Kazue Sako - Steve Schneider -
Peter Y. A. Ryan (Eds.)

Computer Security -
ESORICS 2019

24th European Symposium
on Research in Computer Security
Luxembourg, September 23-27, 2019, Proceedings, Part |

LNCS 11735

@ Springer

Lecture Notes in Computer Science

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino

Purdue University, West Lafayette, IN, USA
Wen Gao

Peking University, Beijing, China
Bernhard Steffen

TU Dortmund University, Dortmund, Germany
Gerhard Woeginger

RWTH Aachen, Aachen, Germany
Moti Yung

Columbia University, New York, NY, USA

11735

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Kazue Sako - Steve Schneider -
Peter Y. A. Ryan (Eds.)

Computer Security —
ESORICS 2019

24th European Symposium

on Research in Computer Security
Luxembourg, September 23-27, 2019
Proceedings, Part |

@ Springer

Editors

Kazue Sako Steve Schneider
NEC Corporation University of Surrey
Kawasaki, Japan Guildford, UK

Peter Y. A. Ryan
University of Luxembourg
Esch-sur-Alzette, Luxembourg

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-29958-3 ISBN 978-3-030-29959-0 (eBook)

https://doi.org/10.1007/978-3-030-29959-0
LNCS Sublibrary: SL4 — Security and Cryptology

© Springer Nature Switzerland AG 2019

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-8365-6993
https://orcid.org/0000-0002-1677-9034
https://doi.org/10.1007/978-3-030-29959-0

Preface

This book contains the papers that were selected for presentation and publication at the
24th European Symposium on Research in Computer Security (ESORICS 2019) which
was held together with affiliated workshops in Luxembourg, September 23-27, 2019.
The aim of ESORICS is to further the progress of research in computer, information,
and cyber security, as well as in privacy, by establishing a European forum for bringing
together researchers in these areas, by promoting the exchange of ideas with system
developers, and by encouraging links with researchers in related fields.

In response to the call for papers, 344 papers were submitted to the conference.
These papers were evaluated on the basis of their significance, novelty, and technical
quality. Each paper was reviewed by at least three members of the Program Committee
and external reviewers, and papers authored by Program Committee members had four
reviewers. The reviewing process was single-blind. The Program Committee had
intensive discussions which were held via EasyChair. Finally, 67 papers were selected
for presentation at the conference, giving an acceptance rate of 19.5%. We were also
delighted to welcome keynote talks from Adi Shamir, Véronique Cortier, and Bart
Preneel.

Following the reviews, two papers were selected for joint Best Paper Award, to
share the 1,000 EUR prize generously provided by Springer: “A Frame-work for
Evaluating Security in the Presence of Signal Injection Attacks,” by Ilias Giechaskiel,
Yougian Zhang, and Kasper Rasmussen; and “Breakdown Resilience of Key Exchange
Protocols: NewHope, TLS 1.3, and Hybrids,” by Jacqueline Brendel, Marc Fischlin,
and Felix Giinther.

The Program Committee consisted of 95 members across 24 countries. There were
submissions from a total of 1,071 authors across 46 countries, with 23 countries
represented among the accepted papers.

ESORICS 2019 would not have been possible without the contributions of the many
volunteers who freely gave their time and expertise. We would like to thank the
members of the Program Committee and the external reviewers for their substantial
work in evaluating the papers. We would also like to thank the organization chair,
Peter B. Roenne, the workshop chair, Joaquin Garcia-Alfaro, and all workshop
co-chairs, the posters chair, Alfredo Rial, the publicity chair, Cristina Alcaraz, and the
ESORICS Steering Committee and its chair, Sokratis Katsikas.

Finally, we would like to express our thanks to the authors who submitted papers to
ESORICS. They, more than anyone else, are what makes this conference possible.

We hope that you found the program to be stimulating and a source of inspiration
for future research.

July 2019 Kazue Sako
Steve Schneider
Peter Y. A. Ryan

Organization

ESORICS Steering Committee

Sokratis Katsikas (Chair)
Michael Backes
Joachim Biskup
Frederic Cuppens
Sabrina De Capitani

di Vimercati
Dieter Gollmann
Mirek Kutylowski
Javier Lopez
Jean-Jacques Quisquater
Peter Y. A. Ryan
Pierangela Samarati
Einar Snekkenes
Michael Waidner

Program Committee

Mitsuaki Akiyama
Cristina Alcaraz
Elli Androulaki
Frederik Armknecht
Vijay Atluri

Marina Blanton
Carlo Blundo
Christian Cachin
Alvaro Cardenas
Aldar C-F. Chan
Yan Chen

Sherman S. M. Chow

Mauro Conti
Jorge Cuellar
Frédéric Cuppens
Nora Cuppens-Boulahia
Marc Dacier
Sabrina De Capitani
di Vimercati
Hervé Debar
Stéphanie Delaune

NTNU, Norway

Saarland University, Germany

TU Dortmund, Germany

IMT Atlantique, France

Universita degli Studi di Milano, Italy

Hamburg University of Technology, Germany
Wroclaw University of Technology, Poland
University of Malaga, Spain

University of Louvain, Belgium

University of Luxembourg, Luxembourg
Universita degli Studi di Milano, Italy
NTNU, Norway

Fraunhofer, Germany

NTT, Japan

University of Malaga, Spain

IBM Research - Zurich, Switzerland

Universitdt Mannheim, Germany

Rutgers University, USA

University at Buffalo, USA

Universita degli Studi di Salerno, Italy

University of Bern, Switzerland

The University of Texas at Dallas, USA

University of Hong Kong, Hong Kong, China

Northwestern University, USA

The Chinese University of Hong Kong, Hong Kong,
China

University of Padua, Italy

Siemens AG, Germany

Telecom Bretagne, France

IMT Atlantique, France

EURECOM, France

Universita degli Studi di Milano, Italy

Telecom SudParis, France
CNRS, France

viii Organization

Roberto Di Pietro

Josep Domingo-Ferrer

Haixin Duan

Francois Dupressoir

José M. Fernandez

Jose-Luis Ferrer-Gomila

Simone Fischer-Hiibner

Simon Foley

Sara Foresti

David Galindo

Debin Gao

Joaquin Garcia-Alfaro

Dieter Gollmann

Stefanos Gritzalis

Guofei Gu

Juan Hernandez-Serrano

Xinyi Huang

Ghassan Karame

Vasilios Katos

Sokratis Katsikas

Stefan Katzenbeisser

Steve Kremer

Marina Krotofil

Costas Lambrinoudakis

Yingjiu Li

Kaitai Liang

Hoon Wei Lim

Joseph Liu

Peng Liu

Xiapu Luo

Konstantinos
Markantonakis

Fabio Martinelli

Ivan Martinovic

Sjouke Mauw

Catherine Meadows

Weizhi Meng

Chris Mitchell

John Mitchell

Tatsuya Mori

Haralambos Mouratidis

David Naccache

Satoshi Obana

Martin Ochoa

Rolf Oppliger

Andrew Paverd

Hamad Bin Khalifa University, Qatar
Universitat Rovira i Virgili, Spain

Tsinghua University, China

University of Surrey, UK

Ecole Polytechnique de Montreal, Canada
University of the Balearic Islands, Spain
Karlstad University, Sweden

Norwegian NTNU, Norway

Universita degli Studi di Milano, Italy
University of Birmingham, UK

Singapore Management University, Singapore
Telecom SudParis, France

Hamburg University of Technology, Germany
University of the Aegean, Greece

Texas A&M University, USA

Universitat Politécnica de Catalunya, Spain
Fujian Normal University, China

NEC Laboratories Europe, Germany
Bournemouth University, UK

NTNU, Norway

University of Passau, Germany

Inria, France

FireEye, USA

University of Piracus, Greece

Singapore Management University, Singapore
University of Surrey, UK

Royal Holloway, University of London, UK
Monash University, Australia

The Pennsylvania State University, USA

The Hong Kong Polytechnic, Hong Kong, China
Royal Holloway, University of London, UK

IIT-CNR, Italy

University of Oxford, UK

University of Luxembourg, Luxembourg
NRL, USA

Technical University of Denmark, Denmark
Royal Holloway, University of London, UK
Stanford University, USA

Waseda University, Japan

University of Brighton, UK

DIENS, ENS, CNRS, PSL University, Paris, France
Hosei University, Japan

Cyxtera Technologies, Colombia
eSECURITY Technologies, Switzerland
Microsoft Research, UK

Olivier Pereira
Giinther Pernul
Joachim Posegga
Bart Preneel
Christina Popper
Indrajit Ray
Giovanni Russello
Mark Ryan
Reyhaneh Safavi-Naini
Kazue Sako
Pierangela Samarati
Damien Sauveron

Steve Schneider
Einar Snekkenes
Willy Susilo

Pawel Szalachowski
Qiang Tang

Qiang Tang

Juan Tapiador
Nils Ole Tippenhauer
Helen Treharne
Aggeliki Tsohou
Jaideep Vaidya
Luca Vigano
Michael Waidner
Cong Wang
Lingyu Wang
Edgar Weippl
Christos Xenakis
Zhe Xia

Kehuan Zhang

Sencun Zhu

Additional Reviewers

Abidin, Aysajan
Abusalah, Hamza
Aggelogianni, Anna
Ahmed, Chuadhry Mujeeb
Akand, Mamunur

Al Magbali Fatma

Organization ix

UCLouvain, Belgium

Universitit Regensburg, Germany

University of Passau, Germany

Katholieke Universiteit Leuven, Belgium

New York University, USA

Colorado State University, USA

The University of Auckland, New Zealand

University of Birmingham, UK

University of Calgary, Canada

NEC, Japan

Universita degli Studi di Milano, Italy

XLIM — University of Limoges, UMR CNRS 7252,
France

University of Surrey, UK

NTNU, Norway

University of Wollongong, Australia

SUTD, Singapore

Luxembourg Institute of Science and Technology,
Luxembourg

New Jersey Institute of Technology, USA

Universidad Carlos III de Madrid, Spain

CISPA, Germany

University of Surrey, UK

Ionian University, Greece

Rutgers University, USA

King’s College London, UK

Fraunhofer, Germany

City University of Hong Kong, Hong Kong, China

Concordia University, Canada

SBA Research, Austria

University of Piraeus, Greece

Wuhan University of Technology, China

The Chinese University of Hong Kong, Hong Kong,
China

The Pennsylvania State University, USA

Al-Mallah, Ranwa
Andriotis, Panagiotis
Angles-Tafalla, Carles
Anikeev, Maxim
Asif, Hafiz

Avizheh, Sepideh

Bamiloshin, Michael
Bampatsikos, Michail
Batra, Gunjan
Belgacem, Boutheyna
Belles, Marta

