of the arbitrary length of the attack sequence. To see that, take
P � (new a1, . . . , an)([hide c][an!c] | a1!a2 | · · · | an−1!an | pub!a1), for some
n > 1: the secret channel c is sent over a restricted channel an, which in turn is
sent over a restricted channel an−1, and so on, while the error is that the first
channel in the chain, a1, is sent over a public channel pub, allowing processes
running in parallel with P to receive the hidden channel from an.

1.2 Related Work

We briefly discuss work related to the design of the specification language, and
to runtime systems for process calculi and Go as a target language.

Language Design. Secret channels have been studied by the author at the lan-
guage [16] and type [15] level; this work integrates those results by presenting
a compiler based on a novel type inference algorithm. The paper [16] presents
a variant of the pi-calculus introducing a further operator, hide, that allows
to declare channels that can be passed over channels, but cannot be extruded,
and studies its behavioural properties. The static scope mechanism is embedded

140 M. Giunti

in the operational semantics of the language, where a dynamic check ensures
that the context cannot receive channels protected by hide. In subsequent work
[15], the mechanism is shifted to the level of types by means of a declarative
system that enforces the static scope invariant in a standard pi-calculus. These
mechanisms, complemented with linear type qualifiers (cf., [14,18]) and deadlock
detection (cf., [17]), are the core of the static analysis performed by the GoPi
tool.

Static channels and boundaries in process calculi have been investigated since
the origins of this research area [28], and more recently in, e.g., [6,7,26]. The work
in [6] has similarities with our approach and introduces a pi-calculus featuring a
group creation operator, and a typing system that disallows channels to be sent
outside of the group. Programmers must declare which is the group type of the
payload: the typing system rules out processes of the form Q � (new p : U)(P |
(newG)((newx : G[])(p!x))) since the type U of channel p cannot mention the
secret type G, which is local. In contrast, we do not rely on type decorations
and accept process Q whenever x is hidden and P does not allow to extrude
x, e.g., P does not input on p or distribute p. From the point of view of the
language design, we share some similarity with the ideas behind the boxed pi-
calculus [26]. A box in [26] acts as wrapper where we can confine untrusted
processes; communication among the box and the context is subject to a fine-
grained control that prevents the untrusted process to interfere with the protocol.
Our hide construct is based on the symmetric principle: a process is trusted
whenever contexts cannot interfere with the process’ protocol, that is contexts
cannot enlarge the scope of the hidden channels of the process.

Runtime System. To the best of our knowledge, most interpreters for distributed
calculi do not rely on channel-based mechanisms at the target language level;
such implementations, pioneered by [25,27,29] for the pi-calculus, are commonly
based on simulating non-determinism and concurrency by process interleaving.
Previous attempts to develop calculi-inspired languages with native support for
channel-over-channel passing include JoCaml [12], where mobility is now discon-
tinued [23].

Recently, a behavioural static analysis of Go programs based on multiparty
session types (MPST, [19]) has been presented in [20,21]. The approach followed
in that line of work consists in analysing existing Go programs to ensure stronger
properties at compile-time, e.g., deadlock-freedom. None of those works, how-
ever, support channel-over-channel passing. Castro et al. [8] introduced a frame-
work to translate distributed MPST written in the Scribble protocol language
into a Go API; safety in API’s clients is enforced at runtime by generating linear-
ity exceptions. Differently, we obtain safety of Go programs statically by means
of type inference of pi-calculus channels.

Structure of the Paper

Section 2 presents the specification language and the notion of error, and sketches
few examples. The next two sections introduce the two main parts of the GoPi

GoPi: Compiling Linear and Static Channels in Go 141

compiler: the static analyser, presented in Sect. 3, and the Go code generator,
presented in Sect. 4. We conclude in Sect. 5 by envisioning possible usage scenar-
ios of GoPi, and by discussing limitations and future work.

2 The LSpi Specification Language

This section introduces the syntax of the language processed by the GoPi com-
piler. We consider communication channels, or variables, a, . . . , z, and processes
generated by the grammar:

P,Q ::= x!v.P | x?(y).P | (P | Q) | 0 | [hidex][P] | (newx)(P) | ∗P |
〈a, . . . , x〉 P | let X = P in Q | X | print :: v

Most operators are standard for message passing languages, with some excep-
tions. We have primitives for sending and receiving channels and continuing
as P , noted as x!v.P and x?(y).P , respectively, for parallel composition, noted
P | Q, for inert processes, noted 0, for channel creation, noted (newx)(P),
for process variables, noted X, and for assigning processes to process variables,
noted let X = P in Q. The hide operator is the main feature of the language
and shall be interpreted as follows: [hide c][P] declares that the fresh channel c
should be confined into the (fixed) square brackets even when process P inter-
acts with other processes. In the pi-calculus jargon, this is better summarized
by the sentence: “scope extrusion of channel c is disallowed ”. The other crucial
feature is the linear channel declaration 〈a, . . . , x〉P , which declares that each of
the channels a, . . . , x must be used exactly once for input and once for output.
Loops are programmed with the construct ∗P , which executes P forever. The
construct print::v supplies an imperative command to observe the channel v.

We assume the usual notions of free and bound variables and process vari-
ables, which we deem pairwise distinct by following the Barendregt convention,
and let x be bound in [hidex][P], (newx)(P), and a?(x).P , and be free oth-
erwise, and X be bound in let X = P in Q, and free otherwise. The process
let X = P in Q is acyclic whenever X is not free in P , and P,Q are acyclic; the
remaining cases are homomorphic. We only consider acyclic processes not con-
taining free process variables. We will often avoid training nils, use the variable
wildcard, and refer to channels not used in input or output as to base values,
and write them in typewriter style, when convenient.

2.1 Runtime and Errors

GoPi allows to run LSpi processes by mapping well-behaved processes into
executable Go programs. At a more abstract level, the semantics of the lan-
guage is provided by translating LSpi processes into standard (typed) pi-
calculus processes: intuitively, the hide construct is mapped into a restriction
and has standard semantics (cf., [15]), while linear annotations are separated
from processes and used in the static analysis. For instance, the specification

142 M. Giunti

[hide c][a!c] | a?(x).P declares that c should be confined in the squares, while at
runtime P can receive the restricted channel c: therefore this process is unsound
and should be rejected at compile-time.

LSpi programs can contain three kind of errors, all detected by the GoPi
compiler:

(A) channels declared as hidden that can be received by processes outside the
static scope of the channels;

(B) channels declared as linear that are not used exactly once for input and
once for output;

(C) channels declared as linear that at runtime give rise to deadlocks.

Examples. Process Chat in Fig. 1 does not contain errors. In contrast, process
Chat | P , where P � pub?(xpriv).xpriv?(xchat).Q, is an error of kind A: there is
a sequence of reductions which leads to the instantiation of the variable xchat in
Q with the hidden channel chat , that is the channel chat can be received by a
process outside its static scope. Because of that, GoPi flags Chat as contextually
unsafe. Process SafeChat � 〈pub〉Chat does not contain errors, and is contextu-
ally safe, as we will see in Sect. 3: intuitively, this holds since process P above
is no longer a valid (typed) opponent, because channel pub is linear and cannot
be accessed by the context.

To see an example of an error of kind B, take process 〈priv〉Chat, where
channel priv is declared as linear. The linear invariant does not hold, because
channel priv is used three times in input, by Alice, Bob and Carl (through
delegation), respectively, and an unbound number of times in output, by process
Setup.

Typical errors of kind C are processes containing self-deadlocks, which arise
when a linear input (output) prefixes a continuation containing the matching
output (input), and processes containing mutual deadlocks. The variant of pro-
cess Chat below, where an ack is sent after sending channel priv over channel
pub, and where channels ack and pub are linear, contains a mutual deadlock:

· · · let Bob = priv?(c).c!helloBob.pub!priv.ack!ok in

let Carl = ack?(x).confirm!x.pub?(p).p?(c).c!helloCarl in · · · in

let ChatAck = 〈ack, pub〉Chat in ChatAck (1)

At runtime the continuation of process Bob will be stuck on the output on the
linear channel pub, which can be only unblocked by Carl, because pub is linear
and must be used exactly once for input and once for input. Since Carl, in turn,
is blocked on the linear channel ack, the process will deadlock.

An interesting example of security error is process FSA below, which
abstracts a forward secrecy attack. Process FSA distributes a secret channel
c on a private channel a, sends a password on c, and afterwards releases channel
c on a public channel pub:

FSA � (new a)([hide c][a!c.c!pwd | a?(x).x?().pub!x]) | pub?(z).Q (2)

GoPi: Compiling Linear and Static Channels in Go 143

;; DATATYPES
(declare-datatypes () ((Scope static dynamic)))
(declare-datatypes () ((ChanType top
(channel (scope Scope)(payload ChanType)(id Int)(i Int)(o Int)(ord Int)))))

Fig. 2. LSpi types in the SMT-LIB language

By considering that a hide is mapped into a new at runtime, process FSA might
be interpreted as secure, because the context cannot observe the exchange over
the restricted channel c, and in turn cannot retrieve the password. However,
preserving the invisibility of restricted communications when pi-calculus pro-
cesses are deployed in open, untrusted networks is problematic, exactly because
of scope extrusion (cf., [3]), and eventually leads to complex solutions based on
cryptographic protocols relying on trusted authorities (cf., [5]). For these rea-
sons, we advocate that processes relying on dynamic scope restriction for security
should be rejected (cf., [15,16]). In fact, process FSA contains an error of kind
A, because at runtime the secret channel c can be received by a process outside
the squares, that is c can be received from pub.

The forward secrecy attack hints on how to use secret channels to develop
more secure programs: whenever a secret is sent over an hidden channel of an
error-free process, the secret will be unknown outside the static scope of the hide
declaration. Process FSecret is one of such secure programs, where we note that
the distribution channel a can occur in processes outside the scope of the hide:

FSecret � (new a)(new b)(([hide c][a!c.c!pwd | a?(x).x?()] | b!a | b?()))

3 Static Analyser

The static analyser is based on the type inference of LSpi channels and is imple-
mented as an automatically generated constraint system written in the SMT-LIB
language [4], and decided through the Z3 theorem prover [24]. Notably, the con-
straint system does not make use of quantifiers.

Figure 2 presents the syntax of the type of LSpi channels, named ChanType:
base values are represented by the top constructor, while channels are built with
the channel constructor receiving six arguments, where the last three (integer)
constructors are for linearity. Type inference of a process P relies on a set of
allowed identifiers (cf., id), which are the type identifiers that each input process
is allowed to receive. Roughly, the static scope analysis is based on this technique.

To illustrate, consider the encoding2 of the forward secrecy attack FSA in
(2); the input on a is allowed to receive both (dynamic) channels tagged with 0
and the static channel identified by idc, while the input on pub can only receive
channels tagged with 0:

(new a : dyn@0)((new c : stat@idc)a!c.c!pwd | a?(x).x?().pub!x)) | pub?(z).Q

2 The main rationale is that a new is mapped into a new with a dynamic type tagged
with 0, while a hide is mapped into a new with a static type tagged with a positive
identifier.

144 M. Giunti

The corresponding SMT-LIB assertions generated by GoPi enforce the invariants
for a and pub through their payload, where the randomly generated identifier
that instantiates idc is 345:
(assert (! (= (id c) 345) :named A5))
(assert (! (= c (payload a)) :named A12))
(assert (! (and (= (payload a) x) (or (= (id x) 0) (= (id x) 345)) :named A23))
(assert (! (= x (payload pub)) :named A46))
(assert (! (and (= (payload pub) z) (= (id z) 0)) :named A48))

These assertions make the model UNSAT, as expected, because by transitivity
we obtain 345 = 0: that is, the variable z bound by the input prefix on channel
pub should have id equal to 0, while it has the id of the static (hidden) channel.

3.1 Contextual Safety

Contextual safety is analysed by resorting to auto-generated catalysers (cf., [9])
of order n, that are processes that can both inject and receive channels, on which
they inject and receive channels, and so on, with depth n. Catalysers are put in
parallel with the process in order to collect the process’ global constraints, as if
the process was immersed in an arbitrary (typed) context. The contexts under
consideration are those that respect the linearity invariants of the process: that
is, we generate catalysers from the unrestricted free variables of the process.

To see an example of catalyser, consider process Chat in Fig. 1, where we
note that the only unrestricted free variable of Chat is pub. The catalyser below
is generated by following the structure of Chat and by matching each input
(output) on pub with an output (input) on pub with depth three, which is the
maximum order of Chat, where f is a randomly generated channel distinct from
any channel in the free and bound variables of Chat :

Cat � pub?(x).(x?(y).y?(z) | 0) | pub!f.(f?(x).x?(y) | f?(x).(x?(y).y?(z) | 0))

Process Chat is contextually unsafe because Chat | Cat contains an error: the
hidden channel chat at runtime can be received by process Cat, which is outside
the static scope of the channel (cf., Sect. 2). This is established by GoPi via the
generation of the SMT-LIB assertions of Chat | Cat, and by discovering that the
model is UNSAT; we omit the core assertions, which are similar to those of the
forward secrecy attack.

As a further example, consider SafeChat � 〈pub〉Chat. Given that the set
of the unrestricted free variables of SafeChat is empty, we generate an inert
catalyser (cf., 0), and in turn obtain that SafeChat is contextually safe because
the SMT-LIB model generated from SafeChat | 0 is SAT, that is the parallel
composition is error-free.

3.2 Linearity Analysis

To enforce linearity, we use the input, output, and order integer constructors,
noted i, o, and ord, respectively, of the type ChanType in Fig. 2. Input (output)
fields contain the number of times that the input (output) capability is used for

GoPi: Compiling Linear and Static Channels in Go 145

a variable of the given type. Order fields are manipulated by the solver to find
an ordering among linear channels.

The linearity analysis is performed by mapping the actual usage of channels
into assertions of the constraint system. While analysing processes and generat-
ing the corresponding assertions for type reconstruction, we build a usage table
that maps channels x to entries of the form (ni, no, ls), where ni, no are integers
tracking the usage of x in input and output, respectively, and ls is a list contain-
ing the channels where x has been sent. At the end of the process analysis, the
contents of the table are transformed into assertions and added to the constraint
system.

The SMT-LIB assertions below are an excerpt of the model generated from
process ChatAck in (1):
(assert (! (=> (isLinear ack) (< (ord pub) (ord ack))) :named A67))
(assert (! (=> (isLinear pub) (< (ord ack) (ord pub))) :named A96))
(assert (! (isLinear ack) :named A111))
(assert (! (isLinear pub) :named A112))
(assert (! (=> (isLinear ack) (and (= (o ack) 1) (= (o ack) (+ 1 0))))
:named A113))

(assert (! (=> (isLinear ack) (and (= (i ack) 1) (= (i ack) (+ 1 0))))
:named A114))

(assert (! (=> (isLinear pub) (and (= (o pub) 1) (= (o pub) (+ 1 0))))
:named A137))

(assert (! (=> (isLinear pub) (and (= (i pub) 1) (= (i pub) (+ 1 0))))
:named A138))

Assertions A111 and A112 come from the linear declaration 〈ack, pub〉 in (1).
Assertions A113, A114, A137, and A138 are generated from the usage table,
where, for each conjunction, the first entry is the expected value, and the second
entry is the actual value. The assertions are satisfiable: that is, each i/o capability
of channel ack, and of channel pub, respectively, is used exactly once in (1). The
model is UNSAT because the conclusions in the assertions A67 and A96 state
that the order of pub is smaller than the order of ack, and vice-versa. We note that
the unsatisfiability of the model prevents the mutual deadlock inside ChatAck
(cf., Sect. 2).

4 Go Code Generation

Given a well-behaved LSpi process, and the type of its channels, GoPi generates
executable Go code that is based on the channels’ types. Channel types in Go
have the following syntax3, where ElementType is any type:

ChannelType = ("chan" | "chan" "<-" | "<-" "chan") ElementType.

We map types in Fig. 2 to types of the form above by ignoring all fields but the
payload, and by mapping the top type to string.

The generation of code implementing LSpi processes is not straightforward:
while the target language features concurrent goroutines (cf., go f(a ,..., z)) that
are a natural candidate to represent high-level parallel processes, the whole appli-
cation’s design must be carefully pondered.
3 https://golang.org/ref/spec.

https://golang.org/ref/spec

146 M. Giunti

1 var pub chan chan chan base
2 //Chat process
3 func (){
4 chat := make(chan base) ; . . .
5 func (){ . . .
6 p r iv := make(chan chan base) ; . . .
7 go func (){ . . . ; pub ← pr iv } () //Bob
8 } ()
9 go func (){ p := ←pub ; fmt . Pr int (”Retr ieved : ” , p) ; . . . } () ; //Carl

10 } ()
11 // Para l l e l process
12 go func (){ a := make(chan chan base) ; pub ← a } ()

Fig. 3. Naive implementation of the Chat protocol in Go

As a first attempt, we could map input and output constructs of LSpi directly
into receive and send primitives of Go, respectively. To illustrate, take the parallel
execution of process Chat in Fig. 1 with a process sending a fresh channel a over
the public channel pub, that is process ChatND � Chat | (new a)(pub!a), where
the subscript stands for non-deterministic, since Carl can receive priv from Bob,
or a from the parallel process, non-deterministically. Process ChatND would be
mapped into Go code of the form outlined in Fig. 3, where we list the parts that
are related to the communication over channel pub. The scope of channel chat
is grouped by the function call in lines 3–10, while the scope of channel priv is
grouped by the function call in lines 5–8. The listed processes that are executed
concurrently are Bob (line 7), Carl (line 9), and the parallel process (line 12).

While appealingly simple, the implementation in Fig. 3 has at least two main
drawbacks:

– in the vast majority of cases, i.e., ∼90%, p is bound to priv, while the prob-
ability should be 50%, being receiving priv from pub equally probable to
receiving a from pub;

– channels have no name associated, making difficult the interpretation of the
output of the program, e.g., “Retrieved : 0xc000022060”.

4.1 Channel Servers

The envisioned solution consists in using channel servers that take care of input
and output requests of clients, while internally managing both non-deterministic
synchronizations, and the naming of channels. The access to channel servers is
regulated by an API for communication, implemented as methods of a type
environment infrastructure; the structure, represented by the typeEnv typed col-
lection in Fig. 4, aggregates channel servers by their order.

Servers are equipped with dynamic arrays, referred as queues, that collect the
values concurrently sent on the channel by output clients, and act as a bridge
between input and output clients: input clients send requests to the server and
receive values sent by output clients and stored in the queue. Non-determinism
is simulated through a randomization of queues, and can be pushed forward by

GoPi: Compiling Linear and Static Channels in Go 147

1 type base string
2 type basePair struct{
3 ch base
4 rep lych chan bool
5 }
6 type queueBase [] basePair ;
7 type chan0 chan base
8 type chan0Pair struct{
9 ch chan0

10 rep lych chan bool
11 }
12 type queueChan0 [] chan0Pair ;
13 type chan1 chan chan0 ; . . .
14 type typeEnv struct{
15 ord struct{ . . . }
16 ord0 struct{
17 toSt r map[chan0] string //marshal l ing
18 fromStr map[string] chan0 //unmarshal l ing
19 queue map[chan0] queueBase
20 dequeue map[chan0] func () // in s t an t i a t ed at r e g i s t r a t i on
21 mux sync .Mutex
22 }
23 ord1 struct{
24 toSt r map[chan1] string //marshal l ing
25 fromStr map[string] chan1 //unmarshal l ing
26 queue map[chan1] queueChan0
27 dequeue map[chan1] func () // in s t an t i a t ed at r e g i s t r a t i on
28 mux sync .Mutex
29 } ; . . .

Fig. 4. Type of channel servers

tuning the timeouts in retrieving messages4. A mutex regulating the access to
queue and dequeue operations prevents data races; this is verified with Go’s race
detector.

Server Registration. A channel server of order n ≥ 0 is registered by instantiating
the entries of ordn in the (unique) variable Γ of type typeEnv (cf., Fig. 4). The
procedure to register a channel server of order zero for the name “a”, where, by
convention, zero is the order of channels conveying base values, consists of five
major steps:

1. create a fresh channel c of type chan0;
2. acquire the lock (cf., line 21)
3. defer the unlock
4. insert the mappings between “a” and c (cf., lines 17, 18)
5. insert the mapping from c to a function (cf., line 20) that retrieves values

from Gamma.ord0.queue[c] (cf., line 19).

4.2 Clients’ Access to Servers

The channels servers are accessed by clients by means of methods of the variable
Γ of type typeEnv. The signatures below list the most relevant operations.

4 Non-zero dequeue timeouts are optional, and discouraged for non-academic pur-
poses.

148 M. Giunti

1 //Methods of typeEnv accessed by c l i e n t s
2 func (t ∗typeEnv) r e g i s t e r (name string , nameType string) error
3 func (t ∗typeEnv) dequeue (input value) error
4 func (t ∗typeEnv) queue (output value , payload value ,
5 replyCh chan bool) error
6 func (t ∗typeEnv) nameOf(c value) string

The register method is invoked by clients in correspondence of a new or of a hide

declaration, where the second parameter is the order of the declared channel.
The dequeue method is called by input clients, where value is an interface
implemented by channels and base values. The queue method is invoked by
output clients, where the third parameter will be instantiated by a (fresh) ack
channel, to enforce synchronous communications. The nameOf method is called
by print clients in order to print the string associated to a channel reference.

4.3 Working Example

Figure 5 contains the code generated by GoPi for the Chat process (cf., Fig. 1),
where we only list the code of clients, being the code of servers invariant.
The outer function call generates channel chat and closes its scope. In the
body of the call, we have the parallel execution of Board (lines 5–20), of
(new priv)(Setup | Alice | Bob) (lines 21–51), and of Carl (lines 52–62). Gen-
eration of fresh channels is implemented by a mechanism that uses randomly
generated keys, and a counter protected by a mutex, for loops (cf., lines 7, 9, 27,
29).

The code implementing Board invokes the dequeue method of Γ (line 10),
which triggers the selection of a message m from the queue of channel chat and
the dispatch of m over chat. Subsequently, the message is retrieved from chat
and printed, where the code in lines 13–17 implements the polymorphic print
construct of LSpi. The sending on channel done (line 19) is discussed below.

The code for Setup continuously uses the queue method of Γ to send chat
over priv (cf., lines 28–33); to enforce synchrony, the write request includes a
reply boolean channel that will be unblocked by the server once priv is retrieved
in the queue (cf., lines 30, 32).

The code for Bob sends three requests to Γ : one dequeue, to retrieve a channel
from priv (line 39), one queue, to send the string helloBob over the channel
retrieved from priv (line 42), and one queue, to send priv over pub (line 45).
Before the exit, a boolean ack is sent over channel done (line 47), to signal
that the thread ended. The ack is received by the loop in line 63, which allows
the program to wait for the termination of all threads until a given timeout,
to increase the chances to retrieve messages from queues. This mechanism is
followed by all threads, regardless of loops.

Finally, the code for Carl sends three requests to Γ : one dequeue, to retrieve a
channel from pub (line 54), one dequeue, to retrieve a channel c from the channel
retrieved from pub (line 56), and one queue, to send the string helloCarl over c
(line 59).

GoPi: Compiling Linear and Static Channels in Go 149

1 var Gamma typeEnv ; . . .
2 func (){
3 Gamma. r e g i s t e r (” chat ”+ string (counter . Value (key)) , ”0”)
4 chat := Gamma. chanOf (” chat ”+ string (counter . Value (key))) . (chan0)
5 //Board
6 go func () {
7 key := RandStringRunes (32)
8 for{
9 counter . Inc (key)

10 Gamma. dequeue (chat)
11 message := ← chat
12 var v value = message
13 switch v . (type){
14 case base : fmt . Printf (”Pr int %v\n” , message)
15 default : fmt . Printf (”Pr int %v with address %v\n” ,

)egassem,)egassem(fOeman.ammaG61
17 }
18 }
19 done ← true
20 } ()
21 go func () {
22 func () {
23 Gamma. r e g i s t e r (” pr iv ”+ string (counter . Value (key)) , ”1”)
24 pr iv := Gamma. chanOf (” pr iv ”+ string (counter . Value (key))) . (chan1)
25 //Setup
26 go func () {
27 key := RandStringRunes (32)
28 for{
29 counter . Inc (key)
30 privReply0 := make(chan bool)
31 Gamma. queue (priv , chat , pr ivReply0)
32 = ← privReply0
33 }
34 done ← true
35 } ()
36 //Alice . . .
37 //Bob
38 go func () {
39 Gamma. dequeue (pr iv)
40 ch2 := ← pr iv
41 ch2Reply2 := make(chan bool)
42 Gamma. queue (ch2 , helloBob , ch2Reply2)
43 = ← ch2Reply2
44 pubReply3 := make(chan bool)
45 Gamma. queue (pub , priv , pubReply3)
46 = ← pubReply3
47 done ← true
48 } ()
49 } ()
50 done ← true
51 } ()
52 //Carl
53 go func () {
54 Gamma. dequeue (pub)
55 ch3 := ← pub
56 Gamma. dequeue (ch3)
57 c := ← ch3
58 cReply4 := make(chan bool)
59 Gamma. queue (c , he l l oCar l , cReply4)
60 = ← cReply4
61 done ← true
62 } ()
63 for { ←done }
64 } ()

Fig. 5. GoPi’s implementation of the Chat process

150 M. Giunti

5 Discussion

GoPi’s main aim is to support academic activities involving process algebras and
formal models, which range from the analysis and testing of concurrent processes
for research purposes to teaching formal languages and concurrent systems.

In this context, we have done some tests5 with encouraging results, e.g, GoPi
decided the safety of a complex variant of the secret chat protocol of Sect. 1
involving a communication of order seven and more than thirty programming
constructs in 0.2 s, producing 600 constraints and a Go file of 1Kloc (cf., [1]).
On the Go’s side, we ran the code generated from a LSpi process continuously
creating, sending and printing fresh channels for one day, without encountering
exceptions. With António Ravara, we plan to use GoPi in the course Modelling
and Validating Concurrent Systems of the Integrated Master in Computer Engi-
neering, New University of Lisbon, 2020/21.

5.1 Limitations

The current architecture of GoPi does not allow to separate the static analy-
sis from the generation of the Go code, and in turn to generate code based on
type annotations provided by different tools. Another limitation is that modifi-
cations of the Go code made by the programmer are lost when the specification
is changed, since GoPi does not support annotations of the specification with
Go snippets. We also note that the static analysis is not compositional, since to
determine whether a process is safe, we perform a contextual analysis.

The information reported in case of failure of the analysis is not parsed into
an human-readable format; this limits the usability of the tool.

At the language level, one current limitation is that delegation of partial
capabilities of linear channels is rejected, because of issues related to the detec-
tion of deadlocks (cf., [17]). Another limitation, which is common in the context
of behavioural type systems (cf., [13]), is that deadlocks are detected on linear
channels, while unrestricted channels, interpreted as open ports, can give rise to
runtime locks caused by decoupled input and output communications.

5.2 Future Work

GoPi aims at being an open and live project developing and maintaining a
compiler for a language with built-in support for mobility, security, resource-
awareness, and deadlock-resolution. In that direction, most limitations outlined
above need to be overcome.

The separation of the static analysis and of the generation of Go code, and
the readability of the output of the static analysis, appear as the most urgent
issues. We believe that both features could be supported in the next release of
GoPi, while the presentation of the results of the static analysis could (at least)
state a list of channels, and the kind or error encountered (cf., Sect. 2).

5 Testing machine: MacBook 2 GHz i5 8 GB 1867 MHz LPDDR3.

GoPi: Compiling Linear and Static Channels in Go 151

Supporting partial delegation of linear capabilities is another feature that we
are keen to support in future releases, while the static analysis may be more
involved, because of deadlock detection.

Acknowledgements. The author would like to warmly thank the anonymous review-
ers for their competent comments and constructive criticism on a previous draft of the
paper, and for providing insightful suggestions in the preparation of this paper.

References

1. The GoPi Compiler. https://github.com/marcogiunti/gopi. https://sites.fct.unl.
pt/gopi

2. 4th Workshop on Principles of Secure Compilation. POPL (2020). https://popl20.
sigplan.org/home/prisc-2020

3. Abadi, M.: Protection in programming-language translations. In: Larsen, K.G.,
Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 868–883. Springer,
Berlin, Heidelberg (1998). https://doi.org/10.1007/BFb0055109

4. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard: Version 2.6. Tech-
nical report, Department of Computer Science, The University of Iowa (2017)

5. Bugliesi, M., Giunti, M.: Secure implementations of typed channel abstractions.
In: POPL, pp. 251–262. ACM (2007)

6. Cardelli, L., Ghelli, G., Gordon, A.D.: Secrecy and group creation. Inf. Comput.
196(2), 127–155 (2005). https://doi.org/10.1016/j.ic.2004.08.003

7. Castagna, G., Vitek, J., Nardelli, F.Z.: The seal calculus. Inf. Comput. 201(1),
1–54 (2005). https://doi.org/10.1016/j.ic.2004.11.005

8. Castro, D., Hu, R., Jongmans, S., Ng, N., Yoshida, N.: Distributed program-
ming using role-parametric session types in Go: statically-typed endpoint APIs
for dynamically-instantiated communication structures. PACMPL 3(POPL), 29:1–
29:30 (2019). https://doi.org/10.1145/3290342

9. Coppo, M., Dezani-Ciancaglini, M., Yoshida, N., Padovani, L.: Global progress for
dynamically interleaved multiparty sessions. Math. Struct. Comput. Sci. 26(2),
238–302 (2016)

10. Cortier, V., Kremer, S. (eds.): Formal Models and Techniques for Analyzing Secu-
rity Protocols, Cryptology and Information Security, vol. 5. IOS Press, Amsterdam
(2011)

11. Fonseca, P., Li, C., Singhal, V., Rodrigues, R.: A study of the internal and external
effects of concurrency bugs. In: DSN, pp. 221–230. IEEE Computer Society (2010).
https://doi.org/10.1109/DSN.2010.5544315

12. Fournet, C., Le Fessant, F., Maranget, L., Schmitt, A.: JoCaml: a language for con-
current distributed and mobile programming. In: Jeuring, J., Jones, S.L.P. (eds.)
AFP 2002. LNCS, vol. 2638, pp. 129–158. Springer, Berlin, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-44833-4 5

13. Gay, S., Ravara, A. (eds.): Behavioural Types: From Theory to Tools. River Pub-
lishers (2017). https://doi.org/0.13052/rp-9788793519817

14. Giunti, M.: Algorithmic type checking for a pi-calculus with name matching and
session types. J. Logic Algebraic Program. 82(8), 263–281 (2013). https://doi.org/
10.1016/j.jlap.2013.05.003

15. Giunti, M.: Static semantics of secret channel abstractions. In: Bernsmed, K.,
Fischer-Hübner, S. (eds.) NordSec 2014. LNCS, vol. 8788, pp. 165–180. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-11599-3 10

https://github.com/marcogiunti/gopi
https://sites.fct.unl.pt/gopi
https://sites.fct.unl.pt/gopi
https://popl20.sigplan.org/home/prisc-2020
https://popl20.sigplan.org/home/prisc-2020
https://doi.org/10.1007/BFb0055109
https://doi.org/10.1016/j.ic.2004.08.003
https://doi.org/10.1016/j.ic.2004.11.005
https://doi.org/10.1145/3290342
https://doi.org/10.1109/DSN.2010.5544315
https://doi.org/10.1007/978-3-540-44833-4_5
https://doi.org/0.13052/rp-9788793519817
https://doi.org/10.1016/j.jlap.2013.05.003
https://doi.org/10.1016/j.jlap.2013.05.003
https://doi.org/10.1007/978-3-319-11599-3_10

152 M. Giunti

16. Giunti, M., Palamidessi, C., Valencia, F.D.: Hide and new in the pi-calculus. In:
EXPRESS/SOS. EPTCS, vol. 89, pp. 65–79 (2012)

17. Giunti, M., Ravara, A.: Towards static deadlock resolution in the π-calculus. In:
Abadi, M., Lluch Lafuente, A. (eds.) TGC 2013. LNCS, vol. 8358, pp. 136–155.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05119-2 9

18. Giunti, M., Vasconcelos, V.T.: Linearity, session types and the pi calculus.
Math. Struct. Comput. Sci. 26(2), 206–237 (2016). https://doi.org/10.1017/
S0960129514000176

19. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. J.
ACM 63(1), 9:1–9:67 (2016)

20. Lange, J., Ng, N., Toninho, B., Yoshida, N.: Fencing off Go: liveness and safety for
channel-based programming. In: POPL, pp. 748–761. ACM (2017)

21. Lange, J., Ng, N., Toninho, B., Yoshida, N.: A static verification framework for
message passing in Go using behavioural types. In: ICSE, pp. 1137–1148. ACM
(2018). https://doi.org/10.1145/3180155.3180157

22. Lu, S., Park, S., Seo, E., Zhou, Y.: Learning from mistakes: a comprehensive study
on real world concurrency bug characteristics. In: ASPLOS, pp. 329–339. ACM
(2008). https://doi.org/10.1145/1346281.1346323

23. Mandel, L., Maranget, L.: The JoCaml Language, Release 4.01, 14 March 2014.
http://jocaml.inria.fr/doc

24. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Berlin,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-3 24

25. Pierce, B.C., Turner, D.N.: Pict: a programming language based on the pi-calculus.
In: Proof, Language, and Interaction, Essays in Honour of Robin Milner, pp. 455–
494. The MIT Press (2000)

26. Sewell, P., Vitek, J.: Secure composition of untrusted code: box pi, wrappers, and
causality. J. Comput. Secur. 11(2), 135–188 (2003)

27. Sewell, P., Wojciechowski, P.T., Unyapoth, A.: Nomadic Pict: programming lan-
guages, communication infrastructure overlays, and semantics for mobile compu-
tation. ACM Trans. Program. Lang. Syst. 32(4), 12:1–12:63 (2010). https://doi.
org/10.1145/1734206.1734209

28. Thomsen, B.: Plain CHOCS: a second generation calculus for higher order pro-
cesses. Acta Inf. 30(1), 1–59 (1993). https://doi.org/10.1007/BF01200262

29. Turner, D.N.: The polymorphic pi-calculus: theory and implementation. Ph.D.
thesis, University of Edinburgh (1995)

https://doi.org/10.1007/978-3-319-05119-2_9
https://doi.org/10.1017/S0960129514000176
https://doi.org/10.1017/S0960129514000176
https://doi.org/10.1145/3180155.3180157
https://doi.org/10.1145/1346281.1346323
http://jocaml.inria.fr/doc
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/1734206.1734209
https://doi.org/10.1145/1734206.1734209
https://doi.org/10.1007/BF01200262

SFJ: An Implementation of Semantic
Featherweight Java

Artem Usov and Ornela Dardha(B)

School of Computing Science, University of Glasgow, Glasgow, UK
2296905U@student.gla.ac.uk, ornela.dardha@glasgow.ac.uk

Abstract. There are two approaches to defining subtyping relations:
the syntactic and the semantic approach. In semantic subtyping, one
defines a model of the language and an interpretation of types as subsets
of this model. Subtyping is defined as inclusion of subsets denoting types.

An orthogonal subtyping question, typical of object-oriented lan-
guages, is the nominal versus the structural subtyping. Dardha et al.
[11,12] defined boolean types and semantic subtyping for Featherweight
Java (FJ) and integrated both nominal and structural subtyping, thus
exploiting the benefits of both approaches. However, these benefits were
illustrated only at a theoretical level, but not exploited practically.

We present SFJ—Semantic Featherweight Java, an implementation
of FJ which features boolean types, semantic subtyping and integrates
nominal as well as structural subtyping. The benefits of SFJ, illustrated
in the paper and the accompanying video (with audio/subtitles) [27],
show how static type-checking of boolean types and semantic subtyp-
ing gives higher guarantees of program correctness, more flexibility and
compactness of program writing.

Keywords: Nominal subtyping · Structural subtyping · Semantic
Featherweight Java · Object-oriented languages · Boolean types · Type
theory

1 Introduction

There are two approaches to defining subtyping relations: the syntactic and the
semantic approach. Syntactic subtyping [20] is more mainstream in programming
languages and is defined by means of a set of formal deductive subtyping rules.
Semantic subtyping [1,10] is more recent and less known: one defines a formal
model of the language and an interpretation of types as subsets of this model.
Then, subtyping is defined as set inclusion of subsets denoting types.

Supported by the UK EPSRC grant EP/K034413/1, “From Data Types to Session
Types: A Basis for Concurrency and Distribution” (ABCD), and by the EU HORI-
ZON 2020 MSCA RISE project 778233 “Behavioural Application Program Interfaces”
(BehAPI).

c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
S. Bliudze and L. Bocchi (Eds.): COORDINATION 2020, LNCS 12134, pp. 153–168, 2020.
https://doi.org/10.1007/978-3-030-50029-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50029-0_10&domain=pdf
http://orcid.org/0000-0001-9927-7875
https://doi.org/10.1007/978-3-030-50029-0_10

154 A. Usov and O. Dardha

Orthogonally, for object-oriented languages there are two approaches to defin-
ing subtyping relations: the nominal and the structural approach [21,22]. Nomi-
nal subtyping is based on declarations by the developer and is name-based: “A is
a subtype of B if and only if it is declared to be so, that is if the class A extends
(or implements) the class (or interface) B”. Structural subtyping instead is based
on the structure of a class, its fields and methods: “a class A is a subtype of a
class B if and only if the fields and methods of A are a superset of the fields and
methods of B, and their types in A are subtypes of the types in B”. For example,
the set of inhabitants of a class Student is smaller than the set of inhabitants
of a class Person, as each Student is a Person, but not the other way around.
However, the set of fields and methods of Student is a superset of that of Person.
Hence, Student is a structural subtype of Person, even if it is not declared so.

Dardha et al. [11,12] define boolean types—based on set-theoretic operations
such as and, not, or—and semantic subtyping for Featherweight Java (FJ)
[17]. This approach allows for the integration of both nominal and structural
subtyping in FJ, bringing in higher guarantees of program correctness, flexibility
and compactness in program writing. Unfortunately, these benefits were only
presented at a theoretical level and not exploited practically, due to the lack of
an implementation of the language, its types and type system.

In this paper, we present SFJ—Semantic Featherweight Java Sect. 3, an
implementation of FJ with boolean types and semantic subtyping. In SFJ the
developer has a larger and more expressive set of types, by using boolean con-
nectives and, not, or, with the expected set-theoretic interpretation. On the
other hand, this added expressivity does not add complexity. Rather the oppo-
site is true, as the developer has an easier, more compact and elegant way of
programming. SFJ integrates both structural and nominal subtyping, and the
developer can choose which one to use. Finally, as discussed in Dardha et al. [12,
Sect. 8.4], thanks to semantic subtyping, we can easily encode in SFJ standard
programming constructs and features of the full Java language, such as lists, or
overloading classes via multimethods [5], which are missing in FJ, thus making
SFJ a more complete language closer to Java.

Example 1 (Polygons). This will be our running example both in the paper and
in the tool video [27] to illustrate the benefits of boolean types and semantic
subtyping developed by Dardha et al. [11,12] and implemented as SFJ.

Consider the set of polygons, such as triangles, squares and rhombuses given
by a class hierarchy. We want to define a method diagonal that takes a polygon
and returns the length of its longest diagonal. This method makes sense only if
the polygon passed to it has at least four sides, hence triangles are excluded. In
Java this could be implemented in the following ways:

SFJ 155

class Polygon {. . .}
class Triangle extends Polygon {. . .}
class Other Polygons extends Polygon {

double diagonal(Other Polygons shape) {. . .}
. . .

}
class Square extends Other Polygons {. . .}
class Rhombus extends Other Polygons {. . .}

Or by means of an interface Diagonal :

public interface Diagonal {
double diagonal(Polygon shape);

}
class Polygon {. . .}
class Triangle extends Polygon {. . .}
class Square extends Polygon implements Diagonal {. . .}
class Rhombus extends Polygon implements Diagonal {. . .}

// other polygons . . .

Now, suppose our class hierarchy is such that Polygon is the parent class and
all other geometric figures extend Polygon, which is how one would naturally
define the set of polygons. Suppose the class hierarchy is given and is part of
legacy code, which cannot be changed. Then again, a natural way to implement
this in Java is by defining the method diagonal in the class Polygon and using
an instanceof, for example, inside a try-catch construct. Then, an exception
would be thrown at run time, if the argument passed to the method is a triangle.

We propose a more elegant solution, by combining boolean types and seman-
tic subtyping, where only static type-checking is required and we implement this
in SFJ [27]: it is enough to define a method diagonal that has an argument
of type Polygon and not Triangle, thus allowing the type-checker to check at
compile time the restrictions on types:

class Polygon {. . .}
class Triangle extends Polygon {. . .}
class Square extends Polygon {. . .}
class Rhombus extends Polygon {. . .}

. . .
class Diagonal {

. . .
double diagonal((Polygon and not Triangle) shape){. . .}

}
We can now call diagonal on an argument of type Polygon: if the polygon is

not a Triangle, then the method computes and returns the length of its longest
diagonal; otherwise, there will be a type error at compile time.

156 A. Usov and O. Dardha

Structure of the Paper: In Sect. 2 we present the types and terms of the SFJ
language. In Sect. 3 we present the design and implementation of SFJ; we dis-
cuss our two main algorithms, Algorithm 1 in Sect. 3.1 which checks the validity
of type definitions, and Algorithm2 in Sect. 3.2 which generates the semantic
subtyping relation. Further, we discuss typing of SFJ in Sect. 3.3; nominal vs.
structural subtyping in Sect. 3.5; method types in Sect. 3.6; and code generation
in Sect. 3.7. We discuss related work and conclude the paper in Sect. 4.

2 Background

The technical developments behind semantic subtyping and its properties are
complex, however, they are completely transparent to the programmer. The
framework is detailed and proved correct in the relevant work by Dardha et al.
[11,12], and SFJ builds on that framework.

In this section we will briefly detail the types and terms of SFJ.

2.1 Types

The syntax of types τ is defined by the following grammar:

τ ::= α | μ Types
α ::= 0 | B | [˜l : τ] | α and α | not α Field types (α-types)
μ ::= α → α | μ and μ | not μ Method types (μ-types)

The α-types are used to type fields and the μ-types are used to type methods.
Type 0 is the empty type. Type B denotes the basic types, such as integers,
booleans, etc. Record types [˜l : τ], where ˜l is a sequence of disjoint labels, are
used to type objects. Arrow types α → α are used to type methods.

The boolean connectives and and not in the α-types and μ-types have their
expected set-theoretic meanings. We let α \\\ α′ denote α and (not α′), and
α or α′ denote not(not α and (not α′)).

2.2 Terms

The syntax of terms is defined by the following grammar and is based on the
standard syntax of terms in FJ [17]:

Class declaration L ::= class C extends C {α̃ a; K; ˜M }
Constructor K ::= C (α̃ x) { super(x̃); t̃his.a = x̃; }
Method declaration M ::= α m (α x) { return e; }
Expressions e ::= x | c | e.a | e.m(e) | new C(ẽ)

SFJ 157

We assume an infinite set of names, with some special names: Object denotes
the root class, this denotes the current object and super denotes the parent
object. We let A,B, . . . range over classes; a, b, . . . over fields; m,n, . . . over meth-
ods and x, y, z, . . . over variables.

A program (˜L, e) is a pair of a sequence of class declarations ˜L, giving rise
to a class hierarchy as specified by the inheritance relation, and an expression e
to be evaluated. A class declaration L specifies the name of the class, the name
of the parent class it extends, its typed fields, the constructor K and its method
declarations M . The constructor K initialises the fields of the object by assigning
values to the fields inherited by the super-class and to the fields declared in
the current this class. A method declaration M specifies the signature of the
method, namely the return type, the method name and the formal parameter
as well as the body of the method. Notice that in our theoretical development
we use unary methods, without loss of generality: tuples of arguments can be
modelled by an object that instantiates a “special” class containing as fields all
the needed arguments. Expressions e include variables, constants, field access,
method call and object creation.

Following FJ [17], we rule out ill-formed programs, such as declaring a con-
structor named B within a class named A, or multiple fields or methods having
the same name, or fields having the same type as the class they are defined in.

3 The SFJ Language

3.1 On Valid Type Definitions

Since we want to use types τ to program in SFJ, we restrict them to finite trees
whose leaves are basic types B Sect. 2.2 with no cycles. For example, a recursive
type α = [a : α] denotes an infinite program tree new C(new C(· · ·)), hence we
rule it out as it is not inhabitable. Similarly, the types α = [b : β], β = [a = α]
create a cycle and thus would not be inhabitable. Notice that these types can be
defined and inhabited in Java by assigning null to all fields in a class, however
they are not useful in practice.

SFJ is implemented using ANTLR [24]. We start by defining the grammar
of the language in Extended Backus-Naur Form (EBNF), following Sect. 2.1 and
by running ANTLR, we can automatically generate a parser for SFJ and extend
it in order to implement the required checks for our types and type system.

Running the parser on an SFJ program returns an abstract syntax tree (AST)
of that program. When visiting the AST, we check if the program is well-formed,
following the intuition at the end of Sect. 2. We mark any classes containing only
fields typed with basic types as resolved, otherwise we mark them as unresolved.
Using this information, Algorithm1 checks if the type definitions in a program
are valid, namely if they are finite trees whose leaves are basic types with no

158 A. Usov and O. Dardha

cycles. The algorithm returns True only if all the types in the SFJ program are
resolved, otherwise it returns False, meaning there is at least one type definition
which is invalid and contains a cycle.

Algorithm 1: Validity Check for Type Definitions
Input : classes, the set of classes in an SFJ program marked resolved, if their

fields contain only basic types, unresolved otherwise.
Output : True if all classes are valid type definitions, False otherwise.

1 begin
2 do
3 resolutionOccured ←− False
4 for class that is unresolved in classes do
5 resolved ←− True
6 for field in class that contains a class type do
7 if type of field is unresolved then
8 resolved ←− False
9 end

10 end
11

12 if resolved = True then
13 class ←− resolved
14 resolutionOccured ←− True

15 end

16 end

17 while resolutionOccured = True
18

19 if not all classes are resolved then
20 return False
21 else
22 return True
23 end

24 end

3.2 Building Semantic Subtyping for SFJ

If Algorithm 1 returns True, meaning all type definitions in a program are valid,
we can then build the semantic subtyping. Leveraging the interpretation of types
as sets of values to define semantic subtyping for FJ [11,12], in SFJ we keep track
of the semantic subtyping relation by defining a map from a type to the set of its
subtypes, satisfying the property that the set of values of a subtype is included
in the set of values of the type.

SFJ 159

Algorithm 2: Semantic Subtyping for SFJ—generateRelation
Input : classes, the set of classes in an SFJ program.

relation, the mapping of types to the set of subtypes, initially Map 3.1.
1 begin
2 Function generateRelation(classes: List<Class>):
3 unprocessed : List < Class > ←− []
4 for class in classes do
5 if addClass(class) = False then
6 unprocessed.add(class)
7 end

8 end
9 if untyped �= [] then

10 generateRelation(unprocessed)
11 end

12 end
13

/* algorithm continued on next page... */

We start with basic types and let Universe be a supertype of all types. The
full mapping for basic types is defined in Map 3.1.

Double = {Double, F loat, Int, Short,Byte} Float = {Float, Short,Byte}
Long = {Long, Int, Short,Byte} Int = {Int, Short,Byte}
Short = {Short,Byte} Byte = {Byte}
Boolean = {Boolean} V oid = {V oid}
Universe = {Double, F loat, Long, Int,

Short,Byte,Boolean, V oid}
(3.1)

Note that Int is not a subtype of Float as a 32-bit float cannot represent the
whole set of 32-bit integer values accurately and therefore Int is not fully set-
contained in Float, however this is not the case for Int and Double. Similarly,
Long is not a subtype of Double.

Algorithm 2 builds the semantic subtyping relation for all class types of an
SFJ program by calling the function generateRelation. Given that classes are
valid type definitions by Algorithm1, we are guaranteed that Algorithm 2 will
terminate.

The semantic subtyping generated by Algorithm 2 is a preorder: it is reflexive
and transitive. This is also illustrated by Map 3.1.

Some comments on Algorithm 2 follow. In function generateRelation we iter-
ate over the set of classes in an SFJ program. If the class currently being pro-
cessed contains types in its fields or methods not present in the subtyping relation
(lines 5 and 30, 42 in the continuation of the algorithm in the next page), then
we add the current class to the list of unprocessed classes (line 6) so we can pro-
cess its fields and methods first and the class itself later after having all required

160 A. Usov and O. Dardha

Algorithm 2: Semantic Subtyping for SFJ—addClass and checkSuperSet
/* ...algorithm continued from previous page */

13

14 Function addClass(class: Class) → boolean:
15 for existing class type in relation do
16 if checkSuperSet(class, existingClass) = False then
17 return False
18 end
19 checkSuperSet(existingClass, class)

20 end
21 relation[class].add(class)
22 relation[Universe].add(class)
23 return True

24 end
25

26 Function checkSuperSet(class: Class, other: Class) → boolean:
27 flag ←− True
28 for field in class do
29 if field contains type not in relation then
30 return False
31 end
32 if other does not contain field then
33 flag ←− False
34 else
35 if other.field.types does not fully contain field.types then
36 flag ←− False
37 end

38 end

39 end
40 for method in class do
41 if method contains type not in relation then
42 return False
43 end
44 if other does not contain method then
45 flag ←− False
46 else
47 if other.method.types does not fully contain method.types then
48 flag ←− False
49 end

50 end

51 end
52 if flag = True then
53 relation[other].add
54 end

55 end

56 end

SFJ 161

type information. The set of unprocessed classes will then be inspected again in
a recursive call (line 10).

The next two functions of the algorithm, addClass and checkSuperSet given
in the next page, check subtyping for the current class being processed and
update relation, which is a mapping from a type to its subtypes and originally
only consists of entries from Map 3.1. In function addClass(class) we check if
the type class is a subtype of an existing type in relation (lines 15–18), as well
as the opposite, meaning if class is a supertype of an existing type in relation
(line 19). In order to do so checkSuperSet checks all fields (lines 28–39) and
all methods (lines 40–51) in class and compares them with an existingClass in
relation. If a subtyping relation is established, then it is added to relation (line
53). Finally, upon returning from checkSuperSet, we also add class to its own
relation (line 21) to satisfy reflexivity and to Universe (line 22), which is a
supertype of all types.

It is worth noticing that the subtyping algorithm finds all nominal and struc-
tural subtypes of a given type. This is due to the fact that all pairs of types are
inspected. Recall from Sect. 1 that nominal subtyping is name-based and given
by the class hierarchy defined by the programmer, whereas structural subtyping
is structure-based and given by the set-inclusion of fields and methods. In par-
ticular, structural subtyping is contra-variant with respect to this set-inclusion.
Algorithm 2 finds all structural subtypes of a given class because it checks that
its fields and methods are a superset of existing types in relation. For example,
all classes are structural subtypes of type empty = []. On the other hand, it also
finds all nominal subtypes because a class inherits all fields and methods of its
superclass and as such its fields and methods are a superset of its superclass.
This means that checking for structural subtyping is enough because nominal
subtyping will be captured due to inheritance of fields and methods.

Finally, a note on complexity. The complexity of Algorithm1 is O(n), and
the complexity of Algorithm 2 is O(n2), with n being the size of the input. The
reason for a quadratic complexity of Algorithm2 is due to the symmetric check of
structural subtyping between a class and an existingClass in relation. Notice
that if we were to only work with nominal subtyping, then we would only require
traversing the class hierarchy once, which gives an O(n) complexity.

3.3 Type System for SFJ

The type system for the SFJ language, given in Sect. 2.2, is based on the type
system by Dardha et al. [11,12] where the formal typing rules and soundness
properties are detailed. As these formal developments are beyond the scope of
this paper, we discuss typing for SFJ only informally.

A program (L̃, e) is well typed if both L̃ and e are well typed. Class decla-
ration L and method declaration M are well typed if all their components are
well typed. Let us move onto expressions E. Field access e.a, method call e.m(e)
and object creation new C(ẽ) are typed in the same way as in Java: we inspect
the type of the field and the type of the method and its arguments to determine
the type of the field access and method call, respectively. The type of an object

162 A. Usov and O. Dardha

creation is determined by the type of its class. Regarding constants, in order to
respect the set-theoretic interpretation of types as sets of values, we type con-
stants with the most restrictive type, i.e., the type representing the smallest set
of values containing the value itself. For example, the type system would assign
to the value 42 the type byte, which is the smallest in the sequence byte, short,
int (see Map 3.1 for details).

Finally, the subtyping relation generated by Algorithm2 is used in the type
system for the SFJ language via a subsumption typing rule:

Γ � e : α1 α1 ≤ α2

Γ � e : α2

We read this typing rule as follows: if an expression e is of type α1 under a
typing context Γ (details of a typing context are irrelevant here) and type α is
a subtype ≤ of α2, then expression e can be typed with α2.

3.4 Polygons: Continued

Let us illustrate the semantic subtyping algorithm on our Polygons given
in Example 1. Algorithm 2 generates the subtyping relation given in Map 3.2,
together with the subtyping relation for basic types, omitted here and defined in
Map 3.1. Notice that the mapping for Universe is extended with the new types
for polygons.

Polygon = {Polygon, Triangle, Square,Rhombus} Triangle = {Triangle}
Square = {Square} Rhombus = {Rhombus}
Universe = {Double, F loat, Long, Int, Short,Byte Diagonal = {Diagonal}

Boolean, V oid, Polygon, Square
Square,Rhombus,Diagonal}

(3.2)
Recall the method diagonal in class Diagonal, with signature

double diagonal((Polygon and not Triangle) shape)

The result of the set operation on its parameter type gives the following set of
polygons:

Polygon and not Triangle = {Polygon, Square,Rhombus}
In order to define the not Triangle type we need the Universe type so that we
can define it as Universe \ Triangle. Then, the and connective is the intersec-
tion of sets of Polygon with not Triangle.

If we write in our SFJ program the following expression:

(new Diagonal()).diagonal(new Square())

the argument new Square() of the diagonal method is of type Square, by the
type system in Sect. 3.3 and Square is contained in the set of the parameter type
of the method, so this expression will successfully type-checks.

SFJ 163

However, if we write the following SFJ expression:

(new Diagonal()).diagonal(new Triangle())

Type Triangle is not contained in {Polygon, Square,Rhombus}, therefore this
expression will not type-check and will return a type error at compile time.

This is further illustrated in the accompanying video of this paper [27].

3.5 Nominal vs. Structural Subtyping

In this section we will comment on pros and cons of nominal vs. structural
subtyping.

Structural subtyping allows for more flexibility in defining this relation and
the user does not need to explicitly definite it, as would do with nominal subtyp-
ing. However, for this flexibility we might need to pay in meaning. For example,
consider the following two structurally equivalent classes, hence record types
coordinate = [x : int, y : int, z : int] and colour = [x : int, y : int, z : int]. While
they can be used interchangeably in a type system using structural subtyping,
their “meaning” is different and we might want to prohibit it, because intuitively
speaking we do not want to use a colour where a coordinate is expected.

On the other hand, while nominal subtyping can avoid the above problem,
it can introduce others and in particular, a developer can define an overridden
method to perform the opposite logic to what the super class is expecting, as
illustrated by the following classes in Java:

class A extends Object { class B extends A {
.

int n; int length(){ return −n; }
int length(){ return n; } }

}
Both approaches have their pros and cons, and they leave an expectation on

the developer to use the logic behind subtyping correctly when writing code.
The integration of both subtyping approaches in SFJ gives the developer the
freedom to choose the most suitable subtyping relation to use for a given task.

3.6 Methods in SFJ

On Multimethods. Since FJ is a core language, some features of the full
Java are removed, such as overloading methods. In our framework, by lever-
aging the expressivity of boolean connectives and semantic subtyping, we are
able to restore overloading, among other features [12, §8.4]. We can thus model
multimethods, [5], which according to the authors is “very clean and easy to
understand [...] it would be the best solution for a brand new language”. As an
example, taken from Dardha et al. [11,12], consider the following class declara-
tions:

164 A. Usov and O. Dardha

class A extends Object { class B extends A {
int length (string s){ . . . } int length (int n){ . . . }

} }
Method length has type string → int in class A. However, because class B

extends class A, length has type (string → int) and (int → int) in class B,
which can be simplified to (string or int) → int.

Method Types. Let us illustrate the method types given in Sect. 2.1 via an
alternative implementation of the class Diagonal at the end of Example 1.

class Diagonal {
. . .

double diagonal((diagonal : void → double) shape)
{ return shape.diagonal(); }

}

We define the type of the (outside) diagonal method as accepting any type
and its subtypes implementing the (inside) diagonal method with type signature
void to double.

In order to type check an argument passed to the (outside) diagonal method,
at compile time we build a collection of types {type1, type2, . . .} which are class
types where the (inside) diagonal method is defined. As such, we iterate over
the list of classes in an SFJ program (as we did in Algorithm2) to check for
the required method. The resulting collection of types is the union of all classes
where diagonal is defined together with their subtypes ([[type1]] ∪ [[type2]] ∪ . . .),
where each [[typei]] denotes a mapping of typei to the set of its subtypes, similar
to Map 3.2.

However, calculating this collection of types for each method of every class
would be computationally inefficient and most importantly unnecessary as only
few methods would in turn be used as method types. Therefore we only compute
them on demand during type-checking when we come across such a type.

We can therefore use method types to statically include or exclude a portion
of our class hierarchy. However, unlike with interfaces as in Example 1, the values
that can be accepted by a method type do not have to be related to each other
in any way in the class hierarchy. This indeed is useful if we are dealing with
legacy code as we can still accept all classes where diagonal is defined, without
having to go back and add interface implementations.

3.7 Code Generation

SFJ only includes the typechecking component of the language. In this section,
we provide a sketch of the code generation algorithm, which is work in progress.

SFJ 165

Given the similarity of SFJ to Java, our approach is to translate an SFJ
program into Java bytecode and then run it on the Java Virtual Machine (JVM)
[19]. This is a standard approach also used by other object-oriented languages,
for example, Kotlin1.

The main challenge in translating SFJ into bytecode is translating types
using boolean connectives. For example, a field f1 of type int or bool, will be
translated as two Java fields, one of type int and one of type bool, and only
one of the two types will be inhabited by a value. In order to achieve this, we
first analyse our program and reduce the boolean types by keeping only the
alternatives which actually get used in the program. For example, if the field of
type int or bool only ever gets initialised with a boolean value, we can reduce
it and make it a field of a single type bool. After this reduction phase, we then
consider the remaining types which use boolean connectives and could not be
reduced. On the example above, consider again field f1 of type int or bool. This
will be translated as two fields int f1 and bool f1 with the corresponding types.
In order to initialise these fields, we use the constructor overloading capabilities
of the JVM to generate an overloaded version for each alternative type. In each
constructor, only the field that matches the type of the parameter is initialised
with all other fields set to null. To access the field of an object, we generate
code that checks each alternative of the field if it is non-null and includes the
rest of the code generation for the expression for each branch. At run time, only
one branch will be true, and this is the branch of generated code which will be
executed.

For methods, we also use the overloading capabilities of the JVM to define
an overloaded method for each type in the expanded method parameter, all with
the same method body. Depending on which alternative the argument inhabits
at run time, a different method will be dispatched to. Like methods with boolean
types, we similarly implement methods with method types, as we discussed in
Sect. 3.6, by defining an overloaded alternative for each type that implements the
specified method. This concludes the code generation phase for all expressions
in SFJ given in Sect. 2.2.

4 Related Work and Conclusion

Semantic subtyping goes back to more than two decades ago [1,10]. Hosoya and
Pierce [14–16] define XDuce, an XML-oriented language designed specifically to
transform XML documents in other XML documents satisfying certain proper-
ties. Frisch et al. [13] extend XDuce by introducing less XML specific types such
as records, boolean connectives and arrow types, and implement it as CDuce.
Their work is similar to ours in that our class-based semantic type system is
a combination of the CDuce record types with arrow types. Castagna et al.
define Cπ [7], a variant of the asynchronous π-calculus, where channel types
are augmented with boolean connectives; semantic subtyping for ML-like lan-
guages [8] and semantic subtyping in a gradual typing framework [6]. Ancona
1 https://kotlinlang.org/

https://kotlinlang.org/

166 A. Usov and O. Dardha

and Lagorio [3] define subtyping for infinite types by using union and object
type constructors, where types are interpreted as sets of values of the language.
Bonsangue et al. [4] study a coalgebraic approach to coinductive types and define
a set-theoretic interpretation of coinductive types with union types. Pearce [26]
defines semantic subtyping for rewriting rules in the Whiley Rewrite Language
and for a flow-typing calculus [25].

Regarding implementations of semantic subtyping, to the best of our knowl-
edge, there are only a few works in the literature. Muehlboeck and Tate [23]
define a syntactic framework with boolean connectives which has been imple-
mented in the Ceylon programming language [18]. Ancona and Corradi [2] define
semantic subtyping for an imperative object-oriented language with mutable
fields. In our framework we are considering only the functional fragment of Java,
which is FJ, and as a result the semantic subtyping framework is simpler. The
authors also propose a prototype implementation of their subtyping algorithm.
Chaudhuri et al. [9] present the design and implementation of Flow, which is a
type checker for JavaScript. They use boolean connectives and, not, or for their
predicates, however they do not define semantic subtyping for their language.

In this paper we presented the design and implementation of SFJ—Semantic
Featherweight Java, an extension of Featherweight Java featuring boolean types,
semantic subtyping, and integrating both nominal and structural subtyping. Due
to the expressivity of semantic subtyping, in SFJ we are able to restore standard
Java constructs and features for example, lists and overloading meathods, which
were not present in FJ, thus making SFJ a more complete language. We pre-
sented Algorithm 1 on validity of type definitions and Algorithm2 on semantic
subtyping, which finds all nominal and structural subtypes for all types in an
SFJ program. We also described typing of terms in SFJ, which follows that of
Java and builds upon relevant work [11,12]. As future work, we aim to finalise
the code generation phase, which is sketched in Sect. 3.7.

References

1. Aiken, A., Wimmers, E.L.: Type inclusion constraints and type inference. In: Pro-
ceedings of the Conference on Functional Programming Languages and Computer
Architecture, FPCA, pp. 31–41. ACM, New York (1993). https://doi.org/10.1145/
165180.165188

2. Ancona, D., Corradi, A.: Semantic subtyping for imperative object-oriented lan-
guages. In: Visser, E., Smaragdakis, Y. (eds.) Proceedings of the International Con-
ference on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA, pp. 568–587. ACM (2016). https://doi.org/10.1145/2983990.2983992

3. Ancona, D., Lagorio, G.: Coinductive subtyping for abstract compilation of object-
oriented languages into horn formulas. In: Proceedings of the Symposium on
Games, Automata, Logic, and Formal Verification, GANDALF, EPTCS, vol. 25,
pp. 214–230 (2010). https://doi.org/10.4204/EPTCS.25.20

4. Bonsangue, M., Rot, J., Ancona, D., de Boer, F., Rutten, J.: A coalgebraic foun-
dation for coinductive union types. In: Esparza, J., Fraigniaud, P., Husfeldt, T.,
Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8573, pp. 62–73. Springer, Heidel-
berg (2014). https://doi.org/10.1007/978-3-662-43951-7 6

https://doi.org/10.1145/165180.165188
https://doi.org/10.1145/165180.165188
https://doi.org/10.1145/2983990.2983992
https://doi.org/10.4204/EPTCS.25.20
https://doi.org/10.1007/978-3-662-43951-7_6

SFJ 167

5. Boyland, J., Castagna, G.: Parasitic methods: an implementation of multi-methods
for Java. In: Proceedings of the Conference on Object-Oriented Programming Sys-
tems, Languages & Applications OOPSLA, pp. 66–76. ACM (1997). https://doi.
org/10.1145/263698.263721

6. Castagna, G., Lanvin, V.: Gradual typing with union and intersection types.
Proc. ACM Program. Lang. 1(ICFP), 41:1–41:28 (2017). https://doi.org/10.1145/
3110285

7. Castagna, G., Nicola, R.D., Varacca, D.: Semantic subtyping for the pi-calculus.
Theor. Comput. Sci. 398(1–3), 217–242 (2008). https://doi.org/10.1016/j.tcs.2008.
01.049

8. Castagna, G., Petrucciani, T., Nguyen, K.: Set-theoretic types for polymorphic
variants. In: Garrigue, J., Keller, G., Sumii, E. (eds.) Proceedings of the Interna-
tional Conference on Functional Programming, ICFP, pp. 378–391. ACM (2016).
https://doi.org/10.1145/2951913.2951928

9. Chaudhuri, A., Vekris, P., Goldman, S., Roch, M., Levi, G.: Fast and precise type
checking for Javascript. In: Proceedings of the International Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA, vol. 1,
pp. 481–4830 (2017). https://doi.org/10.1145/3133872

10. Damm, F.M.: Subtyping with union types, intersection types and recursive types.
In: Hagiya, M., Mitchell, J.C. (eds.) TACS 1994. LNCS, vol. 789, pp. 687–706.
Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-57887-0 121

11. Dardha, O., Gorla, D., Varacca, D.: Semantic subtyping for objects and classes.
In: Beyer, D., Boreale, M. (eds.) FMOODS/FORTE -2013. LNCS, vol. 7892, pp.
66–82. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38592-6 6

12. Dardha, O., Gorla, D., Varacca, D.: Semantic subtyping for objects and classes.
Comput. J. 60(5), 636–656 (2017). https://doi.org/10.1093/comjnl/bxw080

13. Frisch, A., Castagna, G., Benzaken, V.: Semantic subtyping: dealing set-
theoretically with function, union, intersection, and negation types. J. ACM 55(4),
1–64 (2008). https://doi.org/10.1145/1391289.1391293

14. Hosoya, H., Pierce, B.C.: Regular expression pattern matching for XML. SIGPLAN
Not. 36(3), 67–80 (2001). https://doi.org/10.1145/373243.360209

15. Hosoya, H., Pierce, B.C.: XDuce: a statically typed XML processing language.
ACM Trans. Internet Technol. 3(2), 117–148 (2003). https://doi.org/10.1145/
767193.767195

16. Hosoya, H., Vouillon, J., Pierce, B.C.: Regular expression types for XML.
ACM Trans. Program. Lang. Syst. 27(1), 46–90 (2005). https://doi.org/10.1145/
1053468.1053470

17. Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight Java: a minimal core calculus
for Java and GJ. ACM Trans. Program. Lang. Syst. 23(3), 396–450 (2001). https://
doi.org/10.1145/503502.503505

18. King, G.: The Ceylon Language Specification, Version 1.3 (2016). https://ceylon-
lang.org/documentation/1.3/spec/

19. Lindholm, T., Yellin, F., Bracha, G., Buckley, A.: Java Virtual Machine Specifica-
tion, Java SE 7 Edition: Java Virt Mach Spec Java 3. Addison-Wesley (2013)

20. Liskov, B.H., Wing, J.M.: A behavioral notion of subtyping. ACM Trans. Program.
Lang. Syst. 16(6), 1811–1841 (1994). https://doi.org/10.1145/197320.197383

21. Malayeri, D., Aldrich, J.: Integrating nominal and structural subtyping. In: Vitek,
J. (ed.) ECOOP 2008. LNCS, vol. 5142, pp. 260–284. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-70592-5 12

https://doi.org/10.1145/263698.263721
https://doi.org/10.1145/263698.263721
https://doi.org/10.1145/3110285
https://doi.org/10.1145/3110285
https://doi.org/10.1016/j.tcs.2008.01.049
https://doi.org/10.1016/j.tcs.2008.01.049
https://doi.org/10.1145/2951913.2951928
https://doi.org/10.1145/3133872
https://doi.org/10.1007/3-540-57887-0_121
https://doi.org/10.1007/978-3-642-38592-6_6
https://doi.org/10.1093/comjnl/bxw080
https://doi.org/10.1145/1391289.1391293
https://doi.org/10.1145/373243.360209
https://doi.org/10.1145/767193.767195
https://doi.org/10.1145/767193.767195
https://doi.org/10.1145/1053468.1053470
https://doi.org/10.1145/1053468.1053470
https://doi.org/10.1145/503502.503505
https://doi.org/10.1145/503502.503505
https://ceylon-lang.org/documentation/1.3/spec/
https://ceylon-lang.org/documentation/1.3/spec/
https://doi.org/10.1145/197320.197383
https://doi.org/10.1007/978-3-540-70592-5_12

168 A. Usov and O. Dardha

22. Malayeri, D., Aldrich, J.: Is structural subtyping useful? An empirical study. In:
Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 95–111. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-00590-9 8

23. Muehlboeck, F., Tate, R.: Empowering union and intersection types with integrated
subtyping. Proc. Conf. Object-Oriented Program. Syst. Lang. Appl. OOPSLA 2,
1–29 (2018). https://doi.org/10.1145/3276482

24. Parr, T.: The Definitive ANTLR 4 Reference. Pragmatic Bookshelf (2013)
25. Pearce, D.J.: Sound and complete flow typing with unions, intersections and nega-

tions. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS,
vol. 7737, pp. 335–354. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-35873-9 21

26. Pearce, D.J.: On declarative rewriting for sound and complete union, intersection
and negation types. J. Comput. Lang. 50, 84–101 (2019). https://doi.org/10.1016/
j.jvlc.2018.10.004

27. Usov, A., Dardha, O.: SFJ: An implementation of Semantic Featherweight Java,
On YouTube and on Dardha’s website (2020). https://youtu.be/oTFIjm0A2O8,
http://www.dcs.gla.ac.uk/∼ornela/publications/SFJ.mp4

https://doi.org/10.1007/978-3-642-00590-9_8
https://doi.org/10.1145/3276482
https://doi.org/10.1007/978-3-642-35873-9_21
https://doi.org/10.1007/978-3-642-35873-9_21
https://doi.org/10.1016/j.jvlc.2018.10.004
https://doi.org/10.1016/j.jvlc.2018.10.004
https://youtu.be/oTFIjm0A2O8
http://www.dcs.gla.ac.uk/~ornela/publications/SFJ.mp4

Service-Oriented Computing

Event-Based Customization
of Multi-tenant SaaS Using Microservices

Espen Tønnessen Nordli1, Phu H. Nguyen2(B) , Franck Chauvel2,
and Hui Song2

1 University of Oslo, Oslo, Norway
espentno@ifi.uio.no

2 SINTEF, Oslo, Norway
{phu.nguyen,franck.chauvel,hui.song}@sintef.no

Abstract. Popular enterprise software such as ERP, CRM is now being
made available on the Cloud in the multi-tenant Software as a Service
(SaaS) model. The added values come from the ability of vendors to
enable customer-specific business advantage for every different tenant
who uses the same main enterprise software product. Software vendors
need novel customization solutions for Cloud-based multi-tenant SaaS. In
this paper, we present an event-based approach in a non-intrusive cus-
tomization framework that can enable customization for multi-tenant
SaaS and address the problem of too many API calls to the main soft-
ware product. The experimental results on Microsoft’s eShopOnContain-
ers show that our approach can empower an event bus with the ability
to customize the flow of processing events, and integrate with tenant-
specific microservices for customization. We have shown how our app-
roach makes sure of tenant-isolation, which is crucial in practice for SaaS
vendors. This direction can also reduce the number of API calls to the
main software product, even when every tenant has different customiza-
tion services.

Keywords: Microservices · Architecture · Event-based · Cloud ·
SaaS · Customization · IoT · Edge · Security

1 Introduction

Most businesses and public services rely on enterprise software such as enter-
prise resource planning (ERP) or customer relationship management (CRM),
to name a few. Because every company has its unique organization, processes
and culture, no off-the-shelf software directly fits. Companies eventually cus-
tomize these software systems to meet their specific requirements. For simple

The research leading to these results has received funding from the European Com-
mission’s H2020 Programme under the grant agreement number 780351 (ENACT),
and from the Research Council of Norway under the grant agreement numbers 296651
(ASAM) and 256594 (Cirrus).

c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
S. Bliudze and L. Bocchi (Eds.): COORDINATION 2020, LNCS 12134, pp. 171–180, 2020.
https://doi.org/10.1007/978-3-030-50029-0_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50029-0_11&domain=pdf
http://orcid.org/0000-0003-1773-8581
https://doi.org/10.1007/978-3-030-50029-0_11

172 E. T. Nordli et al.

scenarios, software vendors predict where and how their software products may
be customized, and provide their customers with application programming inter-
faces (API), extension points or configuration choices. However, there are always
customers whose requirements overstep the embedded customization capacity.
These customers need the vendors to provide mechanisms for performing deep
customization, that goes beyond the vendors’ prediction.

Deep customization may affect any parts of a software product, including the
user interface (UI), the business logic (BL), the database schemas (DB) or any
combination thereof. When a software product used to be deployed on the cus-
tomers’ premises, each customer naturally ran its own customized version, in full
isolation. Nowadays, software vendors are migrating their software products to
the Cloud. In the Cloud-based multi-tenant software-as-a-service (SaaS) model,
however, every customer must run the same code base (main product), which
cannot be directly modified for one customer without affecting other customers.
Software vendors desperately need novel deep customization solutions for the
Cloud-based multi-tenant SaaS model.

More recently, leveraging the microservices architecture [1,6,14] for enabling
deep customization of multi-tenant SaaS is a very promising direction as pre-
sented in [8–12]. These microservices-based customization approaches vary in
how they balance isolation and assimilation. Isolation guarantees tenant-specific
customization only affects that one single tenant, whereas assimilation guar-
antees that customization capability can alter anything in the main software
product. Intrusive microservices [9,10,12] provide tight assimilation at the
cost of security (tenant isolation), whereas the non-intrusive approach called
MiSC-Cloud [7,8,11] trades assimilation for higher security. MiSC-Cloud orches-
trates customization using microservices via API gateways.

In this paper, we present an event-based non-intrusive deep customization
approach for multi-tenant SaaS using microservices as part of the MiSC-Cloud
framework [8]. The event-based approach, in combination with the synchronous
way of customization in [8], shows how the MiSC-Cloud framework can coordi-
nate the execution of the BL components (microservices) of the main product
as well as the customization microservices of tenants to obtain the desired cus-
tomization effects in the multi-tenant context.

The remainder of this paper is structured as follows: Sect. 2 defines deep
customization. Then, Sect. 3 presents the event-based customization approach
with key techniques. In Sect. 4, we show a proof-of-concept for the proposed
approach by applying it on a reference application for microservice architecture
by Microsoft . Section 5 discusses related work. Finally, we provide in Sect. 6 our
conclusions and possible future research directions.

2 Deep Customization

By contrast with other customization means such as settings, scripting languages
or API, deep customization demands that one can possibly make any change to
the system, as one can do with direct access to the source code. Changes can,

Event-Based Customization of Multi-tenant SaaS Using Microservices 173

therefore, affect the user interface (UI), the business logic (BL), the database
schema (DB), or any combination thereof. Deep customization turns out difficult
in multi-tenant SaaS environments, where all tenants originally run the same
code (UI, BL and DB). Tenant-specific customization must affect only one single
tenant. This work focuses on the customization of BL, especially based on events.
In this way, customization microservices communicate with the main product,
either in a synchronous way by requesting data and waiting for the response
(RPC-like), or in an asynchronous way, by publishing and subscribing to events
(pub/sub). The customization of UI and DB can be found in [8–12].

3 Event-Based Customization Approach

In this section, we first present the main components for enabling event-based
customization of multi-tenant SaaS in Sect. 3.1. Then, Sect. 3.2 details how the
event-based customization approach works. In Sect. 3.3, we discuss how the
event-based customization fulfils the requirements of tenant isolation.

3.1 Main Components for Enabling Event-Based Customization

Among the five main components of the MiSC-Cloud framework as presented
in [7,8], we focus on presenting the Tenant Manager and the Event Bus as the
key parts of the event-based customization approach. The API gateways, IAM
Service, and WebMVC Customizer are the same as we described in [8].

The Tenant Manager is a service that manages the registration of customiza-
tion microservices including the events registered for customization for different
tenants. The service has a simple database that stores all the tenants that are
using the application, all the different events that exist in the main product
and finally all the customization microservices that exist for tenants and specific
events. Additionally, it stores an endpoint for each customization that is used
for halting the flow of events to be discussed further in the next section.

The Event Bus is key to enable event-based customization. Therefore, the
prerequisite for enabling event-based customization is that the main product
already has (part of) its logic flow orchestrated via events. If the main product
already has an Event Bus, such an Event Bus can be extended to enable event-
based customization. If the main product does not have an Event Bus, a new
one can be introduced as presented in [8]. It is important to note that a software
product can be re-engineered to enable event-based logic orchestration at the
back-end via an Event Bus. Different migration approaches from monolithic to
microservices architecture already show some patterns and practices to migrate
from synchronous calls into event-based communication between microservices
[4,13]. Moreover, software vendors can also create user or system events within
their software product to allow authorized event-based integration with exter-
nal systems (of their customers). This event-based integration is similar to the
traditional way of offering a rich REST API for synchronous integration, e.g.,
using traditional GET-PUT-POST statements.

174 E. T. Nordli et al.

3.2 Event-Based Customization Flow

A customization microservice can subscribe to an event that is published to the
Event Bus when something notable happens, such as when another microservice
(of the main product or another tenant-specific customization) updates a busi-
ness entity. When a microservice receives an event, it can update its business
entities, which might lead to the publishing of more events. We design the event
bus as a multi-tenant interface with the tenant-specific APIs needed to subscribe
and unsubscribe to events and to publish events.

The flow of processing events in the original Event Bus implementation must
be changed for customization purposes. Before publishing events to the con-
sumers, it checks with the Tenant Manager for any customization that has been
registered for any event and tenant (see Fig. 1). If an event is not customized,
then the event is processed in the standard fashion. In the case that an event is
customized, the event is sent to the endpoint that is part of the response from
the Tenant Manager. At this point, the tenant’s microservice is responsible for
storing the event until the required customization has been achieved. Then, the
tenant’s microservice can republish the event to the Event Bus, along with a flag
that instructs the Event Bus to not check for customization again, to avoid an
infinite loop.

Fig. 1. Event-based customization flow.

In some cases, customization microservices would require some execution con-
text from the main product that does not exist in the events that they receive.
To obtain such context, customization microservices can make authorized syn-
chronous calls to the APIs of the main product as presented in [8]. In fact, events
often contain enough execution context for customization microservices to exe-
cute customization scenarios. This means that only a few special customization
scenarios would require such synchronous calls from customization microservices
to the API of the main product. Combining the synchronous and asynchronous
ways of customization can offer a more complete non-intrusive customization

Event-Based Customization of Multi-tenant SaaS Using Microservices 175

approach for multi-tenant SaaS. However, we recommend the use of event-based
customization for as many customization scenarios as possible to reduce the traf-
fic of API calls to the main product, which often leads to performance bottleneck
when there are many customized tenants with unpredictable loads.

3.3 Tenant-Isolation and Tenant-Specific Event-Handlers

The Event Bus implementation and architecture in the main product must
ensure that tenant isolation is still preserved. Instead of having one connection
to a single event bus, there must be multiple connections, one per tenant. One
example of such an event bus implementation is based on RabbitMQ that can
make use of virtual hosts1. This way allows us to have a logical separation per
tenant, and the permission can easily be set so that each tenant is only allowed
to interact with its own virtual host.

4 Proof-of-Concept and Evaluation

In this section, we show a proof of concept of our approach for enabling deep
customization of the eShopOnContainers by extending the Event Bus in the
application. The .NET Microservices Sample Reference Application eShopOn-
Containers2 has been chosen for a couple of reasons. First, eShopOnContainers
has a clear separation between the user interface and the business logic of the
application as a prerequisite of the MiSC-Cloud framework. Secondly, the appli-
cation follows the microservices architecture, and as such, has loose coupling
as compared to a monolithic application. Finally, the collaboration between the
microservices that the application as a whole is made up of is done using events
and a publish/subscribe system.

An Event Bus implementation must be associated with the authentication
and authorization mechanisms of the IAM service for multi-tenant SaaS-based on
Open ID Connect or OAuth 2.0. As an implementation of RabbitMQ already
exists in the eShopOnContainers, we have extended it to enable event-based
customization.

Let us consider the original eShopOnContainers in the GitHub repository as
the main product being customized. We show how our event-based customization
approach can enable different customization scenarios for two tenants as the
representatives of multi-tenant context3. The first use case in Sect. 4.1 adds
new logic to the main flow of the ordering process, without altering any of the
existing functionality. The second use case in Sect. 4.2 requires a modification of
the existing logic of the ordering process by halting the flow of the order.

1 https://www.rabbitmq.com/vhosts.html.
2 https://github.com/dotnet-architecture/eShopOnContainers.
3 https://github.com/Espent1004/eShopOnContainersCustomised.

https://www.rabbitmq.com/vhosts.html
https://github.com/dotnet-architecture/eShopOnContainers
https://github.com/Espent1004/eShopOnContainersCustomised

176 E. T. Nordli et al.

4.1 Tenant A’s Customization of the Ordering Process

The original ordering process is straightforward. After having logged in, a cus-
tomer can add items in the shopping cart and then create an order with card
payment and shipping address. What happens at the back-end is that the Basket
service of the eShopOnContainers publishes a UserCheckoutAcceptedIntegra-
tionEvent, which is consumed by the Ordering service to create and process the
order, e.g., generating OrderSubmittedIntegrationEvent. Tenant A wants to
change the original ordering process of eShopOnContainers to incorporate the
shipping information from external (third-party) systems. This means that after
the Basket service has published a UserCheckoutAcceptedIntegrationEvent,
the Ordering service validates the order request before creating an order and
an OrderSubmittedIntegrationEvent to trigger this customization. Here, we
demonstrate the customization of Tenant A using the asynchronous way. The
synchronous way of customization has been presented in [8].

The asynchronous way of customization has been used for the customiza-
tion scenario in which the user has checked out (UserCheckoutAcceptedInte-
grationEvent), and the corresponding order has been made (OrderSubmitted-
IntegrationEvent). The customization microservice Shipping of Tenant A
intercepts the OrderSubmittedIntegrationEvent and queries an external sys-
tem for an estimated time for delivery. This information is then stored in the
microservice’s database, which can then be retrieved whenever the My Orders
page is displayed. The customization result can be seen in Fig. 2. The parts in
red, e.g., SHIPPING DATE, are the customized content, which are only available
for the users of Tenant A. What happens in the background is that we have
added a new Event Handler that consumes the OrderSubmittedIntegration-
Event. Whenever this event is published by the main product to the event bus
of Tenant A, the Event Handler consumes the event and calls the customiza-
tion microservice Shipping, which is responsible for calculating the shipping
information by integrating with an external system.