Berger, Christian

X Organization

Bezawada, Bruhadeshwar

Bkakria, Anis

Blanco-Justicia, Alberto

Blazy, Olivier

Bolgouras, Vaios

Bountakas, Panagiotis

Boureanu, Ioana

Brandt, Markus

Bohm, Fabian

Cao, Chen

Catuogno, Luigi

Cetinkaya, Orhan

Chadha, Rohit

Chan, Mun Choon

Chawla, Gagandeep

Chen, Haixia

Chen, Jianjun

Chen, Liqun

Chen, Long

Chen, Xihui

Chen, Yueqi

Chothia, Tom

Ciampi, Michele

Cook, Andrew

Cortier, Véronique

Costa, Niiria

Cui, Shujie

Dang, Hung

Dargahi, Tooska

Dashevskyi, Stanislav

de Miceli, Jean-Yves

De Salve, Andrea

Debant, Alexandre

Deo, Amit

Diamantopoulou, Vasiliki

Dietz, Marietheres

Divakaran, Dinil Mon

Dominguez Trujillo,
Antonio

Dryja, Tadge

Du, Minxin

Du, Xuechao

Dufour Sans, Edouard

Duman, Onur

Duong, Dung

Elkhiyaoui, Kaoutar

Englbrecht, Ludwig

Espes, David

Fan, Xiong

Farao, Aristeidis

Farhang, Sadegh

Fdhila, Walid

Fenghao, Xu

Ferreira Torres, Christof

Gangwal, Ankit

Ge, Chunpeng

Geneiatakis, Dimitris

Georgiopoulou,

Zafeiroula

Giorgi, Giacomo

Groll, Sebastian

Gupta, Maanak

Gusenbauer, Matthias

Han, Jinguang

Hassan, Fadi

Hermans, Jens

Hicks, Christopher

Hirschi, Lucca

Hlavacek, Tomas

Homoliak, Ivan

Horne, Ross

Hu, Kexin

Iliou, Christos

Jacomme, Charlie

Jeitner, Philipp

Jiongyi, Chen

Jonker, Hugo

Judmayer, Aljosha

Kalloniatis, Christos

Kambourakis, Georgios

Karamchandani, Neeraj

Kasinathan, Prabhakaran

Kavousi, Mohammad

Kern, Sascha

Khan, Muhammad Hassan

Kim, Jongkil

Klaedtke, Felix

Kohls, Katharina

Kostoulas, Theodoros

Koutroumpouxos,
Nikolaos

Kuchta, Veronika

Kostler, Johannes

La Marra, Antonio
Labani, Hasan
Lakshmanan, Sudershan
Lal, Chhagan
Lazzeretti, Riccardo
Lee, Jehyun

Leng, Xue

Leodn, Olga

Li, Li

Li, Shujun

Li, Wanpeng

Li, Wenjuan

Li, Xing

Li, Xusheng

Li, Yanan

Li, Zengpeng

Li, Zhenyuan

Libert, Benoit

Lin, Chengjun

Lin, Yan

Liu, Ximing

Lobe Kome, Ivan Marco
Losiouk, Eleonora
Loukas, George

Lu, Yang

Lu, Yuan

Lyvas, Christos

Ma, Haoyu

Ma, Jack P. K.
Maene, Pieter
Majumdar, Suryadipta
Malliaros, Stefanos
Mardziel, Piotr
Marin, Eduard
Marson, Giorgia
Martinez, Sergio
Matyunin, Nikolay
Menges, Florian
Menghan, Sun
Michailidou, Christina
Milani, Simone
Minaud, Brice
Minematsu, Kazuhiko
Mizera, Andrzej
Moch, Alexander

Moessner, Klaus
Mohamady, Meisam
Mohammadi, Farnaz
Moisan, Frederic
Moreau, Soléne
Moreira, José
Murayama, Yuko
Murmann, Patrick
Mufioz, Jose L.
Mykoniati, Maria
Ng, Lucien K. L.
Ngamboe, Mikaela
Nguyen, Quoc Phong
Ning, Jianting

Niu, Liang

Nomikos, Nikolaos
Ntantogian, Christoforos
Oqaily, Alaa

Oqaily, Momen
Ouattara, Jean-Yves
Oya, Simon
Panaousis, Manos
Papaioannou, Thanos

Parra Rodriguez, Juan D.

Parra-Arnau, Javier
Pasa, Luca
Paspatis, Ioannis
Peeters, Roel
Pelosi, Gerardo
Petrovic, Slobodan
Pfeffer, Katharina
Pitropakis, Nikolaos
Poh, Geong Sen
Polian, Ilia
Prestwich, Steve
Puchta, Alexander
Putz, Benedikt
Pohls, Henrich C.
Qiu, Tian
Ramirez-Cruz, Yunior
Ray, Indrani
Reuben, Jenni

Rezk, Tamara
Rios, Ruben
Rizos, Athanasios
Roman-Garcia, Fernando
Rozic, Vladimir
Rupprecht, David
Sakuma, Jun
Saracino, Andrea
Schindler, Philipp
Schmidt, Carsten
Schnitzler, Theodor
Schumi, Richard
Sempreboni, Diego
Sengupta, Binanda
Sentanoe, Stewart
Sepideh Avizheh,
Shuai Li
Shikfa, Abdullatif
Shioji, Eitaro
Shirani, Paria
Shrishak, Kris
Shuaike, Dong
Simo, Hervais
Singelée, Dave
Siniscalchi, Luisa
Situ, Lingyun
Smith, Zach
Smyth, Ben
Song, Yongcheng
Soriente, Claudio
Soumelidou, Aikaterini
Stifter, Nicholas
Sun, Yuanyi
Sundararajan, Vaishnavi
Tabiban, Azadeh
Tajan, Louis
Taubmann, Benjamin
Thomasset, Corentin
Tian, Yangguang
Tripathi, Nikhil
Tueno, Anselme
Ullrich, Johanna

Organization Xi

Vanhoef, Mathy
Venugopalan, Sarad
Veroni, Eleni
Vielberth, Manfred
Viet Xuan Phuong, Tran
Walzer, Stefan
Wang, Daibin
Wang, Hongbing
Wang, Jiafan
Wang, Tielei
Wang, Xiaolei
Wang, Xiuhua
Wang, Zhi

Wattiau, Gaetan
Wesemeyer, Stephan
Wong, Harry W. H.
Wu, Daoyuan

Wu, Huangting

Xu, Jia

Xu, Jiayun

Xu, Ke

Xu, Shengmin

Xu, Yanhong
Yang, Kang

Yang, Shaojun
Yang, Wenjie
Yautsiukhin, Artsiom
Yuan, Chen
Zalonis, Jasmin
Zamyatin, Alexei
Zavatteri, Matteo
Zhang, Chao
Zhang, Liang Feng
Zhang, Yuexin
Zhao, Guannan
Zhao, Yongjun
Zheng, Yu

Zhou, Dehua

Zhou, Wei

Zhu, Tiantian

Zou, Qingtian

Zuo, Cong

Abstracts of Keynote Talks

The Insecurity of Machine Learning:
Problems and Solutions

Adi Shamir

Computer Science Department, The Weizmann Institute of Science, Israel

Abstract. The development of deep neural networks in the last decade had
revolutionized machine learning and led to major improvements in the precision
with which we can perform many computational tasks. However, the discovery
five years ago of adversarial examples in which tiny changes in the input can
fool well trained neural networks makes it difficult to trust such results when the
input can be manipulated by an adversary. This problem has many applications
and implications in object recognition, autonomous driving, cyber security, etc,
but it is still far from being understood. In particular, there had been no con-
vincing explanations why such adversarial examples exist, and which parame-
ters determine the number of input coordinates one has to change in order to
mislead the network. In this talk I will describe a simple mathematical frame-
work which enables us to think about this problem from a fresh perspective,
turning the existence of adversarial examples in deep neural networks from a
baffling phenomenon into an unavoidable consequence of the geometry of R"
under the Hamming distance, which can be quantitatively analyzed.

Electronic Voting: A Journey to Verifiability
and Vote Privacy

Véronique Cortier

CNRS, LORIA, UMR 7503, 54506, Vandoeuvre-lés-Nancy, France

Abstract. Electronic voting aims to achieve the same properties as traditional
paper based voting. Even when voters vote from their home, they should be
given the same guarantees, without having to trust the election authorities, the
voting infrastructure, and/or the Internet network. The two main security goals
are vote privacy: no one should know how I voted; and verifiability: a voter
should be able to check that the votes have been properly counted. In this talk,
we will explore the subtle relationships between these properties and we will see
how they can be realized and proved.

First, verifiability and privacy are often seen as antagonistic and some
national agencies even impose a hierarchy between them: first privacy, and then
verifiability as an additional feature. Verifiability typically includes individual
verifiability (a voter can check that her ballot is counted); universal verifiability
(anyone can check that the result corresponds to the published ballots); and
eligibility verifiability (only legitimate voters may vote). Actually, we will see
that privacy implies individual verifiability. In other words, systems without
individual verifiability cannot achieve privacy (under the same trust assump-
tions).

Moreover, it has been recently realised that all existing definitions of vote
privacy in a computational setting implicitly assume an honest voting server: an
adversary cannot tamper with the bulletin board. As a consequence, voting
schemes are proved secure only against an honest voting server while they are
designed and claimed to resist a dishonest voting server. Not only are the
security guarantees too weak, but attacks are missed. We propose a novel notion
of ballot privacy against a malicious bulletin board. The notion is flexible in that
it captures various capabilities of the attacker to tamper with the ballots, yielding
different flavours of security.

Finally, once the security definitions are set, we need to carefully establish
when a scheme satisfies verifiability and vote privacy. We have developed a
framework in EasyCrypt for proving both verifiability and privacy, yielding
machine-checked security proof. We have applied our framework to two
existing schemes, namely Helios and Belenios, and many of their variants.

Cryptocurrencies and Distributed Consensus:
Hype and Science

Bart Preneel

COSIC, an imec lab at KU Leuven, Belgium

Abstract. This talk will offer a perspective on the fast rise of cryptocurrencies
based on proof of work, with Bitcoin as most prominent example. In about a
decade, a white paper of nine pages has resulted in massive capital investments,
a global ecosystem with a market capitalization of several hundreds of billions
of dollars and the redefinition of the term crypto (which now means cryp-
tocurrencies). We will briefly describe the history of electronic currencies and
clarify the main principles behind Nakamoto Consensus. Next, we explain how
several variants attempt to improve the complex tradeoffs between public ver-
ifiability, robustness, privacy and performance. We describe how Markov
Decision processes can be used to compare in an objective way the proposed
improvements in terms of chain quality, censorship resistance and robustness
against selfish mining and double spending attacks. We conclude with a dis-
cussion of open problems.

Contents — Part 1

Machine Learning

Privacy-Enhanced Machine Learning with Functional Encryption 3
Tilen Marc, Miha Stopar, Jan Hartman, Manca Bizjak,
and Jolanda Modic

Towards Secure and Efficient Outsourcing of Machine
Learning Classification it 22
Yifeng Zheng, Huayi Duan, and Cong Wang

Confidential Boosting with Random Linear Classifiers for Outsourced
User-Generated Data 41
Sagar Sharma and Keke Chen

BDPL: A Boundary Differentially Private Layer Against Machine
Learning Model Extraction Attacks 66
Huadi Zheng, Qingqing Ye, Haibo Hu, Chengfang Fang, and Jie Shi

Information Leakage

The Leakage-Resilience Dilemma 87
Bryan C. Ward, Richard Skowyra, Chad Spensky, Jason Martin,
and Hamed Okhravi

A Taxonomy of Attacks Using BGP Blackholing 107
Loic Miller and Cristel Pelsser

Local Obfuscation Mechanisms for Hiding Probability Distributions 128
Yusuke Kawamoto and Takao Murakami

A First Look into Privacy Leakage in 3D Mixed Reality Data 149
Jaybie A. de Guzman, Kanchana Thilakarathna, and Aruna Seneviratne

Signatures and Re-encryption

Flexible Signatures: Making Authentication Suitable
for Real-Time Environments. 173
Duc V. Le, Mahimna Kelkar, and Aniket Kate

DGM: A Dynamic and Revocable Group Merkle Signature 194
Maxime Buser, Joseph K. Liu, Ron Steinfeld, Amin Sakzad,
and Shi-Feng Sun

XX Contents — Part 1

Puncturable Proxy Re-Encryption Supporting to Group Messaging Service. . .

Tran Viet Xuan Phuong, Willy Susilo, Jongkil Kim, Guomin Yang,
and Dongxi Liu

Generic Traceable Proxy Re-encryption and Accountable Extension

in Consensus Network. e

Hui Guo, Zhenfeng Zhang, Jing Xu, and Mingyuan Xia

Side Channels

Side-Channel Aware Fuzzing

Philip Sperl and Konstantin Bottinger

NetSpectre: Read Arbitrary Memory over Network

Michael Schwarz, Martin Schwarzl, Moritz Lipp, Jon Masters,
and Daniel Gruss

maskVerif: Automated Verification of Higher-Order Masking

in Presence of Physical Defaults

Gilles Barthe, Sonia Belaid, Gaétan Cassiers, Pierre-Alain Fouque,
Benjamin Grégoire, and Francois-Xavier Standaert

Automated Formal Analysis of Side-Channel Attacks

on Probabilistic Systems

Chris Novakovic and David Parker

Formal Modelling and Verification

A Formal Model for Checking Cryptographic API Usage in JavaScript

Duncan Mitchell and Johannes Kinder

Contingent Payments on a Public Ledger: Models and Reductions

for Automated Verification. e

Sergiu Bursuc and Steve Kremer

Symbolic Analysis of Terrorist Fraud Resistance.

Alexandre Debant, Stéphanie Delaune, and Cyrille Wiedling

Secure Communication Channel Establishment: TLS 1.3

(over TCP Fast Open) vs. QUIC.

Shan Chen, Samuel Jero, Matthew Jagielski, Alexandra Boldyreva,
and Cristina Nita-Rotaru

215

300

319

Contents — Part [

Attacks

Where to Look for What You See Is What You Sign? User Confusion

in Transaction Security it

Vincent Haupert and Stephan Gabert

On the Security and Applicability of Fragile Camera Fingerprints

Erwin Quiring, Matthias Kirchner, and Konrad Rieck

Attacking Speaker Recognition Systems with Phoneme Morphing.

Henry Turner, Giulio Lovisotto, and Ivan Martinovic

Practical Bayesian Poisoning Attacks on Challenge-Based Collaborative

Intrusion Detection Networks i

Weizhi Meng, Wenjuan Li, Lijun Jiang, Kim-Kwang Raymond Choo,
and Chunhua Su

A Framework for Evaluating Security in the Presence of Signal

Injection Attacks.ottt

llias Giechaskiel, Youqgian Zhang, and Kasper B. Rasmussen

Secure Protocols

Formalizing and Proving Privacy Properties of Voting Protocols

Using Alpha-Beta Privacy

Sébastien Gondron and Sebastian Modersheim

ProCSA: Protecting Privacy in Crowdsourced Spectrum Allocation

Max Curran, Xiao Liang, Himanshu Gupta, Omkant Pandey,
and Samir R. Das

Breaking Unlinkability of the ICAO 9303 Standard for e-Passports

Using Bisimilarity.o

Thor Filimonov, Ross Horne, Sjouke Mauw, and Zach Smith

Symmetric-Key Corruption Detection: When XOR-MACs Meet

Combinatorial Group Testingt

Kazuhiko Minematsu and Norifumi Kamiya

Useful Tools

Finding Flaws from Password Authentication Code in Android Apps

Siqgi Ma, Elisa Bertino, Surya Nepal, Juanru Li, Diethelm Ostry,
Robert H. Deng, and Sanjay Jha

XXi

450

619

XXil Contents — Part 1

Identifying Privilege Separation Vulnerabilities in IoT Firmware
with Symbolic Execution L 638
Yao Yao, Wei Zhou, Yan Jia, Lipeng Zhu, Peng Liu, and Yuqing Zhang

iCAT: An Interactive Customizable Anonymization Tool 658
Momen Ogqaily, Yosr Jarraya, Mengyuan Zhang, Lingyu Wang,
Makan Pourzandi, and Mourad Debbabi

Monitoring the GDPR 681
Emma Arfelt, David Basin, and Soren Debois
Blockchain and Smart Contracts

Incentives for Harvesting Attack in Proof of Work Mining Pools 703
Yevhen Zolotavkin and Veronika Kuchta

A Lattice-Based Linkable Ring Signature Supporting Stealth Addresses. 726
Zhen Liu, Khoa Nguyen, Guomin Yang, Huaxiong Wang,
and Duncan S. Wong

Annotary: A Concolic Execution System for Developing Secure
Smart CONtracts v it e e e e e e 747
Konrad Weiss and Julian Schiitte

PDFS: Practical Data Feed Service for Smart Contracts 767
Juan Guarnizo and Pawel Szalachowski

Towards a Marketplace for Secure Outsourced Computations. 790
Hung Dang, Dat Le Tien, and Ee-Chien Chang

Author Index e 809

Contents — Part 11

Software Security

Automatically Identifying Security Checks for Detecting Kernel
Semantic Bugs 3
Kangjie Lu, Aditya Pakki, and Qiushi Wu

Uncovering Information Flow Policy Violations in C Programs
(Extended AbStract). 26
Darion Cassel, Yan Huang, and Limin Jia

BinEye: Towards Efficient Binary Authorship Characterization

Using Deep Learning. 47
Saed Alrabaee, ElMouatez Billah Karbab, Lingyu Wang,
and Mourad Debbabi

Static Detection of Uninitialized Stack Variables in Binary Code 68

Behrad Garmany, Martin Stoffel, Robert Gawlik, and Thorsten Holz

Towards Automated Application-Specific Software Stacks 88
Nicolai Davidsson, Andre Pawlowski, and Thorsten Holz

Cryptographic Protocols

Identity-Based Encryption with Security Against the KGC:
A Formal Model and Its Instantiation from Lattices. 113
Keita Emura, Shuichi Katsumata, and Yohei Watanabe

Forward-Secure Puncturable Identity-Based Encryption for Securing

Cloud Emails 134
Jianghong Wei, Xiaofeng Chen, Jianfeng Wang, Xuexian Hu,
and Jianfeng Ma

Feistel Structures for MPC, and More 151
Martin R. Albrecht, Lorenzo Grassi, Léo Perrin, Sebastian Ramacher,
Christian Rechberger, Dragos Rotaru, Arnab Roy,
and Markus Schofnegger

Arithmetic Garbling from Bilinear Maps 172
Nils Fleischhacker, Giulio Malavolta, and Dominique Schréder

XXV Contents — Part II

Security Models

SEPD: An Access Control Model for Resource Sharing
in an IoT Environment. 195
Henrique G. G. Pereira and Philip W. L. Fong

Nighthawk: Transparent System Introspection from Ring -3............. 217
Lei Zhou, Jidong Xiao, Kevin Leach, Westley Weimer, Fengwei Zhang,
and Guojun Wang

Proactivizer: Transforming Existing Verification Tools into Efficient

Solutions for Runtime Security Enforcement. 239
Suryadipta Majumdar, Azadeh Tabiban, Meisam Mohammady,
Alaa Ogqaily, Yosr Jarraya, Makan Pourzandi, Lingyu Wang,
and Mourad Debbabi

Enhancing Security and Dependability of Industrial Networks
with Opinion Dynamics. 263
Juan E. Rubio, Mark Manulis, Cristina Alcaraz, and Javier Lopez

Searchable Encryption

Dynamic Searchable Symmetric Encryption with Forward
and Stronger Backward Privacy L L 283
Cong Zuo, Shi-Feng Sun, Joseph K. Liu, Jun Shao, and Josef Pieprzyk

Towards Efficient Verifiable Forward Secure Searchable

Symmetric Encryption. e 304
Zhongjun Zhang, Jianfeng Wang, Yunling Wang, Yaping Su,
and Xiaofeng Chen

Generic Multi-keyword Ranked Search on Encrypted Cloud Data 322
Shabnam Kasra Kermanshahi, Joseph K. Liu, Ron Steinfeld,
and Surya Nepal

An Efficiently Searchable Encrypted Data Structure for Range Queries 344
Florian Kerschbaum and Anselme Tueno
Privacy

GDPiRated — Stealing Personal Information On- and Offline 367
Matteo Cagnazzo, Thorsten Holz, and Norbert Pohlmann

Location Privacy-Preserving Mobile Crowd Sensing
with Anonymous Reputation 387
Xun Yi, Kwok-Yan Lam, Elisa Bertino, and Fang-Yu Rao

Contents — Part 11 XXV

OCRAM-Assisted Sensitive Data Protection on ARM-Based Platform. 412
Dawei Chu, Yuewu Wang, Lingguang Lei, Yanchu Li, Jiwu Jing,
and Kun Sun

Privacy-Preserving Collaborative Medical Time Series Analysis
Based on Dynamic Time Warping., 439
Xiaoning Liu and Xun Yi

Key Exchange Protocols

IoT-Friendly AKE: Forward Secrecy and Session Resumption Meet
Symmetric-Key Cryptography. 463
Gildas Avoine, Sébastien Canard, and Loic Ferreira

Strongly Secure Identity-Based Key Exchange with Single
Pairing Operation 484
Junichi Tomida, Atsushi Fujioka, Akira Nagai, and Koutarou Suzuki

A Complete and Optimized Key Mismatch Attack on NIST
Candidate NewHope 504
Yue Qin, Chi Cheng, and Jintai Ding

Breakdown Resilience of Key Exchange Protocols: NewHope,
TLS 1.3, and Hybrids 521
Jacqueline Brendel, Marc Fischlin, and Felix Giinther

Web Security

The Risks of WebGL: Analysis, Evaluation and Detection. 545
Alex Belkin, Nethanel Gelernter, and Israel Cidon

Mime Artist: Bypassing Whitelisting for the Web with JavaScript

Mimicry Attacks.o 565
Stefanos Chaliasos, George Metaxopoulos, George Argyros,
and Dimitris Mitropoulos

Fingerprint Surface-Based Detection of Web Bot Detectors 586
Hugo Jonker, Benjamin Krumnow, and Gabry Viot

Testing for Integrity Flaws in Web Sessions. 606
Stefano Calzavara, Alvise Rabitti, Alessio Ragazzo,
and Michele Bugliesi

Author Index e 625

Machine Learning

®

Check for
updates

Privacy-Enhanced Machine Learning
with Functional Encryption

Tilen Marc!2, Miha Stopar!, Jan Hartman', Manca Bizjak!(®),
and Jolanda Modic!