Fig. 2. Customization of Tenant A: An estimated time for delivery.

Event-Based Customization of Multi-tenant SaaS Using Microservices 177

4.2 Tenant B’s Customization of the Ordering Process

Tenant B wants to customize the ordering process with some additional steps to
mark all the items with RFID. Before the order status is set to confirmed, all
the order lines in the order should be scanned. Further, the order status should
only be set to confirmed when all the items in the order have been scanned.

The second use case requires that the status of the order is not set to
confirmed until all the items in the order have been scanned. To ensure this,
we need to halt the flow of the application by capturing the OrderStatus-
ChangedToAwaitingValidationIntegrationEvent. This is done by registering
this event for the specific tenant in the Tenant Manager, as well as the endpoint
that we want the event to be sent to. Figure 3 shows the customization flow trig-
gered by the OrderStatusChangedToAwaitingValidationIntegrationEvent.
This event is then stored in the database of the microservice for this cus-
tomization until the RFIDTagScannedIntegrationEvent is published by the
TenantARFIDService.

Fig. 3. Customization of Tenant B: The customization flow around the OrderStatus-
ChangedToAwaitingValidationIntegrationEvent.

The customization scenario depicted in Fig. 3 starts when the Ordering ser-
vice publishes the OrderStatusChangedToAwaitingValidationIntegration-
Event. Next, the Event Bus implementation checks for any customization
for this event by querying the Tenant Manager. As Tenant B has cus-
tomized this event, the Event Bus sends the event to the endpoint speci-
fied in the response from the Tenant Manager rather than publishing to the
RabbitMQ instance. At this point, the tenant has control of the event and
can save it to the local database of Tenant B’s Event Service before pub-
lishing OrderStatusChangedToAwaitingValidationEventSavedEvent to the

178 E. T. Nordli et al.

Fig. 4. Customization of Tenant B: After all the RFID tags have been scanned.

Event Bus. The OrderStatusChangedToAwaitingValidationEventSavedEv-
entHandler in Tenant B’s RFID Service consumes this event, and stores the
necessary data in its database.

The next step of the use case is triggered whenever the endpoint in Ten-
ant B’s RFID Service is used to indicate that all the order lines have been
scanned. The use of this endpoint also triggers RFIDTagScannedIntegration-
Event, which is then consumed by the RFIDTagScannedIntegrationEvent-
Handler in Tenant B’s Event Service. At this point, the original OrderStatus-
ChangedToAwaitingValidationIntegrationEvent is re-published to the Event
Bus, and the handlers in the main product can perform their operations. Then,
the event is re-published to the Event Bus, and it is processed normally by the
main product. The result of the customization, after the RFID tags are scanned
can be seen in Fig. 4.

The asynchronous customization approach is based on the events in the appli-
cation. Because all the events are isolated so that each tenant is only able to
interact with their own events. This means that tenant isolation is still preserved.

5 Related Work

The notion of customizable SaaS applications with explicit support for vari-
ability management has been proposed and explored extensively [3]. There are
many technical approaches addressing these complexities, such as design pat-
terns, dependency injection (DI), software product lines (SPL), or API. While
these approaches help predefining customization at design time, they do not have
sufficient support for the complex and unanticipated behavioural coordination
between the custom code and the main product at runtime.

The majority of SaaS customization approaches focus on a high-level modifi-
cation of the service composition. Mietzner and Leymann [5] present a customiza-
tion approach based on the automatic transformation from a variability model
to BPEL process. Here customization is a re-composition of services provided
by vendors. Tsai and Sun [15] follow the same assumption but propose multiple
layers of compositions. All the composite services are customizable until reaching
atomic services, which are assumed to be provided by the vendors.

Middleware techniques can also support the customization of SaaS. Guo et
al. [2] discuss, in a high abstraction level, a middleware-based framework for the

Event-Based Customization of Multi-tenant SaaS Using Microservices 179

development and operation of customization, and highlighted the key challenges.
Walraven et al. [16] implemented such a customization, enabling middleware
using Dependency Injection. The dependency injection way for customization
allows the custom code developers to introduce arbitrary coordination behaviour
with the main product, and thus achieve a strong expression power. However, it
also brings tight coupling between the custom code and the main product. Oper-
ating the custom code as an external microservice eases performance isolation,
misbehaviour of the custom code only fails the underlying container, and the
main product only perceives a network error, which does not affect other ten-
ants. Besides, external microservices ease management: scaling independently
resource-consuming customization and eventually billing tenants accordingly.

6 Conclusions

In this paper, we have presented an event-based customization approach that is
part of our non-intrusive customization framework for multi-tenant SaaS. This
asynchronous way of customization means that customization microservices can
have event-based communication with the main product BL components for cus-
tomization purposes. Using event-based communication between customization
microservices and the main product BL components is important not only for the
microservices architecture but also for non-intrusive deep customization capabil-
ity. Enabling customization both synchronously and asynchronously provides a
more flexible way of coordinating the customization logic between the BL com-
ponents (microservices) of the main product and the customization microservices
of tenants to obtain the desired customization effects in the multi-tenant context.
Our event-based customization approach makes sure of tenant-isolation, which
is crucial in practice for SaaS vendors. This approach can also help reducing the
number of API calls that may lead to performance bottleneck when there are
many customized tenants with unpredictable loads. We planned to collaborate
with two SaaS vendors and their customer companies for an empirical study.
Enabling event-based customization is also a way to prepare for offloading cus-
tom code to the Edge devices. The event bus could be open to events from
microservices on Edge devices and maybe even to “things” in the IoT context.

References

1. Dragoni, N., et al.: Microservices: yesterday, today, and tomorrow. Present and
Ulterior Software Engineering, pp. 195–216. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-67425-4 12

2. Guo, C.J., Sun, W., Huang, Y., Wang, Z.H., Gao, B.: A framework for native multi-
tenancy application development and management. In: The 9th IEEE International
Conference on E-Commerce Technology and the 4th IEEE International Confer-
ence on Enterprise Computing, E-Commerce, and E-Services, 2007, CEC/EEE
2007. pp. 551–558. IEEE (2007)

https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-67425-4_12

180 E. T. Nordli et al.

3. Kabbedijk, J., Bezemer, C.P., Jansen, S., Zaidman, A.: Defining multi-tenancy: a
systematic mapping study on the academic and the industrial perspective. J. Syst.
Softw. 100, 139–148 (2015)

4. Mazzara, M., Dragoni, N., Bucchiarone, A., Giaretta, A., Larsen, S.T., Dustdar, S.:
Microservices: migration of a mission critical system. IEEE Trans. Serv. Comput.
1 (2018). https://doi.org/10.1109/TSC.2018.2889087

5. Mietzner, R., Leymann, F.: Generation of BPEL customization processes for SaaS
applications from variability descriptors. In: IEEE International Conference on
Services Computing, 2008, SCC 2008, vol. 2, pp. 359–366. IEEE (2008)

6. Newman, S.: Building Microservices: Designing Fine-Grained Systems. O’Reilly
Media Inc., Sebastopol (2015)

7. Nguyen, P.H., Song, H., Chauvel, F., Levin, E.: Towards customizing multi-tenant
cloud applications using non-intrusive microservices. In: The 2nd International
Conference on Microservices, Dortmund (2019)

8. Nguyen, P.H., Song, H., Chauvel, F., Muller, R., Boyar, S., Levin, E.: Using
microservices for non-intrusive customization of multi-tenant SaaS. In: Proceedings
of the 2019 27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ESEC/FSE 2019, pp.
905–915. Association for Computing Machinery, New York (2019). https://doi.org/
10.1145/3338906.3340452

9. Song, H., Chauvel, F., Nguyen, P.H.: Using microservices to customize multi-tenant
software-as-a-service. Microservices, pp. 299–331. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-31646-4 12

10. Song, H., Chauvel, F., Solberg, A.: Deep customization of multi-tenant SaaS using
intrusive microservices. In: Proceedings of the 40th International Conference on
Software Engineering: New Ideas and Emerging Results, ICSE-NIER 2018, pp.
97–100. ACM, New York (2018). https://doi.org/10.1145/3183399.3183407

11. Song, H., Nguyen, P.H., Chauvel, F.: Using microservices to customize multi-
tenant SaaS: from intrusive to non-intrusive. In: Cruz-Filipe, L., Giallorenzo,
S., Montesi, F., Peressotti, M., Rademacher, F., Sachweh, S. (eds.) Joint Post-
proceedings of the First and Second International Conference on Microservices
(Microservices 2017/2019). OpenAccess Series in Informatics (OASIcs), vol. 78, pp.
1:1–1:18. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany
(2020). https://doi.org/10.4230/OASIcs.Microservices.2017-2019.1, https://drops.
dagstuhl.de/opus/volltexte/2020/11823

12. Song, H., Nguyen, P.H., Chauvel, F., Glattetre, J., Schjerpen, T.: Customizing
multi-tenant SaaS by microservices: a reference architecture. In: 2019 IEEE 26th
International Conference on Web Services (2019)

13. Taibi, D., Auer, F., Lenarduzzi, V., Felderer, M.: From monolithic systems to
microservices: an assessment framework. arXiv preprint arXiv:1909.08933 (2019)

14. Thönes, J.: Microservices. IEEE Softw. 32(1), 116–116 (2015). https://doi.org/10.
1109/MS.2015.11

15. Tsai, W., Sun, X.: SaaS multi-tenant application customization. In: 2013 IEEE
Seventh International Symposium on Service-Oriented System Engineering, pp.
1–12, March 2013. https://doi.org/10.1109/SOSE.2013.44

16. Walraven, S., Truyen, E., Joosen, W.: A middleware layer for flexible and cost-
efficient multi-tenant applications. In: Kon, F., Kermarrec, A.-M. (eds.) Middle-
ware 2011. LNCS, vol. 7049, pp. 370–389. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-25821-3 19

https://doi.org/10.1109/TSC.2018.2889087
https://doi.org/10.1145/3338906.3340452
https://doi.org/10.1145/3338906.3340452
https://doi.org/10.1007/978-3-030-31646-4_12
https://doi.org/10.1007/978-3-030-31646-4_12
https://doi.org/10.1145/3183399.3183407
https://doi.org/10.4230/OASIcs.Microservices.2017-2019.1
https://drops.dagstuhl.de/opus/volltexte/2020/11823
https://drops.dagstuhl.de/opus/volltexte/2020/11823
http://arxiv.org/abs/1909.08933
https://doi.org/10.1109/MS.2015.11
https://doi.org/10.1109/MS.2015.11
https://doi.org/10.1109/SOSE.2013.44
https://doi.org/10.1007/978-3-642-25821-3_19
https://doi.org/10.1007/978-3-642-25821-3_19

Quality of Service Ranking
by Quantifying Partial Compliance

of Requirements

Agust́ın Eloy Martinez Suñé1(B) and Carlos Gustavo Lopez Pombo1,2

1 Departamento de Computación, Universidad de Buenos Aires,
Buenos Aires, Argentina

{aemartinez,clpombo}@dc.uba.edu.ar
2 Instituto de Investigación en Ciencias de la Computación (ICC), CONICET–UBA,

Buenos Aires, Argentina

Abstract. While there is not much discussion on the importance of for-
mally describing and analysing quantitative requirements in the process
of software construction; in the paradigm of API-based software systems
it could be vital. Quantitative attributes can be thought as attributes
determining the Quality of Service – QoS provided by a software compo-
nent published as a service. In this sense, they play a determinant role in
classifying software artifacts according to specific needs stated as require-
ments. In previous works we presented an efficient, and fully automatic,
analysis technique for establishing Service Level Agreements – SLA. Such
a proposal relays on describing QoS contracts as convex specifications,
and compliance checking is performed by the application of an analysis
algorithm based on state of the art techniques used in hybrid system
verification. Such a technique succeeds in offering a procedure for deter-
mining SLA but fails in the more realistic scenario where, potentially,
no service fully satisfies the requirements. In this scenario the running
application may still prefer to invoke the service that offers the best
chances of successfully executing with values for QoS attributes meeting
the requirements satisfactorily.

In this work we propose and implement a metric for automatically
quantifying partial satisfaction of QoS requirements, leading to a way of
ranking services according to such notion of partial compliance.

1 Introduction

Distributed software resulting from paradigms such as Service-Oriented Com-
puting (SOC) or the API’s economy is based on the idea of constructing soft-
ware artifacts by composing services provided by third parties and registered in

Research partly supported by the European Unions Horizon 2020 research and innova-
tion programme under the Marie Sklodowska-Curie grant agreement No 778233. Carlos
G. Lopez Pombo’s research is supported by Universidad de Buenos Aires through grant
UBACyT 20020170100544BA, and Consejo Nacional de Investigaciones Cient́ıficas y
Técnicas through grant PIP 11220130100148CO.

c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
S. Bliudze and L. Bocchi (Eds.): COORDINATION 2020, LNCS 12134, pp. 181–189, 2020.
https://doi.org/10.1007/978-3-030-50029-0_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50029-0_12&domain=pdf
http://orcid.org/0000-0003-1806-6932
http://orcid.org/0000-0002-0248-5019
https://doi.org/10.1007/978-3-030-50029-0_12

182 A. E. Martinez Suñé and C. G. Lopez Pombo

repositories. This envisages a generation of applications which, at run-time, are
transparently reconfigured by the intervention of a dedicated middleware with
the capability to bind a running application that has certain requirements to a
service capable of fulfilling them, subject to the negotiation of a Service Level
Agreement – SLA; in this way, services can collectively fulfill certain business
goals [4].

Requirements can be formalised as contracts between software components,
and satisfaction of such contracts is usually dealt with by checking whether a
judgment of the form Pr � Rq holds or not, where Pr is the provision con-
tract and Rq is the requirements contract. In the literature, functional require-
ments have been identified as those describing what the system has to do, while
non-functional ones are assumed to characterise how the system develops the
behaviour described by the functional ones.

In this work we focus on Quantitative requirements as a proper subclass of
non-functional requirements of a software system. From our perspective, quan-
titative requirements formalise the admissible values of specific attributes that
can be interpreted over a metric space [2]. Such attributes are referred to as
Quantitative attributes. For practical reasons, the real numbers constitute a good
candidate over which these can be interpreted, formalised and analysed.

In this sense, quantitative requirements might be used to characterise the
Quality of Service – QoS provided by a software component available as service.
While services may have the same functional behaviour, they might differ on their
non-functional one (for example, a service may offer low-speed computation at a
very low cost while another, functionally equivalent one, might be faster but more
onerous); a motivation shared with other works like [14]. Therefore, quantitative
requirements might be considered as a way to classify functionally equivalent
services by their QoS.

In [12] we presented an efficient, and fully automatic, analysis procedure for
checking a judgment of the shape Pr � Rq where Pr is the provision contract and
Rq is the requirements contract, thus serving the purpose of establishing SLA.
Such an approach guarantees the selection of a service satisfying the requirements
of the executing application but it does not provide any insight when there
is no service whose provision contract is fully compliant with the requirement
contract. A geometrical interpretation of the judgment Pr � Rq expresses that
all the satisfying values of real attributes of Pr also satisfy Rq . Thus, a negative
answer just means that there is at least one value satisfying Pr and not satisfying
Rq pushing the application to abort its execution because there is no possible
SLA on the required QoS.

In this paper we propose an automatic procedure1 for evaluating partial
compliance of QoS contracts by estimating what we call the inclusion ratio:
the intersection of the set of satisfying values of the provision and requirement
contracts interpreted relative to the size of the set of values satisfying the provi-
sion contract. This metric leads to a natural way of ranking services. While the
problem of raking services according to their QoS has been studied and different

1 A demonstration video of the tool can be found on http://bit.do/QoS-Rank.

http://bit.do/QoS-Rank

QoS Ranking by Quantifying Partial Compliance of Requirements 183

approaches to tackle the problem have been proposed, in general, these are based
on monitoring run-time behavior of specific attributes [1,9] or by socially shar-
ing the users’ opinion [11,15] but, to the best of our knowledge, there is none
focussing on QoS ranking where the QoS is formally specified and SLA is guar-
anteed through an automated procedure.

2 Formalisation and Analysis of Quantitative Attributes

The selection of a service requires establishing an SLA, part of which is the QoS
agreement. Given a formal QoS requirement contract Rq ; a service that declares
a formal QoS provision contract Pr will be a good candidate only if Pr =⇒
Rq holds. In [12] we adopted monotone Satisfiability Modulo Convex (SMC)
formulae [13] as specification language and proposed a method to check QoS
compliance. SMC formulae are defined as quantifier-free formulae in conjunctive
normal form, with atomic propositions ranging over a subset of the propositional
variables and convex constraints2. Then, given two SMC formulas Pr and Rq , the
proposed method to check whether Pr � Rq holds or not is done by determining
if the formula Pr ∧ ¬Rq is not satisfiable.

Such a procedure does not provide any hint on what to do when no service
registered in the repository fully satisfies the requirements. That is, no QoS
provision contract satisfies the QoS requirements contract.

A different way of formalising QoS contracts is as a set of real values satisfying
the specification. Next we present this alternative formalisation of quantitative
non-functional requirements. Throughout the rest of the paper, letters I, J and
K will be used to denote index sets.

Definition 1. Let X be a set of real variables. We define a QoS specification on
quantitative attributes X to be 〈X , α〉, with α being a formula with shape

∨
i∈I Pi.

Each Pi is a convex polytope expressed as
∧

k∈Ki
fi,k(

→
x) R 0, where R ∈ {<,≤}

such that each fi,k(
→
x) R 0 is a convex constraint. The set of QoS specifications

over the set of quantitative attributes X will be referred to as QoS spec(X).
Let 〈X , α〉 ∈ QoS spec(X). We define a valuation for α as v : X → R.

Satisfaction is a relation |=⊆ [X → R] × QoS spec(X) defined as
→
x |= α if and

only if there exists i ∈ I, such that for all k ∈ Ki, fi,k(
→
x) R 0. The set of values

satisfying α is defined as [[α]] =
{→

x | →
x |= α

}
.

Essentially, the set of admissible values of the quantitative attributes X in a
QoS spec is characterised by a set of convex polytopes over X . Notice that, under
some reasonable assumptions, SMC formulae can be translated to specifications
in QoS spec(X) by simply iterating the satisfying valuations of the boolean
abstraction of the formulae, and collecting the polytopes determined by the
positive literals.

2 The interested reader will find the formal definition in [13].

184 A. E. Martinez Suñé and C. G. Lopez Pombo

A specification like this can capture many quantitative aspects of a soft-
ware system. For example, the formulae below show a specification of an API-
based software application requiring a service to be paid exclusively for the
time it is used. Consider as relevant quantitative attributes a) perSec: the
cost per second of the session, and b) maxWait : the maximum waiting time.
Then, such attributes can be formalised by a QoS specification 〈〈X 〉 , α〉 where
X = {perSec,maxWait}. To characterise a service that is more expensive when
it is faster a possible α would be the disjunction of the following formulae:

0 < maxWait ≤ 100 ∧ 0.1 ≤ perSec < 0.3,
100 < maxWait ≤ 1000 ∧ 0.0 ≤ perSec ≤ 0.1

A geometrical interpretation of the formula Pr =⇒ Rq leads to the possi-
bility of measuring different degrees of partial compliance, which range between
total compliance (all values allowed by Pr are accepted by Rq) and no compli-
ance at all (no value allowed by Pr is accepted by Rq).

Based on the previous definitions, proving the formula Pr � Rq is to check
whether [[Pr]] ⊆ [[Rq]]. We propose to compute the volume of the intersection
between [[Pr]] and [[Rq]] relative to the volume of [[Pr]], referred to as inclusion
ratio. This indicator quantifies what is the percentage of the QoS values allowed
by the provision contract that is actually accepted by the requirements contract.
For us, this indicator serves the purpose of quantifying the partial compliance
of Rq by Pr ; therefore, functionally compliant services can be chosen from a
ranking built by using inclusion ratio as the ordering criterion.

2.1 On the Complexity of the Volume Computation

In the literature, the volume of a polytope is invariably defined in terms of the
sum of the volumes of a certain decomposition of such polytope into a family of
convex ones [6]. Fortunately, Definition 1 assists us by already expressing the set
of values in a QoS contract as the union of the sets of values of each member
of a family of convex polytopes, expressed as Pr =

∨
i∈I Pi and Rq =

∨
j∈J Rj .

As neither family is guaranteed to be a partition, volumes must be computed
following the Principle of inclusion-exclusion [10, Chap. 4]. Then, the inclusion
ratio is calculated as follows:

First: Compute the volume (denoted as #) of intersection between Pr and Rq :

#

⎛
⎝ ⋃

i∈I
[[Pi]] ∩

⋃
j∈J

[[Rj]]

⎞
⎠ =

∑
∅�=K⊆I×J

(−1)
|K|−1

#

⎛
⎝ ⋂

(i,j)∈K
([[Pi]] ∩ [[Rj]])

⎞
⎠ (1)

Second: Compute the volume of P :

#

⎛
⎝ ⋃

i∈I
[[Pi]]

⎞
⎠ =

∑
∅�=K⊆I

(−1)
|K|−1

#

⎛
⎝ ⋂

k∈K
[[Pk]]

⎞
⎠ (2)

Third: Compute the inclusion ratio of Pr in Rq as: #([[Pr]]∩[[Rq]])
#([[Pr]]) .

QoS Ranking by Quantifying Partial Compliance of Requirements 185

In the late 80’s Dyer et al. [3] and Khachiyan [8] proved the complexity of
computing the volume of a convex polytope to be #P-Hard. The first estima-
tion algorithm was presented by Kannan et al. in [7]. Later in [5], an estimation
algorithm based on the Multiphase Monte-Carlo algorithm is proposed and the
authors show that it can efficiently handle instances of dozens of dimensions
with high accuracy. The complexity is shown to be O∗(m · n3), where n is the
dimensions, m is the number of constraints, and the Soft-O notation (O∗) omits
logarithmic factors. The estimation method tool is distributed under the name
PolyVest.

The implementation of the algorithm presented above for computing the
inclusion ratio requires 2|I|·|J | + 2|I| invocations to the function computing the
volume of a convex polytope. Such complexity forces us to consider a further
dimension of approximation in order to make the calculation of the inclusion ratio
viable in practice. In the next section we study the appropriateness of considering
only some of the intersections involved in the calculation as an estimation of the
volume.

3 Experimental Results

Our first research question is related to the complexity of the exact computation
of the volume of a polytope P. For the sake of understanding the limits imposed
by such complexity, the research question will be stated in terms of a single
polytope decomposed as a family of convex polytopes.

RQ1: How does the complexity of #
(⋃

i∈I Pi

)
impacts in practice?

From our experiments3 it is possible to identify the exponential nature of
the computation and that the majority of cases could not be completed within
the time budget, hence the method cannot be applied to more realistic case-
studies. The applicability of the technique, therefore, rests on the possibility of
computing a good and efficient approximation of the volume operator. A natural
way of doing this is by considering only a limited number of terms of the sum
in Eq. 1. The next proposition formalises the intuition that subsequent partial
sums represent an upper, and a lower, bound for the exact value of the volume.

Proposition 1. Let P = {Pi}i∈I and 0 < n < |I|, with n ≡ 0 (mod 2) then

∑

∅ �= K ⊆ I
0 < |K| ≤ n

(−1)
|K|−1

#

⎛
⎝ ⋂

k∈K
[[Pk]]

⎞
⎠ ≤ #(P) ≤

∑

∅ �= K ⊆ I
0 < |K| ≤ n + 1

(−1)
|K|−1

#

⎛
⎝ ⋂

k∈K
[[Pk]]

⎞
⎠ .

Computing an approximation of a magnitude requires the introduction of a met-
ric for measuring the effectiveness of such estimation. As usual, the relative error
between the magnitude x and an approximate value x0 is defined to be |x0−x|

|x| .

3 Synthetic case-studies were generated automatically consisting of families of 5–11
convex polytopes over 10–35 quantitative attributes. For each case the procedure
was run over 20 different instances, with a 1 h time budget.

186 A. E. Martinez Suñé and C. G. Lopez Pombo

The next proposition provides upper bounds for the relative error that do not
depend on the exact value v of the volume but on two consecutive approxima-
tions: {vk−1, vk} or {vk, vk+1}.

Proposition 2. Let v, vk−1, vk, vk+1 ∈ R, then:

– if 0 < vk−1 < v < vk, then vk−v
v ≤ vk−vk−1

vk−1
(denoted ρk),

– if vk > v > vk+1 > 0, then vk−v
v ≤ vk−vk+1

vk+1
(denoted σk)

– if vk−1 ≥ vk+1 > 0, then ρk ≥ σk.

Using these bounds, and considering Proposition 1, we can design an algorithm
for computing the approximate volume of a polytope, by computing successive
approximations until the desired value for the relative error is guaranteed. Notice
that if we require a relative error equal to 0, the complexity of the algorithm is
still O(2n), but when the bound is big enough to let the algorithm converge in
the second approximation, the complexity drops to O(n2). Our second research
question analises the practical impact of approximating the volume of a polytope
using these bounds.

RQ2: How do the partial sums of the terms in the sum of Eq. 1
converge to the value #

(⋃
i∈I Pi

)
with 1% and 5% tolerance?

Results4 show that the number of successive approximations needed for a
calculation with an error within 1% tolerance is between 2 and 5, while for an
error within 5% tolerance is between 2 and 3. In both scenarios the estimated
computation greatly outperformed the exact one, being able to compute the
mayority of cases within the time budget.

A natural follow-up from these results is to explore the scalability of the
procedure for volume estimation. Table 1 show the maximum size of the family of
polytopes whose approximate volume can be computed in one hour, considering
relative errors with bounds set to 1% and 5%. Size denotes the number of
polytopes in the family and App the number of successive approximations needed
in each case.

As we mentioned in Sect. 2, efficiently computing the volume of these types
of polytopes is just a means for quantifying partial compliance of QoS contracts.

RQ3: how does the performance gain obtained by approximating
the volume impacts the computation of the inclusion ratio?

Our results5 show that as the size of the contracts increases the efficiency gain
between 0%, 1% and 5% tolerance is dramatically better. There are cases where
the approximate volume computation is performed in 4% of the time required by
the exact volume computation, and several cases for which the exact inclusion
ratio fails to be computed within the 10 h time budget but becomes feasible when
a bound for the relative error is introduced.
4 The experiment was conducted over the same dataset as for RQ1.
5 Case studies were generated following the same guidelines as for RQ2. A time budget

of 10 h is considered.

QoS Ranking by Quantifying Partial Compliance of Requirements 187

Table 1. Upper limit for computation of approximated volume.

Number of quantitative attributes

10 15 20

Size App. Time Size App. Time Size App. Time

1% 11 4.95 1452.42 15 3 3067.82 22 2 3320.67

5% 15 3.72 1857.42 24.92 2 1218.55 22 2 3320.67

Number of quantitative attributes

25 30

Size App. Time Size App. Time

1% 14 2 3481.29 9 2 3120.49

5% 14 2 3481.29 9 2 3120.49

Inclusion ratio provides a way of ranking services according to partial sat-
isfaction. Thus, it is worth knowing how an approximate computation of the
volume propagates the relative error to the computation of the inclusion ratio.
In the end, this will impact the actual selection of a service candidate. The
next proposition establishes lower and upper bounds for the distance between
approximate inclusion ratio and exact inclusion ratio.

Proposition 3. Given two volume approximations vk, wk, where the exact vol-
umes are v, k, respectively. Let e be the bound for the relative error (i.e.,
|v−vk|

|v| ≤ e and |w−wk|
|w| ≤ e) then:

1. (1 − e) · v ≤ vk ≤ (1 + e) · v (respectively (1 − e) · w ≤ wk ≤ (1 + e) · w), and
2. (1−e)·v

(1+e)·w ≤ vk

wk
≤ (1+e)·v

(1−e)·w (equivalently 1−e
1+e · v

w ≤ vk

wk
≤ 1+e

1−e · v
w).

Consider, as an example, the bounds obtained from Proposition 3 for the approxi-
mate inclusion ratio, when approximate volumes are computed with relative error
bound to be smaller than 5% and 1%, as we did in the previous experiments. Let
eir be the exact inclusion ratio, ir5 the inclusion ratio computed with a relative
error below 5% and ir1 the inclusion ratio computed with a relative error below
1%; then, we obtain that 0.905 · eir ≈ 0.95

1.05 · eir ≤ ir5 ≤ 1.05
0.95 · eir ≈ 1.105 · eir

and 0.98 · eir ≈ 0.99
1.01 · eir ≤ ir1 ≤ 1.01

0.99 · eir ≈ 1.02 · eir , respectively.
Our final research question focuses on effectively ranking different provision

contracts using the inclusion ratio as a metric for quantifying partial satisfaction.

RQ4: What is the impact of the proposed approximation in the
construction of a ranking of a set of services?

For this experiment we performed 3 examples of ranking 20 provision con-
tracts by partial satisfaction of a single requirements contract. The datasets
were synthetically generated following the guidelines used for generating the
case-studies used in RQ3. Each ranking correspond to a different size of the
families of polytopes as follows: a) |Pr | = 2, |Rq | = 4, b) |Pr | = 3, |Rq | = 3, c)
|Pr | = 4, |Rq | = 2.

188 A. E. Martinez Suñé and C. G. Lopez Pombo

For each dataset we performed the ranking order using the exact inclusion
ratio, and also using 1% and 5% bounds for the relative error. The results of the
experiment show that in all of the examples the ranking obtained by using the
exact volume computation is preserved when resorting to approximate volume
computations.

4 Conclusions and Further Work

We extended previous work where we proposed a formalisation of QoS contract
as convex specifications [13]. Under a geometrical interpretation, a contract can
be seen as a family of convex polytopes characterising the admissible values for
the quantitative attributes and a judgement of the shape Pr � Rq as polytope
inclusion. From this perspective, we proposed a way of QoS ranking services by
quantifying the volume of the intersection between [[Pr]] and [[Rq]], under the
name inclusion ratio. Since this indicator quantifies the percentage of values
allowed by the provision contract that are actually accepted by the requirement
contract we sustain that it serves the purpose of quantifying partial compliance.
The exponential nature of computing the volume of a family of convex polytopes
forced us to propose a volume approximation technique based on imposing an
upper bound to the relative error.

We evaluated the performance of the approximated volume computation
against the exact volume computation, the scalability of the approximate vol-
ume computation and the performance of computing the inclusion ratio with
respect to the exact computation. Finally, we showed examples of the impact
of approximate inclusion ratio in ranking services by comparing the ideal rank-
ing, obtained by resorting to the exact inclusion ratio, and the one obtained
by resorting to approximate inclusion ratio, for different bounds to the relative
error.

This technique for evaluating partial satisfaction of QoS contracts triggers
what we believe is one of the most important questions regarding the automation
of service broking. Under partial satisfaction of QoS contracts, we would like
to establish preferences among different quantitative attributes of the different
candidates. For example, if we consider two services with the same inclusion
ratio, a low budget application would like to express it’s preference for cheaper
services, even at the cost of degraded performance, over a more expensive and
efficient one. This problem will be addressed in the near future aiming at a
more realistic view of an automatic procedure for checking QoS compliance for
determining SLA in a service-based architecture.

References

1. Al-Masri, E., Mahmood, Q.H.: QoS-based discovery and ranking of web services. In:
Guo, K. (ed.) Proceedings of 16th International Conference on Computer Commu-
nications and Networks, IEEE ICCCN 2007, pp. 529–534. IEEE Computer Society,
August 2007

QoS Ranking by Quantifying Partial Compliance of Requirements 189

2. Bryant, V.: Metric Spaces: Iteration and Application. Mathematical Systems The-
ory. Cambridge University Press, Cambridge (1985)

3. Dyer, M.E., Frieze, A.M.: On the complexity of computing the volume of a poly-
hedron. SIAM J. 17(5), 967–974 (1988)

4. Fiadeiro, J.L., Lopes, A., Bocchi, L.: An abstract model of service discovery and
binding. Formal Aspects Comput. 23(4), 433–463 (2011). https://doi.org/10.1007/
s00165-010-0166-z

5. Ge, C., Ma, F.: A fast and practical method to estimate volumes of convex poly-
topes. In: Wang, J., Yap, C. (eds.) FAW 2015. LNCS, vol. 9130, pp. 52–65. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-19647-3 6

6. Gritzmann, P., Klee, V.: On the complexity of some basic problems in compu-
tational convexity. In: Bisztriczky, T., McMullen, P., Schneider, R., Weiss, A.I.
(eds.) Polytopes: Abstract, Convex and Computational. ASIC, vol. 440, pp. 373–
466. Springer, Dordrecht (1994). https://doi.org/10.1007/978-94-011-0924-6 17

7. Kannan, R., Lovász, L., Simonovits, M.: Random walks and an o∗(n5) volume
algorithm for convex bodies. Random Struct. Algorithms 11(1), 1–50 (1991)

8. Khachiyan, L.G.: The problem of calculating the volume of a polyhedron is enu-
merably hard. Russ. Math. Surv. 44(3), 199–200 (1989)

9. Liu, Y., Ngu, A.H., Zeng, L.: QoS computation and policing in dynamic web service
selection. In: Feldman, S.I., Uretsky, M., Najork, M., Wills, C.E. (eds.) Proceedings
of 13th International Conference on World Wide Web - WWW 2004, pp. 66–73.
ACM Press, May 2004

10. Liu, Z.: Introduction to Combinatorial Mathematics. McGraw-Hill Book Company,
New York City (1968)

11. Mao, C., Chen, J., Towey, D., Chen, J., Xie, X.: Search-based QoS ranking pre-
diction for web services in cloud environments. Future Gener. Comput. Syst. 50,
111–126 (2015)

12. Martinez Suñé, A.E., Lopez Pombo, C.G.: Automatic quality-of-service evaluation
in service-oriented computing. In: Riis Nielson, H., Tuosto, E. (eds.) COORDINA-
TION 2019. LNCS, vol. 11533, pp. 221–236. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-22397-7 13

13. Shoukry, Y., Nuzzo, P., Sangiovanni-Vincentelli, A.L., Seshia, S.A., Pappas, G.J.,
Tabuada, P.: SMC: satisfiability modulo convex optimization. In: Proceedings of
the 20th International Conference on Hybrid Systems: Computation and Control,
pp. 19–28. ACM Press, New York (2017)

14. Strunk, A.: QoS-aware service composition: a survey. In: Brogi, A., Pautasso, C.,
Papadopoulos, G.A. (eds.) Proceedings of 8th IEEE European Conference on Web
Services, ECOWS 2010, pp. 67–74. IEEE Computer Society, December 2010

15. Zheng, Z., Wu, X., Zhang, Y., Lyu, M.R., Wang, J.: QoS ranking prediction for
cloud services. IEEE Trans. Parallel Distrib. Syst. 24(6), 1–50 (2013)

https://doi.org/10.1007/s00165-010-0166-z
https://doi.org/10.1007/s00165-010-0166-z
https://doi.org/10.1007/978-3-319-19647-3_6
https://doi.org/10.1007/978-94-011-0924-6_17
https://doi.org/10.1007/978-3-030-22397-7_13
https://doi.org/10.1007/978-3-030-22397-7_13

Large-Scale Decentralised Systems

Time-Fluid Field-Based Coordination

Danilo Pianini1(B) , Stefano Mariani2 , Mirko Viroli1 ,
and Franco Zambonelli2

1 Alma Mater Studiorum—Università Bologna, Cesena, Italy
{danilo.pianini,mirko.viroli}@unibo.it

2 Università di Modena e Reggio Emilia, Reggio Emilia, Italy
{stefano.mariani,franco.zambonelli}@unimore.it

Abstract. Emerging application scenarios, such as cyber-physical sys-
tems (CPSs), the Internet of Things (IoT), and edge computing, call
for coordination approaches addressing openness, self-adaptation, het-
erogeneity, and deployment agnosticism. Field-based coordination is one
such approach, promoting the idea of programming system coordination
declaratively from a global perspective, in terms of functional manipu-
lation and evolution in “space and time” of distributed data structures,
called fields. More specifically, regarding time, in field-based coordina-
tion it is assumed that local activities in each device, called computational
rounds, are regulated by a fixed clock, typically, a fair and unsynchro-
nized distributed scheduler. In this work, we challenge this assumption,
and propose an alternative approach where the round execution schedul-
ing is naturally programmed along with the usual coordination specifi-
cation, namely, in terms of a field of causal relations dictating what is
the notion of causality (why and when a round has to be locally sched-
uled) and how it should change across time and space. This abstraction
over the traditional view on global time allows us to express what we
call “time-fluid” coordination, where causality can be finely tuned to
select the event triggers to react to, up to to achieve improved balance
between performance (system reactivity) and cost (usage of computa-
tional resources). We propose an implementation in the aggregate com-
puting framework, and evaluate via simulation on a case study.

Keywords: Aggregate computing · Fluidware · IoT · Internet of
Things · Edge computing · Causality · Time · Reactive

1 Introduction

Emerging application scenarios, such as the Internet of Things (IoT), cyber-
physical systems (CPSs), and edge computing, call for software design
approaches addressing openness, heterogeneity, self-adaptation, and deployment
agnosticism [19]. To effectively address this issue, researchers strive to define
increasingly higher-level concepts, reducing the “abstraction gap” with the prob-
lems at hand, e.g., by designing new languages and paradigms. In the context
c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
S. Bliudze and L. Bocchi (Eds.): COORDINATION 2020, LNCS 12134, pp. 193–210, 2020.
https://doi.org/10.1007/978-3-030-50029-0_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50029-0_13&domain=pdf
http://orcid.org/0000-0002-8392-5409
http://orcid.org/0000-0001-5111-9800
http://orcid.org/0000-0003-2702-5702
http://orcid.org/0000-0002-6837-8806
https://doi.org/10.1007/978-3-030-50029-0_13

194 D. Pianini et al.

of coordination models and languages, field-based coordination is one such app-
roach [3,5,21,23,37,40]. In spite of its many variants and implementations, field-
based coordination roots in the idea of programming system coordination declar-
atively and from a global perspective, in terms of distributed data structures
called (computational) fields, which span the entire deployment in space (each
device holds a value) and time (each device continuously produces such values).

Regarding time, which is the focus of this paper, field-based coordination
typically abstracts from it in two ways: (i) when a specific notion of local time is
needed, this is accessed through a sensor as for any other environmental variable;
and (ii) a specification is actually interpreted as a small computation chunk to be
carried on in computation rounds. In each round a device: (i) sleeps for some time;
(ii) gathers information about state of computation in previous round, messages
received by neighbors while sleeping, and contextual information (i.e. sensor
readings); and (iii) uses such data to evaluate the coordination specification,
storing the state information in memory, producing a value output, and sending
relevant information to neighbors. So far, field-based coordination approaches
considered computational rounds as being regulated by an externally imposed,
fixed distributed clock: typically, a fair and unsynchronized distributed scheduler.
This assumption however, has a number of consequences and limitations, both
philosophical and pragmatic, which this paper aims to address.

Under a philosophical point of view, it follows a pre-relativity view of time
that meets general human perception, i.e., where time is absolute and inde-
pendent of the actual dynamics of events. This hardly fits with more modern
views connecting time with a deeper concept of causality [22], as being only
meaningful relative to the existence of events as in relational interpretations of
space-time [30], or even being a mere derived concept introduced by our cogni-
tion [29]—as in Loop Quantum Gravity [31]. Under a practical point of view,
consequences on field-based coordination are mixed. The key practical advantage
is simplicity. First, the designer must abstract from time, leaving the scheduling
issue to the underlying platform. Second, the platform itself can simply impose
local schedulers statically, using fixed frequencies that at most depend on the
device computational power or energetic requirements. Third, the execution in
proactive rounds allows a device to discard messages received few rounds before
the current one, thus considering non-proactive senders to have abandoned the
neighborhood, and simply modeling the state of communication by maintaining
the most recent message received from each neighbor.

However, there is a price to pay for such a simple approach. The first is
that “stability” of the computation, namely, situations in which the field will
not change after a round execution, is ignored. As a consequence, sometimes
“unnecessary” computations are performed, consuming resources (both energy
and bandwidth capacity), and thus reducing the efficiency of the system. Sym-
metrically, there is a potential responsiveness issue: some computations may
require to be executed more quickly under some circumstances. For instance,
consider a crowd monitoring and steering system for urban mass events as the
one exemplified in [7]: in case the measured density of people gets dangerous,

Time-Fluid Field-Based Coordination 195

a more frequent evaluation of the steering advice field is likely to provide more
precise and timely advices. Similar considerations apply for example to the area
of landslide monitoring [28], where long intervals of immobility are interspersed
by sudden slope movements: sensors sampling rate can and should be low most of
the time, but it needs to get promptly increased on slope changes. This generally
suggests a key unexpressed potential for field-based computation: the general
ability to provide improved balance between performance (system reactivity)
and cost (usage of computational resources). For instance, the crowd monitor-
ing and landslide monitoring systems should ideally slow down (possibly, halt
entirely) the evaluation in case of sparse crowd density or of absence of surface
movements, respectively. And they should start being more and more responsive
with growing crowd densities or in case of landslide activation.

The general idea that round execution distribution can actually dynamically
depend on the outcome of computation itself, can be captured in field-based coor-
dination by modeling time by a causality field, namely, a field programmable
along with (and hence intertwined with) the usual coordination specification,
dictating (at each point in space-time) what are the triggers whose occurrence
should correspond to the execution of computation rounds. Programming causal-
ity along with coordination leads us to a notion of time-fluid coordination, where
it is possible to flexibly control the balance between performance and cost of
system execution. Accordingly, in this work we discuss a causality-driven inter-
pretation of field-based coordination, proposing an integration with the field cal-
culus [3] with the goal of evaluating a model for time-fluid, field-based coordina-
tion. In practice, we assume computations are not driven by time-based rounds,
but by perceivable local event triggers provided by the platform (hardware/-
software stack) executing the aggregate program, such as messages received,
change in sensor values, and time passing by. The aggregate program specifi-
cation itself, then, may affect scheduling of subsequent computations through
policies (expressed in the same language) based on such triggers.

The contribution of this work can be summarized under three points of view.
First, the proposed model enriches the coordination abstraction of field-based
coordination with the possibility to explicitly and possibly reactively program
the scheduling of the coordination actions; second, it enables a functional descrip-
tion of causality and observability, since manipulation of the interaction fre-
quency among single components of the coordinated system reflects in changes
in how causal events are perceived, and actions are taken in response to event
triggers; third, the most immediate practical implication of a time-fluid coordina-
tion when compared to a traditional time-driven approach is improved efficiency,
intended as improved responsiveness with the same resource cost.

The remainder of this work is as follows: Sect. 2 frames this work with respect
to the existing literature on topic; Sect. 3 introduces the proposed time-fluid
model and discusses its implications; Sect. 4 presents a prototype implementation
in the framework of aggregate computing, showing examples and evaluating the
potential practical implications via simulation finally, Sect. 5 discusses future
directions and concludes the work.

196 D. Pianini et al.

2 Background and Related Work

Time and synchronization have always been key issues in the area of distributed
and pervasive computing systems. In general, in distributed systems, the absence
of a globally shared physical clock among nodes makes it impossible to rely
on absolute notions of time. Logical clocks are hence used instead [17], realiz-
ing a sort of causally-driven notion of time, in which the “passing time” of a
distributed computation (that is, the ticks of logical clocks) directly expresses
causal relations between distributed events. As a consequence, any observation
of a distributed computation that respects such causal relations, independently
of the relative speeds of processes, is a consistent one [4]. Our proposal absorbs
these foundational lessons, and brings them forward to consider the strict rela-
tions between the spatial dimension and the temporal dimension that situated
aggregate computations have to account for.

In the area of sensor networks, acquiring a (as accurate as possible) globally
shared notion of time is of fundamental importance [33], to properly capture
snapshots of the distributed phenomena under observation. However, global syn-
chronization also serves energy saving purposes. In fact, when not monitoring or
not communicating, the nodes of the network should go to sleep to avoid energy
waste, but this implies that to exchange monitoring information with each other
they must periodically wake-up in a synchronized way. In most of existing pro-
posals, though, this is done in awakening and communicating rounds of fixed
duration, which makes it impossible to adapt to the actual dynamics of the
phenomena under observation. Several proposals exist for adaptive synchroniza-
tion in wireless sensor networks [1,13,16], dynamically changing the sampling
frequency (and hence frequency of communication rounds) so as to adapt to
the dynamics of the observed phenomena. For instance, in the case of crowd
monitoring systems, it is likely that people (e.g, during an event) stay nearly
immobile for most of the time, then suddenly start moving (e.g., at the end of
the event). Similarly, in the area of landslide monitoring, the situation of a slope
is stable for most of the time, with periodic occurrences of (sometimes very fast)
slope movements. In these cases, waking up the nodes of the network periodically
would not make any sense and would waste a lot of energy. Nodes should rather
sleep most of the time, and wake up only upon detectable slope movements.

Such adaptive sampling approaches challenge the underlying notion of time,
but they tend to focus on the temporal dimension only (i.e., adapting to the
dynamics of a phenomena as locally perceived by the nodes). Our approach goes
further, by making it possible to adapt in time and space as well: not only how
fast a phenomenon changes in time, but how fast it propagates and induces
causal effects in space. For instance, in the case of landslide monitoring or crowd
monitoring, adapting to the dynamics of local perceived movements to the overall
propagation speed of such movements across the monitored area.

Besides sensor networks, the issue of adaptive sampling has recently landed
in the broader area of IoT systems and applications [35], again with the pri-
mary goal of optimizing energy consumption of devices while not losing relevant
phenomena under observation. However, unlike what promoted in sensor net-

Time-Fluid Field-Based Coordination 197

works, such optimizations typically take place in a centralized (cloud) [34] or
semi-decentralized (fog) way [18], which again disregards spatial issues and the
strict space-time relations of phenomena.

Since coordination models and languages typical address a crosscutting con-
cern of distributed systems, they are historically concerned with the notion of
time in a variety of ways. For instance, time is addressed in space-based coor-
dination since Javaspaces [12], and corresponding foundational calculi for time-
based Linda [6,20]: the general idea is to equip tuples and query operations
with timeouts, which can be interpreted either in terms of global or local clocks.
The problem of abstracting the notion of time became crucial when coordina-
tion models started addressing self-adaptive systems, and hence openness and
reactivity. In [25], it is suggested that a tuple may eventually fade, with a rate
that depends on a usefulness concepts measuring how many new operations are
related to such tuple. In the biochemical tuple-space model [38], tuples have a
time-dynamic “concentration” driven by stochastic coordination rules embedded
in the data-space.

Field-based coordination emerged as a coordination paradigm for self-
adaptive systems focusing more on “space” rather than “time”, in works such
as TOTA [24], field calculus [3,37], and fixpoint-based computational fields
[21]. However, the need for dealing with time is a deep consequence of dealing
with space, since propagation in space necessarily impacts “evolution”. These
approaches tend to abstract from the scheduling dynamics of local field evolution,
in various ways. In TOTA, the update model for distributed “fields of tuples” is
an asynchronous event-based one: anytime a change in network connectivity is
detected by a node, the TOTA middleware provides for triggering an update of
the distributed field structures so as to immediately reflect the new situation. In
the field calculus and aggregate computing [5] as already mentioned, an external,
proactive clock is typically used. In [21] this issue is mostly neglected since the
focus is on the “eventual behavior”, namely the stabilized configuration of a field,
as in [36]. For all these models, scheduling of updates is always transparent to
the application/programming level, so the application designer cannot intervene
on coordination so as to possible optimize communication, energy expenses, and
reactivity.

3 Time-Fluid Field-Based Coordination

In this section, we introduce a model for time-fluid field-based coordination. The
core idea of our proposed approach is to leverage the field-based coordination
itself for maintaining a causality field that drives the dynamics of computation of
the application-level fields. Our discussion is in principle applicable to any field-
based coordination framework, however, for the sake of clarity, we here focus on
the field calculus [3].

198 D. Pianini et al.

3.1 A Time-Fluid Model

Considering a field calculus program P, each of its rounds can be though of as
consuming: i) a set of valid messages received from neighbors, M ∈ M; and
ii) some contextual information S ∈ S, usually obtained via so-called sensors.
The platform or middleware in charge of executing field calculus programs has
to decide when to launch the next evaluation round of P, also providing valid
values for M and S. Note that in general the platform could execute many
programs concurrently.

In order to support causality-driven coordination, we first require the plat-
form to be able to reactively respond to local event triggers, each representing
some kind of change in the values of M or S—e.g., “a new message is arrived”,
“a given sensor provides a new value”, or “1 second is passed”. We denote by T
the set of all possible local event triggers the platform can manage.

Then, we propose to associate to every field calculus program P a guard
policy G (policy in short), which itself denotes a field computation—and can
hence be written with a program expressed in the same language of P, as will
be detailed in next section. Most specifically, whenever evaluated across space
and time, the field computation of a policy can be locally modeled as a function

fG : (S,M) → ({0, 1},P(T))

where P(T) denotes the powerset of T . Namely, a policy has the same input of
any field computation, but specifically returns a pair of Boolean b ∈ {0, 1} and
a set of event triggers Tc ⊆ T . Tc is essentially the set of “causes”: G will get
evaluated next time by the platform only when a new event trigger is detected
that belongs to Tc. Then, such an evaluation produces the second output b:
when this is true (value 1) it means that the program P associated to the policy
must be evaluated as soon as possible. On system bootstrap, every policy gets
evaluated for the first time.

In the proposed framework, hence, computations are caused by a field of event
triggers (the causality field) computed by a policy, which is used to i) decide
whether to run the actual application round immediately, and ii) decide which
event triggers will cause a re-evaluation of the policy itself. This mechanism thus
introduces a sort of guard mediating between the evolution of the causality field
and the actual execution of application rounds, allowing for fine control over the
actual temporal dynamics, as exemplified in Sect. 4.2.

Crucially, the ability to sense context (namely, the contents of S) and to
express event triggers (namely, the possible contents of T) has a large impact on
the expressivity of the proposed model. For the remainder of this work, we will
assume the platform or middleware hosting a field computation to provide the
following set of features, which we deem reasonable for any such platform—this
is for the sake of practical expressiveness, since even a small set of event triggers
could be of benefit. First, T must include changes to any value of S; this allows
the computation to be reactive to changes in the device perception, or, sym-
metrically speaking, makes such changes the cause of the computation. Second,
timers can be easily modeled as special Boolean sensors flipping their value from

Time-Fluid Field-Based Coordination 199

false to true; making the classic time-driven approach a special case of the pro-
posed framework. Third, which specific event trigger caused the last computation
should be available in S, accessible through the appropriate sensor. Fourth, the
most recent result of any field computation P that should affect the policy must
be available in S; this is crucial for field computations to depend on each other,
or, in other words, for a field computation to be the cause of another, possibly
more intensive field computation. For instance, consider the crowd sensing and
steering application mentioned in Sect. 1 to be decomposed in two sub-field com-
putations: the former, lightweight, computing the local crowd density under a
policy triggering the computation anytime a presence sensor counts a different
number of people in the monitored area; the latter, resource intensive, comput-
ing a crowd steering field guiding people out of the over-crowded areas, whose
policy can leverage the value of the density field to raise the evaluation frequency
when the situation gets potentially dangerous. Fifth, the conclusion of a round
of any field program is a valid source of event triggers, namely, T also contains
a Boolean indicating whether a field program of interest completed its round.

3.2 Consequences

Programming the Space-Time and Propagating Causality. As soon as
we let the application affect its own execution policy, we are effectively program-
ming the time (instead of in time, as is typically done in field-based coordina-
tion): evaluating the field computation at different frequencies would actually
amount at modulating the perception of time from the application standpoint.
For instance, sensors’ values may be sampled more often or more sparsely, affect-
ing the perception that the application has of its operating environment along
the time scale. In turn, as stemming from the distributed nature of the communi-
cating system at hand, such an adaptation along time would immediately cause
adaptation across space too, by affecting the communication rate of devices,
hence the rate at which events and information spread across the network. It
is worth emphasizing that this a consequence of embracing a notion of time
founded on causality. In fact, as we are aware of computational models adap-
tive to the time fabric, as mentioned in Sect. 2, we are not aware of any model
allowing programming the perception of time at the application level.

Adapting to Causality. Being able to program the space-time fabric as
described above necessarily requires the capability of being aware of the space-
time fabric in the first place. When the notion of space-time is crafted upon
the notion of causality between events, such a form of awareness translates to
awareness of the dynamics of causal relations among events. Under this per-
spective, the application is no longer adapting to the passage of time and the
extent of space, but to the temporal and spatial distribution of causal relations
among events. In other words, the application is able to “chase” events not only
as they travel across time and space, but also as their “traveling speed” changes.
For instance, whenever in a given region of space some event happens more

200 D. Pianini et al.

frequently, devices operating in the same area may compute more frequently
as well, increasing the rate of communications among devices in that region,
thus leading to an overall better recognition of the quickening dynamics of the
phenomenon under observation.

Controlling Situatedness. The ability to control both the above mentioned
capabilities at the application level enables unprecedented fine control over the
degree of situatedness exhibited by the overall system, along two dimensions: the
ability to decide the granularity at which event triggers should be perceived; and
the ability to decide how to adapt to changes in events dynamics. In modern
distributed and pervasive systems the ability to quickly react to changes in
environment dynamics are of paramount importance [32]. For instance, in the
mentioned case of landslide monitoring, as anomalies in measurement increase
in frequency, intensity, and geographical coverage, the monitoring application
should match the pace of the accelerating dynamics.

Co-causal Field Computation. On the practical side, associating field com-
putations to programmable scheduling policies brings both advantages and risks
(as most extensions to expressiveness do). One important gain in expressive-
ness is the ability to let field computation affect the scheduling policy of other
field computations, as in the example of crowd steering or landslide monitor-
ing: the denser some regions get, the faster will the steering field be computed;
the more intense vibrations of the ground get, the more frequently monitoring
is performed. On the other hand, this opens the door to circular dependencies
among fields computations and the scheduling policies, which can possibly lead
to deadlocks or livelocks. Therefore, it is good practice for time-fluid field coordi-
nation systems that at least one field computation depends solely on local event
triggers, and that dependencies among diverse field computations are carefully
crafted and possibly enriched with local control.

Pure Reactivity and Its Limitations. Technically, replacing a scheduler
guided by a fixed clock with one triggering computations as consequence of
events, turns the system from time-driven to event-driven. In principle, this
makes the system purely reactive: the system is idle unless some event trigger
happens. Depending on the application at hand, this may be a blessing or a
curse: since pro-activity is lost, the system is chained to the dynamics of event
triggers, and cannot act on its own will. Of course, it is easy to overcome such
a limitation: assuming a clock is available in the pool of event triggers makes
pro-activity a particular case of reactivity, where the tick of the clock dictates
the granularity. Furthermore, since policies allow the specification of a set of
event triggers causing re-evaluation, the designer can always design a “fall-back”
plan relying on expiration of a timer: for instance, it’s possible (and reasonable)
to express a policy such as “trigger as soon as ε happens, or timer τ expires,
whichever comes first”.

Time-Fluid Field-Based Coordination 201

4 Time-Fluid Aggregate Computing

The proposed model has been prototypically reified within the framework of
aggregate computing [5]. In particular, we leveraged the Alchemist Simula-
tor [26]’s pre-existing support for the Protelis programming language [27] and the
Scafi Scala DSL [39], and we produced a modified prototype platform supporting
the definition of policies using the same aggregate programming language used
for the actual software specification. The framework has been open sourced and
publicly released, and it has been exercised in a paradigmatic experiment.

In this section we first briefly provide details about the Protelis program-
ming language, which we use to showcase the expressive power of the proposed
system by examples, then we present an experiment showing how the time-fluid
architecture may allow for improved precision as well as reduced resource use.

4.1 A Short Protelis Primer

This Protelis language primer is intended as a quick reference for understanding
the subsequent examples. Entering the language details is out of the scope of this
work, only the set of features used in this paper will be introduced. Protelis is
a purely functional, higher-order, interpreted, and dynamically typed aggregate
programming language interoperable with Java.

Programs are written in modules, and are composed of any number of func-
tion definitions and of an optional main script. module some:namespace creates
a new module whose fully qualified name is some:namespace. Modules’ functions
can be imported locally using the import keyword followed by the fully qualified
module name. The same keyword can be used to import Java members, with org

.protelis.Builtins, java.lang.Math, and java.lang.Double being pre-imported.
Similarly to other dynamic languages such as Ruby and Python, in Protelis top
level code outside any function is considered to be the main script.

def f(a, b) { code } defines a new function named f with two arguments
a and b, which executes all the expressions in code upon invocation, returning
the value of the last one. In case the function has a single expression, a shorter,
Scala/Kotlin style syntax is allowed: def f(a, b) = expression.

The rep (v <- initial) { code } expression enables stateful computation
by associating v with either the previous result of the rep evaluation, or with
the value of the initial expression, The code block is then evaluated, and its
result is returned (and used as value for v in the subsequent round).

The if(condition) {then} else {otherwise} expression requires condition

to evaluate to a boolean value; if such value is true the then block is evaluated
and the value of its last expression returned, while if the value of condition is
false the otherwise code block gets executed, and the value of its last expres-
sion returned. Notably, rep expressions that find themselves in a non-evaluated
branch lose their previously computed state, hence restarting the state com-
putation from the initial value. This behavior is peculiar of the field calculus
semantics, where the branching construct is lifted to a distributed operator with
the meaning of domain segmentation [3].

202 D. Pianini et al.

The let v = expression statement adds a variable named v to the local name
space, associating its value to the value of the expression evaluation. Square
brackets delimit tuple literals: [] evaluates to an empty tuple, [1, 2,"foo"] to a
tuple of three elements with two numbers and a string. Methods can be invoked
with the same syntax of Java: obj.method(a, b) tries to invoke method member

on the result of evaluation of expression obj, passing the results of the evaluation
of expressions a and b as arguments. Special keywords self and env allow access
to contextual information. self exposes sensors via direct method call (typically
leveraged for system access), while env allows dynamic access to sensors by name
(hence supporting more dynamic contexts).

Anonymous functions are written with a syntax reminiscent of Kotlin and
Groovy: { a, b, -> code } evaluates to an anonymous function with two param-
eters and code as body. Protelis also shares with Kotlin the trailing lambda con-
vention: if the last parameter of a function call is an anonymous function, then
it can be placed outside the parentheses. If the anonymous function is the only
argument to that call, the parentheses can be omitted entirely. The following
calls are in fact equivalent:

1 [1, 2].map({ a -> a + 1 }) // returns [2, 3]

2 [1, 2].map() { a -> a + 1 } // returns [2, 3]

3 [1, 2].map { a -> a + 1 } // returns [2, 3]

4.2 Examples

In this section we exemplify how the proposed approach allows for a single field-
based coordination language to be used for expressing both P and G. In the
following discussion, event triggers provided by the platform (i.e., members of
T), will be highlighted in green. In our first example, we show a policy recreating
the round-based, classic execution model, thus demonstrating how this approach
supersedes the previous. Consider the following Protelis functions, which detect
changes in a value:

1 de f updated (current , cond i t i on) = rep (o ld <− cur rent) {
2 i f (c ond i t i on (current , o ld)) { cur rent } e l s e { old }
3 } == current

4 de f changed (cur rent) = updated (cur rent) {cur , o ld −> cur != old }

where current is the current value of the signal being tracked, and condition
is a function comparing the current with the previously memorized value and
returning true if the new value should replace the old one. Function changed is
the simplest use of update, returning true whenever the input signal current
changes. In the showcased code, the second argument to updated is provided
using the trailing lambda syntax (see Sect. 4.1). They can be leveraged for writing
a policy sensitive to platform timeouts. For instance, in the following code, we
write a policy that gets re-evaluated every second (we only return TIMER(1) of

Time-Fluid Field-Based Coordination 203

all the possible event triggers in T), and whose associated program runs if at
least one second passed since the last round.

1 import p lat form . EventType .TIMER
2 [updated (s e l f . getCurrentTime ()) { now , l a s t −> now−l a s t >1 } ,
3 [TIMER(1)]]

On the opposite side of the spectrum of possible policies is a purely reactive
execution: the local field computation is performed only if there is a change in the
value of any available sensors (SENSOR(".*")); if a message with new information
is received (MESSAGE_RECEIVED); or if a message is discarded from the neighbor
knowledge base (MESSAGE_TIMEOUT), for instance because the sender of the original
message is no longer available:

1 import p lat form . EventType .∗
2 l e t reason = env . get (” plat form . event ”)

3 [r eason == MESSAGETIMEOUT | | reason == SENSOR(” .∗ ”) // Regex
4 | | changed (env . get (” p lat form . ne i ghbo r s t a t e ”)) ,

5 [MESSAGE RECEIVED, MESSAGE TIMEOUT, SENSOR(” .∗ ”)]]

Finally, we articulate a case in which the result of an aggregate computa-
tion is the cause for another computation to get triggered. Consider the crowd
steering system mentioned in Sect. 1: we would like to update the crowd steer-
ing field only when there is a noticeable change in the perceived density of the
surroundings. To do so, we first write a Protelis program leveraging the SCR
pattern [8] to partition space in regions 300 meters wide and compute the aver-
age crowd density within them. Functions S (network partitioning at desired
distance), summarize (aggregation of data over a spanning tree and partition-
wide broadcast of the result), and distanceTo (computation of distance) come
from the Protelis-lang library shipped with Protelis [11].

1 module i o : g ithub : s t e e r i n g : dens i ty

2 import . . .
3 l e t distToLeader = distanceTo (S (300)) // network p a r t i t i o n i n g

4 // sum of a l l the pe r ce ived people

5 l e t count=summarize (distToLeader , env . get (” peop le count ”) ,sum)
6 // computes an upper bound to the rad iu s

7 l e t r ad iu s = summarize (distToLeader , distToLeader , max)
8 count /(2∗PI∗ rad iu s) // approximate crowd dens i ty as people / area

Its execution policy could be, for instance, reactive to updates from neighbors
and to changes in a “people counting sensor”, reifying the number of people
perceived by this device (e.g. via a camera).

204 D. Pianini et al.

1 import p lat form . EventType .∗
2 l e t reason = env . get (” plat form . event ”)
3 [r eason == MESSAGETIMEOUT | | reason == MESSAGE RECEIVED | |
4 changed (env . get (” peop le count ”)) , [SENSOR(” peop le count ”)]]

Now that density computation is in place, the platform reifies its final result as
a local sensor, which can in turn be used to drive the steering field computation
with a policy such as:

1 import . . .
2 l e t dens i ty = ” i o : g ithub : s t e e r i n g : dens i ty ”

3 [changed (exponent ia lBackOff (env . get (dens i ty) , 0 . 1)) {cur , old−>
4 abs (cur − old) > 0 .5
5 } , [SENSOR(dens i ty)]]

in which a low pass filter exponentialBackOff avoids to get the program run-
ning in case of spikes (e.g. due to the density computation re-stabilization). Note
that access to the density computation is realized by accessing a sensor with the
same name of the module containing the density evaluation program, thus reifying
a causal chain between field computations.

4.3 Experiment

We exercise our prototype by simulating a distance computation over a network
of situated devices. We consider a 40 × 40 irregular grid of devices, each located
randomly in a disc centered on the corresponding position of a regular grid; and
a single mobile node positioned to the top left of the network, free to move at a
constant speed v from left to right. Once the mobile device leaves the network,
exiting to the right side, another identical one enters the network from the left
hand side. Mobile devices and the leftmost device at bottom are “sources”, and
the goal for each device is to estimate the distance to the closest source.

Computing distance from a source without a central coordinator in arbi-
trary networks is a representative application of aggregate computing, for which
several implementations exist [36]. In this work, since the goal is exploring the
behavior of the platform rather than the efficiency of the algorithm, we use an
adaptive Bellman-Ford [9], even though it’s known not to be the most efficient
implementation for the task at hand [2]. We choose to compute the distance
from a source (a gradient) as our reference algorithm as it is one of the most
common building block over which other, more elaborate forms of coordination

Time-Fluid Field-Based Coordination 205

Fig. 1. Heat-map representation of executed rounds with time. Each device is depicted
as a point located on its actual coordinates, time progresses from left to right. Devices
start (left) with no round executed (yellow) and, with the simulation progression (left to
right), execute rounds, changing their color to red. Devices closer to the static source
(on the bottom left of the scenario) execute fewer rounds than those closer to the
moving source, hence saving resources. (Color figure online)

get built [10,36]. We expect that an improvement in performance on this simple
algorithm may lead to a cascading effect on the plethora [11] of algorithms based
on it, hence our choice as a candidate for this experiment.

We let devices compute the same aggregate program with diverse policies.
The baseline for assessing our proposal is the classic approach to aggregate
computing: time-driven, unsynchronized, and fair scheduling of rounds set at
1 Hz. We compare the classic approach with time fluid versions whose policy
is: run if a new message is received or an old message timed out, and the last
round was at least f−1 seconds ago. The latter clause sets an upper bound
to the number of event triggers a device can react to, preventing well-known
limit situations such as the “raising value problem” for the adaptive Bellman-
Ford [2] algorithm used in this work. We run several versions of the reactive
algorithm, with diverse values for f ; and we also vary ‖v‖. For each combination
of f and ‖v‖, we perform 100 simulations with different random seeds, which
also alter the irregular grid shape. We measure the overall number of executed
rounds, which is a proxy metric for resource consumption (both network and
energy), and the root mean square error of each device. The simulation has been
implemented in Alchemist [26], writing the aggregate programs in Protelis [27].
Data has been processed with Xarray [14], and charts have been produced via
matplotlib [15]. For the sake of reproducibility, the whole experiment has been
automated, documented, and open sourced1.

Intuitively, devices situated closer to the static source than to the trajectory
of mobile sources should be able to execute less often. Figure 1 confirms such
intuition: there is a clear border separating devices always closer to the static
source, which execute much less often, from those that at times are instead
closer to the mobile source. Figure 2 shows the precision of the computation
for diverse values of ‖v‖ and f , compared to the baseline. The performance
of baseline is equivalent with the performance of the time-fluid version with

1 https://github.com/DanySK/Experiment-2020-Coordination-Time-Fluid-AC.

https://github.com/DanySK/Experiment-2020-Coordination-Time-Fluid-AC

206 D. Pianini et al.

Fig. 2. Root mean squared error for diverse v. When the network is entirely static
(top left), after a short stabilization time the network converges to a very low error.
Errors is lower with higher f values. The performance with f = 1 is equivalent with
the performance of the baseline. When ‖v‖ ≥ 5, there is enough time for the mobile
device to leave the system and for a new one to join, creating a spike in error and
requiring a re-stabilization.

f = 1 Hz. Higher values of f decrease the error, and lower values moderately
increase it. Figure 3 depicts the cost to be paid for the algorithm execution. The
causal version of the computation has a large advantage when there is nothing
to recompute: if the mobile device is stands still, and the gradient value does not
need to be recomputed, the computation is fundamentally halted. When ‖v‖ �= 0,
the resource consumption grows; however, compared to the classic version, we
can sustain f = 1.5 Hz with the same resource consumption. Considering that
the performance of the classic version gets matched with f = 1 Hz, and cost
gets equalized at f = 1.5 Hz, when 1Hz < f < 1.5Hz we achieve both better
performance and lower cost. In conclusion, the time-fluid version provides a
higher performance/cost ratio.

Time-Fluid Field-Based Coordination 207

Fig. 3. Root mean squared error for diverse ‖v‖. When the network is entirely static
(top left), raising f has a minimal impact on the overall cost of execution, as the
network stabilizes and recomputes only in case of time outs. In dynamic cases, instead,
higher f values come with a cost to pay. However, in the proposed experiment, the cost
for the baseline algorithm matches the cost of the time fluid version with f = 1.5 Hz,
which in turn has lower error (as shown in Fig. 2).

5 Conclusion and Future Work

In this work we introduced a different concept of time for field-based coordina-
tion systems. Inspired by causal models of space-time in physics, we introduce
the concept of field of causality for field computations, intertwining the usual
coordination specification with its own actual evaluation schedule. We intro-
duce a model that allows expressing the field of causality with the coordination
language itself, and discuss the impact of its application. A model prototype
is then implemented in the Alchemist simulation platform, supporting the exe-
cution of the aggregate computing field-based coordination languages Protelis,
demonstrating the feasibility of the approach. Finally, the prototype is exercised
in a paradigmatic experiment, highlighting the practical relevance of the app-
roach by showing how it can improve efficiency—intended as precision in field
evaluation over resource consumption.

Future work will be devoted to provide more in-depth insights by evaluat-
ing the impact of the approach in realistic setups, both in terms of scenarios
(e.g. using real world data) and evaluation precision (e.g. by leveraging network
simulators such as Omnet++ or NS3). Moreover, further work is required both

208 D. Pianini et al.

for the current prototype to become a full fledged implementation, and for the
model to be implemented in practical field-based coordination middlewares.

Acknowledgements. This work has been supported by the MIUR PRIN 2017 Project
“Fluidware”. The authors want to thank dr. Lorenzo Monti for the fruitful discussion
on causality, the shape and fabric of space and time, and physical models independent
of time.

References

1. Ageev, A., Macii, D., Flammini, A.: Towards an adaptive synchronization policy
for wireless sensor networks. In: 2008 IEEE International Symposium on Preci-
sion Clock Synchronization for Measurement, Control and Communication. IEEE,
September 2008. https://doi.org/10.1109/ispcs.2008.4659224

2. Audrito, G., Damiani, F., Viroli, M.: Optimal single-path information propagation
in gradient-based algorithms. Sci. Comput. Program. 166, 146–166 (2018). https://
doi.org/10.1016/j.scico.2018.06.002

3. Audrito, G., Viroli, M., Damiani, F., Pianini, D., Beal, J.: A higher-order calculus
of computational fields. ACM Trans. Comput. Logic 20(1), 1–55 (2019). https://
doi.org/10.1145/3285956

4. Babaoğlu, O., Marzullo, K.: Consistent Global States of Distributed Systems: Fun-
damental Concepts and Mechanisms, pp. 55–96. ACM Press/Addison-Wesley Pub-
lishing Co., New York/Boston (1993)

5. Beal, J., Pianini, D., Viroli, M.: Aggregate programming for the Internet of Things.
IEEE Comput. 48(9), 22–30 (2015). https://doi.org/10.1109/MC.2015.261

6. Busi, N., Gorrieri, R., Zavattaro, G.: Process calculi for coordination: from Linda
to JavaSpaces. In: Rus, T. (ed.) AMAST 2000. LNCS, vol. 1816, pp. 198–212.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45499-3 16

7. Casadei, R., Fortino, G., Pianini, D., Russo, W., Savaglio, C., Viroli, M.: Modelling
and simulation of opportunistic IoT services with aggregate computing. Future
Gener. Comput. Syst. 91, 252–262 (2018). https://doi.org/10.1016/j.future.2018.
09.005

8. Casadei, R., Pianini, D., Viroli, M., Natali, A.: Self-organising coordination regions:
a pattern for edge computing. In: Riis Nielson, H., Tuosto, E. (eds.) COORDINA-
TION 2019. LNCS, vol. 11533, pp. 182–199. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-22397-7 11

9. Dasgupta, S., Beal, J.: A Lyapunov analysis for the robust stability of an adaptive
Bellman-Ford algorithm. In: 55th IEEE Conference on Decision and Control, CDC
2016, Las Vegas, 12–14 December 2016, pp. 7282–7287 (2016). https://doi.org/10.
1109/CDC.2016.7799393

10. Fernandez-Marquez, J.L., Serugendo, G.D.M., Montagna, S., Viroli, M., Arcos,
J.L.: Description and composition of bio-inspired design patterns: a complete
overview. Nat. Comput. 12(1), 43–67 (2013). https://doi.org/10.1007/s11047-012-
9324-y

11. Francia, M., Pianini, D., Beal, J., Viroli, M.: Towards a foundational API for
resilient distributed systems design. In: 2nd IEEE International Workshops on
Foundations and Applications of Self* Systems, FAS*W@SASO/ICCAC 2017,
Tucson, AZ, USA, 18–22 September 2017, pp. 27–32 (2017). https://doi.org/10.
1109/FAS-W.2017.116

https://doi.org/10.1109/ispcs.2008.4659224
https://doi.org/10.1016/j.scico.2018.06.002
https://doi.org/10.1016/j.scico.2018.06.002
https://doi.org/10.1145/3285956
https://doi.org/10.1145/3285956
https://doi.org/10.1109/MC.2015.261
https://doi.org/10.1007/3-540-45499-3_16
https://doi.org/10.1016/j.future.2018.09.005
https://doi.org/10.1016/j.future.2018.09.005
https://doi.org/10.1007/978-3-030-22397-7_11
https://doi.org/10.1007/978-3-030-22397-7_11
https://doi.org/10.1109/CDC.2016.7799393
https://doi.org/10.1109/CDC.2016.7799393
https://doi.org/10.1007/s11047-012-9324-y
https://doi.org/10.1007/s11047-012-9324-y
https://doi.org/10.1109/FAS-W.2017.116
https://doi.org/10.1109/FAS-W.2017.116

Time-Fluid Field-Based Coordination 209

12. Freeman, E., Hupfer, S., Arnold, K.: JavaSpaces: Principles, Patterns, and Practice.
Addison-Wesley, Boston (1999)

13. Ho, Y., Huang, Y., Chu, H., Chen, L.: Adaptive sensing scheme using naive
Bayes classification for environment monitoring with drone. IJDSN 14(1),
1550147718756036 (2018). https://doi.org/10.1177/1550147718756036

14. Hoyer, S., Hamman, J.: Xarray: N-D labeled arrays and datasets in Python. J.
Open Res. Softw. 5(1) (2017). https://doi.org/10.5334/jors.148

15. Hunter, J.D.: Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9(3),
90–95 (2007). https://doi.org/10.1109/MCSE.2007.55

16. Kho, J., Rogers, A., Jennings, N.R.: Decentralized control of adaptive sampling in
wireless sensor networks. TOSN 5(3), 19:1–19:35 (2009). https://doi.org/10.1145/
1525856.1525857

17. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978). https://doi.org/10.1145/359545.359563

18. Lee, J., Yoon, G., Choi, H.: Monitoring of IoT data for reducing network traffic.
In: Tenth International Conference on Ubiquitous and Future Networks, ICUFN
2018, Prague, Czech Republic, 3–6 July 2018, pp. 395–397 (2018). https://doi.org/
10.1109/ICUFN.2018.8436601

19. de Lemos, R., et al.: Software engineering for self-adaptive systems: research chal-
lenges in the provision of assurances. In: de Lemos, R., Garlan, D., Ghezzi, C.,
Giese, H. (eds.) Software Engineering for Self-Adaptive Systems III. Assurances.
LNCS, vol. 9640, pp. 3–30. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-74183-3 1

20. Linden, I., Jacquet, J.: On the expressiveness of timed coordination via shared
dataspaces. Electron. Notes Theor. Comput. Sci. 180(2), 71–89 (2007). https://
doi.org/10.1016/j.entcs.2006.10.047

21. Lluch-Lafuente, A., Loreti, M., Montanari, U.: Asynchronous distributed execution
of fixpoint-based computational fields. Log. Methods Comput. Sci. 13(1) (2017).
https://doi.org/10.23638/LMCS-13(1:13)2017

22. Lobo, F.S.: Nature of time and causality in physics. In: Psychology of Time, pp.
395–422. Emerald Group Publishing Limited, Bingley (2008)

23. Mamei, M., Zambonelli, F.: Field-Based Coordination For Pervasive Multia-
gent Systems. Springer Series on Agent Technology. Springer, Heidelberg (2006).
https://doi.org/10.1007/3-540-27969-5

24. Mamei, M., Zambonelli, F.: Programming pervasive and mobile computing applica-
tions: the TOTA approach. ACM Trans. Softw. Eng. Methodol. 18(4), 15:1–15:56
(2009). https://doi.org/10.1145/1538942.1538945

25. Menezes, R., Wood, A.: The fading concept in tuple-space systems. In: Haddad,
H. (ed.) Proceedings of the 2006 ACM Symposium on Applied Computing (SAC),
Dijon, France, 23–27 April 2006, pp. 440–444. ACM (2006). https://doi.org/10.
1145/1141277.1141379

26. Pianini, D., Montagna, S., Viroli, M.: Chemical-oriented simulation of computa-
tional systems with Alchemist. J. Simul. 7(3), 202–215 (2013). https://doi.org/10.
1057/jos.2012.27

27. Pianini, D., Viroli, M., Beal, J.: Protelis: practical aggregate programming. In:
Proceedings of the 30th Annual ACM Symposium on Applied Computing, Sala-
manca, Spain, 13–17 April 2015, pp. 1846–1853 (2015). https://doi.org/10.1145/
2695664.2695913

28. Rosi, A., et al.: Landslide monitoring with sensor networks: experiences and lessons
learnt from a real-world deployment. IJSNet 10(3), 111–122 (2011). https://doi.
org/10.1504/IJSNET.2011.042195

https://doi.org/10.1177/1550147718756036
https://doi.org/10.5334/jors.148
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1145/1525856.1525857
https://doi.org/10.1145/1525856.1525857
https://doi.org/10.1145/359545.359563
https://doi.org/10.1109/ICUFN.2018.8436601
https://doi.org/10.1109/ICUFN.2018.8436601
https://doi.org/10.1007/978-3-319-74183-3_1
https://doi.org/10.1007/978-3-319-74183-3_1
https://doi.org/10.1016/j.entcs.2006.10.047
https://doi.org/10.1016/j.entcs.2006.10.047
https://doi.org/10.23638/LMCS-13(1:13)2017
https://doi.org/10.1007/3-540-27969-5
https://doi.org/10.1145/1538942.1538945
https://doi.org/10.1145/1141277.1141379
https://doi.org/10.1145/1141277.1141379
https://doi.org/10.1057/jos.2012.27
https://doi.org/10.1057/jos.2012.27
https://doi.org/10.1145/2695664.2695913
https://doi.org/10.1145/2695664.2695913
https://doi.org/10.1504/IJSNET.2011.042195
https://doi.org/10.1504/IJSNET.2011.042195

210 D. Pianini et al.

29. Rovelli, C.: Quantum mechanics without time: a model. Phys. Rev. D 42(8), 2638–
2646 (1990). https://doi.org/10.1103/physrevd.42.2638

30. Rovelli, C.: Relational quantum mechanics. Int. J. Theor. Phys. 35(8), 1637–1678
(1996). https://doi.org/10.1007/bf02302261

31. Rovelli, C.: Loop quantum gravity. Living Rev. Relativ. 1(1) (1998). https://doi.
org/10.12942/lrr-1998-1

32. Schuster, D., Rosi, A., Mamei, M., Springer, T., Endler, M., Zambonelli, F.: Per-
vasive social context: taxonomy and survey. ACM TIST 4(3), 46:1–46:22 (2013)

33. Sundararaman, B., Buy, U., Kshemkalyani, A.D.: Clock synchronization for wire-
less sensor networks: a survey. Ad Hoc Netw. 3(3), 281–323 (2005). https://doi.
org/10.1016/j.adhoc.2005.01.002

34. Traub, J., Breß, S., Rabl, T., Katsifodimos, A., Markl, V.: Optimized on-demand
data streaming from sensor nodes. In: Proceedings of the 2017 Symposium on
Cloud Computing, SoCC 2017, Santa Clara, CA, USA, 24–27 September 2017, pp.
586–597 (2017). https://doi.org/10.1145/3127479.3131621

35. Trihinas, D., Pallis, G., Dikaiakos, M.: Low-cost adaptive monitoring techniques
for the Internet of Things. IEEE Trans. Serv. Comput. 1 (2018). https://doi.org/
10.1109/tsc.2018.2808956

36. Viroli, M., Audrito, G., Beal, J., Damiani, F., Pianini, D.: Engineering resilient col-
lective adaptive systems by self-stabilisation. ACM Trans. Model. Comput. Simul.
28(2), 1–28 (2018). https://doi.org/10.1145/3177774

37. Viroli, M., Beal, J., Damiani, F., Audrito, G., Casadei, R., Pianini, D.: From field-
based coordination to aggregate computing. In: Di Marzo Serugendo, G., Loreti,
M. (eds.) Coordination Models and Languages. COORDINATION 2018. LNCS,
vol 10852, pp. 252–279. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-92408-3 12

38. Viroli, M., Casadei, M.: Biochemical tuple spaces for self-organising coordination.
In: Field, J., Vasconcelos, V.T. (eds.) COORDINATION 2009. LNCS, vol. 5521, pp.
143–162. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02053-
7 8

39. Viroli, M., Casadei, R., Pianini, D.: Simulating large-scale aggregate MASs with
Alchemist and Scala. In: Proceedings of the 2016 Federated Conference on Com-
puter Science and Information Systems, FedCSIS 2016, Gdańsk, Poland, 11–14
September 2016, pp. 1495–1504 (2016). https://doi.org/10.15439/2016F407

40. Viroli, M., Pianini, D., Beal, J.: Linda in space-time: an adaptive coordination
model for mobile ad-hoc environments. In: Sirjani, M. (ed.) COORDINATION
2012. LNCS, vol. 7274, pp. 212–229. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-30829-1 15

https://doi.org/10.1103/physrevd.42.2638
https://doi.org/10.1007/bf02302261
https://doi.org/10.12942/lrr-1998-1
https://doi.org/10.12942/lrr-1998-1
https://doi.org/10.1016/j.adhoc.2005.01.002
https://doi.org/10.1016/j.adhoc.2005.01.002
https://doi.org/10.1145/3127479.3131621
https://doi.org/10.1109/tsc.2018.2808956
https://doi.org/10.1109/tsc.2018.2808956
https://doi.org/10.1145/3177774
https://doi.org/10.1007/978-3-319-92408-3_12
https://doi.org/10.1007/978-3-319-92408-3_12
https://doi.org/10.1007/978-3-642-02053-7_8
https://doi.org/10.1007/978-3-642-02053-7_8
https://doi.org/10.15439/2016F407
https://doi.org/10.1007/978-3-642-30829-1_15
https://doi.org/10.1007/978-3-642-30829-1_15

Resilient Distributed Collection Through
Information Speed Thresholds

Giorgio Audrito1(B) , Sergio Bergamini1, Ferruccio Damiani1 ,
and Mirko Viroli2

1 Dipartimento di Informatica, University of Torino, Torino, Italy
{giorgio.audrito,ferruccio.damiani}@unito.it,

sergio.bergamini@edu.unito.it
2 Alma Mater Studiorum–Università di Bologna, Cesena, Italy

mirko.viroli@unibo.it

Abstract. One of the key coordination problems in physically-deployed
distributed systems, such as mobile robots, wireless sensor networks, and
IoT systems in general, is to provide notions of “distributed sensing”
achieved by the strict, continuous cooperation and interaction among
individual devices. An archetypal operation of distributed sensing is
data summarisation over a region of space, by which several higher-level
problems can be addressed: counting items, measuring space, averag-
ing environmental values, and so on. A typical coordination strategy to
perform data summarisation in a peer-to-peer scenario, where devices
can communicate only with a neighbourhood, is to progressively accu-
mulate information towards one or more collector devices, though this
typically exhibits problems of reactivity and fragility, especially in sce-
narios featuring high mobility. In this paper, we propose coordination
strategies for data summarisation involving both idempotent and arith-
metic aggregation operators, with the idea of controlling the minimum
information propagation speed, so as to improve the reactivity to input
changes. Given suitable assumptions on the network model, and under
the restriction of no data loss, these algorithms achieve optimal reac-
tivity. By empirical evaluation via simulation, accounting for various
sources of volatility, and comparing to other existing implementations
of data summarisation algorithms, we show that our algorithms are able
to retain adequate accuracy even in high-variability scenarios where all
other algorithms are significantly diverging from correct estimations.

Keywords: Data aggregation · Adaptive algorithm · Aggregate
programming · Computational field · Gradient

1 Introduction

Nowadays physical environments are more and more filled with heterogeneous
connected devices (intelligent and mobile, such as smartphones, drones, robots).
c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
S. Bliudze and L. Bocchi (Eds.): COORDINATION 2020, LNCS 12134, pp. 211–229, 2020.
https://doi.org/10.1007/978-3-030-50029-0_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50029-0_14&domain=pdf
http://orcid.org/0000-0002-2319-0375
http://orcid.org/0000-0001-8109-1706
http://orcid.org/0000-0003-2702-5702
https://doi.org/10.1007/978-3-030-50029-0_14

212 G. Audrito et al.

These contexts increasingly call for new mechanisms of collective adaptation,
ultimately supporting a view of environments as acting as true pervasive com-
puting fabric, where sensing, actuation and computation are naturally seen as
inherently resilient and distributed across physical space [16]. In this paper we
are concerned with the design of a self-adaptive coordination strategy able to
realise distributed sensing concerning physical properties of the environment or
virtual/digital characteristic of the computational one. By the strict cooperation
and interaction of dynamic sets of mobile entities situated in physical proximity,
distributed sensing can generally support forms of complex situation recognition
[18], better monitoring of physical environment [16], and observation (and then
control) of teams of agents [33]. In the context of coordination models and lan-
guages, field-based coordination [23,31,32] has been recently proposed as frame-
work to program increasingly complex self-organising coordination strategies for
such scenarios.

A paradigmatic coordination operation of distributed sensing is data sum-
marisation performed on devices filling a region of space: it is a key component on
top of which one can then realise other operations such as counting, integration,
averaging, maximisation, and the like. In fact, data summarisation corresponds
to the reduce phase of the MapReduce paradigm [19] ported into a “spatial”
context of agents spread in a physical environment and communicating by prox-
imity, and has close analogues designed for wireless sensor networks [29]. Data
summarisation can be solved by an algorithm of distributed collection, where
information propagates towards one or more collector devices, and combine en-
route until reaching a unique value, i.e, the result of collection. This compo-
nent of self-organising behaviour (sometimes named the “C” building block, in
short [30]), is one of the most basic and widely used components of collective
adaptive systems (CASs). Seen in terms of field-based coordination, collection is
essentially a distributed coordination algorithm that computes a specific case of
“computational field” [3,11], namely, a data structure distributed across space
such that each device holds only the local value—which, in the case of collection
represents a partial result of counting in a whole sub-region. This “brick” can
be applied to a variety of different contexts, as it can be instantiated for values
of any data type with an associative and commutative aggregation operator.

However, implementing C can be very tricky, especially in mobile and faulty
environments (i.e., with changes in the network of computational devices), which
are the norm in several emerging application contexts, including airborne sensing
by drones [15], crowd management by people smartphones [14], and vehicular
networks [25]: existing implementations based on heuristic reasoning (single-path
and multi-path [5,30]) tend to be very fragile in practice.

In this paper we present two new algorithms for effectively and efficiently
carrying on the computation of the C building block, based on a theoretical
approach backed up by simulation results, which is able to achieve adequate
accuracy in highly volatile scenarios. In the algorithm for idempotent aggrega-
tion (e.g. set union, maximum), as for existing multi-path collection algorithms,
data chunks flow through agents through many possible links of the underlying

Resilient Distributed Collection Through Information Speed Thresholds 213

proximity network. Which links to use are selected by imposing differentiated
thresholds on minimum information propagation speed, threshold which in turn
are set to the highest value ensuring that data is not discarded by all neighbours
(under suitable assumptions on the network configuration). Instead, in the algo-
rithm for arithmetic aggregation (e.g. sum, product), data chunks flow through
a single outgoing link selected to ensure the maximum information propagation
speed in the worst-case scenario. In both arithmetic and idempotent aggrega-
tion, the algorithms chosen are designed to maximise the worst-case information
propagation speed under the given assumptions. Notice that which of the two
algorithms applies depends only on the problem at hand and not on the run-
time setup of a network. Thus, a system designer can decide which of the two
algorithms are to be exploited depending on the properties of the aggregation
operator only, and there is no overlap: arithmetic operators are never idempo-
tent.

We validate the performance of the algorithms in archetypal situations, tak-
ing into account agent mobility and discontinuities in network configuration, as
well as network size and density. Ultimately, by accounting for various sources
of volatility, using different state-of-the-art distance estimations, and compar-
ing to other existing implementations of aggregation algorithms, we show that
these algorithms are able to retain acceptable precision even in high-variability
scenarios where all other algorithms are significantly diverging from correct esti-
mations.

The work of this paper is arguably a significant step in the context of engi-
neering CASs. In general, the proposed coordination algorithm can be used as
a solid component for engineering collection services in highly distributed and
mobile systems. On the other hand, in the specific context of field-based coor-
dination and aggregate computing framework [14], these algorithms provide an
implementation for the fundamental “C block” as advocated in [30], coupling
that of “G block” as of [6], and together forming a set of combinators effectively
supporting construction of higher-level, self-stabilising coordination strategies in
mobile distributed systems, such as e.g. the SCR pattern proposed in [17].

The remainder of this paper is organised as follows. Section 2 presents the
state-of-the-art in data summarisation techniques and necessary backgrounds.
Section 3 presents the algorithms together with the assumptions that ensure
achieving optimal reactivity. Section 4 compares these algorithms with the state-
of-the-art in archetypal scenarios particularly hard for summarising algorithms.
Finally, Sect. 5 concludes with directions of future research.

2 Background and Related Work

2.1 Computational Model

In aggregate programming [14], a distributed network consists of mobile devices,
capable to perform asynchronous computations and interacting by exchanging
messages. Every device performs periodically the same sequence of operations,
with an usually steady rate T : collection of received messages, computation, and

214 G. Audrito et al.

1

2

3

4

5

de
vi
ce

time

v c w t o

p l r u s d

q e v o

p m j b q o

n b u

Fig. 1. Representation of an event structure, together with literal values depending on
events. Past events of event e (circled blue) are depicted in red, future events in green,
concurrent events in black. (Color figure online)

transmission of messages. The instants and places when and where devices start
their computation are called events ε, and constitute basic element modelling
the system evolution. Every event is a spatio-temporal point, happening on a
device δ(ε) at a certain moment in time t(ε) and position in space p(ε). The
values manipulated by an aggregate program are distributed in space and evolve
in time, and can thus be represented as functions of events v(ε). Furthermore,
events are structured by the message-passing relation among them.

Definition 1 (neighbour). An event ε′ is a neighbour of an event ε, denoted
as ε′ � ε, if a message sent by ε′ was the last from δ(ε′) able to reach δ(ε) before
ε occurred (and has not been discarded as obsolete since).

Note that, in an actual asynchronous distributed system, a device could fire
more frequently than another, hence multiple messages from a “fast” device could
reach a “slow” target before it can fire a new round: the above definition will
allow us to focus only on the latter received one. Similarly, no messages from a
“slow” device could reach a “fast” target during a round, and the above definition
allows to retain messages from such a slow device across rounds, increasing the
computation stability. Details on when messages are persisted or discarded are
not given in the definition, leaving them as a choice during system design.

The neighbouring relation on events forms a direct acyclic graph (DAG), since
it is time-driven and anti-symmetric (unlike spatial-only neighbouring which is
usually symmetric). The transitive closure of this relation defines the causality
partial order ≤, so that ε′ ≤ ε iff there exists a sequence of events ε′ � . . . � ε
connecting ε′ to ε. The causality relation defines which events constitute the past,
future or are concurrent to any given event. A set of events with a neighbouring
and causality relation is also called event structure1 (represented in Fig. 1), and
1 Event structures for Petri Nets are used to model a spectrum of possible evolutions

of a system, hence include also an incompatibility relation, discriminating between
alternate future histories and modelling non-deterministic choice. However, following
[21], we use event structures to model a “timeless” unitary history of events, thus
avoiding the need for an incompatibility relation.

Resilient Distributed Collection Through Information Speed Thresholds 215

provides a basis to formally define the behaviour of a distributed system. In the
remainder of this paper, we shall use the following quantities and primitives:

– the radius R within which communication succeeds;2
– the device δ(ε) and time t(ε) in which event ε takes place;
– the time difference (lag) between neighbour events lag(ε′, ε) = t(ε) − t(ε);3
– the measured distance between neighbour events dist(ε′, ε), possibly affected

by errors.

The latter can be obtained in three main different ways, depending on the time
to which the two positions p′ and p involved refer to: (i) in GPS-based systems,
p′ is the position measured in t(ε′) and p is the position measured in t(ε); (ii)
if distance is sensed at message receival, both positions refer to t(ε′); (iii) if
distance can be sensed in every moment, then both positions may refer to t(ε).

Throughout the description of algorithms we will use the notation X(ε) to
represent a distributed value X depending on events, while Xε′(ε) will symbolize
a value depending on neighbouring relationships ε′ � ε, that is, a quantity
computed in ε with respect to a neighbour event ε′.

2.2 Self-stabilising Building Blocks

Recent works promoted an approach to engineer complex field-based coordi-
nation algorithms by combination of basic building blocks [30], capturing key
mechanisms of self-organisation such as spreading (block “G”), collection (block
“C”), time evolution (block “T”), leader election and partitioning (block “S”),
measuring centrality [7] and so on. For instance, self-organising coordination
regions can be developed by a S-G-C-G composition [17].

The most basic and versatile building block is called gradient (G block),
which provides distance estimation, creating a spanning tree and performing
broadcast operations. In particular, the potential field P (ε) of distances from a
source is a crucial input of every data aggregation routine (C block), providing
means to guide the direction of aggregation. Accurately computing distances in
a distributed and volatile scenario is a demanding task, which can be tackled
in different ways depending on the context. In spite of variations, the general
framework is that of gradient-based field computations [23,24], where local esti-
mates from the source are repetitively shared with neighbours and combined
with proximity estimates of mutual distance.

If no proximity sensors are available, the harsh hop-count measure can be
improved through statistical tools [22], obtaining continuous and adaptive dis-
tance estimates. Furthermore, even when a proximity sensor is available, reac-
tivity to input changes and network variability may be impaired by the rising
value problem4—simply, reaction to changes causing increase of distance is very
2 In reality, the communication range of a node is very irregular. As suggested by

Zhou et al. [35], such an irregular radius can be bounded, justifying the usage of a
fixed quantity.

3 Note that this quantity can be computed with reasonable accuracy even in absence
of a global clock [10].

4 Also known as the count to infinity problem in routing algorithms.

216 G. Audrito et al.

low [9]. Several solutions have been proposed to tackle this problem. Following
recent reviews of distance estimation algorithms [6,9] three solutions are shown
to always outperform basic algorithms: FLEX [12], BIS [8], and ULT [6].

FLEX is an algorithm aimed at maximising stability of values while contain-
ing the error within predictable bounds, which also addresses the rising value
problem by introducing a metric distortion. BIS, instead, exploits time infor-
mation in order to solve the rising value problem obtaining optimal single-path
reactivity to input changes, without concerns on value stability. ULT develops
on BIS by adding a stale values detector running at (faster) multi-path speed,
while addressing value stability with the addition of filters and dampers. Being
obtained by the integration of different methods, ULT is tuned by a large num-
ber of parameters, and can range to being almost identical to BIS (when filters
and dampers are disabled) to being closer to FLEX (when dampers are active).

2.3 Distributed Data Collection

Data collection (also called aggregation) is a key component of distributed
algorithms. It has been tacked in different ways depending on the application
context (like, e.g., wireless sensor networks [26,29], high-performance comput-
ing [19] and spatial computing [13]). Notably, all of these different approaches
rely on the same basic mechanisms. In data collection, distributed values are
combined together through an aggregation operator ⊕ that enjoys the following
properties:

1. commutativity : u ⊕ v = v ⊕ u;
2. associativity : u ⊕ (v ⊕ w) = (u ⊕ v) ⊕ w.

Provided that the above properties hold, the aggregation
⊕ C of the elements of

a multi-set C is well-defined (the order in which the individual elements are aggre-
gated is immaterial). Some common aggregation operators are the idempotent
operators maximum and minimum, and the arithmetic operators addition and
multiplication. Scenarios with intrinsic communication errors and input volatil-
ity (like, e.g., wireless sensor networks and spatial computing) require to consider
a further property:

3. continuity : the effect on the aggregation of a certain percentage p of errors
tends to zero as p tends to zero.

This property holds for the idempotent and arithmetic aggregation operators
cited above, however, it does not hold for other operations like, e.g., modular
sum: the modular addition of a single spurious element can fully disrupt the
outcome of the aggregation of an arbitrary big collection of elements.

In the context of an environment with proximity-based interactions, given
a commutative and associative operator, a data aggregation algorithm asyn-
chronously combines input values x(ε) from different devices into a single value
in a selected device called source (or collector). The algorithm manages the flow
of data towards the source to avoid multiple aggregation of the same values.

Resilient Distributed Collection Through Information Speed Thresholds 217

Fig. 2. A collection field in a p2p scenario that, by using single-path aggregation,
counts the number of blue agents and collects the result in the red agent. Each agent
holds a partial result of counting, based on how many “single-path flows” from blue
agents to red agent cross it. Connections are bidirectional, and aggregation flows from
smaller to greater values. (Color figure online)

This twofold prerequisite, of acyclic flows directed towards the source, is met
by relying on a given potential field P (ε), approximating a certain measure of
distance from the selected source. As long as information flows descending the
potential field, cyclic dependencies are prevented and eventual reaching of the
source is guaranteed. For each event ε, potential descent is enforced by splitting
the set of neighbours events Eε = {ε′ | ε′ � ε} according to their potential value
into the two disjoint sets:

E−
ε = {ε′ ∈ Eε | Pε′(ε) < P (ε)} and E+

ε = {ε′ ∈ Eε | Pε′(ε) > P (ε)} .

Thus, values can be received only from E+
ε and must be sent only to E−

ε . Three
main algorithms implementing the collection block have been proposed so far:
single-path, multi-path and weighted multi-path, all scaling to arbitrarily large
systems as they require constant computational resources per node.

Single-Path Aggregation. The single-path algorithm Csp ensures that infor-
mation flows through a forest in the network, by sending the whole partial aggre-
gate Csp(ε) computed during event ε to the single neighbour m(ε) = ε′ with
minimum potential Pε′ among all neighbour events in Eε. This is accomplished
by repeatedly applying the following rule:

Csp(ε) = x(ε) ⊕
⊕

ε′∈E+
ε ∧ δ(m(ε′))=δ(ε)

Csp(ε′) (1)

Equation 1 computes the partial aggregate in ε by combining together the local
input value x(ε) and the partial aggregates from direct predecessors ε′ with
higher potential for which δ(ε) is the selected device δ(m(ε′)). A screenshot of
this algorithm after convergence is reached is shown in Fig. 2.

Since data flows descending the potential as fast as possible, single-path
aggregation attains optimal reactivity to input changes in static environments.

218 G. Audrito et al.

However, in mutable environments, the message from ε to m(ε) may be lost,
disrupting communication and pruning the entire branch of the forest rooted in
ε. This phenomenon translates into poor performances, provided that values far
from the source contribute significantly to the aggregation (e.g., non-zero values
for summation, high values for minimisation, and so on).

Multi-path Aggregation. The multi-path algorithm Cmp allows information
to flow through every path compatible with the given potential field. In order
to avoid double counting, it is thus necessary to divide the partial aggregate
of an event ε equally among every event ε′ with lower potential, by iteratively
applying the following rule:

Cmp(ε) = x(ε) ⊕
⊕

ε′∈E+
ε

{Cmp(ε′) � N(ε′)} (2)

where N(ε) = |E−
ε | and � is a binary operator such that v � n means “dividing

by n”, i. e., an element that aggregated with itself n times produces the original
value v. Since information needs to be “divisible” for � to exist, two categories
of aggregation operators are supported:

1. arithmetic operations, e.g., point-wise sum and multiplication of vectors v ∈
R

n of real numbers (for which � is respectively division and root extraction);
2. idempotent operations, e.g., computation of maximum and minimum among

values v in a partially ordered set (for which � is the identity function).

Thus, theoretically, multi-path has a narrower scope than single-path. However,
the vast majority of practically occurring (continuous) aggregation operators
can be typically recast to be either arithmetic or idempotent. In particular,
idempotent operations have been used to emulate several different aggregations
through statistical tools: distinct count, sum, uniform sampling, selection of most
frequent values [26], and order statistics [34].

Since data flows through every possible path, it is unlikely for devices to be
excluded from the aggregation, thus preventing data loss. On the other hand, the
reactivity to input changes of multi-path aggregation is particularly poor. In fact,
even in static environments, values flow through every possible path including the
longest path, forcing reaction to changes to be delayed until all paths have been
exploited (in particular for idempotent operations), and resulting in a reaction
speed inversely proportional to the device density. In mutable environments,
the problem is further exacerbated by the creation of information loops, which
occur when two or more moving devices of similar potential invert their relative
potential order in consecutive rounds, causing information from a device δ to
come back to the same device, slowing down even further the reaction speed of
the algorithm, and inducing exponential overestimations in the arithmetic case.

Weighted Multi-path Aggregation. Recent works [4,5] develop on the multi-
path algorithm, by allowing partial aggregates to be divided unequally among

Resilient Distributed Collection Through Information Speed Thresholds 219

neighbours. Weights corresponding to neighbours are calculated in order to
penalise devices that are likely to lose their “receiving” status, a situation that
can happen in two cases:

1. if the “receiving” device is too close to the edge of proximity of the “sending”
device, so that it might step outside of it in the immediate future breaking
the connection;

2. if the potential of the “receiving” device is too close to the potential of
the “sending” device, so that their relative role of sender/receiver might be
switched in the immediate future, possibly creating an “information loop”
between the two devices.

Both situations are addressed by a weight function wε′(ε) = d(ε′, ε) · p(ε′, ε),
measuring how much of the information from ε should be sent to a neighbour
δ(ε′) as the product of the two corresponding factors d(ε′, ε) = R−dist(ε′, ε) and
p(ε′, ε) = |P (ε) − P (ε′)|, where R is the communication radius and dist(ε′, ε) the
distance measured between the events. Since these weights do not sum up to any
particular value, they need to be normalised by the factor N(ε) =

∑
ε′∈E−

ε
wε′(ε),

obtaining normalised weights wε′(ε)/N(ε′). The partial aggregates accumulated
by devices can then be calculated as in Cmp (see 2) with the addition of weights,
by iteratively applying the following rule:

Cwmp(ε) = x(ε) ⊕
⊕

ε′∈E+
ε

{

Cwmp(ε′) ⊗ wδ(ε)(ε′)
N(ε′)

}

(3)

where ⊗ is a binary operator such that v⊗k “extracts” a certain percentage k of a
local value v.5 In particular, if ⊕ is arithmetic (addition) then ⊗ is multiplication,
whereas if ⊕ is idempotent then ⊗ is a threshold function regulating which links
should be exploited for transmission and which should be ignored.

This algorithm has been shown to significantly outperform both the single-
path and multi-path strategies, however, it is based on heuristics hence cannot
provide correctness guarantees: in fact, it produces exponentially growing peaks
of error for arithmetic aggregations in scenarios with high mobility [5].

3 Collection by Lossless Information Speed Thresholds

In this section, we present the Lossless Information Speed Thresholds collection
algorithm (Clist). It maximises information speed under the general assumptions
presented in Sect. 2.1 and the additional assumptions on the network model given
in Sect. 3.1, with respect to the algorithms satisfying the constraints given in
Sect. 3.2.

5 We also used the notation wδ(ε
′) as alias of wε′′(ε′) where δ(ε′′) = δ.

220 G. Audrito et al.

3.1 Network Model Assumptions

As for the other summarisation algorithms, we assume a potential field P (ε) to
be available as input in each event. Given an event ε, we denote as εnext the
following event on the same device, so that ε � εnext and δ(ε) = δ(εnext). In
order for Clist to be computed, we need a minimal degree of forecasting values
in next events εnext, as stated by the following assumptions.

– Sure connection. For each event ε and neighbour ε′, there is a Boolean value
surelyConnectedε′(ε) which is true iff ε is sure that its messages will be
received by the next event ε′

next on δ(ε′), and is true for at least one neigh-
bour event ε′. Such value can be computed using an upper bound on distance
dist(ε′, ε) together with a lower bound on connection radius R and possibly
an upper bound V on device movement speed, as in the following:

maxDistNow(ε′, ε) = dist(ε′, ε) + kV lag(ε′, ε) (4)

surelyConnectedε′(ε) ⇔ maxDistNow(ε′, ε) ≤ R (5)

where k is 0 if dist refers to t(ε), 1 if it refers to both t(ε′) and t(ε) (GPS-
based), 2 if it refers to t(ε′) (see Sect. 2.1).

– Scheduled time. For each event ε, we assume that an upper bound tu(ε) to
t(εnext) is known. Notice that this is easily satisfied with high accuracy, as
activations need to be scheduled and do not happen randomly.

– Potential evolution. For each event ε, we assume that an upper bound Pu(ε) to
P (εnext) is known. For instance, given the upper bound V on device movement
speed, we may set Pu(ε) = P (ε)+V ·(tu(ε)−t(ε)). This bound may need to be
corrected for the error on potential computations, and could be significantly
improved if the movement direction is known.

3.2 Algorithmic Constraints

Under the previous assumptions, we focus on collection algorithms satisfying the
following constraints.

– Lossless. A collection algorithm is lossless if it ensures that the input value
x(ε) in any event participates in the outcome C(ε′) of the algorithm for at
least one event ε′ on the collection source (that is, such that P (ε′) = 0).

– Scalable. We say that a distributed algorithm is scalable if it uses O(1) message
size and O(N) computation time and space in every event ε, where N is the
number of neighbours N = |Eε|.

Resilient Distributed Collection Through Information Speed Thresholds 221

3.3 Idempotent Aggregation

In the idempotent case data duplication is not an issue, and thus data loss
can be easily avoided by resorting to a multi-path algorithm. However, as we
will see in Sect. 4.1, plain multi-path is slow in recovering to the point of being
effectively equivalent to a gossip algorithm [20]. We thus propose an algorithm
that adopts intermediate strategy (as in previous heuristic-based attempts [4,5]),
which transmits data on a selected set of links, maximising the speed of infor-
mation flow v (measured as units of potential descended over time) under the
assumptions on the network model illustrated in Sect. 3.1. In fact, by discarding
for every starting event ε the longer paths towards the source and preserving the
shortest ones, we ensure that old information is quickly discarded, thus allowing
the algorithm to promptly adjust to input changes.

Notice that it is not possible for a scalable algorithm to select paths for their
overall information speed v, since partial results would not be locally computable
in intermediate events. Given the candidate values i reaching a same event with
a potential descended of ΔPi and a time elapsed of Δti, we need to select a
constant-sized subset of them, without knowing the additional time Δt needed
to reach the source, and thus the overall speed that each candidate may achieve.
Thus, we indirectly select paths by imposing speed constraints in each one of
their edges.

Given a potential field P (ε) of distances from the source, we compute a
threshold speed θ(ε) for each event ε, so that a message ε � ε′ is discarded iff:

v(ε, ε′) =
P (ε) − P (ε′)
t(ε′) − t(ε)

< θ(ε) (6)

that is, the information from ε to ε′ is descending the potential at a speed lower
than the threshold θ(ε) computed in ε. We allow these thresholds to depend on
the event, as a fixed global threshold can easily induce loss of data for large
parts of the network. Furthermore, we compute these thresholds as the maximal
(in order to prune the most paths possible) granting that at least one neighbour
will not discard the message (lossless algorithm).

In order to compute these thresholds efficiently and effectively, we base on the
network model assumptions in Sect. 3.1. For each event ε, we need to prevent at
least one of the neighbour events ε′ � ε for which surelyConnectedε′(ε) is true
from discarding the message. We then use Pu(·) and tu(·) to predict a lower
bound on the speed of the information flowing from ε to ε′

next:

v(ε, ε′
next) =

P (ε) − P (ε′
next)

t(ε′
next) − t(ε)

≥ P (ε) − Pu(ε′)
tu(ε′) − t(ε)

= vwst
ε′ (ε) (7)

Thus, the maximum threshold ensuring no data loss is the following:6

θ(ε) = max
{
vwst

ε′ (ε) : surelyConnectedε′(ε) = 	}
(8)

6 If no neighbour satisfies surelyConnectedε′(ε), the no-data-loss requirement is not
satisfiable and the threshold is set to −∞, thus falling back to a gossip algorithm.

222 G. Audrito et al.

The partial aggregates accumulated by devices can then be calculated by itera-
tively applying the following rule:

Clist(ε) = x(ε) ⊕
⊕

ε′∈Eε

{

Clist(ε′) : v(ε′, ε) =
P (ε) − P (ε′)
t(ε) − t(ε′)

≥ θ(ε′)
}

(9)

The algorithm Clist, globally defined by Eqs. (7) to (9), computes the partial
aggregate associated with event ε by combining together the local value x(ε) and
the partial aggregates from direct predecessors ε′ for which the true information
speed v(ε′, ε) was above the threshold computed in the previous events θ(ε′).
Although every event computes the threshold by maximising the expected future
information speed, and thus choosing a neighbour that theoretically guarantees
the best speed, Clist is not a single-path algorithm: messages ε � ε′

next can flow
at speed greater than the estimated vwst

ε′ (ε) (defined in Eq. (7)) and thus pass
the threshold even though the threshold was not designed for them.

According to the above explanation, the following property holds.

Property 1 (Clist local optimality among lossless collection algorithms). Let θ(ε)
be such that using information available in an event ε it is possible to guarantee
a lowest speed of information exiting ε of at least θ(ε) without data loss. Then
the lowest speed of information exiting ε for Clist is at least θ(ε).

3.4 Arithmetic Aggregation

In the arithmetic case, the situation is made more challenging by the necessity of
avoiding data duplication, which can in this case lead to exponentially increasing
overestimates. In order to avoid it, we modify Clist to become a purely single-path
algorithm,7 although the main structure remains the same. Based on Eqs. (6) to
(8), we choose a selected neighbour m(ε) maximising vwst

m(ε)(ε):
8

m(ε) ∈ {
ε′ ∈ Eε : surelyConnectedε′(ε) = 	 ∧ vwst

ε′ (ε) = θ(ε)
}

(10)

Partial aggregates can then be accumulated as in Csp (see 1):

Clist(ε) = x(ε) ⊕
⊕

ε′∈Eε∧ δ(m(ε′))=δ(ε)

Clist(ε′) (11)

Thus, the Clist algorithm for arithmetic aggregation computes partial aggregates
by combining together the local value x(ε) and the partial aggregates from direct
predecessors ε′ for which δ(ε) was the selected device δ(m(ε′)).

7 We also need to guarantee that a message from an event ε is not able to reach more
than one event on a same device, that is, messages are not retained across rounds.

8 If no neighbour satisfies surelyConnectedε′(ε), the no-data-loss requirement is not
satisfiable and we select the neighbour m(ε) minimising the probability of data loss.

Resilient Distributed Collection Through Information Speed Thresholds 223

4 Experimental Evaluation

We compared the new algorithm against reference single-path, multi-path and
weighted multi-path implementations (sp [30], mp [30], wmp [5]). The algorithms
were implemented in Protelis [28], which is an implementation of the field cal-
culus [11] universal language for field-based computations [3]. In particular, the
implementation uses the recently proposed share operator [2].

The potential estimates guiding aggregation were computed using the state-
of-the-art algorithm BIS introduced in [8] (see Sect. 2.2) ensuring theoretically
optimal recovery speed. We also tested the usage of an exponential back-off filter
to stabilise the collection results: however, we report in the following graphs only
its usage for list on arithmetic aggregation, since it was the only case where it
had a positive effect. For both the idempotent and arithmetic case, the same
archetypal scenarios were selected according to the guidelines developed in [9].
The scenarios consisted of a variable number of devices with almost identical
computation rate (1% systematic and accidental error) and unit disc communi-
cation model, randomly distributed in a circular area with a source device on
the right end of the circle at simulation start, then discontinuously moved to
the left end. Devices were moving at constant speed through randomly selected
waypoints within the area. The scenarios were tested varying the three funda-
mental characteristics of such a network (all normalised in order to abstract from
a specific communication radius or computation rate):

Hop diameter: the diameter of the circular area where devices are randomly
displaced, measured as the number of communication radiuses (hops) con-
tained. Values from 2 to 16 were considered (with a step of 1), using 10 when
evaluating the other characteristics.

Neighbourhood size: the average number of devices in a communication radius
area. Values from 5 to 40 were considered (with a step of 2.5), using 25 when
evaluating the other characteristics.

Device speed: the movement speed of devices, measured as a percentage of
the communication radius area covered during one computation round. Val-
ues from 0 to 50% were considered (with a step of 2.5%), using 25% when
evaluating the other characteristics.

For each of the resulting 49 different scenarios, 10 runs with different random
seeds were performed, averaging the results.9 The default values (10 hops, 25
neighbours, 25% speed) were chosen after a broader search in the parameter
space, as they were good representatives of the behaviour for most considered
parameter values. The simulations were obtained with Alchemist as simulator
[27] and the supercomputer OCCAM [1] as platform.10

9 As the variance between the runs for arithmetic aggregation was significantly high,
data was aggregated with median instead of mean.

10 The actual code experiment is available at https://bitbucket.org/gaudrito/
experiment-optimal-collection.

https://bitbucket.org/gaudrito/experiment-optimal-collection
https://bitbucket.org/gaudrito/experiment-optimal-collection

224 G. Audrito et al.

4.1 Idempotent Aggregation

We tested collection for idempotent operators by setting ⊕ = min and values to
be aggregated chosen to make the aggregation as difficult as possible, showcasing
every possible source of error. In fact, a difficult idempotent aggregation problem
requires both obsolete and distant values to be able to significantly contribute to
the aggregation. If obsolete values have a negligible impact, multi-path collection
is optimal as it does not need to react to environmental changes. If distant values
have a negligible impact, single-path collection is optimal since even a small
coverage of the network may be sufficient.

In order to maximise the impact of distant values, we selected a set X of
devices at the opposite border of the circular area with respect to the active
source. Devices in X transmit a changing value which will be the result of the
aggregation, while devices outside X have a fixed high value (set to 400) which is
never the minimum. In order to showcase the impact of obsolete data, the values
transmitted in X were changing in time according to the following sinusoidal-like
function (see Fig. 3 for a graphical depiction):

x(ε) = min(max(A cos(2π(min(t(ε), 300) + φ)/T),−M),M)

time

m
in

50 100 150 200 250 300 350

-200

-100

0

100

200

300

400

time

m
in

50 100 150 200 250 300 350

-200

-100

0

100

200

300

400

speed

m
in

er
r

0 5 10 15 20 25 30 35 40 45 50

50

100

150

200

hops

m
in

er
r

2 4 6 8 10 12 14 16

50

100

150

200

250

neigh

m
in

er
r

5 10 15 20 25 30 35 40

50

100

150

200

250

300

sp mp wmp list ideal

Fig. 3. Idempotent aggregation through different algorithms (sp=single-path,
mp=multi-path, wmp=weighted multi-path, list=lossless information speed thresholds).
Aggregation results are shown for a single run (top right) and averaged among 10 runs
(top left) and hops = 10, neigh = 25, speed = 25. Aggregation error is shown for
varying speed, hops and neigh, averaged among 10 runs and 400 simulated rounds
(bottom).

where t(ε) is the time elapsed from the start of the simulation, A = 300 is the
amplitude, T = 250 is the period, φ = −25 is the phase, with values capped to

Resilient Distributed Collection Through Information Speed Thresholds 225

stay within ±M = ±220. Furthermore, at the time t = 300 of source switch, x(ε)
becomes a constant equals to 220. This allows to see behaviour in all possible
conditions: after a disruption, under steady inputs, and when input rises or
drops.

Figure 3 summarises the evaluation results. Single-path proves to be unable
to properly collect values from X in most situations except for some short time
intervals, thus showing extreme variability in results, except when the number
of hops is small, neighbourhood sizes are high and devices speeds are low. Multi-
path produces very good results until t = 200, but is unable to recover when
the input rises (not even after a source change), in fact behaving as a gossip
algorithm, except for small networks with low density and speeds. Weighted
multi-path performs quite well in all configurations, but is outperformed by list
in all cases except for very high speeds (>40%). At such high speeds, avoiding
information losses forces list to choose a pessimistically low threshold, that could
be significantly higher while keeping a low (but non-zero) probability of loss.
Finally, notice that the source switch has a minimal impact on all algorithms for
idempotent aggregations.

time

su
m

50 100 150 200 250 300 350
100

101

102

103

104

105

106

time

su
m

50 100 150 200 250 300 350
100

101

102

103

104

105

106

speed

su
m

er
r

0 5 10 15 20 25 30 35 40 45 50

101.5

102

102.5

103

103.5

104

104.5

hops

su
m

er
r

2 4 6 8 10 12 14 16
100

101

102

103

104

neigh

su
m

er
r

5 10 15 20 25 30 35 40

500

1000

1500

2000

sp mp wmp list list (filtered) ideal

Fig. 4. Arithmetic aggregation through different algorithms (sp=single-path,
mp=multi-path, wmp=weighted multi-path, list=lossless information speed thresholds
with/without filter). Aggregation results are shown for a single run (top right) and
averaged among 10 runs (top left) and hops = 10, neigh = 25, speed = 25. Aggrega-
tion error is shown for varying speed, hops and neigh, averaged among 10 runs and
400 simulated rounds (bottom).

226 G. Audrito et al.

4.2 Arithmetic Aggregation

We tested collection for arithmetic operators by setting ⊕ = + and values
x(ε) = 1 for each device. This choice amounts to counting the total number
of devices, which is a commonly used routine and a paradigmatic example of
arithmetic aggregation. We run 10 instances of each scenario and computed
median results, as the relative standard errors between runs were significantly
high: Fig. 4 summarises the evaluation results.

The single-path (sp) and multi-path (mp) algorithms score the worst results.
Single-path underestimates the ideal value by a factor of 10 at all speeds above
5%, error that gets worse as the total number of devices increases (both by hops
or neigh), showing the existence of an upper bound to the number of devices that
are able to reach the source. Conversely, multi-path significantly overestimates
the ideal value with errors that grow approximately linearly with the number of
hops or neighbours, and exponentially with speed. Weighted multi-path, shows
a behaviour similar to multi-path but with a lower error: in particular, unlike
mp, the error decreases as the number of neighbours increases, showing better
performance in high density scenarios. Finally, list scores the best performance
in every scenario, only slightly underestimating the ideal value, with an error
that tends to zero as the number of neighbors increases, and is reasonably small
(below 10%) even for speeds around 30%. Unlike for the other algorithms, adding
an exponential back-off filter further improves the performance.

Notice that the source switch at t = 300 has the effect of disrupting the aggre-
gation process for a short period of time, during which the algorithms show some
positive (for multi-path based algorithms mp, wmp) or negative peaks (for single-
path based algorithms sp, list). The recovery time after the switch is similar
across algorithm, although the positive peaks are larger in size (overestimating
the value by about 3 orders of magnitude). As shown in Fig. 4 (top right), mp
and wmp are always highly unstable, with peak overestimations of 5×; while sp
and list have a more contained (while still significant) degree of instability.

5 Contributions and Future Work

In this paper, we presented two new algorithms tackling the established problem
of data summarisation, both for idempotent and arithmetic operations. These
algorithms are designed to maximise the speed of information flow (which trans-
lates into reactiveness to input changes) under the constraint of no data loss. We
evaluated these algorithms in archetypal scenarios of maximal hardness, varying
all fundamental (dimensionless) characteristics of a distributed network: diam-
eter in hops, average number of neighbours, and node speed (relative to the
ratio between communication radius and computation period). Overall, these
algorithms significantly outperform the state-of-the-art, obtaining sound results
even in scenarios with high mobility.

However, there is still some margin of future improvement. In very high
mobility settings, the no-data-loss constraint forces our algorithms to an overly
pessimistic behaviour, thus losing performance with respect to heuristic (lossy)

Resilient Distributed Collection Through Information Speed Thresholds 227

techniques. In this case, future algorithms enforcing a relaxed constraint of a
maximum expected percentage of data loss may allow for a more effective choice
of the thresholds. Furthermore, our algorithms rely on a rough prediction of
quantities (time and potential) across rounds: future work may directly address
the prediction step, as more accurate predictions will directly translate into
higher information speed thresholds, and thus reactiveness.

References

1. Aldinucci, M., Bagnasco, S., Lusso, S., Pasteris, P., Vallero, S., Rabellino, S.:
The open computing cluster for advanced data manipulation (OCCAM). In: The
22nd International Conference on Computing in High Energy and Nuclear Physics
(CHEP), San Francisco, USA (2016)

2. Audrito, G., Beal, J., Damiani, F., Pianini, D., Viroli, M.: The share operator for
field-based coordination. In: Riis Nielson, H., Tuosto, E. (eds.) COORDINATION
2019. LNCS, vol. 11533, pp. 54–71. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-22397-7 4

3. Audrito, G., Beal, J., Damiani, F., Viroli, M.: Space-time universality of field
calculus. In: Di Marzo Serugendo, G., Loreti, M. (eds.) Coordination Models and
Languages. COORDINATION 2018. LNCS, vol 10852, pp. 1–20 Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-92408-3 1

4. Audrito, G., Bergamini, S.: Resilient blocks for summarising distributed data. In:
1st Workshop on Architectures, Languages and Paradigms for IoT (ALP4IoT), pp.
23–26 (2017). https://doi.org/10.4204/EPTCS.264.3

5. Audrito, G., Bergamini, S., Damiani, F., Viroli, M.: Effective collective summari-
sation of distributed data in mobile multi-agent systems. In: 18th International
Conference on Autonomous Agents and MultiAgent Systems (AAMAS), pp. 1618–
1626. IFAAMAS (2019). https://doi.org/10.5555/3306127.3331882

6. Audrito, G., Casadei, R., Damiani, F., Viroli, M.: Compositional blocks for optimal
self-healing gradients. In: Self-Adaptive and Self-Organizing Systems (SASO), pp.
91–100. IEEE (2017). https://doi.org/10.1109/SASO.2017.18

7. Audrito, G., Damiani, F., Viroli, M.: Aggregate graph statistics. In: 1st Workshop
on Architectures, Languages and Paradigms for IoT (ALP4IoT), pp. 18–22 (2017).
https://doi.org/10.4204/EPTCS.264.2

8. Audrito, G., Damiani, F., Viroli, M.: Optimally-self-healing distributed gradient
structures through bounded information speed. In: Jacquet, J.-M., Massink, M.
(eds.) COORDINATION 2017. LNCS, vol. 10319, pp. 59–77. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-59746-1 4

9. Audrito, G., Damiani, F., Viroli, M.: Optimal single-path information propagation
in gradient-based algorithms. Sci. Comput. Program. 166, 146–166 (2018). https://
doi.org/10.1016/j.scico.2018.06.002

10. Audrito, G., Damiani, F., Viroli, M., Bini, E.: Distributed real-time shortest-
paths computations with the field calculus. In: IEEE Real-Time Systems Sym-
posium (RTSS), pp. 23–34. IEEE Computer Society (2018). https://doi.org/10.
1109/RTSS.2018.00013

11. Audrito, G., Viroli, M., Damiani, F., Pianini, D., Beal, J.: A higher-order calculus
of computational fields. ACM Trans. Comput. Log. 20(1), 5:1–5:55 (2019). https://
doi.org/10.1145/3285956

https://doi.org/10.1007/978-3-030-22397-7_4
https://doi.org/10.1007/978-3-030-22397-7_4
https://doi.org/10.1007/978-3-319-92408-3_1
https://doi.org/10.4204/EPTCS.264.3
https://doi.org/10.5555/3306127.3331882
https://doi.org/10.1109/SASO.2017.18
https://doi.org/10.4204/EPTCS.264.2
https://doi.org/10.1007/978-3-319-59746-1_4
https://doi.org/10.1016/j.scico.2018.06.002
https://doi.org/10.1016/j.scico.2018.06.002
https://doi.org/10.1109/RTSS.2018.00013
https://doi.org/10.1109/RTSS.2018.00013
https://doi.org/10.1145/3285956
https://doi.org/10.1145/3285956

228 G. Audrito et al.

12. Beal, J.: Flexible self-healing gradients. In: ACM Symposium on Applied Com-
puting (SAC), pp. 1197–1201. SAC 2009. ACM (2009). https://doi.org/10.1145/
1529282.1529550

13. Beal, J., Michel, O., Schultz, U.P.: Spatial computing: distributed systems that
take advantage of our geometric world. ACM Trans. Auton. Adapt. Syst. 6(2),
11:1–11:3 (2011). https://doi.org/10.1145/1968513.1968514

14. Beal, J., Pianini, D., Viroli, M.: Aggregate programming for the Internet of Things.
IEEE Comput. 48(9), 22–30 (2015). https://doi.org/10.1109/MC.2015.261

15. Beal, J., Usbeck, K., Loyall, J., Rowe, M., Metzler, J.: Adaptive opportunistic
airborne sensor sharing. ACM Trans. Auton. Adapt. Syst. 13(1), 61–629 (2018).
https://doi.org/10.1145/3179994

16. Bicocchi, N., Mamei, M., Zambonelli, F.: Self-organizing virtual macro sensors.
ACM Trans. Auton. Adapt. Syst. 7(1), 21–228 (2012). https://doi.org/10.1145/
2168260.2168262

17. Casadei, R., Pianini, D., Viroli, M., Natali, A.: Self-organising coordination regions:
a pattern for edge computing. In: Riis Nielson, H., Tuosto, E. (eds.) COORDINA-
TION 2019. LNCS, vol. 11533, pp. 182–199. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-22397-7 11

18. Coutaz, J., Crowley, J.L., Dobson, S., Garlan, D.: Context is key. ACM Commun.
48(3), 49–53 (2005). https://doi.org/10.1145/1047671.1047703

19. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
ACM Commun. 51(1), 107–113 (2008). https://doi.org/10.1145/1327452.1327492

20. Jelasity, M., Montresor, A., Babaoglu, O.: Gossip-based aggregation in large
dynamic networks. ACM Trans. Comput. Syst. 23(3), 219–252 (2005). https://
doi.org/10.1145/1082469.1082470

21. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
ACM Commun. 21(7), 558–565 (1978). https://doi.org/10.1145/359545.359563

22. Liu, Q., Pruteanu, A., Dulman, S.: Gradient-based distance estimation for spa-
tial computers. Comput. J. 56(12), 1469–1499 (2013). https://doi.org/10.1093/
comjnl/bxt124

23. Lluch-Lafuente, A., Loreti, M., Montanari, U.: Asynchronous distributed execution
of fixpoint-based computational fields. Log. Methods Comput. Sci. 13(1) (2017).
https://doi.org/10.23638/LMCS-13(1:13)2017

24. Mamei, M., Zambonelli, F., Leonardi, L.: Co-fields: a physically inspired approach
to motion coordination. IEEE Pervasive Comput. 3(2), 52–61 (2004). https://doi.
org/10.1109/MPRV.2004.1316820

25. Moustafa, H., Zhang, Y.: Vehicular Networks: Techniques, Standards, and Appli-
cations, 1st edn. Auerbach Publications, Boston (2009)

26. Nath, S., Gibbons, P.B., Seshan, S., Anderson, Z.R.: Synopsis diffusion for robust
aggregation in sensor networks. TOSN 4(2), 71–740 (2008). https://doi.org/10.
1145/1340771.1340773

27. Pianini, D., Montagna, S., Viroli, M.: Chemical-oriented simulation of computa-
tional systems with Alchemist. J. Simul. 7(3), 202–215 (2013). https://doi.org/10.
1057/jos.2012.27

28. Pianini, D., Viroli, M., Beal, J.: Protelis: practical aggregate programming. In:
ACM Symposium on Applied Computing (SAC), pp. 1846–1853 (2015). https://
doi.org/10.1145/2695664.2695913

29. Talele, A.K., Patil, S.G., Chopade, N.B.: A survey on data routing and aggregation
techniques for wireless sensor networks. In: International Conference on Pervasive
Computing (ICPC), pp. 1–5. IEEE (2015)

https://doi.org/10.1145/1529282.1529550
https://doi.org/10.1145/1529282.1529550
https://doi.org/10.1145/1968513.1968514
https://doi.org/10.1109/MC.2015.261
https://doi.org/10.1145/3179994
https://doi.org/10.1145/2168260.2168262
https://doi.org/10.1145/2168260.2168262
https://doi.org/10.1007/978-3-030-22397-7_11
https://doi.org/10.1007/978-3-030-22397-7_11
https://doi.org/10.1145/1047671.1047703
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/1082469.1082470
https://doi.org/10.1145/1082469.1082470
https://doi.org/10.1145/359545.359563
https://doi.org/10.1093/comjnl/bxt124
https://doi.org/10.1093/comjnl/bxt124
https://doi.org/10.23638/LMCS-13(1:13)2017
https://doi.org/10.1109/MPRV.2004.1316820
https://doi.org/10.1109/MPRV.2004.1316820
https://doi.org/10.1145/1340771.1340773
https://doi.org/10.1145/1340771.1340773
https://doi.org/10.1057/jos.2012.27
https://doi.org/10.1057/jos.2012.27
https://doi.org/10.1145/2695664.2695913
https://doi.org/10.1145/2695664.2695913

Resilient Distributed Collection Through Information Speed Thresholds 229

30. Viroli, M., Audrito, G., Beal, J., Damiani, F., Pianini, D.: Engineering resilient col-
lective adaptive systems by self-stabilisation. ACM Trans. Model. Comput. Simul.
28(2), 16:1–16:28 (2018). https://doi.org/10.1145/3177774

31. Viroli, M., Beal, J., Damiani, F., Audrito, G., Casadei, R., Pianini, D.: From dis-
tributed coordination to field calculus and aggregate computing. J. Log. Alge-
braic Methods Program. 109, 100486 (2019). https://doi.org/10.1016/j.jlamp.
2019.100486

32. Viroli, M., Damiani, F.: A calculus of self-stabilising computational fields. In:
Kühn, E., Pugliese, R. (eds.) COORDINATION 2014. LNCS, vol. 8459, pp. 163–
178. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43376-8 11

33. Viroli, M., Pianini, D., Ricci, A., Croatti, A.: Aggregate plans for multiagent sys-
tems. Int. J. Agent-Oriented Softw. Eng. 4(5), 336–365 (2017). https://doi.org/10.
1504/IJAOSE.2017.087638

34. Zhang, Y., Lin, X., Yuan, Y., Kitsuregawa, M., Zhou, X., Yu, J.X.: Duplicate-
insensitive order statistics computation over data streams. IEEE Trans. Knowl.
Data Eng. 22(4), 493–507 (2010). https://doi.org/10.1109/TKDE.2009.68

35. Zhou, G., He, T., Krishnamurthy, S., Stankovic, J.A.: Impact of radio irregularity
on wireless sensor networks. In: 2nd International Conference on Mobile Systems,
Applications, and Services, MobiSys 2004, pp. 125–138. ACM, New York (2004).
https://doi.org/10.1145/990064.990081

https://doi.org/10.1145/3177774
https://doi.org/10.1016/j.jlamp.2019.100486
https://doi.org/10.1016/j.jlamp.2019.100486
https://doi.org/10.1007/978-3-662-43376-8_11
https://doi.org/10.1504/IJAOSE.2017.087638
https://doi.org/10.1504/IJAOSE.2017.087638
https://doi.org/10.1109/TKDE.2009.68
https://doi.org/10.1145/990064.990081

Refined Mean Field Analysis: The Gossip
Shuffle Protocol Revisited

Nicolas Gast1, Diego Latella2, and Mieke Massink2(B)

1 INRIA, University Grenoble Alpes, Grenoble, France
2 Consiglio Nazionale delle Ricerche, Istituto di Scienza e Tecnologie

dell’Informazione ‘A. Faedo’, CNR, Pisa, Italy
mieke.massink@isti.cnr.it

Abstract. Gossip protocols form the basis of many smart collective
adaptive systems. They are a class of fully decentralised, simple but
robust protocols for the distribution of information throughout large
scale networks with hundreds or thousands of nodes. Mean field analysis
methods have made it possible to approximate and analyse performance
aspects of such large scale protocols in an efficient way that is indepen-
dent of the number of nodes in the network. Taking the gossip shuffle
protocol as a benchmark, we evaluate a recently developed refined mean
field approach. We illustrate the gain in accuracy this can provide for the
analysis of medium size models analysing two key performance measures:
replication and coverage. We also show that refined mean field analysis
requires special attention to correctly capture the coordination aspects
of the gossip shuffle protocol.

Keywords: Mean field · Collective adaptive systems · Discrete time
Markov chains · Gossip protocols · Self-organisation

1 Introduction and Related Work

Many collective adaptive systems rely on the decentralised distribution of infor-
mation. Gossip protocols have been proposed as a paradigm that can provide
a stable, scalable and reliable method for such decentralised spreading of infor-
mation [2–4,6,8,9,16,21,22]. The basic mechanism of information spreading fol-
lowed by a gossip shuffle protocol is that nodes exchange part of the data they
keep in their cache with randomly selected peers in pairwise synchronous com-
munications on a regular basis.

Interesting performance aspects of such gossip protocols are the replication
of a newly inserted fresh data element in a network and the dynamics of network
coverage. Replication of a data element occurs when nodes exchange the data
element in pairwise communication. Network coverage concerns the fraction of

This research has been partially supported by the Italian MIUR project PRIN
2017FTXR7S “IT-MaTTerS” (Methods and Tools for Trustworthy Smart Systems).

c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
S. Bliudze and L. Bocchi (Eds.): COORDINATION 2020, LNCS 12134, pp. 230–239, 2020.
https://doi.org/10.1007/978-3-030-50029-0_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50029-0_15&domain=pdf
https://doi.org/10.1007/978-3-030-50029-0_15

The Gossip Shuffle Protocol Revisited 231

the population of network nodes that have “seen” the data element since its
introduction into the network, even if they may no longer have it in their cache
due to further exchanges with other peers.

Traditionally, these performance measures have been studied based on simula-
tion models. However, when large populations of nodes are involved, such simula-
tions may be very resource consuming. Recently these protocols have been studied
using classic mean field approximation techniques [1,2]. In that classic approach
the full stochastic model of a gossip network, i.e. one in which each node is mod-
elled individually, is replaced by a much simpler model in which the pairwise syn-
chronous interactions between individual nodes are replaced by the average effect
that all those interactions have on a single node and then the model of this single
node is studied in the context of the overall average network behaviour. Of course,
the average effects may change over time as nodes change their local states. This is
taken into account in a mean field model by letting the probabilities of interactions
depend on the fraction of nodes that are in a particular local state. Compared to
traditional simulation methods, mean field approximation techniques scale very
well to large populations because these techniques are independent of the exact
population size1 allowing analysis that is orders of magnitudes faster than discrete
event simulation. This method of derivation of a mean field model from a large pop-
ulation of interacting objects relies on what is known as the assumption of “prop-
agation of chaos” (also called “statistical independence” or “decoupling of joint
probabilities”) [7,10,17,19]. The assumption is based on the fact that when the
number of interacting nodes becomes very large, their interactions tend to behave
as if they were statistically independent.

In this paper we revisit an analysis of the gossip shuffle protocol by Bahkshi
et al. in [1,2,4] by using a refined mean field approximation for discrete time
population models that we developed in [12,13], and which was in turn inspired
by an earlier result for continuous time population models presented in [11].

Contributions. The main contribution of this short paper (full version in [14]) is
a novel benchmark (clock-synchronous) DTMC population model of the gossip
shuffle protocol analysed using refined mean field analysis [12,13]. In particular:

– We show that, by using the refined mean field, a more accurate approximation
can be obtained, compared to classical mean field approximation, for medium
size populations for this gossip protocol, but that this requires a novel model
that reflects the synchronisation effects of the pairwise interaction of the
original protocol.

– The refined mean field results we obtained are very close both to those of
independent Java based simulation from the literature in [2] (taken as “ground
truth” for comparison with our results) and to those of the event simulation
of the model itself, but several orders of magnitude faster and independent of
the system size.

1 As long as this size is large enough to obtain a sufficiently accurate approximation.
The computational complexity of these techniques do depend on the number of local
states of an object in a population.

232 N. Gast et al.

Like classic mean field approaches, the refined approach is also highly scalable
and computationally non-intensive. Therefore it is an interesting candidate for
being integrated with other analysis approaches such as (on-the-fly) mean field
model checking [18], which is planned in future work. The current study aims
at providing further insight in the feasibility of applying the refined mean field
approach, that implies the use of symbolic differentiation, on larger benchmark
examples and in the possible complications of such an analysis that need to be
taken into consideration.

2 Benchmark Gossip Shuffle Protocol

We consider the gossip shuffle protocol described in [1,2,15]. This particular
version has been extensively studied by Bahkshi et al., leading to an analytical
model of the gossip protocol [3], a classical mean field model [2] and a Java
implementation2 of a simulator for the protocol [1,2], which makes it a very
suitable candidate of a real-world application that allows for the comparison
of our results with those available in the literature. Figure 1 recalls the pseudo
code of a generic shuffle protocol (adapted from [1]). Further details can be found
in [1,2].

while true do
wait (Δt time units)
B := randomPeer()
sA := itemsToSend(cA);
send sA to B;

sB := receive(·);
cA := itemKeep(cA\(sA\sB), sB\cA);

(a) An active node A

while true do

sA := receive(·);
sB := itemsToSend(cB);
send sB to sender(sA);
cB := itemKeep(cB\(sB\sA), sA\cB);

(b) A passive contacted node B

Fig. 1. Pseudo code of a generic shuffle protocol (adapted from [1]). cA and sA denote
the cache and selection of active node A. Similarly, cB and sB denote those of passive
node B. Δt = Gmax . The operation ‘itemsToSend(ci)’ selects the items to be sent from
the cache ci. The operation ‘itemKeep(c, s)’ in node A decides which items to keep
in the cache (c) removing from the cache those selected for sending (sA) except those
that where received from B (sB), and adding to those the elements from sB that were
not yet in the cache of A. Similarly for the operation in node B.

Two main key measures that are of interest for this protocol are the transient
aspects of the replication of a newly introduced element in the network and that
of the coverage of the network, i.e. the fraction of network nodes that have seen

2 We thank Rena Bahkshi for sharing her Java simulator source code with us.

The Gossip Shuffle Protocol Revisited 233

the new data element when time is passing. These measures depend on a num-
ber of characteristics of the network. In the following we use N to denote the
size of the network, i.e. the number of gossiping nodes, n to denote the number
of different data items in the network, c to denote the size of the cache and s
to denote the size of the selected items from the cache to be exchanged with
a neighbour. In the context of this work, and for comparison with the results
presented in [1], the network is assumed to be fully connected. We consider a dis-
crete time variant of the protocol with a maximal delay between two subsequent
active data-exchanges of a node denoted by Gmax .

3 Background

In the sequel we use theoretical results on discrete time mean field approximation
[7,12,19]. We briefly recall the notation and main results in the following. We
consider a population model of a system composed of 0 < N ∈ IN identical
interacting objects, i.e. a (model of a) system of size N . We assume that the
set {0, . . . , n − 1} of local states of each object is finite; we refer to [12] for a
discussion on how to deal with infinite dimensional models. Time is discrete and
the behaviour of the system is characterised by a (time homogeneous) discrete
time Markov chain (DTMC) X(N)(t) = (X(N)

1 (t), . . . , X(N)
N (t)), where X

(N)
i (t)

is the state of object i at time t, for i = 1, . . . , N .
The occupancy measure vector at time t of the model is the row-vector DTMC

M (N)(t) = (M (N)
0 (t), . . . ,M (N)

n−1(t)) where, for j = 0, . . . , n − 1, the stochastic
variable M

(N)
j (t) denotes the fraction of objects in state j at time t, over the

total population of N objects:

M
(N)
j (t) =

1
N

N∑

i=1

1{X(N)
i (t)=j}

and 1{x=j} is equal to 1 if x = j and 0 otherwise. At each time step t ∈ IN each
object performs a local transition, possibly changing its state. The transitions
of any two objects are assumed to be independent from each other, while the
transition probabilities of an object may depend also on M(t), thus, for large
N , the probabilistic behaviour of an object is characterised by the one-step
transition probability n × n matrix K(m), where Kij(m) is the probability for
the object to jump from state i to state j when the occupancy measure vector is
m ∈ Un, the unit simplex of IRn

≥0, that is, Un = {m ∈ [0, 1]n | ∑n
i=1 mi = 1}. In

this paper, for simplicity, we assume K(m) to be a continuous function of m that
does not depend on N . In the sequel, for reasons of presentation, we provide a
graphical specification of the relevant models. The computation of matrix K(m)
from such a model specification is straightforward.

3.1 Discrete Time Classical Mean Field Approximation

Below we recall Theorem 4.1 of [19] on classic mean field approximation, under
the simplifying assumptions mentioned above:

234 N. Gast et al.

Theorem 4.1 of [19] (Convergence to Mean Field). Assume that the initial
occupancy measure M (N)(0) converges almost surely to the deterministic limit
µ(0). Define µ(t) iteratively by (for t ≥ 0):

µ(t + 1) = µ(t)K(µ(t)). (1)

Then for any fixed time t, almost surely, limN→∞ M (N)(t) = µ(t).

The above result thus allows one to use, for large N , a deterministic approx-
imation µ of the average behaviour of a discrete population model.

3.2 Discrete Time Refined Mean Field Approximation

The following corollary illustrates the relationship between the refined mean field
result and the classic convergence theorem:

Corollary 1(i) of [12] Under the assumptions of Theorem 1 of [12], it holds
that for any coordinate i and any time-step t ∈ IN

E

[
M

(N)
i (t)

]
= µi(t) +

Vi(t)
N

+ o

(
1
N

)
.

In other words, the expected value of the fraction of the objects in local state
i of the full stochastic model with population size N at time t, is equal to the
classic limit mean field value µi(t) plus a factor Vi(t), divided by the population
size N plus a residual amount of order o

(
1
N

)
. Vi(t) satisfies a linear recurrence

relation that uses differentiation of functions and the covariance of µ(t), as shown
in Theorem 1 of [12] (see also [14]), and can be implemented efficiently using
symbolic differentiation software packages. It is easy to see that the larger is N
the smaller this additional factor gets. Essentially, the refined mean field takes
not only the first moment (the mean) but also the second moment (variance)
into consideration in the approximation. In [12] we have applied this discrete
time refined mean field approximation on a number of examples ranging from
the well-known epidemic model SEIR to wireless networks. Here we investigate
its application to a novel model of the more complex gossip shuffle protocol.

A proof-of-concept implementation of both the classical and the refined mean
field techniques and a discrete event simulator has been developed by one of
the authors of the present paper in F# using the DiffSharp package [5] for
symbolic differentiation. The results in this paper have been obtained using this
implementation which can be found at [20].

4 Refined Mean Field Approximation of the Gossip
Shuffle Protocol

The classical mean field model of the gossip protocol in [1], and aggregated
versions thereof in [14], are based on the principle of decoupling of joint proba-
bilities [7,19] and on a careful study of the pairwise probabilities of the various

The Gossip Shuffle Protocol Revisited 235

possible outcomes of a shuffle between two gossip nodes. This model provides
reasonable accuracy for systems with tens of thousands of nodes or more. How-
ever, discrete event simulation of this model for medium size systems shows that
it does not respect important properties of the original gossip shuffle protocol,
in particular the property that the new data element never gets lost from the
system. We have found that this is caused by an inaccurate modelling of the
effects of coordination between interacting nodes (see [14] for details).

We present a novel model in which (1) the system can never completely loose
the inserted data element and (2) the model reflects the effects of the pairwise
interaction between nodes satisfying basic properties of the original gossip shuffle
protocol while still adhering to the principle of decoupling of joint probabilities.
We distinguish the effects of a node getting a data element through exchanging it
with another node–in which case the total number of replicas of the data element
in the system remains the same–or through replication, i.e. the other node retains
its copy of the data element and the global number of the data element in the
system increases by one. With reference to Fig. 2, for what concerns point (1)
above, we introduce the state PD to the model representing that there always is
a gossip node in the network that possesses the data element.

D

O

FD

LD

PD I

get rep

1

loose rep

1-(get rep)
-(get exc)get exc

1-(loose rep)
get rep

get rep

loose exc

get exc

loose exc

get rep

1-(loose exc)
-(get rep)

1-(loose exc)
- (get rep)

1-(get exc)
-(get rep)

Fig. 2. Six-state model of an individual gossip node with rounds of length Gmax .

To address point (2), we introduce states FD and LD to distinguish between
the effect of interactions between gossip nodes. State FD represents the fact that
the gossip node received the data element for the first time via an exchange of the
data element with another node. State LD also represents the fact that the node
received the data element via an exchange, but that it had already seen the data
element in the past. Note that we can retrieve the total number of gossip nodes in
the system that do not possess the data element as the sum of the nodes that are
in states FD, LD, I and O because for each node in state FD (LD, resp.) there is
a node in the network that just lost its data element in the synchronous shuffle
with our current node. A gossip node can also get involved in an interaction
in which the data element is replicated, i.e. a node gives it to another one but
also retains a copy itself, and one in which two nodes, both possessing the data

236 N. Gast et al.

element, interact and one of them looses its copy. Note that in this model it
is not possible that both nodes loose their copy in a single interaction. The
conditional probabilities of pairs of interacting nodes obtaining or loosing the
data element can be expressed in terms of n (number of different data elements),
c (size of the cache) and s (number of selected elements for exchange), as follows3:

P (OD|DO) = P (DO|OD) = s
c ∗ n−c

n−s

P (OD|OD) = P (DO|DO) = c−s
c

P (DD|OD) = P (DD|DO) = s
c ∗ c−s

n−s

P (OD|DD) = P (DO|DD) = s
c ∗ c−s

c ∗ n−c
n−s

P (DD|DD) = 1.0 − 2.0 ∗ s
c ∗ c−s

c ∗ n−c
n−s

P (OO|OO) = 1.0

The probability functions of the state transitions in the model below depend
on m, i.e. the occupancy measure vector, the conditional probabilities, the ‘no
collision’ probability noc, and Gmax (see [14] for further details).

get exc (m) = 2 ∗ Gmax
(Gmax+1)2 (mD + mPD)P (OD|DO)noc

get rep (m) = 2 ∗ Gmax
(Gmax+1)2 (mD + mPD)P (DD|DO)noc

loose exc (m) = 2 ∗ Gmax
(Gmax+1)2 (mO + mI + mLD + mFD)P (OD|DO)noc

loose rep (m) = 2 ∗ Gmax
(Gmax+1)2 (mD + mPD)P (DO|DD)noc

 0

 5

 10

 15

 20

 25

 30

 0 200 400 600 800 1000

nu
m

be
r

of
 r

ep
lic

as

time

protocol simulation
refined mf
classic mf

model simulation
 0

 20

 40

 60

 80

 100

 120

 0 200 400 600 800 1000

nu
m

be
r

of
 n

od
es

time

protocol simulation
refined mf
classic mf

model simulation

Fig. 3. Replication (left) and network coverage (right) of the data element in the
network for N = 100 with initially 99 nodes in the I-state and 1 node in the PD-state
for Gmax = 3. Average of 500 simulation runs of both the model and Java simulations.
Vertical bars show standard deviation for the Java simulation.

Figure 3 shows the replication as sum of the number of nodes in states D
and PD and the coverage as the sum of the number of nodes in D, PD, FD,
LD and O for a network with N = 100, n = 500, c = 100 and s = 50 with
3 P (A′B′|AB) is the conditional probability of the state of an active-passive pair AB

to have state A′B′ after their interaction, where A,B,A′, B′ ∈ {O,D}, see [1,2].

The Gossip Shuffle Protocol Revisited 237

 0

 100

 200

 300

 400

 500

 600

 0 500 1000 1500 2000 2500 3000

nu
m

be
r

of
 r

ep
lic

as

time

protocol simulation
refined mf
classic mf

model simulation
 0

 500

 1000

 1500

 2000

 2500

 3000

 0 500 1000 1500 2000 2500 3000

nu
m

be
r

of
 n

od
es

time

protocol simulation
refined mf
classic mf

model simulation

Fig. 4. Replication (left) and network coverage (right) of data element for N = 2500
with initially 2499 nodes in I and 1 in PD, for Gmax = 9. Average of 500 simulation
runs for both model and Java simulations. Vertical bars show standard deviation for
the Java simulation.

initially one node in state PD and all the others in state I. Besides the classic
and refined mean field approximations for the model in Fig. 2 and the Java
simulation results of the actual shuffle protocol, Fig. 3 also shows the average
of the model simulation. Note the good approximation of the simulation results
by the refined mean field even in this very small network. Similarly good results
have been found for a system with N= 2,500 shown in Fig. 4. A first comparison
of the (non-optimised) performance of the implementation in F# of the analysis
for N = 2,500, producing the results in Fig. 4, is: 0.5 s (classic mean field); 25.5 s
(refined mean field4); 7 m 1.4 s (fast model simulation [19], 500 runs); 3 h 42 m
41.5 s (Java simulation, 500 runs) on a MacBook Pro, Intel i7, 16 GB.

5 Conclusions

We have developed a novel mean field model for the shuffle gossip protocol with
which more accurate approximations for medium size gossip protocols can be
obtained via refined mean field approximation techniques. This model respects
key aspects of the protocol such as the effects of different kinds of interactions
and the fact that a new data element cannot be lost by the system as a whole.
Accurate approximation of medium size systems is important because many
practical systems consist of many, but not a huge number of, components and
simulation of such systems is still a resource consuming effort. A refined mean
field approximation can provide very fast and accurate approximations.

References

1. Bakhshi, R.: Gossiping models - formal analysis of epidemic protocols. Ph.D. the-
sis, Vrije Universiteit Amsterdam, January 2011. http://www.cs.vu.nl/en/Images/
Gossiping Models van Rena Bakhshi tcm210-256906.pdf

4 Recall that the mean field analyses times are independent of the size of the system.

http://www.cs.vu.nl/en/Images/Gossiping_Models_van_Rena_Bakhshi_tcm210-256906.pdf
http://www.cs.vu.nl/en/Images/Gossiping_Models_van_Rena_Bakhshi_tcm210-256906.pdf

238 N. Gast et al.

2. Bakhshi, R., Cloth, L., Fokkink, W., Haverkort, B.R.: Mean-field framework for
performance evaluation of push-pull gossip protocols. Perform. Eval. 68(2), 157–
179 (2011). https://doi.org/10.1016/j.peva.2010.08.025

3. Bakhshi, R., Gavidia, D., Fokkink, W., van Steen, M.: An analytical model of infor-
mation dissemination for a gossip-based protocol. Comput. Netw. 53(13), 2288–
2303 (2009). https://doi.org/10.1016/j.comnet.2009.03.017

4. Bakhshi, R., Gavidia, D., Fokkink, W., van Steen, M.: A modeling framework for
gossip-based information spread. In: Eighth International Conference on Quanti-
tative Evaluation of Systems, QEST 2011, Aachen, Germany, 5–8 September 2011,
pp. 245–254. IEEE Computer Society (2011). https://doi.org/10.1109/QEST.2011.
39

5. Baydin, A.G., Pearlmutter, B.A., Radul, A.A., Siskind, J.M.: Automatic differenti-
ation in machine learning: a survey. J. Mach. Learn. Res. 18, 153:1–153:43 (2018).
http://jmlr.org/papers/v18/17-468.html

6. Birman, K.: The promise, and limitations, of gossip protocols. Oper. Syst. Rev.
41(5), 8–13 (2007). https://doi.org/10.1145/1317379.1317382

7. Bortolussi, L., Hillston, J., Latella, D., Massink, M.: Continuous approximation of
collective system behaviour: a tutorial. Perform. Eval. 70(5), 317–349 (2013)

8. Frei, R., Serugendo, G.D.M.: Advances in complexity engineering. Int. J. Bio-
Inspired Comput. 3(4), 199–212 (2011). https://doi.org/10.1504/IJBIC.2011.
041144

9. Frei, R., Serugendo, G.D.M.: Concepts in complexity engineering. Int. J. Bio-
Inspired Comput. 3(2), 123–139 (2011). https://doi.org/10.1504/IJBIC.2011.
039911

10. Gast, N., Gaujal, B.: A mean field approach for optimization in discrete time.
Discrete Event Dyn. Syst. 21(1), 63–101 (2011). https://doi.org/10.1007/s10626-
010-0094-3

11. Gast, N., Houdt, B.V.: A refined mean field approximation. Proc. ACM Meas.
Anal. Comput. Syst. 1(2), 33:1–33:28 (2017). https://doi.org/10.1145/3154491

12. Gast, N., Latella, D., Massink, M.: A refined mean field approximation of syn-
chronous discrete-time population models. Perform. Eval. 126, 1–21 (2018).
https://doi.org/10.1016/j.peva.2018.05.002

13. Gast, N., Latella, D., Massink, M.: A refined mean field approximation for syn-
chronous population processes. In: Workshop on Mathematical Performance Mod-
eling and Analysis (MAMA 2018), pp. 30–32. ACM (2019). ACM SIGMETRICS
Perform. Eval. Rev

14. Gast, N., Latella, D., Massink, M.: Refined mean field analysis of the gossip shuffle
protocol - extended version - (2020). arXiv:2004.07519v1

15. Gavidia, D., Voulgaris, S., van Steen, M.: A gossip-based distributed news ser-
vice for wireless mesh networks. In: Conference on Wireless On demand Network
Systems and Services (WONS), pp. 59–67. IEEE Computer Society (2006)

16. Jelasity, M.: Gossip. In: Serugendo, G.D.M., Gleizes, M.P., Karageorgos, A. (eds.)
Self-organising Software - From Natural to Artificial Adaptation. NCS, pp. 139–
162. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-17348-6 7

17. Latella, D., Loreti, M., Massink, M.: On-the-fly PCTL fast mean-field approx-
imated model-checking for self-organising coordination. Sci. Comput. Program.
110, 23–50 (2015). https://doi.org/10.1016/j.scico.2015.06.009

18. Latella, D., Loreti, M., Massink, M.: FlyFast: a mean field model checker. In: Legay,
A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10206, pp. 303–309. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-662-54580-5 18

https://doi.org/10.1016/j.peva.2010.08.025
https://doi.org/10.1016/j.comnet.2009.03.017
https://doi.org/10.1109/QEST.2011.39
https://doi.org/10.1109/QEST.2011.39
http://jmlr.org/papers/v18/17-468.html
https://doi.org/10.1145/1317379.1317382
https://doi.org/10.1504/IJBIC.2011.041144
https://doi.org/10.1504/IJBIC.2011.041144
https://doi.org/10.1504/IJBIC.2011.039911
https://doi.org/10.1504/IJBIC.2011.039911
https://doi.org/10.1007/s10626-010-0094-3
https://doi.org/10.1007/s10626-010-0094-3
https://doi.org/10.1145/3154491
https://doi.org/10.1016/j.peva.2018.05.002
http://arxiv.org/abs/2004.07519v1
https://doi.org/10.1007/978-3-642-17348-6_7
https://doi.org/10.1016/j.scico.2015.06.009
https://doi.org/10.1007/978-3-662-54580-5_18

The Gossip Shuffle Protocol Revisited 239

19. Le Boudec, J., McDonald, D.D., Mundinger, J.: A generic mean field convergence
result for systems of interacting objects. In: Fourth International Conference on
the Quantitative Evaluation of Systems (QEST 2007), Edinburgh, Scotland, UK,
17–19 September 2007, pp. 3–18. IEEE Computer Society (2007)

20. Massink, M.: Refined mean field F# implementation and gossip shuffle model.
https://github.com/mimass/RefinedMF

21. Pianini, D., Beal, J., Viroli, M.: Improving gossip dynamics through overlapping
replicates. In: Lluch Lafuente, A., Proença, J. (eds.) COORDINATION 2016.
LNCS, vol. 9686, pp. 192–207. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-39519-7 12

22. Voulgaris, S., Jelasity, M., van Steen, M.: A robust and scalable peer-to-peer
gossiping protocol. In: Moro, G., Sartori, C., Singh, M.P. (eds.) AP2PC 2003.
LNCS (LNAI), vol. 2872, pp. 47–58. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-25840-7 6

https://github.com/mimass/RefinedMF
https://doi.org/10.1007/978-3-319-39519-7_12
https://doi.org/10.1007/978-3-319-39519-7_12
https://doi.org/10.1007/978-3-540-25840-7_6
https://doi.org/10.1007/978-3-540-25840-7_6

Smart Contracts

A True Concurrent Model of Smart
Contracts Executions

Massimo Bartoletti1(B) , Letterio Galletta2 , and Maurizio Murgia3

1 University of Cagliari, Cagliari, Italy

2 IMT School for Advanced Studies, Lucca, Italy

3 University of Trento, Trento, Italy

Abstract. The development of blockchain technologies has enabled the
trustless execution of so-called smart contracts, i.e. programs that reg-
ulate the exchange of assets (e.g., cryptocurrency) between users. In a
decentralized blockchain, the state of smart contracts is collaboratively
maintained by a peer-to-peer network of mutually untrusted nodes, which
collect from users a set of transactions (representing the required actions
on contracts), and execute them in some order. Once this sequence of
transactions is appended to the blockchain, the other nodes validate it,
re-executing the transactions in the same order. The serial execution
of transactions does not take advantage of the multi-core architecture
of modern processors, so contributing to limit the throughput. In this
paper we propose a true concurrent model of smart contracts execution.
Based on this, we show how static analysis of smart contracts can be
exploited to parallelize the execution of transactions.

1 Introduction

Smart contracts [21] are computer programs that transfer digital assets between
users without a trusted authority. Currently, smart contracts are supported
by several blockchains, the first and most widespread one being Ethereum [9].
Users interact with a smart contract by sending transactions, which trigger state
updates, and may possibly involve transfers of crypto-assets between the called
contract and the users. The sequence of transactions on the blockchain deter-
mines the state of each contract, and the balance of each user.

The blockchain is maintained by a peer-to-peer network of nodes, which fol-
low a consensus protocol to determine, at each turn, a new block of transactions
to be added to the blockchain. This protocol guarantees the correct execution of
contracts also in the presence of (a minority of) adversaries in the network, and
ensures that all the nodes have the same view of their state. Nodes play the role
of miner or that of validator. Miners gather from the network sets of transac-
tions sent by users, and execute them serially to determine the new state. Once
c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
S. Bliudze and L. Bocchi (Eds.): COORDINATION 2020, LNCS 12134, pp. 243–260, 2020.
https://doi.org/10.1007/978-3-030-50029-0_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50029-0_16&domain=pdf
http://orcid.org/0000-0003-3796-9774
http://orcid.org/0000-0003-0351-9169
http://orcid.org/0000-0001-7613-621X
https://doi.org/10.1007/978-3-030-50029-0_16

244 M. Bartoletti et al.

a block is appended to the blockchain, validators re-execute all its transactions,
to update their local view of the contracts state and of the users’ balance. To do
this, validators process the transactions exactly in the same order in which they
occur in the block, since choosing a different order could potentially result in
inconsistencies between the nodes (note that miners also act as validators, since
they validate all the blocks received from the network).

Although executing transactions in a purely sequential fashion is quite effec-
tive to ensure the consistency of the blockchain state, in the age of multi-core
processors it fails to properly exploit the computational capabilities of nodes. By
enabling miners and validators to concurrently execute transactions, it would be
possible to improve the efficiency and the throughput of the blockchain.

This paper exploits techniques from concurrency theory to provide a for-
mal backbone for parallel executions of transactions. More specifically, our main
contributions can be summarised as follows:

– As a first step, we formalise blockchains, giving their semantics as a function
which maps each contract to its state, and each user to her balance. This
semantics reflects the standard implementation of nodes, where transactions
are evaluated in sequence, without any concurrency.

– We introduce two notions of swappability of transactions. The first is purely
semantic: two adjacent transactions can be swapped if doing so preserves
the semantics of the blockchain. The second notion, called strong swappabil-
ity, is more syntactical: it checks a simple condition (inspired by Bernstein’s
conditions [7]) on static approximations of the variables read/written by the
transactions. Theorem 2 shows that strong swappability is strictly included
in the semantic relation. Further, if we transform a blockchain by repeatedly
exchanging adjacent strongly swappable transactions, the resulting blockchain
is observationally equivalent to the original one (Theorem 4).

– Building upon strong swappability, we devise a true concurrent model of
transactions execution. To this purpose, we transform a block of transactions
into an occurrence net, describing exactly the partial order induced by the
swappability relation. We model the concurrent executions of a blockchain in
terms of the step firing sequences (i.e. finite sequences of sets of transitions)
of the associated occurrence net. Theorem 5 establishes that the concurrent
executions and the serial one are semantically equivalent.

– We describe how miners and validators can use our results to concurrently
execute transactions, exploiting the multi-core architecture available on their
nodes. Remarkably, our technique is compatible with the current implemen-
tation of the Ethereum blockchain, while the other existing approaches to
parallelize transactions execution would require a soft-fork.

– We apply our technique to ERC-721 tokens, one of the most common kinds
of contracts in Ethereum, showing them to be suitable for parallelization.

Because of space constraints, all the proofs of our results are in [6].

A True Concurrent Model of Smart Contracts Executions 245

2 Transactions and Blockchains

In this section we introduce a general model of transactions and blockchains,
abstracting from the actual smart contracts language.

A smart contract is a finite set of functions, i.e. terms of the form f(x){S },
where f is a function name, x is the sequence of formal parameters (omitted
when empty), and S is the function body. We postulate that the functions in a
contract have distinct names. We abstract from the actual syntax of S , and we
just assume that the semantics of function bodies is defined (see e.g. [5] for a
concrete instance of syntax and semantics of function bodies).

Let Val be a set of values, ranged over by v, v′, . . ., let Const be a set of
constant names x, y, . . ., and let Addr be a set of addresses X,Y, . . ., partitioned
into account addresses A,B, . . . and contract addresses C,D, We assume a
mapping Γ from addresses to contracts.

We assume that each contract has a key-value store, which we render as
a partial function Val ⇀ Val from keys k ∈ Val to values. The state of the
blockchain is a function σ : Addr → (Val ⇀ Val) from addresses to key-value
stores. We postulate that balance ∈ dom σX for all X. A qualified key is a
term of the form X.k. We write σ(X.k) for σXk; when k �∈ dom σ X, we write
σ (X.k) = ⊥. We use p, q, . . . to range over qualified keys, P,Q, . . . to range over
sets of them, and P to denote the set of all qualified keys.

To have a uniform treatment of accounts and contracts, we assume that for
all account addresses A, dom σA = {balance}, and that the contract Γ (A) has
exactly one function, which just skips. In this way, the statement A. (n),
which transfers n currency units to A, can be rendered as a call to this function.

State updates define how values associated with qualified keys are modified.

Definition 1 (State update). A state update π : Addr ⇀ (Val ⇀ Val) is
a function from qualified keys to values; we denote with {v/X.k} the state update
which maps X.k to v. We define keys(π) as the set of qualified keys X.k such
that X ∈ dom π and k ∈ dom πX. We apply updates to states as follows:

(σπ)X = δX where δXk =

{
πXk if X.k ∈ keys(π) �
σXk otherwise

We denote with �S �Xσ,ρ the semantics of the statement S . This semantics is
either a blockchain state σ′, or it is undefined (denoted by ⊥). The semantics is
parameterised over a state σ, an address X (the contract wherein S is evaluated),
and an environment ρ : Const ⇀ Val, used to evaluate the formal parameters
and the special names sender and value. These names represent, respectively,
the caller of the function, and the amount of currency transferred along with the
call. We postulate that sender and value are not used as formal parameters.

We define the auxiliary operators + and − on states as follows:

σ ◦ (X : n) = σ{(σXbalance) ◦ n/X.balance} (◦ ∈ {+,−})

i.e., σ + X : n updates σ by increasing the balance of X of n currency units.

246 M. Bartoletti et al.

A transaction T is a term of the form:

A
n−→ C : f(v)

Intuitively, A is the address of the caller, C is the address of the called contract,
f is the called function, n is the value transferred from A to C, and v is the
sequence of actual parameters. We denote the semantics of T in σ as �T�σ , where
the function �·�σ is defined in Fig. 1, which we briefly comment.

Fig. 1. Semantics of transactions.

The semantics of a transaction T = A
n−→ C : f(v), in a given blockchain

state σ, is a new state σ′. Rule [Tx1] handles the case where the transaction is
successful: this happens when A’s balance is at least n, and the function call
terminates in a non-error state. Note that n units of currency are transferred
to C before starting to execute f, and that the names sender and value are
bound, respectively, to A and n. Rule [Tx2] applies either when A’s balance is
not enough, or the execution of f fails. In these cases, T does not alter the state.