! XLAB d.o.o0., Ljubljana, Slovenia
{tilen.marc, miha.stopar, jan.hartman, manca.bizjak,
jolanda.modic}@xlab.si
2 Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia

Abstract. Functional encryption is a generalization of public-key
encryption in which possessing a secret functional key allows one to learn
a function of what the ciphertext is encrypting. This paper introduces
the first fully-fledged open source cryptographic libraries for functional
encryption. It also presents how functional encryption can be used to
build efficient privacy-enhanced machine learning models and it pro-
vides an implementation of three prediction services that can be applied
on the encrypted data. Finally, the paper discusses the advantages and
disadvantages of the alternative approach for building privacy-enhanced
machine learning models by using homomorphic encryption.

Keywords: Functional encryption + Cryptographic library -
Machine learning - Homomorphic encryption - Privacy

1 Introduction

Today, almost every part of our lives is digitalized: products, services, business
operations. With the constant increase in connectivity and digitalization, huge
amounts of personal data are often collected without any real justification or
need. On the other hand, there is a growing concern over who is in possession
of this data and how it is being used. With increasingly more privacy-aware
individuals and with ever stricter data protection requirements (GDPR, ePri-
vacy CCPA), organizations are seeking a compromise that will enable them to
collect and analyse their users’ data, to innovate, optimize, and grow their busi-
nesses, while at the same time comply with legal frameworks and keep trust and
confidence of their users.

When individuals themselves use technologies like end-to-end encryption to
protect their data, this can greatly improve their privacy online because the ser-
vice providers never see raw data. But when a service provider does not have

T. Marc and M. Stopar—Contributed equally to this work.

© Springer Nature Switzerland AG 2019
K. Sako et al. (Eds.): ESORICS 2019, LNCS 11735, pp. 3-21, 2019.
https://doi.org/10.1007/978-3-030-29959-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29959-0_1&domain=pdf
https://doi.org/10.1007/978-3-030-29959-0_1

4 T. Marc et al.

access to raw data, it cannot analyse the data and it thus cannot offer func-
tionalities like search or data classification. Indeed, almost all rich functionality
to which users are accustomed today is out of the question when encryption
is used. However, there are encryption techniques which do not impose a dras-
tic reduction of data utility and consequently functionality. The probably most
known such technique is Homomorphic Encryption (HE). HE enables additions
and multiplications over the encrypted data, which consequently enables higher-
level functionality such as machine learning on the encrypted data. However,
HE is computationally expensive and significantly reduces service performance.
Another technique, perhaps lesser known, is Functional Encryption (FE). Simi-
larly as HE, it allows computation on encrypted data. More precisely, the owner
of a decryption key can learn a function of the encrypted data. This gives a pos-
sibility to use the encrypted data for various analysis or machine learning models
by controlling the information one can get from it. In this paper we present first
two fully-fledged FE libraries, we outline how they can be used to build machine
learning services on encrypted data, and we discuss strengths and limitations of
FE compared to the HE approach.

While there exist schemes for general FE (see [15,28,29,44]), they rely on
non-standard, ill-understood assumptions and are in many cases extremely time-
consuming. On the contrary, we focused on the implementation of efficient
schemes of restricted functionality but still of practical interest. Our aim was
a flexible and modular implementation that can be applied to various applica-
tions and does not predetermine usage. We offer our work as open-source; all the
code with guidelines is available online on the FENTEC GitHub account [23].

Contributions. This paper addresses the lack of implementations of practi-
cal FE schemes that enable computation on the encrypted data through the
following contributions:

1. Implementation of FE libraries. We present two fully-fledged FE crypto-
graphic libraries, named GoFE and CiFEr. We overview the different under-
lying primitives (modular arithmetic, pairings, lattices) which can be chosen
by the user of the library when instantiating an FE scheme. This is presented
in Sects. 2 and 3.

2. Performance evaluation of FE libraries. In Sect. 4, we compare the efficiency
of various FE schemes and underlying primitives.

3. Design and implementation of privacy-enhanced machine learning services.
In Sects. 5, 6, 7, we present the implementation and performance of three
privacy-enhanced analysis services based on FE.

4. Comparison of FE and HE approaches. Furthermore, in Sects. 5, 6, 7, we dis-
cuss the advantages and disadvantages of FE compared to the HE approach.

2 Functional Encryption Libraries

FE is a cryptographic procedure which allows to delegate the computation of
certain functions of the encrypted data to third parties. This can be achieved

Privacy-Enhanced Machine Learning with Functional Encryption 5

by generating specific secret keys for these functions. An FE scheme consists
of a set of five algorithms. The setup algorithm takes a security parameter as
input and generates a mathematical group where operations take place. The
master key generation creates a public key together with a master secret key.
The functional key derivation algorithm takes as input the master secret key and
a particular function f to generate a key depending on f. To encrypt a message
x, the encryption algorithm has to be run on input x and using the public
key (some schemes are private-key and require also a secret key) to obtain a
ciphertext. Then, given the encryption of a message x, the holder of the key
corresponding to the function f is able to compute the value of f(z) using the
decryption algorithm but nothing else about the encrypted data is revealed.

Many recent papers [3,4,6,16,22] developed various FE encryption schemes
with an aim to make such schemes practical. Nevertheless, most of them remain
theoretical, since they do not provide implementation or practical evaluation of
the schemes. We fill this gap by presenting two FE libraries: GoFE [27] and CiFEr
[26]. GOFE is implemented in the programming language Go and is simpler to
use, while CiFEr is implemented in C and aims at a lower level, possibly IoT
related applications. Both provide the same FE schemes via a similar API, any
differences are due only to the different paradigms of the two programming
languages.

2.1 Implemented Schemes

Due to the computational complexity and impracticality of general purpose FE
schemes, different schemes were designed for evaluation of various functions
of lesser complexity. We separated them into three categories: inner-product
schemes, quadratic schemes, and attribute-based encryption (ABE) schemes.

Schemes in GoFE and CiFEr use cryptographic primitives based on either
modular arithmetic, pairings, or lattices. Most schemes can be instantiated from
different primitives — the user can choose the primitive based on the performance
requirements. In the following sections, we list the schemes and the security
assumptions they are based on. The following assumptions are used: Decisional
Diffie-Hellman (DDH), Decisional Composite Residuosity (DCR) (both modular
arithmetic), Generic Group Model (GGM), Symmetric eXternal Diffie-Hellman
(SXDH), Decisional Bilinear Diffie-Hellman (BDH), Decisional Linear (DLIN)
(all pairings), Learning With Errors (LWE), and Ring Learning With Errors
(ring-LWE) (both lattices).

Inner-Product Schemes. Inner-product FE schemes allow encryption of a
vector x € Z" and independently generation of a key sk, depending on a vector
y € Z", such that given the encryption of = together with sk, one can perform a
computation on the encrypted x to obtain the value x -y (inner-product of z and
y). This simple function proves itself very useful: simple statistics of encrypted
data, linear or logistic regression, and more functions can be seen as computing
certain inner-product of the data. We discuss two possible applications based on
the inner-product in Sects.5 and 6.

6 T. Marc et al.

The libraries currently provide inner-product schemes based on the following
papers:

— Simple Functional Encryption Schemes for Inner Products [3].
The first efficient schemes for inner-products, based on the DDH or LWE
assumptions.

— Fully Secure Functional Encryption for Inner Products, from Stan-
dard Assumptions [6]. Inner-product encryption schemes with a higher
level of (adaptive) security. In addition to DDH- and LWE-based schemes, a
more efficient DCR-based scheme is introduced.

— Multi-Input Functional Encryption for Inner Products: Function-
Hiding Realizations and Constructions without Pairings [4]. Multi-
input FE scheme for inner-products is a scheme supporting encryption of
elements of vector distributed among different clients. The scheme can be
instantiated on DDH, LWE, and DCR assumptions.

— Decentralized Multi-client Functional Encryption for Inner Prod-
uct [16]. This scheme allows various users to generate ciphertexts supporting
inner-product evaluation without the presence of a central authority and with
functional decryption keys that can also be generated in a decentralized way.
Based on SXDH assumption.

— Decentralizing Inner-Product Functional Encryption [2]. A general
procedure that decentralizes multi-client inner-product schemes. The scheme
can be instantiated on DDH, LWE, and DCR assumptions.

Additionally, we implemented a prototype ring-LWE based inner-product
scheme for which a security proof will be provided in a future work.

Quadratic Schemes. To provide an FE scheme able to evaluate an arbitrary
function on encrypted data, one needs to build an FE system computing polyno-
mials of arbitrary order. Currently, no practical FE schemes for polynomials of
order higher than 2 exist. Nevertheless, many complex functions can be realized
as evaluations of quadratic polynomials. A quadratic FE scheme, implemented
in CiFEr and GoFE, allows encryption of vectors x1, 2 € Z" and independently
generation of a key skpy depending on a matrix H € Z™ ™, such that given
the encryption of z1,xo together with sky one can obtain the value foxg
(quadratic-product of 21,22 and H). In particular, if ;1 = x5, this is a quadratic
polynomial of values of z;. Such functions are sufficient for performing many
machine learning tasks on encrypted data. We demonstrate its use in Sect.7 on
a task of classifying encrypted images with a 2-layer neural network.

GoFE and CiFEr provide the implementation of the currently most efficient
quadratic FE scheme:

— Reading in the Dark: Classifying Encrypted Digits with Functional
Encryption [22]. A scheme for quadratic multi-variate polynomials enabling
efficient computation of quadratic polynomials on encrypted vectors. It can
be instantiated on GGM assumption.

Privacy-Enhanced Machine Learning with Functional Encryption 7

ABE Schemes. Attribute-based encryption is not strictly classified as FE, but
it allows secure access control over data and constructions of certain functionali-
ties on encrypted data [45]. For the latter reason, we included two such schemes
in the libraries. The basic idea of ABE is that users are given keys depending on
their attributes and are able to decrypt given data only if their attributes are
sufficient.

— Attribute-Based Encryption for Fine-Grained Access Control of
Encrypted Data [32]. The first scheme which enables fine-grained shar-
ing of encrypted data with distribution process that enables decryption only
for users in possession of specified attributes. Based on BDH assumption.

— FAME: Fast Attribute-based Message Encryption [5]. A scheme that
enables attribute based limitation of the access to encrypted data specified
through the encryption process. Based on DLIN assumption.

3 Implementation of Cryptographic Primitives

GoFE and CiFEr aim at providing a flexible implementation of FE schemes. We
do not use specially chosen groups and parameters which enable better perfor-
mance (this can still be done by the user). Instead, we provide flexibility in terms
of choosing the mathematical groups where operations take place and security
parameters which determine the key lengths.

Practical FE schemes are based either on modular arithmetic, pairings, or
lattices. Implementation of FE schemes based on modular arithmetic is rela-
tively straight-forward. Our implementation is based on the representation of
arbitrarily large numbers using the GMP library [43] in C and the standard
library package Big in Go. On the other hand, the implementation of schemes
based on pairings and lattices requires lower-level math artillery.

Quite surprisingly, we found only one pairings library which provides all
required functionality. Furthermore, there is no fully-fledged library for lattice-
based cryptography that could be easily reused. In what follows we present
cryptographic primitives needed in FE schemes and address the issues of (lack
of) their implementations.

3.1 Pairing Schemes

Numerous libraries for pairings are available, but most lack at least some essen-
tial functionality or performance optimization. The latter is crucial since the
pairing operation presents a bottleneck in many schemes. Considering existing
open source implementations such as PBC [36], RELIC [24], Apache Milagro
Cryptographic Library (AMCL) [10], the latter was chosen as an underlying
pairing library for CiFEr because it is portable, small, and optimized to fit into
the smallest possible embedded footprint. Choosing a Go pairing library to be
used in GoFE was more challenging. Barreto-Naehrig [11] bilinear pairings are
frequently used as they allow a high security and efficiency level. Two well-known

8 T. Marc et al.

Barreto-Naehrig pairing libraries exist for the Go programming language: bn256
[34] is a part of the official Go crypto library while Cloudflare bn256 [17] is an
optimized version of the former. Neither of them provide hashing operations for
pairing groups. We forked [17] and provided hashing operations for both groups.
For G1, we implemented the try-and-increment algorithm [12], while for G, we
implemented the technique from [25]. Further algorithms and optimizations will
be considered in the future.

3.2 Lattice Schemes

The resistance of cryptographic protocols to post-quantum attacks is becoming
ever more important as we get closer to the realization of quantum computers.
Lattice-based cryptography is believed to be secure against quantum computers.
Its cryptographic constructions are based on the presumed hardness of lattice
problems (e.g., for example, the shortest vector problem). Currently, the most
used constructions are based on the Learning With Errors (LWE) problem [41]
or its algebraic ring variation (ring-LWE) [37]. At this time, FE schemes are
built only on the LWE assumption; however, there are two main bottlenecks in
all such schemes. These are sampling random values distributed according to the
discrete Gaussian distribution and matrix multiplications.

Discrete Gaussian Sampling. Discrete Gaussian sampling is a problem of
sampling values distributed according to Gaussian distribution but limited only
to discrete values. Many algorithms and software implementations have tackled
this issue, see [20,21,31,33]. Practical implementation of (ring-)LWE schemes
available as open source libraries mostly solve this problem in two ways. Either
they avoid Gaussian sampling by replacing it with a uniform or binomial dis-
tribution or implement a fast sampler optimized by precomputations for chosen
parameters. Neither of the two solutions is applicable in FE schemes. On the one
hand, proofs of the security of (ring-)LWE FE schemes depend on the distribu-
tion being Gaussian and can easily be broken for uniform distribution. Moreover,
precomputations are not just in conflict with the flexibility of GoFE and CiFEr,
but are not feasible due to higher variance needed in FE schemes.

For this reason, we implemented a discrete Gaussian sampler based on the
algorithm from [21]. It is based on sampling discrete Gaussian values with small
variance from pre-computed tables together with uniform sampling. Such sam-
pling is efficient but still presents a bottleneck of the schemes.

Matrix Multiplications. The second bottleneck of FE schemes based on the
LWE problem is due to matrix-vector and matrix-matrix multiplications. The
reason for this is that the matrices generated in the existing FE scheme have
much higher dimensions and inputs. This cannot be fixed implementation-wise;
thus the construction of efficient LWE based FE schemes remains an open prob-
lem. One way of avoiding costly operations and spacious public keys is by replac-
ing LWE schemes with ring-LWE schemes [37].

Privacy-Enhanced Machine Learning with Functional Encryption 9

3.3 ABE Schemes

ABE schemes provide functionality where clients can be allowed (or disallowed)
to access the decryption of a ciphertext based on a set of attributes that they
possess. Most ABE schemes use pairings as an underlying cryptographic primi-
tive, but there is another, ABE specific, primitive needed: Linear Secret Sharing
Scheme (LSSS) matrices.

A part of every ABE scheme is a policy that defines which entity can decrypt
the ciphertext based on the attributes. A Monotone Span Program (MSP) is
defined as a policy that accepts a subset of attributes as sufficient if a certain
subset of chosen vectors spans a vector of ones. Hence, to create an MSP policy,
one must carefully choose a set of vectors representing attributes in a way that
they describe the desired rules of decryption. This set of vectors is also known as
an LSSS matrix. On the other hand, expressing rules of decryption as a boolean
expression is preferred for practical usage and interpretability. Therefore, we have
implemented an algorithm that transforms a boolean expression into an MSP
structure. We have chosen the Lewko-Waters algorithm [35] for this task due to
its simplicity and efficiency. The algorithm can transform an arbitrary boolean
expression that does not include a “NOT” operation (—) into a set of vectors (a
matrix) whose dimensions only depend on the number of “AND” operators (A)
and the number of variables in the expression.

4 Benchmarks

In the following section, we focus on a practical evaluation of implemented
schemes, comparing the benefits and downsides, and discussing their practi-
cality for the possible uses. As noted in Sect. 3, the schemes are implemented
with the goal of flexibility and having an easy-to-use API. Thus, the schemes
can be initialized with an arbitrary level of security and other metaparameters.
Since there is no universal benchmark to compare all the schemes, we evaluate
them on various sets of parameters, exposing many properties of the schemes.
Due to space limitations, we do not present the benchmarks of all the imple-
mented schemes here but rather focus on the demonstrative results. All of the
benchmarks were performed on an Intel(R) Core(TM) i7-6700 CPU @ 3.40 GHz.

4.1 Inner-Product Schemes

Recall that an inner-product FE scheme is such that it allows encrypting a vector
x € Z* and independently generating a key sk, depending on a vector y € 7t so
that one can perform computations on the encrypted = and use sk, to decrypt
the inner-product z - y and nothing more.

As noted in Sect. 2, the schemes are based on different security assumptions.
GoFE and CiFEr include implementation of five inner-product schemes (exclud-
ing decentralized and multi-client ones), where two of them are based on the
DDH assumption, two of them are based on the LWE assumption, and one on

10 T. Marc et al.

Table 1. Performance of key generation (in seconds) in inner product schemes w.r.t.
vector length 1

1 Paillier[Go] | Paillier[C] | LWE[Go] | LWE[C] | DDH[Go] | DDHIC]
0.1549 0.0657 12.9523 | 7.3909 0.0080 0.0041
5 0.5612 0.2938 62.1945 | 46.2466 |0.0402 0.0204
10 |1.0600 0.5756 122.7627 | 74.8795 |0.0840 0.0411
20 |2.0551 1.1384 266.5059 | 196.6151 | 0.1584 0.0849
50 |5.0520 2.8410 878.3684 | 559.6070 | 0.3954 0.2055
100 | 10.0916 5.7032 N/A N/A 0.7829 0.4149
200 | 20.0883 11.3700 N/A N/A 1.5710 0.8190

the DCR assumption. Since both of the DDH-based and both of the LWE-based
schemes have similar performance, we only compare the DDH-based scheme from
[6], the LWE-based scheme from [3], and the DCR-based scheme from [6] which
is also known as Paillier-based FE scheme.

The DDH schemes assume the difficulty of computing a discrete logarithm
in a quadratic residues subgroup of Zy, where the security of such assumption
depends on the bit size of the prime number p. To achieve resistance to all known
attacks with complexity less than O(2'28), it is common practice to pick p to
be a safe prime with 3072 bits. The DCR assumption relies on the difficulty of
distinguishing the so-called n-residues in Z, group, which further relies on the
difficulty of factoring a large number n. We choose n to be a 3072-bit number and
a product of two safe primes as it is considered safe for attacks with complexity
in O(2128).

The security level of the LWE assumption is harder to access due to its
novelty. The papers developing the LWE-based FE schemes argue its security
based on the original work of Regev [41] while it has become a common practice
in the recent proposals of (ring-)LWE-based schemes [7,8,13] to evaluate this
security through evaluation of attacks on the assumption. For this reason, we
implemented a setup procedure that generates the parameters for each instanti-
ation of the scheme that are secure for the so-called primal and dual attack on
LWE. This was necessary since the originally proposed parameters are estimated
to possess significantly less security than claimed. For additional information on
the attacks, we direct the reader to the above references.

Each inner-product scheme comprises five parts: setup, generation of master
keys, encryption, derivation of an inner-product key, and decryption. In the
following tables, we evaluate the performance for key generation, encryption, and
decryption. The complexity of the functional key derivation process is negligible
in all the schemes compared to the other steps, while the setup procedure is quite
time-consuming but can be avoided for practical applications since generating a
new group for every deployment does not bring additional security.

Privacy-Enhanced Machine Learning with Functional Encryption 11

Table 2. Performance of encryption (in seconds) in inner product schemes w.r.t. vector
length ¢

1 Paillier[Go] | Paillier[C] | LWE[Go] | LWE[C] | DDH[Go] | DDH[C]
1 0.0796 0.0461 4.4148 6.5212 |0.0120 0.0062
5 0.2389 0.1389 5.5039 6.8358 | 0.0276 0.0145
10 |0.4367 0.2528 6.3218 7.6660 |0.0473 0.0246
20 |0.8357 0.4840 7.2797 8.9215 | 0.0864 0.0464
50 |2.0245 1.1751 7.8941 12.6611 |0.2048 0.1078
100 | 4.0087 2.3266 N/A N/A 0.4027 0.2103
200 | 7.8847 4.6275 N/A N/A 0.7984 0.4141

We demonstrate the efficiency of the schemes depending on parameters /,
defining the dimensionality of the encrypted vectors, and b, being the upper
bound for the coordinates of the inner product vectors. All the results are aver-
ages of many runs on different random inputs.

In Table 1 we compare the key generation procedure across different schemes
with fixed b = 1000 and increasing ¢. The values show that for practical param-
eters the generation of keys in inner-product schemes is linearly dependent on
conventionality ¢. This is in contrast with the dependency on b (not shown in the
table), increasing which only mildly increases the generation if at all, assuming
it is not extremely large. The table shows that LWE-based schemes are practi-
cal only for small parameters. Note a slightly slower performance of the Paillier
scheme compared to the DDH-based scheme which is attributed to the need of
Gaussian sampling, described in Sect. 3. In Table 2 similar observations can be
done for the encryption process.

The biggest difference between the schemes is demonstrated in Fig. 1, measur-
ing the decryption times of the schemes depending on the bound b of the inputs.
While the Paillier scheme has only a slight linear increase in computation times
when b is increased, DDH-based schemes prove themselves practical only for vec-
tors with a small bound b. The latter is owed to finding a discrete logarithm in
its decryption procedure, the performance of which is directly connected to the
size of the decrypted value. Interestingly, LWE-based schemes have the fastest
decryption. Figure 1 shows the dependency for bounded random vectors.

4.2 Decentralized Inner-Product Scheme

Multi-client schemes allow encryption of vectors by many independent clients.
Decentralized schemes eliminate the need for the central trusted authority for
key generation and derivation. See Sect.6 for an application of a decentralized
scheme.

The implemented decentralized inner-product schemes are either based on a
decentralizing procedure from [2] applied to schemes from [4] or as described

12 T. Marc et al.
Decrypt w.r.t. param b
0.6 { — DDHIC]
—— DDHI[Go]
— LWE[C]
054 — LV\{E.[Go]
—— Paillier[C]
—— Paillier[Go]
0.4
o)
=
0.2
0.1
0.0 =

20000

40000

60000

80000

100000

Fig. 1. Performance graph of decryption in inner product schemes w.r.t. bound b

in [16]. Here, we benchmark the latter, which is based on pairings (SXDH
assumption). The results are presented in Table3. Note that the generation
of keys and the encryption process have better performance than basic inner-
product schemes since both are distributed among users and counted only per
user. The communication overhead is not included in the measurements. The
decryption process involves computing a discrete logarithm as well as perform-
ing a pairing operation.