A blockchain B is a finite sequence of transactions; we denote with ε the
empty blockchain. The semantics of a blockchain is obtained by folding the
semantics of its transactions, starting from a given state σ:

�ε�σ = σ �TB�σ = �B��T�σ

Note that erroneous transactions can occur within a blockchain, but they have
no effect on its semantics (as rule [Tx2] makes them identities w.r.t. the append
operation). We assume that in the initial state of the blockchain, denoted by σ�,
each address X has a balance n�

X ≥ 0, while all the other keys are unbound.
We write �B� for �B�σ� , where σ�X = {n�

X/balance}. We say that a state σ is
reachable if σ = �B� for some B.

Example 1. Consider the following functions of a contract at address C:

f0(){x:=1} f1(){ifx = 0 thenB. (1)} f2(){B. (1)}

Let σ be a state such that σAbalance ≥ 2, and let B = T0T1T2, where:

T0 = A
0−→ C : f0() T1 = A

1−→ C : f1() T2 = A
1−→ C : f2()

A True Concurrent Model of Smart Contracts Executions 247

By applying rule [Tx1] three times, we have that:

�T0�σ = �x:=1�Cσ, {A/sender,0/value} = σ{1/C.x} = σ′

�T1�σ′ = �ifx = 0 thenB. (1)�Cσ′−A:1+C:1, {A/sender,1/value}
= σ′ − A : 1 + C : 1 = σ′′

�T2�σ′′ = �B. (1)�Cσ′′−A:1+C:1, {A/sender,1/value} = σ′′ − A : 1 + B : 1

Summing up, �B�σ = σ{1/C.x} − A : 2 + B : 1 + C : 1. �

3 Swapping Transactions

We define two blockchain states to be observationally equivalent when they agree
on the values associated to all the qualified keys. Our formalisation is parame-
terised on a set of qualified keys P over which we require the agreement.

Definition 2 (Observational equivalence). For all P ⊆ P, we define σ ∼P

σ′ iff ∀p ∈ P : σp = σ′p. We say that σ and σ′ are observationally equivalent,
in symbols σ ∼ σ′, when σ ∼P σ′ holds for all P. �
Lemma 1. For all P,Q ⊆ P: (i) ∼P is an equivalence relation; (ii) if σ ∼P σ′

and Q ⊆ P, then σ ∼Q σ′; (iii) ∼=∼P. �
We extend the equivalence relations above to blockchains, by passing through

their semantics. For all P, we define B ∼P B′ iff �B�σ ∼P �B′�σ holds for all
reachable σ (note that all the definitions and results in this paper apply to
reachable states, since the unreachable ones do not represent actual contract
executions). We write B ∼ B′ when B ∼P B′ holds for all P. The relation ∼ is
a congruence with respect to the append operation, i.e. if B ∼ B′ then we can
replace B with B′ in a larger blockchain, preserving its semantics.

Lemma 2. B ∼ B′ =⇒ ∀B0,B1 : B0BB1 ∼ B0B′B1. �
Two transactions are swappable when exchanging their order preserves obser-

vational equivalence.

Definition 3 (Swappability). Two transactions T �= T′ are swappable, in
symbols T � T′, when TT′ ∼ T′T. �
Example 2. Recall the transactions in Example 1. We have that T0 � T2 and
T1 � T2, but T0 ��T1 (see Fig. 5 in Appendix A of [6]). �

We shall use the theory of trace languages originated from Mazurkiewicz’s
works [17] to study observational equivalence under various swapping relations.
Below, we fix the alphabet of trace languages as the set Tx of all transactions.

Definition 4 (Mazurkiewicz equivalence). Let I be a symmetric and
irreflexive relation on Tx. The Mazurkiewicz equivalence I is the least congru-
ence in the free monoid Tx∗ such that: ∀T,T′ ∈ Tx: T I T′ =⇒ TT′ I T′T.

248 M. Bartoletti et al.

Theorem 1 below states that the Mazurkiewicz equivalence constructed on
the swappability relation � is an observational equivalence. Therefore, we can
transform a blockchain into an observationally equivalent one by a finite number
of exchanges of adjacent swappable transactions.

Theorem 1. � ⊆ ∼. �
Example 3. We can rearrange the transactions in Example 1 as T0T1T2 ∼
T0T2T1 ∼ T2T0T1. Instead, T1T0T2 �∼ T2T0T1 (e.g., starting from a state σ
such that σAbalance = 2 and σCx = 0, see Fig. 6 in Appendix A of [6]). �

Note that the converse of Theorem 1 does not hold: indeed, B � B′ requires
that B and B′ have the same length, while B ∼ B′ may also hold for blockchains
of different length (e.g., B′ = BT, where T does not alter the state).

Safe Approximations of Read/Written Keys. Note that the relation � is
undecidable whenever the contract language is Turing-equivalent. So, to detect
swappable transactions we follow a static approach, consisting of two steps.
First, we over-approximate the set of keys read and written by transactions, by
statically analysing the code of the called functions. We then check a simple
condition on these approximations (Definition 7), to detect if two transactions
can be swapped. Since static analyses to over-approximate read and written vari-
ables are quite standard [18], here we just rely on such approximations, by only
assuming their safety. In Definition 5 we state that a set P safely approximates
the keys written by T, when T does not alter the state of the keys not in P.
Defining set of read keys is a bit trickier: intuitively, we require that if we execute
the transaction starting from two states that agree on the values of the keys in
the read set, then these executions should be equivalent, in the sense that they
do not introduce new differences between the resulting states (with respect to
the difference already existing before).

Definition 5 (Safe approximation of read/written keys). Given a set of
qualified keys P and a transaction T, we define:

P |=w T iff ∀Q : Q ∩ P = ∅ =⇒ T ∼Q ε

P |=r T iff ∀B,B′, Q : B ∼P B′ ∧ B ∼Q B′ =⇒ BT ∼Q B′T �

Example 4. Let T = A
1−→ C : f(), where f(){B. (1)} is a function of

C. The execution of T affects the balance of A, B and C; however, C.balance
is first incremented and then decremented, and so its value remains unchanged.
Then, {A.balance,B.balance} |=w T, and it is the smallest safe approximation
of the keys written by T. To prove that P = {A.balance} |=r T, assume two
blockchains B and B′ and a set of keys Q such that B ∼P B′ and B ∼Q B′.
If �B�Abalance < 1, then by [Tx2] we have �BT� = �B�. Since B ∼P B′,
then also �B′�Abalance < 1, and so by [Tx2] we have �B′T� = �B′�. Then,
BT ∼Q B′T. Otherwise, if �B�Abalance = n ≥ 1, then by [Tx1] the execution
of T transfers one unit of currency from A to B, so the execution of T affects

A True Concurrent Model of Smart Contracts Executions 249

exactly A.balance and B.balance. So, it is enough to show that B ∼{q} B′

implies BT ∼{q} B′T for q ∈ {A.balance,B.balance}. For q = A.balance,
we have that �B′T�Abalance = n − 1 = �BT�Abalance. For q = B.balance,
we have that �B′T�Bbalance = �B′�Bbalance + 1 = �B�Bbalance + 1 =
�BT�Bbalance. Therefore, we conclude that P |=r T. �

Widening a safe approximation (either of read or written keys) preserves its
safety; further, the intersection of two safe write approximations is still safe (see
Lemma 6 in Appendix A of [6]). From this, it follows that there exists a least
safe approximation of the keys written by a transaction.

Strong Swappability. We use safe approximations of the read/written keys to
detect when two transactions are swappable. To achieve that, we check whether
two transactions T and T′ operate on disjoint portions of the blockchain state.
More specifically, we recast in our setting Bernstein’s conditions [7] for the par-
allel execution of processes: it suffices to check that the set of keys written by T
is disjoint from those written or read by T′, and vice versa. When this happens
we say that the two transactions are strongly swappable.

Definition 6 (Strong swappability). We say that two transactions T �= T′

are strongly swappable, in symbols T#T′, when there exist W,W ′, R,R′ ⊆ P

such that W |=w T, W ′ |=w T′, R |=r T, R′ |=r T′, and:(
R ∪ W

) ∩ W ′ = ∅ =
(
R′ ∪ W ′) ∩ W �

Example 5. Let f1(){skip} and f2(x){x. (value)} be functions of the
contracts C1 and C2, respectively, and consider the following transactions:

T1 = A
1−→ C1 : f1() T2 = B

1−→ C2 : f2(F)

where A, B, and F are account addresses. To prove that T1#T2, consider the
following safe approximations of the written/read keys of T1 and T2, respectively:

W1 = {A.balance,C1.balance} |=w T1 R1 = {A.balance} |=r T1

W2 = {B.balance,F.balance} |=w T2 R2 = {B.balance} |=r T2

Since (W1 ∪ R1) ∩ W2 = ∅ = (W2 ∪ R2) ∩ W1, the two transactions are strongly
swappable. Now, let:

T3 = B
1−→ C2 : f2(A)

and consider the following safe approximations W3 and R3:

W3 = {B.balance,A.balance} |=w T3 R3 = {B.balance} |=r T3

Since W1 ∩ W3 �= ∅ �= W2 ∩ W3, then ¬(T1#T3) and ¬(T2#T3). �
The following theorem ensures the soundness of our approximation, i.e. that

if two transactions are strongly swappable, then they are also swappable. The
converse implication does not hold, as witnessed by Example 6.

250 M. Bartoletti et al.

Theorem 2. T#T′ =⇒ T � T′. �
Example 6 (Swappable transactions, not strongly). Consider the following func-
tions and transactions of a contract at address C:

f1(){if sender = A k1 = 0 then k1:=1 else throw} T1 = A
1−→ C : f1()

f2(){if sender = B k2 = 0 then k2:=1 else throw} T2 = B
1−→ C : f2()

We prove that T1 � T2. First, consider a state σ such that σAbalance > 1,
σBbalance > 1, σCbalance = n, σCk1 = 0 and σCk2 = 0. We have that:

�T1T2�σ = σ{1/C.k1, 1/C.k2, n+2/C.balance} = �T2T1�σ

In the second case, let σ be such that σAbalance < 1, or σBbalance < 1,
or σCk1 �= 0, or σCk2 �= 0. It is not possible that the guards in f1 and
f2 are both true, so T1 or T2 raise an exception, leaving the state unaf-
fected. Then, also in this case we have that �T1T2�σ = �T2T1�σ , and so
T1 and T2 are swappable. However, they are not strongly swappable if there
exist reachable states σ, σ′ such that σCk1 = 0 = σ′Ck2. To see why, let
W1 = {A.balance,C.balance,C.k1}. From the code of f0 we see that W1 is
the least safe over-approximation of the written keys of T1 (W1 |=w T1). This
means that every safe approximation of T1 must include the keys of W1. Sim-
ilarly, W2 = {B.balance,C.balance,C.k2} is the least safe over-approximation
of the written keys of T2 (W2 |=w T2). Since the least safe approximations of
the keys written by T1 and T2 are not disjoint, T1#T2 does not hold. �

Theorem 3 states that the Mazurkiewicz equivalence # is stricter than �.
Together with Theorem 1, if B is transformed into B′ by exchanging adjacent
strongly swappable transactions, then B and B′ are observationally equivalent.

Theorem 3. # ⊆ �. �
Note that if the contract language is Turing-equivalent, then finding approx-

imations which satisfy the disjointness condition in Definition 6 is not com-
putable, and so the relation # is undecidable.

Parameterised Strong Swappability. Strongly swappability abstracts from
the actual static analysis used to obtain the safe approximations: it is sufficient
that such an analysis exists. Definition 7 below parameterises strong swappability
over a static analysis, which we represent as a function from transactions to sets
of qualified keys, just requiring it to be a safe approximation. Formally, we say
that W is a static analysis of written keys when W (T) |=w T, for all T; similarly,
R is a static analysis of read keys when R(T) |=r T, for all T.

Definition 7 (Parameterised strong swappability). Let W and R be static
analyses of written/read keys. We say that T, T′ are strongly swappable w.r.t.
W and R, in symbols T#W

R T′, if:(
R(T) ∪ W (T)

) ∩ W (T′) = ∅ =
(
R(T′) ∪ W (T′)

) ∩ W (T) �

A True Concurrent Model of Smart Contracts Executions 251

Note that an effective procedure for computing W and R gives an effective
procedure to determine whether two transactions are (strongly) swappable.

Lemma 3. For all static analyses W and R: (i) #W
R ⊆ #; (ii) if W and R are

computable, then #W
R is decidable. �

From the inclusion in item (i) of Lemma 3 and from Theorem 3 we obtain:

Theorem 4. #W
R

⊆ # ⊆ �. �

4 True Concurrency for Blockchains

Given a swappability relation R, we transform a sequence of transactions B into
an occurrence net NR(B), which describes the partial order induced by R. Any
concurrent execution of the transactions in B which respects this partial order
is equivalent to the serial execution of B (Theorem 5).

From Blockchains to Occurrence Nets. We start by recapping the notion
of Petri net [19]. A Petri net is a tuple N = (P,Tr,F,m0), where P is a set of
places, Tr is a set of transitions (with P∩Tr = ∅), and F : (P×Tr)∪(Tr×P) → N

is a weight function. The state of a net is a marking, i.e. a multiset m : P → N

defining how many tokens are contained in each place; we denote with m0 the
initial marking. The behaviour of a Petri net is specified as a transition relation
between markings: intuitively, a transition t is enabled at m when each place p
has at least F(p, t) tokens in m. When an enabled transition t is fired, it consumes
F(p, t) tokens from each p, and produces F(t, p′) tokens in each p′. Formally,
given x ∈ P ∪ Tr, we define the preset •x and the postset x• as multisets:
•x(y) = F(y, x), and x•(y) = F(x, y). A transition t is enabled at m when
•t ⊆ m. The transition relation between markings is defined as m t−→ m− •t+ t•,
where t is enabled. We say that t1 · · · tn is a firing sequence from m to m′ when
m

t1−→ · · · tn−→ m′, and in this case we say that m′ is reachable from m. We say
that m′ is reachable when it is reachable from m0.

An occurrence net [8] is a Petri net such that: (i) |p•| ≤ 1 for all p; (ii)
|•p| = 1 if p �∈ m0, and |•p| = 0 if p ∈ m0; (iii) F is a relation, i.e. F(x, y) ≤ 1 for
all x, y; (iv) F∗ is a acyclic, i.e. ∀x, y ∈ P∪Tr : (x, y) ∈ F∗∧(y, x) ∈ F∗ =⇒ x = y
(where F∗ is the reflexive and transitive closure of F).

In Fig. 2 we transform a blockchain B = T1 · · ·Tn into a Petri net NR(B),
where R is an arbitrary relation between transactions. Although any relation
R ensures that NR(B) is an occurrence net (Lemma 4 below), our main results
hold when R is a strong swappability relation. The transformation works as fol-
lows: the i-th transaction in B is rendered as a transition (Ti, i) in NR(B), and
transactions related by R are transformed into concurrent transitions. Techni-
cally, this concurrency is specified as a relation < between transitions, such that
(Ti, i) < (Tj , j) whenever i < j, but Ti and Tj are not related by R. The places,
the weight function, and the initial marking of NR(B) are chosen to ensure that
the firing ot transitions respects the relation <.

252 M. Bartoletti et al.

Tr = {(Ti, i) | 1 ≤ i ≤ n}
P = {(∗, t) | t ∈ Tr} ∪ {(t, ∗) | t ∈ Tr} ∪ {

(t, t′)
∣∣ t < t′

}
where (T, i) < (T′, j) � (i < j) ∧ ¬(T RT′)

F(x, y) =
1 if y = t and x = (∗, t) or x = (t′, t)

)
1 if x = t and y = (t, ∗) or y = (t, t′)

)
0 otherwise

m0(p) =

{
1 if p = (∗, t)
0 otherwise

Fig. 2. Construction of a Petri net from a blockchain B = T1 · · ·Tn.

Example 7. Consider the following transactions and functions of a contract C:

Tf = A
0−→ C : f() f() {ifx = 0 then y:=1 else throw}

Tg = A
0−→ C : g() g() {if y = 0 thenx:=1 else throw}

Th = A
0−→ C : h() h() {z:=1}

Let Pw
f = P r

g = {C.y}, P r
f = Pw

g = {C.x}, Pw
h = {C.z}, P r

h = ∅. It is easy to
check that these sets are safe approximations of their transactions (e.g., Pw

f safely
approximates the keys written by Tf). By Definition 6 we have that Tf#Th ,
Tg#Th , but ¬(Tf#Tg). We display N#(TfThTg) in Fig. 3, where tf = (Tf , 1),
th = (Th , 2), and tg = (Tg , 3). Note that tg can only be fired after tf , while th
can be fired independently from tf and tg . This is coherent with the fact that
Th is swappable with both Tf and Tg , while Tf and Tg are not swappable. �

(∗, tf) (∗, th)
(∗, tg)(tf , ∗)

(th , ∗)(tg , ∗)(tf , tg)

tf thtg

Fig. 3. Occurrence net for Example 7.

Lemma 4. NR(B) is an occurrence net, for all R and B.

Step Firing Sequences. Theorem 5 below establishes a correspondence
between concurrent and serial execution of transactions. Since the semantics
of serial executions is given in terms of blockchain states σ, to formalise this cor-
respondence we use the same semantics domain also for concurrent executions.
This is obtained in two steps. First, we define concurrent executions of B as the
step firing sequences (i.e. finite sequences of sets of transitions) of N#(B). Then,
we give a semantics to step firing sequences, in terms of blockchain states.

A True Concurrent Model of Smart Contracts Executions 253

We denote finite sets of transitions, called steps, as U,U′ , Their preset
and postset are defined as •U =

∑
p∈U

•p and U• =
∑

p∈U p•, respectively. We
say that U is enabled at m when •U ≤ m, and in this case firing U results in the
move m

U−→ m − •U + U•. Let U = U1 · · ·Un be a finite sequence of steps. We
say that U is a step firing sequence from m to m′ if m U1−→ · · · Un−−→ m′, and in
this case we write m

U−→ m′.

Concurrent Execution of Transactions. We now define how to execute
transactions in parallel. The idea is to execute transactions in isolation, and then
merge their changes, whenever they are mutually disjoint. The state updated
resulting from the execution of a transaction are formalised as in Definition 1.

An update collector is a function Π that, given a state σ and a transaction T,
gives an update π = Π(σ,T) which maps (at least) the updated qualified keys
to their new values. In practice, update collectors can be obtained by instru-
menting the run-time environment of smart contracts, so to record the state
changes resulting from the execution of transactions. We formalise update col-
lectors abstracting from the implementation details of such an instrumentation:

Definition 8 (Update collector). We say that a function Π is an update
collector when �T�σ = σ(Π(σ,T)), for all σ and T. �

There exists a natural ordering of collectors, which extends the ordering
between state updates (i.e., set inclusion, when interpreting them as sets of
substitutions): namely, Π � Π ′ holds when ∀σ,T : Π(σ,T) ⊆ Π ′(σ,T). The
following lemma characterizes the least update collector w.r.t. this ordering.

Lemma 5 (Least update collector). Let Π�(σ,T) = �T�σ − σ, where we
define σ′ − σ as

⋃
σ′p �=σp{σ′p/p}. Then, Π� is the least update collector. �

The merge of two state updates is the union of the corresponding substi-
tutions; to avoid collisions, we make the merge operator undefined when the
domains of the two updates overlap.

Definition 9 (Merge of state updates). Let π0, π1 be state updates. When
keys(π0) ∩ keys(π1) = ∅, we define π0 ⊕ π1 as follows:

(π0 ⊕ π1)p =

⎧⎪⎨
⎪⎩

π0p if p ∈ keys(π0)
π1p if p ∈ keys(π1) �
⊥ otherwise

The merge operator enjoys the commutative monoidal laws, and can therefore
be extended to (finite) sets of state updates.

We now associate step firing sequences with state updates. The semantics of
a step U = {(T1, 1), . . . , (Tn, n)} in σ is obtained by applying to σ the merge
of the updates Π(σ,Ti), for all i ∈ 1..n—whenever the merge is defined. The
semantics of a step firing sequence is then obtained by folding that of its steps.

254 M. Bartoletti et al.

Definition 10 (Semantics of step firing sequences). We define the seman-
tics of step firing sequences, given Π and σ, as:

�ε�Π
σ = σ �UU�Π

σ = �U�Π
σ′ where σ′ = �U�Π

σ = σ
⊕

(T,i)∈U

Π(σ,T) �

Example 8. Let tf , tg , and th be as in Example 7, and let σCx = σCy = 0. Since
Π�(σ,Tf) = {1/C.y}, Π�(σ,Tg) = {1/C.x}, and Π�(σ,Th) = {1/C.z}, we have:

�{tf , th}�Π�

σ = σ({1/C.y} ⊕ {1/C.z}) = σ{1/C.y, 1/C.z}
�{tg , th}�Π�

σ = σ({1/C.x} ⊕ {1/C.z}) = σ{1/C.x, 1/C.z}
�{tf , tg}�Π�

σ = (σ{1/C.y} ⊕ {1/C.x}) = σ{1/C.y, 1/C.x}
Note that, for all σ:

�TfTh�σ = �ThTf�σ = σ{1/C.y, 1/C.z} = �{tf , th}�Π�

σ

�TgTh�σ = �ThTg�σ = σ{1/C.x, 1/C.z} = �{tg , th}�Π�

σ

So, the serial execution of Tf and Th (in both orders) is equal to their concurrent
execution (similarly for Tg and Th). Instead, for all σ such that σCx = σCy = 0:

�TfTg�σ = σ{1/C.y} �TgTf�σ = σ{1/C.x} �{tf , tg}�Π�

σ = σ{1/C.y, 1/C.x}
So, concurrent executions of Tf and Tg may differ from serial ones. This is
coherent with the fact that, in Fig. 3, tf and tg are not concurrent. �

Concurrent Execution of Blockchains. Theorem 5 relates serial executions
of transactions to concurrent ones (which are rendered as step firing sequences).
Item (a) establishes a confluence property: if two step firing sequences lead to the
same marking, then they also lead to the same blockchain state. Item (b) ensures
that the blockchain, interpreted as a sequence of transitions, is a step firing
sequence, and it is maximal (i.e., there is a bijection between the transactions
in the blockchain and the transitions of the corresponding net). Finally, item (c)
ensures that executing maximal step firing sequences is equivalent to executing
serially the blockchain.

Theorem 5. Let B = T1 · · ·Tn. Then, in N#(B):

(a) if m0
U−→ m and m0

U′
−→ m, then �U�Π�

σ = �U′�Π�

σ , for all reachable σ;
(b) {(T1, 1)} · · · {(Tn, n)} is a maximal step firing sequence;
(c) for all maximal step firing sequences U, for all reachable σ, �U�Π�

σ = �B�σ .

Remarkably, the implications of Theorem 5 also apply to N#W
R

(B).

Example 9. Recall B = TfThTg and N#(B) from Example 7, let U =
{tf , th}{tg}, and let σ be such that σCx = σCy = 0. As predicted by item (c)
of Theorem 5:

�B�σ = σ{1/C.y}{1/C.z} = �U�Π�

σ

A True Concurrent Model of Smart Contracts Executions 255

Let U′ = {tf}{tg , th}. We have that U and U′ lead to the same marking, where
the places (tf , ∗), (tg , ∗) and (th , ∗) contain one token each, while the other places
have no tokens. By item (a) of Theorem 5 we conclude that �U�Π�

σ = �U′�Π�

σ .
Now, let U′′ = {th}{tf , tg}. Note that, although U′′ is maximal, it is not a step
firing sequence, since the second step is not enabled (actually, tf and tg are not
concurrent, as pointed out in Example 8). Therefore, the items of Theorem 5
do not apply to U′′ , coherently with the fact that U′′ does not represent any
sequential execution of B. �

5 Case Study: ERC-721 Token

We now apply our theory to an archetypal Ethereum smart contract, which
implements a “non-fungible token” following the standard ERC-721 interface [14,
15]. This contract defines the functions to transfer tokens between users, and to
delegate their trade to other users. Currently, token transfers involve ∼50% of the
transactions on the Ethereum blockchain [1], with larger peaks due to popular
contracts like Cryptokitties [22].

We sketch below the implementation of the contract, using Solidity,
the main high-level smart contract language in Ethereum (see Appendix B of [6]
for the full implementation).

The contract state is defined by the following mappings:

Each token is uniquely identified by an integer value (of type), while
users are identified by an . The mapping maps tokens to their
owners’ addresses (the zero address is used to denote a dummy owner). The
mapping tells whether a token has been created or not, while
gives the number of tokens owned by each user. The mapping
allows a user to delegate the transfer of all her tokens to third parties.

The function transfers a token from the owner to another user.
The assertion rules out some undesirable cases, e.g., if the token does
not exist, or it is not owned by the user, or the user attempts to transfer
the token to himself. Once all these checks are passed, the transfer succeeds if
the of the transaction owns the token, or if he has been delegated by the
owner. The mappings and are updated as expected.

256 M. Bartoletti et al.

The function delegates the transfers of all the tokens of
the to the when the boolean is true, otherwise it
revokes the delegation.

Assume that user A owns two tokens, identified by the integers 1 and 2, and
consider the following transactions:

T1 = A
0−→ Token : transferFrom(A,P, 1)

T2 = A
0−→ Token : setApprovalForAll(B, true)

T3 = B
0−→ Token : transferFrom(A,Q, 2)

T4 = P
0−→ Token : transferFrom(P,B, 1)

We have that T1#T2, T2#T4, and T3#T4 (this can be proved e.g. by using
the static approximations in Appendix B of [6]), while the other combinations
are not swappable. Let B = T1T2T3T4. The resulting occurrence net is displayed
in Fig. 4. For instance, let U = {T1,T2}{T3,T4}, i.e. T1 and T2 are executed
concurrently, as well as T3 and T4. From item (c) of Theorem 5 we have that
this concurrent execution is equivalent to the serial one.

Although this example deals with the marginal case where the sender and the
receiver of tokens overlap, in practice the large majority of transactions in a block
either involves distinct users, or invokes distinct ERC-721 interfaces, making it
possible to increase the degree of concurrency of transactions.

t1

t2 t3

t4

Fig. 4. Occurrence net for the blockchain B = T1T2T3T4 of the ERC-721 token.

A True Concurrent Model of Smart Contracts Executions 257

6 Related Work and Conclusions

We have proposed a static approach to improve the performance of blockchains
by concurrently executing transactions. We have started by introducing a model
of transactions and blockchains. We have defined two transactions to be swap-
pable when inverting their order does not affect the blockchain state. We have
then introduced a static approximation of swappability, based on a static analy-
sis of the sets of keys read/written by transactions. We have rendered concurrent
executions of a sequence of transactions as step firing sequences in the associ-
ated occurrence net. Our main technical result, Theorem 5, shows that these
concurrent executions are semantically equivalent to the sequential one.

We can exploit our results in practice to improve the performances of miners
and validators. Miners should perform the following steps to mine a block:

1. gather from the network a set of transactions, and put them in an arbitrary
linear order B, which is the mined block;

2. compute the relation #W
R on B, using a static analysis of read/written keys;

3. construct the occurrence net N#W
R

(B);
4. execute transactions concurrently according to the occurrence net, exploiting

the available parallelism.

The behaviour of validators is almost identical to that of miners, except that
in step (1), rather than choosing the order of transactions, they should adhere
to the ordering of the mined block B. Note that in the last step, validators can
execute any maximal step firing sequence which is coherent with their degree
of parallelism: item (c) of Theorem 5 ensures that the resulting state is equal
to the state obtained by the miner. The experiments in [12] suggest that paral-
lelization may lead to a significant improvement of the performance of nodes: the
benchmarks on a selection of representative contracts show an overall speedup
of 1.33× for miners and 1.69× for validators, using only three cores.

Note that malevolent users could attempt a denial-of-service attack by pub-
lishing contracts which are hard to statically analyse, and therefore are not
suitable for parallelization. This kind of attacks can be mitigated by adopting a
mining strategy that gives higher priority to parallelizable transactions.

Applying Our Approach to Ethereum. Applying our theory to Ethereum
would require a static analysis of read/written keys at the level of EVM bytecode.
As far as we know, the only tool implementing such an analysis is ES-ETH [16].
However, the current version of the tool has several limitations, like e.g. the
compile-time approximation of dictionary keys and of values shorter than 32
bytes, which make ES-ETH not directly usable to the purposes of our work.
In general, precise static analyses at the level of the Ethereum bytecode are
difficult to achieve, since the language has features like dynamic dispatching and
pointer aliasing which are notoriously a source of imprecision for static analysis.
However, coarser approximations of read/written keys may be enough to speed-
up the execution of transactions. For instance, in Ethereum, blocks typically
contain many transactions which transfer tokens between participants, and many

258 M. Bartoletti et al.

of them involve distinct senders and receivers. A relatively simple analysis of the
code of token contracts (which is usually similar to that in Sect. 5) may be enough
to detect that these transactions are swappable.

Aiming at minimality, our model does not include the gas mechanism, which
is used in Ethereum to pay miners for executing contracts. The sender of a
transaction deposits into it some crypto-currency, to be paid to the miner which
appends the transaction to the blockchain. Each instruction executed by the
miner consumes part of this deposit; when the deposit reaches zero, the miner
stops executing the transaction. At this point, all the effects of the transaction
(except the payment to the miner) are rolled back. Our transaction model could
be easily extended with a gas mechanism, by associating a cost to statements
and recording the gas consumption in the environment. Remarkably, adding gas
does not invalidate approximations of read/written keys which are correct while
neglecting gas. However, a gas-aware analysis may be more precise of a gas-
oblivious one: for instance, in the statement if k then flong();x:=1 else y:=1
(where flong is a function which exceeds the available gas) a gas-aware analysis
would be able to detect that x is not written.

Related Work. A few works study how to optimize the execution of smart
contracts on Ethereum, using dynamic techniques adopted from software trans-
actional memory [4,12,13]. These works are focussed on empirical aspects (e.g.,
measuring the speedup obtained on a given benchmark), while we focus on the
theoretical counterpart. In [12,13], miners execute a set of transactions specula-
tively in parallel, using abstract locks and inverse logs to dynamically discover
conflicts and to recover from inconsistent states. The obtained execution is guar-
anteed to be equivalent to a serial execution of the same set of transactions. The
work [4] proposes a conceptually similar technique, but based on optimistic soft-
ware transactional memory. Since speculative execution is non-deterministic, in
both approaches miners need to communicate the chosen schedule of transac-
tions to validators, to allow them to correctly validate the block. This schedule
must be embedded in the mined block: since Ethereum does not support this
kind of block metadata, these approaches would require a “soft-fork” of the
blockchain to be implemented in practice. Instead, our approach is compatible
with the current Ethereum, since miners only need to append transactions to
the blockchain. Compared to [4,12], where conflicts are detected dynamically,
our approach relies on a static analysis to detect potential conflicts. Since soft-
ware transactional memory introduces a run-time overhead, in principle a static
technique could allow for faster executions, at the price of a preprocessing phase.
Saraph and Herlihy [20] study the effectiveness of speculatively executing smart
contracts in Ethereum. They sample past blocks of transactions (from July 2016
to December 2017), replay them by using a speculative execution engine, and
measure the speedup obtained by parallel execution. Their results show that
simple speculative strategies yield non-trivial speed-ups. Further, they note that
many of the data conflicts (i.e. concurrent read/write accesses to the same state
location) arise in periods of high traffic, and they are caused by a small number
of popular contracts, like e.g. tokens.

A True Concurrent Model of Smart Contracts Executions 259

In the permissioned setting, Hyperledger Fabric [3] follows the “execute
first and then order” paradigm: transactions are executed speculatively, and
then their ordering is checked for correctness [2]. In this paradigm, appending
a transaction requires a few steps. First, a client proposes a transaction to a
set of “endorsing” peers, which simulate the transaction without updating the
blockchain. The output of the simulation includes the state updates of the trans-
action execution, and the sets of read/written keys. These sets are then signed
by the endorsing peers, and returned to the client, which submits them to the
“ordering” peers. These nodes order transactions in blocks, and send them to the
“committing” peers, which validate them. A block T1 · · ·Tn is valid when, if a
key k is read by transaction Ti, then k has not been written by a transaction Tj

with j < i. Finally, validated blocks are appended to the blockchain. Our model
is coherent with Ethereum, which does not support speculative execution.

Future Works. A relevant line of research is the design of domain-specific
languages for smart contracts that are directly amenable to techniques that,
like ours, increase the degree of concurrency of executions. For this purpose, the
language should support static analyses of read/written keys, like the one we
use to define the strong swappability relation. Although the literature describes
various static analyses of smart contracts, most of them are focussed on finding
security vulnerabilities, rather than enhancing concurrency.

Outside the realm of smart contracts, a few papers propose static analyses of
read/written variables. The paper [11] describes an analysis based on separation
logic, and applies it to resolve conflicts in the setting of snapshot isolation for
transactional memory in Java. When a conflict is detected, the read/write sets
are used to determine how the code can be modified to resolve it. The paper [10]
presents a static analysis to infer read and write locations in a C-like language
with atomic sections. The analysis is used to translate atomic sections into stan-
dard lock operations. The design of new smart contract languages could take
advantage of these analyses.

Acknowledgements. Massimo Bartoletti is partially supported by Aut. Reg. Sar-
dinia projects “Smart collaborative engineering” and “Sardcoin”. Letterio Galletta is
partially supported by IMT Lucca project “PAI VeriOSS” and by MIUR project PRIN
2017FTXR7S “Methods and Tools for Trustworthy Smart Systems”. Maurizio Murgia
is partially supported by MIUR PON “Distributed Ledgers for Secure Open Commu-
nities” and by Aut. Reg. Sardinia project “Smart collaborative engineering”.

References

1. Ethereum token dynanics. https://stat.bloxy.info/superset/dashboard/tokens
2. Hyperledger fabric: read-write set semantics. https://hyperledger-fabric.

readthedocs.io/en/release-1.4/readwrite.html
3. Androulaki, E., et al.: Hyperledger fabric: a distributed operating system for

permissioned blockchains. In: EuroSys, pp. 30:1–30:15 (2018). https://doi.org/10.
1145/3190508.3190538

https://stat.bloxy.info/superset/dashboard/tokens
https://hyperledger-fabric.readthedocs.io/en/release-1.4/readwrite.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/readwrite.html
https://doi.org/10.1145/3190508.3190538
https://doi.org/10.1145/3190508.3190538

260 M. Bartoletti et al.

4. Anjana, P.S., Kumari, S., Peri, S., Rathor, S., Somani, A.: An efficient framework
for optimistic concurrent execution of smart contracts. In: PDP, pp. 83–92 (2019).
https://doi.org/10.1109/EMPDP.2019.8671637

5. Bartoletti, M., Galletta, L., Murgia, M.: A minimal core calculus for solidity con-
tracts. In: Pérez-Solà, C., Navarro-Arribas, G., Biryukov, A., Garcia-Alfaro, J.
(eds.) DPM/CBT -2019. LNCS, vol. 11737, pp. 233–243. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-31500-9 15

6. Bartoletti, M., Galletta, L., Murgia, M.: A true concurrent model of smart contracts
executions. CoRR abs/1905.04366 (2020). http://arxiv.org/abs/1905.04366

7. Bernstein, A.J.: Analysis of programs for parallel processing. IEEE Trans. Electron.
Comput. EC-15(5), 757–763 (1966). https://doi.org/10.1109/PGEC.1966.264565

8. Best, E., Devillers, R.R.: Sequential and concurrent behaviour in Petri net the-
ory. Theor. Comput. Sci. 55(1), 87–136 (1987). https://doi.org/10.1016/0304-
3975(87)90090-9

9. Buterin, V.: Ethereum: a next generation smart contract and decentralized appli-
cation platform (2013). https://github.com/ethereum/wiki/wiki/White-Paper

10. Cherem, S., Chilimbi, T.M., Gulwani, S.: Inferring locks for atomic sections.
In: ACM SIGPLAN PLDI, pp. 304–315 (2008). https://doi.org/10.1145/1375581.
1375619

11. Dias, R.J., Lourenço, J.M., Preguiça, N.M.: Efficient and correct transactional
memory programs combining snapshot isolation and static analysis. In: USENIX
Conference on Hot Topics in Parallelism (HotPar) (2011)

12. Dickerson, T.D., Gazzillo, P., Herlihy, M., Koskinen, E.: Adding concurrency to
smart contracts. In: ACM PODC, pp. 303–312 (2017). https://doi.org/10.1145/
3087801.3087835

13. Dickerson, T., Gazzillo, P., Herlihy, M., Koskinen, E.: Adding concurrency to smart
contracts. Distrib. Comput. 33, 209–225 (2020). https://doi.org/10.1007/s00446-
019-00357-z

14. Entriken, W., Shirley, D., Evans, J., Sachs, N.: EIP 721: ERC-721 non-fungible
token standard. https://eips.ethereum.org/EIPS/eip-721

15. Fröwis, M., Fuchs, A., Böhme, R.: Detecting token systems on ethereum. In: Gold-
berg, I., Moore, T. (eds.) FC 2019. LNCS, vol. 11598, pp. 93–112. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-32101-7 7

16. Marcia, D.: ES-ETH: ethereum state change examiner (2019). https://github.com/
DiegoMarcia/ES-ETH

17. Mazurkiewicz, A.: Basic notions of trace theory. In: de Bakker, J.W., de Roever,
W.-P., Rozenberg, G. (eds.) REX 1988. LNCS, vol. 354, pp. 285–363. Springer,
Heidelberg (1989). https://doi.org/10.1007/BFb0013025

18. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis (1999).
https://doi.org/10.1007/978-3-662-03811-6

19. Reisig, W.: Petri Nets: An Introduction. Monographs in Theoretical Computer
Science: An EATCS Series, vol. 4. Springer, Heidelberg (1985). https://doi.org/10.
1007/978-3-642-69968-9

20. Saraph, V., Herlihy, M.: An empirical study of speculative concurrency in Ethereum
smart contracts. CoRR abs/1901.01376 (2019). http://arxiv.org/abs/1901.01376

21. Szabo, N.: Formalizing and securing relationships on public networks. First
Monday 2(9) (1997). http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/
fm/article/view/548

22. Young, J.: CryptoKitties sales hit $12 million, could be Ethereum’s killer
app after all (2017). https://cointelegraph.com/news/cryptokitties-sales-hit-12-
million-could-be-ethereums-killer-app-after-all

https://doi.org/10.1109/EMPDP.2019.8671637
https://doi.org/10.1007/978-3-030-31500-9_15
http://arxiv.org/abs/1905.04366
https://doi.org/10.1109/PGEC.1966.264565
https://doi.org/10.1016/0304-3975(87)90090-9
https://doi.org/10.1016/0304-3975(87)90090-9
https://github.com/ethereum/wiki/wiki/White-Paper
https://doi.org/10.1145/1375581.1375619
https://doi.org/10.1145/1375581.1375619
https://doi.org/10.1145/3087801.3087835
https://doi.org/10.1145/3087801.3087835
https://doi.org/10.1007/s00446-019-00357-z
https://doi.org/10.1007/s00446-019-00357-z
https://eips.ethereum.org/EIPS/eip-721
https://doi.org/10.1007/978-3-030-32101-7_7
https://github.com/DiegoMarcia/ES-ETH
https://github.com/DiegoMarcia/ES-ETH
https://doi.org/10.1007/BFb0013025
https://doi.org/10.1007/978-3-662-03811-6
https://doi.org/10.1007/978-3-642-69968-9
https://doi.org/10.1007/978-3-642-69968-9
http://arxiv.org/abs/1901.01376
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/548
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/548
https://cointelegraph.com/news/cryptokitties-sales-hit-12-million-could-be-ethereums-killer-app-after-all
https://cointelegraph.com/news/cryptokitties-sales-hit-12-million-could-be-ethereums-killer-app-after-all

Renegotiation and Recursion
in Bitcoin Contracts

Massimo Bartoletti1(B), Maurizio Murgia2, and Roberto Zunino2

1 University of Cagliari, Cagliari, Italy

2 University of Trento, Trento, Italy

Abstract. BitML is a process calculus to express smart contracts that
can be run on Bitcoin. One of its current limitations is that, once a con-
tract has been stipulated, the participants cannot renegotiate its terms:
this prevents expressing common financial contracts, where funds have
to be added by participants at run-time. In this paper, we extend BitML
with a new primitive for contract renegotiation. At the same time, the
new primitive can be used to write recursive contracts, which was not
possible in the original BitML. We show that, despite the increased
expressiveness, it is still possible to execute BitML on standard Bitcoin,
preserving the security guarantees of BitML.

1 Introduction

Smart contracts—computer protocols that regulate the exchange of assets in
trustless environments—have become popular with the growth of interest in
blockchain technologies. Mainstream blockchain platforms like Ethereum, Libra,
and Cardano, feature expressive high-level languages for programming smart
contracts. This flexibility has a drawback in that it may open the door to attacks
that steal or tamper with the assets controlled by vulnerable contracts [4,22].

An alternative approach, pursued first by Bitcoin and more recently also by
Algorand, is to sacrifice the expressiveness of smart contracts to reduce the attack
surface. For instance, Bitcoin has a minimal language for transaction redeem
scripts, containing only a limited set of logic, arithmetic, and cryptographic oper-
ations. Despite the limited expressiveness of these scripts, it is possible to encode
a variety of smart contracts (like gambling games, escrow services, crowdfunding
systems, etc.) by suitably chaining transactions [1–3,5,8,10,13,18–21,23]. The
common trait of these works is that they render contracts as cryptographic pro-
tocols, where participants can exchange/sign messages, read the blockchain, and
append transactions. Verifying the correctness of these protocols is hard, since it
requires to reason in a computational model, where participants can manipulate
arbitrary bitstrings, only being constrained to use PPTIME algorithms.

Departing from this approach, BitML [11] allows to write Bitcoin contracts in
a high-level, process-algebraic language. BitML features a compiler that trans-
lates contracts into sets of standard Bitcoin transactions, and a sound and com-
plete verification technique of relevant trace properties [12]. The computational
c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
S. Bliudze and L. Bocchi (Eds.): COORDINATION 2020, LNCS 12134, pp. 261–278, 2020.
https://doi.org/10.1007/978-3-030-50029-0_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50029-0_17&domain=pdf
https://doi.org/10.1007/978-3-030-50029-0_17

262 M. Bartoletti et al.

soundness of the compiler guarantees that the execution of the compiled con-
tract is coherent with the semantics of the source BitML specification, even in
the presence of adversaries. Although BitML can express many of the Bitcoin
contracts presented in the literature, it is not “Bitcoin-complete”, i.e. there exist
contracts that can be executed on Bitcoin, but are not expressible in BitML [6].

For instance, consider a zero-coupon bond [17], where an investor A pays 1B
upfront to a bank B, and receives back 2B after a maturity date (say, year 2030).
We can express this contract in BitML as follows. First, as a precondition to the
stipulation of the contract, we require both A and B to provide a deposit: A’s
deposit is 1B, while B’s deposit is 2B. In BitML, we write this precondition as:

A: 1B x1 | B: 2B x2

where x1 and x2 are the identifiers of transactions containing the required
amount of bitcoins (B). Under this precondition, we can specify the zero-coupon
bond contract ZCB as follows:

ZCB =
(
1B → B | 2B → 2030 : A

)

Upon stipulation, all the deposits required in the preconditions pass under the
control of ZCB , and can no longer be spent by A and B. The contract splits
these funds in two parts: 1B, that can be withdrawn by B at any moment, and
2B, that can be withdrawn by A after the maturity date.

Although ZCB correctly implements the functionality of zero-coupon bounds,
it is quite impractical: for the whole period from the stipulation to the maturity
date, 2B are frozen within the contract, and cannot be used by the bank in any
way. Although this is a desirable feature for the investor, since it guarantees that
he will receive 2B even if the bank fails, it is quite undesirable for the bank. In
the real world, the bank would be free to use its own funds, together with those
of investors, to make further financial transactions through which to repay the
investments. The risk that the bank fails is mitigated by external mechanisms,
like insurances or government intervention.

In this paper we propose an extension of BitML that overcomes this issue.
The idea is to allow the contract participants to renegotiate it after stipulation,
in a controlled way. Renegotiation makes it possible to inject in the contract
new funds, that were not specified in the original precondition. We can use
this feature to solve the issue with the ZCB contract. The new precondition is
A: 1B x1, i.e. we only require A’s deposit. The revised contract is:

ZCB2 =
(
1B → B | 0B → ∗ : 〈〉)

〈〉 = {B: 2B d} 2030 : A

As before, the bank can withdraw 1B at any moment after stipulation. In
the second part of the , the participants renegotiate the contract: if they
both agree, 0B pass under the control of the contract 〈〉. The precondition of
〈〉 requires the bank to provide 2B in a fresh deposit; upon renegotiation, A

can withdraw 2B after the maturity date. The crucial difference with ZCB is

Renegotiation and Recursion in Bitcoin Contracts 263

that the deposit variable d is instantiated at renegotiation time, unlike x, which
must be fixed at stipulation time.

The revised contract ZCB2 solves the problem of ZCB , in that it no longer
freezes 2B for the whole duration of the bond: the bank could choose to rene-
gotiate the contract, paying 2B, just before the maturity date. This flexibility
comes at a cost, since A loses the guarantee to eventually receive 2B. To address
this issue we need to add, as in the real world, an external mechanism. More
specifically, we assume an insurance company I that, for an annual premium of
pB paid by the bank, covers a face amount of fB (with 2 > f > 10p):

A: 1B x1 | B: pB x2 | I: fB x3

We revise the bond contract as follows:

ZCB3 =
(
1B → B

| pB → I

| fB → ∗ : 〈1〉 + 2021 : A
)

〈n ∈ 1..9〉 = {B: pB d}
(
pB → I

| fB → ∗ : 〈n + 1〉 + (2021 + n) : A
)

〈10〉 = {B: 2B d}
(
fB → I

| 2B → 2030 : A
)

The contract starts by transferring 1B to the bank, and the first year of the
premium to the insurer. The remaining fB are transferred to the renegotiated
contract 〈1〉, or, if the renegotiation is not completed by 2021, to the investor.

We remark that the pattern D + t : D ′, where D requires some autho-
rizations but D ′ does not, is rather common in BitML, as it ensures that the
contract can proceed even if the authorizations are not provided. Indeed, in
such case an honest participant is enough to execute D ′ after time t. By suit-
ably exploiting this pattern, it is possible to guarantee that a BitML contract
enjoys liveness, by just assuming that at least one participant is honest.

The contracts 〈n〉, for n ∈ 1..9, allow the insurer to receive the annual pre-
mium until 2030: if the bank does not renegotiate the contract for the following
year (paying the corresponding premium), then the investor can redeem the face
amount of fB. Finally, the contract 〈10〉 can be triggered if the bank deposits
the 2B: when this happens, the face amount is given back to the insurer, and
the investor can redeem 2B after the maturity date.

Compared to ZCB2 , the contract ZCB3 offers more protection to the
investor. To see why, we must evaluate A’s payoff for all the possible behaviours
of the other participants. If B and I are both honest, then A will redeem 2B, as
in the ideal contract ZCB . Instead, if either B or I do not accept to renegotiate
some 〈n〉, then A can redeem fB as a partial compensation (unlike in ZCB2 ,
where A just loses 1B). In the real world, A could use this compensation to cover

264 M. Bartoletti et al.

the legal fee to sue the bank in court; also, I could e.g. increase the premium
for future interactions with B. By further refining the contract, we could model
these real-world mechanisms as oracles, which sanction dishonest participants
according to the evidence collected in the blockchain and in messages broadcast
by participants. For instance, if B and I accept the renegotiation 〈n〉 but A
does not, then the oracle would be able to detect A’s dishonesty by inspecting
the authorizations broadcast in year 2021+n. The sanction could consist e.g. in
blacklisting A, so to prevent her from buying other bonds from B.

Contributions. We summarise our main contributions as follows:

– We extend BitML with the renegotiation primitive ∗ : 〈〉, suitably
adapting the language syntax and semantics. The new primitive increases
the expressiveness of BitML: besides allowing participants to provide new
deposits and secrets at run-time, it also allows for unbounded recursion.

– We extend the BitML compiler to the new primitive, making it possible to
execute renegotiations on Bitcoin. We accordingly extend the computational
soundness result in [11], guaranteeing that the BitML semantics is coherent
with the actual Bitcoin executions, also in the presence of adversaries.

– We exploit renegotiation to design a new gambling game where two players
repeatedly flip coins, and whoever wins twice in a row takes the pot (a form
of unbounded recursion). We prove the game to be fair.

– We introduce alternative renegotiation primitives, which allow participants
to choose some parameters (e.g. the amounts to be deposited) at renegotia-
tion time, and to change the set of participants involved in the renegotiated
contract. We show that both primitives can be executed on Bitcoin as is.
We also introduce a primitive that, at the price of minor Bitcoin extensions,
supports non-consensual renegotiations, which are automatically triggered by
the contract without requiring the participants’ agreement.

Because of space constraints, we relegate part of the technicalities to [9].

2 BitML with Renegotiation and Recursion

We start by formalising contract preconditions. We use A,B, . . . to range over
participants. We assume a set of deposit names x, y, . . ., a set of deposit variables
d, e, . . ., and a set of secret names a, b, We use χ, χ′, . . . to range over deposit
names and variables, and v, v′ to range over non-negative values.

Definition 1 (Contract precondition). Contract preconditions have the fol-
lowing syntax (the deposits χ in a contract precondition G must be distinct):

G ::= A: v χ deposit of vB put by A

| A : a secret committed by A

| G | G composition �

Renegotiation and Recursion in Bitcoin Contracts 265

The precondition A: v χ requires A to own vB in a deposit χ, and to spend it
for stipulating the contract. The precondition A : a requires A to generate
a secret a, and commit to it before the contract starts. After stipulation, A can
choose whether to disclose the secret a, or not.

To define contracts, we assume a set of recursion variables, ranged over by
, , . . ., and a language of static expressions E, E ′, . . ., formed by integer con-

stants k, integer variables α, β, . . ., and the usual arithmetic operators. We omit
to define the syntax and semantics of static expressions, since they are standard.
We assume that a closed static expression evaluates to a 32-bit value. We use the
bold notation for sequences, e.g. x denotes a finite sequence of deposit names.

Definition 2 (Contract). Contracts are terms with the syntax in Fig. 1, where:
(i) each recursion variable has a unique defining equation (α) = {G}C ; (ii)
renegotiations ∗ : 〈E〉 have the correct number of arguments;(iii) the names
a in a p are distinct, and they include those occurring in p; (iv) in a
prefix v → C , the sequences v and C have the same length. We denote
with 0 the empty sum. We assume that the order of decorations is immaterial, e.g.,

E :A :B : D is equivalent to B :A : E : D. �
A contract C is a choice among guarded contracts Di. A guarded contract

a p.C ′ continues as C ′ once all the secrets a have been revealed and
satisfy the predicate p. The guarded contract (v1 → C1 | · · · | vn → Cn)
divides the contract into n contracts Ci, each one with balance vi. The sum of
the vi must coincide with the current balance. The action A transfers
the whole balance to A. When enabled, the above actions can be fired by any-
one at anytime. To restrict who can execute a branch and when, one can use
the decoration A : D, requiring to wait for A’s authorization, and the decoration

E : D, requiring to wait until the time specified by the static expression E.
The action ∗ : 〈E〉 allows the participants involved in the contract to rene-
gotiate it. Intuitively, if (α) = {G}C , then the contract continues as C{E/α}
if all the participants give their authorization, and satisfy the precondition G.

Definition 3 (Contract advertisement). A contract advertisement is a
term {G}C such that: (i) each secret name in C occurs in G; (ii) G requires a
deposit from each A in {G}C ; (iii) each ∗ : 〈E〉 in C refers to a defining
equation (α) = {G′}C ′ where the participants in G′ are the same as those in
G. �

The second condition is used to guarantee that the contract is stipulated
only if all the involved participants give their authorizations. The last condition
is only used to simplify the technical development. We outline in Sect. 5 how to
relax it, by allowing renegotiations to exclude some participants, or to include
new ones, which were not among those who originally stipulated the contract.

We now extend the reduction semantics of BitML [11], by focussing on the
new renegotiation primitive. Because of space limitations, here we just provide
the underlying intuition, relegating the full formalisation to [9]. We start by
defining the configurations of the semantics.

266 M. Bartoletti et al.

Fig. 1. Syntax of BitML contracts.

Definition 4 (Configuration). Configurations have the following syntax:

Γ ::= 0 empty
| {G}xC contract advertisement (name x is optional)
| 〈C, v〉x active contract containing vB
| 〈A, v〉x deposit of vB redeemable by A

| A[χ] authorization of A to perform action χ

| {A : a#N} committed secret of A (N ∈ N ∪ {⊥})
| A : a#N revealed secret of A (N ∈ N)
| A : d ← x A’s deposit variable d assigned to deposit name x

| Γ | Γ ′ parallel composition

We denote with Γ | t a timed configuration, where t ∈ N is a global time. �
We illustrate configurations and their semantics through a series of examples.

Deposits. A deposit 〈A, v〉x can be subject to several operations, like e.g. split
into two smaller deposits, join with another deposit, transfer to another partic-
ipant, or destroy. In all cases A must authorise the operation. For instance, to
authorize the join of two deposits, A can perform the following step:

〈A, v〉x | 〈A, v′〉y −→ 〈A, v〉x | 〈A, v′〉y | A[x, y � 〈A, v + v′〉]

where x, y�〈A, v + v′〉 is the authorization of A to spend x. After A also provides
the dual authorization to spend y, anyone can actually join the deposits:

〈A, v〉x | 〈A, v′〉y | A[x, y � 〈A, v + v′〉] | A[y, x � 〈A, v + v′〉] −→ 〈A, v + v′〉z

Advertisement. Any participant can broadcast a new contract advertisement
{G}C , provided that all the deposits mentioned in G exist in the current con-
figuration, and that the names of the secrets declared in G are fresh.

Renegotiation and Recursion in Bitcoin Contracts 267

Stipulation. To stipulate an advertised contract {G}C , all the participants men-
tioned in it must fulfill the preconditions, and authorise the stipulation. For
instance, let G = A: 1 x | B: 1 y | A : a , and let C be an arbitrary
contract involving only A and B. The stipulation starts from a configuration
containing the advertisement and the participants’ deposits:

Γ = {G}C | 〈A, 1〉x | 〈B, 1〉y
At this point the participants must commit to their secrets (in this case, only A
has a secret). This is rendered as a sequence of steps:

Γ −→∗ Γ | {A : a#N} | A[# � {G}C] | B[# � {G}C] = Γ ′

where {A : a#N} represents the fact that A has committed to the secret N ,
while A[# � {G}C] and B[# � {G}C] represent ending the commitment phase
(these steps might seem redundant, but they are useful to obtain a step-by-step
correspondence between BitML executions and Bitcoin executions).

After that, A and B must perform an additional sequence of steps to authorize
the transfer of their deposits x, y to the contract:

Γ ′ −→∗ Γ ′ | A[x � {G}C] | B[y � {G}C] = Γ ′′

where A[x � {G}C] and B[y � {G}C] are the authorizations to spend x and y.
At this point all the needed authorizations have been given, so the adver-

tisement can be turned into an active contract. This step consumes the deposits
and all the authorizations, and creates an active contract, with a fresh name z:

Γ ′′ −→ 〈C, 2〉z | {A : a#N}

Renegotiation. We illustrate the steps to renegotiate 〈α〉 = {G}C , where G =
A: 1 d | B: 1 e | A : a , and C is an arbitrary contract involving only
A and B, and possibly containing the integer variable α in static expressions.
Here, G requires A and B to spend two 1B deposits, and A to commit to a secret.
Unlike in the case of contract stipulation above, deposits names are unknown
before renegotiation, so we use the deposit variables d, e to refer to them.

Consider a configuration 〈∗ : 〈k〉 + C ′′, v〉x | Γ, where C ′′ contains the
branches alternative to the renegotiation. A possible execution of the action
∗ : 〈k〉 starts as follows:

〈∗ : 〈k〉 + C ′′, v〉x | Γ −→ 〈∗ : 〈k〉 + C ′′, v〉x | {G′}xC ′ | Γ = Γ ′

where the advertisement {G′}xC ′ is obtained by transforming {G}C as follows:
(i) variables d, e are renamed into fresh ones d′, e′, and similarly the secret name
a into a′ ,(ii) the static expressions in C are evaluated, assuming α = k, and
replaced with their results.The superscript x in the advertisement is used to
record that, when the renegotiation is concluded, the contract x must be reduced.

In the subsequent steps participants choose the actual deposit names, and A
commits to her secret. If A owns in Γ a deposit 〈A, 1〉y , she can choose d′ = y

268 M. Bartoletti et al.

to satisfy the precondition G. Similarly, B can choose e′ = z if he owns such a
deposit in Γ. These choices are performed as follows:

Γ ′ −→∗ Γ ′ | A : d′ ← y | {A : a′#N} | A[# � {G′}xC ′]
| B : e′ ← z | B[# � {G′}xC ′] = Γ ′′

At this point, participants must authorise spending their deposits and the
balance of the contract at x. This is done through a series of steps:

Γ ′′ −→∗ Γ ′′ | A[y � {G′}xC ′] | A[x � {G′}xC ′]
| B[z � {G′}xC ′] | B[x � {G′}xC ′] = Γ ′′′

Finally, the new contract is stipulated. This closes the old contract, and
transfers its balance to the newly generated one, with a fresh name x′:

Γ ′′′ −→ 〈C ′, v + 2〉x′ | Γ

Note that the branches in C ′′ are discarded only in the last step above, where
we complete the renegotiation. Before this step, it would have been possible to
take one of the branches in C ′′, aborting the renegotiation.

Withdraw. Executing A transfers the whole contract balance to A:

〈 A + C ′, v〉x −→ 〈A, v〉y
After the execution, the alternative branch C ′ is discarded, and a fresh deposit
of vB for A is created. Note that the active contract x is terminated.

Split. The primitive divides the contract balance in n parts, each one
controlled by its own contract. For instance, if n = 2:

〈(v1 → C1 | v2 → C2) + C ′, v1 + v2〉x −→ 〈C1, v1〉y | 〈C2, v2〉z
After this step, the new spawned contracts C1 and C2 are executed concurrently.

Reveal. The prefix a p can be fired if all the committed secrets a have
been revealed, and satisfy the guard p. For instance, if Γ = A : a#N | B : b#N :

〈(ab a = b. C) + C ′, v〉x | Γ −→ 〈C, v〉y | Γ

The terms A : a#N and B : b#N represent the fact that the secrets a and b have
been revealed. Crucially, only the participant who performed the commitment
can add the corresponding term to the configuration.

Authorizations. A branch decorated by A : · · · can be taken only if the participant
A has provided her authorization. For instance:

〈A : B + C ′, v〉x | A[x � A : B] −→ 〈B, v〉y
The leftmost configuration contains the term A[x � A : B], which rep-
resents A’s authorization to take the branch B . This enables the step
to be taken. When multiple authorizations are required, the branch can be taken
only after all of them occur in the configuration.

Renegotiation and Recursion in Bitcoin Contracts 269

Time Constraints. We represent time in configurations as Γ | t, where Γ is the
untimed part of the configuration and t is the current time. We always allow
the time to advance through the rule Γ | t −→ Γ | t + δ, for all δ > 0. A branch
decorated with d can be taken only if time d has passed. For instance:

〈 d : B , v〉x | t −→ 〈B, v〉y | t if t ≥ d

For the branches not guarded by , we lift transitions from untimed to
timed configurations: namely, for an untimed transition Γ −→ Γ ′, we also have
the timed transition Γ | t −→ Γ ′ | t. This reflects the assumption that participants
can always meet deadlines, if they want to.

3 Executing BitML on Bitcoin

To execute a BitML contract, participants first compile it to a set of Bitcoin
transactions, and then append these transactions to the blockchain, each follow-
ing their own strategy. Participants’ strategies can involve other actions besides
appending transactions, like e.g. broadcasting signatures on given transactions
(which corresponds, in BitML, to add an authorization to the configuration),
revealing secrets, and waiting some time (see Definition 16 in [11]). The coher-
ence between the BitML semantics and the execution on Bitcoin is guaranteed by
a step-by-step correspondence between the transitions of the BitML semantics
and the actions performed by participants on the Bitcoin network.

In this section we illustrate the compiler and the execution protocol through
a couple of examples, focussing on the new renegotiation primitive. The needed
background on Bitcoin will be introduced along with these examples. We relegate
the formal definition of the compilation rules to [9].

Zero-Coupon Bond. Recall the ZCB contract from Sect. 1:

ZCB =
(
1 → B | 2 → 2030 : A

)

The precondition A: 1 x1 | B: 2 x2 requires A to deposit 1B in the contract,
and B to deposit 2B. In Bitcoin, this precondition corresponds to requiring
two unspent transactions redeemable by A and B, and containing the required
amounts. We represent these transactions as follows, using the notation in [7]:

Tx1

in : · · ·
wit : · · ·
out : (λx.versigK(A)(x), 1B)

Tx2

in : · · ·
wit : · · ·
out : (λx.versigK(B)(x), 2B)

The transaction Tx1 is a record with three fields (Tx2 is similar). The in field
points to one or more previous transactions in the blockchain. The field out is
a pair, whose first element is a boolean predicate (with parameter x), and the
second element, 1B, is the amount that a subsequent transaction satisfying the
predicate can redeem from Tx1 . Here, the predicate versigK(A)(x) is true when
x is a signature of A on the redeeming transaction (i.e., one having Tx1 as in).

270 M. Bartoletti et al.

Fig. 2. Transactions obtained by compiling the ZCB contract.

The contract ZCB is compiled into the transactions in Fig. 2. The first one
that can be appended to the blockchain is Tinit. This requires a few conditions to
be met: (i) Tx1 and Tx2 are unspent on the blockchain, i.e. no other transactions
spend them; (ii) the amount specified in the out field of Tinit does not exceed
the sum of the amounts in Tx1 and Tx2 ;(iii) the predicates in the out fields of
Tx1 and Tx2 are true, after replacing the formal parameters with the signatures
sigK(A) and sigK(B), contained in the wit field of Tinit.The contract ZCB becomes
stipulated once Tinit is on the blockchain.

After that, the action can be performed by either A or B, by redeeming
Tinit with Tsplit . This transaction uses K(ZCB , {A,B}), a set of two key pairs,
each one owned by each participant. These keys are only used in this step, to
ensure that no transaction but Tsplit can redeem Tinit.

The transaction Tsplit creates two unspent outputs (indexed by 0 and 1),
corresponding to the two parallel components of the , each with its own
balance. These outputs can be redeemed independently, by different transactions.
The output at index 0 can only be redeemed by TB (note that TB ’s in field
refers to the output 0 of Tsplit), transferring 1B to B. No other redemption
is possible, since such output requires a signature with a specific key set, i.e.
K(B , {A,B}), which is not used for any other purpose. Further, the
output of TB can be redeemed with B’s key, without A’s one. Similarly, the
output 1 of Tsplit can be redeemed by TA , which in turns transfers 2B to A. The
absLock field in TA ensures that this may only happen after time 2030.

The stipulation protocol followed by participants requires that all the signa-
tures needed to append the transactions in Fig. 2 are exchanged before Tinit is
appended. This is obtained by exchanging the signatures of Tinit after all the
other signatures. This ensures that, once the execution of ZCB starts, any hon-
est participant can make it proceed, by appending a transaction that correspond
to any of the enabled BitML actions.

In general, to guarantee that such liveness property holds, the contract must
be suitably crafted, using the D + t : D ′ pattern discussed in Sect. 1.
In Sect. 6 we discuss techniques to statically verify this property.

Renegotiation and Recursion in Bitcoin Contracts 271

Zero-Coupon Bond with Renegotiation. Compiling ZCB2 yields the transactions:

Tinit

in : Tx1

wit : sigK(A)

out :
(λς.versigK(ZCB2 ,{A,B})(ς),
1B)

Tsplit

in : Tinit

wit : sigK(ZCB2 ,{A,B})

out :
0 �→ (λς.versigK(B ,{A,B})(ς), 1B)

1 �→ (λς.versigK(∗: 〈〉,{A,B})(ς), 0B)

TB

in : (Tsplit,0)
wit : sigK(B ,{A,B})

out :
(λς.versigK(B)(ς),

1B)

Once these three transactions are on the blockchain, the only enabled action
in the corresponding BitML contract is ∗ : 〈〉, which asks 2B from B as
a precondition. At the Bitcoin level, satisfying this precondition requires B to
broadcast the identifier of a transaction Ty holding 2B and redeemable by him-
self. In BitML, this corresponds to choosing the deposit name y for the deposit
variable d. Then, participants compile the contract advertisement {B: 2 d}C ,
where C = 2030 : A , after replacing d with y. The compiler
produces the following transactions:

Tinit
〈〉

in : 0 �→ (Tsplit, 1), 1 �→ Ty

wit :
0 �→ sigK(∗: 〈〉,{A,B})
1 �→ sigK(B)

out : (λς.versigK(C,{A,B})(ς), 2B)

TA

in : Tinit
〈〉

wit : sigK(C,{A,B})
out : (λς.versigK(A)(ς), 2B)

absLock : 2030

The renegotiation succeeds once Tinit
〈〉 is on the blockchain. After that, any

participant can perform the A , by appending TA to the blockchain.
As shown by this example, the compiler handles renegotiation as follows:

– at stipulation time, it does not produce transactions for any ∗ : 〈〉;
– at renegotiation time, the participants broadcast the identifiers of their new

deposits, and the commitments of their new secrets. Static expressions are
then evaluated, and replaced by their value. Finally, the new contract is com-
piled as usual, with the exception that the new initial transaction has an
extra input, which transfers the balance of the caller contract to the callee
(in the ZCB2 example, this extra input is (Tsplit, 1) within Tinit

〈〉).

Computational Soundness. The main result of [11] is computational soundness,
which ensures that each execution trace at the Bitcoin level has a corresponding
one in the semantics of BitML. This was achieved by formalizing the seman-
tics of Bitcoin using a computational model, where participants can exchange
bitstrings as messages, and append transactions to the blockchain. Then, a coher-
ence relation was defined to relate symbolic runs to computational ones, essen-
tially matching symbolic moves with their implementation in Bitcoin.

Our extension of BitML with renegotiation still enjoys computational sound-
ness. The argument is similar, and requires extending the coherence relation to
the new primitive. In particular, the reduction:

{G}xC | Γ −→ {G}xC | Γ | ‖ i {A : ai#Ni} | ‖ j A : dj ← xj | A[# � {G}xC]

corresponds, in Bitcoin, to A broadcasting a message which contains the hashes
of her secrets and the transaction identifiers that she wishes to use as deposits.

272 M. Bartoletti et al.

Instead, the reduction:

{G}xC | Γ −→ {G}xC | Γ | A[x � {G}xC]

corresponds to A signing all the transactions obtained by compiling the new
contract, and broadcasting the signatures. A participant signs Tinit only after
receiving the signatures of the other transactions from all the other participants.

Computational soundness requires that each contract involves at least one
participant, say A, who follows the Bitcoin implementation of BitML. In partic-
ular, A follows the stipulation and renegotiation protocols correctly, i.e. signing
nothing but the protocol messages, and signing Tinit last. We also make the
usual assumptions on computational adversaries: they can only run PPTIME
algorithms, and they can break the underlying cryptography with negligible
probability, only. Consequently, we only consider computational runs of polyno-
mial length (with respect to the security parameter). This is because in longer
runs the adversary would be able to break the cryptography by brute force.

Below, we provide an intuitive statement of computational soundness. The
formal statement is in [9].

Theorem 1 (Computational soundness). Under the hypotheses above, each
Bitcoin-level computational run has a corresponding coherent BitML run, with
overwhelming probability.

4 A Fair Recursive Coin Flipping Game

To illustrate recursion in our extended BitML, we introduce a simple game where
two players repeatedly flip coins, and the one who wins two consecutive flips takes
the pot. The precondition requires each player to deposit 3B and choose a secret:

A: 3 x | A : a | B: 3 y | B : b

The contract CFG (Fig. 3) asks B to reveal his secret first: if B waits too
much, A can withdraw the contract funds after time 1. Then, it is A’s turn
to reveal (before time 2, otherwise B can withdraw the funds). The current flip
winner is A if the secrets of A and B are equal, otherwise it is B. At this point, the
contract can be renegotiated as A〈1〉 or B〈1〉, depending on the flip winner (the
parameter 1 represents the round). If players do not agree on the renegotiation,
then the funds are split fairly, according to the current expected win.

The contract A〈n〉 requires A and B to generate fresh secrets for the n-th
turn. If A wins again, she can withdraw the pot, otherwise the contract can be
renegotiated as B〈n + 1〉. If the players do not agree on the renegotiation, the
pot is split fairly between them. The contract B is similar.

The following theorem states that our coin flipping game is fair. Fairness
ensures that the expected payoff of a rational player is always non-negative,
notwithstanding the behaviour of the other player. Rational players must choose
random secrets in {0, 1}. Indeed, non uniformly distributed secrets can make

Renegotiation and Recursion in Bitcoin Contracts 273

Fig. 3. A recursive coin flipping game.

the adversary bias the coin flip in her favour. Further, choosing a secret different
from 0 or 1 would decrease the player payoff. Indeed, B would be prevented from
revealing his secrets (by the predicate in the b), and so A could win after
the timeout. If A chooses a secret different from 0 or 1, she makes B win the
round (since B wins when the secrets are different). Rationality also requires
to reveal secrets in time (before the alternative branch is enabled), and
to take the Split branch if restipulation does not occur in time. This ensures
that, when renegotiation happens, there is still time to reveal the round secrets.
Indeed, a late renegotiation could enable the other player to win by timeout.

Theorem 2. The expected payoff of a rational player is always non-negative.

Proof (Sketch). First, we consider the case where renegotiation always happens.
A rational player wins each coin flip with probability 1/2, at least: so, the prob-
ability of winning the whole game is also 1/2, at least. In the general case,
the renegotiation at the end of each round may fail. When this happens, the
rational player takes the Split branch, distributing the pot according to the
expected payoff in the current game state, thus ensuring the fairness of the
whole game. The player who won the last coin flip is expected to win pB, with
p = 1/2 · 6 + 1/2 · (1/2 · p + 1/2 · 0), giving p = 4. Accordingly, the Split contracts
transfer 4B to the winner of the last flip and (6 − 4)B = 2B to the other player.

274 M. Bartoletti et al.

5 More Expressive Renegotiation Primitives

The renegotiation primitive we have proposed for BitML is motivated by its
simplicity, and by the possibility of compiling into standard Bitcoin transactions.
By adding some degree of complexity, we can devise more general primitives,
which could be useful in certain scenarios. We discuss below some alternatives.

Renegotiation-Time Parameters. The primitive ∗ : 〈E〉 allows partici-
pants to choose at run-time only the deposit variables used in the renegotiated
contracts, and to commit to new secrets. A possible extension is to allow partic-
ipants to choose at run-time arbitrary values for the renegotiation parameters
E.

For instance, consider a mortgage payment, where a buyer A must pay 10B
to a bank B in 10 installments. After A has paid the first five installments (of 1B
each), the bank might propose to renegotiate the contract, varying the amount
of the installment. Using the BitML renegotiation primitive presented in Sect. 2,
we could not model this contract, since the new amount and the number of
installments are unknown at the time of the original stipulation. Technically,
the issue is that the primitive ∗ : 〈E〉 only involves static expressions E,
the value of which is determined at stipulation time.

To cope with non-statically known values, we could extend guarded contracts
with terms of the form ∗ : 〈B : v〉, declaring that the value v is to be
chosen by B at renegotiation time. For instance, this would allow to model our
installments payment plan as 〈1〉, with the following defining equations:

〈α < 5〉 = {A: 1 d}(
1 → B | 0 → ∗ : 〈α + 1〉)

〈5〉 = {A: 1 d}(
1 → B | 0 → ∗ : 〈B : k,B : v〉)

〈α = 1, β〉 = {A: β d}(
β → B | 0 → ∗ : 〈α − 1, β〉)

〈1, β〉 = {A: β d} B

where in 〈5〉, the bank chooses the number of installments k, as well as
the amount v of each installment. Note that if A does not agree with these
values, the renegotiation fails. A more refined version of the contract should
take this possibility into account, by adding suitable compensation branches.
Although adding the new primitive would moderately increase the complexity
of the semantics and of the compiler, this extension can still be implemented on
top of standard Bitcoin, preserving our computational soundness result.

Renegotiation with a Given set of Participants. As we have remarked in Sect. 2, a
renegotiation can be performed only if all the participants of the contract agree.
To generalise, we could require the agreement of a given set of participants
(possibly, not among those who originally stipulated the contract).

For instance, consider an escrow service between a buyer A and a seller
B for the purchase of an item worth 1B. The normal case is that the buyer
authorizes the transfer of 1B after receiving the item, but it may happen that a
dishonest seller never sends the item, or that a dishonest buyer never authorizes

Renegotiation and Recursion in Bitcoin Contracts 275

the payment. To cope with these cases, the participants can renegotiate the
contract, including an escrow service M which mediates the dispute, as follows:

A : B + B : A + A : M : A 〈〉 + B : M : B 〈〉
P = {P: 0.1 d} (

0.1 → M | 1 → P
)

where A : M : A〈〉 means that only A and M need to agree in order
for the contract A to be executed, resolving the dispute. In this case it is
crucial that the renegotiation is possible even without the agreement between
A and B. Indeed, if M decides to refund A (by authorizing A), it is not to
be expected that also B agrees. Similarly to the one discussed before, also this
extension can be implemented on-top of Bitcoin. The computational soundness
property is preserved, under the assumption that at least one participant in any
renegotiation is honest, i.e. it follows the renegotiation protocol. Crucially, if
a renegotiation only involves dishonest participants, the renegotiated contract
could be anything, not necessarily that prescribed in the original contract.

Non-consensual Renegotiation. In the variants of ∗ : discussed before,
renegotiation requires one or more participants to agree. Hence, each use of
∗ : must include suitable alternative branches, to be fired in case the
renegotiation fails. In certain scenarios, we may want to renegotiate the contract
without the participants having to agree. To this purpose, we can introduce
a new primitive 〈〉, which continues as 〈〉 without requiring anyone to
agree. For simplicity, we assume the defining equations of this primitive of the
form (α) = {v}C , where v represents the amount of B added to the contract,
by anyone.

We exemplify the new primitive to design a two-players game which starts
with a bet of 1B from A, and a bet of 2B from B. Then, starting from A, players
take turns adding 2B each to the pot. The first one who is not able to provide
the additional 2B within a given time loses the game, allowing the other player
to take the whole pot. The contract is as follows:

C = {A: 1 x | B: 2 y}(A〈2〉 + 1 : B)

A〈n〉 = {2}(B〈n + 1〉 + n : A)

B〈n〉 = {2}(A〈n + 1〉 + n : B)

Unlike ∗ : , the action can be fired without the authorizations of
all the players: it just requires that the authorization to gather 2B is provided,
by anyone. Even though the sender of these 2B is not specified in the contract,
it is implicit in the game mechanism: for instance, when A〈n〉 calls B〈n + 1〉,
only B is incentivized to add 2B, since not doing so will make A win.

Implementing the primitive on top of Bitcoin seems unfeasible: even
if it were possible to use complex off-chain multiparty computation protocols
[16], doing so might be impractical. Rather, we would like to extend Bitcoin
as much as needed for the new primitive. In our implementation of BitML, we
compile contracts to sets of transactions and make participants sign them. In

276 M. Bartoletti et al.

standard BitML this is doable since, at stipulation time, we can finitely over-
approximate the reducts of the original contract. Recursion can make this set
infinite, e.g. A〈2〉, A〈3〉, . . ., hence impossible to compile and sign statically.
A way to cope with this is to extend Bitcoin with malleable signatures which
only cover the part of the transaction not affected by the parameter n in B〈n〉.
Further, signatures must not cover the in fields of transactions, since they change
as recursion unfolds. In this way, the same signature can be reused for each call.

Adding malleability provides flexibility, but poses some risks. For instance,
instead of redeeming the transaction corresponding to A〈n〉 with the transaction
of B〈n + 1〉 one could instead use the transaction of B〈n + 100〉, since the two
transactions have the same signature. To overcome this problem, we could add
a new opcode to allow the output script of B〈n〉 to access the parameter in the
redeeming transaction, so to verify that it is indeed n+1 as intended. Similarly,
to check that we have 2B more in the new transaction, an opcode could provide
the value of the new output. The same goal could be achieved by adapting the
techniques used in [24,25] to realize covenants.

6 Conclusions

We have investigated linguistic primitives to renegotiate BitML contracts, and
their implementation on standard Bitcoin. More expressive primitives could be
devised by relaxing this constraint, e.g. assuming the extended UTXO model [14].

The existing verification technique for BitML [12] is based on a sound and
complete abstraction of the state space of contracts. Since this abstraction is
finite-state, it can be model-checked to verify the required properties. The same
technique can be directly applied to BitML contracts featuring renegotiation
(but without recursion), since the abstraction would remain finite. Instead, the
same abstraction on recursive contracts would lead to infinitely many states.
Even if we could exploit the fact that Bitcoin uses 32-bit integers to make the
state space finite, it would still be too large for verification to be practical.

If we assume that integers are unbounded, and that participants always
accept renegotiations, the extension of BitML presented in Sect. 2 can simu-
late a counter machine, so making BitML Turing-complete. Hence, verification
cannot be sound and complete. Alternative techniques to model checking (e.g.,
type-based approaches [15]) could be used to analyse relevant contract proper-
ties.

Acknowledgements. Massimo Bartoletti is partially supported by Aut. Reg. of Sar-
dinia projects Sardcoin and Smart collaborative engineering. Maurizio Murgia and
Roberto Zunino are partially supported by MIUR PON Distributed Ledgers for Secure
Open Communities.

Renegotiation and Recursion in Bitcoin Contracts 277

References

1. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, �L.: Fair two-party
computations via Bitcoin deposits. In: Böhme, R., Brenner, M., Moore, T., Smith,
M. (eds.) FC 2014. LNCS, vol. 8438, pp. 105–121. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44774-1 8

2. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Secure mul-
tiparty computations on Bitcoin. In: IEEE S & P, pp. 443–458 (2014). https://
doi.org/10.1109/SP.2014.35. first appeared on Cryptology ePrint Archive. http://
eprint.iacr.org/2013/784

3. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Secure multi-
party computations on Bitcoin. Commun. ACM 59(4), 76–84 (2016). https://doi.
org/10.1145/2896386

4. Atzei, N., Bartoletti, M., Cimoli, T.: A survey of attacks on ethereum smart con-
tracts (SoK). In: Maffei, M., Ryan, M. (eds.) POST 2017. LNCS, vol. 10204, pp.
164–186. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54455-
6 8

5. Atzei, N., Bartoletti, M., Cimoli, T., Lande, S., Zunino, R.: SoK: unraveling Bitcoin
smart contracts. In: Bauer, L., Küsters, R. (eds.) POST 2018. LNCS, vol. 10804,
pp. 217–242. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89722-6 9

6. Atzei, N., Bartoletti, M., Lande, S., Yoshida, N., Zunino, R.: Developing secure
Bitcoin contracts with BitML. In: ESEC/FSE (2019). https://doi.org/10.1145/
3338906.3341173

7. Atzei, N., Bartoletti, M., Lande, S., Zunino, R.: A formal model of Bitcoin transac-
tions. In: Meiklejohn, S., Sako, K. (eds.) FC 2018. LNCS, vol. 10957, pp. 541–560.
Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-662-58387-6 29

8. Banasik, W., Dziembowski, S., Malinowski, D.: Efficient zero-knowledge contingent
payments in cryptocurrencies without scripts. In: Askoxylakis, I., Ioannidis, S.,
Katsikas, S., Meadows, C. (eds.) ESORICS 2016. LNCS, vol. 9879, pp. 261–280.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45741-3 14

9. Bartoletti, M., Murgia, M., Zunino, R.: Renegotiation and recursion in Bitcoin
contracts. CoRR abs/2003.00296 (2020)

10. Bartoletti, M., Zunino, R.: Constant-deposit multiparty lotteries on Bitcoin. In:
Brenner, M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp. 231–247. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-70278-0 15

11. Bartoletti, M., Zunino, R.: BitML: a calculus for Bitcoin smart contracts. In: ACM
CCS (2018). https://doi.org/10.1145/3243734.3243795

12. Bartoletti, M., Zunino, R.: Verifying liquidity of Bitcoin contracts. In: Nielson,
F., Sands, D. (eds.) POST 2019. LNCS, vol. 11426, pp. 222–247. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17138-4 10

13. Bentov, I., Kumaresan, R.: How to use Bitcoin to design fair protocols. In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 421–439. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1 24

14. Chakravarty, M.M., Chapman, J., MacKenzie, K., Melkonian, O., Jones, M.P.,
Wadler, P.: The extended UTXO model. In: Workshop on Trusted Smart Contracts
(2020)

15. Das, A., Balzer, S., Hoffmann, J., Pfenning, F.: Resource-aware session types for
digital contracts. CoRR abs/1902.06056 (2019)

16. Gudgeon, L., Moreno-Sanchez, P., Roos, S., McCorry, P., Gervais, A.: Sok: Off the
chain transactions. IACR Cryptology ePrint Archive 2019, 360 (2019)

https://doi.org/10.1007/978-3-662-44774-1_8
https://doi.org/10.1109/SP.2014.35
https://doi.org/10.1109/SP.2014.35
http://eprint.iacr.org/2013/784
http://eprint.iacr.org/2013/784
https://doi.org/10.1145/2896386
https://doi.org/10.1145/2896386
https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1007/978-3-319-89722-6_9
https://doi.org/10.1145/3338906.3341173
https://doi.org/10.1145/3338906.3341173
https://doi.org/10.1007/978-3-662-58387-6_29
https://doi.org/10.1007/978-3-319-45741-3_14
https://doi.org/10.1007/978-3-319-70278-0_15
https://doi.org/10.1145/3243734.3243795
https://doi.org/10.1007/978-3-030-17138-4_10
https://doi.org/10.1007/978-3-662-44381-1_24

278 M. Bartoletti et al.

17. Jones, S.L.P., Eber, J., Seward, J.: Composing contracts: an adventure in financial
engineering, functional pearl. In: International Conference on Functional Program-
ming (ICFP), pp. 280–292 (2000). https://doi.org/10.1145/351240.351267

18. Kumaresan, R., Bentov, I.: How to use Bitcoin to incentivize correct computations.
In: ACM CCS, pp. 30–41 (2014). https://doi.org/10.1145/2660267.2660380

19. Kumaresan, R., Bentov, I.: Amortizing secure computation with penalties. In:
ACM CCS, pp. 418–429 (2016). https://doi.org/10.1145/2976749.2978424

20. Kumaresan, R., Moran, T., Bentov, I.: How to use Bitcoin to play decentral-
ized poker. In: ACM CCS, pp. 195–206 (2015). https://doi.org/10.1145/2810103.
2813712

21. Kumaresan, R., Vaikuntanathan, V., Vasudevan, P.N.: Improvements to secure
computation with penalties. In: ACM CCS, pp. 406–417 (2016). https://doi.org/
10.1145/2976749.2978421

22. Luu, L., Chu, D.H., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts
smarter. In: ACM CCS, pp. 254–269 (2016). https://doi.org/10.1145/2976749.
2978309

23. Miller, A., Bentov, I.: Zero-collateral lotteries in Bitcoin and Ethereum. In: Euro
S&P Workshops, pp. 4–13 (2017). https://doi.org/10.1109/EuroSPW.2017.44

24. Möser, M., Eyal, I., Gün Sirer, E.: Bitcoin covenants. In: Clark, J., Meiklejohn,
S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS,
vol. 9604, pp. 126–141. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53357-4 9

25. O’Connor, R., Piekarska, M.: Enhancing Bitcoin transactions with covenants. In:
Brenner, M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp. 191–198. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-70278-0 12

https://doi.org/10.1145/351240.351267
https://doi.org/10.1145/2660267.2660380
https://doi.org/10.1145/2976749.2978424
https://doi.org/10.1145/2810103.2813712
https://doi.org/10.1145/2810103.2813712
https://doi.org/10.1145/2976749.2978421
https://doi.org/10.1145/2976749.2978421
https://doi.org/10.1145/2976749.2978309
https://doi.org/10.1145/2976749.2978309
https://doi.org/10.1109/EuroSPW.2017.44
https://doi.org/10.1007/978-3-662-53357-4_9
https://doi.org/10.1007/978-3-662-53357-4_9
https://doi.org/10.1007/978-3-319-70278-0_12

Modelling

Architecture Modelling of Parametric
Component-Based Systems

Maria Pittou and George Rahonis(B)

Department of Mathematics, Aristotle University of Thessaloniki,
54124 Thessaloniki, Greece

{mpittou,grahonis}@math.auth.gr

Abstract. We study formal modelling of architectures applied on para-
metric component-based systems consisting of an unknown number of
instances of each component. Architecture modelling is achieved by
means of logics. We introduce an extended propositional interaction logic
and investigate its first-order level which serves as a formal language for
the interactions of parametric systems. Our logic effectively describes the
execution order of interactions which is a main feature in several impor-
tant architectures. We state the decidability of equivalence, satisfiability,
and validity of first-order extended interaction logic formulas, and pro-
vide several examples of formulas describing well-known architectures.

Keywords: Architecture modelling · Parametric component-based
systems · First-order extended interaction logic

1 Introduction

Developing well-founded modelling techniques is a challenging task for large
and complex systems. Rigorous formalisms in systems engineering are mainly
component-based that allow reconfigurability and validation [8]. Component-
based design lies in constructing multiple components which coordinate in order
to generate the global model for a system [8,20]. Therefore, defining the com-
munication patterns of systems is one of the key aspects in modelling process.
Coordination principles can be specified by means of architectures that charac-
terize the permissible interactions and their implementation order as well as the
topology, of the system’s components [28,34]. Architectures have been proved
important in systems modelling since they enforce design rules on the com-
ponents, and hence ensure correctness by construction with respect to basic
properties such as deadlock freedom and mutual exclusion [7,10,28].

M. Pittou— The research work was supported by the Hellenic Foundation for
Research and Innovation (HFRI) under the HFRI PhD Fellowship grant (Fellowship
Number: 1471).

c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
S. Bliudze and L. Bocchi (Eds.): COORDINATION 2020, LNCS 12134, pp. 281–300, 2020.
https://doi.org/10.1007/978-3-030-50029-0_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50029-0_18&domain=pdf
https://doi.org/10.1007/978-3-030-50029-0_18

282 M. Pittou and G. Rahonis

In this paper we provide a formal framework for the architecture modelling of
parametric component-based systems using a first-order logic. Parametric sys-
tems represent a wide class of component-based systems including communi-
cation protocols and concurrent and distributed algorithms [1,9,17]. Paramet-
ric systems are constructed by a finite number of component types each con-
sisting of an unknown number of instances [4,9]. We address the problem of
modelling the ordering restrictions for the components’ connections, an impor-
tant aspect of several parametric architectures, including Publish/Subscribe and
Request/Response [15,38]. For instance, in a Request/Response architecture a
service needs firstly to enroll in the service registry and then receives requests
from the interested clients. On the other hand, several services fulfilling the same
task, maybe be enrolled in the registry in any order. We model components with
the standard formalism of labelled transitions systems (cf. [2,3,8,22]) where
communication is performed by their set of labels, called ports, and is defined
by interactions, i.e., sets of ports. Then, architectures are modelled by logic
formulas encoding allowed interactions and their execution order. Briefly, the
contributions of our work are the following:

(1) We introduce Extended Propositional Interaction Logic (EPIL for short)
over a finite set of ports, which augments PIL from [28] with two operators
namely the concatenation ∗ and the shuffle operator �. In contrast to PIL,
where the satisfaction relation is checked against interactions, EPIL formulas
are interpreted over finite words whose letters are interactions. Intuitively,
the semantics of concatenation and shuffle operator specifies the execution
of consecutive and interleaving interactions, respectively. We apply EPIL
formulas for formalizing Blackboard [14], Request/Response [15], and Pub-
lish/Subscribe [18] architectures.

(2) We introduce First-Order Extended Interaction Logic (FOEIL for short), as
a modelling language for the architectures of parametric systems. The syntax
of FOEIL is over typed variables and is equipped with the syntax of EPIL,
the common existential and universal quantifiers, and four new quantifiers,
namely existential and universal concatenation and shuffle quantifiers. The
new quantifiers achieve to encode the partial and whole participation of
component instances in sequential and interleaved interactions of parametric
architectures.

(3) We show the expressiveness of FOEIL by examples for architectures of para-
metric component-based systems. Specifically, we consider the architectures
Blackboard, Request/Response, and Publish/Subscribe, that impose orders
on the implementation of their interactions.

(4) We state an effective translation of FOEIL formulas to finite automata and
prove the decidability of equivalence, validity and satisfiability for FOEIL
sentences.

The structure of the paper is as follows. In Sect. 2 we discuss related work and
in Sect. 3 we recall the basic notions for component-based systems and interac-
tions. Then, in Sect. 4 we introduce the syntax and semantics of EPIL and present

Modelling of Parametric Architectures 283

three examples of architectures defined by EPIL formulas. In Sect. 5 we intro-
duce the syntax and semantics of our FOEIL and provide examples of FOEIL
sentences describing concrete parametric architectures. Section 6 deals with the
decidability results for FOEIL sentences. Finally, in Conclusion, we present open
problems and future work.

2 Related Work

In [28] the authors introduced a Propositional Configuration Logic (PCL) as a
modelling language for the description of architectures. First- and second-order
configuration logic was considered for parametric architectures (called styles of
architectures in that paper). PCL which was interpreted over sets of interactions
has a nice property: for every PCL formula an equivalent one in full normal form
can be constructed. This implied the decidability of equivalence of PCL formulas
in an automated way. Though PCL does not describe the order of interactions
required by architectures as it is done by our logics, EPIL and FOEIL.

In [26] the first-order level of PIL, namely First-Order Interaction Logic
(FOIL) was introduced to describe finitely many interactions, for parametric
systems in BIP (cf. [8]). FOIL applied for modelling classical architectures (Star,
Ring etc.) and contributed to model checking of parametric systems. Monadic
Interaction Logic (MIL) was introduced in [10] as an alternative logic for the
interactions of parametric systems. MIL was used for the description of para-
metric rendezvous and broadcast communication and applied for developing an
automated method for detecting deadlocks. In the same line, in [11], an Interac-
tion Logic with One Successor (IL1S) was developed for describing rendezvous
and broadcast communications, and the architectures of parametric systems.
IL1S was proved to be decidable and used for checking correctness of safety
properties of parametric systems. FOIL, MIL, and IL1S, have been proved sat-
isfactory for formalizing communication and architectures in parametric sys-
tems, though without capturing any order restrictions, as required by each
architecture.

One of the main features in BIP framework is “priorities among interactions”
(cf. [8]). A priority system is determined by a strict partial order ≺ among the
set of permitted interactions. If a ≺ a′ for two interactions a and a′, then a′ must
be implemented before a since it has bigger priority. Clearly the set of strings
of interactions satisfying an EPIL sentence containing a shuffle operator, cannot
be obtained by any strict partial order among the set of interactions.

In [5] the authors established a strict framework for architectures compos-
ability. There, architectures were considered as operators enforcing properties to
semantics of systems’ components. Preservation of safety and liveness properties
was also studied for composed architectures. The subsequent work in [7] investi-
gated architectures of composed-based systems with data and conditions under
which safety properties are preserved. In both works the required order of the
interactions’ execution in architectures has not been considered.

Hennessy and Milner introduced in 1985 (cf. [23]) a logic, called HML, as
a calculus for the specification of concurrent programs and their properties.

284 M. Pittou and G. Rahonis

In [19] the authors studied μHML, i.e., HML with least and greatest fixpoints
and focused on a fragment of that logic that is monitored for runtime verification
of programs’ execution. μHML succeeded to describe simple client/server pro-
cesses but it is far from describing complex architectures. Specifically our shuffle
operator cannot be described in μHML.

In [20] the authors introduced the Components and Behaviors (CAB) pro-
cess calculus which extended BIP with dynamic capabilities and showed the
expressiveness of its priorities. The paper studied dynamic composition of sub-
components based on the calculus language which though does not cover the
architecture of the compound system.

Distributed systems were investigated in the setup of pomsets in [21] (cf.
also [36]) where the execution order of interactions was considered. Though, due
to the imposed orders of pomsets, our shuffle operation cannot be sufficiently
described in this framework. For instance, the subfomula ϕ1 � ϕ2 of the EPIL
formula ϕ describing the Publish/Subscribe architecture (cf. Example 3) cannot
be described by means of pomsets.

Multiparty session types described efficiently communication protocols and
their interactions patterns (cf. for instance [24,25]). The relation among multi-
party session types and communicating automata was studied in [16]. Parame-
terized multiparty session types were investigated in [13,17]. Nevertheless, the
work of [17] did not study the implementation order of the parameterized inter-
actions and the models of [13,16,24,25] did not consider the architectures of the
systems.

Finally, an architectural design rewriting model for the development and
reconfiguration of software architectures was introduced in [12]. Though, no order
of interactions’ execution was considered.

3 Preliminaries

For every natural number n ≥ 1 we denote by [n] the set {1, . . . , n}. For every
set S we denote by P(S) the powerset of S. Let A be an alphabet, i.e., a finite
nonempty set. We denote by A∗ the set of all finite words over A and we let A+ =
A∗ \ {ε} where ε denotes the empty word. Given w, u ∈ A∗, the shuffle product
w � u of w and u is a language over A defined by w � u = {w1u1 . . . wmum |
w1, . . . , um ∈ A∗ and w = w1 . . . wm, u = u1 . . . um}.

A component-based system consists of a finite number of components of the
same or different type. We define components by labelled transition systems (LTS
for short) like in well-known component-based modelling frameworks including
BIP [8], REO [3], X-MAN [22], and B [2].

Formally, an atomic component is an LTS B = (Q,P, q0, R) where Q is a finite
set of states, P is a finite set of ports, q0 is the initial state and R ⊆ Q×P ×Q is
the set of transitions. We call an atomic component B a component, when we deal
with several atomic components. For every set B = {B(i) | i ∈ [n]} with B(i) =
(Q(i), P (i), q0(i), R(i)), i ∈ [n], we assume that (Q(i)∪P (i))∩(Q(i′)∪P (i′)) = ∅
for every 1 ≤ i �= i′ ≤ n.

Modelling of Parametric Architectures 285

Here we focus only on the communication patterns of systems’ components,
using the terminology of BIP for the basic notions. Communication is achieved
through components’ interfaces. The interface of an LTS corresponds to its set of
labels, called ports. Then, communications of components are defined by inter-
actions, i.e., sets of ports, that can be represented by formulas of propositional
interaction logic (PIL for short) [10,11,28]. Hence, firstly we need to recall PIL.

Let P be a nonempty finite set of ports. Then I(P) = P(P) \ {∅} is the set
of interactions over P . The syntax of PIL formulas φ over P is given by the
grammar φ ::= true | p | ¬φ | φ ∨ φ where p ∈ P . We set false = ¬true and
¬(¬φ) = φ, φ∧φ′ := ¬(¬φ ∨ ¬φ′), φ → φ′ := ¬φ∨φ′ for PIL formulas φ, φ′ over
P . PIL formulas are interpreted over interactions in I(P). For every PIL formula
φ and a ∈ I(P) we define the satisfaction relation a |=PIL φ by induction on the
structure of φ as follows:

a |=PIL true, a |=PIL ¬φ iff a �|=PIL φ,
a |=PIL p iff p ∈ a, a |=PIL φ1 ∨ φ2 iff a |=PIL φ1 or a |=PIL φ2.

Note that PIL differs from propositional logic, since it is interpreted over
interactions, and thus the name “interaction” is assigned to it.

Two PIL formulas φ, φ′ are called equivalent, denoted by φ ≡ φ′, when a |= φ
iff a |= φ′ for every a ∈ I(P). For every a = {p1, . . . , pl} ∈ I(P) we consider the
PIL formula φa = p1 ∧ . . . ∧ pl. Then, a |=PIL φa, and for every a, a′ ∈ I(P) we
get a = a′ iff φa ≡ φa′ . We can describe a set of interactions as a PIL formula.
Specifically for γ = {a1, . . . , am}, the PIL formula φγ of γ is φγ = φa1 ∨. . .∨φam

.
Let B = {B(i) | i ∈ [n]} and set PB =

⋃
i∈[n] P (i). An interaction of B is an

interaction a ∈ I(PB) such that |a ∩ P (i)| ≤ 1, for every i ∈ [n]. We denote by
IB the set of all interactions of B, i.e.,

IB = {a ∈ I(PB) | |a ∩ P (i)| ≤ 1 for every i ∈ [n]} .

Definition 1. A component-based system is a pair (B, γ) where B = {B(i) |
i ∈ [n]} is a set of components, with B(i) = (Q(i), P (i), q0(i), R(i)) for every
i ∈ [n], and γ is a set of interactions in IB.

The set γ of interactions of (B, γ) specifies the architecture of the system.
Obviously, we can replace γ by its corresponding PIL formula φγ , i.e., in a logical
directed notation. Expression of software architectures by logics has been used
in several works and gave nice results (cf. [10,11,28]).

4 Extended Propositional Interaction Logic

PIL describes nicely several architectures but its semantics does not capture the
execution order of the interactions imposed by each architecture. Ordered inter-
actions occur in common architectures, including Request/Response and Pub-
lish/Subscribe. In this section, we introduce a propositional logic that extends
PIL with two operators, the concatenation ∗ and the shuffle operator �, and we
model architectures of component-based systems with order restrictions.

286 M. Pittou and G. Rahonis

Definition 2. Let P be a finite set of ports. The syntax of extended propo-
sitional interaction logic (EPIL for short) formulas ϕ over P is given by the
grammar

ζ ::= φ | ζ ∗ ζ

ϕ ::= ζ | ¬ζ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ ∗ ϕ | ϕ� ϕ

where φ is a PIL formula over P .

The binding strength, in decreasing order, of the EPIL operators is: negation,
shuffle, concatenation, conjunction, and disjunction. Negation is applied only
in PIL formulas and EPIL formulas of type ζ. The latter ensures exclusion of
erroneous interactions in architectures. The restricted use of negation allows
a reasonable complexity of translation of FOEIL formulas to finite automata.
This in turn implies the decidability of equivalence, satisfiability, and validity of
FOEIL sentences (cf. Sect. 6). Our assumption has no impact in expressiveness
of EPIL formulas, since they can efficiently model most known architectures.

EPIL formulas are interpreted over finite words w ∈ I(P)∗. Intuitively, a word
w encodes each of the distinct interactions within a system as a letter. Moreover,
the position of each letter in w depicts the order in which the corresponding
interaction is executed in the system, in case there is an order restriction.

Definition 3. Let ϕ be an EPIL formula over P and w ∈ I(P)∗. If w = ε and
ϕ = true, then we set w |= true. If w ∈ I(P)+, then we define the satisfaction
relation w |= ϕ by induction on the structure of ϕ as follows:

– w |= φ iff w |=PIL φ,
– w |= ζ1 ∗ ζ2 iff there exist w1, w2 ∈ I(P)∗ such that w = w1w2 and wi |= ζi

for i = 1, 2,
– w |= ¬ζ iff w �|= ζ,
– w |= ϕ1 ∨ ϕ2 iff w |= ϕ1 or w |= ϕ2,
– w |= ϕ1 ∧ ϕ2 iff w |= ϕ1 and w |= ϕ2,
– w |= ϕ1∗ϕ2 iff there exist w1, w2 ∈ I(P)∗ such that w = w1w2 and wi |= ϕi

for i = 1, 2,
– w |= ϕ1 � ϕ2 iff there exist w1, w2 ∈ I(P)∗ such that w ∈ w1 � w2 and

wi |= ϕi for i = 1, 2.

If ϕ = φ is a PIL formula, then w |= φ implies that w is a letter in I(P). Two
EPIL formulas ϕ,ϕ′ are called equivalent, denoted by ϕ ≡ ϕ′, when w |= ϕ iff
w |= ϕ′ for every w ∈ I(P)∗. Now, we define an updated version of component-
based systems by replacing the PIL formula by an EPIL formula. Specifically, a
component-based system is a pair (B, ϕ) where B = {B(i) | i ∈ [n]} is a set of
components and ϕ is an EPIL formula over PB. The investigation of semantics
and verification of component-based systems is a part of future work.

Next we present three examples of component-based models (B, ϕ) whose
architectures have ordered interactions encoded by EPIL formulas satisfied by
words over IB. Clearly, there exist several variations of the following architectures

Modelling of Parametric Architectures 287

and their order restrictions, that EPIL formulas could also model sufficiently by
applying relevant modifications. We need to define the following macro EPIL
formula. Let P = {p1, . . . , pn} be a set of ports. Then, for pi1 , . . . , pim ∈ P with
m < n we let

#(pi1 ∧ . . . ∧ pim) ::= pi1 ∧ . . . ∧ pim ∧
∧

p∈P\{pi1 ,...,pim} ¬p.

Example 1 (Blackboard). We consider a component-based system (B, ϕ) with
the Blackboard architecture. The latter is applied in planning and scheduling
[35] as well as in artificial intelligence [6]. Blackboard architecture involves a
blackboard, a controller and the (knowledge) sources components [14,29]. Black-
board presents the state of the problem to be solved and sources provide partial
solutions without knowing about the existence of other sources. When there is
enough information for a source to provide its partial solution, the source is
triggered, i.e., is keen to write on the blackboard. Since multiple sources may be
triggered, a controller component is used to resolve any conflicts.

We consider three knowledge sources components. Hence, B = {B(i) | i ∈ [5]}
where B(1), . . . , B(5) refer to blackboard, controller and the sources components,
respectively (Fig. 1). Blackboard has two ports pd, pa to declare the state of the
problem and add the new data as obtained by a source, respectively. Sources have
three ports pnk

, ptk , pwk
, for k = 1, 2, 3, for being notified about the existing data

on the blackboard, the trigger of the source, and for writing on the blackboard,
respectively. Controller has three ports, pr used to record blackboard data, pl

for logging the triggered sources, and pe for their execution to blackboard. Here
we assume that all sources are triggered, i.e., that they participate in the archi-
tecture. The EPIL formula ϕ for Blackboard architecture is

ϕ = #(pd ∧ pr) ∗
(

#(pd ∧ pn1)�#(pd ∧ pn2)�#(pd ∧ pn3)
)

∗
(

ϕ1 ∨ ϕ2 ∨ ϕ3 ∨ (ϕ1 � ϕ2) ∨ (ϕ1 � ϕ3) ∨ (ϕ2 � ϕ3) ∨ (ϕ1 � ϕ2 � ϕ3)
)

where ϕi = #(pl ∧ pti) ∗ #(pe ∧ pwi
∧ pa) for i = 1, 2, 3.

The first PIL subformula encodes the connection among blackboard and con-
troller. The EPIL subformula between the two ∗ operators represents the con-
nections of knowledge sources to blackboard. The last part of ϕ captures the
connection of some of knowledge sources with controller and blackboard. The
use of ∗ operator in ϕ ensures that the controller is informed before the sources,
and that sources are triggered before writing on blackboard. The shuffle oper-
ator in ϕ captures any possible order, among the sources, for connecting with
controller and blackboard.

Before our second example we show the expressive difference among EPIL
and PCL formulas of [28].

288 M. Pittou and G. Rahonis

pd

pa

Blackb.
B(1)

pr pl pe

Contr.
B(2)

pn1

pt1

pw1

Sour. 1
B(3)

pn2

pt2

pw2

Sour. 2
B(4)

pn3

pt3

pw3

Sour. 3
B(5)

Fig. 1. Blackboard architecture. A possible execution for the interactions.

Remark 1. Consider the Blackboard architecture presented in the previous
example. Then the corresponding PCL formula ρ (cf. [28]) describing that archi-
tecture is

ρ = #(pd ∧ pr) + #(pd ∧ pn1) + #(pd ∧ pn2) + #(pd ∧ pn3) +
(
φ1 � φ2 � φ3 � (φ1 + φ2) � (φ1 + φ3) � (φ2 + φ3) � (φ1 + φ2 + φ3)

)

where + denotes the coalescing operator, � denotes the union operator, and
φi = #(pl ∧ pti) + #(pe ∧ pwi

∧ pa)
for i = 1, 2, 3.

Then, the PCL formula ρ is interpreted over sets of interactions in P(I(P))\
{∅} which trivially cannot express the required order of the execu-
tion of the interactions. For instance the set of interactions

{{pd, pr},

{pd, pn1}, {pd, pn2}, {pd, pn3}, {pl, pt2}, {pe, pw2 , pa}}
satisfies ρ but represents no

order of the interactions’ execution.

Example 2 (Request/Response). Request/Response architectures refer to
services and clients, and are classical interaction patterns widely used for web
services [15]. Services become available to clients by enrolling in the so-called ser-
vice registry. Then clients scan the registry and choose a service. Each client that
is interested in a service sends a request and waits until the service’s respond.
Meanwhile no other client is connected to the service. To achieve this, in [28] a
third component called coordinator was added for each service.

Modelling of Parametric Architectures 289

For our example we consider seven components, namely the service registry,
two services with their coordinators, and two clients. (Fig. 2). Service registry
has the ports pe, pu, and pt, for the services’ enrollment and for allowing a client
to search and take the service’s address, respectively. Services have the ports
prk

, pgk
, psk

, for k = 1, 2, for enrolling to service registry, and connecting to
a client (via coordinator) for receiving a request and responding, respectively.
Clients have the ports plk , pok

for connecting with service registry to look up and
obtain a service’s address, while the ports pnk

, pqk and pck express the connection
of the client to coordinator, to service (via coordinator) for sending the request
and for collecting its response, respectively, for k = 1, 2. Coordinators have
three ports, pmk

for controlling that only one client is connected to a service,
pak

for acknowledging that the connected client sends a request, and pdk
that

disconnects the client when the service responds to the request, for k = 1, 2. The
EPIL formula ϕ for the Request/Response architecture equals to

(
#(pe ∧ pr1)�#(pe ∧ pr2)

) ∗ (
ξ1 � ξ2

) ∗
((

ϕ11 ∨ ϕ21 ∨ (ϕ11 ∗ ϕ21) ∨ (ϕ21 ∗ ϕ11)
) ∨

(
ϕ12 ∨ ϕ22 ∨ (ϕ12 ∗ ϕ22) ∨ (ϕ22 ∗ ϕ12)

) ∨ (
(
ϕ11 ∨ ϕ21 ∨ (ϕ11 ∗ ϕ21) ∨ (ϕ21 ∗ ϕ11)

)
�

(
ϕ12 ∨ ϕ22 ∨ (ϕ12 ∗ ϕ22) ∨ (ϕ22 ∗ ϕ12)

)
))

where ξi = #(pli ∧ pu) ∗ #(poi
∧ pt) for i = 1, 2, and

ϕij = #(pni
∧ pmj

) ∗ #(pqi ∧ paj
∧ pgj

) ∗ #(pci ∧ pdj
∧ psj

) for i = 1, 2 (clients)
and j = 1, 2 (services).

pm1 pa1 pd1

Coord. 1
B(4)

pm2 pa2 pd2

Coord. 2
B(5)

pn2 pq2 pc2

pl2

po2

Client 2
B(7) pe

pu

pt

S. Registry
B(1)

pn1 pq1 pc1

pl1

po1

Client 1
B(6)

pg2 ps2

pr2

Service 2
B(3)

pg1 ps1

pr1

Service 1
B(2)

Fig. 2. Request/Response architecture. The omitted interactions are derived similarly.

290 M. Pittou and G. Rahonis

The subformulas at the left of the first two concatenation operators encode
the connections of the two services and the two clients with registry. Then, each
of the three subformulas connected with the big disjunctions expresses that either
one of the two clients or both of them (one at each time) are connected with the
first service only, the second service only, or both of the services, respectively.

Example 3 (Publish/Subscribe). Publish/Subscribe architecture is used in
IoT applications (cf. [30,31]), and recently in cloud systems [37] and robotics [27].
It involves publishers, subscribers, and topics components. Publishers advertise
and transmit to topics the type of messages they produce. Then, subscribers are
connected with topics they are interested in, and topics in turn transfer the mes-
sages from publishers to corresponding subscribers. Once a subscriber receives
the requested message, it is disconnected from the relevant topic. Publishers
cannot check the existence of subscribers and vice-versa [18].

We consider two publisher, two topic and three subscriber components
(Fig. 3). Publishers have two ports, pak

and ptk , for k = 1, 2, for advertising
and transferring their messages to topics, respectively. Topics are notified from
the publishers and receive their messages through ports pnk

and prk
, for k = 1, 2,

respectively. Ports pck , psk
and pfk

, for k = 1, 2, are used from topics for the con-
nection, the sending of a message, and disconnection with a subscriber, respec-
tively. Subscribers use the ports pem

, pgm
, pdm

, for m = 1, 2, 3, for connecting
with the topic (express interest), getting a message from the topic, and discon-
necting from the topic, respectively. The EPIL formula for the Publish/Subscribe
architecture is ϕ = ϕ1 ∨ ϕ2 ∨ (ϕ1 � ϕ2) with

ϕi =
(

(
ξi ∗ ϕi1

) ∨ (
ξi ∗ ϕi2

) ∨ (
ξi ∗ ϕi3

) ∨ (
ξi ∗ (ϕi1 � ϕi2)

) ∨ (
ξi ∗ (ϕi1 � ϕi3)

) ∨
(
ξi ∗ (ϕi2 � ϕi3)

) ∨ (
ξi ∗ (ϕi1 � ϕi2 � ϕi3)

)
)

for i ∈ {1, 2} (topics) and ξ1 = ξ11 ∨ ξ12 ∨ (ξ11� ξ12), ξ2 = ξ21 ∨ ξ22 ∨ (ξ21� ξ22)
encode that each of the two topics connects with the first publisher, or the second
one, or with both of them, where ξij = #(pni

∧paj
)∗#(pri

∧ptj) for i, j ∈ {1, 2},
and ϕij = #(pci ∧pej

)∗#(psi
∧pgj

)∗#(pfi
∧pdj

) for i ∈ {1, 2} and j ∈ {1, 2, 3},
describes the connections of the two topics with each of the three subscribers.

The presented examples demonstrate that EPIL formulas can encode the
order restrictions within architectures and also specify all the different instanti-
ations for the connections among the coordinated components in the system.

5 Parametric Component-Based Systems

In this section we deal with the parametric extension of component-based sys-
tems defined by a finite number of distinct component types whose number of
instances is a parameter for the system. In real world applications we do not
need an unbounded number of components. Though, the number of instances

Modelling of Parametric Architectures 291

pa1

pt1

Publ. 1
B(1)

pf1

ps1

pc1pn1

pr1

Topic 1
B(3) pd1

pg1

pe1
Subs. 1
B(5)

pd2

pg2

pe2
Subs. 2
B(6)

pa2

pt2

Publ. 2
B(2)

pf2

ps2

pc2pn2

pr2

Topic 2
B(4)

pd3

pg3

pe3
Subs. 3
B(7)

Fig. 3. Publish/Subscribe architecture. A possible execution for the interactions.

of every component type is unknown or it can be modified during a process.
Next we consider parametric component-based systems, i.e., component-based
systems with infinitely many instances of every component type.

Let B = {B(i) | i ∈ [n]} be a set of component types. For every i ∈ [n]
and j ≥ 1 we consider a copy B(i, j) = (Q(i, j), P (i, j), q0(i, j), R(i, j)) of B(i),
namely the j-th instance of B(i). Hence, for every i ∈ [n] and j ≥ 1, the instance
B(i, j) is also a component and we call it a parametric component or a component
instance. We assume that (Q(i, j) ∪ P (i, j)) ∩ (Q(i′, j′) ∪ P (i′, j′)) = ∅ whenever
i �= i′ or j �= j′ for every i, i′ ∈ [n] and j, j′ ≥ 1. This restriction permits us to
use, without any confusion, the notation P (i, j) = {p(j) | p ∈ P (i)} for every
i ∈ [n] and j ≥ 1. We set pB = {B(i, j) | i ∈ [n], j ≥ 1} and call it a set of
parametric components, with PpB =

⋃
i∈[n],j≥1 P (i, j).

Since parametric systems consist of an unknown number of component
instances, we need a symbolic representation to describe their architectures.
For this, we introduce the first-order extended interaction logic whose semantics
describes the order of interactions implemented in a parametric architecture. Our
logic is proved sufficient to model several complex architectures. This is impor-
tant because parametric systems based on well-defined architectures satisfy most
of their requirements [4,9].

5.1 First-Order Extended Interaction Logic

We introduce the first-order extended interaction logic as a modelling language
for describing the interactions of parametric component-based systems. For this,
we equip EPIL formulas with variables. Due to the nature of parametric sys-
tems we need to distinguish variables referring to different component types.

292 M. Pittou and G. Rahonis

Let pB = {B(i, j) | i ∈ [n], j ≥ 1} and X (1), . . . ,X (n) be pairwise disjoint
countable sets of first-order variables referring to instances of component types
B(1), . . . , B(n), respectively. Variables in X (i), for every i ∈ [n], are denoted by
small letters with the corresponding superscript, i.e., x(i) ∈ X (i), i ∈ [n], is a
first-order variable referring to an instance of component type B(i). Let X =
X (1) ∪ . . . ∪ X (n) and set PpB(X) =

{
p

(
x(i)

) | i ∈ [n], x(i) ∈ X (i), and p ∈ P (i)
}
.

Definition 4. Let pB = {B(i, j) | i ∈ [n], j ≥ 1} be a set of parametric com-
ponents. Then the syntax of first-order extended interaction logic (FOEIL for
short) formulas ψ over pB1 is given by the grammar

ψ ::= ϕ | x(i) = y(i) | ¬(x(i) = y(i)) | ψ ∨ ψ | ψ ∧ ψ | ψ ∗ ψ | ψ� ψ |
∃x(i).ψ | ∀x(i).ψ | ∃∗x(i).ψ | ∀∗x(i).ψ | ∃�x(i).ψ | ∀�x(i).ψ

where ϕ is an EPIL formula over PpB(X), i ∈ [n], x(i), y(i) are first-order vari-
ables in X (i), ∃∗ denotes the existential concatenation quantifier, ∀∗ the universal
concatenation quantifier, ∃� is the existential shuffle quantifier, and ∀� the uni-
versal shuffle quantifier. Furthermore, we assume that whenever ψ contains a
subformula of the form ∃∗x(i).ψ′ or ∃�x(i).ψ′, then the application of negation
in ψ′ is permitted only in PIL formulas and formulas of the form x(j) = y(j).

Let ψ be a FOEIL formula over pB. We denote by free(ψ) the set of free
variables of ψ. If ψ has no free variables, then it is a sentence. We consider a
mapping r : [n] → N. The value r(i), for every i ∈ [n], represents the finite
number of instances of the component type B(i) in the parametric system. We
let pB(r) = {B(i, j) | i ∈ [n], j ∈ [r(i)]} and call it the instantiation of pB w.r.t.
r. Also PpB(r) =

⋃
i∈[n],j∈[r(i)] P (i, j) and IpB(r) = {a ∈ I(PpB(r)) | |a∩P (i, j)| ≤

1 for every i ∈ [n] and j ∈ [r(i)]}.
Let V ⊆ X be a finite set of first-order variables and set PpB(V) = {p(x(i)) ∈

PpB(X) | x(i) ∈ V}. A (V, r)-assignment is a mapping σ : V → N such that
σ(V ∩ X (i)) ⊆ [r(i)] for every i ∈ [n], and σ[x(i) → j] is the (V ∪ {x(i)}, r)-
assignment which acts as σ on V \ {x(i)} and assigns j to x(i). If ϕ is an EPIL
formula over PpB(V), then σ(ϕ) is an EPIL formula over PpB(r) which is obtained
by ϕ by replacing every port p(x(i)) in ϕ by p(σ(x(i))).

We interpret FOEIL formulas ψ over triples consisting of a mapping r : [n] →
N, a (V, r)-assignment σ, and a word w ∈ I∗

pB(r). The semantics of formulas of
the form ∃∗x(i).ψ and ∀∗x(i).ψ (resp. ∃�x(i).ψ and ∀�x(i).ψ) refer to satisfaction
of ψ by subwords of w. The subwords correspond to component instances which
are determined by the application of the assignment σ to x(i), and w results by
the ∗ (resp. �) operator among the subwords.

Definition 5. Let ψ be a FOEIL formula over a set pB = {B(i, j) | i ∈ [n], j ≥
1} of parametric components and V ⊆ X a finite set containing free(ψ). Then for
1 According to our terminology for EPIL formulas, a FOEIL formula should be defined

over the set of ports of pB. Nevertheless, we prefer for simplicity to refer to the set
pB of parametric components.

Modelling of Parametric Architectures 293

every r : [n] → N, (V, r)-assignment σ, and w ∈ I∗
pB(r) we define the satisfaction

relation (r, σ, w) |= ψ, inductively on the structure of ψ as follows:

– (r, σ, w) |= ϕ iff w |= σ(ϕ),
– (r, σ, w) |= x(i) = y(i) iff σ(x(i)) = σ(y(i)),
– (r, σ, w) |= ¬(x(i) = y(i)) iff (r, σ, w) �|= x(i) = y(i),
– (r, σ, w) |= ψ1 ∨ ψ2 iff (r, σ, w) |= ψ1 or (r, σ, w) |= ψ2,
– (r, σ, w) |= ψ1 ∧ ψ2 iff (r, σ, w) |= ψ1 and (r, σ, w) |= ψ2,
– (r, σ, w) |= ψ1 ∗ ψ2 iff there exist w1, w2 ∈ I∗

pB(r) such that w = w1w2 and
(r, σ, wi) |= ψi for i = 1, 2,

– (r, σ, w) |= ψ1� ψ2 iff there exist w1, w2 ∈ I∗
pB(r) such that w ∈ w1�w2 and

(r, σ, wi) |= ψi for i = 1, 2,
– (r, σ, w) |= ∃x(i).ψ iff there exists j ∈ [r(i)] such that (r, σ[x(i) → j], w) |= ψ,
– (r, σ, w) |= ∀x(i).ψ iff (r, σ[x(i) → j], w) |= ψ for every j ∈ [r(i)],
– (r, σ, w) |= ∃∗x(i).ψ iff there exist wl1 , . . . , wlk ∈ I∗

pB(r) with 1 ≤ l1 < . . . <

lk ≤ r(i) such that w = wl1 . . . wlk and (r, σ[x(i) → j], wj) |= ψ for every
j = l1, . . . , lk,

– (r, σ, w) |= ∀∗x(i).ψ iff there exist w1, . . . , wr(i) ∈ I∗
pB(r) such that w =

w1 . . . wr(i) and (r, σ[x(i) → j], wj) |= ψ for every j ∈ [r(i)],
– (r, σ, w) |= ∃�x(i).ψ iff there exist wl1 , . . . , wlk ∈ I∗

pB(r) with 1 ≤ l1 < . . . <

lk ≤ r(i) such that w ∈ wl1 � . . .�wlk and (r, σ[x(i) → j], wj) |= ψ for every
j = l1, . . . , lk,

– (r, σ, w) |= ∀�x(i).ψ iff there exist w1, . . . , wr(i) ∈ I∗
pB(r) such that w ∈ w1 �

. . .� wr(i) and (r, σ[x(i) → j], wj) |= ψ for every j ∈ [r(i)].

By definition of parametric systems, all instances of each component type
are identical, hence the order specified above in the semantics of ∃∗,∀∗,∃�,∀�
quantifiers causes no restriction in the derived architecture.

If ψ is a FOEIL sentence over pB, then we write (r, w) |= ψ. Let also ψ′ be
a FOEIL sentence over pB. Then, ψ and ψ′ are called equivalent w.r.t. r when
(r, w) |= ψ iff (r, w) |= ψ′, for every w ∈ I∗

pB(r).
In the sequel, we shall write also x(i) �= y(i) for ¬(x(i) = y(i)). Let β be a

boolean combination of atomic formulas of the form x(i) = y(i) and ψ a FOEIL
formula over pB. Then, we define β → ψ ::= ¬β ∨ ψ.

For simplicity we denote boolean combinations of formulas of the form x(i) =
y(i) as constraints. For instance we write ∃x(i)∀y(i)∃x(j)∀y(j)((x(i) �= y(i)) ∧
(x(j) �= y(j))).ψ for ∃x(i)∀y(i)∃x(j)∀y(j).(((x(i) �= y(i)) ∧ (x(j) �= y(j))) → ψ).

Note that in [28] the authors considered a universe of component types and
hence, excluded in their logic formulas the erroneous types for each architecture.
Such a restriction is not needed in our setting since we consider a well-defined
set [n] of component types for each architecture.

Definition 6. A parametric component-based system is a pair (pB, ψ) where
pB = {B(i, j) | i ∈ [n], j ≥ 1} is a set of parametric components and ψ is a
FOEIL sentence over pB.

294 M. Pittou and G. Rahonis

In the sequel, we refer to parametric component-based systems simply as
parametric systems. We remind that in this paper we focus on the architectures
of parametric systems. The study of parametric systems’ behavior is left for
investigation in subsequent work as a part of parametric verification.

For our examples in the next subsection, we shall need the following macro
FOEIL formula. Let pB = {B(i, j) | i ∈ [n], j ≥ 1} and 1 ≤ i1, . . . , im ≤ n be
pairwise different indices. Then

#
(
pi1 (x

(i1)) ∧ . . . ∧ pim (x(im))
)
::=

(
pi1 (x

(i1)) ∧ . . . ∧ pim (x(im))
) ∧

(∧

j=i1,...,im

∧

p∈P (j)\{pj}
¬p(x(j))

)
∧

(∧

j=i1,...,im

∀y(j)(y(j) �= x(j)).
∧

p∈P (j)

¬p(y(j))
)

∧

(∧

k∈[n]\{i1,...,im}

∧

p∈P (k)

∀x(k).¬p(x(k))
)

.

The first m − 1 conjunctions express that the ports in the argument of #
participate in the interaction. The double indexed conjunctions in the first pair
of big parentheses disable all the other ports of the participating instances of
components of type i1, . . . , im described by x(i1), . . . , x(im), respectively; conjunc-
tions in the second pair of parentheses disable all ports of remaining instances of
component types i1, . . . , im. The last conjunct in the third line ensures that no
ports in instances of remaining component types participate in the interaction.

5.2 Examples of FOEIL Sentences for Parametric Architectures

We present examples of FOEIL sentences describing parametric architectures,
where the order of interactions is a main feature. We should note that FOEIL
describes effectively as well, architectures with no order restrictions. Due to space
limitations, we refer the reader to [32] for such examples.

Example 4 (Blackboard). The subsequent FOEIL sentence ψ encodes the
interactions of Blackboard architecture, described in Example 1, in the para-
metric setting. We let X (1),X (2),X (3) to be set of variables for blackboard,
controller, and knowledge sources component instances, respectively.

ψ = ∃x(1)∃x(2).

(

#(pd(x(1)) ∧ pr(x(2))) ∗
(

∀�x(3).#(pd(x(1)) ∧ pn(x(3)))
)

∗
(

∃�y(3).
(
#(pl(x(2)) ∧ pt(y(3))) ∗ #(pe(x(2)) ∧ pw(y(3)) ∧ pa(x(1)))

)
))

.

Example 5 (Request/Response). We present a FOEIL sentence ψ for
Request/Response architecture, described in Example 2, in the parametric set-
ting. Let X (1),X (2),X (3), and X (4) refer to instances of service registry, service,
client, and coordinator component, respectively. Then,

Modelling of Parametric Architectures 295

ψ =
(

∃x(1).

(

(∀�x(2).#(pe(x(1)) ∧ pr(x(2)))) ∗

(∀�x(3).(#(pl(x(3)) ∧ pu(x(1))) ∗ #(po(x(3)) ∧ pt(x(1)))))
))

∗
(

∃�y(2)∃x(4)∃∗y(3).ξ ∧
(

∀y(4)∀z(3)∀z(2).
(
θ ∨ (∀t(3)∀t(2)(z(2) �= t(2)).θ′))

))

where the EPIL formulas ξ, θ, and θ′ are given respectively, by:
ξ = #(pn(y(3)) ∧ pm(x(4))) ∗ #(pq(y(3)) ∧ pa(x(4)) ∧ pg(y(2))) ∗ #(pc(y(3)) ∧

pd(x(4)) ∧ ps(y(2))),
θ = ¬(true ∗ #(pq(z(3)) ∧ pa(y(4)) ∧ pg(z(2))) ∗ true),

and

θ′ = (true ∗ #(pq(z(3)) ∧ pa(y(4)) ∧ pg(z(2))) ∗ true) ∧
¬(true ∗ #(pq(t(3)) ∧ pa(y(4)) ∧ pg(t(2))) ∗ true).

The subformula ∀y(4)∀z(3)∀z(2).
(
θ ∨ (∀t(3)∀t(2)(z(2) �= t(2)).θ′)) in ψ serves as a

constraint to ensure that a unique coordinator is assigned to each service.

Example 6 (Publish/Subscribe). We consider Publish/Subscribe architec-
ture, described in Example 3, in the parametric setting. In the subsequent FOEIL
sentence ψ, we let variable sets X (1),X (2),X (3) correspond to publisher, topic,
and subscriber component instances, respectively.

ψ = ∃�x(2).

((
∃�x(1).

(
#(pa(x(1)) ∧ pn(x(2))) ∗ #(pt(x(1)) ∧ pr(x(2)))

)
)

∗
(

∃�x(3).
(
#(pe(x(3)) ∧ pc(x(2))) ∗ #(pg(x(3)) ∧ ps(x(2))) ∗ #(pd(x(3)) ∧ pf (x(2)))

)
))

.

In [28] a simpler version of Request/Response and Blackboard architectures
is described where the resulting sets of interactions do not depict any order.
Publish/Subscribe architecture has not been studied in [10,26,28].

Observe that in the presented examples, whenever is defined a unique
instance for a component type we may also consider the corresponding set of
variables as a singleton.

6 Decidability Results for FOEIL

In this section, we prove that the equivalence and validity problems for FOEIL
sentences are decidable in doubly exponential time, whereas the satisfiability
problem is decidable in exponential time. For this, we establish an effective
translation of every FOEIL formula to an expressive equivalent finite automa-
ton, and hence we take advantage of well-known computational results for finite
automata. We refer the reader to [32] for detailed proofs of our results.

296 M. Pittou and G. Rahonis

Theorem 1. Let ψ be a FOEIL sentence over a set pB = {B(i, j) | i ∈ [n], j ≥
1} of parametric components and r : [n] → N. Then, we can effectively con-
struct a finite automaton Aψ,r over IpB(r) such that (r, w) |= ψ iff w ∈ L(Aψ,r)
for every w ∈ I∗

pB(r). The worst case run time for the translation algorithm is
exponential and the best case is polynomial.

We prove Theorem 1 using the subsequent proposition. Let V ⊆ X be a
finite set of variables. For every i ∈ [n] and x(i) ∈ V, we define the set
P (i)(x(i)) = {p(x(i)) | p ∈ P (i) and x(i) ∈ V} and let IpB(V) = {a ∈ I(PpB(V)) |
|a ∩ P (i)(x(i))| ≤ 1 for every i ∈ [n] and x(i) ∈ V}. Next let σ be a (V, r)-
assignment and L a language over IpB(V). We denote by σ(L) the language over
I(PpB(r))2 which is obtained by L by replacing every variable x ∈ V by σ(x).

Proposition 1. Let ψ be a FOEIL formula over a set pB = {B(i, j) | i ∈
[n], j ≥ 1} of parametric components. Let also V ⊆ X be a finite set of variables
containing free(ψ) and r : [n] → N. Then, we can effectively construct a finite
automaton Aψ,r over IpB(V) such that for every (V, r)-assignment σ and w ∈
I∗
pB(r) we have (r, σ, w) |= ψ iff w ∈ σ(L(Aψ,r)) ∩ I∗

pB(r). The worst case run
time for the translation algorithm is exponential and the best case is polynomial.

Proof. We prove our claim by induction on the structure of the FOEIL formula
ψ. The input of the translation algorithm is the FOEIL formula ψ and the
complexity measure refers to the set of states of the derived finite automaton
Aψ,r.

Proof (of Theorem 1). We apply Proposition 1. Since ψ is a sentence it contains
no free variables. Hence, we get a finite automaton Aψ,r over IpB(r) such that
(r, w) |= ψ iff w ∈ L(Aψ,r) for every w ∈ I∗

pB(r), and this concludes our proof.

Theorem 2. Let pB = {B(i, j) | i ∈ [n], j ≥ 1} be a set of parametric com-
ponents and r : [n] → N a mapping. Then, the equivalence problem for FOEIL
sentences over pB w.r.t. r is decidable in doubly exponential time.

Next, we deal with the decidability of satisfiability and validity results for FOEIL
sentences. For this, we recall firstly these notions. A FOEIL sentence ψ over pB is
called satisfiable w.r.t. r whenever there exists a w ∈ I∗

pB(r) such that (r, w) |= ψ,
and valid w.r.t. r whenever (r, w) |= ψ for every w ∈ I∗

pB(r).

Theorem 3. Let pB = {B(i, j) | i ∈ [n], j ≥ 1} be a set of parametric compo-
nents and r : [n] → N a mapping. Then, the satisfiability problem for FOEIL
sentences over pB w.r.t. r is decidable in exponential time.

2 σ(L) is not always over IpB(r). For instance, assume that a ∈ L with a ∈ IpB(V),

p(x(i)), p′(y(i)) ∈ a for some i ∈ [n], p, p′ ∈ P (i), and σ(x(i)) = σ(y(i)). Then
σ(a) /∈ IpB(r).

Modelling of Parametric Architectures 297

Proof. Let ψ be a FOEIL sentence over pB. By Theorem 1 we construct, in
exponential time, a finite automaton Aψ,r such that (r, w) |= ψ iff w ∈ L(Aψ,r)
for every w ∈ I∗

pB(r). Then, ψ is satisfiable iff L(Aψ,r) �= ∅ which is decidable in
linear time [33], and thus satisfiability of FOEIL sentences over pB is decidable
in exponential time.

Theorem 4. Let pB = {B(i, j) | i ∈ [n], j ≥ 1} be a set of parametric com-
ponents and r : [n] → N a mapping. Then, the validity problem for FOEIL
sentences over pB w.r.t. r is decidable in doubly exponential time.

Proof. Let ψ be a FOEIL sentence over pB. By Theorem 1 we construct, in
exponential time, a finite automaton Aψ,r such that (r, w) |= ψ iff w ∈ L(Aψ,r)
for every w ∈ I∗

pB(r). Then, ψ is valid iff L(Aψ,r) = I∗
pB(r) which is decidable in

exponential time [33]. Hence, we can decide whether ψ is valid or not in doubly
exponential time.

7 Conclusion

In this paper we deal with the formal study of architectures for parametric
component-based systems. We introduce a propositional logic, EPIL, which aug-
ments PIL from [28] with a concatenation and a shuffle operator, and interpret
EPIL formulas over finite words of interactions. We also study FOEIL, the first-
order level of EPIL, as a modelling language for the architectures of parametric
systems. EPIL and FOEIL encode the permissible interactions and the order
restrictions of complex architectures. Several examples are presented and we
show the decidability of equivalence, satisfiability and validity of FOEIL sen-
tences.

Ongoing work involves the verification of parametric systems against formal
properties, and specifically the application of architectures modelled by FOEIL,
for studying the behavior and proving properties (such as deadlock-freedom) of
parametric systems. Several architectures, like Ring and Linear [28] cannot be
formalized by FOEIL sentences. For this, the study of second-order level of EPIL
is needed which is left as future work. Another direction is the extension of our
framework for modelling architectures with data applied on parametric systems.
Also, it would be interesting to investigate in our setting the architecture com-
position problem (cf. [5]). Finally, in a forthcoming paper we study parametric
component-based systems and FOEIL in the weighted setup.

Acknowledgement. We are deeply grateful to Simon Bliudze for discussions on a
previous version of the paper.

298 M. Pittou and G. Rahonis

References

1. Abdulla, P.A., Delzanno, G.: Parameterized verification. Int. J. Softw. Tools Tech-
nol. Transf. 18(5), 469–473 (2016). https://doi.org/10.1007/s10009-016-0424-3

2. Alagar, V.S., Periyasamy, K.: The B-Method. In: Specification of Software Systems.
Texts in Computer Science. Springer, London (2011). https://doi.org/10.1007/978-
0-85729-277-3 19

3. Amaro, S., Pimentel, E., Roldan, A.M.: REO based interaction model. Electron.
Notes Theor. Comput. Sci. 160, 3–14 (2006). https://doi.org/10.1016/j.entcs.2006.
05.012

4. Aminof, B., Kotek, T., Rubin, S., Spegni, F., Veith, H.: Parameterized model
checking of rendezvous systems. Distrib. Comput. 31(3), 187–222 (2017). https://
doi.org/10.1007/s00446-017-0302-6

5. Attie, P., Baranov, E., Bliudze, S., Jaber, M., Sifakis, J.: A general framework
for architecture composability. Formal Aspects Comput. 28(2), 207–231 (2016).
https://doi.org/10.1007/s00165-015-0349-8

6. Barr, A., Cohen, P., Feigebaum, E.A. (eds.): Handbook of Artificial Intelligence.
Addison-Wesley, Boston (1989)

7. Bliudze, S., Henrio, L., Madelaine, E.: Verification of concurrent design patterns
with data. In: Riis Nielson, H., Tuosto, E. (eds.) COORDINATION 2019. LNCS,
vol. 11533, pp. 161–181. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-22397-7 10

8. Bliudze, S., Sifakis, J.: The algebra of connectors - structuring interaction in
BIP. IEEE Trans. Comput. 57(10), 1315–1330 (2008). https://doi.org/10.1109/
TC.2008.2

9. Bloem, R., et al.: Decidability in parameterized verification. SIGACT News 47(2),
53–64 (2016). https://doi.org/10.2200/S00658ED1V01Y201508DCT013

10. Bozga, M., Iosif, R., Sifakis, J.: Checking deadlock-freedom of parametric
component-based systems. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS,
vol. 11428, pp. 3–20. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17465-1 1

11. Bozga, M., Iosif, R., Sifakis, J.: Structural invariants for parametric verification of
systems with almost linear architectures (2019). https://arxiv.org/pdf/1902.02696.
pdf

12. Bruni, R., Lluch Lafuente, A., Montanari, U., Tuosto, E.: Service oriented archi-
tectural design. In: Barthe, G., Fournet, C. (eds.) TGC 2007. LNCS, vol. 4912, pp.
186–203. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78663-
4 14

13. Charalambides, M., Dinges, P., Agha, G.: Parameterized, concurrent session types
for asynchronous multi-actor interactions. Sci. Comput. Program. 115–116, 100–
126 (2016). https://doi.org/10.1016/j.scico.2015.10.006

14. Corkill, D.D.: Blackboard systems. AI Expert 6(9), 40–47 (1991)
15. Daigneau, R. (ed.): Service Design Patterns: Fundamental Design Solutions for

SOAP/WSDL and RESTful web services. Addison-Wesley, Boston (2012). https://
doi.org/10.1145/2237796.2237821

16. Deniélou, P.-M., Yoshida, N.: Multiparty session types meet communicating
automata. In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp. 194–213. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-28869-2 10

17. Deniélou, P.-M., Yoshida, N., Bejleri, A., Hu, R.: Parameterised multiparty session
types. Log. Methods Comput. Sci. 8(4:6), 1–46 (2012). https://doi.org/10.2168/
LMCS-8(4:6)2012

https://doi.org/10.1007/s10009-016-0424-3
https://doi.org/10.1007/978-0-85729-277-3_19
https://doi.org/10.1007/978-0-85729-277-3_19
https://doi.org/10.1016/j.entcs.2006.05.012
https://doi.org/10.1016/j.entcs.2006.05.012
https://doi.org/10.1007/s00446-017-0302-6
https://doi.org/10.1007/s00446-017-0302-6
https://doi.org/10.1007/s00165-015-0349-8
https://doi.org/10.1007/978-3-030-22397-7_10
https://doi.org/10.1007/978-3-030-22397-7_10
https://doi.org/10.1109/TC.2008.2
https://doi.org/10.1109/TC.2008.2
https://doi.org/10.2200/S00658ED1V01Y201508DCT013
https://doi.org/10.1007/978-3-030-17465-1_1
https://doi.org/10.1007/978-3-030-17465-1_1
https://arxiv.org/pdf/1902.02696.pdf
https://arxiv.org/pdf/1902.02696.pdf
https://doi.org/10.1007/978-3-540-78663-4_14
https://doi.org/10.1007/978-3-540-78663-4_14
https://doi.org/10.1016/j.scico.2015.10.006
https://doi.org/10.1145/2237796.2237821
https://doi.org/10.1145/2237796.2237821
https://doi.org/10.1007/978-3-642-28869-2_10
https://doi.org/10.2168/LMCS-8(4:6)2012
https://doi.org/10.2168/LMCS-8(4:6)2012

Modelling of Parametric Architectures 299

18. Eugster, P., Felber, P., Guerraoui, R., Kermarrec, M.A.: The many faces of Pub-
lish/Subscribe. ACM Comput. Surv. 35(2), 114–131 (2003). https://doi.org/10.
1145/857076.857078

19. Francalanza, A., Aceto, L., Ingolfsdottir, A.: Monitorability for the Hennessy–
Milner logic with recursion. Formal Methods Syst. Des. 51(1), 87–116 (2017).
https://doi.org/10.1007/s10703-017-0273-z

20. Giusto Di, C., Stefani, B.J.: Revising glue expressiveness in component-based sys-
tems. In: Meuter, W.D., Ronan, G.C. (eds.) COORDINATION 2011. LNCS, vol.
6721, pp. 16–30 (2011). https://doi.org/10.1007/978-3-642-21464-6 2

21. Guanciale, R., Tuosto, E.: Realisability of pomsets. J. Log. Algebr. Methods Pro-
gram. 108, 69–89 (2019). https://doi.org/10.1016/j.jlamp.2019.06.003

22. He, N., et al.: Component-based design and verification in X-MAN. In: ERTS2

(2012). https://web1.see.asso.fr/erts2012/Site/0P2RUC89/1D-2.pdf
23. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. J.

ACM 32(1), 137–161 (1985). https://doi.org/10.1145/2455.2460
24. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. J.

ACM 63(1), 9:1–9:67 (2016). https://doi.org/10.1145/2827695
25. Hüttel, H., et al.: Foundations of session types and behavioural contracts. ACM

Comput. Surv. 49(1), 3:1–3:36 (2016). https://doi.org/10.1145/2873052
26. Konnov, I., Kotek, T., Wang, Q., Veith, H., Bliudze, S., Sifakis, J.: Parameterized

systems in BIP: design and model checking. In: Desharnais, J., Jagadeesan, R.
(eds.) CONCUR 2016. LIPIcs, vol. 59, pp. 30:1–30:16. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik (2016). https://doi.org/10.4230/LIPIcs.CONCUR.2016.
30

27. Malavolta, I., Lewis, G., Schmerl, B., Lago, P., Garlan, D.: How do you architect
your robots? State of the practice and guidelines for ROS-based systems. In: ICSE-
CEIP 2020. ACM (2020). https://doi.org/10.1145/3377813.3381358

28. Mavridou, A., Baranov, E., Bliudze, S., Sifakis, J.: Configuration logics: modelling
architecture styles. J. Log. Algebr. Methods Program. 86, 2–29 (2016). https://
doi.org/10.1016/j.jlamp.2016.05.002

29. Nii, H.: Blackboard Systems, chap. in [6]
30. Olivieri, A., Rizzo, G., Morand, F.: A publish-subscribe approach to IoT integra-

tion: the smart office use case. In: Baroli, L., Takizawa, M., Xhafa, F., Enokido,
T., Park, J. (eds.) 29th International Conference on Advanced Information Net-
working and Applications Workshops, pp. 644–651. IEEE (2015). https://doi.org/
10.1109/WAINA.2015.28

31. Patel, S., Jardosh, S., Makwana, A., Thakkar, A.: Publish/Subscribe mechanism
for IoT: a survey of event matching algorithms and open research challenges. In:
Modi, N., Verma, P., Trivedi, B. (eds.) Proceedings of International Conference on
Communication and Networks. AISC, vol. 508, pp. 287–294. Springer, Singapore
(2017). https://doi.org/10.1007/978-981-10-2750-5 30

32. Pittou, M., Rahonis, G.: Architecture modelling of parametric component-based
systems (2020). http://arxiv.org/abs/1904.02222

33. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press, Cam-
bridge (2009)

34. Sharmaa, A., Kumarb, M., Agarwalc, S.: A complete survey on software architec-
tural styles and patterns. Procedia Comput. Sci. 70, 16–28 (2015). https://doi.
org/10.1016/j.procs.2015.10.019

35. Straub, J., Reza, H.: The use of the blackboard architecture for a decision making
system for the control of craft with various actuator and movement capabilities.
In: Latifi, S. (ed.) ITNG 2014. pp. 514–519. IEEE (2014)

https://doi.org/10.1145/857076.857078
https://doi.org/10.1145/857076.857078
https://doi.org/10.1007/s10703-017-0273-z
https://doi.org/10.1007/978-3-642-21464-6_2
https://doi.org/10.1016/j.jlamp.2019.06.003
https://web1.see.asso.fr/erts2012/Site/0P2RUC89/1D-2.pdf
https://doi.org/10.1145/2455.2460
https://doi.org/10.1145/2827695
https://doi.org/10.1145/2873052
https://doi.org/10.4230/LIPIcs.CONCUR.2016.30
https://doi.org/10.4230/LIPIcs.CONCUR.2016.30
https://doi.org/10.1145/3377813.3381358
https://doi.org/10.1016/j.jlamp.2016.05.002
https://doi.org/10.1016/j.jlamp.2016.05.002
https://doi.org/10.1109/WAINA.2015.28
https://doi.org/10.1109/WAINA.2015.28
https://doi.org/10.1007/978-981-10-2750-5_30
http://arxiv.org/abs/1904.02222
https://doi.org/10.1016/j.procs.2015.10.019
https://doi.org/10.1016/j.procs.2015.10.019

300 M. Pittou and G. Rahonis

36. Tuosto, E., Guanciale, R.: Semantics of global view of choreographies. J. Log.
Algebr. Methods Program. 95, 17–40 (2018). https://doi.org/10.1016/j.jlamp.
2017.11.002

37. Yang, K., Zhang, K., Jia, X., Hasan, M.A., Shen, X.: Privacy-preserving attribute-
keyword based data publish-subscribe service on cloud platforms. Inform. Sci. 387,
116–131 (2017). https://doi.org/10.1016/j.ins.2016.09.020

38. Zhang, K., Muthusamy, V., Jacobsen, A., H.: Total order in content-based Pub-
lish/Subscribe systems. In: 2012 32nd IEEE International Conference on Dis-
tributed Computing Systems, pp. 335–344. IEEE (2012). https://doi.org/10.1109/
ICDCS.2012.17

https://doi.org/10.1016/j.jlamp.2017.11.002
https://doi.org/10.1016/j.jlamp.2017.11.002
https://doi.org/10.1016/j.ins.2016.09.020
https://doi.org/10.1109/ICDCS.2012.17
https://doi.org/10.1109/ICDCS.2012.17

Weighted PCL over Product Valuation
Monoids

Vagia Karyoti and Paulina Paraponiari(B)

Department of Mathematics, Aristotle University of Thessaloniki,
54124 Thessaloniki, Greece

{vagiakaryo,parapavl}@math.auth.gr

Abstract. We introduce a weighted propositional configuration logic
over a product valuation monoid. Our logic is intended to serve as a
specification language for software architectures with quantitative fea-
tures such as the average of all interactions’ costs of the architecture and
the maximum cost among all costs occurring most frequently within a
specific number of components in an architecture. We provide formulas
of our logic which describe well-known architectures equipped with quan-
titative characteristics. Moreover, we prove an efficient construction of a
full normal form which leads to decidability of equivalence of formulas
in this logic.

Keywords: Software architectures · Configuration logics · Product
valuation monoids · Weighted configuration logics · Quantitative
features

1 Introduction

Architectures are a critical issue in design and development of complex software
systems since they characterize coordination principles among the components
of a system. Whenever the construction of a software system is based on a
“good” architecture, then the system satisfies most of its functional and quality
requirements. Well-defined architectures require a formal treatment in order to
efficiently characterize their properties. A recent work towards this direction is
[13], where the authors introduced propositional configuration logic (PCL for
short) which was proved sufficient enough to describe architectures: the mean-
ing of every PCL formula is a configuration set, which intuitively represents
permissible component connections, and every architecture can be represented
by a configuration set on the collection of its components. Furthermore, the
authors of [13] studied the relation among architectures and architecture styles,
i.e., architectures with the same types of components and topologies.

P. Paraponiari— The research work was supported by the Hellenic Foundation
for Research and Innovation (HFRI) under the HFRI PhD Fellowship grant (Fellowship
Number: 1200).

c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
S. Bliudze and L. Bocchi (Eds.): COORDINATION 2020, LNCS 12134, pp. 301–319, 2020.
https://doi.org/10.1007/978-3-030-50029-0_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50029-0_19&domain=pdf
https://doi.org/10.1007/978-3-030-50029-0_19

302 V. Karyoti and P. Paraponiari

PCL is a specification logic of software architectures which is able to describe
their qualitative features. However, several practical applications require also
quantitative characteristics of architectures such as the cost of the interactions
among the components of an architecture, the time needed, or the probability
of the implementation of a concrete interaction. For instance, several IoT and
cloud applications, which are based on Publish/Subscribe architecture, require
quantitative features [14,18,19]. Moreover, considering a set of components and
an architecture style, there may occur several architectures where each of them
has a specific amount of some resource (e.g. memory or energy consumption).
In such a setting, the most suitable architecture must be chosen, depending
on the available resources or the performance. Generally, quantitative proper-
ties are essential for performance related properties and for resource-constrained
systems.

The authors in [17] introduced and investigated a weighted PCL (wPCL for
short) over a commutative semiring (K,⊕,⊗, 0, 1) which serves as a specification
language for the study of software architectures with quantitative features such
as the maximum cost of an architecture or the maximum priority of a component.
Nevertheless, operations like average for response time or power consumption
cannot be described within the algebraic structure of semirings. Such operations
are important for practical applications and have been investigated for weighted
automata in [4–6]. In [7,8] the authors provided valuation monoids as a general
algebraic framework, which describe several operations that cannot fit in the
structure of semirings. More recently, in [15] nested weighted automata have
been considered under probabilistic semantics for expressing properties such as
“the long-run average resource consumption is below a threshold”. Also, the
authors in [6] presented algorithms which are designed specifically for computing
the average response time on graphs, game graphs, and Markov chains.

However, the aforementioned works have not been developed for the setting
of systems’ architectures and therefore cannot express characteristics such as
the average cost of an architecture or the maximum most frequent cost/priority
that occurs in an architecture. In this paper, we tackle this problem by extend-
ing the work of [17]. Specifically, we introduce and investigate a weighted PCL
over product valuation monoids (wpvmPCL for short) which is proved sufficient
to serve as a specification language for software architectures with important
quantitative features that are not covered in [17].

The contributions of our work are the following. We introduce the syntax and
semantics of wpvmPCL. The semantics of wpvmPCL formulas are polynomials
with values in the product valuation monoid. Then, in our main result, we prove
that for every wpvmPCL formula over a set of ports and a product valuation
monoid with specific properties, we can effectively construct an equivalent one
in full normal form, which is unique up to the equivalence relation. The second
main result is the decidability of equivalence of wpvmPCL formulas. Lastly, we
describe in a strict logical way several well-known software architectures with
quantitative characteristics. We skip detailed proofs of our results which are

Weighted PCL over pv-monoids 303

similar to the corresponding ones of [17] and [16]. We refer the reader to the full
version of our paper on arXiv [11].

2 Preliminaries

In this section, we recall valuation monoids and product valuation monoids [8]. A
valuation monoid (D,⊕, val, 0) consists of a commutative monoid (D,⊕, 0) and
a valuation function val : D+ → D, where D+ denotes the set of nonempty finite
words over D, with val(d) = d for all d ∈ D and val(d1, . . . , dn) = 0 whenever
di = 0 for some i ∈ {1, . . . , n}.

(D,⊕, val,⊗, 0, 1) is a product valuation monoid, or pv-monoid for short if
(D,⊕, val, 0) is a valuation monoid, ⊗ : D2 → D is a binary operation, 1 ∈ D
with val(1)1≤i≤n = 1 for all n ≥ 1 and 0 ⊗ d = d ⊗ 0 = 0, 1 ⊗ d = d ⊗ 1 = d
for all d ∈ D. The pv-monoid is denoted simply by D if the operations and
the constant elements are understood. A pv-monoid D is left-⊕-distributive if
d ⊗ (d1 ⊕ d2) = (d ⊗ d1) ⊕ (d ⊗ d2) for any d, d1, d2 ∈ D. Right-⊕-distributivity
is defined analogously. If a pv-monoid D is both left- and right-⊕-distributive,
then it is ⊕-distributive. If ⊗ is associative, then D is called associative. We call
D left-val-distributive if for all n ≥ 1 and d, di ∈ D with i ∈ {1, . . . , n}, it holds
d⊗val(d1, . . . , dn) = val(d⊗d1, . . . , d⊗dn). Moreover, the pv-monoid D is called
(additively) idempotent if d ⊕ d = d for every d ∈ D.

In the following we recall some pv-monoids from [8]. The algebraic struc-
tures (R∪{−∞},max, avg, +,−∞, 0) and (R∪{+∞}, min, avg,+,+∞, 0) with
avg(d1, . . . , dn) = 1

n

∑n
i=1 di are pv-monoids. More precisely, they are left-val-

distributive and ⊕-distributive pv-monoids. Also, the structure (R∪{−∞,+∞},
min,maj,max,+∞,−∞), where maj(d1, . . . , dn) is the greatest value among
all values that occur most frequently among d1, . . . , dn, is a ⊕-distributive pv-
monoid but not left-val-distributive. Both avg and maj are symmetric functions,
i.e., the value of the function given n arguments is the same no matter the order
of the arguments. Moreover, the pv-monoids mentioned before are idempotent.

Throughout the paper (D,⊕, val,⊗, 0, 1) will denote an idempotent pv-
monoid where val is symmetric.

Let Q be a set. A formal series (or simply series) over Q and D is a mapping
s : Q → D. The support of s is the set supp(s) = {q ∈ Q | s(q) 	= 0}. A series
with finite support is called also a polynomial. We denote by D 〈Q〉 the class of
all polynomials over Q and D.

3 Weighted Propositional Interaction Logic

In this section, we introduce the weighted propositional interaction logic over
pv-monoids. Firstly, we recall from [13] the propositional interaction logic.

Let P be a nonempty finite set of ports. We let I(P) = P(P)\{∅}, where
P(P) denotes the power set of P . Every set α ∈ I(P) is called an interaction.

304 V. Karyoti and P. Paraponiari

The syntax of propositional interaction logic (PIL for short) formulas over P is
given by the grammar

φ ::= true | p | φ | φ ∨ φ

where p ∈ P . As usual, we set φ = φ for every PIL formula φ and false = true.

Hence, the conjunction of two PIL formulas φ, φ′ is defined by φ∧φ′ =
(
φ ∨ φ′).

A PIL formula of the form p1 ∧ · · · ∧ pn with n > 0, and pi ∈ P or pi = p′
i with

p′
i ∈ P for every 1 ≤ i ≤ n, is called a monomial. For simplicity we denote a

monomial p1 ∧ · · · ∧ pn by p1 . . . pn. Monomials of the form
∧

p∈P+
p ∧∧p∈P− p

with P+ ∪ P− = P and P+ ∩ P− = ∅ are called full monomials.
Let φ be a PIL formula and α an interaction. We define the satisfaction

relation α |=i φ by induction on the structure of φ as follows:

- α |=i true, - α |=i φ iff α �|=i φ,
- α |=i p iff p ∈ α, - α |=i φ1 ∨ φ2 iff α |=i φ1 or α |=i φ2.

For every α ∈ I(P) it holds α 	|=i false. Moreover, for every interaction
α ∈ I(P) we define its characteristic monomial mα =

∧
p∈α p∧∧p�∈α p. A charac-

teristic monomial mα is actually a full monomial that formalises the interaction
α. Then, for every α′ ∈ I(P) we trivially get α′ |=i mα iff α′ = α.

Throughout the paper P will denote a nonempty finite set of ports.

Definition 1. Let D be a pv-monoid. Then, the syntax of formulas of weighted
PIL (wpvmPIL for short) over P and D is given by the grammar

ϕ ::= d | φ | ϕ ⊕ ϕ | ϕ ⊗ ϕ

where d ∈ D and φ denotes a PIL formula over P.

We denote by PIL(D,P) the set of all wpvmPIL formulas over P and D.
Next, we present the semantics of formulas ϕ ∈ PIL(D,P) as polynomials ‖ϕ‖ ∈
D 〈I(P)〉. For the semantics of PIL formulas φ over P we use the satisfaction
relation as defined above. Hence, the semantics of PIL formulas φ gets only the
values 0 and 1.

Definition 2. Let ϕ ∈ PIL(D,P). The semantics of ϕ is a polynomial ‖ϕ‖ ∈
D 〈I(P)〉. For every α ∈ I(P) the value ‖ϕ‖ (α) is defined inductively on the
structure of ϕ as follows:

- ‖d‖ (α) = d, - ‖ϕ1 ⊕ ϕ2‖ (α) = ‖ϕ1‖ (α) ⊕ ‖ϕ2‖ (α),

- ‖φ‖ (α) =
{

1 if α |=i φ
0 otherwise , - ‖ϕ1 ⊗ ϕ2‖ (α) = ‖ϕ1‖ (α) ⊗ ‖ϕ2‖ (α).

4 Weighted Propositional Configuration Logic

In this section, we introduce and investigate the weighted propositional configu-
ration logic over pv-monoids. But first, we recall the propositional configuration

Weighted PCL over pv-monoids 305

logic (PCL for short) from [13]. The syntax of PCL formulas over P is given by
the grammar

f ::= true | φ | ¬f | f � f | f + f

where φ denotes a PIL formula over P. The operators ¬, �, and + are called com-
plementation, union, and coalescing, respectively. The intersection � is defined
by f1 � f2 := ¬ (¬f1 � ¬f2).

We let C(P) = P(I(P))\{∅}. For every PCL formula f and γ ∈ C(P) the
satisfaction relation γ |= f is defined inductively on the structure of f as follows:

- γ |= true, - γ |= ¬f iff γ 	|= f,
- γ |= φ iff α |=i φ for every α ∈ γ, - γ |= f1 � f2 iff γ |= f1 or γ |= f2,
- γ |= f1 + f2 iff there exist γ1, γ2 ∈ C(P) such that γ = γ1 ∪ γ2,

and γ1 |= f1 and γ2 |= f2.

We define the closure ∼ f of every PCL formula f by ∼ f := f + true.
Two PCL formulas f, f ′ are called equivalent, and we denote it by f ≡ f ′,

whenever γ |= f iff γ |= f ′ for every γ ∈ C(P). We refer the reader to [13] and
[17] for properties of PCL formulas.

Next, we introduce our weighted PCL over pv-monoids.

Definition 3. Let D be a pv-monoid. The syntax of formulas of the weighted
PCL (wpvmPCL for short) over P and D is given by the grammar

ζ ::= d | f | ζ ⊕ ζ | ζ ⊗ ζ | ζ � ζ | ∗ζ

where d ∈ D, f denotes a PCL formula over P , and � denotes the coalescing
operator among wpvmPCL formulas. The operator ∗ is called valuation operator.

We denote by PCL(D,P) the set of all wpvmPCL formulas over P and D.
We present the semantics of formulas ζ ∈ PCL(D,P) as polynomials ‖ζ‖ ∈
D 〈C(P)〉. For the semantics of PCL formulas we use the satisfaction relation as
defined previously.

Definition 4. Let ζ ∈ PCL(D,P). The semantics of ζ is a polynomial ‖ζ‖ ∈
D 〈C(P)〉 where for every γ ∈ C(P) the value ‖ζ‖ (γ) is defined inductively on
the structure of ζ as follows:

– ‖d‖ (γ) = d,

– ‖f‖ (γ) =
{

1 if γ |= f
0 otherwise ,

– ‖ζ1 ⊕ ζ2‖ (γ) = ‖ζ1‖ (γ) ⊕ ‖ζ2‖ (γ),
– ‖ζ1 ⊗ ζ2‖ (γ) = ‖ζ1‖ (γ) ⊗ ‖ζ2‖ (γ),
– ‖ζ1 � ζ2‖ (γ) =

⊕
γ1 ·∪γ2=γ (‖ζ1‖ (γ1) ⊗ ‖ζ2‖ (γ2)),

– ‖∗ζ‖ (γ) =
⊕

n>0

⊕
⋃· n

i=1γi=γ val (‖ζ‖ (γ1), . . . , ‖ζ‖ (γn))

where ·∪ denotes that the sets γ1, . . . , γn consist a partition of γ for every n > 0.

306 V. Karyoti and P. Paraponiari

It is important to note here that since the semantics of every wpvmPCL
formula is defined on C(P), the sets γ1 and γ2 in ‖ζ1 � ζ2‖ (γ) and the sets
γ1, . . . , γn in ‖∗ζ‖ (γ) are nonempty. Trivially in ‖∗ζ‖ (γ), the maximum value
of n is |γ|, i.e., the cardinality of γ. Hence,

‖∗ζ‖ (γ) =
⊕

n∈{1,...,|γ|}

⊕

⋃· n
i=1γi=γ

val (‖ζ‖ (γ1), . . . , ‖ζ‖ (γn)) .

Moreover, in ‖∗ζ‖ (γ), let the sets γi ∈ C(P) where i ∈ {1, . . . , n} and
⋃· n

i=1

γi = γ. Consider a permutation (i1, . . . , in) of (1, . . . , n). Then

val(‖ζ‖ (γ1) . . . , ‖ζ‖ (γn)) = val(‖ζ‖ (γi1), . . . , ‖ζ‖ (γin)).

Hence, val(‖ζ‖ (γ1), . . . , ‖ζ‖ (γn)) ⊕ val(‖ζ‖ (γi1), . . . , ‖ζ‖ (γin)) = val(‖ζ‖ (γ1),
. . . , ‖ζ‖ (γn)) by the idempotency of D. Therefore, for every analysis of γ =⋃· n

i=1γi, the value val (‖ζ‖ (γ1), . . . , ‖ζ‖ (γn)) in ‖∗ζ‖ (γ) is computed only once.
Two wpvmPCL formulas ζ1, ζ2 are called equivalent, and we write ζ1 ≡ ζ2,

whenever ‖ζ1‖ (γ) = ‖ζ2‖ (γ) for every γ ∈ C(P). The closure ∼ ζ of every
wpvmPCL formula ζ ∈ PCL(D,P) is determined by:

– ∼ ζ := ζ ⊕ (ζ � 1).

Lemma 1. Let ζ ∈ PCL(D,P). Then

‖∼ζ‖ (γ) =
⊕

γ′⊆γ
‖ζ‖ (γ′)

for every γ ∈ C(P).

Next, we present several properties of our wpvmPCL formulas.

Proposition 1. Let ζ, ζ1, ζ2, ζ3 ∈ PCL(D,P) and d ∈ D. Then

(i) ζ � 0 ≡ 0 ≡ 0 � ζ.

If ⊗ is commutative, then

(ii) ζ1 � ζ2 ≡ ζ2 � ζ1.

If D is associative and ⊕-distributive, then

(iii) (ζ1 � ζ2) � ζ3 ≡ ζ1 � (ζ2 � ζ3).

If D is left-⊕-distributive, then

(iv) ζ ⊗ (ζ1 ⊕ ζ2) ≡ (ζ ⊗ ζ1) ⊕ (ζ ⊗ ζ2).

If D is right-⊕-distributive, then

(v) (ζ1 ⊕ ζ2) ⊗ ζ ≡ (ζ1 ⊗ ζ) ⊕ (ζ2 ⊗ ζ).

Weighted PCL over pv-monoids 307

Proposition 2. Let ζ ∈ PCL(D,P) with ζ = d ∈ D. If D is left-val-distributi-
ve, then

∗ζ ≡ d.

Proof. For every γ = {a1, . . . , as} where s ∈ N, we have

‖∗ζ‖ (γ) =
⊕

n∈{1,...,s}

⊕

γ1 ·∪... ·∪γn=γ

val(‖ζ‖ (γ1), ..., ‖ζ‖ (γn))

= val(d) ⊕ val(d, d) ⊕ ... ⊕ val(

s times
︷ ︸︸ ︷
d, ..., d)

= (d ⊗ val(1)) ⊕ (d ⊗ val(1, 1)) ⊕ ... ⊕ (d ⊗ val(1, ..., 1))
= (d ⊗ 1) ⊕ (d ⊗ 1) ⊕ ... ⊕ (d ⊗ 1) = d ⊕ ... ⊕ d = d

where the second and the last equalities hold since D is idempotent, and the
third one since D is left-val-distributive.

Moreover, D is called ⊕-preservative whenever val(d1 ⊕ d2, d) = val(d1, d) ⊕
val(d2, d) and val(d, d1 ⊕ d2) = val(d, d1)⊕ val(d, d2) for every d, d1, d2 ∈ D. The
pv-monoids (R ∪ {−∞},max, avg,+,−∞, 0) and (R ∪ {+∞}, min, avg,+,+∞,
0), are ⊕-preservative.

By a straightforward calculation we can show the next proposition.

Proposition 3. Let D be a valuation monoid. If val is ⊕-preservative, then

val

⎛

⎝
⊕

i∈I

di,
⊕

j∈J

d′
j

⎞

⎠ =
⊕

i∈I,j∈J

val
(
di, d

′
j

)

where I, J are finite index sets and di, d
′
j ∈ D for every i ∈ I and j ∈ J .

Proposition 4. Let ζ ∈ PCL(D,P). If D is ⊕-preservative, then

∼ (∗ζ) ≡ ∗(∼ ζ).

Proof. Let γ ∈ C(P). Then

‖∗(∼ ζ)‖ (γ) =
⊕

n>0

⊕

γ1 ·∪... ·∪γn=γ

val(‖∼ ζ‖ (γ1), ... , ‖∼ ζ‖ (γn))

=
⊕

n>0

⊕

γ1 ·∪... ·∪γn=γ

val

⎛

⎝
⊕

γ′
1⊆γ1

‖ζ‖ (γ′
1), ... ,

⊕

γ′
n⊆γn

‖ζ‖ (γ′
n)

⎞

⎠

=
⊕

n>0

⊕

γ1 ·∪... ·∪γn=γ

⊕

γ′
1⊆γ1

...
⊕

γ′
n⊆γn

val(‖ζ‖ (γ′
1), ... , ‖ζ‖ (γ′

n))

=
⊕

γ′⊆γ

⊕

n>0

⊕

γ1 ·∪... ·∪γn=γ′
val(‖ζ‖ (γ1), ... , ‖ζ‖ (γn))

=
⊕

γ′⊆γ

‖∗ζ‖ (γ′) = ‖∼ (∗ζ)‖ (γ)

308 V. Karyoti and P. Paraponiari

where the third equality holds since D is ⊕-preservative and the next equalities
due to the commutativity of ⊕.

Proposition 5. Let ζ, ζ1, ζ2 ∈ PCL(D,P). If D is left-⊕-distributive, then

ζ � (ζ1 ⊕ ζ2) ≡ (ζ � ζ1) ⊕ (ζ � ζ2).

Next, we show a special case when ⊗ distributes over �. In general ⊗ does
not distribute over �. For example, let P = {p, q} and the wpvmPCL formulas
ζ, ζ1, ζ2, where ζ = 2 and ζ1 = ζ2 = 1. If we consider the set γ = {{p}, {q}}
and the pv-monoid (R∪{−∞},max, avg,+,−∞, 0), then it is easy to show that
‖ζ ⊗ (ζ1 � ζ2)‖ (γ) 	= ‖(ζ ⊗ ζ1) � (ζ ⊗ ζ2)‖ (γ). Hence, ζ ⊗ (ζ1 � ζ2) 	≡ (ζ ⊗ ζ1) �
(ζ ⊗ ζ2). However, this is not the case when ζ is a PIL formula and D is left-⊕-
distributive.

Proposition 6. Let φ be a PIL formula over P and ζ1, ζ2 ∈ PCL(D,P). If D
is left-⊕-distributive, then

φ ⊗ (ζ1 � ζ2) ≡ (φ ⊗ ζ1) � (φ ⊗ ζ2).