Table 3. Performance of the decentralized (D) and quadratic (Q) schemes in GoFE

(in seconds)

params KeyGen[D] | KeyGen[Q] | Encrypt[D] | Encrypt[Q)] | Decrypt[D] | Decrypt[Q]
b =1000,1=1 |0.0009 0.0001 0.0001 0.0026 0.0211 0.2903
b =1000,1=5 |0.0009 0.0001 0.0001 0.0117 0.0401 0.9039
b = 1000, 1 = 10| 0.0009 0.0001 0.0001 0.0224 0.0540 1.6454
b = 1000, 1 = 20| 0.0009 0.0002 0.0001 0.0437 0.0731 2.4223
b =15000,1=1 |0.0009 0.0001 0.0001 0.0025 0.0827 1.8973
b = 10000, 1 = 1|0.0009 0.0001 0.0001 0.0027 0.1614 3.1074
b = 5000, 1 = 10| 0.0009 0.0001 0.0001 0.0228 0.2376 14.2446

4.3 Quadratic Scheme

Quadratic schemes are a powerful tool for evaluating more complex functions
on encrypted data. Table 3 evaluates the performance of the quadratic scheme
from [22]. The decryption process turns out to be time-consuming as it requires

Privacy-Enhanced Machine Learning with Functional Encryption 13

computing a discrete logarithm and pairing operation. Note that the input value
for a discrete logarithm is bigger compared to the inner-product schemes due
to the quadratic operations applied on the input vector x. We demonstrate in
Sect. 7 that the scheme’s performance is still sufficient for the real-world use
cases.

5 Privacy-Friendly Prediction of Cardiovascular Diseases

In this section, we demonstrate how FE can enable privacy-enhanced analyses.
We show how the risk of general cardiovascular disease (CVD) can be evaluated
using only encrypted data.

The demonstrator comprises the following components: Key Server is a cen-
tral authority component generating keys, Analyses Service is a component to
which the user sends encrypted data and obtains the risk evaluation of CVD, and
Client component which obtains the public key from the Key Server, encrypts
user’s data with the public key and sends it to the Service, see Fig. 2.

| Privacy-Friendly Analyses Service ‘

D 1: generate master secret/public key
I

2: get the public key !

4: encrypt vector x containing user's
data: c = encrypt(x, pub_key)

o

: request a CVD risk evaluation

T
I

i

i

I

* |
ﬂ 3: return pub_key }
i

i

i

I

|

by sending the ciphertext c }

6: get the functional key for vector y

7: return key_y

8: te (d t) i duct:
The service asks for two functional T compute (decrypt) inner produc

keys (key_yl and key_y2) and computes xxy = decrypt(c, key_y, y)
two inner products (xkyl and x*y2).
We omit this detail for the sake of
simplicity.

9: run analysis alogorithm
10: return CVD risk result using x*y value as input

Fig. 2. Interactions between CVD demonstrator components

The Framingham heart study [19] followed patients from Framingham, Mas-
sachusetts, for many decades starting in 1948. Many multivariable risk algo-
rithms used to assess the risk of specific atherosclerotic cardiovascular disease
events have been developed based on the original Framingham study. Algorithms
most often estimate the 10-year or 30-year CVD risk of an individual.

The input parameters for algorithms are sex, age, total and high-density
lipoprotein cholesterol, systolic blood pressure, treatment for hypertension,
smoking, and diabetes status. The demonstrator shows how the risk score can
be computed using only the encrypted values of the input parameters. The user
specifies the parameters in the Client program; these are encrypted and sent to
the Analyses Service component. The service computes the 30-year risk [39] and
returns it to the user.

The source code for all three components is available on FENTEC GitHub
account [40]. We use the inner-product FE scheme based on Paillier cryptosystem

14 T. Marc et al.

[6] due to its fast decryption operation. The Client component prepares a vector
x which contains the eight input parameters, which in GoFE looks like:

x := data.NewVector([]*big.Int{sex, age, systolicBloodPressure,
totalCholest, hdlCholest, smoker, treatedBloodPressure, diabetic})

Framingham risk score algorithms are based on Cox proportional hazards
model [18]. Part of it is multiplication of the input parameters by regression fac-
tors which are real numbers. In the 30-year algorithm, the vector z is multiplied
by two vectors (inner-product):

y_1 = (0.34362, 2.63588, 1.8803, 1.12673, -0.90941, 0.59397,
0.5232, 0.68602)
y_2 = (0.48123, 3.39222, 1.39862, -0.00439, 0.16081, 0.99858,
0.19035, 0.49756)

Regression factors need to be converted into integers because cryptographic
schemes operate with integers. This is straight-forward in FE schemes: we mul-
tiply factors by the power of 10 to obtain whole numbers. The Client encrypts
vector x using public key obtained from the Key Server:

ciphertext, err := paillier.Encrypt(x, masterPubKey)

The Client then sends ciphertext to the Service. Service beforehand obtained
two functional encryption keys from the Key Server: a key to compute the inner-
product of x and yq, and a key to compute the inner-product of x and 2. Now
it can compute the inner-products:

paillier.Decrypt(ciphertext, key_1, y_1)
paillier.Decrypt(ciphertext, key_2, y_2)

xy_1, err :
Xy_2, err :

To obtain the risk score the algorithm computes e®¥1—21:29326612

e?y2—20.12840698 fo]lowed by 1340 - 1340 power functions, 1340 - 3 multiplications,
and 1340 additions on the obtained values. For details, see [39] or the source code
[40]. These operations are executed by the Service and returned to the Client
component.

A user thus does not need to know anything about the algorithm to obtain
the personal CVD risk score, and at the same time the Service does not know
anything about the user’s parameters (except the inner-products of x with vec-
tors y1 and ys).

However, it has to be noted that the Service does know the risk score. This
is one of the main differences with HE. HE computes the encryption of the risk
score, which is then decrypted by the user (and thus known only by the user).

Paper [14] reports on the implementation of the 10-year CVD risk score
using HE. While this approach has a clear advantage of prediction service not
knowing the risk score, it is also far less efficient than the approach with FE. In
a setup which enables the evaluation of higher degree polynomials (such as 7),
one multiplication of ciphertexts requires around 5s on a modern laptop (Intel
Core i7-3520M at 2.9 GHz). Note that higher degree polynomials are needed to

Privacy-Enhanced Machine Learning with Functional Encryption 15

approximate the exponential function by a Taylor series. While in the 10-year
CVD risk algorithm, there is only one evaluation of the exponential function,
the 30-year algorithm uses two evaluations. An evaluation of the exponential
function in [14] requires more than 30s since computing the Taylor series of the
degree 7 takes more than 30s (the powers of x already require six multiplications
at 5s each). On the contrary, our FE approach returns the result in a matter of
milliseconds.

Furthermore, there is a significant communication overhead in HE approach
as the ciphertext can grow to roughly one megabyte (16384 coefficients of 512-
bit). Communication messages in FE are much smaller — a few kilobytes.

HE approach could be sped up with computing the encryption of only the
inner-products (as it is in FE). However, as the prediction service would know
only the encryption of the inner-product, the rest of the risk score algorithm
would need to be computed at the user’s side and would require to move signif-
icant parts of the prediction logic to the Client component. In many scenarios,
this might not be desirable, especially if the prediction logic is computation-
ally expensive. As a matter of fact, for all services where the prediction logic is
computationally expensive, the FE approach is far more performant, but at the
expense that the prediction service knows the predicted value.

6 London Underground Anonymous Heatmap

In this section, we demonstrate how a traffic heatmap can be generated based
on encrypted data. Given the encrypted information about users of the London
Underground, our service can measure the traffic density at each particular sta-
tion. Thus, congestions and potential increases in traffic density can be detected
while the user data is encrypted and remains private.

DMCFE scheme [16] is used for the demonstration [9]. The scheme allows
each user to encrypt the location data in a way that neither the central service
nor the other users can know it. The only information that the central service
can obtain is the information about all the users, preserving the privacy of each
individual. Furthermore, the functional keys needed by the central service are
derived in a decentralized manner, without a centralized authority for generating
keys. Indeed, functional key parts are provided by the users and then combined
by the central service.

Each user locally encrypts the vector specifying the path that was traveled.
The length of the vector is the same as the number of the stations. It con-
sists of 0s and 1s: 1 for stations which the user visited (see Fig.3a for a visual
representation). In GoFE the code looks like:

// pathVec[i] is the value of i-th station, label its name,
// cli] is its encryption

label = station[i]

c[i]l, _ := client.Encrypt(pathVec[i], label)

16 T. Marc et al.

(a) Path of one user (b) Heatmap

Fig. 3. Information of one user vs. information the central service obtains.

While we use randomly generated user data for this demonstration, one can
easily imagine a smartphone app which tracks the user’s path, generates a vector,
encrypts it (all operations performed locally), and finally sends it to the central
service.

In the decentralized scheme [16], the FE keys are generated by the users (no
trusted authority is needed). The users thus provide a functional key to a central
service component. In our case, a functional key for an inner-product vector y
of 1s is provided (the vector length is the number of users). This is because the
central authority decrypts the sum of all the users that traveled through that
station, i.e. a value that can be represented as an inner-product of y and a vector
z of Os and 1s indicating which users traveled through that station. Each user
provides a key share:

// create a vector of 1s:

vecOfOnes := data.NewConstantVector(numClients, big.NewInt(1))
// keyShares is a vector of all the key shares

keyShares[k], _ := clients[k].GenerateKeyShare(vecOfOnes)

}

The central service component collects all the key shares and can now com-
pute (decrypt) the density for each station. The code for this looks like:

for i := 0; i < numStations; i++ {
label := stations[i]
dec = fullysec.NewDMCFEDecryptor(vecOfOnes, label, ciphers[i],
keyShares, numClients)
heatmap[i], _ = dec.Decrypt()

Using a described approach, a variety of other analysis services can be built on
the encrypted data, for example, the power consumption of a group of houses in a
neighborhood, measurements from IoT devices, etc. In the former case, the power
consumption could be encrypted for each hour and sent to the central component.

Privacy-Enhanced Machine Learning with Functional Encryption 17

The central component could then compute (decrypt) the overall consumption
(across all houses) for each particular hour. Based on such privacy-enhanced
computations, various prediction services can be built using only encrypted data.
Note that all such applications cannot be built with HE since the derivation of a
functional decryption key is needed for the central service to decrypt the results.

7 Neural Networks on Encrypted MNIST Dataset

In the previous two sections, we saw how to implement privacy-friendly predictive
services by using efficient FE for inner-products. Using linear functions (inner-
products), many efficient machine learning models can be built based on linear
or logistic regression.

However, in many cases linear models do not suffice. One of such tasks is
image classification where linear classifiers mostly achieve significantly lower
accuracy compared to the higher-degree classifiers — for example, classifiers for
the well-known MNIST dataset where handwritten digits need to be recognized.
A linear classifier on MNIST dataset is reported to have 92% accuracy (Tensor-
Flow’s tutorial [42]), while more complex classifiers achieve over 99% accuracy.