5 Full Normal Form for WpvmPCL Formulas

In this section, we show that for every wpvmPCL formula ζ ∈ PCL(D,P), where
D is a pv-monoid satisfying specific properties, we can effectively construct an
equivalent formula of a special form which is called full normal form. For this,
we will use corresponding results from [13] and [17]. More precisely, for every
PCL formula f over P we can effectively construct a unique equivalent PCL
formula of the form true1 or

⊔
i∈I

∑
j∈Ji

mi,j (cf. Theorem 4.43 in [13]), and for
every weighted PCL formula ζ over P and a commutative semiring (K,⊕,⊗, 0, 1)
we can construct a unique equivalent weighted PCL formula of the form k or
⊕

i∈I

(
ki ⊗∑j∈Ji

mi,j

)
(cf. Theorem 1 in [17] and Theorem 25 in [16]). The

index sets I and Ji, for every i ∈ I, are finite, k and ki ∈ K and mi,j ’s are full
monomials over P. We show that we can also effectively build a unique full normal
form for every wpvmPCL formula over P and a pv-monoid D satisfying specific
properties shown below. Uniqueness is up to the equivalence relation. Lastly, we
show that the equivalence problem of wpvmPCL formulas is decidable.

Definition 5. A wpvmPCL formula ζ ∈ PCL(D,P) is said to be in full normal
form if either

1. ζ = d, with d ∈ D, or
2. there are finite index sets I and Ji for every i ∈ I, di ∈ D, and full monomials

mi,j for every i ∈ I and j ∈ Ji such that ζ =
⊕

i∈I

(
di ⊗∑j∈Ji

mi,j

)
.

1 Following [16] we consider true as a full normal form.

Weighted PCL over pv-monoids 309

Following [16], for every full normal form we can construct an equivalent one
satisfying the subsequent statements:

(i) j 	= j′ implies mi,j 	≡ mi,j′ for every i ∈ I, j, j′ ∈ Ji, and
(ii) i 	= i′ implies

∑
j∈Ji

mi,j 	≡∑j∈Ji′
mi′,j for every i, i′ ∈ I.

By Lemma 1 in [17], if mi,j ≡ mi,j′ for some j 	= j′, then we get mi,j +
mi,j′ ≡ mi,j . So, we replace mi,j + mi,j′ by mi,j . For the second case, let
∑

j∈Ji
mi,j ≡ ∑j∈Ji′

mi′,j for some i 	= i′. Then, we replace
(
di ⊗∑j∈Ji

mi,j

)

⊕
(
di′ ⊗∑j∈Ji′

mi′,j

)
by its equivalent formula (di ⊕ di′) ⊗∑j∈Ji

mi,j . In the
sequel, we assume that every full normal form satisfies Statements (i) and (ii).

For the construction of the full normal form of every ζ ∈ PCL(D,P) we
shall need the next results. Specifically, we omit the proofs of Lemmas 2, 3 and
Proposition 7 which are similar to the corresponding ones in [16].

Lemma 2. Let J be an index set and mj full monomials for every j ∈ J .
Then, there exists a unique γ ∈ C(P) such that for every γ ∈ C(P) we have∥
∥
∥
∑

j∈J mj

∥
∥
∥ (γ) = 1 if γ = γ and

∥
∥
∥
∑

j∈J mj

∥
∥
∥ (γ) = 0, otherwise.

Proposition 7. Let f be a PCL formula over P and D a pv-monoid. Then
there exist finite index sets I and Ji for every i ∈ I, and full monomials mi,j for
every i ∈ I and j ∈ Ji such that

f ≡
⊕

i∈I

∑

j∈Ji

mi,j ≡
⊕

i∈I

⎛

⎝1 ⊗
∑

j∈Ji

mi,j

⎞

⎠ .

Lemma 3. Let mi,m
′
j be full monomials for every i ∈ I and j ∈ J . Then,

(
∑

i∈I

mi

)

⊗
⎛

⎝
∑

j∈J

m′
j

⎞

⎠ ≡
{∑

i∈I

mi if
∑

i∈I

mi ≡ ∑

j∈J

m′
j ,

0 otherwise.

Proposition 8. Let d1, d2 ∈ D and ζ1, ζ2 ∈ PCL(D,P). If D is left-⊕-distribu-
tive and ⊗ is commutative and associative, then

(d1 ⊗ ζ1) � (d2 ⊗ ζ2) ≡ d1 ⊗ d2 ⊗ (ζ1 � ζ2).

Proposition 9. Let mi,m
′
j be full monomials for every i ∈ I and j ∈ J . Then

(
∑

i∈I

mi

)

�
⎛

⎝
∑

j∈J

m′
j

⎞

⎠ ≡
⎧
⎨

⎩

∑
i∈I mi +

∑
j∈J m′

j if mi 	≡ m′
j for every i ∈ I

and j ∈ J
0 otherwise.

Proposition 10. Let ζ ∈ PCL(D,P) which is in full normal form, i.e., ζ =
⊕

i∈I

(
di ⊗∑j∈Ji

mi,j

)
. Then

310 V. Karyoti and P. Paraponiari

i. ∗ζ ≡⊕I′⊆I

(
val(di)i∈I′ ⊗

(⊎
i∈I′
∑

j∈Ji
mi,j

))
,

ii. (∗ζ) ⊗
(⊎

i∈I

∑
j∈Ji

mi,j

)
≡ val(d1, . . . , d|I|) ⊗

(⊎
i∈I

∑
j∈Ji

mi,j

)
.

Proof. i. Let γ ∈ C(P). Then we get

‖∗ζ‖ (γ) =
⊕

n>0

⊕

⋃· n
i=1γi=γ

val (‖ζ‖ (γ1), . . . , ‖ζ‖ (γn)) .

By Lemma 2, for every i ∈ I there exists a unique γi ∈ C(P) such that for every
γ ∈ C(P) we have

∥
∥∑

i∈Ji
mi,j

∥
∥ (γ) = 1 if γ = γi and

∥
∥∑

i∈Ji
mi,j

∥
∥ (γ) = 0,

otherwise. Hence, val (‖ζ‖ (γ1), . . . , ‖ζ‖ (γn)) 	= 0 when for every i ∈ {1, . . . , n}
there exists ji ∈ I such that γi = γji and, by definition of ‖∗ζ‖ (γ), the sets
γ1, . . . , γn consist a partition of γ. Moreover,

val (‖ζ‖ (γj1), . . . , ‖ζ‖ (γjn)) = val (dj1 , . . . , djn) .

Since val is a symmetric function and D is idempotent, we get ‖∗ζ‖ (γ) =⊕
I′′⊆I val(di)i∈I′′ where for every I ′′ ⊆ I it holds γ =

⋃· i∈I′′γi or equiva-

lently
∥
∥
∥
⊎

i∈I′′
∑

j∈Ji
mi,j

∥
∥
∥ (γ) = 1. For every other I ′′′ subset of I it holds

∥
∥
∥
⊎

i∈I′′′
∑

j∈Ji
mi,j

∥
∥
∥ (γ) = 0. So, we get the following ∗ζ ≡ ⊕I′⊆I (val(di)i∈I′

⊗
(⊎

i∈I′
∑

j∈Ji
mi,j

))
.

ii. Let γ ∈ C(P). Then we get
∥
∥
∥
∥
∥
∥
(∗ζ) ⊗

⎛

⎝
⊎

i∈I

∑

j∈Ji

mi,j

⎞

⎠

∥
∥
∥
∥
∥
∥

(γ) = ‖∗ζ‖ (γ) ⊗
∥
∥
∥
∥
∥
∥

⊎

i∈I

∑

j∈Ji

mi,j

∥
∥
∥
∥
∥
∥

(γ).

We can easily prove that
∥
∥
∥
⊎

i∈I

∑
j∈Ji

mi,j

∥
∥
∥ (γ) = 1 if γ =

⋃· i∈Iγi and
∥
∥⊎

i∈I
∑

j∈Ji
mi,j

∥
∥
∥ (γ) = 0 otherwise. If γ =

⋃· i∈Iγi, then since D is idempotent we

get ‖∗ζ‖ (γ) = val
(
d1, . . . , d|I|

)
. Hence,

∥
∥
∥
∥
∥
∥
(∗ζ) ⊗

⎛

⎝
⊎

i∈I

∑

j∈Ji

mi,j

⎞

⎠

∥
∥
∥
∥
∥
∥

(γ) =
{

val(d1, . . . , d|I|) if γ =
⋃· i∈Iγi

0 otherwise.

= val(d1, . . . , d|I|) ⊗
∥
∥
∥
∥
∥
∥

⊎

i∈I

∑

j∈Ji

mi,j

∥
∥
∥
∥
∥
∥

(γ)

=

∥
∥
∥
∥
∥
∥
val(d1, . . . , d|I|) ⊗

⎛

⎝
⊎

i∈I

∑

j∈Ji

mi,j

⎞

⎠

∥
∥
∥
∥
∥
∥

(γ),

and we are done.

Weighted PCL over pv-monoids 311

Theorem 1. Let D be an associative, idempotent and ⊕-distributive pv-monoid,
where ⊗ is commutative. Then, for every wpvmPCL formula ζ ∈ PCL(D,P) we
can effectively construct an equivalent wpvmPCL formula ζ ′ ∈ PCL(D,P) in
full normal form which is unique up to the equivalence relation.

Proof. We prove our theorem by induction on the structure of wpvmPCL formu-
las over P and D. Let ζ = f be a PCL formula. Then, we conclude our claim by
Proposition 7. Next let ζ = d with d ∈ D, then we have nothing to prove.

In the sequel, assume that ζ1, ζ2 ∈ PCL(D,P). In [11] we show how we can
construct wpvmPCL formulas ζ(1), ζ(2) and ζ(3) in full normal form which are
equivalent to ζ1 ⊕ ζ2, ζ1 ⊗ ζ2 and ζ1 � ζ2, respectively.

Finally, let ζ = ∗ζ1 and ζ ′
1 =

⊕
i1∈I1

(
di1 ⊗∑j1∈Ji1

mi1,j1

)
be its equivalent

wpvmPCL formula in full normal form. We consider the formula ζ ′ = ∗ζ ′
1. By

Proposition 10, ζ ′ can be equivalently written as follows

ζ ′ ≡
⊕

I′
1⊆I1

⎛

⎝val(di1)i1∈I′
1
⊗
⎛

⎝
⊎

i1∈I′
1

∑

j1∈Ji1

mi1,j1

⎞

⎠

⎞

⎠ .

We consider the sets I
(1)
1 , . . . , I

(k)
1 with k ∈ N to be an enumeration of all I ′

1’s such
that

⊎
i1∈I′

1

∑
j1∈Ji1

mi1,j1 	≡ 0. Hence, by Proposition 9,
⊎

i∈I
(s)
1

∑
j∈Ji

mi,j ≡
∑

i∈I
(s)
1

∑
j∈Ji

mi,j for every s ∈ {1, . . . , k}. Moreover, for every s ∈ {1, . . . , k}
we let d′

s = val(di)i∈I
(s)
1

. So,

ζ ′ ≡
⊕

s∈{1,...,k}

⎛

⎜
⎝d′

s ⊗

⎛

⎜
⎝
∑

i∈I
(s)
1

∑

j∈Ji

mi,j

⎞

⎟
⎠

⎞

⎟
⎠ .

Lastly, if
∑

i∈I
(s)
1

∑
j∈Ji

mi,j 	≡ ∑
i∈I

(s′)
1

∑
j∈Ji

mi,j for every s, s′ ∈ {1, . . . , k}
with s 	= s′, then we are done. However, let

∑
i∈I

(s)
1

∑
j∈Ji

mi,j ≡∑
i∈I

(s′)
1

∑
j∈Ji

mi,j for some s 	= s′. Then, we replace
(
d′

s ⊗
(∑

i∈I
(s)
1

∑
j∈Ji

mi,j

))
⊕

(
d′

s′ ⊗
(∑

i∈I
(s′)
1

∑
j∈Ji

mi,j

))
by its equivalent formula (d′

s ⊕ d′
s′) ⊗

∑
i∈I

(s)
1

∑
j∈Ji

mi,j . We conclude to a full normal form which by construction, it
is equivalent to ζ.

The uniqueness of ζ(1), ζ(2), ζ(3) and ζ ′, up to equivalence, is derived in a
straightforward way using Statements (i) and (ii).

In the sequel, we present an example where we compute the full normal form
of a wpvmPCL formula.

Example 1. Let P be the set of ports and D a pv-monoid which satisfies the
properties of Theorem 1. We consider the wpvmPCL formula

ζ = ((d1 ⊗ m1) � (d2 ⊗ (m2 ⊕ m3))) ⊕ (d3 ⊗ (m4 + m5))

312 V. Karyoti and P. Paraponiari

where d1, d2, d3 ∈ D and mi is a full monomial over P for every i ∈ {1, . . . , 5}.
We will compute the full normal form of ζ ′ = ∗ζ. Firstly, we compute the full
normal form of ζ.

ζ ≡ ((d1 ⊗ d2) ⊗ (m1 + m2)) ⊕ ((d1 ⊗ d2) ⊗ (m1 + m3)) ⊕ (d3 ⊗ (m4 + m5)).

By Proposition 10 we get

ζ ′ ≡ ((d1 ⊗ d2) ⊗ (m1 + m2)) ⊕ ((d1 ⊗ d2) ⊗ (m1 + m3)) ⊕ (d3 ⊗ (m4 + m5)) ⊕
(val(d1 ⊗ d2, d3) ⊗ (m1 + m2 + m4 + m5)) ⊕

(val(d1 ⊗ d2) ⊗ (m1 + m3 + m4 + m5)))

which is in full normal form.

Theorem 2. Let D be an associative, idempotent and ⊕-distributive pv-monoid,
where ⊗ is commutative, and P a finite nonempty set of ports. Then for every
ζ, ξ ∈ PCL(D,P) the equality ‖ζ‖ = ‖ξ‖ is decidable.

Proof. We follow the proof of Theorem 26 in [16]. By Theorem 1 we can
effectively construct wpvmPCL formulas ζ ′, ξ′ in full normal form such that

‖ζ‖ = ‖ζ ′‖ and ‖ξ‖ = ‖ξ′‖. Let us assume that ζ ′ =
⊕

i∈I

(
di ⊗∑j∈Ji

mi,j

)
and

ξ′ =
⊕

l∈L

(
d′

l ⊗∑r∈Ml
m′

l,r

)
which moreover satisfy Statements (i) and (ii).

Then, by Statement (ii) we get that ‖ζ ′‖ = ‖ξ′‖ iff the following requirements
(1)–(3) hold:

1) card(I) = card(L),
2) {di | i ∈ I} = {d′

l | l ∈ L}, and
3) a) if card(I) = card({di | i ∈ I}), then

∑
j∈Ji

mi,j ≡ ∑r∈Ml
m′

l,r for every
i ∈ I and l ∈ L such that di = d′

l,
or

b) if card(I) > card({di | i ∈ I}), then we get
ζ ′ ≡ ⊕

i′∈I′

(
di′ ⊗⊔i∈Ri′

∑
j∈Ji

mi,j

)
where I ′

� I, di′ ’s (i′ ∈ I ′) are
pairwise disjoint, and Ri′ (i′ ∈ I ′) is the set of all i in I such that di = di′ .
Similarly, we get ξ′ ≡ ⊕l′∈L′

(
d′

l′ ⊗⊔l∈Sl′

∑
r∈Ml

m′
l,r

)
where L′

� L,
d′

l′ ’s (l′ ∈ L′) are pairwise disjoint, and Sl′ (l′ ∈ L′) is the set of all l in
L such that d′

l = d′
l′ . Then

⊔
i∈Ri′

∑
j∈Ji

mi,j ≡ ⊔l∈Sl′

∑
r∈Ml

m′
l,r for

every i′ ∈ I ′ and l′ ∈ L′ such that di′ = d′
l′ .

By Lemma 2 the decidability of equivalences in (3a) is reduced to decidability
of equality of sets of interactions corresponding to full monomials, whereas the
decidability of equivalences in (3b) is reduced to the decidability of equality of
sets whose elements are sets of interactions corresponding to full monomials.

Weighted PCL over pv-monoids 313

6 Examples

In this section, we provide wpvmPCL formulas which describe well-known archi-
tectures equipped with quantitative features. But first, we introduce a new sym-
bol which we use in order to simplify the form of the formulas in our examples.

Let ζ be a wpvmPCL formula. By Theorem 1, ζ can be written in full normal

form, hence ζ ≡ ⊕i∈I

(
di ⊗∑j∈Ji

mi,j

)
. We define the full valuation �ζ of ζ

by:

– �ζ := (∗ζ) ⊗
(⊎

i∈I

∑
j∈Ji

mi,j

)
.

Then, by Proposition 10 we get �ζ ≡ val(d1, . . . , d|I|) ⊗
(⊎

i∈I

∑
j∈Ji

mi,j

)
.

Example 2. We recall from [13] the Master/Slave architecture for two masters
M1,M2 and two slaves S1, S2 with ports m1,m2 and s1, s2, respectively. Masters
can interact only with slaves, and vice versa, and each slave can interact with
only one master. In the following we present four different wpvmPCL formulas,
which according to the underlying pv-monoid we get interesting results.

The monomial φi,j = m{si,mj} for every i, j ∈ {1, 2} represents the
binary interaction between the ports si and mj . For every i, j ∈ {1, 2} we
consider a value di,j ∈ D and the wpvmPIL formula ϕi,j = di,j ⊗ φi,j .
Hence, di,j can be considered as the “cost” for the implementation of the
interaction {si,mj}. For our example we consider the configuration set γ =
{{s1,m1}, {s1,m2}, {s2,m1}, {s2,m2}} and the pv-monoid (R ∪ {−∞},max,
avg,+, −∞, 0).

Let us assume that we want to compute the average cost of each of the
possible architectures and then the maximum of those values. We consider the
wpvmPCL formula

ζ =∼
⊕

i,j∈{1,2}
� (ϕ1,i ⊕ ϕ2,j) .

Then, the value

‖ζ‖ (γ) =

∥
∥
∥
∥
∥
∥
∼

⊕

i,j∈{1,2}
� (ϕ1,i ⊕ ϕ2,j)

∥
∥
∥
∥
∥
∥

(γ)

= max {avg(d1,1, d2,1), avg(d1,1, d2,2), avg(d1,2, d2,1), avg(d1,2, d2,2)}
computes the average cost for each of the four possible instances and then the
maximum of those values. It is interesting to note that ‖ζ‖ (γ) = ‖ζ‖ (γ′) for
every γ′ ∈ C(P) with γ ⊆ γ′.

Moreover, let the following wpvmPCL formula

ζ =
⊗

i,j∈{1,2}
∼ (� (ϕ1,i ⊕ ϕ2,j)) .

314 V. Karyoti and P. Paraponiari

P1
p1

P2
p2

T1t11 t12

T2t21 t22

T3t31 t32

S1
s1

S2
s2

S3
s3

S4

s4

dp1,t11

dp1,t31

ds1,t12

ds1,t32

Fig. 1. Weighted Publish/Subscribe architecture.

Then, the value

‖ζ‖ (γ) = avg(d1,1, d2,1) + avg(d1,2, d2,1) + avg(d1,1, d2,2) + avg(d1,2, d2,2)

is the sum of the average costs of all architecture schemes.
As a third case, we want to compute the slave which has the maximum

average cost with the existing masters. Therefore, we consider the following
wpvmPCL formula:

ζ =∼
⊕

i∈{1,2}
(� (ϕi,1 ⊕ ϕi,2)) .

Then we get

‖ζ‖ (γ) =

∥
∥
∥
∥
∥
∥
∼
⊕

i∈{1,2}
(� (ϕi,1 ⊕ ϕi,2))

∥
∥
∥
∥
∥
∥

(γ) = max{avg(d1,1, d1,2), avg(d2,1, d2,2)}

which is the wanted outcome.

Example 3. Publish/Subscribe is a software architecture used in development
of applications in IoT [14], cloud computing [19] and robots’ operating systems
[12]. It has three types of components namely, publishers, topics, and subscribers
denoted by the letters P, T, S, respectively (cf. [9,10,17]). Publishers send mes-
sages to subscribers but they do not have any information about subscribers
and vice versa. So, in order to send messages, publishers characterize messages
according to classes/topics. Subscribers, on the other hand, express their interest
in one or more topics and receive all messages which have been published to the
topics to which they subscribe (Fig. 1).

In our example we assign weights, describing priorities, to interactions
among publishers and topics, and to interactions among topics and subscribers.

Weighted PCL over pv-monoids 315

Component P has one port p, T has two ports t1 and t2, and S has the
port s. We assume two publisher components P1, P2, four subscriber compo-
nents S1, S2, S3, S4 and three topic components T1, T2, T3. Hence, the set of ports
is P = {p1, p2, s1, s2, s3, s4, t11, t12, t21, t22, t31, t32}. For every i ∈ {1, 2, 3, 4},
j ∈ {1, 2, 3} and k ∈ {1, 2} we denote by dsi,tj2 ∈ D the weight of the interaction
among Si and Tj , i.e., the priority that the subscriber Si assigns to the receive-
ment of a message from Tj , and by dpk,tj1 ∈ D, the weight of the interaction
among Pk and Tj , i.e., the priority that the topic Tj assigns to the receivement
of a message from Pk.

In the sequel, we develop wpvmPCL formulas whose semantics compute the
maximum average priority with which a subscriber will receive a message and
also the maximum most frequent priority of each topic. For every i ∈ {1, 2} and
j ∈ {1, 2, 3}, the wpvmPIL formula ϕpt(pi, tj1) = dpi,tj1 ⊗ m{pi,tj1} character-
izes the interaction between a publisher Pi and a topic Tj with its correspond-
ing weight. Moreover, for every i ∈ {1, 2, 3, 4} and j ∈ {1, 2, 3}, the wpvmPIL
ϕst(si, tj2) = dsi,tj2 ⊗m{si,tj2} characterizes the interaction between a subscriber
Si and a topic Tj with its corresponding weight. Then, the wpvmPCL formula

ζsi
=

⊕

j∈{1,2,3}

⊕

k∈{1,2}
� (ϕpt(pk, tj1) ⊕ ϕst(si, tj2))

describes the behavior of subscriber Si with publishers P1, P2 and topics T1, T2,
T3. Let the configuration set γ = {{pi, tj1}, {sk, tj2} | i ∈ {1, 2}, j ∈ {1, 2, 3}, k ∈
{1, 2, 3, 4}} , and the pv-monoid (R ∪ {−∞},max, avg,+,−∞, 0). Then the
value ‖∼ ζsi

‖ (γ) represents the maximum average priority with which the
subscriber Si will receive a message. Also, consider the wpvmPCL formula
ζ =

⊗
i∈{1,2,3,4} (∼ ζsi

). Then, the following value

‖ζ‖ (γ) =
∑

i∈{1,2,3,4}

(

max
j∈{1,2,3}

{
avg(dp1,tj1 , dsi,tj2), avg(dp2,tj1 , dsi,tj2)

}
)

is the sum of the values ‖∼ ζsi
‖ (γ) for i ∈ {1, 2, 3, 4}.

Moreover, let us assume that we want to erase one component of the archi-
tecture in case, for example, where the system is overloaded and needs to be
‘lightened’. Consider the case where we choose to erase a topic which is not as
popular as the others. A way to do this is to compute for every topic the most
frequent priorities that the publishers and subscribers give to that component
and then the maximum one of those. Hence, the topic that has the minimum
most frequent priority among the other topics is the least popular topic and so
it can be erased. The following wpvmPCL formula

ζti = �

⎛

⎝
⊕

j∈{1,2}
ϕpt(pj , ti1) ⊕

⊕

k∈{1,2,3,4}
ϕst(sk, ti2)

⎞

⎠

for i ∈ {1, 2, 3} describes the full valuation of the weighted interactions of
the topic Ti with the publishers P1, P2 and the subscribers S1, S2, S3 and S4.

316 V. Karyoti and P. Paraponiari

Consider the configuration γ given above and the pv-monoid (R ∪ {+∞,−∞},
min,maj,max,+∞,−∞). Then,

‖∼ ζti‖ (γ) = maj (dp1,ti1 , dp2,ti1 , ds1,ti2 , ds2,ti2 , ds3,ti2 , ds4,ti2)

for i ∈ {1, 2, 3} is the maximum priority, among the most frequent ones, that the
publishers and subscribers give to topic Ti. Lastly, if we consider the wpvmPCL
formula

ζ ′ =∼ (ζt1 ⊕ ζt2 ⊕ ζt3) ,

then ‖ζ ′‖ (γ) = mini∈{1,2,3} {maj (dp1,ti1 , dp2,ti1 , ds1,ti2 , ds2,ti2 , ds3,ti2 , ds4,ti2)}
and so we erase the topic with the minimum value.

Example 4. Consider the Star architecture [13]. Star architecture is a software
architecture relating components of the same type. Given a set of components
one of them is considered as the central one and is connected to every other
component through a binary interaction. No other interactions are permitted.

In our example we consider five components. We assume that each component
has a single port, hence the set of ports is P = {s1, s2, s3, s4, s5}. We denote
by di,j ∈ D the weight of the binary interaction between si and sj for every
i, j ∈ I = {1, . . . , 5} with i 	= j, when si is considered as the central component.
The wpvmPIL formula characterizing this interaction, for every i, j ∈ I with
i 	= j, is given by ϕij = di,j ⊗ m{si,sj}. Therefore, the wpvmPCL formula

ζi = �

⎛

⎝
⊕

j∈I\{i}
ϕij

⎞

⎠

describes the full valuation of the binary interactions of the central component si

with the rest of all other components. Next, consider the wpvmPCL formula ζ =∼(⊕
i∈I ζi

)
which describes the five alternative versions of the Star architecture.

Let γ = {{si, sj}/ i, j ∈ I and i 	= j} and (R ∪ {+∞},min, avg,+,+∞, 0). Then
we get

‖ζ‖ (γ) = min{avg(d1,2, d1,3, d1,4, d1,5), ..., avg(d5,1, d5,2, d5,3, d5,4)}
which is the minimum value among the average costs of each component when
it is considered as the central one.

7 Discussion

In our definition of wpvmPIL and wpvmPCL over P and D, we excluded, follow-
ing [13], the empty interaction and the empty set of interactions. The empty
interaction satisfies only the PIL formula false. If we consider the empty inter-
action, then several properties do not hold in PCL of [13]. For instance the

Weighted PCL over pv-monoids 317

equivalence f +false ≡ false (Proposition 4.4 in [13]) for f 	≡ false, which is used
in the computation of the full normal form of a PCL formula (more specifically
in proof of Proposition 4.19 and in turn in proof of Proposition 4.35 in [13]).
Hence, it is clear that if we consider the empty interaction and the empty set of
interactions, then we need to rebuilt not only our theory but also the theory of
PCL. Moreover, the empty interaction adds no value in single interactions but
it does in architectural composition (cf. for instance [2,3]), where it represents
the case where two architectures cannot be composed. However, this is beyond
the scope of this paper.

In our logic we consider the algebraic structure of product valuation monoids.
The semantics of wpvmPCL formulas are polynomials with values in the prod-
uct valuation monoid. In Theorem 1 we prove that for every wpvmPCL formula
ζ ∈ PCL(D,P), where D satisfies specific properties, we can effectively con-
struct an equivalent wpvmPCL formula ζ ′ ∈ PCL(D,P) in full normal form.
For this, we require D to be an associative, idempotent and ⊕-distributive pv-
monoid, where ⊗ is commutative. We need to clarify that a pv-monoid D satis-
fying those properties is not a semiring since a pv-monoid contains a valuation
function which can not be supported by the structure of semirings. For instance,
let the pv-monoid (R ∪ {−∞},max, avg,+, −∞, 0) which is associative, idem-
potent, ⊕-distributive and the operator + is commutative. The valuation func-
tion avg can not be written using the operations max and + of the semiring
(R ∪ {−∞},max,+, −∞, 0). Hence, the pv-monoids satisfying the above prop-
erties constitute a different structure than the one of semirings.

8 Conclusion

We introduced a weighted PCL over a set of ports and a pv-monoid, and inves-
tigated several properties of the class of polynomials obtained as semantics of
this logic with the condition that our pv-monoid satisfies specific properties. We
proved that for every wpvmPCL formula ζ over a set of ports P and a pv-monoid
D which is associative, ⊕-distributive, idempotent and ⊗ is commutative, we can
effectively construct an equivalent one ζ ′ in full normal form. This result implied
the decidability of the equivalence problem for wpvmPCL formulas. Lastly, we
provided examples describing well-known software architectures with quantita-
tive characteristics such as the average cost of an architecture or the maximum
most frequent priority of a component in the architecture. These are important
properties which can not be represented by the framework of semirings in [17].
Future work includes the investigation of the complexity for the construction of
full normal form for formulas in our logic and the time needed for that construc-
tion using the Maude rewriting system [1]. Furthermore, it would be interesting
to study the first-order level of wpvmPCL for the description of architecture
styles with quantitative features.

318 V. Karyoti and P. Paraponiari

References

1. http://maude.cs.illinois.edu/w/index.php/The Maude System
2. Attie, P., Baranov, E., Bliudze, S., Jaber, M., Sifakis, J.: A general framework

for architecture composability. Formal Aspects Comput. 28(2), 207–231 (2015).
https://doi.org/10.1007/s00165-015-0349-8

3. Bozga, M., Iosif, R., Sifakis, J.: Local reasoning about parametric and reconfig-
urable component-based systems. hal-02267423 (2019)

4. Chatterjee, K., Doyen, L., Henzinger, T.: Expressiveness and closure properties
for quantitative languages. In: 2009 24th Annual IEEE Symposium on Logic In
Computer Science, pp. 199–208. IEEE (2009). https://doi.org/10.1109/LICS.2009.
16

5. Chatterjee, K., Doyen, L., Henzinger, T.: Quantitative languages. ACM Trans.
Comput. Log. 11(4), 1–38 (2010). https://doi.org/10.1145/1805950.1805953

6. Chatterjee, K., Henzinger, T.A., Otop, J.: Computing average response time. In:
Lohstroh, M., Derler, P., Sirjani, M. (eds.) Principles of Modeling. LNCS, vol.
10760, pp. 143–161. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
95246-8 9

7. Droste, M., Meinecke, I.: Weighted automata and regular expressions over valuation
monoids. Int. J. Found. Comput. Sci. 22(08), 1829–1844 (2011). https://doi.org/
10.1142/S0129054111009069

8. Droste, M., Meinecke, I.: Weighted automata and weighted MSO logics for average
and long-time behaviors. Inf. Comput. 220, 44–59 (2012). https://doi.org/10.1016/
j.ic.2012.10.001

9. Eugster, P., Felber, P., Guerraoui, R., Kermarrec, A.M.: The many faces of pub-
lish/subscribe. ACM Comput. Surv. 35(2), 114–131 (2003). https://doi.org/10.
1145/857076.857078

10. Hasan, S., O’Riain, S., Curry, E.: Approximate semantic matching of hetero-
geneous events. In: Proceedings of the 6th ACM International Conference on
Distributed Event-Based Systems, pp. 252–263 (2012). https://doi.org/10.1145/
2335484.2335512

11. Karyoti, V., Paraponiari, P.: Weighted PCL over product valuation monoids. arXiv
preprint https://arxiv.org/abs/2002.10973 (2020)

12. Malavolta, I., Lewis, G., Schmerl, B., Lago, P., Garlan, D.: How do you architect
your robots? State of the practice and guidelines for ROS-based systems. In: Pro-
ceedings of ICSE-CEIP. ACM (2020). https://doi.org/10.1145/3377813.3381358

13. Mavridou, A., Baranov, E., Bliudze, S., Sifakis, J.: Configuration logics: model-
ing architecture styles. J. Log. Algebraic Methods Program. 86(1), 2–29 (2017).
https://doi.org/10.1016/j.jlamp.2016.05.002

14. Olivieri, A., Rizzo, G., Morand, F.: A publish-subscribe approach to IoT integra-
tion: the smart office use case. In: Proceedings of the 29th International Conference
on Advanced Information Networking and Applications Workshops, pp. 644–651.
IEEE (2015). https://doi.org/10.1109/WAINA.2015.28

15. Otop, J., Henzinger, T., Chatterjee, K.: Quantitative automata under probabilistic
semantics. Log. Methods Comput. Sci. 15(3) (2019). https://doi.org/10.23638/
LMCS-15(3:16)2019

16. Paraponiari, P., Rahonis, G.: Weighted propositional configuration logics: a spec-
ification language for architectures with quantitative features. Inform. Comput.
(accepted). https://arxiv.org/abs/1704.04969

http://maude.cs.illinois.edu/w/index.php/The_Maude_System
https://doi.org/10.1007/s00165-015-0349-8
https://doi.org/10.1109/LICS.2009.16
https://doi.org/10.1109/LICS.2009.16
https://doi.org/10.1145/1805950.1805953
https://doi.org/10.1007/978-3-319-95246-8_9
https://doi.org/10.1007/978-3-319-95246-8_9
https://doi.org/10.1142/S0129054111009069
https://doi.org/10.1142/S0129054111009069
https://doi.org/10.1016/j.ic.2012.10.001
https://doi.org/10.1016/j.ic.2012.10.001
https://doi.org/10.1145/857076.857078
https://doi.org/10.1145/857076.857078
https://doi.org/10.1145/2335484.2335512
https://doi.org/10.1145/2335484.2335512
https://arxiv.org/abs/2002.10973
https://doi.org/10.1145/3377813.3381358
https://doi.org/10.1016/j.jlamp.2016.05.002
https://doi.org/10.1109/WAINA.2015.28
https://doi.org/10.23638/LMCS-15(3:16)2019
https://doi.org/10.23638/LMCS-15(3:16)2019
https://arxiv.org/abs/1704.04969

Weighted PCL over pv-monoids 319

17. Paraponiari, P., Rahonis, G.: On weighted configuration logics. In: Proença, J.,
Lumpe, M. (eds.) FACS 2017. LNCS, vol. 10487, pp. 98–116. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-68034-7 6

18. Patel, S., Jardosh, S., Makwana, A., Thakkar, A.: Publish/subscribe mechanism
for IoT: a survey of event matching algorithms and open research challenges. In:
Modi, N., Verma, P., Trivedi, B. (eds.) Proceedings of International Conference on
Communication and Networks. AISC, vol. 508, pp. 287–294. Springer, Singapore
(2017). https://doi.org/10.1007/978-981-10-2750-5 30

19. Yang, K., Zhang, K., Jia, X., Hasan, M.A., Shen, X.: Privacy-preserving attribute-
keyword based data publish-subscribe service on cloud platforms. Inf. Sci. 387,
116–131 (2017). https://doi.org/10.1016/j.ins.2016.09.020

https://doi.org/10.1007/978-3-319-68034-7_6
https://doi.org/10.1007/978-981-10-2750-5_30
https://doi.org/10.1016/j.ins.2016.09.020

Operational Representation
of Dependencies in Context-Dependent

Event Structures

G. Michele Pinna(B)

Dipartimento di Matematica e Informatica, Università di Cagliari, Cagliari, Italy
gmpinna@unica.it

Abstract. The execution of an event in a complex and distributed sys-
tem where the dependencies vary during the evolution of the system
can be represented in many ways, and one of them is to use Context-
Dependent Event structures. Many kinds of event structures are related
to various kind of Petri nets. The aim of this paper is to find the appro-
priate kind of Petri net that can be used to give an operational flavour to
the dependencies represented in a Context/Dependent Event structure.

Keywords: Petri nets · Event structures · Operational semantics ·
Contextual nets

1 Introduction

Since the introduction of the notion of Event structure [21] and [28] the close
relationship between this notion and suitable nets has been investigated. The
ingredients of an event structure are, beside a set of events, a number of relations
used to express which events can be part of a configuration (the snapshot of a
concurrent system), modeling a consistency predicate, and how events can be
added to reach another configuration, modeling the dependencies among the
(sets of) events. On the nets side we have transitions, modeling the activities,
and places, modeling resources the activities may need, consume or produces.
These ingredients, together with some constraints on how places and transitions
are related (via flow, inhibitor or read arcs satisfying suitable properties), can
give also a more operational description of a concurrent and distributed system.
Indeed the relationship between event structures and nets is grounded on the
observation that also in (suitable) Petri nets the relations among events are
representable, as it has been done in [14] for what concern the partial order and
[21] for the partial order and conflict.

Since then several notions of event structures have been proposed. We recall
just few of them: the classical prime event structures [28] where the dependency
between events, called causality, is modeled by a partial order and the consistency
is described by a symmetric conflict relation. Then flow event structures [6] drop

c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
S. Bliudze and L. Bocchi (Eds.): COORDINATION 2020, LNCS 12134, pp. 320–338, 2020.
https://doi.org/10.1007/978-3-030-50029-0_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50029-0_20&domain=pdf
https://doi.org/10.1007/978-3-030-50029-0_20

Operational Representation of Dependencies 321

the requirement that the dependency should be a partial order on the whole set
of events, bundle event structures [17] represent OR-causality by allowing each
event to be caused by a unique member of a bundle of events (and this constraint
may be relaxed). Asymmetric event structures [4], via notion of weak causality,
model asymmetric conflicts, whereas Inhibitor event structures [3] are able to
faithfully capture the dependencies among events which arise in the presence of
read and inhibitor arcs in safe nets. In [5] a notion of event structures where
the causality relation may be circular is investigated, and in [1] the notion of
dynamic causality is considered. Finally, we mention the quite general approach
presented in [13], where there is a unique relation, akin to a deduction relation.
To each of the mentioned event structures a particular class of nets is related.
Prime event structures have a correspondence in occurrence nets, flow event
structures have flow nets whereas unravel nets [7] are related to bundle event
structures. Continuing we have that asymmetric and inhibitor event structures
have a correspondence with contextual nets [3,4], and event structures with
circular causality with lending nets [5], finally to those with dynamic causality
we have inhibitor unravel nets [9] and to the configuration structures presented
in [13] we have the notion of 1-occurrence nets. Most of the approaches relating
nets with event structures are based on the equation “event = transition”, even if
many of the events represent the same high level activity. The idea that some of
the transitions may be somehow identified as they represent the same activity is
the one pursued in many works aiming at reducing the size of the net, like merged
processes [16], trellis processes [11], merging relation approach [8] or spread nets
[12] and [25], but these approaches are mostly unrelated with event structure of
any kind.

In this paper we pursue the usual problem: given an event structure, find a
net which may correspond to it. To find the kind of net that can be associated
to context-dependent event structures [23] and [24] we first observe that in these
event structures each event may happen in many different and often unrelated
contexts, hence the same event cannot have (almost) the same past as it happens
in many approaches. The second observation is that dependencies among tran-
sitions (events) in nets may be represented in different ways. Consider the case
of a Petri net with inhibitor arcs [15] where the precondition of the transition
e′ inhibits the transition e (the net N). The latter to happens needs that the
transition e′ happens first, and the observation testifies that the activity e needs
that e′ has already happened, though resources are not exchanged between e′

and e. On the contrary, in the net N without inhibitor arcs the token (resource)
produced by e′ is mandatory for e to happen.

N N ′

e′

e

e′ e

322 G. M. Pinna

Both nets represent the same dependency: e′ should happen before e. Following
these two observations we argue that each of the context that are allowing an
event to happen can be modeled with inhibitor and/or read arcs. It should be
stressed that these kind of arcs have been introduced for different purposes, but
never for nets which are meant to describe the behaviour of another one. The
approach we pursue here is originated in the one we adopted for dynamic event
structures in [9], though here also the classical dependencies among events (those
called causal dependencies) are boiled down to the same machinery. Indeed we
argued that the proper net corresponding to these kind of event structure are
meant to give an operational representation of what denotationally can be char-
acterized as a single event but operationally are rather different transitions. The
approach is a conservative one: the dependencies represented in different kind on
nets can be represented also in this approach and similarly to suitably character-
ized nets it is possible to associate the corresponding context-dependent event
structure. It should be stressed that the conflicts between events in causal nets
are explicitly represented and cannot be inferred otherwise.

Organization of the Paper. In the next section we recall the notions of contextual
nets, occurrence net and prime event structure and also ho the two latter notions
are related. In Sect. 3 we recall the notion of context-dependent event structure
and in Sect. 4 we introduce the notion of causal net and we show also how
occurrence nets can be seen as causal nets. We also give a direct translation
from prime event structures to causal net and vice versa. In Sect. 5 we discuss
how to associate a causal net to a context-dependent event structure and vice
versa, showing that the notion of causal net is adequate. Some conclusions end
the paper.

2 Preliminaries

We denote with N the set of natural numbers. Let A be a set, a multiset of
A is a function m : A → N. The set of multisets of A is denoted by μA. We
assume the usual operations on multisets such as union + and difference −. We
write m ⊆ m′ if m(a) ≤ m′(a) for all a ∈ A. For m ∈ μA, we denote with
[[m]] the multiset defined as [[m]](a) = 1 if m(a) > 0 and [[m]](a) = 0 otherwise.
When a multiset m of A is a set, i.e. m = [[m]], we write a ∈ m to denote that
m(a) �= 0, and often confuse the multiset m with the set {a ∈ A | m(a) �= 0} or
a subset X ⊆ A with the multiset X(a) = 1 if a ∈ A and X(a) = 0 otherwise.
Furthermore we use the standard set operations like ∩, ∪ or \.

Given a set A and a relation < ⊆ A × A, we say that < is an irreflexive
partial order whenever it is irreflexive and transitive. We shall write ≤ for the
reflexive closure of an irreflexive partial order <. Given an irreflexive relation
≺ ⊆ A × A, with ≺+ we denote its transitive closure.

Given a function f : A → B, dom(f) = {a ∈ A | ∃b ∈ B. f(a) = b} is the
domain of f , and codom(f) = {b ∈ B | ∃a ∈ A. f(a) = b} is the codomain of f .

Given a set A, a sequence of elements in A is a partial mapping ρ : N ⇀ A
such that, given any n ∈ N, if ρ(n) is defined and equal to a ∈ A then ∀i ≤ n

Operational Representation of Dependencies 323

also ρ(i) is defined. A sequence is finite if |dom(ρ)| is finite, and the length of a
sequence ρ, denoted with len(ρ), is the cardinality of dom(ρ). A sequence ρ is
often written as a1a2 · · · where ai = ρ(i). With ρ we denote the codomain of ρ.
Requiring that a sequence ρ has distinct elements accounts to stipulate that ρ
is injective on dom(ρ).

2.1 Contextual Petri Nets

We review the notion of labeled Petri net with contextual arcs along with some
auxiliary notions [20] and [3]. We recall that a net is the 4-tuple N = 〈S, T, F,m〉
where S is a set of places (usually depicted with circles) and T is a set of
transitions (usually depicted as squares) and S ∩ T = ∅, F ⊆ (S × T) ∪ (T × S)
is the flow relation and m ∈ μS is called the initial marking. We assume to have
a set L of labels.

Definition 1. A contextual Petri net is the tuple N = 〈S, T, F, I,R,m, �〉, where
〈S, T, F,m〉 is a net, I ⊆ S × T are the inhibitor arcs, R ⊆ S × T are the read
arcs, and � : T → L is the labeling mapping, and � is a total function.

Inhibitor arcs depicted as lines with a circle on one end, and read arcs as plain
lines. We sometimes omit the � mapping when L is T and � is the identity. We
will often call a contextual Petri net as Petri net or simply net.

Given a net N = 〈S, T, F, I,R,m〉 and x ∈ S ∪ T , we define the following
(multi)sets: •x = {y | (y, x) ∈ F} and x• = {y | (x, y) ∈ F}. If x ∈ S then
•x ∈ μT and x• ∈ μT ; analogously, if x ∈ T then •x ∈ μS and x• ∈ μS. Given
a transition t, with ◦t we denote the (multi)set {s | (s, t) ∈ I} and with t the
(multi)set {s | (s, t) ∈ R}.

A transitions t ∈ T is enabled at a marking m ∈ μS, denoted by m [t〉 ,
whenever •t + t ⊆ m and ∀s ∈ [[◦t]]. m(s) = 0. Observe that no token must be
present in a place connected to a transition with an inhibitor arc. A transition
t enabled at a marking m can fire and its firing produces the marking m′ =
m − •t + t•. The firing of t at a marking m is denoted by m [t〉m′. We assume
that each transition t of a net N is such that •t �= ∅, meaning that no transition
may fire spontaneously. Given a generic marking m (not necessarily the initial
one), the firing sequence (shortened as fs) of N = 〈S, T, F, I,R,m〉 starting at
m is defined as:

– m is a firing sequence (of length 0), and
– if m [t1〉m1 · · · mn−1 [tn〉mn is a firing sequence and mn [t〉m′, then also

m [t1〉m1 · · · mn−1 [tn〉mn [t〉m′ is a firing sequence.

The set of firing sequences of a net N starting at a marking m is denoted by
RN

m and it is ranged over by σ. Given a fs σ = m [t1〉σ′ [tn〉mn, we denote with
start(σ) the marking m and with lead(σ) the marking mn. tail(σ) denotes the fs
σ′ [tn〉mn, provided that σ is not of length 0, otherwise it is not defined. Given
a net N , a marking m is reachable iff there exists a fs σ ∈ RN

m such that lead(σ)
is m. The set of reachable markings of N is MN =

⋃
σ∈RN

m
lead(σ). Given a

324 G. M. Pinna

fs σ = m [t1〉m1 · · · mn−1 [tn〉m′, we write Xσ =
∑n

i=1{ti} for the multiset of
transitions associated to fs. We call Xσ a state of the net and write St(N) =
{Xσ ∈ μT | σ ∈ RN

m } for the set of states of the net N . The configurations of a
net are the sets of labels of the executed transitions. Hence Confnet(N), is the
set {�(X) | X ∈ St(N)}.

Example 1. The following net is a simple contextual Petri net. At the initial
marking t2 and t3 are enabled whereas t1 is not. After the execution of t2 no
other transition is enabled. After the firing of t3 the transition t1 is enabled,
as no token is present in the place s2 and a token is present in the place s6,
the former being connected to transition t1 with an inhibitor arc and the latter
being connected to transition t1 with a read arc.

s1 s2 s3

s4
s5

s6

t1 t2 t3

The following definitions characterize nets from a semantical point of view.

Definition 2. A net N = 〈S, T, F, I,R,m, �〉 is said to be safe if each marking
m ∈ MN is such that m = [[m]].

In this paper we will consider safe nets, where each place contains at most one
token. The following definitions outline nets with respect to states and configu-
rations.

Definition 3. A net N = 〈S, T, F, I,R,m, �〉 is said to be a single execution net
if each state X ∈ St(N) is such that X = [[X]].

In a single execution net a transition t in a firing sequence may be fired just
once, as the net in Example 1. In [26] and [13] these nets (without inhibitor and
read arcs) are called 1-occurrence net.

Definition 4. A net N = 〈S, T, F, I,R,m, �〉 is said to be an unfolding if each
configuration C ∈ Confnet(N) is such that C = [[C]].

Clearly each unfolding is also a single execution one, but the vice versa does not
hold. When the labeling of the net is an injective mapping we have that to each
state a configuration corresponds and vice versa.

Remark 1. In literature unfolding is often used to denote not only a net with
suitable characteristic (among them the fact that each transition is fired just
once in each execution), but also how this net is related to another one (the one
to be unfolded). Here we use it to stress that each configuration is a set.

Operational Representation of Dependencies 325

The following definition characterizes when two transitions never happen
together in any execution (conflicting transitions).

Definition 5. Let N = 〈S, T, F, I,R,m, �〉 be a net and let t, t′ ∈ T such that
∀X ∈ St(N) it holds that {t, t′} �⊆ [[X]]. Then N is conflict saturated with respect
to t, t′ if •t ∩ •t′ �= ∅.
Each net can be transformed into an equivalent one conflict saturated.

Proposition 1. Let N = 〈S, T, F, I,R,m, �〉 be a net and let t, t′ ∈ T such that
∀X ∈ St(N) it holds that {t, t′} �⊆ [[X]], then the net N# = 〈S ∪ {st,t′}, T, F ∪
{(st,t′ , t), (st,t′ , t′)}, I, R,m ∪ {st,t′}, �〉 is conflict saturated with respect to t, t′

and St(N) = St(N#).

Iterating this we can always construct a net which is conflict saturated with
respect to all the possible conflicting transitions.

2.2 Occurrence Nets and Prime Event Structure

We recall the notion of occurrence net, and as it has no inhibitor or read arc
nor a labeling, we omit I, R and � in the following, assuming that I = ∅ = R
and � being the identity on transitions. Given a net N = 〈S, T, F,m〉, we write
<N for transitive closure of F . We say N is acyclic if ≤N is a partial order. For
occurrence nets, we adopt the usual convention: places and transitions are called
as conditions and events, and use B and E for the sets of conditions and events.
We may confuse conditions with places and events with transitions. The initial
marking is denoted with c.

Definition 6. An occurrence net (on) O = 〈B,E, F, c〉 is an acyclic, safe net
satisfying the following restrictions:

– ∀b ∈ B. •b is either empty or a singleton, and ∀b ∈ c. •b = ∅,
– ∀b ∈ B. ∃b′ ∈ c such that b′ ≤O b,
– for all e ∈ E the set �e� = {e′ ∈ E | e′ ≤O e} is finite, and
– # is an irreflexive and symmetric relation defined as follows:

• e #0 e′ iff e, e′ ∈ E, e �= e′ and •e ∩ •e′ �= ∅,
• x # x′ iff ∃y, y′ ∈ E such that y #0 y′ and y ≤O x and y′ ≤O x′.

The intuition behind occurrence nets is the following: each condition b represents
the occurrence of a token, which is produced by the unique event in •b, unless
b belongs to the initial marking, and it is used by only one transition (hence if
e, e′ ∈ b•, then e # e′). On an occurrence net O it is natural to define a notion
of causality among elements of the net: we say that x is causally dependent on
y iff y ≤O x. Occurrence nets are often the result of the unfolding of a (safe)
net. In this perspective an occurrence net is meant to describe precisely the non-
sequential semantics of a net, and each reachable marking of the occurrence net
corresponds to a reachable marking in the net to be unfolded. Here we focus
purely on occurrence nets and not on the nets they are the unfolding of.

326 G. M. Pinna

Proposition 2. Let O = 〈B,E, F, c〉 be an occurrence net. Then O is a single
execution net and it is an unfolding.

Occurrence nets are relevant as they are tightly related to prime event structures,
which we briefly recall here [28].

Definition 7. A prime event structure (pes) is a triple P = (E,<,#), where

– E is a countable set of events,
– < ⊆ E × E is an irreflexive partial order called the causality relation, such

that ∀e ∈ E. {e′ ∈ E | e′ < e} is finite, and
– # ⊆ E ×E is a conflict relation, which is irreflexive, symmetric and heredi-

tary relation with respect to <: if e # e′ < e′′ then e # e′′ for all e, e′, e′′ ∈ E.

Given an event e ∈ E, �e� denotes the set {e′ ∈ E | e′ ≤ e}. A subset of events
X ⊆ E is left-closed if ∀e ∈ X.�e� ⊆ X. Given a subset X ⊆ E of events, X is
conflict free iff for all e, e′ ∈ X it holds that e �= e′ ⇒ ¬(e # e′), and we denote
it with CF(X). Given X ⊆ E such that CF(X) and Y ⊆ X, then also CF(Y).

Definition 8. Let P = (E,<,#) be a pes. Then X ⊆ E is a configuration if
CF(X) and ∀e ∈ X. �e� ⊆ X. The set of configurations of the pes P is denoted
by Confpes(P).

Configurations are definable also in occurrence nets.

Definition 9. Let O = 〈B,E, F, c〉 be an on and X ⊆ E be a subset of events.
Then X is a configuration of O whenever CF(X) and ∀e ∈ X. �e� ⊆ X. The set
of configurations of the on O is denoted by Confon(O).

Given an on O = 〈B,E, F, c〉 and a state X ∈ St(O), it is easy to see that it
is conflict free, i.e. ∀e, e′ ∈ X. e �= e′ ⇒ ¬(e # e′), and left closed, i.e. ∀e ∈ X.
{e′ ∈ E | e′ ≤O e} ⊆ X.

Proposition 3. Let O = 〈B,E, F, c〉 be an occurrence net and X ∈ St(O). Then
X ∈ Confon(O).

Occurrence nets and prime event structures are connected as follows [28].

Proposition 4. Let O = 〈B,E, F, c〉 be an on, and define P(O) as the triple
(E,<C ,#) where <C is the irreflexive and transitive relation obtained by F
restricting to E × E and # is the irreflexive and symmetric relation associated
to O. Then P(O) is a pes, and Confon(O) = Confpes(P(O)).

Also the vice versa is possible, namely given a prime event structure one can
associate to it an occurrence net. The construction is indeed quite standard (see
[5,28] among many others).

Definition 10. Let P = (E,≤,#) be a pes. Define E(P) ad the net 〈B,E, F, c〉
where

– B = {(∗, e) | e ∈ E} ∪ {(e, ∗) | e ∈ E} ∪ {(e, e′, <) | e < e′} ∪ {({e, e′},#) |
e # e′},

Operational Representation of Dependencies 327

– F = {(e, b) | b = (e, ∗)} ∪ {(e, b) | b = (e, e′, <)} ∪ {(b, e) | b = (∗, e)} ∪
{(b, e) | b = (e′, e, <)} ∪ {(b, e) | b = (Z,#) ∧ e ∈ Z}, and

– c = {(∗, e) | e ∈ E} ∪ {({e, e′},#) | e # e′}.
Proposition 5. Let P = (E,≤,#) be a pes. Then E(P) = 〈B,E, F, c〉 as
defined in Definition 10 is an occurrence net.

In essence an occurrence net is fully characterized by the partial order relation
and the saturated conflict relation. This observation, together with the fact that
an immediate conflict in a safe net is represented by a common place in the
preset of the conflicting events, suggests that conflicts may be modeled directly,
which is the meaning of the following proposition and that will be handy in rest
of the paper.

Proposition 6. Let O = 〈B,E, F, c〉 be an on and let # be the associated
conflict relation. Then O# = 〈B ∪ B#, E, F ∪ F#, c ∪ B#〉 where B# =
{{e, e′} | e # e′} and F# = {(A, e) | A ∈ B# ∧ e ∈ A}, is an on such that
Confon(O) = Confon(C#).

3 Context-Dependent Event Structure

We recall the notion of Context-Dependent event structure introduced in [23]
and further studied in [24]. The idea is that the happening of an event depends
on a set of modifiers (the context) and on a set of real dependencies, which are
activated by the set of modifiers.

Definition 11. A context-dependent event structure (cdes) is a triple E =
(E,#,�) where

– E is a set of events,
– # ⊆ E × E is an irreflexive and symmetric relation, called conflict relation,

and
– � ⊆ 2A × E, where A ⊆ 2E

fin × 2E
fin , is a relation, called the context-

dependency relation (cd-relation), which is such that for each Z � e it holds
that

• Z �= ∅,
• for each (X,Y) ∈ Z it holds that CF(X) and CF(Y), and
• for each (X,Y), (X ′, Y ′) ∈ Z if X = X ′ then Y = Y ′.

The cd-relation models, for each event, which are the possible contexts in which
the event may happen (the first component of each pair) and for each context
which are the events that have to be occurred (the second component). We
stipulate that dependencies and contexts are formed by non conflicting events.
We recall the notion of enabling of an event. We have to determine, for each
Z � e, which of the contexts Xi should be considered. To do so we define
the context associated to each entry of the cd-relation. Given Z � e, where
Z = {(X1, Y1), . . . , (Xn, Yn)}, with Cxt(Z) we denote the set of events

⋃|Z|
i=1 Xi,

and this is the one regarding Z � e.

328 G. M. Pinna

Definition 12. Let E = (E,#,�) be a cdes and C ⊆ E be a subset of events.
Then the event e �∈ C is enabled at C, denoted with C[e〉, if for each Z � e, with
Z = {(X1, Y1), . . . , (Xn, Yn)}, there is a pair (Xi, Yi) ∈ Z such that Cxt(Z)∩C =
Xi and Yi ⊆ C.

Observe that requiring the non emptiness of the set Z in Z � e guarantees that
an event e may be enabled at some subset of events.

Definition 13. Let E = (E,#,�) be a cdes. Let C be a subset of E. We say
that C is a configuration of the cdes E iff there exists a sequence of distinct
events ρ = e1e2 · · · over E such that

– ρ = C,
– ρ is conflict-free, and
– ∀1 ≤ i ≤ len(ρ). ρi−1[ei〉.
With Confcdes(E) we denote the set of configurations of the cdes E.

We illustrate this kind of event structure with some examples, mainly taken from
[23] and [24].

Example 2. Consider three events a, b and c. All the events are singularly enabled
but a and b are in conflict unless c has not happened (we will see later that this
are called resolvable conflicts). Hence for the event a we stipulate

{(∅, ∅), ({c}, ∅), ({b}, {c})} � a

that should be interpreted as follows: if the context is ∅ or {c} then a is enabled
without any further condition (the Y are the empty set), if the context is {b} then
also {c} should be present. The set Cxt({(∅, ∅), ({c}, ∅), ({b}, {c})}) is {b, c}.
Similarly, for the event b we stipulate

{(∅, ∅), ({c}, ∅), ({a}, {c})} � b

which is justified as above and finally for the event c we stipulate

{(∅, ∅), ({a}, ∅), ({b}, ∅)} � c

namely any context allows to add the event.

Example 3. Consider three events a, b and c, and assume that c depends on a
unless the event b has occurred, and in this case this dependency is removed.
Thus there is a classic causality between a and c, but it can dropped if b occurs.
Clearly a and b are always enabled. The cd-relation is {(∅, ∅)} � a, {(∅, ∅)} � b
and {(∅, {a}), ({b}, ∅)} � c.

Example 4. Consider three events a, b and c, and assume that c depends on a
just when the event b has occurred, and in this case this dependency is added,
otherwise it may happen without. Thus classic causality relation between a and
c is added if b occurs. Again a and b are always enabled. The cd-relation is
{(∅, ∅)} � a, {(∅, ∅)} � b and {(∅, ∅), ({b}, {a})} � c.

Operational Representation of Dependencies 329

These examples should clarify how the cd-relation is used and also that each
event may be implemented by a different pair (X,Y) of modifiers and depen-
dencies.

In [23] and [24] we have shown that many event structures can be seen as a
cdes, and this is obtained taking the configurations of an event structure and
from these synthesizing the conflict and the � relations. The cdes obtained in
this way have the same set of configurations of the event structure one started
with, and furthermore for each event e there is just one entry Z � e.

Definition 14. Let E = (E,#,�) be a cdes. We say that E is simple if ∀e ∈ E
there is just one entry Z � e.

Proposition 7. Let E = (E,#,�) be a cdes. Then there exists a simple cdes
E′ = (E,#′,�′) such that Confcdes(E) = Confcdes(E′).

4 Causal Nets

We introduce a notion that will play the same role of occurrence net when related
to context-dependent event structure.

Given a contextual Petri net N = 〈S, T, F, I,R,m, �〉, we can associate to
it a relation on transitions, denoted with ≺N and defined as t ≺N t′ when
•t ∩ ◦t′ �= ∅ or t• ∩ t′ �= ∅, with the aim of establishing the dependencies
among transitions related by inhibitor or read arcs. Similarly we can introduce a
conflict relation among transitions, which is a semantic one. For this is enough
to stipulate that two transitions t, t′ ∈ T are in conflict, denoted with t #N t′ if
∀X ∈ St(N). {t, t′} �⊆ [[X]]. With the aid of these relations we can introduce the
notion of causal net.

Definition 15. Let U = 〈S, T, F, I,R,m, �〉 be a labeled Petri net over the set
of label L. Then U is a causal net (cn net) if the following further conditions are
satisfied:

1. <U ∩ (T × T) = ∅, ∀t ∈ T . •t ∩ ◦t = ∅ and t• ∩ t = ∅,
2. ∀t ∈ T. ∀s ∈ ◦t. |�(s•)| = 1,
3. ∀t, t′ ∈ T , t ≺U t′ ⇒ t′ �≺U t,
4. ∀t ∈ T the set ◦t ∪ t is finite,
5. ∀t, t′ ∈ T. t #U t′ ⇒ •t ∩ •t′ �= ∅,
6. ∀X ∈ St(U) ≺∗

U is a partial order on X, and
7. ∀C ∈ Confcn(U). C = [[C]]

The first requirement implies that ∀t, t′ ∈ T we have that t• ∩ •t′ = ∅, hence in
this kind of net the dependencies do not arise from the flow relation, furthermore
inhibitor and read arcs do not interfere with the flow relation. The second condi-
tion implies that if a token in a place inhibits the happening of a transition, then
all the transitions removing this token have the same label, the third is meant to
avoid cycles between transitions arising from inhibitor and read arcs, the fourth
one implies that for each transition t the set {t′ ∈ T | t′ ≺U t} is finite, the fifth

330 G. M. Pinna

one stipulates that two conflicting transitions (which never appear together in
any execution of the net) are conflicting as they consume the same token from
a place. Finally the last two conditions guarantee that the transitions in each
execution can be totally ordered with respect the dependency relation associated
to the net and that two transitions with the same label do not happen in the
same computation. In particular the last condition implies that a causal net is
also an unfolding.

It should be clear that the conditions posed on a causal net are meant to
mimic some of the conditions posed on an occurrence net or on similar one, like
for instance unravel nets [7,22] or [9] or flow nets [6], and they should assure
that it is comprehensible what a computation in such a net can be looking at
labels, as the main intuition is that for the same activity (label) there may be
several incarnations.

Example 5. The following one is a causal net:

t1b t2c t3 c t4 a

All the conditions of Definition 15 are fulfilled. The two transitions bearing the
same label (t2 and t3) are conflicting ones, namely they never appear together
in any computation though the activity realized by these two transitions (c)
appears in all maximal computations.

The first observation we make on causal nets is that they are good candidates
to be seen as a semantic net, namely a net meant to represent the behaviour of
a system properly modeling dependencies and conflicts of any kind.

Proposition 8. Let U = 〈S, T, F, I,R,m, �〉 be a causal net. Then U is an
unfolding.

To give further evidence that this notion could be the appropriate one, we
show that each occurrence net can be turned into a causal one, thus this is a
conservative extension of this notion. The idea behind the construction is simple:
to each event of the occurrence net a transition in the causal net is associated, the
places in the preset of all transitions are initially marked and they are not in the
postset of any other transition. The dependencies between events are modeled
using inhibitor arcs. All the conflicts are modeled like in a conflict saturated net
(with suitable marked places).

Proposition 9. Let O = 〈B,E, F, c〉 be an occurrence net. The net O(O) =
〈S,E, F ′, I, ∅,m, �〉 where

Operational Representation of Dependencies 331

– S = {(∗, e) | e ∈ E} ∪ {(e, ∗) | e ∈ E} ∪ {{e, e′} | e # e′},
– F ′ = {(s, e) | s = (∗, e)} ∪ {(s, e) | e ∈ s} ∪ {(e, s) | s = (e, ∗)},
– I = {(s, e) | s = (∗, e′) ∧ e′ <C e},
– m : S → N is such that m(s) = 0 if s = (e, ∗) and m(s) = 1 otherwise, and
– � is the identity,

is a causal net over the set of label E, and Confon(O) = Confcn(O(O)).

Below we depict a simple occurrence net (on the left) and the associated
causal one.

a b c

a b

c

Proposition 10. Let O be an occurrence net and O(O) be the associated causal
net. Then O(O) is conflict saturated.

In the causal net the dependencies are much more complicated to understand
with respect to an occurrence net. However the Proposition 9, together with the
connection among pes and on (Definition 10 and Proposition 5), suggests that
a relation between pes and cn can be established. Here the intuition is to use
the same construction hinted in Proposition 9.

Definition 16. Let P = (E,<,#) be a pes. Define A(P) as the causal Petri
net 〈S,E, F, I, ∅,m, �〉 where

– S = {(∗, e) | e ∈ E} ∪ {(e, ∗) | e ∈ E} ∪ {({e, e′},#) | e # e′},
– F = {(e, s) | s = (e, ∗)} ∪ {(s, e) | s = (∗, e) ∨ (s = (W,#) ∧ e ∈ W)},
– I = {(s, e) | s = (∗, e′) ∧ e′ < e},
– m = {(∗, e) | e ∈ E} ∪ {({e, e′},#) | e # e′}, and
– � is the identity.

Proposition 11. Let P be a pes, and A(P) be the associated Petri net. Then
A(P) is a causal net and Confpes(P) = Confcn(A(P)).

Proposition 12. Let P be a pes, and A(P) be the associated causal net. Then
A(P) is conflict saturated.

The vice versa is a bit more tricky as we have to require that the dependency
relation ≺ and the conflict relation have a particular shape.

332 G. M. Pinna

Definition 17. Let U = 〈S, T, F, I,R,m, �〉 be a causal net. U is said to be an
occurrence causal net whenever R = ∅, ≺∗

U is a partial order over T , and if
t #U t′ ≺∗

U t′′ then t #U t′′.

The above definition simply guarantees that the dependencies give a partial
order and that the conflict relation is inherited along the reflexive and transitive
closure of the dependency relation.

Proposition 13. Let P be a pes, and A(P) be the associated Petri net. Then
A(P) is an occurrence causal net.

Finally we show that also the vice versa is feasible provided that we restrict
our attention to occurrence causal net.

Proposition 14. Let U = 〈S, T, F, I,R,m, �〉 be an occurrence causal net. Then
Q(U) = (T,≺+

U ,#U) is a pes, and Confcn(U) = Confpes(Q(U)).

The following two theorems assure that the notion of (occurrence) causal net
is adequate as the notion of occurrence net with respect to the classical notion
of occurrence net in the relationship with prime event structure.

Theorem 1. Let U = 〈S, T, F, I,R,m, �〉 be an occurrence causal net such that
R = ∅. Then U = A(Q(U)).

Theorem 2. Let P be a pes. Then P = P(A(P)).

We end this section observing that if the causal net is injectively labeled,
then the event labeling the transition happens just once.

5 Context-Dependent Event Structures and Causal Nets

We are now ready to relate Context-dependent event structures and causal nets.
We recall that in a Context-dependent event structure each event may happen
in different context and thus each happening has a different operational mean-
ing. Therefore we model each happening with a different transition and all the
transitions representing the same happening bear the same label. Dependencies
are inferred using inhibitor and read arcs, as it will be clear.

Definition 18. Let E = (E,#,�) be a simple cdes such that ∀Z� e.
Cxt(Z � e) is finite. Define B(E) as the net 〈S, T, F, I,R,m, �〉 where

– S = {(∗, e) | e ∈ E} ∪ {(e, ∗) | e ∈ E} ∪ {({e, e′},#) | e # e′} ,
– T = {(e,X, Y) | (X,Y) ∈ Z ∧ Z � e} ,
– F = {(s, (e,X, Y)) | s = (∗, e) ∨ (s = (W,#) ∧ e ∈ W)} ∪

{((e,X, Y), s) | s = (e, ∗)},
– I = {(s, (e,X, Y)) | s = (e′, ∗) ∧ e′ ∈ Cxt(Z � e)\(X ∪ Y)} ∪

{(s, (e,X, Y)) | s = (∗, e′) ∧ e′ ∈ X},
– R = {(s, (e,X, Y)) | s = (e′, ∗) ∧ e′ ∈ Y } ,

Operational Representation of Dependencies 333

– m = {(∗, e) | e ∈ E} ∪ {({e, e′},#) | e # e′} , and
– � : T → E is defined as �((e,X, Y)) = e.

We introduce a transition (e,X, Y) for each pair (X,Y) of the entry associated
to the event e, and all these transitions are labeled with the same event e. All
these transitions consume the token present in the place (∗, e) and put a token
in the place (e, ∗), thus just one transition labeled with e can be fired in each
execution of the net. Recall that the event e is enabled at a configuration C
(here signaled by the places (e′, ∗) marked) if, for some (X,Y) ∈ Z, it holds that
Cxt(Z � e) ∩ C = X and Y ⊆ C. The inhibitor arcs assure that some of the
events in Cxt(Z � e) have actually happened (namely the one in X) but the
others (the ones in Cxt(Z � e)\(X ∪ Y)) have not, and the Y are other events
that must have happened and this is signaled by read arcs. We cannot require
Cxt(Z � e)\X as some of the events there may be present in Y .

Example 6. Consider the cdes in Example 3, the corresponding causal net is
the one depicted in Example 5. The event c has two incarnations as the entry
{(∅, {a}), ({b}, ∅)} � c has two elements: (∅, {a}) and ({b}, ∅).

Example 7. Consider the cdes of Example 4, the event c has two incarnations
as the entry {(∅, ∅), ({b}, {a})} � c has two elements, whereas a and b have one.
The associated causal net is

t1b t2c t3 c t4 a

Example 8. Consider now the cdes in Example 2 (modeling the resolvable con-
flict of [27]).

t1a t2a t3 a t4c t5c t6 c t7 b t8 b t9 b

334 G. M. Pinna

the actual implementation of this cdes into the causal net depicted before,
where each event has three incarnations. The inhibitor and read arcs are colored
depending on event they are related to.

The net obtained from a cdes using Definition 18 is indeed a causal net, and
furthermore it is also conflict saturated.

Proposition 15. Let E be a cdes, and B(E) be the associated contextual Petri
net. Then B(E) is a causal net and Confcdes(E) = Confcn(B(E)).

Proposition 16. Let E be a cdes, and B(E) be the associated contextual Petri
net. Then B(E) is conflict saturated.

For the vice versa we do need to make a further assumption on the causal
net. The intuition is that equally labeled transitions are different incarnation of
the same activity, happening in different contexts. Henceforth one has to make
sure that the equally labeled transitions indeed represent the same event and
each incarnation of an event should have the same environment, meaning with
environment the events related to it (which in the cdes is calculated with Cxt).
Given a causal net U = 〈S, T, F, I,R,m, �〉 on a set of label L and a transition
t ∈ T , with

−→◦t we denote the set of labels {a ∈ L | s ∈ ◦t ∧ �(s•) = a}, with←−◦t the set of labels {a ∈ L | s ∈ ◦t ∧ �(•s) = a}, and with t̃ the set of labels
{a ∈ L | s ∈ t ∧ �(•s) = a}.

Definition 19. Let U = 〈S, T, F, I,R,m, �〉 be a causal net labeled over L, we
say that U is well behaved if

1. ∀a ∈ L. ∀t, t′ ∈ �−1(a) it holds that •t ∪ •t′ = {s} and t• ∪ t′• = {s′}, and
2. ∀a ∈ L. ∀t, t′ ∈ �−1(a) it holds that

−→◦t ∪ t̃ ∪ ←−◦t =
−→◦t′ ∪ t̃′ ∪ ←−◦t′.

In a well behaved causal net all the transitions sharing equally labeled have a
common input place and also a common output place (condition 1). The equally
labeled transitions in the causal net are the various incarnation of the event they
represent, thus they have the same context, though the various kind of involved
arcs are different (condition 2).

Example 9. Consider the net below:

t1b t2c t3 c t4 a

Operational Representation of Dependencies 335

The transitions labeled with c have the same environment, namely the set of
labels {a, b}.

It is worth to observe that when associating a causal net to a cdes we obtain a
well behaved one.

Proposition 17. Let E be a cdes, and B(E) be the associated contextual Petri
net. Then B(E) is a well behaved causal net.

To a causal net we can associate a triple where the relations will turn out to
be, under some further requirements, those of a cdes. Here the events are the
labels of the transitions, conflicts between events are inferred using the presets
of the transitions and the entries are calculated using inhibitor and read arcs.

Definition 20. Let U = 〈S, T, F, I,R,m, �〉 be a causal net labeled over L = E.
Define R(U) = (E,�,#) as the triple where

– E = �(T),
– ∀e ∈ E. Z � e where Z = {(X,Y) | t ∈ T. �(t) = e ∧ X =

−→◦t ∧ Y = t̃},
and

– ∀e, e′ ∈ E. e # e is there exists t, t′ ∈ T . �(t) �= �(t′) and •t ∩ •t′ �= ∅.
The construction above gives the proper cdes, provided that the cn is well
behaved.

Proposition 18. Let U = 〈S, T, F, I,R,m, �〉 be a well behaved causal net and
R(U) = (E,�,#) the associated triple, then R(U) is a cdes and Confcn(U) =
Confcdes(R(U)).

The following two theorems assure that the notion of (well behaved) causal
net is adequate in the relationship with context-dependent event structure.

Theorem 3. Let U = 〈S, T, F, I,R,m, �〉 be a well behaved causal net. Then
U = B(R(U)).

Theorem 4. Let E be a cdes. Then E = P(B(E)).

6 Conclusions and Future Works

In this paper we have proposed the notion of causal net as the net counterpart of
the context-dependent event structure, and shown that the notion is adequate.
Like context-dependent event structure subsumes other kinds of event structures,
also the new notion comprises other kinds of nets, and we have given a direct
translation of occurrence nets into causal one, and also the usual constructions
associating event structures to nets can be rewritten in this setting. Like context-
dependent event structures, also causal nets have a similar drawback, namely
the difficulty in understanding easily the dependencies among events, which in
some of the event structures is much more immediate.

336 G. M. Pinna

We have focussed on the objects and not on the relations among them, hence
we have not investigated the categorical part of the new kind of net, which we
intend to pursue in the future. Furthermore we have given a net counterpart
without attempting to reduce its size, meaning that equivalent incarnations of
an event are never identified, and finding appropriate equivalence to reduce the
size would be quite useful.

Recently a notion of unfolding representing reversibility has been pointed out
[19] and the issue of how find the appropriate notion of net relating reversible
event structure has been tackled [18] and solved for a subclass of reversible event
structure. The notion of causal net can be a basis for obtaining the more general
result.

It should also be mentioned that persistent nets have been connected to event
structures [10] and [2], and in these nets events may happen in different contexts,
hence it would be interesting to compare these approaches to the one pursued
here.

Acknowledgements. The author wish to thank the anonymous reviewers for their
useful suggestions and criticisms.

References

1. Arbach, Y., Karcher, D.S., Peters, K., Nestmann, U.: Dynamic causality in event
structures. Log. Methods Comput. Sci. 14(1) (2018). https://doi.org/10.23638/
LMCS-14(1:17)2018

2. Baldan, P., Bruni, R., Corradini, A., Gadducci, F., Melgratti, H.C., Montanari,
U.: Event structures for petri nets with persistence. Log. Methods Comput. Sci.
14(3) (2018). https://doi.org/10.23638/LMCS-14(3:25)2018

3. Baldan, P., Busi, N., Corradini, A., Pinna, G.M.: Domain and event structure
semantics for Petri nets with read and inhibitor arcs. Theor. Comput. Sci. 323(1–
3), 129–189 (2004)

4. Baldan, P., Corradini, A., Montanari, U.: Contextual Petri nets, asymmetric event
structures and processes. Inf. Comput. 171(1), 1–49 (2001)

5. Bartoletti, M., Cimoli, T., Pinna, G.M.: Lending Petri nets. Sci. Comput. Program.
112, 75–101 (2015). https://doi.org/10.1016/j.scico.2015.05.006

6. Boudol, G.: Flow event structures and flow nets. In: Guessarian, I. (ed.) LITP
1990. LNCS, vol. 469, pp. 62–95. Springer, Heidelberg (1990). https://doi.org/10.
1007/3-540-53479-2 4

7. Casu, G., Pinna, G.M.: Flow unfolding of multi-clock nets. In: Ciardo, G., Kindler,
E. (eds.) PETRI NETS 2014. LNCS, vol. 8489, pp. 170–189. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-07734-5 10

8. Casu, G., Pinna, G.M.: Merging relations: a way to compact Petri nets’ behaviors
uniformly. In: Drewes, F., Mart́ın-Vide, C., Truthe, B. (eds.) LATA 2017. LNCS,
vol. 10168, pp. 325–337. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-53733-7 24

9. Casu, G., Pinna, G.M.: Petri nets and dynamic causality for service-oriented com-
putations. In: Seffah, A., Penzenstadler, B., Alves, C., Peng, X. (eds.) Proceed-
ings of SAC 2017, pp. 1326–1333. ACM (2017). https://doi.org/10.1145/3019612.
3019806

https://doi.org/10.23638/LMCS-14(1:17)2018
https://doi.org/10.23638/LMCS-14(1:17)2018
https://doi.org/10.23638/LMCS-14(3:25)2018
https://doi.org/10.1016/j.scico.2015.05.006
https://doi.org/10.1007/3-540-53479-2_4
https://doi.org/10.1007/3-540-53479-2_4
https://doi.org/10.1007/978-3-319-07734-5_10
https://doi.org/10.1007/978-3-319-53733-7_24
https://doi.org/10.1007/978-3-319-53733-7_24
https://doi.org/10.1145/3019612.3019806
https://doi.org/10.1145/3019612.3019806

Operational Representation of Dependencies 337

10. Crazzolara, F., Winskel, G.: Petri nets with persistence. Electron. Notes Theor.
Comput. Sci. 121, 143–155 (2005). https://doi.org/10.1016/j.entcs.2004.10.012

11. Fabre, E.: Trellis processes: a compact representation for runs of concurrent sys-
tems. Discrete Event Dyn. Syst. 17(3), 267–306 (2007). https://doi.org/10.1007/
s10626-006-0001-0

12. Fabre, E., Pinna, G.M.: Toward a uniform approach to the unfolding of nets. In:
Bartoletti, M., Knight, S. (eds.) ICE 2018 Conference Proceedings. EPTCS, vol.
279, pp. 21–36 (2018). https://doi.org/10.4204/EPTCS.279.5

13. van Glabbeek, R.J., Plotkin, G.D.: Configuration structures, event structures and
Petri nets. Theor. Comput. Sci. 410(41), 4111–4159 (2009). https://doi.org/10.
1016/j.tcs.2009.06.014

14. Goltz, U., Reisig, W.: The non-sequential behavior of Petri nets. Inf. Control
57(2/3), 125–147 (1983). https://doi.org/10.1016/S0019-9958(83)80040-0

15. Janicki, R., Koutny, M.: Semantics of inhibitor nets. Inf. Comput. 123, 1–16 (1995).
https://doi.org/10.1006/inco.1995.1153

16. Khomenko, V., Kondratyev, A., Koutny, M., Vogler, W.: Merged processes: a new
condensed representation of Petri net behaviour. Acta Informatica 43(5), 307–330
(2006). https://doi.org/10.1007/s00236-006-0023-y

17. Langerak, R.: Bundle event structures: a non-interleaving semantics for LOTOS.
In: Diaz, M., Groz, R. (eds.) FORTE 1992 Conference Proceedings. IFIP Transac-
tions, vol. C-10, pp. 331–346. North-Holland (1993)

18. Melgratti, H.C., Mezzina, C.A., Philipps, I., Pinna, G.M., Ulidowski, I.: Reversible
occurrence nets and causal reversible prime event structures. In: Lanese, I., Rawski,
M. (eds.) RC 2020 Conference Proceedings. LNCS, vol. 11533. Springer, Cham
(2020, to appear)

19. Melgratti, H., Mezzina, C.A., Ulidowski, I.: Reversing P/T nets. In: Riis Niel-
son, H., Tuosto, E. (eds.) COORDINATION 2019. LNCS, vol. 11533, pp. 19–36.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22397-7 2

20. Montanari, U., Rossi, F.: Contextual nets. Acta Informatica 32(6) (1995). https://
doi.org/10.1007/BF01178907

21. Nielsen, M., Plotkin, G., Winskel, G.: Petri nets, event structures and domains,
part 1. Theor. Comput. Sci. 13, 85–108 (1981). https://doi.org/10.1016/0304-
3975(81)90112-2

22. Pinna, G.M.: How much is worth to remember? A taxonomy based on Petri nets
unfoldings. In: Kristensen, L.M., Petrucci, L. (eds.) PETRI NETS 2011. LNCS,
vol. 6709, pp. 109–128. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-21834-7 7

23. Pinna, G.M.: Representing dependencies in event structures. In: Riis Nielson, H.,
Tuosto, E. (eds.) COORDINATION 2019. LNCS, vol. 11533, pp. 3–18. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-22397-7 1

24. Pinna, G.M.: Representing dependencies in event structures. Log. Methods Com-
put. Sci. (2020, to appear)

25. Pinna, G.M., Fabre, E.: Spreading nets: a uniform approach to unfoldings. J. Log.
Algebraic Methods Program. 112, 100526 (2020). http://www.sciencedirect.com/
science/article/pii/S2352220820300110

26. van Glabbeek, R.J., Plotkin, G.: Configuration structures. In: LICS 1995, pp.
199–209. IEEE Computer Society Press, June 1995. https://doi.org/10.1109/LICS.
1995.523257

https://doi.org/10.1016/j.entcs.2004.10.012
https://doi.org/10.1007/s10626-006-0001-0
https://doi.org/10.1007/s10626-006-0001-0
https://doi.org/10.4204/EPTCS.279.5
https://doi.org/10.1016/j.tcs.2009.06.014
https://doi.org/10.1016/j.tcs.2009.06.014
https://doi.org/10.1016/S0019-9958(83)80040-0
https://doi.org/10.1006/inco.1995.1153
https://doi.org/10.1007/s00236-006-0023-y
https://doi.org/10.1007/978-3-030-22397-7_2
https://doi.org/10.1007/BF01178907
https://doi.org/10.1007/BF01178907
https://doi.org/10.1016/0304-3975(81)90112-2
https://doi.org/10.1016/0304-3975(81)90112-2
https://doi.org/10.1007/978-3-642-21834-7_7
https://doi.org/10.1007/978-3-642-21834-7_7
https://doi.org/10.1007/978-3-030-22397-7_1
http://www.sciencedirect.com/science/article/pii/S2352220820300110
http://www.sciencedirect.com/science/article/pii/S2352220820300110
https://doi.org/10.1109/LICS.1995.523257
https://doi.org/10.1109/LICS.1995.523257

338 G. M. Pinna

27. van Glabbeek, R., Plotkin, G.: Event structures for resolvable conflict. In: Fiala,
J., Koubek, V., Kratochv́ıl, J. (eds.) MFCS 2004. LNCS, vol. 3153, pp. 550–561.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28629-5 42

28. Winskel, G.: Event structures. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.)
ACPN 1986. LNCS, vol. 255, pp. 325–392. Springer, Heidelberg (1987). https://
doi.org/10.1007/3-540-17906-2 31

https://doi.org/10.1007/978-3-540-28629-5_42
https://doi.org/10.1007/3-540-17906-2_31
https://doi.org/10.1007/3-540-17906-2_31

Verification and Analysis

Towards a Formally Verified EVM
in Production Environment

Xiyue Zhang1, Yi Li1, and Meng Sun1,2(B)

1 School of Mathematical Sciences, Peking University, Beijing 100871, China
{zhangxiyue,liyi math,sunm}@pku.edu.cn

2 Center for Quantum Computing, Peng Cheng Laboratory, Shenzhen 518055, China

Abstract. Among dozens of decentralized computing platforms,
Ethereum attracts widespread attention for its native support of smart
contracts by means of a virtual machine called Ethereum Virtual
Machine (EVM). Programs can be developed in various front-end lan-
guages. For example, Solidity can be deployed to the blockchain in the
form of compiled EVM opcodes. However, such flexibility leads to critical
safety challenges. In this paper, we formally define the behavior of EVM
in Why3, a platform for deductive program verification, which facilitates
the verification of different properties. The extracted implementation in
OCaml can be directly integrated into the production environment and
tested against the standard test suite. The combination of proofs and
testing in our framework serves as a powerful analysis basis for EVM
and smart contracts.