GoFE and CiFEr include a scheme [22] for quadratic multi-variate polyno-
mials which enable computation of quadratic polynomials on encrypted vectors.
This allows richer machine learning models and even basic versions of neural
networks. We provide a machine learning project [38] to demonstrate how an
accurate neural network classifier can be built on the MNIST dataset and how
FE can be used to apply a classifier on the encrypted dataset. This means that
an entity holding an FE key for a classifier can classify encrypted images, i.e.,
can classify each image depending on the digit in the encrypted image, but can-
not see anything else within the image (for example, some characteristics of the
handwriting).

The demonstration uses the GoFE library and the widely-used machine learn-
ing library TensorFlow [1]. The MNIST dataset consists of 60 000 images of
handwritten digits. Each image is a 28 x 28 pixel array, where each pixel is rep-
resented by its gray level. The model we used is a 2-layer neural network with
quadratic function as a non-linear activation function. Training of the model
needs to be done on unencrypted data, while prediction is done on encrypted
images. The images have been presented as 785-coordinate vectors (28 - 28 + 1
for bias). We achieved the accuracy of 97%, a result that is reported also in
[22]. The decryption of one image (applying the trained model on the encrypted
image) takes approximately a second.

Similarly, CryptoNets [30], an HE approach for applying neural networks to
encrypted data, needs an already trained model. The model they use is signifi-
cantly more complex than ours (the trained network has nine layers) and pro-
vides an accuracy of 99%. Note that as currently no efficient FE schemes exist for
polynomials of degree greater than 2, no such complex models are possible with
FE. On the other hand, the execution when using HE approach is significantly
slower. Applying the network on encrypted data using CryptoNets takes 570s

18 T. Marc et al.

on a PC with a single Intel Xeon E5-1620 CPU running at 3.5 GHz. But note
that applying the network allows executing many predictions simultaneously if
this is needed.

Thus, compared to the FE approach, HE can provide more complex machine
learning models and consequently ones with higher accuracy. Nevertheless, HE
has a limitation which is particularly important in the present application. HE
can only serve as privacy-friendly outsourcing of computation, while the result
of this computation can be decrypted only by the owner of the secret key. FE
allows the third party to decrypt the result, in our case the digit in the image,
without exposing the image itself. One can easily imagine a more complex FE
alert system on encrypted video, where the system detects the danger without
violating the privacy of the subjects in the video when there is none. Currently,
only primitive versions of such a system are possible as more efficient schemes
(in terms of performance and polynomial degree) are needed.

8 Conclusions and Future Work

In this paper, we presented the first two fully-fledged functional encryption
libraries. The two libraries are implemented in Go and C programming lan-
guages and offer an easy-to-use API to various FE schemes. We focused on
creating a flexible and efficient implementation to support various use cases and
have demonstrated the practicality by presenting three possible applications of
the libraries: an online privacy-friendly predictor of cardiovascular diseases, an
anonymous traffic heatmap service, and image classification on encrypted data.
We compared the FE with the HE approach on the latter examples, showing
how FE can provide new applications or improve performance by revealing some
information. The libraries are filling the gap between academic research of FE
schemes and their applications to real-life scenarios. As such, they offer a plat-
form for the developers to prototype their products as well as a test place for
academic research on FE.

In our future work, we plan to implement further FE schemes, in partic-
ular, recent multi-client and multi-input schemes which enable a wide range
of applications like running queries on encrypted databases, computation over
encrypted data streams, and multi-client delegation of computation. Further-
more, we plan to implement and evaluate function-hiding schemes which enable
privacy-preserving queries to the prediction services. Also, further optimizations
will be applied.

Acknowledgements. The research was supported, in part, by grant H2020-DS-2017-
780108 (FENTEC).

References

1. Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. In: 12th
USENIX Symposium on Operating Systems Design and Implementation (OSDI
16), pp. 265-283 (2016)

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

Privacy-Enhanced Machine Learning with Functional Encryption 19

Abdalla, M., Benhamouda, F., Kohlweiss, M., Waldner, H.: Decentralizing inner-
product functional encryption. In: Lin, D., Sako, K. (eds.) PKC 2019. LNCS, vol.
11443, pp. 128-157. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17259-6_5

Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption
schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733—
751. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2_33
Abdalla, M., Catalano, D., Fiore, D., Gay, R., Ursu, B.: Multi-input functional
encryption for inner products: function-hiding realizations and constructions with-
out pairings. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol.
10991, pp. 597-627. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96884-1_20

Agrawal, S., Chase, M.: FAME: fast attribute-based message encryption. In: Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, pp. 665-682. ACM (2017)

Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner
products, from standard assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016. LNCS, vol. 9816, pp. 333-362. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53015-3_12

Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. J. Math. Cryptol. 9(3), 169-203 (2015)

Alkim, E., Ducas, L., Péppelmann, T., Schwabe, P.: Post-quantum key exchange —
a new hope. In: 25th USENIX Security Symposium (USENIX Security 2016), pp.
327-343 (2016)

Anonymous heatmap: https://github.com/fentec-project/anonymous-heatmap
Apache Milagro Crypto Library: https://github.com/milagro-crypto/amcl
Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In:
Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319-331. Springer,
Heidelberg (2006). https://doi.org/10.1007/11693383_22

Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In: Boyd,
C. (ed.) ASTACRYPT 2001. LNCS, vol. 2248, pp. 514-532. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45682-1_30

Bos, J., et al.: Frodo: take off the ring! practical, quantum-secure key exchange
from LWE. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, pp. 1006-1018. ACM (2016)

Bos, J.W., Lauter, K., Naehrig, M.: Private predictive analysis on encrypted med-
ical data. J. Biomed. Inform. 50, 234-243 (2014)

Boyle, E., Chung, K.-M., Pass, R.: On extractability obfuscation. In: Lindell, Y.
(ed.) TCC 2014. LNCS, vol. 8349, pp. 52-73. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-54242-8_3

Chotard, J., Dufour Sans, E., Gay, R., Phan, D.H., Pointcheval, D.: Decentralized
multi-client functional encryption for inner product. In: Peyrin, T., Galbraith, S.
(eds.) ASIACRYPT 2018. LNCS, vol. 11273, pp. 703-732. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03329-3_24

Cloudflare implementation of Barreto-Naehrig bilinear pairings: https://github.
com/cloudflare/bn256

Cox, D.R.: Regression models and life-tables. J. R. Stat. Soc. Ser. B (Methodol.)
34(2), 187-202 (1972)

D’agostino, R.B., et al.: General cardiovascular risk profile for use in primary care.
Circulation 117(6), 743-753 (2008)

https://doi.org/10.1007/978-3-030-17259-6_5
https://doi.org/10.1007/978-3-030-17259-6_5
https://doi.org/10.1007/978-3-662-46447-2_33
https://doi.org/10.1007/978-3-319-96884-1_20
https://doi.org/10.1007/978-3-319-96884-1_20
https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-662-53015-3_12
https://github.com/fentec-project/anonymous-heatmap
https://github.com/milagro-crypto/amcl
https://doi.org/10.1007/11693383_22
https://doi.org/10.1007/3-540-45682-1_30
https://doi.org/10.1007/978-3-642-54242-8_3
https://doi.org/10.1007/978-3-642-54242-8_3
https://doi.org/10.1007/978-3-030-03329-3_24
https://github.com/cloudflare/bn256
https://github.com/cloudflare/bn256

20

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

T. Marc et al.

De Clercq, R., Roy, S.S., Vercauteren, F., Verbauwhede, I.: Efficient software imple-
mentation of ring-LWE encryption. In: Proceedings of the 2015 Design, Automa-
tion & Test in Europe Conference & Exhibition, pp. 339-344. EDA Consortium
(2015)

Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.. Lattice signatures and
bimodal Gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol.
8042, pp. 40-56. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
40041-4_3

Dufour Sans, E., Gay, R., Pointcheval, D.: Reading in the dark: classifying
encrypted digits with functional encryption. TACR Cryptol. ePrint Archive 2018,
206 (2018)

FENTEC project Github accunt: https://github.com/fentec-project

de Freitas Aranha, D., Gouvea, C.P.L., Markmann, T.: RELIC. https://github.
com/dis2/bls12

Fuentes-Castaneda, L., Knapp, E., Rodriguez-Henriquez, F.: Faster hashing to
G2. In: International Workshop on Selected Areas in Cryptography, pp. 412-430.
Springer (2011)

Functional encryption library in C: https://github.com/fentec-project/CiFEr
Functional encryption library in Go: https://github.com/fentec-project/gofe
Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. STAM J.
Comput. 45(3), 882-929 (2016)

Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Fully secure attribute based encryp-
tion from multilinear maps. IACR, Cryptol. ePrint Archive 2014, 622 (2014)
Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K., Naehrig, M., Wernsing, J.:
CryptoNets: applying neural networks to encrypted data with high throughput and
accuracy. In: International Conference on Machine Learning, pp. 201-210 (2016)
Gottert, N., Feller, T., Schneider, M., Buchmann, J., Huss, S.: On the design of
hardware building blocks for modern lattice-based encryption schemes. In: Prouff,
E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 512-529. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-33027-8_30

Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Proceedings of the 13th ACM Con-
ference on Computer and Communications Security, pp. 89-98. ACM (2006)
Knuth, D.; Yao, A.: Algorithms and complexity: new directions and recent results,
chapter the complexity of nonuniform random number generation (1976)

Langley, A., Burke, K., Valsorda, F., Symonds, D.: Package bn256 (2012). https://
godoc.org/golang.org/x/crypto/bn256

Lewko, A., Waters, B.: Decentralizing attribute-based encryption. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 568-588. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-20465-4_31

Lynn, B.: The Pairing Based Cryptography library. https://crypto.stanford.edu/
pbc/

Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1-23.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_1

Neural network on encrypted data: https://github.com/fentec-project/neural-
network-on-encrypted-data

Pencina, M.J., D’Agostino Sr., R.B., Larson, M.G., Massaro, J.M., Vasan, R.S.:
Predicting the thirty-year risk of cardiovascular disease: the framingham heart
study. Circulation 119(24), 3078 (2009)

https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1007/978-3-642-40041-4_3
https://github.com/fentec-project
https://github.com/dis2/bls12
https://github.com/dis2/bls12
https://github.com/fentec-project/CiFEr
https://github.com/fentec-project/gofe
https://doi.org/10.1007/978-3-642-33027-8_30
https://godoc.org/golang.org/x/crypto/bn256
https://godoc.org/golang.org/x/crypto/bn256
https://doi.org/10.1007/978-3-642-20465-4_31
https://crypto.stanford.edu/pbc/
https://crypto.stanford.edu/pbc/
https://doi.org/10.1007/978-3-642-13190-5_1
https://github.com/fentec-project/neural-network-on-encrypted-data
https://github.com/fentec-project/neural-network-on-encrypted-data

40.
41.
42.

43.
44.

45.