Keywords: EVM · Why3 · Verification · Testing

1 Introduction

Ever since the inception of the Bitcoin blockchain system [12], cryptocurren-
cies have become a well-known global revolutionary phenomenon. Meanwhile,
the decentralized blockchain system with no server or central authority, which
emerges as a side product of Bitcoin and provides a continuously growing ledger
of transactions being represented as a chained list of blocks distributed and
maintained over a peer-to-peer network [17], shows great potential in carrying
out secure online transactions. From then on, there have been a lot of changes
and growth on the blockchain technology. Ethereum [5] extends Bitcoin’s design,
which can process not only transactions but also complex programs and smart
contracts. Smart contracts running on the blockchain make it possible to use
blockchain techniques in many other application domains besides cryptocurren-
cies, and have attracted a lot of attention from government, finance, health,
entertainment and industry. This feature makes Ethereum a popular ecosystem
for building blockchain-applications, which gains much more interest to innovate
the options to utilize blockchain.

Smart contracts are often written in a Turing-complete programming lan-
guage called Solidity [14] and then compiled into EVM bytecode, which can be
c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
S. Bliudze and L. Bocchi (Eds.): COORDINATION 2020, LNCS 12134, pp. 341–349, 2020.
https://doi.org/10.1007/978-3-030-50029-0_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50029-0_21&domain=pdf
https://doi.org/10.1007/978-3-030-50029-0_21

342 X. Zhang et al.

Fig. 1. The framework of generating verified EVM for production environment

mapped into a list of machine instructions (opcodes). EVM is a quasi-Turing
complete machine. It provides a runtime environment for smart contracts to be
executed. Given a sequence of bytecode instructions, which are compiled from
smart contracts by an EVM compiler, and the environment data, this execution
model specifies how the blockchain transits from one state to another.

However, EVM and smart contracts are faced with several security vulnera-
bilities. A taxonomy of vulnerabilities and related attacks against Solidity, the
EVM, and the blockchain is presented in [1]. To deal with the security challenges
against EVM, we propose a formal framework of generating verified EVM for
production environment in this paper. The contributions of this work are:

– A formal definition of EVM specified in WhyML, the programming and spec-
ification language used in Why3 [7].

– An implementation of EVM in OCaml generated through an extraction mech-
anism based on a series of customized drivers.

– The verification of sample properties and testing of the OCaml implementa-
tion for EVM against a standard test suite for Ethereum.

This paper is organized as follows: We outline the framework for formalizing,
property verifying and testing of EVM in Sect. 2. Section 3 presents some related
work. Finally, we summarize this paper in Sect. 4.

2 The Framework of Generating Verified EVM for
Production Environment

In this section, we present the framework of generating verified EVM for pro-
duction environment in detail. The framework is as shown in Fig. 1 and the main
idea is to combine verification and testing techniques towards developing more
secure EVM implementations. It also provides a platform to verify the func-
tionality properties of smart contracts. This framework is mainly comprised of

Towards a Formally Verified EVM in Production Environment 343

two parts: (1) EVM specification and property verification in Why3; (2) experi-
mental testing based on OCaml extraction and Rust connection. This approach
leverages formal methods and engineering approaches, allowing us to perform
both rigorous verification and efficient testing for EVM implementations and
smart contracts.

2.1 EVM in Why3

The first phase of the framework is to define a formal specification of EVM in
Why3 and provide a platform for rigorous verification. We develop the EVM
specification, following the Ethereum project yellow paper [16]. More specifi-
cally, the EVM implementation is translated into WhyML, the programming
and specification language of Why3. Verification conditions can be further gen-
erated based on the pre- and post-condition specification. Generated verification
goals are solved directly through the supported solvers or go through a sequence
of transformations first. In cases when the automatic SMT solvers cannot deal
with, users can resort to interactive theorem provers for the remaining unsolved
proof goals.

EVM is essentially a stack-based machine. The memory model of EVM is
a word-addressed byte array and the storage model is a word-addressed word
array. These three components form the infrastructure of EVM. Based on the
formalization of the infrastructure, the most important aspect in this framework
is to capture the execution result of the EVM instructions. The perspective from
which we deal with the execution process of a sequence of opcodes (instructions)
is as a state transition process. This process starts with an initial state and
leads to a series of changes in the stack, memory etc. The formalization of base
infrastructure and the instruction set are specified through Type Definition and
Instruction Definition, respectively. The main function Interpreter provides the
specification of transition results for the instructions.

Type Definition. To formalize the infrastructure of EVM, we need to first
provide the formalization of commonly-used types in EVM, such as the types
of machine words and the addresses in the EVM. Hence, we developed a series
of type modules such as UInt256 and UInt160 to ease the representation of
corresponding types in EVM. Type alias supported by Why3 are also used to
make the basic formalization more readable and consistent with the original
definition.

To this end, the components of the base infrastructure can be specified. Stack
is defined as a list of elements whose type is uint256, aliased by machine word.
Memory is defined as a function that maps machine word to an option type
option memory content. Similarly, storage is defined as a function that maps
machine word to machine word. To reflect the implicit change of the machine
state, we defined more miscellaneous types. For example, we use vmstatus, error
and return type to capture the virtual machine status, the operation error, and
the view of the returned result. Furthermore, the record type machine state is

344 X. Zhang et al.

defined to represent the overall machine state which consists of stack, memory,
storage, program counter, vmstatus, the instruction list, etc.

Instruction Definition. The infrastructure has been built above to specify the
state of the virtual machine. Inspired by the instruction formalization in Lem [9],
the instruction set is defined in multiple groups, such as arithmetic operations
and stack operations, then these groups are integrated into a summarized type
definition instruction. Different subsets of instructions are wrapped up to form
the complete specification in the definition of instruction.

The organization of the instruction category is a bit different from the yellow
paper [16]. The information related instructions including environmental and
block information are defined in type info inst, except CALL and CODE instruc-
tions, such as CALLDATACOPY, CODECOPY and CALLDATALOAD. These instructions
are more closely related to memory and stack status. Therefore, they are added
to the memory and stack instruction groups. In case when some illegal command
occurs, the instruction Invalid is included in the instruction definition. The
specification of the remaining instruction groups are basically the same as the
corresponding instruction subsets in [16].

Interpreter Definition. The specification of interpreter formalizes the state
transition result of different instructions. For a specific instruction, the inter-
preter determines the result machine state developing from the current state.
Some auxiliary functions are defined to make the definition of the interpreter
more concise and compact.

let interpreter (m: machine_state): machine_state =

let inst = get_inst m in

match inst with

| Some (Arith ADD) -> let (st’, a) = (pop_stack (m.mac_stack)) in

let (st’’, b) = (pop_stack st’) in ...

{m with mac_stack = push_stack st’’ (a’ + b’); ...}

In the above code snippet, get inst is used to obtain the next instruction
to be executed. It is obtained from the instruction list following the program
counter. In the case of Arith ADD instruction, the numbers to perform the add
operation on are popped out of the stack first and the result is pushed into the
stack after the calculation. As a result, the stack state is updated as a component
of the machine state. In this process, functions push stack and pop stack are
defined to control the push and pop manipulations for the state transition of
stack. With the support of pre-defined auxiliary functions, the definition of the
interpreter function is essentially comprised of machine state update with regard
to the instructions.

Towards a Formally Verified EVM in Production Environment 345

Fig. 2. Running EVM in production environment

2.2 Running EVM in Production Environment

Figure 2 shows the second phase of the framework: deploy the extracted OCaml
implementation from Why3 in production environments. The deployment is
essentially based on a co-compilation framework between OCaml and Rust.

OCaml is a functional programming language that shares a highly identical
language definition and formal semantics with Why3. Through the official OCaml
code generator equipped with Why3, we extract the verified specification of EVM
into an executable OCaml module. A JSON-based protocol is developed as a
bridge between the OCaml implementation and the EVM host in Rust.

Rust is a multi-paradigm system programming language which is designed
to provide better memory safety while maintaining high performance [10]. The
framework provides the interaction mechanism between Rust and Why3. By glu-
ing them together, verified models can be directly executed in production envi-
ronments for further testing. The coupling between Rust and extracted OCaml
implementation enables us to perform VM tests to test the basic workings of the
verified VM. Information of the overarching environment is obtained through
the interface of Rust implementation, and the test can be performed on the
execution of the OCaml implementations to check the operations in different
transactions.

2.3 Examples of Property Verification and Tests

We now show some examples of property verification towards smart contracts
and tests against Ethereum test suites. Specifically, we present the specification
and verification of SafeMath library and SimpleAuction contract. For the tests,
we perform the testing of arithmetic operations against the Ethereum test suite.

Overflow/Underflow Property Verification. We first take the example of Safe-
Math from Solidity library. Overflow/Underflow problems often occur when we

346 X. Zhang et al.

deal with number operations. For EVM, the unsigned integer type we perform
arithmatic operations on range from 0 to 2256, which is specified as uint256 in
the WhyML specification. The properties we verify are to guarantee that over-
flow and underflow problems would not occur in the number operations. Besides,
the correctness of the operation results is also specified in the postconditions and
further verified, for example, the last postcondition in the function div safe.

As can be seen from the following definition of div safe, the function body
is comprised of three parts, as a Hoare triple, preconditions, program expressions
and postconditions. The first precondition specifies that the divisor should be
greater than zero. The first postcondition states that the returned value should
satisfy the required property with no underflow issues. The other two postcon-
ditions are to guarantee the correctness of the operation result.

let div_safe (a:uint256) (b:uint256): uint256

requires {to_int b > 0}

ensures {to_int result >= 0}

ensures {to_int a = 0 -> to_int result = 0}

ensures {to_int a <> 0 ->

to_int a = (to_int result) * (to_int b) + mod (to_int a) (to_int b)}

= a / b

We now proceed to the verification of the properties. The verification con-
ditions can be obtained through running why3 prove on the WhyML file. The
proving goals for div safe are derived as follows:

goal VC div_safe :

forall a:uint256, b:uint256.

to_int b > 0 -> (not b = 0 && in_bounds (div a b)) /\

(forall result:uint256. result = div a b -> to_int result >= 0 &&

(to_int a = 0 -> to_int result = 0) &&

(not to_int a = 0 ->

to_int a = (to_int result * to_int b + mod (to_int a) (to_int b))))

To prove the goals, we first apply the split VC transformation and then call
theorem provers alt-ergo and cvc4 to prove the subgoals automatically. The proof
session state will be stored in an XML file, which includes the proved WhyML file,
the applied transformations, the used provers and the proof results. Complete
proving goals derived from the functions and proof sessions can be found at [6].

Open Auction Contract Verification. The open auction contract is mainly com-
prised of three functions: (1) Everyone can send their bids through the bid
function when the bidding period is not finished. When the bid sent by one
bidder exceeds the current recorded highest bid, the auction state including the
highestBidder and highestBid would be updated. Then the withdrawal amount
of the previous highest bidder should be increased by the previous highest
bid. (2) When one bid is beaten by another higher raised bid, the previous
bid should be returned back to the corresponding bidder. Bidders can call the
withdraw function to get the money/Ether back. (3) The auction is ended by

Towards a Formally Verified EVM in Production Environment 347

the auctionEnd function. If current time is already greater than the auctionEnd-
Time, then the auction end state should be set to True. As the bidding ended,
the beneficiary would receive the final highest Bid.

In the WhyML specification, auction status records the current state of
the auction including the current highest bidder, the highest bid and the auction
ended state. auction constant records the beneficiary and the auctionEndTime
and auction ended records the final bidder, bid and the beneficiary claimed
money/Ether amount. The properties to be verified are to guarantee the cor-
rectness of the functionality. For example, in the auctionEnd definition, the
postcondition specifies the constraints of auction ended state and beneficiary
claimed amount that the returned result should satisfy. Complete specification
of the functions can be found at [6]. The generated verification conditions can
be discharged through alt-ergo and cvc4 automatically.

let auctionEnd (current_time: uint) (auc_st: auction_status)

(auc_const: auction_constant) (auc_end: auction_ended):

(auction_status, auction_ended)

... ensures {let (_auc_st, _auc_end) = result in

_auc_st.end_state = True

&& _auc_end.finalBidder = auc_st.highestBidder

&& _auc_end.finalBid = auc_st.highestBid

&& _auc_end.bene_amount.benefici = auc_const.beneficiary

&& _auc_end.bene_amount.benefit_amount = _auc_end.finalBid} = ...

Testing of Arithmatic Operations. CITA-VM [3] is a Rust implementation of the
EVM developed by the CITAHub team. In a forked version of CITA-VM, we
patched the EVM interpreter by redirecting it to the OCaml implementation.
From the official EVM Consensus Tests [4], we select the vmArithmeticTest set
and run the test cases. The OCaml EVM implementation passes all the selected
test cases and proves its capability in the production environment. A guide of
reproducing the test result can be found at [6].

3 Related Work

Research interest of blockchain technology has exploded since the inception of
Bitcoin. As the popularity of the second generation of blockchain, Ethereum,
grows, a series of vulnerabilities have also appeared. Since EVM and smart con-
tracts deal directly with the transactions of valuable cryptocurrency units among
multiple parties, the safety of smart contracts and EVM implementations is of
paramount importance. To address these challenges, researchers resorted to the
techniques of formal methods and program analysis.

Specification and Verification. An executable formal semantics of EVM has
been created in the K framework by Everett et al. [8]. Compared with KEVM
with the support of matching logic for verification, we use Hoare logic, which
serves as a good framework for verification condition specification, to avoid the

348 X. Zhang et al.

complex definitions of the operational semantics. A framework to analyze and
verify the safety and the correctness of Solidity smart contracts in F* was pre-
sented in [2]. Hirai [9] proposed an EVM implementation in Lem, a language that
can be compiled for a few interactive theorem provers. Then, safety properties
of smart contracts can be proved in proof assistants like Isabelle/HOL. While
in our work, we use WhyML for specification and programming, which supports
both logical theories and programming data structures. Moreover, both auto-
mated and interactive external theorem provers can be relied on to discharge
verification conditions.

Testing and Debugging. The hevm project [15] is implemented in Haskell for
unit testing and debugging of smart contracts. Sergey et al. [13] provided a new
perspective between smart contracts and concurrent objects, based on which
existing tools for understanding and debugging concurrent objects can be used
on smart contract behaviors. In [11], several new security problems were pointed
out and a way to enhance the operational semantics of Ethereum was proposed
to make smart contracts less vulnerable. Due to the difficulty of correcting the
semantics of Ethereum, Luu et al. [11] also implemented a symbolic execution
tool OYENTE to find security bugs. While in our work, executable OCaml pro-
grams can be directly extracted from WhyML programs for further tests with
the support of customized drivers and extraction mechanism.

4 Conclusion

We propose a framework to enable formal specification, verification and test-
ing towards EVM. In this framework, the formalization of EVM is specified
in WhyML, based on which, automatic SMT solvers and interactive theorem
provers can be employed for verification. The OCaml implementation of EVM is
extracted from the WhyML specification and then glued with Rust implemen-
tation based on the coupling framework. The coupling framework provides the
interaction mechanism between OCaml and Rust, which allows us to perform
tests on the new implementation without additional interface implementation.

Acknowledgement. This work has been supported by the National Natural Science
Foundation of China under grant no. 61772038 and 61532019, and the Guangdong Sci-
ence and Technology Department (Grant no. 2018B010107004). Thanks to members of
Cryptape, especially Jan and Zhiwei, for the helpful discussions during the development
of this framework.

References

1. Atzei, N., Bartoletti, M., Cimoli, T.: A survey of attacks on Ethereum smart con-
tracts. IACR Cryptology ePrint Archive 2016, 1007 (2016)

2. Bhargavan, K., et al.: Formal verification of smart contracts: short paper. In: Pro-
ceedings of PLAS@CCS 2016, pp. 91–96. ACM (2016)

3. CITA-VM. https://github.com/citahub/cita-vm

https://github.com/citahub/cita-vm

Towards a Formally Verified EVM in Production Environment 349

4. Common tests for all Ethereum implementations. https://github.com/ethereum/
tests

5. Ethereum. https://github.com/ethereum. Accessed 2 Apr 2019
6. Examples. https://github.com/Xiyue-Selina/coordination20
7. Filliâtre, J.-C., Paskevich, A.: Why3—where programs meet provers. In: Felleisen,

M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 125–128. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-37036-6 8

8. Hildenbrandt, E., et al.: KEVM: a complete formal semantics of the Ethereum
virtual machine. In: 31st IEEE Computer Security Foundations Symposium, CSF
2018, Oxford, United Kingdom, 9–12 July 2018, pp. 204–217. IEEE Computer
Society (2018)

9. Hirai, Y.: Defining the Ethereum virtual machine for interactive theorem provers.
In: Brenner, M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp. 520–535. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70278-0 33

10. Lin, Y., Blackburn, S.M., Hosking, A.L., Norrish, M.: Rust as a language for high
performance GC implementation. In: Proceedings of the 2016 ACM SIGPLAN
International Symposium on Memory Management, Santa Barbara, CA, USA, 14
June 2016, pp. 89–98. ACM (2016)

11. Luu, L., Chu, D.H., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts
smarter. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pp. 254–269. ACM (2016)

12. Nakamoto, S., et al.: Bitcoin: a peer-to-peer electronic cash system (2008)
13. Sergey, I., Hobor, A.: A concurrent perspective on smart contracts. In: Brenner,

M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp. 478–493. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70278-0 30

14. Solidity Documentation. https://solidity.readthedocs.io/en/v0.5.6/. Accessed 2
Apr 2019

15. The Hevm Project. https://github.com/dapphub/dapptools/tree/master/src/
hevm. Accessed 2 Apr 2019

16. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger.
Ethereum project yellow paper 151, pp. 1–32 (2014)

17. Zheng, Z., Xie, S., Dai, H., Chen, X., Wang, H.: Blockchain challenges and oppor-
tunities: a survey. Int. J. Web Grid Serv. 14(4), 352–375 (2018)

https://github.com/ethereum/tests
https://github.com/ethereum/tests
https://github.com/ethereum
https://github.com/Xiyue-Selina/coordination20
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/978-3-319-70278-0_33
https://doi.org/10.1007/978-3-319-70278-0_30
https://solidity.readthedocs.io/en/v0.5.6/
https://github.com/dapphub/dapptools/tree/master/src/hevm
https://github.com/dapphub/dapptools/tree/master/src/hevm

On Implementing Symbolic
Controllability

Adrian Francalanza(B) and Jasmine Xuereb(B)

University of Malta, Msida, Malta
{adrian.francalanza,jasmine.xuereb.15}@um.edu.mt

Abstract. Runtime Monitors observe the execution of a system with
the aim of reaching a verdict about it. One property that is expected of
monitors is consistent verdict detections; this property was characterised
in prior work via a symbolic analysis called symbolic controllability. This
paper explores whether the proposed symbolic analysis lends itself well
to the construction of a tool that checks monitors for this deterministic
behaviour. We implement a prototype that automates this symbolic anal-
ysis, and establish complexity upper bounds for the algorithm used. We
also consider a number of optimisations for the implemented prototype,
and assess the potential gains against benchmark monitors.

Keywords: Deterministic monitors · Symbolic analysis · Runtime
verification

1 Introduction

Monitors are computational entities that are instrumented to execute along-
side a program of interest. This paper focusses on a specific class of monitors
called execution monitors [34], also termed sequence recognisers [25] or partial-
identity monitors [21]. Execution monitors observe a sequence of events exhib-
ited by the running program with the aim of reaching an irrevocable verdict.
Conceptually, these monitors may be described as suffix-closed sets of traces
of events that lead to the respective verdicts [5,11,36]. Operationally, however,
they are best conceived as a branching structure whereby a sequence of events
may lead a monitor to reach a number of possible states [2,16,20,22]. This better
captures the potential monitor behaviour in concurrent/distributed settings [7–
9,15,19,23,26], or the behaviour encountered in practical implementations that
may occasionally (and unexpectedly) operate erratically [12,13,32]. Put differ-
ently, monitors themselves may, either by necessity or inadvertently, behave non-
deterministically.

This research was supported by project BehAPI, funded by the EU H2020 RISE pro-
gramme under the Marie Sk�lodowska-Curie grant (No: 778233).

c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
S. Bliudze and L. Bocchi (Eds.): COORDINATION 2020, LNCS 12134, pp. 350–369, 2020.
https://doi.org/10.1007/978-3-030-50029-0_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50029-0_22&domain=pdf
http://orcid.org/0000-0003-3829-7391
http://orcid.org/0000-0002-1676-5476
https://doi.org/10.1007/978-3-030-50029-0_22

On Implementing Symbolic Controllability 351

In spite of this potential behaviour, deterministic monitor operation for the
verdicts reached is still a desirable quality and is often a prerequisite for monitor
correctness [6]. In prior work [17, Def. 6], we proposed an observational defi-
nition for a consistently-detecting monitor. Intuitively, fixed a trace exhibited
by the program it is instrumented with, such a monitor is required to always
reach the same verdict for that trace. Crucially, consistent detection allows such
a monitor to pass through different intermediate states during the course of
its verdict-reaching trace analysis (since these states are not observable from
a consistently-detecting sense). An alternative characterisation called monitor
controllability [17, Def. 11] is also proposed in this work, with the aim of pro-
viding a more tractable method for assessing deterministic monitor behaviour.
This characterisation improves on reasoning about monitor consistent detection
in two ways: (i) avoids universal quantifications over the programs that a mon-
itor can be instrumented with (i.e., contexts); (ii) it is coinductive, permitting
reasoning about an infinite number of traces in a finite manner (for certain mon-
itor cases). Monitor controllability is also shown to be both sound and complete
w.r.t. consistent detection.

There is one further complication when reasoning about monitor behaviour.
In most practical settings, events carry a payload from some infinite data domain.
A refinement to the coinductive definition, called symbolic (monitor) controlla-
bility, is thus developed in [17] to assist with abstracting over universal quan-
tifications on payload data and data-dependent monitor states. This work also
claims that the resulting symbolic analysis mandated by the new definition lends
itself well to the construction of a tool that analyses monitors for their capacity
to perform deterministic detections. The goal of our paper is to verify this claim.
The contributions are twofold:

1. In Sect. 3, we build a prototype that automates the analysis for symbolic
controllability, demonstrating the implementability of the approach proposed
in [17]; we also provide complexity bounds for the algorithm implemented.

2. In Sect. 4, we identify implementation bottlenecks that limit the scalability of
the tool in practice. Subsequently, in Sect. 5, we empirically evaluate a num-
ber of proposed solutions using a series of pathological monitor descriptions
devised in Sect. 4.

2 Preliminaries

We assume the existence of an expression language, e, d ∈ Exp and a boolean
expression language b, c ∈ BExp. Expressions are defined in terms of a denumer-
able set of expression variables, x, y ∈ Vars, and a value domain, v, u ∈ Val;
for expository purposes, we assume the value domain to be infinite. Boolean
expressions are defined over the expression language Exp, and include the stan-
dard constructs for the basic values true and false, conjunctions b∧ c, expression
equality e = d, and negation ¬b. The meta-function fv(e) and fv(b) computes
the free variables in the respective expressions e and b. (Boolean) expressions

352 A. Francalanza and J. Xuereb

Monitors

w, o ∈ Verd ::= � (accept) | ⊥ (reject)

| 0 (inconclusive)

m,n ∈ Mon ::= w (verdict) | let x = e in m (evaluate)

| l〈e〉.m (expression guard) | l(x).m (quantified guard)

| m+ n (choice) | if b thenm else n (conditional)

| recX.m (recursion) | X (monitor variable)

Symbolic Transitions

sVer

w
θ−−→

true
w

sIfT

if b thenm else n
τ−−→
b

m

sIfF

if b thenm else n
τ−−→

¬b
n

sRec

recX.m
τ−−→

true
m[recX.m/X]

sChL
m

μ−−→
b

m′

m+ n
μ−−→
b

m′

sGrE

l〈e〉.m l〈x〉−−−−→
e=x

m

sGrQ

l(y).m
l〈x〉−−−−→
true

m[x/y]

sLet

let x = e in m
τ−−→

true
m[e/x]

Weak Symbolic Transitions and Reductions

sWTr1

m
θ−−→
b

m′

m
θ=⇒
b

� m′

sWTr2

m
τ−−→
b

m′ m′ θ=⇒
c

� m′′

m
θ==⇒

b∧c
� m′′

sWRd1

m ==⇒
true

m

sWTr2
m

τ−−→
b

m′ m′ =⇒
c

m′′

m ==⇒
b∧c

m′′

Fig. 1. A symbolic semantics for monitors

without any free variables are said to be closed, and open otherwise. Substitu-
tions, denoted by [�e/�x], are partial maps from Vars to Exp, with the term d[�e/�x]
signifying that every free occurrence of xi ∈ �x in d is substituted by the cor-
responding expression ei ∈ �e. As is standard, open terms are interpreted over
valuations, ρ ∈ Vars → Val, i.e., complete maps instantiating free variables
to concrete values. (Open) expressions and boolean expressions come equipped
with partial evaluation functions taking a valuation and returning the respec-
tive values, �eρ� = v and �bρ� ∈ {true, false}; the terms eρ and bρ denote the
instantiation of the free variables in e and b respectively by the corresponding
values mapped to in ρ. A boolean expression b is satisfiable if there exists some
valuation ρ that maps b to true, i.e., sat(b) = ∃ρ.�bρ� = true.

Programs are seen as entities that generate events of the form l〈v〉 where
l, k ∈ Lab is the event label and v is the payload from the value domain. A
sequence of events, i.e., a trace, thus represents a program execution that is
analysed by the instrumented monitor.1 For our study, monitors are modelled

1 Operationally, a program p is instrumented with a monitor m as m � p where p
drives the execution and m passively reacts by analysing observable events gener-
ated by p [4,16,18]. In the case of controllability, the results in [17] show how this
instrumentation can be abstracted as a monitor reacting to an event trace.

On Implementing Symbolic Controllability 353

as Labelled Transition Systems (LTSs), described by the syntax in Fig. 1. They
consist of two conclusive verdicts (namely acceptance, �, and rejection, ⊥) and
an inconclusive verdict, 0, to describe the state a monitor transitions to when it
is asked to analyse an event it is not expecting. The syntax defines two guards
describing event analysis. Expression guards, l〈e〉.m, require the monitor to first
analyse an event l〈v〉 where the payload v is equal to (the evaluation of) the
expression e, and then to proceed as the continuation m. Quantified guards,
l(x).m, require the monitor to dynamically learn the payload v from an analysed
event l〈v〉 with a matching label l, and then bind the learnt payload value v to
the variable x in the continuation m; we use the suggestive notation l().m when
the binding variable is not used in m. The remaining constructs are standard.

Example 1. A program operating a thermostat is initialised to a starting temper-
ature i via the event init〈i〉 (i ∈ N). After this, it can either terminate reporting
end〈j〉 with the error code j ∈ N, or repeatedly read the current temperature
value i, get〈i〉, and adjust the temperature i, set〈i〉, for some value i.

m1= init〈0〉.end().⊥
m2= init〈50〉.recX.get(y).if y > 50 then set().⊥ else set〈y + 1〉.X
m3= init(x).let lim = ecalc in

(
if x < lim then end().⊥ else

recX.get(y).if y ≥ lim then set〈y + 1〉.� else set().X
)

Monitors m1, m2 and m3 check for three different specifications. Monitor
m1 rejects executions that terminate after the thermostat is initialised to 0.
When the thermostat is initialised to 50, monitor m2 repeatedly checks that
it is not set if the temperature read is greater than the initialisation value.
Monitor m3 checks whether the initialised value (learnt at runtime) is less than
some predetermined value calculated via some complex calculation ecalc: if so,
it rejects terminations and accepts executions where the thermostat is set to
the temperature just read increased by one, where the former is higher than the
predetermined value. The monitor instrumentation assumed (used extensively in
other settings [1,4,16,18]) preempts the monitor execution to the inconclusive
state, 0, whenever the monitor is presented with an event this not specified by its
description. For instance, if the monitor m1 is presented with the event set〈42〉 (or
event init〈42〉 for that matter), the instrumentation aborts the runtime analysis
by reducing the monitor to 0. �

Following [17], the monitor semantics is given in Fig. 1 in terms of a symbolic
LTS 〈Mon,BExp,Act,−→〉 where Act is a set containing symbol actions,
θ ∈ SEvt, and the silent action τ �∈ SEvt. Symbolic actions, l〈x〉, abstract
over concrete trace events by carrying variables x instead of values; we let
μ ∈ SEvt ∪ {τ}. The transition relation −→ ⊆ (Mon × Act × BExp × Mon)
is denoted as m

μ−−→
b

n; it models the transition from a monitor state m to a new

monitor state n via the symbolic action μ where the predicate b constrains the
free variables in the action μ and the monitor states m and n. It is defined as the
least relation satisfying the rules in Fig. 1 (we elide the symmetric rule sChR).

354 A. Francalanza and J. Xuereb

Rule sVer states that a verdict w can analyse any symbolic action θ under any
circumstance, i.e., true, and transition to itself, modelling verdict irrevocability.
A conditional monitor if b thenm else n can (silently) τ -transition to either m
under the pretext that b holds (rule sIfT), or to n if the converse, ¬b, holds (rule
sIfF). The other key rules are sGrE and sGrQ for expression and quantified
guards respectively: whereas the latter rule transitions with the symbolic event
l〈x〉 without constraining x, the former rule requires that x is equivalent to the
guard expression e, i.e., e = x. The remaining rules are fairly straightforward;
see [17] for details. Figure 1 also defines derivation rules for weak symbolic tran-
sitions (without trailing silent actions), m

θ=⇒
b

� n, and reductions, m =⇒
b

n. The

predicate m
θ=⇒
b

� is used as a shorthand notation for the requirement ∃n·m θ=⇒
b

� n.

The symbolic transitions in Fig. 1 are defined over general terms that are
potentially open. They are used to abstract over concrete transitions—defined
over closed monitor terms—in our symbolic analysis. The pair 〈b,m〉 is used to
represent the set of concrete terms {mρ | �bρ� = true }. Typically, a symbolic
analysis starts off from a concrete term m, denoted by the pair 〈true,m〉 where
m is closed. General constraining conditions b in a pair 〈b,m〉 are accrued from
prior transitions as follows. The symbolic transition relation m

μ−−→
c

n is used

to abstractly calculate the set of concrete transitions mρ
μρ−−→ nρ from the pair

〈b,m〉 for any ρ satisfying b, i.e., �bρ� = true, whenever ρ also satisfies c. In order
to record this fact, the resulting set of monitor states is encoded as 〈b ∧ c, n〉.

Our symbolic analysis rests on another important technical machinery. Since
it is concerned with abstracting over internal non-determinism (as long as it does
not manifest itself in terms of the verdicts reached) we need to (symbolically)
reason with respect to sets of (open) monitor terms, M ⊆ Mon, denoting the set
of possible monitor states that we could have reached thus far. Concretely, the
symbolic analysis works on constrained monitor-sets, 〈b,M〉, where the boolean
condition b constrains the free variables present in every monitor m ∈ M , i.e.,
�〈b,M〉� def= {mρ | m ∈ M and �bρ� = true }. The meta-function fv(−) is lifted
to constrained monitor-sets in the obvious manner i.e., fv(〈b, {m1, . . . ,mn}〉) =
fv(b)∪fv(m1)∪ . . .∪fv(mn). In the sequel, we also use the notation ∧B for some
set of boolean conditions B = {c1, . . . , cn} to denote the syntactic conjunction
of all the conditions in B. The helper function frsh(V) is also used to generate
the next fresh variable x which is not in the variable set V ⊆ Vars.

Symbolic controllability employs two predicates on constrained monitor-sets.
The predicate spr

(〈b,M〉, w)
holds if some monitor m ∈ M that can symboli-

cally reach a verdict after a finite sequence of silent actions along some condition
c where b∧c is satisfiable. The predicate spa

(〈b,M〉, θ, c) holds if some monitor
m ∈ M can weakly analyse the event θ with condition c with a satisfiable b∧c.

Definition 1 (Symbolic Predicates [17]). A constrained monitor-set 〈b,M〉
1. symbolically potentially reaches a verdict w, denoted as spr

(〈b,M〉, w)
,

whenever ∃c ∈ BExp,∃m ∈ M such that m =⇒
c

w and sat(b∧c).

On Implementing Symbolic Controllability 355

2. symbolically potentially analyses an event θ along condition c, denoted as
spa

(〈b,M〉, θ, c), whenever ∃m ∈ M where m
θ=⇒
c

� and sat(b∧c). �

Example 2. Recall monitor m2 from Example 1. Consider the constrained
monitor-set 〈b,M〉 where b is y < 20, M = {if y > 50 then set().⊥ else set〈y+1〉.
m2

′}, and

m′
2 = recX.get(y).if y > 50 then set().⊥ else set〈y + 1〉.X.

This constrained monitor-set cannot potentially reach a verdict,
¬spr(〈b,M〉, w)

. In fact, via (symbolic) τ -transitions it can only reach the moni-
tor states set().⊥ and set〈y+1〉.m′

2. When observing the (symbolic) event set〈z〉,
the monitor-set M can weakly transition to two potential monitor states: one,
⊥, along condition c1 = (y > 50) and the other, m′

2, along c2 = (y ≤ 50)∧(y′ =
y + 1). However, since the condition b∧ c1 is not satisfiable, only the second
branch corresponds to an actual transition in the concrete semantics (i.e., there
is a valuation ρ that satisfies (y < 20)∧(y ≤ 50)∧(z = y + 1)). In fact, we
can say that the constrained monitor-set can potentially analyse the event set〈z〉
along c2, i.e., predicate spa

(〈b,M〉, set〈z〉, c2
)

from Definition 1. �

From a specific set of potential states in a monitor computation, say 〈b,M〉,
the symbolic analysis needs to calculate the possible next set of (symbolic) events
the potential states can analyse. This does not only depend on the ability to
symbolically transition with an event θ, but also the conditions required for this
transition to be performed. The function rc(M, θ) defined below computes the
set of all possible conditions along which event θ may occur; it also accounts for
the computation sequences that lead a monitor to deadlock and not be able to
(weak-) symbolically transition with event θ. Once this set of relevant conditions
for event θ is calculated, {c1, . . . , cn}, the analysis needs to calculate which of
these are realisable when paired with b from 〈b,M〉. Since each of these condi-
tions can either be satisfied or violated at runtime, sc(b, {c1, . . . , cn}) returns
the set of all the possible ways {b, c′

1, . . . , c
′
n} can be combined together where

c′
i is either equal to ci or its negation; the resulting combinations partition the

valuations satisfying b, with some of the them being possibly empty. This then
allows the symbolic analysis to calculate saft(〈b,M〉, θ, c), the reachable (sym-
bolic) monitor states from 〈b,M〉 after analysing event θ with condition c. Note
also how saft(〈b,M〉, θ, c) accounts for the possibility that an execution branch
of 〈b,M〉 is unable to analyse a symbolic event θ along c: when this is the case, it
introduces the inconclusive verdict, 0, in the set of reachable monitors to model
monitor analysis preemption.

Definition 2 (Symbolic Reachability Analysis [17]). The relevant condi-
tions for a monitor-set M w.r.t. the symbolic event θ is given by:

rc(M, θ) def= { c | ∃m ∈ M · (m θ=⇒
c

� or ∃n · (m =⇒
c

n and n � τ=⇒ and n � θ=⇒)) }

356 A. Francalanza and J. Xuereb

The satisfiability combinations w.r.t. b for set {c1, . . . , cn} is given by:

sc(b, {c1, . . . , cn}) def= { {b, c′
1, . . . , c

′
n} | ∀i ∈ 1..n · (c′

i = ci or c′
i = ¬ci) }

The reachable constrained monitor-sets from 〈b,M〉 after θ along c are:

saft(〈b,M〉, θ, c) def
= { 〈∧B, saft(M,B, θ)〉 | B ∈ sc(b∧c, rc(M, θ)) and sat(∧B) }

saft(M,B, θ) def
=

⎧
⎨

⎩
n

∃m ∈ M, c · sat((∧B) ∧ c) and
(
m

θ=⇒
c

� n

or (∃n′ · m =⇒
c

n′ �τ−−→ and n′ � θ−−→ and n = 0)
)

⎫
⎬

⎭ �

Equipped with this set of machinery, we can define Symbolic Monitor Con-
trollability. It requires that:

1. whenever a set of potential states can (autonomously) reach a conclusive
verdict, they must all do so and must do it immediately (without requiring
further τ -transitions, since this can be interfered with when the instrumented
process diverges to create a form of spinlock);

2. whenever a set of potential states can analyse an event, the reachable set of
monitor states after carrying out that event is also included in the relation
(i.e., the relation is closed).

The interested reader is invited to consult [17] for further details.

Definition 3 (Symbolic Monitor Controllability [17]). A relation over
constrained monitor-sets S ⊆ (

BExp × P(Mon)
)

is said to be symbolically con-
trollable iff for all 〈b,M〉 ∈ S, the following two conditions are satisfied:

1. spr(〈b,M〉, w) and w ∈ {�,⊥} implies M = {w};
2. spa(〈b,M〉, l〈x〉, c) where frsh(fv(〈b,M〉)= x implies saft(〈b,M〉, l〈x〉, c)⊆S.

For a monitor m to be symbolically controllable, there must exist some symboli-
cally controllable relation S s.t. 〈true, {m}〉 ∈ S. �

Since symbolic controllability is both sound and complete w.r.t. consistent
monitor detection, it can also be used to determine violations to the latter defi-
nition (recall that consistent detection is defined in terms of concrete events).

Example 3. It is tempting to monitor for the consolidated specifications denoted
by m2 and m3 from Example 1, via the monitor m4 = m2 + m3. Upon observing
the (concrete) event init〈50〉, m4 may reach either of two monitor states, m′

2

(from Example 2) and m′
3 (described below); this is permitted by symbolic con-

trollability (and by consistent detection), as long as both states reach the same
verdict.

m′
3= let lim = ecalc in

(
if x < lim then end().⊥ else

recX.get(y).if y ≥ lim then set〈y + 1〉.� else set().X
)

On Implementing Symbolic Controllability 357

But consider a trace of events such as init〈50〉 · get〈60〉 · set〈61〉. If the monitor
transitions to the first monitor state, m′

2, the execution will always be rejected,
whereas if the monitor transitions to the second monitor state, m′

3[50/x], two
further cases must be considered. If the predetermined value lim is larger than 50,
a conclusive verdict will never be reached. Otherwise, the execution is accepted.
The aforementioned trace thus proves that m4 is not consistently detecting.

According to our symbolic analysis of Definition 3, for m4 to be symbolically
controllable, there must exists some relation S that contains 〈true, {m4}〉. By
Definition 3.2, S must also contain 〈true ∧ x = 50, {m′

2,m
′
3}〉. If we assume

that lim greater than 50 (the converse case is similar), S must also contain
〈true∧(x = 50)∧true, {if y > 50 then set().⊥ else set〈y + 1〉.m′

2, end().⊥}〉 and,
in turn (after considering the symbolic event set〈z〉 with condition y > 50), it
must also contain 〈true ∧ (x = 50)∧ true∧ (y > 50), {⊥,0}〉. But, clearly, the
latter constrained monitor-set violates Definition 3.1. Thus, no such symbolically
controllable relation exists. �

The reachability closure requirement of Definition 3.2, defined using the (sym-
bolic after) saft(〈b,M〉, θ, c) function of Definition 2, keeps on aggregating the
conditions of the transitions to the constraining condition b in a constrained set
〈b,M〉. This complicates the formulation of a finite symbolic relation (whenever
this exists). To overcome this, the work in [17] defines a sound method for con-
solidating constraining boolean conditions, thus garbage collecting redundant
constraints that bear no effect on the meaning of the (open) monitor-set M .

Definition 4 (Optimised Symb. Controllability [17]). The consolidation
of a boolean expression b w.r.t. variable-set V , denoted cns(b, V), is defined as:

cns(b, V) def= b1 whenever prt(b, V) = 〈b1, b2〉 for some b2

where the boolean expression partitioning operation prt(b, V) is defined as:

prt(b, V)
def
=

{
〈b1, b2〉 if sat(b) and b = b1∧b2 and fv(b1)⊆V and V ∩fv(b2) = ∅
〈b, true〉 otherwise

Let optimised symbolic reachability from 〈b,M〉 for θ and c, osaft(〈b,M〉, θ, c),
be defined as:

osaft(〈b,M〉, θ, c) def=

⎧
⎨

⎩
〈cns(∧B, V), saft(M,B, θ)〉

B ∈ sc(b∧c, rc(M, θ))
and sat(∧B) and

V = fv(saft(M,B, θ))

⎫
⎬

⎭

A relation S ⊆ (
BExp × P(Mon)

)
is called optimised symbolically-controllable

iff for all 〈b,M〉∈S:

1. spr(〈b,M〉, w) and w ∈ {�,⊥} implies M = {w};
2. spa(〈b,M〉, l〈x〉, c) s.t.

frsh(fv(〈b,M〉))= x impliesosaft(〈b,M〉, l〈x〉, c)⊆ S.

358 A. Francalanza and J. Xuereb

The largest optimised symbolically-controllable relation is denoted by Copt, and
contains all optimised symbolically-controllable relations. We say that a monitor
m is optimised symbolically-controllable iff there exists an optimised symbolically-
controllable relation S such that 〈true, {m}〉 ∈ S. �

Example 4. Although monitoring for a different combined specification involving
m1 and m3 from Example 1, i.e., monitor m1 + m3, may reach different internal
states, it can be shown to be symbolically controllable via the relation S defined
below:

S =

{ 〈true, {m1 + m3}〉, 〈x=0, {end().⊥, m3
′′}〉, 〈true, {⊥}〉, 〈x	=0, {m3

′′}〉,
〈true, {m3

′′′}〉, 〈true, {get(y).if y ≥ ecalc then set〈y+1〉.⊥ else set().m3
′′′}〉

}

where

m3
′′ =

{
let lim=ecalc in if x < lim then end().⊥ else

recX.get(y).if y ≥ lim then set〈y+1〉.⊥ else set().X

m3
′′′ = recX.get(y).if y ≥ ecalc then set〈y+1〉.⊥ else set().X

Definition 4 allows us to discard redundant boolean conditions in the con-
strained monitor-sets of S, collapsing semantically equivalent entries into
the same syntactic representation. For instance, the entry 〈true, {m1 + m3}〉
can potentially analyse the event init〈x〉 with the relevant conditions
{true, x = 0}. The satisfiability combinations, sc(true, {true, x = 0}), are given
by {true∧x = 0, true∧¬(x = 0)}. The reachable monitor-set obtained by
saft(〈true, {m1+m3}〉, init〈x〉, true∧x = 0) is 〈true∧x = 0, {end().⊥,m3

′′}〉, and
that obtained by the symbolic calculation saft(〈true, {m1 + m3}〉, init〈x〉, true∧
x �= 0) is 〈true ∧ x�=0, {m3

′′}〉. The respective conditions are consolidated as
x = 0 and x�=0.

Similarly, the entry 〈x = 0, {end().⊥,m3
′′}〉 can potentially analyse the

event end〈x′〉 with the relevant conditions {true, x < ecalc∧true}. The monitor-
set obtained by saft(〈true, {end().⊥,m3

′′}〉, end〈x′〉, (x = 0)∧(x < ecalc)∧true)
is given by 〈(x = 0)∧(x < ecalc)∧true, {⊥}〉; importantly, the conditions are con-
solidated as true since none of them impose any constraint on monitor-set {⊥}. �

3 Preliminary Implementation

Symbolic Controllability, Definitions 3 and 4, is declarative in nature: to show
that a monitor m is symbolically controllable, it suffices to provide a symbolically
controllable relation S containing the constrained monitor-set 〈true, {m}〉. How-
ever, this does not provide any indication on how this relation can be obtained.

Our preliminary attempt devising this algorithm is described in Agorithm 1.
Intuitively, the procedure starts from the initial constrained monitor-set
〈true, {m}〉, checks for clause Definition 3.1 and then generates new monitor-sets
to analyse using clause Definition 3.2. Constrained monitor-sets are represented
as a pair containing a list of conditions (i.e., conjuncted constraining conditions)
and a list of monitors (i.e., the monitor-set); the base condition true is repre-
sented by the empty list. The algorithm uses a list of pairs, S, and a queue, Q.

On Implementing Symbolic Controllability 359

1 def CompSymRel(S, Q)
2 if Q.empty then
3 return true
4 else
5 # unseen constrained monitor-set
6 〈b, M〉 ← Q.remove
7 S ← 〈b, M〉
8 # condition (1) true
9 if spr 〈b, M〉 then

10 # generate a fresh variable
11 x ← frsh(fv〈b, M〉)
12 sevts ← GenSymEvents(M , x)
13 # generate the reachable cms
14 Q ←CompReach(sevts,〈b, M〉,Q,S)
15 CompSymRel (S, Q)
16 else
17 # condition (1) false
18 return false

19 def CompReach(sevts,〈b, M〉,Q,S)
20 for s in sevts do
21 c ← rc(M , s)
22 satComb ← sc(b, c)
23 for scomb in satCombs do
24 if spa 〈b, M〉 s scomb then
25 cms ← saft(〈b, M〉, s, scomb)
26 for cm in cms do
27 if cm 	∈ S then
28 S ← 〈b, M〉
29 Q.append cm # add to queue

30 return Q
31 def IsSymControllable(M)
32 b ← [] # [] represents true
33 cm ← 〈b, M〉
34 Q← cm # init a queue
35 CompSymRel([], Q)

Alg. 1: Pseudocode for the Algorithm automating Symbolic Controllability

The list of pairs (initialised to empty) stores the constrained monitor-sets that
will make up the relation we are trying to construct; the queue, initialised to
the singleton element 〈true, {m}〉, is used to store the constrained monitor-sets
that have not been analysed yet. Lists are convenient for reading and adding
data; however, queues perform better when data needs to be removed since they
have a time complexity of O(n) and O(1) respectively. The list S observes two
key invariants, namely that (i) all the pairs in S satisfy Definition 3.1 and (ii)
all reachable constrained monitor-sets from these pairs, obtained via saft(-), are
either in S itself or in Q, waiting to be analysed. When Q becomes empty, a
fixpoint is reached: all reachable constrained monitor-sets from S must be in S
itself, satisfying Definition 3.2, and the resulting S is closed.

Function ComSymRel() in Algorithm 1 is the main function. If Q is empty,
there are no further constrained monitor-sets to analyse and true is returned
(line 3). Otherwise, a constrained monitor-set is removed from Q. Condition
Definition 3.1 is checked (line 9) and the analysis terminates with false if vio-
lated. Line 12 obtains all symbolic events that can be observed by the current
constrained monitor-set using function GenSymEvents(), which is then used
to get the reachable constrained monitor-sets using function CompReach().
This function follows closely Definition 1 and Definition 2, but function sc() on
line 22 returns only the combinations that are satisfiable; this removes the need
to compute sc(b∧c) in spa

(
-
)

and sc(∧B) in saft(-). The reachable constrained
monitor-sets are generated on line 25, and those that have not been analysed yet
are pushed to Q on line 29. Alg. 29 is implemented in straightforward fashion
using OCaml [27].

360 A. Francalanza and J. Xuereb

Interfacing with the SAT Solver. Generating the set of satisfiability com-
binations w.r.t. a set of relevant conditions (line 22) requires the invocation
of an external satisfiability solver to determine reachable paths. We used the
Z3 [28] theorem prover for this; its numerous APIs allow a seamless integration
with our tool. Z3 relies on hand-crafted heuristics [30] to determine whether
a set of formulas, also known as assertions, is satisfiable. Instead of opting to
use the default solver, we used a custom strategy based on the built-in tactics
ctx-solver-simplify() and propagate-ineqs(), performing simplification and
inequality propagation respectively. We used another important feature of Z3:
instead of returning a boolean verdict, the function invoking the SAT solver,
sat(), returns the simplified formula together with the verdict. This increases
the number of discarded conditions during boolean consolidation and makes
future satisfiability checks that refine this condition less expensive.

Complexity Bounds. The complexity of Algorithm 1 depends on two param-
eters:

1. The terms reachable from the initial monitor m via the symbolic semantics
of Fig. 1, denoted here as the set reach(m). Since our monitors are expressed
using a regular grammar, we can show that this set is finite for any monitor
m ∈ Mon, i.e., size

(
reach(m)

)
= i for some i ∈ N; see [4] for a similar

proof of this fact. As our controllability analysis relies on sets of reachable
monitors, the standard complexity for the power set construction is O(2i).

2. The satisfiability checks of the boolean constraints b generated by the sym-
bolic analysis. In general, Algorithm 1 needs to check the satisfiability of the
boolean condition of every monitor set from the previous point. Satisfiability
is usually a function of the number of free variables, j ∈ N, in the boolean
condition b. Although the standard boolean satisfiability would be O(2j), the
boolean conditions in Algorithm 1 involve variables for integers with opera-
tors, i.e., integer programming. Since we are agnostic of the expression lan-
guage used, this is not decidable for general integer expressions [29] (e.g.,
expressions with both addition and multiplication). Limiting expressions to
Presburger arithmetic would recover decidability [10], yielding a complexity
that can be safely approximated to 2O(j).

When decidable, the complexity of Algorithm 1 can be safely approximated to
2O(i+j).

4 Evaluating Efficiency

Although Sect. 3 demonstrates that controllability analysis can be implemented,
albeit with high worst-case complexity bound, it is unclear whether the imple-
mentation scales well in practice. In this section we devise an evaluation strategy
for our tool that attempts to capture typical use-cases; whenever performance
bottlenecks are detected, alternative implementation methods are studied in
Sect. 5 and compared to our baseline implementation.

On Implementing Symbolic Controllability 361

Table 1. Parametrisable monitor descriptions

Mrec(n) = recX.
∑n+1

i=1

(
k〈i〉.(l〈i〉.X) + (q〈i〉.�)

)

Mcnd(n) =

l(x).(if x=4 then k〈x〉.⊥ else k〈x〉.�)

+
∑n

i=2

(
if x mod 2=0 then

i=2..n
︷ ︸︸ ︷
if x<2(n−i+3) then . . . if x<2(n−i+3) then

if x>2 then k〈x〉.⊥else k〈x〉.� . . . else k〈x〉.�
︸ ︷︷ ︸

i=2..n+1

)

Mbrc(n) =

l(x).
(
if x=4 then k〈x〉.⊥ else k〈x〉. ∑3n

j=1(k〈j〉.�)
)

+
∑n

i=2

(
if x mod 2 = 0 then

i=2..n
︷ ︸︸ ︷
if x<2(n−i+3) then . . . if x<2(n−i+3) then

if x>2 then k〈x〉. ∑3n
j=1(k〈j〉.⊥)

else k〈x〉.
3n∑

j=1

(k〈j〉.�) . . . else k〈x〉.
3n∑

j=1

(k〈j〉.�)

︸ ︷︷ ︸
i=2..n+1

)

A Benchmark for Assessing Deterministic Monitor Analysis. A major
obstacle for assessing the scalability of Algorithm 1 is the absence of a proper
benchmark. To this end, we use the monitor modelling syntax of Fig. 1 to design
a suite of pathological monitor template descriptions that are parametrisable
in size and complexity, allowing us to carry out our evaluation in a systematic
manner; see Table 1. Each template targets a specific feature of a symbolic anal-
ysis for non-deterministic behaviour. Concretely, Mrec(n) is a monitor template
that generates monitor instances that can transition to multiple sub-monitors,
some of which lead to a verdict while others recurse to induce further iterations
in the monitor analysis loop; this pathological behaviour induces large relation
sizes S in the analysis of Algorithm 1. In Mcnd(n), (symbolic) events may be
observed along various boolean conditions with the intention of increasing the
number of constraints b in the corresponding constrained monitor-set 〈b,M〉
analysed in Algorithm 1. The monitor instances generated by Mcnd(n) also have
a high branching factor, which induces larger monitor-sets M . The final moni-
tor template Mbrc(n) generates monitors with nested branching that alternates
with event analysis; this impacts the number of relevant conditions that need to
be considered when calculating the reachable constrained monitor-sets in Algo-
rithm 1.

Preliminary Results. We evaluated the mean running time (over 3 repeated
runs) of our preliminary (Naive) implementation for the three monitor tem-
plates of Table 1, instantiated by an ascending parameter n. All experiments
were conducted on a Quad-Core Intel Core i5 64-bit machine with 16 GB mem-
ory, running OCaml version 4.08.0 on OSX Catalina. They can be reproduced
using the sources provided at https://github.com/jasmine97xuereb/sym-cont,
whereby the master branch contains the preliminary implementation and the
other branches the individual optimisations.

The plotted time results (in blue) are reported in Fig. 2 on a logarithmic scale;
missing plot-points mean that the (controllability) analysis did not terminate

https://github.com/jasmine97xuereb/sym-cont

362 A. Francalanza and J. Xuereb

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

100

101

102

103

T
im

e
(s
)

Mrec(n)

1 2 3 4 5 6 7

Size and complexity (n)

100

101

102

103

104

105
Mcnd(n)

1 2 3 4 5

Size and complexity (n)

100

101

102

103

104

105

T
im

e
(s
)

Mbrc(n)

Naive
O1
O2
O3
Merged

Fig. 2. Mean running time for different monitors (Color figure online)

within a stipulated time threshold (over 10 h). The results confirm that the
preliminary implementation does not scale well; although it has a low response
time for low values of n, its performance degrades quickly as n increases (the
worst behaviour measured was that for the pathological cases of Mbrc(n), where
we immediately witnessed a sharp spike at n = 3). A closer inspection into
the working of the algorithm reveals that the invocations to the Z3 solver are
expensive operations, incurring a cost that is magnitudes higher than any other
aspect of the analysis. In turn, the number of invocations is dependent on the
number of relevant conditions: in the preliminary implementation of Algorithm
1, the algorithm considers all 2i possible combinations for a given number i of
relevant conditions, each of which needs to be checked for satisfiability. This
insight gave us a focus of attack for improving the tool’s scalability.

5 Optimisation Techniques

Upon closer inspection, we notice that a substantial number of conjuncted con-
ditions generated by sc() of Algorithm 1 are (trivially) unsatisfiable. Ideally,
these cases should not result in invocations to the satisfiability solver.

Optimisation Technique O1. The first optimisation technique relies on the
notion of (easily identifiable) mutual exclusion, whereby the satisfaction of one
boolean condition necessarily violates that of the other.

Example 5. Recall the constrained monitor-set 〈b, {m1 + m2}〉 from Example 1.
The relevant conditions w.r.t. event init〈x〉 are {b1, b2}, where b1 is x = 0

On Implementing Symbolic Controllability 363

1 def sc(b,cs)
2 result ← []
3 (X, Y) ← partition cs #X contains var assignments and Y all others
4 for x ∈ Var(X) do # cluster expressions in X by their variable name
5 Xx ← {(y = v) ∈ X | x = y}
6 firstx ← Xx ++ [∧(negate all c in Xx)]

7 second ← all possible combinations for Y
8 combinations ← (�x∈Var(X) firstx) × second # cartesian product of first and second
9 for c in combinations do

10 t ← sat ([b, c]) # t:(bool, exp list)
11 if fst(t) then
12 result ← result ++ snd(t)

Alg. 2: Pseudocode for first optimised function sc(b, {c1, ..., cn})

and b2 is x = 50. Accordingly, the satisfiability combinations generated for
sc(true, {b1, b2}) are b1 ∧ b2, ¬b1 ∧ b2, b1 ∧¬b2, and ¬b1 ∧¬b2. Since x cannot
be equal to values 0 and 50 simultaneously, conditions b1 and b2 are mutually
exclusive. �

A close inspection of the transition rules in Fig. 1 reveals that the constraints
introduced tend to be of the form x = e; whenever e = v, it is easy to syntacti-
cally determine mutually exclusive conditions as in Example 5. The pseudocode
in Algorithm 2 first partitions the set of boolean conditions into two (line 3): the
first partition, X, consists solely of variable assignments i.e., expressions of the
form x = n for n∈N, whereas the second partition, Y , contains the remaining
conditions. For partition Y , all the possible combinations are generated as in
Algorithm 1 (line 7). As for partition X, we first cluster them according to the
constrained variable (line 6); for each cluster, either one condition is true, or all
of them are false (since they are necessarily mutually exclusive). The resulting
combinations are merged by computing their Cartesian Product (line 8).

Example 6. Consider the open monitor term m5 = init〈y〉.� and constrained
monitor-set 〈b,M〉 where M = {m1 + m2 + m5} with m1 and m2 from Exam-
ple 1. The relevant conditions for M along event init〈x〉, rc(M, init〈x〉) are
c = {b1, b2, b3}, where b1 is x = 0, b2 is x = 50, and b3 is x = y. When calculat-
ing sc(true, c) using Algorithm 2, condition-set c is partitioned into X = {b1, b2}
and Y = {b3}. All the conditions in the X are mutually exclusive. Thus, the pos-
sible ways the conditions in X can be combined are given by the condition-set
{b1, b2,¬b1∧¬b2}. The possible combinations of the conditions in Y are gen-
erated as before, and are given by {b3,¬b3} on line 7. These two resulting
sets are merged as: {b1, b3}, {b1,¬b3}, {b2, b3}, {b2,¬b3}, {¬b1∧¬b2, b3}, and
{¬b1∧¬b2,¬b3}. Note that whereas Algorithm 1 generates 8 combinations (and
SAT solver invocations), this is now reduced to 6. Moreover, the latter combi-
nations of logical formulas are less complex. �

364 A. Francalanza and J. Xuereb

In general, given a set of relevant conditions of length k, a set of clus-
ters Xx∈Var(X) and Y where |Xx∈Var(X)| = nx, |Y | = m, and k = m +∑

x∈Var(X) nx, the number of times the SAT solver is invoked is reduced from
2k = 2m

∏
x∈Var(X) 2nx to 2m

∏
x∈Var(X)(nx+1). Hence, the larger the first par-

tition is, i.e., |X|, the more effective the optimisation. When we evaluate the
optimised implementation against the benchmark in Table 1, depicted by the
plot labelled O1 in Fig. 2, we noticed that even though the running time for
monitors Mrec(n) and Mbrc(n) decreased substantially, that of monitors Mcnd(n)
was unaffected.

Optimisation Technique 2. Storing the aggregated boolean conditions as a
flat structure loses information regarding the monitor branching structure.

Example 7. Consider m6, a slight modification of monitor m2 from Example 1.

m6 = init〈50〉.let lim = ecalc in m6
′

m6
′ = recX.get(y).if y ≥ 50 then set().⊥ else if y < lim then set〈y+1〉.X else set().⊥

Upon observing event init〈50〉, followed by event get〈y〉, both along the
boolean condition true, the reachable monitor-set for 〈true, {m6}〉 is given
by 〈true, {m6

′′}〉, where m6
′′ = if y ≥ 50 then set().⊥ else if y <

ecalc then set〈y+1〉.m6
′ else set().⊥.

Monitor-set {m6
′′} analyses event set〈x〉 with relevant conditions c1, c2, and

c3, where c1 is (y > 50)∧ (y < ecalc)∧ (x = y+1), c2 is (y > 50)∧¬(y <
ecalc), and c3 is ¬(y > 50). Computing the set of satisfiable combinations,
sc(true, {c1, c2, c3}), in a naive manner entails the invocation of the SAT solver
23 = 8 times. However, there are multiple combinations that cannot hold. For
instance, c1∧c2 is not satisfiable because condition c2 occurs along an if true
branch, whereas condition b1 occurs along the else branch of the same monitor.

�

We consider a hierarchic representation of expressions, i.e., expression trees
represented as tuples e = 〈e′, [e′′], [e′′′]〉 with e′ as the root. For convenience, we
use the suggestive dot notation (.) to access specific elements. The condition of
expression tree, e′, is accessed via the field e.cond. Expression trees have a list of
left and a list of right expressions. The left expressions, [e′′], can only be reached
if sat(e′) and are accessed via the field e.true. Similarly, the right expressions,
[e′′′], can only be reached if ¬sat(e′) and are accessed via e.false. Since [e′′] and
[e′′′] can be reached when e′ is true or false respectively, the expressions along the
left and the right paths are mutually exclusive. Condition true is still represented
by an empty list; expressions e′′ and e′′′ may be expression trees themselves.

Example 8. Recall monitor-set {m6
′′} from Example 7. If we recompute the rele-

vant conditions for this monitor-set w.r.t. event set〈x〉, rc({m6
′′} , set〈x〉), using

the new representation we obtain b = 〈y ≥ 50, [〈y < ecalc, [x = y+1], []〉], []〉. �

On Implementing Symbolic Controllability 365

1 def Trav(e: exp)
2 def GetPaths(e′: exp list)
3 paths ← []
4 if e′ not empty then
5 for x in e′ do
6 paths ← paths ++ Trav(x)

7 # cartestian product of all p in paths
8 return �

n
i=1 pathsi

9 if e is an expression tree then
10 branchT ← GetPaths(e.true)
11 branchF ← GetPaths(e.false)
12 # add e.cond to each p in branchT
13 x ← e.cond ∧ pi · ∀pi ∈ branchT
14 y ← ¬ e.cond ∧ pi · ∀pi ∈ branchF
15 return x ++ y
16 else
17 return e

18 def sc(b,cs)
19 paths ← [], result ← []
20 #X contains only expression trees
21 (X, Y) ← partition cs
22 for x in X do
23 paths ← paths ++ Trav(x)

24 # cartestian product of all p in paths
25 k ← �

n
i=1 pathsi

26 first ← X ++ [∧(negate all x in k)]
27 second ← all combinations for Y
28 # cartesian prod of first and second
29 combinations ← first × second
30 #filter out unsatisfiable conditions
31 for c in combinations do
32 t ← sat ([b, c])
33 if fst(t) then
34 result ← result ++ snd(t)

Alg. 3: Pseudocode for second optimised function sc(b, {c1, ..., cn})

The pseudocode for the second optimisation in Algorithm3 relies on the
function Trav(). It traverses expression tree e passed as parameter and returns
a list of mutually exclusive conditions. This function recursively computes all
the paths along the true and false branches on lines 10 and 11 respectively.
Once all the possible combinations along the true branch of the initial condition
e.cond are generated, each combination is conjuncted with the corresponding
initial condition, e.cond, on line 13. Similarly, those along the false branch are
conjuncted with its negation, ¬e.cond, on line 14.

The function computing the satisfiability combinations, sc() in Algorithm 3,
works by first partitioning the set of boolean conditions into two, X, and Y ,
such that X contains only expression trees. The set of possible combinations
of the conditions in X is obtained via function Trav(), which returns a list of
condition-sets, {c1, · · · , cn}, where each condition-set consists of mutually exclu-
sive conditions. The cartesian product of these condition-sets is then computed,
c1 × · · · × cn, denoted by the generalised cartesian product �n

i=1 ci (line 8). The
possible combinations relative to the conditions in Y are generated as before.
These two lists of combinations are then joined through their cartesian product
(line 29).

Example 9. Recall boolean condition b = 〈b1, [〈b2, [b3], []〉], []〉 from Example 8,
where b1 is (y ≥ 50), b2 is (y < ecalc), and b3 is (x = y+1). We illustrate
how the set of combinations deducible from expression tree b are obtained.
Calling Trav() on expression b generates the set of all possible combina-
tions by traversing its left and right sub-branches recursively (lines 10, 11)
to produce two lists of mutually exclusive conditions, [b2 ∧ b3,¬b2] and [].
The conditions in [b2 ∧ b3,¬b2] are conjuncted with b1 (line 14), resulting in

366 A. Francalanza and J. Xuereb

c1 = b1∧b2∧b3 and c2 = b1∧¬b2. Similarly, [] is conjuncted with ¬b1, result-
ing in c3 = ¬b1. Trav() then returns [c1, c2, c3]. Generating the satisfiability
combinations, sc(true, {c1, c2, c3}) in Example 7 decreases the number of possible
combinations from 8 to 3. �

It is worth noting that the effectiveness of this optimisation depends on both
the depth and the number of expression trees, i.e., size of partition X. Evaluating
it against the benchmark in Table 1, we obtain the plot labelled O2 in Fig. 2.
The resulting graph confirms that the tool performs better for Mcnd(n).

Optimisation Technique 3. Despite the merits afforded by the preceding
optimisations, multiple instances where the satisfiability solver must be invoked
still prevail. We attempt to circumvent this overhead by batching the satisfiabil-
ity checks. If all two-pairs are simultaneously satisfiable, the satisfiability of the
entire list is checked, otherwise, if one pair is unsatisfiable, then it immediately
follows that the list of conditions is unsatisfiable. This results in the mean run-
ning times shown by the plot labelled O3 in Fig. 2 (recall that the values on the
y-axis are in logarithmic form). This technique yields a substantial gain as well.
For instance, comparing the mean running time against that of the preliminary
version for monitor Mcnd(5) from Table 1 there is a percentage decrease of 35%.
Even better, for monitor Mbrc(3), there is a percentage decrease of 99.99%. How-
ever, the other two optimisation techniques depicted by the plots labelled O1
and O2 in Fig. 2 generally give improvements with better orders of magnitude.

Merged Optimisations. Merging all the optimisation techniques, an improve-
ment in the mean running time is immediately noticeable, especially for moni-
tors Mbrc(n) from Table 1. For instance, comparing the mean running time for
n = 3 using the preliminary and the final optimised version, there is a percentage
decrease of 99.996%. In fact, the plot labelled Merged in Fig. 2, acts as a lower
bound for all other versions.

6 Conclusion

This paper investigates the implementability aspects of monitor controllabil-
ity [17]. We discuss the realisability of a prototype that directed us towards the
execution bottlenecks of the monitor analysis; we devised a number of solutions
to these bottlenecks, implemented them, and studied which ones are the most
effective. Our implementation remains closely faithful to the original definition
of symbolic controllability, reassuring us of the correctness of our analysis.

Future Work. We plan to build translator tools that generate model descrip-
tions of monitors in terms of the syntax discussed in Sect. 2, as is done in tools
such as Soter [14]. This allows us to analyse a wider range of real-world monitor
implementations using our tool. We also plan to investigate further optimisations
to symbolic controllability that continue to improve the utility of our tool.

On Implementing Symbolic Controllability 367

Related Work. An alternative approach to analysing for monitor deterministic
behaviour is that of converting the monitor description itself into a determin-
istic one. This approach was investigated extensively in [2,3] for a variety of
methods and concludes that any conversion typically incurs a triple exponential
blow-up. The closest work to ours is [24], which uses SMT-based model check-
ing to prove invariants about monitors. One illustrative invariant they consider
is the analysis of a combined execution of two monitors (akin to our monitor
sets) using k-induction (i.e., bounded model checking); by contrast we consider
the entire (possibly infinite) run through coinduction. Similar work on verifying
dynamic programming monitors for LTL that uses the Isabelle/HOL proof assis-
tant [33] is also limited to finite traces. Isabelle/HOL is used in [35] to extract
certifiably-correct monitoring code from specifications expressed in Metric First-
Order Temporal Logic (MFOTL). Although MFOTL uses quantifications over
event data (similar to ours), the analysis in [35] is limited to formulas that are
satisfied by finitely-many valuations; our techniques do not have this restriction.
Further afield, the work in [31] uses symbolic analysis and SMT solvers to reason
about the runtime monitoring of contracts. Their symbolic analysis is however
concerned with shifting monitoring computation to the pre-deployment phase,
which is different from our aim.

Acknowledgements. The authors thank Antonis Achilleos, Duncan Paul Attard,
Stefania Damato, Clément Fauconnet and John Parnis for their help, and the anony-
mous reviewers for their comments and suggestions for improvement.

References

1. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A.: A framework for param-
eterized monitorability. In: Baier, C., Dal Lago, U. (eds.) FoSSaCS 2018. LNCS,
vol. 10803, pp. 203–220. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-89366-2 11

2. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A., Kjartansson, S.Ö.: On
the complexity of determinizing monitors. In: Carayol, A., Nicaud, C. (eds.) CIAA
2017. LNCS, vol. 10329, pp. 1–13. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-60134-2 1

3. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A.,Kjartansson, S.Ö.:
Determinizing monitors for HML with recursion. JLAMP 111 (2020).https://doi.
org/10.1016/j.jlamp.2019.100515

4. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A., Lehtinen, K.: Adven-
tures in monitorability: from branching to linear time and back again. PACMPL,
3(POPL) (2019). https://doi.org/10.1145/3290365

5. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A., Lehtinen, K.: An oper-
ational guide to monitorability. In: Ölveczky, P.C., Salaün, G. (eds.) SEFM 2019.
LNCS, vol. 11724, pp. 433–453. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-30446-1 23

6. Bartocci, E., Falcone, Y., Francalanza, A., Reger, G.: Introduction to runtime
verification. In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime Verification.
LNCS, vol. 10457, pp. 1–33. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-75632-5 1

https://doi.org/10.1007/978-3-319-89366-2_11
https://doi.org/10.1007/978-3-319-89366-2_11
https://doi.org/10.1007/978-3-319-60134-2_1
https://doi.org/10.1007/978-3-319-60134-2_1
https://doi.org/10.1016/j.jlamp.2019.100515
https://doi.org/10.1016/j.jlamp.2019.100515
https://doi.org/10.1145/3290365
https://doi.org/10.1007/978-3-030-30446-1_23
https://doi.org/10.1007/978-3-030-30446-1_23
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-319-75632-5_1

368 A. Francalanza and J. Xuereb

7. Berkovich, S., Bonakdarpour, B., Fischmeister, S.: Runtime verification with min-
imal intrusion through parallelism. Form. Methods Syst. Des. 46(3), 317–348
(2015). https://doi.org/10.1007/s10703-015-0226-3

8. Bocchi, L., Chen, T., Demangeon, R., Honda, K., Yoshida, N.: Monitoring networks
through multiparty session types. TCS 669 (2017).https://doi.org/10.1016/j.tcs.
2017.02.009

9. Bonakdarpour, B., Fraigniaud, P., Rajsbaum, S., Rosenblueth, D.A., Travers,
C.: Decentralized asynchronous crash-resilient runtime verification. In: CONCUR.
LIPIcs, vol. 59 (2016). https://doi.org/10.4230/LIPIcs.CONCUR.2016.16

10. Büchi, J.R.: Weak second-order arithmetic and finite automata. Math. Logic Q.
6(1–6) (1960). https://doi.org/10.1002/malq.19600060105

11. d’Amorim, M., Roşu, G.: Efficient monitoring of ω-languages. In: Etessami, K.,
Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 364–378. Springer, Heidel-
berg (2005). https://doi.org/10.1007/11513988 36

12. Debois, S., Hildebrandt, T., Slaats, T.: Safety, liveness and run-time refinement
for modular process-aware information systems with dynamic sub processes. In:
Bjørner, N., de Boer, F. (eds.) FM 2015. LNCS, vol. 9109, pp. 143–160. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-19249-9 10

13. Demangeon, R., Honda, K., Hu, R., Neykova, R., Yoshida, N.: Practical interrupt-
ible conversations: distributed dynamic verification with multiparty session types
and Python. Form. Methods Syst. Des. 46(3), 197–225 (2014). https://doi.org/10.
1007/s10703-014-0218-8

14. D’Osualdo, E., Kochems, J., Ong, C.-H.L.: Automatic verification of erlang-style
concurrency. In: Logozzo, F., Fähndrich, M. (eds.) SAS 2013. LNCS, vol. 7935, pp.
454–476. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38856-
9 24

15. Fraigniaud, P., Rajsbaum, S., Travers, C.: On the number of opinions needed for
fault-tolerant run-time monitoring in distributed systems. In: Bonakdarpour, B.,
Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 92–107. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-11164-3 9

16. Francalanza, A.: A theory of monitors. In: Jacobs, B., Löding, C. (eds.) FoSSaCS
2016. LNCS, vol. 9634, pp. 145–161. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49630-5 9

17. Francalanza, A.: Consistently-detecting monitors. In: CONCUR. LIPIcs, vol. 85
(2017). https://doi.org/10.4230/LIPIcs.CONCUR.2017.8

18. Francalanza, A., Aceto, L., Ingolfsdottir, A.: Monitorability for the Hennessy–
Milner logic with recursion. Form. Methods Syst. Des. 51(1), 87–116 (2017).
https://doi.org/10.1007/s10703-017-0273-z

19. Francalanza, A., Mezzina, C.A., Tuosto, E.: Reversible choreographies via moni-
toring in erlang. In: Bonomi, S., Rivière, E. (eds.) DAIS 2018. LNCS, vol. 10853,
pp. 75–92. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93767-0 6

20. Francalanza, A., Seychell, A.: Synthesising correct concurrent runtime monitors.
Form. Methods Syst. Des. 46(3), 226–261 (2014). https://doi.org/10.1007/s10703-
014-0217-9

21. Gommerstadt, H., Jia, L., Pfenning, F.: Session-typed concurrent contracts. In:
Ahmed, A. (ed.) ESOP 2018. LNCS, vol. 10801, pp. 771–798. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-89884-1 27

22. Grigore, R., Distefano, D., Petersen, R.L., Tzevelekos, N.: Runtime verification
based on register automata. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013.
LNCS, vol. 7795, pp. 260–276. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-36742-7 19

https://doi.org/10.1007/s10703-015-0226-3
https://doi.org/10.1016/j.tcs.2017.02.009
https://doi.org/10.1016/j.tcs.2017.02.009
https://doi.org/10.4230/LIPIcs.CONCUR.2016.16
https://doi.org/10.1002/malq.19600060105
https://doi.org/10.1007/11513988_36
https://doi.org/10.1007/978-3-319-19249-9_10
https://doi.org/10.1007/s10703-014-0218-8
https://doi.org/10.1007/s10703-014-0218-8
https://doi.org/10.1007/978-3-642-38856-9_24
https://doi.org/10.1007/978-3-642-38856-9_24
https://doi.org/10.1007/978-3-319-11164-3_9
https://doi.org/10.1007/978-3-662-49630-5_9
https://doi.org/10.1007/978-3-662-49630-5_9
https://doi.org/10.4230/LIPIcs.CONCUR.2017.8
https://doi.org/10.1007/s10703-017-0273-z
https://doi.org/10.1007/978-3-319-93767-0_6
https://doi.org/10.1007/s10703-014-0217-9
https://doi.org/10.1007/s10703-014-0217-9
https://doi.org/10.1007/978-3-319-89884-1_27
https://doi.org/10.1007/978-3-642-36742-7_19
https://doi.org/10.1007/978-3-642-36742-7_19

On Implementing Symbolic Controllability 369

23. Jia, L., Gommerstadt, H., Pfenning, F.: Monitors and blame assignment for higher-
order session types. In: POPL (2016). https://doi.org/10.1145/2837614.2837662

24. Laurent, J., Goodloe, A., Pike, L.: Assuring the guardians. In: Bartocci, E., Majum-
dar, R. (eds.) RV 2015. LNCS, vol. 9333, pp. 87–101. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-23820-3 6

25. Ligatti, J., Bauer, L., Walker, D.: Edit automata: enforcement mechanisms for
run-time security policies. Int. J. Inf. Secur. 4(1), 2–16 (2004). https://doi.org/10.
1007/s10207-004-0046-8

26. Luo, Q., Roşu, G.: EnforceMOP: a runtime property enforcement system for mul-
tithreaded programs. In: ISSTA. ACM (2013). https://doi.org/10.1145/2483760.
2483766

27. Minsky, Y., Madhavapeddy, A., Hickey, J.: Real World OCaml - Functional Pro-
gramming for the Masses (2013)

28. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

29. de Moura, L., Bjørner, N.: Satisfiability modulo theories: introduction and appli-
cations. CACM 54(9), 69–77 (2011). https://doi.org/10.1145/1995376.1995394

30. de Moura, L., Passmore, G.O.: The strategy challenge in SMT solving. In:
Bonacina, M.P., Stickel, M.E. (eds.) Automated Reasoning and Mathematics.
LNCS (LNAI), vol. 7788, pp. 15–44. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-36675-8 2

31. Nguyen, P.C., Tobin-Hochstadt, S., Horn, D.V.: Higher order symbolic execution
for contract verification and refutation. JFP 27(2017).https://doi.org/10.1017/
S0956796816000216

32. Reger, G., Cruz, H.C., Rydeheard, D.: MarQ: monitoring at runtime with QEA.
In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 596–610.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0 55

33. Rizaldi, A., et al.: Formalising and monitoring traffic rules for autonomous vehi-
cles in Isabelle/HOL. In: Polikarpova, N., Schneider, S. (eds.) IFM 2017. LNCS,
vol. 10510, pp. 50–66. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
66845-1 4

34. Schneider, F.B.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3(1),
30–50 (2000). https://doi.org/10.1145/353323.353382

35. Schneider, J., Basin, D., Krstić, S., Traytel, D.: A formally verified monitor for
metric first-order temporal logic. In: Finkbeiner, B., Mariani, L. (eds.) RV 2019.
LNCS, vol. 11757, pp. 310–328. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-32079-9 18

36. Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Inf. Comput.
115(1), 1–37 (1994). https://doi.org/10.1006/inco.1994.1092

https://doi.org/10.1145/2837614.2837662
https://doi.org/10.1007/978-3-319-23820-3_6
https://doi.org/10.1007/s10207-004-0046-8
https://doi.org/10.1007/s10207-004-0046-8
https://doi.org/10.1145/2483760.2483766
https://doi.org/10.1145/2483760.2483766
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/1995376.1995394
https://doi.org/10.1007/978-3-642-36675-8_2
https://doi.org/10.1007/978-3-642-36675-8_2
https://doi.org/10.1017/S0956796816000216
https://doi.org/10.1017/S0956796816000216
https://doi.org/10.1007/978-3-662-46681-0_55
https://doi.org/10.1007/978-3-319-66845-1_4
https://doi.org/10.1007/978-3-319-66845-1_4
https://doi.org/10.1145/353323.353382
https://doi.org/10.1007/978-3-030-32079-9_18
https://doi.org/10.1007/978-3-030-32079-9_18
https://doi.org/10.1006/inco.1994.1092

Combining SLiVER with CADP
to Analyze Multi-agent Systems

Luca Di Stefano1,2(B) , Frédéric Lang3, and Wendelin Serwe3

1 Gran Sasso Science Institute (GSSI), L’Aquila, Italy
luca.distefano@gssi.it

2 IMT School of Advanced Studies, Lucca, Italy
3 Univ. Grenoble Alpes, Inria, CNRS,

Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), LIG,
38000 Grenoble, France

Abstract. We present an automated workflow for the analysis of multi-
agent systems described in a simple specification language. The pro-
cedure is based on a structural encoding of the input system and the
property of interest into an LNT program, and relies on the CADP soft-
ware toolbox to either verify the given property or simulate the encoded
system. Counterexamples to properties under verification, as well as sim-
ulation traces, are translated into a syntax similar to that of the input
language: therefore, no knowledge of CADP is required. The workflow is
implemented as a module of the verification tool SLiVER. We present the
input specification language, describe the analysis workflow, and show
how to invoke SLiVER to verify or simulate two example systems. Then,
we provide details on the LNT encoding and the verification procedure.

1 Introduction

Multi-agent systems are composed of standalone computational units, the agents,
that interact with each other and with an external environment. Computation
within each agent may be a composition of multiple interleaving processes. The
agents may also interleave their executions and interact with each other, possi-
bly through asynchronous interaction patterns. As a consequence, multi-agent
systems typically feature extremely large state spaces, which makes them hard
to design and reason about.

Therefore, there is a need for languages that allow to specify these systems
in a concise and intuitive fashion, as well as tools that can certify or increase
confidence in the correctness of such specifications. This need is felt far beyond
the multi-agent community, as agent-based models are gaining popularity in
economics [13,29], social sciences [3,4], and many other research fields. However,
the development of tools for such new languages may be a daunting task, as it

Work partially funded by MIUR project PRIN 2017FTXR7S IT MATTERS (Methods
and Tools for Trustworthy Smart Systems).

c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
S. Bliudze and L. Bocchi (Eds.): COORDINATION 2020, LNCS 12134, pp. 370–385, 2020.
https://doi.org/10.1007/978-3-030-50029-0_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50029-0_23&domain=pdf
http://orcid.org/0000-0003-1922-3151
https://doi.org/10.1007/978-3-030-50029-0_23

Combining SLiVER with CADP to Analyze Multi-agent Systems 371

must keep pace with both the evolution of the language and the state of the art
in formal analysis of systems.

An alternative solution is to encode a system specification into an existing
language, and reuse mature tools for that language to analyze the encoded sys-
tem. An example of this approach is given by SLiVER, a prototype tool for the
automated verification of multi-agent systems that are described in the simple
specification language LAbS [10].1 The tool is highly modular: it exploits the for-
mal semantics of LAbS to encode the input system into an emulation program
in a given language, through a structural translation procedure, and verifies the
emulation program with off-the-shelf tools for that language to reach a verdict
on the correctness of the input system. Previously [10], SLiVER only generated
sequential C programs and verified them through bounded model checking [5],
by using tools such as 2LS [8], CBMC [9], and ESBMC [14] as back ends.

In this paper, instead, we present a new analysis workflow based on process-
algebraic tools. Namely, we choose the process calculus LNT [17] as the target
language, and CADP [16] as the back end analysis tool.2 The workflow is imple-
mented as a SLiVER module and can verify both invariance properties (i.e., all
reachable states satisfy a given formula) and inevitable reachability ones (i.e.,
all executions lead to a state where the given formula is satisfied), over the full
state space of the input system. Furthermore, we can use the same workflow to
simulate the evolution of the system and return a set of execution traces. This is
the first SLiVER module that supports simulation. These two approaches may
complement each other: even though simulation can rarely lead to strong con-
clusions about the correctness of a system [31], it is a valuable design aid and
can provide quick feedback even on very large systems.

The rest of the paper is organized as follows. Section 2 briefly describes the
specification language LAbS supported by SLiVER through an example, and
contains an overview of LNT and CADP. Section 3 introduces the analysis work-
flow and its implementation as a SLiVER module, and provides usage examples.
In Sect. 4 we describe in further detail how the tool generates emulation pro-
grams, and in Sect. 5 we explain how it performs property verification through
model checking of such programs. Finally, we discuss related work in Sect. 6 and
provide concluding remarks in Sect. 7.

2 Background

System Specifications. LAbS [10] is a domain-specific language to describe the
behavior of agents in a multi-agent system. A behavior is made of basic actions,
which tell the agent to assign a value to a variable. There are three kinds of
assignments: to an internal variable, denoted by x ← E (where x is a variable
identifier and E a value expression); to a shared variable, denoted by x ���
E; and to a stigmergic variable, denoted by x �E. Stigmergic variables are a
distinguishing feature of LAbS. Their value is bound to a timestamp and stored
1 A Linux release of SLiVER is available at https://git.io/sliver-tool.
2 CADP is available at http://cadp.inria.fr.

https://git.io/sliver-tool
http://cadp.inria.fr

372 L. Di Stefano et al.

on a decentralized data structure, allowing agents to share their knowledge with
the rest of the system by exchanging asynchronous messages [26]. In brief, agents
send propagation messages after updating a stigmergic variable. A propagation
message contains the name of this variable, its new value, and its associated
timestamp. An agent that receives a message checks whether its timestamp is
newer than the local one for the same variable. If this is the case, the local value
and timestamp are overwritten by the received ones; furthermore, the receiver
will in turn propagate this new value to others. Otherwise, the message is simply
discarded. Agents also send confirmation messages after reading the value of a
stigmergic variable (i.e., by using it as part of a value expression). The contents
of a confirmation message are the same as those of a propagation message.
However, a receiver of a confirmation message that stores a value with a higher
timestamp will react by propagating its own value. This mechanism facilitates
the spread of up-to-date values through the system.

A single action may specify multiple assignments to variables of the same
kind: for instance, an assignment to multiple internal variables is denoted by
x1, . . . , xn ← E1, . . . , En. Multiple assignments to variables of different kinds
(e.g., an internal one and a shared one) are not allowed. Actions may be com-
posed with traditional process-algebraic operators: sequential composition (;),
nondeterministic choice (+), interleaving (|), and calls to other behaviors (pos-
sibly including recursive calls). Furthermore, a behavior B may be guarded by
a condition g (denoted as g → B), meaning that the agent may start behaving
as B only if g holds.

SLiVER takes as input a system specification in a machine-readable version
of LAbS, which is extended with constructs to specify the property of interest
and the initial state of the system through (possibly nondeterministic) variable
initialization expressions. Furthermore, the input format allows to parameterize
systems in one or more external variables.

Figure 1a shows an example specification describing the well-known dining
philosophers scenario. The system is parameterized in the number n of agents
(line 2), and features an array forks, which is shared by all the agents and whose
elements are all initialized to 0 (line 3: the set of shared variables within a system
is called its environment). Each element of the array models a fork: a value 0
means that the fork is available, while a value 1 means that it is currently held by
one of the agents. The (recursive) behavior of the agents is specified at lines 10–
21. Each agent repeatedly tries to acquire two forks, by checking and updating
the elements id and (id+1)% n of the array forks. The special variable id has a
different value for each agent, and % denotes the modulo operator. After acquiring
both forks, the agent releases them and starts over. Each agent maintains an
internal variable status, initially set to 0, which describes its current situation
(line 8: the set of internal variables of an agent is called its interface). When
status is set to either 0, 1, or 2, it denotes the number of forks currently held
by the agent. When status is set to 3, it means that the agent has just released
one fork and is going to release the other one during its next action. Lastly,

Combining SLiVER with CADP to Analyze Multi-agent Systems 373

Fig. 1. Two example systems in LAbS.

invariant NoDeadlock (lines 25–27) states that the system should never reach a
state where all agents are waiting for the second fork.

Figure 1b contains a simple leader election system, which we will use to illus-
trate stigmergic variables. Lines 6–9 define a stigmergy Election containing a
single variable leader. The link predicate is, in general, a Boolean expression
over the state of two agents: an agent may only send a stigmergic message to
another one if they satisfy this predicate. In this case, the predicate is simply
true, so any two agents may communicate at any time. The stigmergic vari-
able leader is initially set to the value of external parameter n. The definition
of Node agents states that they can access the Election stigmergy (line 12).
Their behavior (lines 13–16) simply tells them to repeatedly update the variable
leader to their own id as long as it contains a greater value. Finally, property
LeaderIs0 (lines 20–22) specifies that the system should eventually reach a state
where all Node agents agree on a value of 0 for variable leader.

Supported Properties. SLiVER currently supports invariants and inevitable
reachability properties. A property is expressed by a modality keyword (always
for invariants, eventually for inevitability properties), followed by a predicate
over the state of agents. The predicate may contain existential (exists) or uni-
versal (forall) quantifiers. Alternation of existential and universal quantifiers
in the same property is not supported yet.

374 L. Di Stefano et al.

LNT and CADP. LNT is a formally defined language for the description of asyn-
chronous concurrent systems [17]. A system is modeled as a process, generally
composed of several, possibly concurrent processes, which may perform commu-
nication actions on gates and exchange information by multiway (value-passing)
rendezvous, in the style of the Theoretical CSP [19] and LOTOS [20] process
algebras. The syntax of LNT is inspired from both imperative languages (assign-
ments, sequential composition, loops) and functional languages (pattern match-
ing, recursion), with many static checks, such as binding, typing, and dataflow
analysis ensuring the proper definition of variables and function results.

CADP [16] is a software toolbox for the analysis of asynchronous concur-
rent systems, in particular systems described in LNT. It contains a wide range
of tools for simulation, test generation, verification (model checking and equiv-
alence checking), performance evaluation, etc. We briefly describe two CADP
tools named Evaluator and Executor. Evaluator is a model checker that can
evaluate properties expressed in the language MCL [25], a temporal logic based
on the modal μ-calculus [21] extended with regular action formulas and value-
passing constructs.3 Executor, on the other hand, performs a bounded random
exploration of the state space of a given program. Starting from the initial state,
it repeatedly enumerates and then randomly chooses one of the transitions going
out of the current state, until it has generated a sequence of the requested length.
Explorations can be made reproducible by manually providing a seed for the
internal pseudo-random number generator.4

3 Overview of SLiVER

Workflow. The analysis workflow is shown in Fig. 2. First, a front end parses
the input file and substitutes external parameters with the values provided in
the command line, to obtain a system specification S and a property of interest
ϕ. After that, we perform a two-step encoding procedure. The first step is inde-
pendent of the target language and builds a structural symbolic representation
T of the behaviors of the agents within S. This representation is used in the
second step to encode S and ϕ into an LNT program P. At this point, a wrapper
invokes a specific program from the CADP toolbox, depending on the analysis
task requested by the user. In verification mode, the tool invokes Evaluator to
model-check P. If a counterexample is found, a translation module converts it
to a LAbS-like syntax and shows it to the user; otherwise, the user is notified
that ϕ holds in S. In simulation mode, instead, we call Executor to obtain one or
more random traces of P. Each trace is then translated and shown to the user.
Simulation traces will also display a message whenever an invariant is violated
or an eventually property is satisfied.

3 See http://cadp.inria.fr/man/evaluator.html and http://cadp.inria.fr/man/mcl.
html.

4 See http://cadp.inria.fr/man/executor.html.

http://cadp.inria.fr/man/evaluator.html
http://cadp.inria.fr/man/mcl.html
http://cadp.inria.fr/man/mcl.html
http://cadp.inria.fr/man/executor.html

Combining SLiVER with CADP to Analyze Multi-agent Systems 375

Fig. 2. Workflow of SLiVER with the CADP back end.

Implementation Details and Availability. The front end and encoder are imple-
mented in about 2500 lines of F#, and rely on LNT templates amounting to 450
additional lines. The rest of SLiVER consists of roughly 1000 lines of Python. All
Python source code for SLiVER, along with licensing information, is available
at https://git.io/sliver-tool. A demonstration video is available at https://drive.
google.com/file/d/12kvZXbUiVHRZiXINvOm81D941CYaTeBL.

Usage. This command invokes SLiVER with CADP as the analysis back end:

sliver.py <specfile> [params] --backend cadp --fair
[--simulate <n> --steps <s>]

where specfile is the name of the input specification file. If the input system is
parameterized, the user must provide a sequence params in the form param=val
to assign a value to each parameter. Argument --backend cadp is needed to
force SLiVER to use the CADP analysis module. As an example, if we invoke
SLiVER on the system of Fig. 1a with the command

sliver.py philosophers.labs n=5 --backend cadp

we obtain the counterexample of Fig. 3a, disproving property NoDeadlock.
By default, the tool assumes that there are no constraints on the interleaving

of agents. However, in some cases it might be convenient to restrict the analysis
to traces where interleaving is restricted according to some policy. Currently,
SLiVER allows to enforce round-robin execution of agents through the optional
--fair flag.

If the optional arguments --simulate <n> --steps <s> are omitted, the
tool attempts to verify the input property on the given system. Otherwise, it
returns n execution traces, each one containing at most s transitions. As an
example, Fig. 3b contains part of a simulation trace for the leader election sys-
tem of Fig. 1b, with three agents5. This trace shows the asynchronous nature
of stigmergic messages. Notice that all stigmergic assignments within the trace
show both the value and its attached timestamp. In the first steps, nodes 0
and 2 update leader to their respective ids. Then, node 0 sends a confirmation
message for leader. It does so because it had to compute the guard leader >

5 The full command used to obtain this trace is sliver.py leader.labs n=3

--backend cadp --simulate 1 --steps 100.

https://git.io/sliver-tool
https://drive.google.com/file/d/12kvZXbUiVHRZiXINvOm81D941CYaTeBL
https://drive.google.com/file/d/12kvZXbUiVHRZiXINvOm81D941CYaTeBL

376 L. Di Stefano et al.

Fig. 3. Example of SLiVER outputs.

id. Node 1 picks up the message and updates its value of leader accordingly
(lines 8–10). On the other hand, node 2 ignores the message, since its own value
of leader has a higher timestamp. After a sequence of messaging rounds, dur-
ing which node 0 sets leader to 2 (line 16), the same node updates yet again
leader to 0 (line 21). Then, a propagation messages from node 0 forces the
other nodes to accept that value for leader, and property LeaderIs0 becomes
satisfied (line 26).

The tool supports other flags, not shown above. If an invocation is enriched
with --verbose, SLiVER will print the full output from the back end. The
--debug flag enables the output of additional messages for diagnostic purposes.
Finally, the --show flag forces SLiVER to print the emulation program and quit
without performing any analysis.

4 Program Generation

In this section we describe how we encode a LAbS system S and a property ϕ
into an LNT emulation program P by using the intermediate representation T.

Combining SLiVER with CADP to Analyze Multi-agent Systems 377

We illustrate our description with simplified excerpts of LNT code generated
from the tool.6

Intermediate Representation. The intermediate representation of an agent
behavior B contains one record for each basic action within B. Each record
is decorated with an entry condition and an exit condition. An entry condition
is a predicate over a set of symbolic variables, which we call the program counter
of the agent. Intuitively, the program counter tracks the actions which the agent
can perform at any given time. An exit condition, on the other hand, is a (pos-
sibly nondeterministic) assignment to the program counter. Exit conditions are
constructed so as to preserve the control-flow of B. We use multiple variables
for the program counter to compactly represent parallel compositions of LAbS
processes within a single behavior.

Program Stub. Once the intermediate representation T is obtained, the genera-
tion of the emulation program P starts from a stub, containing a type definition
Sys that encodes the full state of S. A system is composed of a collection of
agents, an environment env, and a global clock time (Listing 1, lines 1–3).
The latter is needed to model the semantics of stigmergic variables. Throughout
Listing 1, the with "get", "set" construct implements standard functions for
accessing and updating elements (for array types) or fields (for record types).
The LNT type Agent models a LAbS agent: each agent has an identifier id, a
program counter pc, two stores I and L respectively used for local and stigmer-
gic variables, two stores Zprop and Zconf to keep track of pending propagation
and confirmation messages, and an init field that tracks whether the agent has
been initialized (lines 4–8). Agents, Env, PC, Iface, Lstig, and Pending are all
implemented as arrays (lines 10–12).

Their sizes are determined by SLiVER through static analysis of the input
specifications. #spawn is the total number of agents within the system, as spec-
ified in the spawn section (e.g., at line 4 in Fig. 1a). #I, #L, and #E respec-
tively denote the number of internal, stigmergic, and shared variables within the
behavioral specifications. #P is the number of program counter variables, which
is computed during the construction of T. Finally, type ID is a natural number
strictly less than the number of agents in the system (line 16). The stub also con-
tains LNT functions and processes that implement the semantics of LAbS, and
thus never change (see Sect. 4.1 for an example of such a process). Notice that
SLiVER is able to alter this stub according to the features of S. For instance,
if the system does not feature any stigmergic variables, the emulation program
will not contain Lstig, Pending, nor the functions that implement stigmergic
messaging, and the Sys type will not have a time field.

6 The full LNT programs for the dining philosophers system (with n = 5) and the
leader election one (with n = 3) can be found at https://git.io/philosophers-lnt and
https://git.io/leader-lnt, respectively.

https://git.io/philosophers-lnt
https://git.io/leader-lnt

378 L. Di Stefano et al.

Listing 1: Type definitions.

Emulation Functions. We populate the stub by encoding each record within
T as a separate LNT process. We call these processes emulation functions. An
emulation function for a given record alters the state of the system according
to the semantic rule of its action, and then updates the program counter of the
selected agent according to its exit condition. For instance, Listing 2 emulates
action

fork[id] = 0 -> fork[id] <-- 1

from the dining philosophers example (lines 11–12 of Fig. 1a). The guard is
encoded by the only if ... then ... end if construct, while the assignment
to fork[id] is represented by the update of the corresponding element of array
E (lines 20–21). We refer the reader to Sect. 4.2 for additional examples of emu-
lation functions.

The main section of the program (Listing 3) implements a scheduler, that
repeatedly selects an agent and calls an emulation function. Agent selection
happens by assigning a value to a variable id. If the tool is invoked with the
--fair flag, the variable is simply incremented modulo the number of agents;
otherwise, a nondeterministic assignment is performed (lines 34–37). Listing 4
shows the LNT process implementing an iteration of the scheduler. Notice that
an emulation function may only be called if the program counter of the selected
agent satisfies its corresponding entry condition (see e.g. lines 48–50). This pre-
vents spurious executions. At each iteration, instead of calling an emulation func-
tion, the scheduler may call one of several system functions implementing other
semantic rules of the language, e.g., communication between agents (line 39).

Combining SLiVER with CADP to Analyze Multi-agent Systems 379

Listing 2: An emulation function. Listing 3: Main section of P.

Property Instrumentation. The generated program is then instrumented for the
verification of ϕ. First, we obtain a propositional formula ϕ′ from ϕ by quantifier
elimination. Then, we add a monitor process to P, which is executed before each
iteration of the scheduler (Line 23 of Listing 3). A stub of the monitor process
is shown in Listing 5. If ϕ is an invariant and ϕ′ is violated, the monitor emits
a false value over a gate m (line 63). On the other hand, if ϕ is an inevitable
reachability property and ϕ′ holds, a true value will be emitted over m (line 68).
In any case, when the monitor emits a value, it also terminates P by means of a
stop instruction, since there is no need to further explore the evolution of P. This
instruction is only added to the program when in verification mode: in simulation
mode, the program will keep running until it reaches either a deadlocked state
or the user-provided bound.

Listing 4: A scheduler iteration. Listing 5: Property encoding.

Size of Emulation Programs. The behavior of multiple identical agents is only
encoded once, by parameterizing all emulation functions in the id of the agent.
Therefore, the number of lines of code in P scales well with the number of agents
in the input system. To show that, we consider the systems of Fig. 1a–1b, as
well as the boids and majority systems introduced in [10]. For each one, we
build a 10-agent and a 100-agent emulation program, and compare their sizes.
Table 1 shows the size of the input specification and of the two programs. Dining
philosophers is the only system where the size of P increases, roughly by a factor

380 L. Di Stefano et al.

of 1.5. This is due to initialization code for array forks, whose length depends on
the number of agents. The other systems have a fixed-size state, and thus their
encodings have the same size, regardless of the number of agents. The growth
of the dining philosophers program may be avoided by improving the LNT code
generator, e.g., by initializing LAbS arrays within a loop. We plan to implement
improvements of this kind in a future release of SLiVER.

Table 1. Size of LNT emulation programs with respect to the number n of agents.

Input system LNT size

Name Size n = 10 n = 100

Boids 55 530 530

Dining philosophers 28 332 512

Leader election 26 344 344

Majority 57 584 584

Listing 6: Propagation of stigmergic variables in LNT.

4.1 Example: A System Function

Listing 6 contains an LNT process that implements LAbS propagation messages.
This process may be called at each iteration of the scheduler of the emulation
program (line 39 of Listing 3). A similar function, not shown here, implements
confirmation messages.

Combining SLiVER with CADP to Analyze Multi-agent Systems 381

The process first selects an agent with at least one pending message, i.e.,
with a non-empty Zprop field. The selection happens via a nondeterministic
assignment of an agent identifier to a variable senderId (line 4). Once a suitable
sender is found, an element of Zprop is nondeterministically selected and stored
in the key variable (line 6). This value is the index of the stigmergic variable that
will be propagated. The process then finds all potential receivers of the message:
sender and receiver must be different agents, and they have to satisfy the link
predicate for the stigmergic variable that is being sent (line 9).

If an agent satisfies all the above requirements, it can receive the message.
Furthermore, if its own timestamp for key is less than the one of the sender
(line 10), it will update its value and timestamp for key with the ones from
the message (otherwise, it will just discard it). Notice that multiple stigmergic
variables may actually be updated (lines 12–14). This is because LAbS allows the
user to put multiple stigmergic variables together in a tuple, and its semantics
guarantee that variables within a tuple are always propagated together [10].
The loop in the LNT process enforces these guarantees. In lines 15–17, the state
of the receiver is updated, and key is added to its set of pending propagation
messages. Additionally, key is removed from its pending confirmation messages:
intuitively, the agent needs no further confirmation for that variable, since it has
just received a newer value. Finally, the value key is removed from the pending
propagation messages of the sender (line 20).

4.2 Example: Emulation Functions

Listing 7 contains all LNT emulation functions for the dining philosophers exam-
ple. The name of each emulation function is constructed from its entry condition.
For instance, function action 0 2 has entry condition pc[0] == 2. A comment
within each process reports its corresponding LAbS action. Updates to local and
shared variables are implemented through the attr and env processes, respec-
tively. Notice how the assignments to the program counter at the end of each
function preserve the control flow of the input specification.

5 Property Verification

In this section we explain how we determine whether a system S satisfies a
property ϕ by model-checking the emulation program generated from (S, ϕ).
We use the Evaluator tool to verify the values emitted by the monitor process
(Listing 5). If ϕ is an invariant, we check that the program never emits a false
value over m. This property is encoded as the MCL query

[true * . "M !FALSE"]false

382 L. Di Stefano et al.

Listing 7: Emulation functions for the dining philosopherssystem.
When ϕ is an inevitability property, instead, we check that all fair execu-

tions [27] of P emit a value of true over m at some point. To do that, we use the
following MCL query:

[(not ("M !TRUE"))*]<true * . "M !TRUE">true

To trust that the outcome of the model checker is also a verdict on the original
problem (namely, whether ϕ holds in S), we need to prove that intermediate
representation T preserves all traces of each behavior in the system, and also that
the emulation program P correctly interleaves these traces with calls to system
functions, without introducing spurious executions. We cannot include a detailed
proof for reasons of space, but this procedure adapts a previous structure-aware
encoding [11] (which was tied to explicit-state model checking) to the semantics
of LAbS, and makes it independent of the verification technique. Thus, our
argument for correctness closely follows the one for that encoding.

Combining SLiVER with CADP to Analyze Multi-agent Systems 383

6 Related Work

There are several specialized tools for the formal analysis of multi-agent sys-
tems. MCMAS [24] verifies multi-agent systems of unbounded size with syn-
chronous communication. Its language lacks value-passing actions, so it is not
clear whether their technique could be applied to LAbS. AJPF [7] can perform
explicit-state model-checking on a variety of agent-oriented languages. Differ-
ently from AJPF, SLiVER is modular with respect to the analysis back end,
and may support explicit-state techniques as well as symbolic ones, such as
SAT-based bounded model checking [10]. Peregrine [6] can verify and simulate
population protocols, i.e. collections of identical mobile agents [2]. It can check
that a population of unbounded size inevitably ends up satisfying a given pred-
icate over its initial state. SLiVER cannot reason over unbounded-size systems,
but it allows for the verification of invariants in addition to inevitable reachabil-
ity properties.

The concept of verifying domain-specific languages by means of a structural
translation into more amenable formalisms is not new. For instance, in [18]
hardware specifications are translated into LOTOS and verified with CADP,
while [11] shows a translation from an attribute-based process algebra [1] to
UMC [30].

7 Conclusion

We have presented an automated analysis workflow for multi-agent systems
based on CADP and implemented as part of the SLiVER tool. Through an LNT
encoding, the workflow allows to formally verify the input system via model
checking, as well as generate random execution traces. The end user does not
need to be familiar with either LNT or CADP: knowledge of the input language
LAbS is the only requirement.

Future work may improve the presented workflow at several levels. We cur-
rently represent the whole system as a sequential LNT program: one might
instead represent agents as parallel processes and apply compositional verifica-
tion [15,22,23] to improve model checking performance. We could verify much
more expressive properties than the current ones, by devising a translation into
MCL queries with data variables [25] to be passed to the model checker. This
would require an extension of the property language currently understood by
the tool, as well as a correct encoding of this (state-based) language into MCL,
which is action-based [12]. Finally, we could use the new trace generation capabil-
ity to implement simulation-based analysis techniques, such as statistical model
checking [28].

References

1. Abd Alrahman, Y., De Nicola, R., Loreti, M.: A calculus for collective-adaptive
systems and its behavioural theory. Inf. Comput. 268 (2019). https://doi.org/10.
1016/j.ic.2019.104457

https://doi.org/10.1016/j.ic.2019.104457
https://doi.org/10.1016/j.ic.2019.104457

384 L. Di Stefano et al.

2. Aspnes, J., Ruppert, E.: An introduction to population protocols. In: Garbinato,
B., Miranda, H., Rodrigues, L. (eds.) Middleware for Network Eccentric and Mobile
Applications, pp. 97–120. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-540-89707-1 5

3. Axtell, R.L., et al.: Population growth and collapse in a multiagent model of the
Kayenta Anasazi in Long House Valley. Proc. Natl. Acad. Sci. 99(suppl 3), 7275–
7279 (2002). https://doi.org/10.1073/pnas.092080799

4. Baeza, A., Janssen, M.A.: Modeling the decline of labor-sharing in the semi-desert
region of Chile. Reg. Environ. Change 18(4), 1161–1172 (2017). https://doi.org/
10.1007/s10113-017-1243-0

5. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, W.R. (ed.) 5th International Conference on Tools and Algo-
rithms for Construction and Analysis of Systems (TACAS). LNCS, vol. 1579, pp.
193–207. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49059-0 14

6. Blondin, M., Esparza, J., Jaax, S.: Peregrine: a tool for the analysis of popula-
tion protocols. In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol.
10981, pp. 604–611. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96145-3 34

7. Bordini, R.H., Dennis, L.A., Farwer, B., Fisher, M.: Automated verification of
multi-agent programs. In: 23rd International Conference on Automated Software
Engineering (ASE), pp. 69–78. IEEE (2008). https://doi.org/10.1109/ASE.2008.
17

8. Chen, H.Y., David, C., Kroening, D., Schrammel, P., Wachter, B.: Synthesising
interprocedural bit-precise termination proofs. In: 30th International Conference
on Automated Software Engineering (ASE), pp. 53–64. IEEE (2015). https://doi.
org/10.1109/ASE.2015.10

9. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24730-2 15

10. De Nicola, R., Di Stefano, L., Inverso, O.: Multi-agent systems with virtual stig-
mergy. Sci. Comput. Program. 187 (2020). https://doi.org/10.1016/j.scico.2019.
102345

11. De Nicola, R., Duong, T., Inverso, O., Mazzanti, F.: Verifying properties of sys-
tems relying on attribute-based communication. In: Katoen, J.-P., Langerak, R.,
Rensink, A. (eds.) ModelEd, TestEd, TrustEd. LNCS, vol. 10500, pp. 169–190.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68270-9 9

12. De Nicola, R., Vaandrager, F.: Action versus state based logics for transition sys-
tems. In: Guessarian, I. (ed.) LITP 1990. LNCS, vol. 469, pp. 407–419. Springer,
Heidelberg (1990). https://doi.org/10.1007/3-540-53479-2 17

13. Farmer, J.D., Foley, D.: The economy needs agent-based modelling. Nature
460(7256), 685–686 (2009). https://doi.org/10.1038/460685a

14. Gadelha, M.Y.R., Monteiro, F.R., Morse, J., Cordeiro, L.C., Fischer, B., Nicole,
D.A.: ESBMC 5.0: an industrial-strength C model checker. In: 33rd International
Conference on Automated Software Engineering (ASE), pp. 888–891. ACM (2018).
https://doi.org/10.1145/3238147.3240481

15. Garavel, H., Lang, F., Mateescu, R.: Compositional verification of asynchronous
concurrent systems using CADP. Acta Informatica 52(4–5), 337–392 (2015).
https://doi.org/10.1007/s00236-015-0226-1

16. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: a toolbox for the
construction and analysis of distributed processes. Softw. Tools Technol. Transf.
15(2), 89–107 (2013). https://doi.org/10.1007/s10009-012-0244-z

https://doi.org/10.1007/978-3-540-89707-1_5
https://doi.org/10.1007/978-3-540-89707-1_5
https://doi.org/10.1073/pnas.092080799
https://doi.org/10.1007/s10113-017-1243-0
https://doi.org/10.1007/s10113-017-1243-0
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/978-3-319-96145-3_34
https://doi.org/10.1007/978-3-319-96145-3_34
https://doi.org/10.1109/ASE.2008.17
https://doi.org/10.1109/ASE.2008.17
https://doi.org/10.1109/ASE.2015.10
https://doi.org/10.1109/ASE.2015.10
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1016/j.scico.2019.102345
https://doi.org/10.1016/j.scico.2019.102345
https://doi.org/10.1007/978-3-319-68270-9_9
https://doi.org/10.1007/3-540-53479-2_17
https://doi.org/10.1038/460685a
https://doi.org/10.1145/3238147.3240481
https://doi.org/10.1007/s00236-015-0226-1
https://doi.org/10.1007/s10009-012-0244-z

Combining SLiVER with CADP to Analyze Multi-agent Systems 385

17. Garavel, H., Lang, F., Serwe, W.: From LOTOS to LNT. In: Katoen, J.-P.,
Langerak, R., Rensink, A. (eds.) ModelEd, TestEd, TrustEd. LNCS, vol. 10500,
pp. 3–26. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68270-9 1

18. Garavel, H., Salaün, G., Serwe, W.: On the semantics of communicating hardware
processes and their translation into LOTOS for the verification of asynchronous
circuits with CADP. Sci. Comput. Program. 74(3), 100–127 (2009). https://doi.
org/10.1016/j.scico.2008.09.011

19. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Upper Saddle
River (1985)

20. ISO/IEC: LOTOS – A formal description technique based on the temporal ordering
of observational behaviour. International Standard 8807 (1989)

21. Kozen, D.: Results on the propositional µ-Calculus. Theoret. Comput. Sci. 27,
333–354 (1983). https://doi.org/10.1016/0304-3975(82)90125-6

22. Lang, F., Mateescu, R., Mazzanti, F.: Compositional verification of concurrent
systems by combining bisimulations. In: ter Beek, M.H., McIver, A., Oliveira, J.N.
(eds.) FM 2019. LNCS, vol. 11800, pp. 196–213. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-30942-8 13

23. Lang, F., Mateescu, R., Mazzanti, F.: Sharp congruences adequate with temporal
logics combining weak and strong modalities. TACAS 2020. LNCS, vol. 12079, pp.
57–76. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45237-7 4

24. Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: an open-source model checker for
the verification of multi-agent systems. Int. J. Softw. Tools Technol. Transf. 19(1),
9–30 (2015). https://doi.org/10.1007/s10009-015-0378-x

25. Mateescu, R., Thivolle, D.: A model checking language for concurrent value-
passing systems. In: Cuellar, J., Maibaum, T., Sere, K. (eds.) FM 2008. LNCS,
vol. 5014, pp. 148–164. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-68237-0 12

26. Pinciroli, C., Lee-Brown, A., Beltrame, G.: A tuple space for data sharing in robot
swarms. In: 9th International Conference on Bio-inspired Information and Com-
munications Technologies (BICT), pp. 287–294. ICST/ACM (2015). https://doi.
org/10.4108/eai.3-12-2015.2262503

27. Queille, J.P., Sifakis, J.: Fairness and related properties in transition systems - a
temporal logic to deal with fairness. Acta Informatica 19, 195–220 (1983). https://
doi.org/10.1007/BF00265555

28. Sen, K., Viswanathan, M., Agha, G.: Statistical model checking of black-box prob-
abilistic systems. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp.
202–215. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27813-
9 16

29. Stiglitz, J.E., Gallegati, M.: Heterogeneous interacting agent models for under-
standing monetary economies. Eastern Econ. J. 37(1), 6–12 (2011). https://doi.
org/10.1057/eej.2010.33

30. ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: A state/event-based model-
checking approach for the analysis of abstract system properties. Sci. Comput.
Program. 76(2), 119–135 (2011). https://doi.org/10.1016/j.scico.2010.07.002

31. Winikoff, M.: Assurance of agent systems: what role should formal verification
play? In: Dastani, M., Hindriks, K., Meyer, J.J. (eds.) Specification and Verification
of Multi-Agent Systems, pp. 353–383. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-1-4419-6984-2 12

https://doi.org/10.1007/978-3-319-68270-9_1
https://doi.org/10.1016/j.scico.2008.09.011
https://doi.org/10.1016/j.scico.2008.09.011
https://doi.org/10.1016/0304-3975(82)90125-6
https://doi.org/10.1007/978-3-030-30942-8_13
https://doi.org/10.1007/978-3-030-30942-8_13
https://doi.org/10.1007/978-3-030-45237-7_4
https://doi.org/10.1007/s10009-015-0378-x
https://doi.org/10.1007/978-3-540-68237-0_12
https://doi.org/10.1007/978-3-540-68237-0_12
https://doi.org/10.4108/eai.3-12-2015.2262503
https://doi.org/10.4108/eai.3-12-2015.2262503
https://doi.org/10.1007/BF00265555
https://doi.org/10.1007/BF00265555
https://doi.org/10.1007/978-3-540-27813-9_16
https://doi.org/10.1007/978-3-540-27813-9_16
https://doi.org/10.1057/eej.2010.33
https://doi.org/10.1057/eej.2010.33
https://doi.org/10.1016/j.scico.2010.07.002
https://doi.org/10.1007/978-1-4419-6984-2_12
https://doi.org/10.1007/978-1-4419-6984-2_12

Formal Modeling and Analysis of Medical
Systems

Mahsa Zarneshan1, Fatemeh Ghassemi1(B), and Marjan Sirjani2

1 School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
{m.zarneshan,fghassemi}@ut.ac.ir

2 School of Innovation, Design and Engineering,
Mälardalen University, Väster̊as, Sweden

marjan.sirjani@mdh.se

Abstract. Medical systems are composed of medical devices and apps
which are developed independently by different vendors. A set of commu-
nication patterns, based on asynchronous message-passing, has been pro-
posed to loosely integrate medical devices and apps. These patterns guar-
antee the point-to-point quality of communication service (QoS) by local
inspection of messages at its constituent components. These local mech-
anisms inspect the property of messages to enforce a set of parametrized
local QoS properties. Adjusting these parameters to achieve the required
point-to-point QoS is non-trivial and depends on the involved compo-
nents and the underlying network. We use Timed Rebeca, an actor-based
formal modeling language, to model such systems and asses their QoS
properties by model checking. We model the components of communica-
tion patterns as distinct actors. A composite medical system using several
instances of patterns is subject to state-space explosion. We propose a
reduction technique preserving QoS properties. We prove that our tech-
nique is sound and show the applicability of our approach in reducing
the state space by modeling a clinical scenario made of several instances
of patterns.

Keywords: Communication patterns · Actor · Message passing ·
Reduction

1 Introduction

Medical systems are composed of medical devices and apps which are developed
independently by different vendors. The ASTM F2761 standard [4] proposes an
architecture for integrated clinical environments (ICE) that enable a component-
based approach to medical systems. The AAMI-UL JC 2800 standards completes
F2671 by defining safety/security requirements for both the ICE architecture
and its development process. A set of communication requirements that enables
dynamic composition of devices and apps has been identified [16]. As a solution,
a set of communication patterns has been proposed in [9] that can serve as the
c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
S. Bliudze and L. Bocchi (Eds.): COORDINATION 2020, LNCS 12134, pp. 386–402, 2020.
https://doi.org/10.1007/978-3-030-50029-0_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50029-0_24&domain=pdf
https://doi.org/10.1007/978-3-030-50029-0_24

Formal Modeling and Analysis of Medical Systems 387

schema to describe the communication needs of devices/apps. These communi-
cation patterns, based on asynchronous message-passing, facilitate development
and forensic analysis of clinical scenarios. The use of message passing as the basic
communication model is quite common in Internet of Things applications. While
the individual components can be very different and operate independently, their
interactions typically expose and deliver important emergent properties [2].

These communication patterns consist of a set of components which are
responsible to check a set of quality of service (QoS) properties locally. The
combination of these quality of service properties should guarantee point-to-
point communication requirements. These local QoS properties are parametrized
by a set of thresholds on timing behavior of messages like the interval time
between consequent messages, the lifetime of messages, etc. A medical system
may use several instances of such patterns among its constituent devices and
apps. Adjusting these parameters is non-trivial and depends not only to the
architecture of the system but also the underlying network. Communication fail-
ures in medical systems may result in loss of life. For example, the X-ray machine
should stop after two seconds, otherwise it causes harmful prolonged exposure.
We can exploit formal methods to verify that the configuration of parameters
results the point-to-point communication requirements of medical systems at
design time. We use the actor-based formal modeling language of Rebeca [11,15]
to verify medical systems. Actor model is a computational model for event-based
distributed systems in which actors communicate by asynchronous message-
passing. The computation model of Rebeca helps to model the communication
patterns with minimal effort and mistake. We exploit the timed extension of
Rebeca to address local QoS properties defined in terms of the timing behavior
of messages. Timed Rebeca [10,13] is supported by the Afra tool which efficiently
verifies timed properties by model checking. Timed Rebeca supports inheritance
among actors which facilitates modeling of communication patterns that their
components communicate with the shared network entity.

In this paper we model and analyze communication patterns in Timed Rebeca
using the implementation architecture proposed for the communication patterns
[9]. The components of patterns are modeled by distinct actors. Since the tim-
ing behavior network have effect on satisfying QoS properties of pattern, we
also model network as a separate entity from actors. As the number of devices
increases in a medical systems, the resulting semantic model may explode which
prohibits application of the model checking technique. To tackle the problem,
we propose a partial reduction technique for merging states such that the QoS
properties of communication patterns are preserved. We prove the correctness
of our reduction. We have implemented the reduction technique in a tool in
Java which automatically reduces the semantic model generated by Afra. We
illustrate the applicability of our reduction technique through a case study on a
clinical scenario made of several instances of patterns. Our experimental result
shows that our reduction technique can minimize the number of states almost
to 30%.

388 M. Zarneshan et al.

2 Preliminaries

As we model communication patterns by Rebeca, first we provide an outline of
patterns and then explain timed Rebeca.

2.1 Communication Patterns

Devices and apps involved in a communication pattern are known as components
that communicate with each other via a communication substrate, e.g., network-
ing system calls or a middleware. Each pattern is composed of a set of roles
accomplished by components. We remark that a component may participate in
several patterns with different roles simultaneously. Patterns are parametrized by
a set of local QoS properties that their violation can lead to a failure. In addition,
each pattern has a point-to-point QoS requirement that should be guaranteed
by communication substrate. There are four communication patterns:

– Publisher-Subscriber: a publisher role broadcasts data about a topic and
every devices/apps that need it can subscribe to data. Publisher does not
wait for any acknowledge or response from subscribers.

– Requester-Responder: a requester role requests data from a specific
responder and waits for data from the responder.

– Sender-Receiver: a sender role sends data to a specific receiver and waits
until either data is accepted or rejected.

– Initiator-Executor: an initiator role requests a specific executor to perform
an action and waits for action completion or its failure.

As the communication patterns of Sender-Receiver and Initiator-Executor pat-
terns resemble the Requester-Responder pattern, we only focus on Publisher-
Subscriber and Requester-Responder patterns in this paper.

2.1.1 Publisher-Subscriber
In this pattern, the component with the publisher role sends a publish message to
those components that have subscribed previously. This pattern is parameterized
with the following local QoS properties:

– MinimumSeparation (Npub): if the interval between two consecutive publish
messages from the publisher is less than Npub, then the second one is dropped
by announcing a fast Publication failure.

– MaximumLatency (Lpub): if the communication substrate fails to accept
publish message within Lpub time units, it informs the publisher of timeout.

– MinimumRemainingLifeTime (Rpub): if the data arrive at the subscriber late,
i.e., after Rpub time units since publication, the subscriber is notified by a stale
data failure.

– MinimumSeparation (Nsub): if the interval between arrival of two consecutive
messages at the subscriber is less than Nsub, then the second one is dropped.

Formal Modeling and Analysis of Medical Systems 389

– MaximumSeparation (Xsub): if the interval between arrival of two consecutive
messages at the subscriber is greater than Xsub then the subscriber is notified
by a slow publication failure.

– MaximumLatency (Lsub): if the subscriber fails to consume a message within
Lsub time units, then it is notified by a slow consumption failure.

– MinimumRemainingLifeTime (Rsub): if the remaining life time of the publish
message is less than Rsub, then the subscriber is notified by a stale data
failure.

Each communication pattern owns a point-to-point QoS Requirement that
should be guaranteed by the communication substrate. In this pattern the
requirement is “the data to be delivered with lifetime of at least Rsub, com-
munication substrate should ensure maximum message delivery latency (Lm)
does not exceed Rpub − Rsub − Lpub ≥ Lm”.

For example assume a pulse oximeter device which publishes pulse rate data
of the patient. A patient monitor application can subscribe to this data to get
the patients pulse rate. In other words, the application communicates with the
device using the Publisher-Subscriber pattern.

2.1.2 Requester-Responder
In this pattern, the component with the role requester, sends a request message
to the component with the role responder. The responder should replies within a
time limit as specified by its local QoS properties. This pattern is parameterized
with the following local QoS properties:

– MinimumSeparation (Nreq): if interval between two consecutive request mes-
sages is less than Nreq, then the second one is dropped with a fast Request
failure.

– MaximumLatency (Lreq): if the response message does not arrive within Lreq

time units, then the request is ended by a timeout failure.
– MinimumRemainingLifeTime (Rreq): if the response message arrives at the

requester with a remaining lifetime less than Rreq, then the requester is noti-
fied by a stale data failure.

– MinimumSeparation (Nres): if the duration between the arrival of two con-
secutive request messages is less than Nres, then the request is dropped while
announcing a excess load failure.

– MaximumLatency (Lres): if the response message is not provided within the
Lres time units, the request is ended by a timeout failure.

– MinimumRemainingLifeTime (Rres): if the request message with the
promised minimum remaining lifetime cannot be responded by the responder,
then request is ended by a data unavailable failure.

The point-to-point QoS Requirement defined for this pattern concerns the
delivery of response with lifetime of at least Rreq. So the communication sub-
strate should ensure that “the sum of maximum latencies to deliver the request
to the responder (Lm) and the resulting response to the requester (L′

m) does not
exceed Lreq + Rreq − Lres − Rreq ≥ Lm + L′

m”.

390 M. Zarneshan et al.

For example assume a patient monitor application that communicates with
a blood pressure (BP) monitor using the Requester-Responder pattern. The
application requests blood pressure measurement from the BP which periodically
measures the blood pressure of the patient.

2.2 Timed Rebeca and Actor Model

Actor model [1,3] is a concurrent model based on computational objects, called
actors, that communicate asynchronously with each other. Actors are encapsu-
lated modules with no shared variables. Each actor has a unique address and
mailbox. Messages sent to an actor are stored in its mailbox. Each actor is defined
through a set of message handlers to specify the actor behavior upon processing
of each message.

Rebeca [11,15] is an actor model language with a Java-like syntax which aims
to bridge the gap between formal verification techniques and the real-world soft-
ware engineering of concurrent and distributed applications. Rebeca is supported
by a robust model checking tool, named Afra1. Timed Rebeca is an extension of
Rebeca for modeling and verification of concurrent and distributed systems with
timing constraints. As all QoS properties in communication patterns are based
on time, we use Timed Rebeca for modeling and formal analysis of patterns by
Afra. Hereafter, we use Rebeca as short for Timed Rebeca in the paper.

The syntax of Timed Rebeca [10,13] is given in Fig. 1. Each Rebeca model
contains reactive classes definition and main part. Main part contains instances
of reactive classes. These instances are actors that are called rebecs. Reactive
classes have three parts: known rebecs, state variables and message servers. Each
rebec can communicate with its known rebecs or itself. Local state of a rebec is
indicated by its state variables and received messages which are in the rebec’s
mailbox. Rebecs are reactive, there is no explicit receive and the messages trig-
ger the execution of the message servers when they are taken from the mes-
sage mailbox. The timing features are computation time, message delivery time
and message expiration. These three primitives are supported by the statements
delay, after and deadline.

2.3 State-Space of Rebeca Models

The state-space of Rebeca models are generated as a state transition system to
show the behavior in a formal way. The global states change due to the handling
of messages by rebecs. Each rebec takes a message from its mailbox, modeled by
a bag, and execute its message server, and hence, the value of state variables may
update. Due to the encapsulation of rebec variables, intermediate values of each
rebec during execution of message servers are not observable to other rebecs.
Thus, semantics of Rebeca models are defined coarsely; each state transition
shows the effect of handling of a message by a rebec. Floating Time Transition
System (FTTS), a variation of state transition systems introduced in [7], gives a

1 http://www.rebeca-lang.org/alltools/Afra.

http://www.rebeca-lang.org/alltools/Afra

Formal Modeling and Analysis of Medical Systems 391

Model ::= 〈Class〉+ Main

Main ::= main {InstanceDcl∗}
InstanceDcl ::= C r (〈r〉∗) : (〈c〉∗)

Class ::= reactiveclass C {KnownRebecs Vars MsgSrv∗}
KnowRebecs ::= knownrebecs {VarDcl}

Vars ::= statevars {VarDcl}
VarDcl ::= 〈T v〉∗;

MesgSrv ::= msgsrv m (VarDcl) {Stmt∗}
Stmt ::= v = e; | Call; | if(e) MSt [else MSt] | delay(t);
Call ::= r.m(〈e〉∗)[deadline e][after e]

MSt ::= {Stmt∗} | Stmt

Fig. 1. Abstract syntax of Timed Rebeca. Angle brackets 〈 〉 denotes meta parenthesis,
superscripts + and ∗ respectively are used for repetition of one or more and repetition of
zero or more times. Combination of 〈 〉 with repetition is used for comma separated list.
Brackets [] are used for optional syntax. Identifiers C, T , m, v, c, e, and r respectively
denote class, type, method name, variable, constant, expressions, and rebec name,
respectively.

natural event-based semantics for timed actors, providing a significant amount
of reduction in the state space. For efficient analysis of Rebeca models, different
approaches are proposed for generating the semantic models [5,12,14]. FTTS
uses isolation of actors, i.e., no coupling among the actors [14]. The states of
FTTS are defined by the local states of rebecs. The local states of rebecs are
defined by the triple 〈v, q, t〉, where v defines the value of state variables, q the
message bag, and t the local time. In each state, different actors do not necessarily
have the same local time and the time floats across the actors in the state space
[7]. Note that at the level of Timed Rebeca models, actors have synchronized
local clocks (as opposed to the semantic level) which gives the modeler a notion
of global time.

Let ID denote the set of Rebeca identifiers, and S the set of global states.
Each global state s ∈ S is a mapping from the Rebeca identifier to its local
state. Assume Var , Value, and Msg be the set of variables, values, and mes-
sages, respectively. We use the notation bag(Msg) to represent the bag of mes-
sages and N to denote the local time of actors. So, the set of global states is
defined by mapping each rebec identifier to its local state, S = ID → (Var →
Value)×bag(Msg)×N. Each message m ∈ Msg constituted of three parts, namely
m = (msgsig , arrival , deadline), where msgsig is the message content, arrival is
the arrival time of the message, and deadline is the deadline of the message.
We use msgsig(m), arrival(m), and deadline(m) to indicate the corresponding
part. The message content constitutes of the name of message and its parameter
values. We use Type(msgsig(m)) to show the name of the message content. Let

392 M. Zarneshan et al.

statevars(s(x)), bag(s(x)), and now(s(x)) denote the state variable valuation,
message bag, and the local time of the rebec with the identifier x ∈ ID . The
reduction introduced by FTTS merges the states s and s′ that the local time of
their rebecs has a fixed delay with each other, called shift equivalent.

Definition 1 (shift-equivalent). Two states s and s′ are called shift equiva-
lent, denoted by s �δ s′, if for all the rebecs with identifier x ∈ ID there exists δ
such that:

1. Condition on state variables: statevars(s(x)) = statevars(s′(x)),
2. Condition on local time: now(s(x)) = now(s′(x)) + δ,
3. Condition on bag content:

∀m ∈ bag(s(x)) ⇔ (msgsig(m), arrival(m) + δ, deadline(m) + δ) ∈ bag(s′(x)).

Intuitively, the local time of rebecs in s′ has the fixed shift value δ with
respect to the local time of rebecs in s. In other words, it can be considered
s′ as a state occurred in future of s, but with the same behavior. We remark
that the first and third conditions force the state variables of rebecs and the
message contents (including message parameters) of corresponding rebecs in the
two states be equivalent [6].

The bounded floating-time transition systems (BFTTS) 〈Sf , s0f , ↪→〉 of a
rebeca model is achieved by merging those states of its FTTS 〈S, s0,→〉 that are
shift equivalent. Formally speaking, if (s,m, s′) ∈↪→ in BFTTS as a consequence
of processing the message m, then there exists s′′ ∈ S such that (s,m, s′′) ∈→
and s′ �δ s′′ for some δ. BFTTS preserve the timed properties of FTTS speci-
fied by weak modal μ-calculus where the actions are taking messages from the
bag [7].

3 Modeling Patterns in Rebeca

We use the architecture proposed in [9] for implementing communication pat-
terns. We will explain the main components of publisher-subscriber pattern as
the others are almost the same. This architecture specifies two interfaces between
its constituent roles, e.g., publisher and subscriber, and the communication sub-
strate. These interfaces encapsulate details of patterns from low-level details
of various substrate layers. As illustrated in Fig. 2, the client and service are
devices/apps which aim to communicate with each other. The components Pub-
lisherRequester and SubscriberInvoker are interfaces that check the local QoS
properties related to the client or service side, respectively, and the communica-
tion substrate component is responsible for transmitting data.

We model each component of this architecture as a distinct actor or rebec
in Rebeca. We explain the model of the Publisher-Subscriber pattern in detail.
Other patterns are modeled with the same discussion.

Formal Modeling and Analysis of Medical Systems 393

Fig. 2. Publisher-subscriber pattern sequence diagram

Figure 3 illustrates PublisherRequester reactive class, which is an interface
between the client (device/app) and the communication substrate. As we see in
lines 3 and 4, it has two known rebecs. The instances of this reactive class can
send messages to them. We define the state variable lastPub in line 5 for saving
the time of last publication message. We use this time for computing the interval
between two consecutive messages. This rebec has a message server named pub-
lish. We pass Lm and life parameters through all message servers in the model to
compute the delivery time and remaining lifetime of each message. To model the
communication delay between the interface and the communication substrate,
we define the variable clientDelay (in line 11) with non-deterministic values.
The parameters of Lm and life are updated in lines 12 and 13 regarding to
clientDelay. This interface is responsible for checking Npub and Lpub properties
as specified in lines 15–23. To check Npub, the interval between two consecutive
publish messages should be computed by subtracting the current local time of
rebec from lastPub. The reserved word now represents the local time of the rebec.
As this reserved word can not be used directly in expressions, we first assign it
to the local variable time in line 14. If both properties are satisfied, it sends a
transmitPublish message to the communication substrate and an accepted mes-
sage to the client. These messages are delivered to their respective receivers with
a non-deterministic delay, modeled by clientDelay, using the statement after . It
means that the message is delivered to the client after passing this time. In case
that the Npub property is violated, it sends a message fastPublicationFailure to
the client. If the Lpub property is violated, it sends a message timeOutFailure.

Communication substrate abstracts a network like Ethernet, wireless net-
works, Controller Area Network (CAN) bus [8] by specifying the effects of the

394 M. Zarneshan et al.

1 reactiveclass

PublisherRequester (20){

2 knownrebecs{

3 CommunicationSubstrate cs;

4 Client c;}

5 statevars {int lastPub ;}

6
7 PublishRequester (){

8 lastPub = 0;}

9
10 msgsrv publish(int Lm,int

life){

11 int clientDelay =?(1 ,2);

12 Lm=Lm+clientDelay;

13 life=life -clientDelay;

14 int time = now;

15 if(time -lastPub <NPUB){

16 c.fastPublicationFailure ()

;}

17 if(clientDelay >LPUB){

18 c.timeOutFailure ();}

19 else{

20 lastPub = now;

21 cs.transmitPublish(Lm,life)

after(clientDelay);

22 c.accepted () after(

clientDelay);

23 }}}

Fig. 3. Modeling publisher interface in Timed Rebeca

network on transmitting messages. To this aim, it may consider priorities among
received messages to transmit or assign specific or non-deterministic latency for
sending messages. A specification of communication substrate reactive class is
shown in Fig. 4. It handles transmitPublish messages by sending a RcvPublish
message to its known rebec, a rebec of SubscriberInvoker class in line 11. It
considers a non-deterministic communication delay for each message, modeled
by the local variable netDelay in line 8. We remark that this rebec updates the
parameters Lm and lifetime based on netDelay before sending RcvPublish in
lines 9 and 10.

1 reactiveclass

2 CommunicationSubstrate (20)

3 {

4 knownrebecs{

SubscriberInvoker si;}

5 statevars {}

6 CommunicationSubstrate (){}

7 msgsrv transmitPublish(int

Lm,int life){

8 int netDelay =?(1 ,2);

9 Lm=Lm+netDelay;

10 life=life -netDelay;

11 si.RcvPublish(Lm,life)

after(netDelay);}}

Fig. 4. Modeling communication substrate in Timed Rebeca

The SubscriberInvoker reactive class, given in Fig. 5, is an interface between
the communication substrate and the service (device/app). It has only one known
rebec that is the destination for the messages of its instances. We define a state
variable lastPub in line 5 to save the time of the last publication message that
arrived in this rebec. This reactive class is responsible for checking Nsub, Xsub,
Rpub, Rsub, and Lpub properties (see Subsect. 2.1). Message servers in this rebec
are RcvPublish and consume. It checks Nsub, Xsub, Rpub, and Rsub properties
in the message server RcvPublish. To model the communication delay between
the interface and the service, we define the variable serviceDelay (in line 11)

Formal Modeling and Analysis of Medical Systems 395

with non-deterministic values. It computes the interval between two consecutive
RcvPublish messages in line 13 to inspect Nsub in line 14 and Xsub in line 16. It
checks Rsub and Rpub properties using life and Lm parameters in line 19. Any
violation of these properties will result in sending a failure message to the service
or dropping the message. With satisfying the properties, it saves the local time
of the actor in lastPub and sends a consume message to the service using after
statement. The message server consumed checks Lsub property in line 31 and
sends a failure to the service.

1 reactiveclass

SubscriberInvoker (20){

2 knownrebecs{

3 Service s;}

4
5 statevars{int lastPub ;}

6
7 SubscribeInvoker (){

8 lastPub = 0;}

9
10 msgsrv RcvPublish(int Lm,int

life){

11 int serviceDelay =?(1 ,2);

12 int time = now;

13 int interval=time -lastPub;

14 if (interval <NSUB){

15 self.drop(Lm);}

16 if (interval >XSUB){

17 s.slowPublication(Lm)

18 after(serviceDelay);}

19 if (life <RSUB||Lm>RPUB){

20 s.staleData(Lm)

21 after(serviceDelay);

22 }

23 else{

24 lastPub = now;

25 s.consume(Lm+serviceDelay)

after(serviceDelay);

26 }

27 }

28 msgsrv consumed(int Lm){

29 int time = now;

30 int serviceDelay =?(1 ,2);

31 if (time -lastPub >LSUB){

32 s.slowConsumption(Lm+

serviceDelay)

33 after(serviceDelay);

34 }}

35 msgsrv drop(int Lm){...}}

Fig. 5. Modeling subscriber interface in Timed Rebeca

4 State-Space Reduction

A medical system is composed of several devices/apps that communicate with
each other by using any of communication patterns. With the aim of verifying
the QoS requirements of medical systems at the early stage of development,
we use model checking technique by using Rebeca framework. As we explained
in Sect. 3, each communication pattern is at least modeled by five rebecs. It is
well-known that as the number of rebecs increases in a model, the state space
grows exponentially. For a simple medical system composed of two devices that
communicate with an app, there exist nine rebecs (as communication substrate
in common) in the model. In a more complex system, adding more devices may
result in state-space explosion, and model checking cannot be applied. We pro-
pose a partial reduction technique at the semantic level FTTS which merges
those states with regard to the local QoS properties of communication patterns.

396 M. Zarneshan et al.

In other words, such states not only satisfy the same local QoS properties but also
preserve the same class of timed properties specified by weak modal μ-calculus
where the actions are taking messages from the bag [7].

We relax those conditions of shift-equivalent relation that are applied on
state variables and the message contents in the bags. We consider those state
variables that are used for measuring the interval between two consecutive mes-
sages like lastPub. Such variables grow as the local time of rebecs proceeds.
However, always now − lastPub are used to check local QoS properties like Nsub,
Npub, and Xsub and the value of lastPub is not used anymore. Intuitively, two
semantic states are shift-equivalent if their instances of PubliserRequester have
the same value for all state variables except lastPub. As the behaviors of such
instances depend on now − lastPub, the value of their lastPub variable can be
shift-equivalent similar to their local time (see Sect. 2.3). This idea can be gen-
eralized for such variables (measuring interval) in other types of classes.

Assume two states with an instance of SubscriberInvoker. This instance has
a RcvPublish message in its bag. The value of its life parameter is used by its
message server to check the local QoS property Rsub. This variable is not used
anymore and hence, the value of this variable has no effect on the future behavior
of the rebec. Intuitively, if the value of this parameter in the message in these
assumed states leads to the same satisfaction of Rsub, these messages can be
considered equivalent.

Definition 2 (relaxed shift-equivalent). Two semantic states s and s′,
denoted by s ∼δ s′, are relaxed shift-equivalent if for all the rebecs with iden-
tifier x ∈ ID there exists δ such that:

1. Condition on state variables:

∀v ∈ Var\{lastPub, lastReq} · statevars(s(x))(v) = statevars(s′(x))(v),
lastPub ∈ Dom(s(x)) ⇒ statevars(s(x))(lastPub) = statevars(s′(x))(lastPub) + δ,
lastReq ∈ Dom(s(x)) ⇒ statevars(s(x))(lastReq) = statevars(s′(x))(lastReq) + δ.

2. Condition on local time: now(s(x)) = now(s′(x)) + δ.
3. Condition on bag content:

∀m ∈ bag(s(x)) ∧ Type(msgsig(m)) �∈ {RcvPublish,RcvResponse} ⇔
(msgsig(m), arrival(m) + δ, deadline(m) + δ) ∈ bag(s′(x)),

∀(RcvPublish(Lm1, life1), t, d) ∈ bag(s(x)) ⇔
(RcvPublish(Lm2, life2), t + δ, d + δ) ∈ bag(s′(x))∧

Lm1 = Lm2 ∧ (life1 > Rsub ⇔ life2 > Rsub),
∀(RcvResponse(Lm1, life1), t, d) ∈ bag(s(x)) ⇔

(RcvResponse(Lm2, life2), t + δ, d + δ) ∈ bag(s′(x))∧
(Lm1 = Lm2 ∧ life1 > Rres ⇔ life2 > Rres).

We merge states that are relaxed shift-equivalent. The following theorem
shows that the FTTS modulo relaxed shift equivalency preserves the properties
of the original one.

Formal Modeling and Analysis of Medical Systems 397

Theorem 1. For the given FTTS 〈S, s0,→〉, assume the states s, s′ ∈ S such
that s ∼δ s′. If (s,m, s∗) ∈→, then there exists s∗∗ such that (s′,m, s∗∗) ∈→ and
s∗ ∼δ s∗∗.

Proof. Assume that (s,m, s∗) ∈→ by handling the message m by the rebec i.
Regarding the third condition of Definition 2, there is also a message m′ such
that Type(msgsig(m′)) = Type(msgsig(m)) in the bag of Rebec i in the state
s′. Assume s∗∗ is the resulting state as the consequence of handling m′ in the
state s′. We show that s∗ ∼δ s∗∗. Regarding Type(msgsig(m)), three cases can
be distinguished:

– Type(msgsig(m)) �∈ {RcvPublish,RcvResponse}: The message m′ handled by
the rebec i is (msgsig(m), arrival(m) + δ, deadline(m) + δ) ∈ bag(s′(x)). The
assumption s ∼δ s′ implies that all the variables except {lastPub, lastReq}
have the same values while the value of variables {lastPub, lastReq} have δ-
difference. We remark that all variables except {lastPub, lastReq} may be
accessed/updated during execution of the message handler. So, all variables
except {lastPub, lastReq} are updated by the message handler m and m′ sim-
ilarly. As rebec i has only access to its own variables, the variables of other
rebecs do not change. Thus the state s∗∗ and s∗ satisfy the first condition.
Furthermore, the local time of rebec i in the both states s∗ and s∗∗ are pro-
gressed by the message handler m and m′ similarly and hence, their local
timers have still δ-difference. So, the second condition is satisfied. The mes-
sages sent to other rebecs during handling m and m′ are sent at the same
point. As their local timers have δ-difference, the arrival and deadline of sent
messages have δ-difference. So, the third condition is also satisfied.

– Type(msgsig(m)) = RcvPublish and m ≡ (RcvPublish(Lm1, life1), t, d): By
the third condition, the message m′ ≡ (RcvPublish(Lm2, life2), t + δ, d + δ).
As Lm1 = Lm2 ∧ (life1 > Rsub ⇔ life2 > Rsub) holds, the same state-
ments, as shown in Fig. 5, are executed by the rebec i during handling
m and m′. We remark that the value of interval is the same for both as
statevars(s(x))(lastPub) = statevars(s′(x))(lastPub) + δ. As no variable is
updated, the states s∗ and s∗∗ satisfy the first condition. As no delay state-
ment is executed, still the second condition holds for s∗ and s∗∗. The messages
sent by handling m and m′ are all parametrized by Lm1 and Lm2 which are
equal. So, the third condition is also satisfied.

– Type(msgsig(m)) = RcvResponse: This case is discussed in the same way of
the previous case.

The relaxed shift equivalency preserves the conditions of shift equivalency
on all variables except the variables defined for checking local QoS proper-
ties, i.e., {lastPub, lastReq}. Furthermore, it preserves the conditions of shift
equivalency on all message content in the bag except for messages of type
{RcvPublish,RcvResponse}. But the relaxed condition of the value of life ensures
that the same statements will be executed. Therefore, by Theorem 1 FTTS mod-
ulo relaxed shift equivalency not only preserve the local QoS properties of the
original one but also preserves the Timed properties defined on events (taking
messages from the bag).

398 M. Zarneshan et al.

5 Case Study

Reduction technique is more applicable when using several patterns and devices
in a medical system. For recovering a patient from an operation, he is controlled
by a fixed dose of analgesia connected to an infusion pump. In addition, he is
hooked up to a pulse oximeter to measure his pulse rate and oxygen saturation
(SPO2) and to a capnometer to measure the concentration of carbon dioxide in
his respiratory gases (end-tidal co2[ETCO2]) and respiratory rate. A monitoring
application is composed of the pulse oximeter, capnometer, and infusion pump
as shown in Fig. 6 to control the activation of the infusion pump based on the
measurements of the devices. If the application detects any deterioration in the
patient’s condition, it will deactivate the infusion pump and alert the nurses.

Capnometer

Oximeter

Monitoring
Application Pump Infusion

ETCO2
Respiratory Rate

SPO2
Pulse Rate

Command

Fig. 6. Communication between entities in the clinical scenario.

Capnometer and oximeter publish data through the publisher-subscriber pat-
tern, and monitoring application detects if data stray outside of the valid range
and sends the appropriate command to pump infusion. There are two instances
of the publisher-subscriber pattern and one of the requester-responder pattern
in the resulting Timed Rebeca model of the application. To avoid modeling some
components like communication substrate that is common in the patterns, we
use the inheritance concept in Rebeca. We implement a base reactive class for
the communication substrate of patterns as shown in Fig. 7 named Base inspired
by the approach of [17].

1 reactiveclass Base (20){

2 statevars {int id;}

3 Base find(int _id) {

4 ArrayList <ReactiveClass > allActors = getAllActors ();

5 for(int i = 0 ; i < allActors.size(); i++){

6 Base actor = (Base) allActors.get(i);

7 if (actor.id == _id) {return actor;}

8 }}}

Fig. 7. Base reactive class

Formal Modeling and Analysis of Medical Systems 399

We define the state variable id in line 2 to uniquely identify rebecs. This class has
a method named find to get the rebec with the given identifier. In this method
we define an array of reactive classes and initiate it with all actors specified in
the model (in line 4) then we get ids of all actors that are derived from the Base
(in line 6) actor and search through them for finding the specified one (line 7).

The communication substrate reactive class extends Base class. As illustrated
in Fig. 8, this class has a parameter id in its constructor for assigning the id vari-
able of the parent class (in line 2). This class has no known rebecs as opposed
to the one specified at Fig. 4. Instead, rebecs append their identifier to their
messages during their communication with the substrate. The communication
substrate uses the find method for finding the rebec that wants to send data
based on their ids (lines 6 and 11). As the communication substrate class is com-
monly used by the components of publisher-subscriber and requester-responder
patterns, it has two message handlers transmitPublish and transmitRequest to
transmit their messages, respectively.

1 reactiveclass CommunicationSubstrate extends Base (20){

2 CommunicationSubstrate(int _id){id = _id;}

3 msgsrv trasmitPublish(boolean data ,int topic ,int Lm,

4 int life ,int subscriberId){

5 int csDelay = ?(1, 2);

6 SubscribeInvoker si=(SubscribeInvoker) find(subscriberId

);

7 si.publish(data ,topic ,Lm+csDelay ,life -csDelay)

8 after(csDelay);}

9 msgsrv transmitRequest(boolean data ,int Lm,int

responderInvokerId){

10 int cs1Delay = ?(1, 2);

11 ResponderInvoker ri=(ResponderInvoker) find(

responderInvokerId);

12 ri.request(data ,Lm + cs1Delay) after(cs1Delay);}

13 msgsrv transmitResponse(boolean data , int Lm, int life ,

int requesterId) {

14 int cs2Delay = ?(1, 2);

15 RequestRequester rr = (RequestRequester) find(

requesterId);

16 rr.response(data , (Lm + cs2Delay), (life -cs2Delay))

after(cs2Delay);

17 }

18 ...

19 }

Fig. 8. Modeling communication substrate using inheritance in Rebeca

All interfaces that communicate through communication substrate should
extend the Base class. As two devices (capnometer and oximeter) send data
by using the publisher-subscriber pattern, we define two instances of Publish-
erRequester and SubscriberInvoker interfaces in main, as shown in Fig. 9. The

400 M. Zarneshan et al.

instance of CommunicationSubstrate, called cs, is used by all the components
which send message to Communication Substrate in the patterns.

1 main{

2 Capnometer c(pr_c):(0);

3 PublishRequester pr_c(cs):(1, 0, 2);

4 SubscribeInvoker si_c():(2, 10);

5 Oximeter o(pr_o):(5);

6 PublishRequester pr_o(cs):(6, 5, 7);

7 SubscribeInvoker si_o():(7, 10);

8 CommunicationSubstrate cs():(12);

9 MonitoringApp ma(si_c , si_o , rr):(10);

10 RequestRequester rr(cs):(11 ,10 ,13);

11 ResponderInvoker ri(cs):(13, 14, 11);

12 Pump p(ri):(14);

13 }

Fig. 9. Main part of medical system model in Timed Rebeca

5.1 Experiment Results

We applied our reduction technique on the three cases we have modeled in Timed
Rebeca. We developed a code in Java which automatically reduces the resulting
FTTSs of these models generated by Afra2. We got 23% and 32% reduction in the
model of requester-responder and publisher-subscriber patterns, respectively. In
the clinical scenario which is a medical system using several patterns as explained
in Sect. 5 we have 29% reduction in the state space (Table 1).

Table 1. Reduction in patterns and their composition

Model No. states before reduction No. states after reduction Reduction

Requester-responder 205 157 23%

Publisher-subscriber 235 159 32%

Case study 1058492 753456 29%

6 Conclusion and Future Work

In this paper, we formally modeled the four communication patterns proposed for
interconnecting medical devices in Timed Rebeca modeling language and then

2 The Rebeca models and the Java code for the reduction of semantic models are
available at fghassemi.adhoc.ir/shared/MedicalCodes.zip.

http://fghassemi.adhoc.ir/shared/MedicalCodes.zip

Formal Modeling and Analysis of Medical Systems 401

analyzed the configuration of their parameters separately by Afra tool using
the model checking technique. Since modeling many devices using several pat-
terns resulted in state-space explosion, we proposed a reduction technique by
extending FTTS merging technique with regard to the local QoS properties. We
inspected a medical system which used three devices and one app communicat-
ing by two patterns and we applied our reduction technique on this system. We
used inheritance concept in Rebeca for modeling this system in order to have
a common communication substrate between patterns. Our results show that
there are possible reductions regarding the behavior of message handlers.

Elaborating our approach on more case studies or non-trivial orchestration
patterns of communication [9] are among of our future work. We aim to generalize
this approach by automatically deriving constraints on state variables like the
one for lastPub or message contents to relax shift-equivalence relation in other
domains. To this aim, we can use the techniques of static analysis.

Acknowledgment. We would like to thank Ehsan Khamespanh for his kind supports
in resolving the problems in using Afra tool. The research of the third author is partially
supported by the KKS Synergy project, SACSys, the SSF project Serendipity, and the
KKS Profile project DPAC.

References

1. Agha, G.: ACTORS - A Model of Concurrent Computation in Distributed Systems.
MIT Press, Cambridge (1990)

2. Hatcliff, J., et al.: Rationale and architecture principles for medical application
platforms. In: Proceedings of the IEEE/ACM Third International Conference on
Cyber-Physical Systems, pp. 3–12. IEEE Computer Society (2012)

3. Hewitt, C.: Viewing control structures as patterns of passing messages. Artif. Intell.
8(3), 323–364 (1977)

4. ASTM International: ASTM F2761 - medical devices and medical systems - essen-
tial safety requirements for equipment comprising the patient-centric integrated
clinical environment (ICE) (2009)

5. Jaghoori, M., Sirjani, M., Mousavi, M.R., Khamespanah, E., Movaghar, A.: Sym-
metry and partial order reduction techniques in model checking rebeca. Acta Infor-
matica 47(1), 33–66 (2010). https://doi.org/10.1007/s00236-009-0111-x

6. Khamespanah, E., Sirjani, M., Sabahi-Kaviani, Z., Khosravi, R., Izadi, M.: Timed
Rebeca schedulability and deadlock freedom analysis using bounded floating time
transition system. Sci. Comput. Program. 98, 184–204 (2015)

7. Khamespanah, E., Sirjani, M., Viswanathan, M., Khosravi, R.: Floating time tran-
sition system: more efficient analysis of timed actors. In: Braga, C., Ölveczky, P.C.
(eds.) FACS 2015. LNCS, vol. 9539, pp. 237–255. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-28934-2 13

8. Pfeiffer, O., Ayre, A., Keydel, C.: Embedded Networking with CAN and CANopen,
1st edn. Copperhill Media Corporation, Greenfield (2008)

9. Ranganath, V., Kim, Y.J., Hatcliff, J., Robby: Communication patterns for inter-
connecting and composing medical systems (extended version). Technical report,
Kansas State University (2016)

https://doi.org/10.1007/s00236-009-0111-x
https://doi.org/10.1007/978-3-319-28934-2_13
https://doi.org/10.1007/978-3-319-28934-2_13

402 M. Zarneshan et al.

10. Reynisson, A., et al.: Modelling and simulation of asynchronous real-time systems
using Timed Rebeca. Sci. Comput. Program. 89, 41–68 (2014)

11. Sirjani, M.: Rebeca: theory, applications, and tools. In: de Boer, F.S., Bonsangue,
M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2006. LNCS, vol. 4709, pp. 102–126.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74792-5 5

12. Sirjani, M., Jaghoori, M.M.: Ten years of analyzing actors: rebeca experience. In:
Agha, G., Danvy, O., Meseguer, J. (eds.) Formal Modeling: Actors, Open Sys-
tems, Biological Systems. LNCS, vol. 7000, pp. 20–56. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-24933-4 3

13. Sirjani, M., Khamespanah, E.: On time actors. In: Ábrahám, E., Bonsangue, M.,
Johnsen, E.B. (eds.) Theory and Practice of Formal Methods. LNCS, vol. 9660, pp.
373–392. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30734-3 25

14. Sirjani, M., Khamespanah, E., Ghassemi, F.: Reactive actors: isolation for efficient
analysis of distributed systems. In: Proceedings of the 23rd IEEE/ACM Interna-
tional Symposium on Distributed Simulation and Real Time Applications, pp. 1–10
(2019)

15. Sirjani, M., Movaghar, A., Shali, A., de Boer, F.S.: Modeling and verification of
reactive systems using Rebeca. Fundam. Informaticae 63(4), 385–410 (2004)

16. Ranganath, V., Robby, Kim, Y., Hatcliff, J., Weininger, S.: Integrated clinical envi-
ronment device model: stakeholders and high level requirements. In: Proceedings
of the Medical Cyber Physical Systems Workshop (2015)

17. Yousefi, F., Khamespanah, E., Gharib, M., Sirjani, M., Movaghar, A.: VeriVANca:
an actor-based framework for formal verification of warning message dissemination
schemes in VANETs. In: Biondi, F., Given-Wilson, T., Legay, A. (eds.) SPIN 2019.
LNCS, vol. 11636, pp. 244–259. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-30923-7 14

https://doi.org/10.1007/978-3-540-74792-5_5
https://doi.org/10.1007/978-3-642-24933-4_3
https://doi.org/10.1007/978-3-319-30734-3_25
https://doi.org/10.1007/978-3-030-30923-7_14
https://doi.org/10.1007/978-3-030-30923-7_14

Author Index

Altmeyer, Sebastian 57
Audrito, Giorgio 211
Autili, Marco 3

Barbanera, Franco 86
Bartoletti, Massimo 243, 261
Bergamini, Sergio 211

Chauvel, Franck 171
Cledou, Guillermina 39
Coto, Alex 20

Damiani, Ferruccio 211
Dardha, Ornela 153
Di Salle, Amleto 3
Di Stefano, Luca 370

Francalanza, Adrian 350
Frittelli, Leonardo 107

Galletta, Letterio 243
Gast, Nicolas 230
Ghassemi, Fatemeh 386
Giunti, Marco 137
Grelck, Clemens 57
Guanciale, Roberto 20

Hennicker, Rolf 77

Karyoti, Vagia 301
Kleijn, Jetty 77

Lagaillardie, Nicolas 127
Lanese, Ivan 86
Lang, Frédéric 370
Latella, Diego 230
Li, Yi 341
Lopez Pombo, Carlos Gustavo 181

Maldonado, Facundo 107
Mariani, Stefano 193

Martinez Suñé, Agustín Eloy 181
Massink, Mieke 230
Melgratti, Hernán 107
Murgia, Maurizio 243, 261

Neykova, Rumyana 127
Nguyen, Phu H. 171
Nordli, Espen Tønnessen 171

Paraponiari, Paulina 301
Pianini, Danilo 193
Pinna, G. Michele 320
Pittou, Maria 281
Pompilio, Claudio 3
Proença, José 39

Rahonis, George 281
Roeder, Julius 57
Rouxel, Benjamin 57

Serwe, Wendelin 370
Sirjani, Marjan 386
Song, Hui 171
Sun, Meng 341

ter Beek, Maurice H. 77
Tivoli, Massimo 3
Tuosto, Emilio 20, 86, 107

Usov, Artem 153

Viroli, Mirko 193, 211

Xuereb, Jasmine 350

Yoshida, Nobuko 127

Zambonelli, Franco 193
Zarneshan, Mahsa 386
Zhang, Xiyue 341
Zunino, Roberto 261

	Foreword
	Preface
	Organization
	Formal Specifications to Increase Understanding (Invited Talk)
	Contents
	Tutorials
	CHOReVOLUTION: Hands-On In-Service Training for Choreography-Based Systems
	1 Introduction
	2 Problem Statement and Related Works
	3 CHOReVOLUTION Approach
	4 CHOReVOLUTION Development Process
	5 CHOReVOLUTION IDRE
	6 Illustrative Example
	7 Conclusion
	References

	Choreographic Development of Message-Passing Applications
	1 Introduction
	2 Our Models
	2.1 Partially Ordered Multisets
	2.2 A Workflow Model

	3 When All Goes Fine
	4 Designing Problems
	5 When Something Goes Wrong
	6 Suggesting Amendments
	7 Going Bottom-Up
	8 Concluding Remarks
	References

	Coordination Languages
	ARx: Reactive Programming for Synchronous Connectors
	1 Introduction
	2 Overview over Reactive and Synchronous Programs
	3 ARx Toolset
	4 Core ARx
	4.1 ARx: Syntax
	4.2 Stream Builders: Syntax
	4.3 Stream Builders: Operational Semantics
	4.4 Composing Stream Builders
	4.5 ARx's Semantics: Encoding into Stream Builders

	5 Extension I: Algebraic Data Types
	6 Extension II: Reactive Semantics
	7 Conclusions
	References

	Towards Energy-, Time- and Security-Aware Multi-core Coordination
	1 Introduction
	2 Coordination Model
	2.1 Components
	2.2 Stateful Components
	2.3 ETS-aware Components
	2.4 Multi-version Components
	2.5 Component Interplay

	3 Coordination Language
	3.1 Program Header
	3.2 (Multi-version) Components
	3.3 Dependencies

	4 Example Use Case Reconnaissance Drone
	5 Coordination Tool Chain
	6 Related Work
	7 Conclusion
	References

	Message-Based Communication
	Team Automata@Work: On Safe Communication
	1 Introduction
	2 Team Automata
	3 On Safe Communication
	References

	Choreography Automata
	1 Introduction
	2 Preliminaries
	3 Choreography Automata
	4 Well-Formed Choreography Automata
	5 Asynchronous Communications
	6 Conclusion, Related Work and Future Work
	References

	A Choreography-Driven Approach to APIs: The OpenDXL Case Study
	1 Introduction
	2 Preliminaries
	2.1 An Informal Account of OpenDXL
	2.2 Data-Driven Global Types

	3 Klaimographies for OpenDXL
	4 Projections
	5 Types at Work
	6 Conclusions, Related and Future Work
	References

	Communications: Types and Implementations
	Implementing Multiparty Session Types in Rust
	1 Introduction
	2 From Binary to Multiparty Sessions in Rust
	3 Design and Implementation of mpst-rust
	4 Related and Future Work
	References

	GoPi: Compiling Linear and Static Channels in Go
	1 Introduction
	1.1 Message Forwarding Protection
	1.2 Related Work

	2 The LSpi Specification Language
	2.1 Runtime and Errors

	3 Static Analyser
	3.1 Contextual Safety
	3.2 Linearity Analysis

	4 Go Code Generation
	4.1 Channel Servers
	4.2 Clients' Access to Servers
	4.3 Working Example

	5 Discussion
	5.1 Limitations
	5.2 Future Work

	References

	SFJ: An Implementation of Semantic Featherweight Java
	1 Introduction
	2 Background
	2.1 Types
	2.2 Terms

	3 The SFJ Language
	3.1 On Valid Type Definitions
	3.2 Building Semantic Subtyping for SFJ
	3.3 Type System for SFJ
	3.4 Polygons: Continued
	3.5 Nominal vs. Structural Subtyping
	3.6 Methods in SFJ
	3.7 Code Generation

	4 Related Work and Conclusion
	References

	Service-Oriented Computing
	Event-Based Customization of Multi-tenant SaaS Using Microservices
	1 Introduction
	2 Deep Customization
	3 Event-Based Customization Approach
	3.1 Main Components for Enabling Event-Based Customization
	3.2 Event-Based Customization Flow
	3.3 Tenant-Isolation and Tenant-Specific Event-Handlers

	4 Proof-of-Concept and Evaluation
	4.1 Tenant A's Customization of the Ordering Process
	4.2 Tenant B's Customization of the Ordering Process

	5 Related Work
	6 Conclusions
	References

	Quality of Service Ranking by Quantifying Partial Compliance of Requirements
	1 Introduction
	2 Formalisation and Analysis of Quantitative Attributes
	2.1 On the Complexity of the Volume Computation

	3 Experimental Results
	4 Conclusions and Further Work
	References

	Large-Scale Decentralised Systems
	Time-Fluid Field-Based Coordination
	1 Introduction
	2 Background and Related Work
	3 Time-Fluid Field-Based Coordination
	3.1 A Time-Fluid Model
	3.2 Consequences

	4 Time-Fluid Aggregate Computing
	4.1 A Short Protelis Primer
	4.2 Examples
	4.3 Experiment

	5 Conclusion and Future Work
	References

	Resilient Distributed Collection Through Information Speed Thresholds
	1 Introduction
	2 Background and Related Work
	2.1 Computational Model
	2.2 Self-stabilising Building Blocks
	2.3 Distributed Data Collection

	3 Collection by Lossless Information Speed Thresholds
	3.1 Network Model Assumptions
	3.2 Algorithmic Constraints
	3.3 Idempotent Aggregation
	3.4 Arithmetic Aggregation

	4 Experimental Evaluation
	4.1 Idempotent Aggregation
	4.2 Arithmetic Aggregation

	5 Contributions and Future Work
	References

	Refined Mean Field Analysis: The Gossip Shuffle Protocol Revisited
	1 Introduction and Related Work
	2 Benchmark Gossip Shuffle Protocol
	3 Background
	3.1 Discrete Time Classical Mean Field Approximation
	3.2 Discrete Time Refined Mean Field Approximation

	4 Refined Mean Field Approximation of the Gossip Shuffle Protocol
	5 Conclusions
	References

	Smart Contracts
	A True Concurrent Model of Smart Contracts Executions
	1 Introduction
	2 Transactions and Blockchains
	3 Swapping Transactions
	4 True Concurrency for Blockchains
	5 Case Study: ERC-721 Token
	6 Related Work and Conclusions
	References

	Renegotiation and Recursion in Bitcoin Contracts
	1 Introduction
	2 BitML with Renegotiation and Recursion
	3 Executing BitML on Bitcoin
	4 A Fair Recursive Coin Flipping Game
	5 More Expressive Renegotiation Primitives
	6 Conclusions
	References

	Modelling
	Architecture Modelling of Parametric Component-Based Systems
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Extended Propositional Interaction Logic
	5 Parametric Component-Based Systems
	5.1 First-Order Extended Interaction Logic
	5.2 Examples of FOEIL Sentences for Parametric Architectures

	6 Decidability Results for FOEIL
	7 Conclusion
	References

	Weighted PCL over Product Valuation Monoids
	1 Introduction
	2 Preliminaries
	3 Weighted Propositional Interaction Logic
	4 Weighted Propositional Configuration Logic
	5 Full Normal Form for WpvmPCL Formulas
	6 Examples
	7 Discussion
	8 Conclusion
	References

	Operational Representation of Dependencies in Context-Dependent Event Structures
	1 Introduction
	2 Preliminaries
	2.1 Contextual Petri Nets
	2.2 Occurrence Nets and Prime Event Structure

	3 Context-Dependent Event Structure
	4 Causal Nets
	5 Context-Dependent Event Structures and Causal Nets
	6 Conclusions and Future Works
	References

	Verification and Analysis
	Towards a Formally Verified EVM in Production Environment
	1 Introduction
	2 The Framework of Generating Verified EVM for Production Environment
	2.1 EVM in Why3
	2.2 Running EVM in Production Environment
	2.3 Examples of Property Verification and Tests

	3 Related Work
	4 Conclusion
	References

	On Implementing Symbolic Controllability
	1 Introduction
	2 Preliminaries
	3 Preliminary Implementation
	4 Evaluating Efficiency
	5 Optimisation Techniques
	6 Conclusion
	References

	Combining SLiVER with CADP to Analyze Multi-agent Systems
	1 Introduction
	2 Background
	3 Overview of SLiVER
	4 Program Generation
	4.1 Example: A System Function
	4.2 Example: Emulation Functions

	5 Property Verification
	6 Related Work
	7 Conclusion
	References

	Formal Modeling and Analysis of Medical Systems
	1 Introduction
	2 Preliminaries
	2.1 Communication Patterns
	2.2 Timed Rebeca and Actor Model
	2.3 State-Space of Rebeca Models

	3 Modeling Patterns in Rebeca
	4 State-Space Reduction
	5 Case Study
	5.1 Experiment Results

	6 Conclusion and Future Work
	References

	Author Index