Privacy-Enhanced Machine Learning with Functional Encryption 21

Private prediction analyses: https://github.com/fentec-project/privacy-friendly-
analyses

Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM (JACM) 56(6), 34 (2009)

Tensorflow tutorial: https://www.tensorflow.org/tutorials#evaluating_our_model
The GNU Multiple Precision Arithmetic Library: https://gmplib.org

Waters, B.: A punctured programming approach to adaptively secure functional
encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol.
9216, pp. 678-697. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-48000-7_33

Zheng, Q., Xu, S., Ateniese, G.: VABKS: verifiable attribute-based keyword search
over outsourced encrypted data. In: IEEE INFOCOM 2014-IEEE Conference on
Computer Communications, pp. 522-530. IEEE (2014)

https://github.com/fentec-project/privacy-friendly-analyses
https://github.com/fentec-project/privacy-friendly-analyses
https://www.tensorflow.org/tutorials#evaluating_our_model
https://gmplib.org
https://doi.org/10.1007/978-3-662-48000-7_33
https://doi.org/10.1007/978-3-662-48000-7_33

q

Check for
updates

Towards Secure and Efficient Outsourcing
of Machine Learning Classification

Yifeng Zheng"?, Huayi Duan'2, and Cong Wang!2(=)
! City University of Hong Kong, Hong Kong, China
{yifeng.zheng,hduan2-c}@my.cityu.edu.hk, congwang@cityu.edu.hk
2 City University of Hong Kong Shenzhen Research Institute, Shenzhen, China

Abstract. Machine learning classification has been successfully applied
in numerous applications, such as healthcare, finance, and more. Out-
sourcing classification services to the cloud has become an intriguing
practice as this brings many prominent benefits like ease of management
and scalability. Such outsourcing, however, raises critical privacy con-
cerns to both the machine learning model provider and the client inter-
ested in using the classification service. In this paper, we focus on classi-
fication outsourcing with decision trees, one of the most popular classi-
fiers. We propose for the first time a secure framework allowing decision
tree based classification outsourcing while maintaining the confidential-
ity of the provider’s model (parameters) and the client’s input feature
vector. Our framework requires no interaction from the provider and the
client—they can go offline after the initial submission of their respective
encrypted inputs to the cloud. This is a distinct advantage over prior
art for practical deployment, as they all work under the client-provider
setting where synchronous online interactions between the provider and
client is required. Leveraging the lightweight additive secret sharing tech-
nique, we build our protocol from the ground up to enable secure and
efficient outsourcing of decision tree evaluation, tailored to address the
challenges posed by secure in-the-cloud dealing with versatile compo-
nents including input feature selection, decision node evaluation, path
evaluation, and classification generation. Through evaluation we show
the practical performance of our design, and the substantial client-side
savings over prior art, say up to four orders of magnitude in computation
and 163x in communication.

Keywords: Cloud security + Machine learning - Secure outsourcing

1 Introduction

Machine learning classification has gained widespread use in many applications
such as healthcare [1,13], finance [15], and more. A well-trained machine learning
model can be used to automatically predict the accurate classification label of a
unseen/new input. As an example, a model trained by a medical institution or
a hospital over a dataset of medical profiles may be used to make a prediction

© Springer Nature Switzerland AG 2019
K. Sako et al. (Eds.): ESORICS 2019, LNCS 11735, pp. 22-40, 2019.
https://doi.org/10.1007/978-3-030-29959-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29959-0_2&domain=pdf
https://doi.org/10.1007/978-3-030-29959-0_2

Towards Secure and Efficient Outsourcing of Machine Learning Classification 23

about a new patient’s health [1]. For practical deployment, outsourcing such
classification services to the cloud is intriguing as this brings the machine learning
model provider and the client many well-known benefits like ease of management,
scalability, and ubiquitous access.

Despite the prominent benefits, such outsourcing also entails critical privacy
challenges to both the provider and the client. On the provider side, the trained
model could be proprietary as the provider might have invested a significant
amount of resources in gathering the training datasets and training the model.
Besides, the model may also constitute a competitive commercial advantage. So,
the provider might not be willing to expose the plaintext model to the cloud.
On the client side, the model input data are personal and could also be sensitive
(like medical data or financial data). So, while interested in the classification
service, the client may be reluctant to supply the input in cleartext. Therefore,
it is important that security must be embedded in the classification outsourcing
design from the very beginning so that we can safeguard the privacy of both the
provider and client.

In this paper, we focus on secure and efficient classification outsourcing based
on decision trees, one of the most popular classifiers due to its effectiveness and
ease of use. Decision trees have a wide range of practical applications, such as
medical diagnosis [1] and credit-risk assessment [26]. Briefly speaking, a decision
tree consists of internal nodes called decision nodes and leaf nodes. Each decision
node is used for comparing an attribute in the input feature vector with a specific
constant, and each leaf node indicates a classification result. Given a feature
vector as input, decision tree evaluation is done via tree traversal until a leaf
node is reached.

Contributions. The challenging problem we aim to tackle is how to enable
secure and efficient decision tree evaluation outsourcing, which has not been
studied before. To this end, we present a secure framework allowing a decision
tree model provider to deploy decision tree based classification services in the
cloud for the client, while preserving the privacy of both the provider and client.
The high-level service workflow in our framework is as follows. Initially, the
provider deploys a properly encrypted decision tree model in the cloud. Later, a
client can supply an encrypted feature vector to the cloud to get a classification.
Throughout the procedure, the decision tree and feature vector are kept private.

To securely and efficiently instantiate the above service, our main insight
is to leverage lightweight cryptography and craft a protocol design tailored for
decision tree classification outsourcing. This immediately precludes the consid-
eration on using heavy cryptographic techniques such as (fully) homomorphic
encryption [5] and generic secure multi-party computation (such as garbled cir-
cuits [25] and GMW protocol [9]). Specifically, in our solution, we turn to the
lightweight cryptographic technique called additive secret sharing to completely
build our decision tree classification outsourcing design. At a high level, with
such technique, the encryption of the decision tree and the feature vector can
be fast performed via properly splitting the data into secret shares. Secure deci-
sion tree evaluation is then conducted over the secret shares of the decision tree
model and feature vector in the cloud.

24 Y. Zheng et al.

To be compatible with the working paradigm of additive secret sharing and
also make the provider and the client free of active online participation in the ser-
vice, our framework leverages the two-server model and explores the full support
for secure decision tree evaluation at the cloud side. In particular, we consider
that the power of the cloud is split into two cloud servers maintained by inde-
pendent cloud providers. Such a two-server model has also gained increasing use
in previous security designs tailored for different applications, including privacy-
preserving machine learning (over other kinds of models) (e.g., [16,18,23]). We
consider our adoption of such model to be among the trend and it is, for the first
time, customized for secure and efficient decision tree evaluation outsourcing.

Based on the lightweight additive secret sharing technique, we build our
outsourcing protocol from the ground up, and delicately tackle the following
challenges. Firstly, how to properly encrypt the decision tree model in the very
beginning so that it can later function well at the cloud side for classification?
Note that a decision tree model not only contains data values (parameters) that
demand protection, but also carry structure-specific information like the map-
ping for input selection from the feature vector, which should be protected as
well. To tackle this challenge, we properly represent the mapping as an input
selection matrix so that the encryption of the mapping can be done via encryp-
tion of the matrix. As a result, we manage to effectively transform secure input
selection into the problem of secure matrix-vector multiplication.

Secondly, at the two cloud servers, how to accomplish secure and efficient
comparison at each decision node and produce encrypted comparison results
with usability for encrypted tree traversal? We note that for secure comparison
at decision nodes, most prior works in the non-outsourcing setting (i.e., a client-
provider setting, see Sect. 2 for more discussion) rely on protocols that require
bitwise (homomorphic) encryption of the inputs from the very beginning. Such
highly inefficient restriction on input encryption, together with the incompati-
bility of prior works with our new outsourcing setting, makes it necessary for
us to craft a new design for secure and efficient decision node evaluation from
the ground up. Our idea is to transform the problem of secure decision node
evaluation into a simpler secure bit-extraction problem so that there is no need
for the provider and client to supply inputs in bitwise encrypted form, and the
bit-level secure processing is shifted to the cloud. We also further consider how
to correctly transform the encrypted comparison results into appropriate secret
sharing domain so that they preserve usability for encrypted tree traversal.

Thirdly, at the two cloud servers, how to securely and efficiently evaluate the
path to each leaf node so that the leaf node carrying the classification result
can be correctly identified by the client? To answer this challenge, we leverage
our observation on the latest path cost mechanism [20] and newly bridge it with
additive secret sharing technique to support secure and efficient path evaluation
for leaf nodes, and correctly produce encrypted classification result ultimately.

We make an implementation of our design and conduct experiments for per-
formance evaluation, over various realistic problem sizes of decision tree classi-
fication. The results demonstrate the practicality of our design. To our best

Towards Secure and Efficient Outsourcing of Machine Learning Classification 25

knowledge, this paper presents the first framework for secure and efficient
machine learning classification outsourcing based on decision trees. The rest of
this paper is organized as follows. Section 2 discusses the related work. Section 3
presents the problem statement. Section4 gives our detailed security design.
Section 5 shows the experimental results. Section 6 concludes the whole paper.

2 Related Work

Secure Evaluation of Decision Trees. There have been some previous
research efforts on secure decision tree evaluation [4,7,10,20,21,24]. These works
mostly rely on the use of heavy cryptographic techniques like fully/additively
homomorphic encryption, garbled circuits, and ORAM, for the online secure
classification service. More notably, all prior works target a client-provider set-
ting, where the provider holding the plaintext decision tree model and the client
holding the plaintext feature vector directly engage in a synchronous and inter-
active protocol. Our work departs definitively from the previous works by, for
the first time, targeting secure and efficient outsourcing of decision tree classifi-
cation to the cloud and designing our tailored protocol from the ground up to
enable such outsourcing. With our design, the provider (e.g., a medical institu-
tion) and the client (e.g., a patient) are endowed with the opportunity to enjoy
the benefits of cloud computing without compromising privacy. They can also
both stay offline after supplying their respective inputs to the cloud, which is a
highly desirable property for practical service deployment. In addition, as will be
shown by our evaluation (Sect.5), our new outsourcing design also brings sub-
stantial performance improvement for the client. For example, compared with
one state-of-the-art design [20] (ESORICS’17), our design brings the client at
least four orders of magnitude improvement in computation and 163X improve-
ment in communication. We emphasize that prior designs are specialized for the
conceptually different client-provider setting and do not imply simple extensions
to work under an outsourcing setting, due to the special structure of decision
trees and the complex computation in decision tree classification.

Secure Evaluation of Other Models. Our research is also related to a line of
works on secure evaluation of other machine learning models (e.g., [4,11,14,16],
to just list a few) such as hyperplane decision [4], Naive Bayes [4], neural net-
works [11,14,16]. Most previous works operate under the client-provider setting.
As different kinds of classifiers require different specific computation, the com-
mon blueprint in these works is to build security protocols tailored for differ-
ent models, using different kinds of cryptographic techniques. For example, Liu
et al. [14] leverage secret sharing and garbled circuits for secure neural network
evaluation; Juvekar et al. [11] uniquely combine homomorphic encryption and
garbled circuits for low latency secure neural network inference. In addition to
the above works, a recent system called SecureML [16] also supports secure eval-
uation of some machine learning models. The SecureML system also operates
under the two-server model, and provides protocols specialized for linear regres-
sion, logistic regression, and neural networks [16]. Our design works under the

26 Y. Zheng et al.

Fig. 1. Illustration of a decision tree.

similar two-server model and newly explore secure and efficient decision tree
classification outsourcing.

3 Problem Statement

3.1 Background on Decision Trees

Decision trees is one of the most popular machine learning models used in prac-
tice for data classification. As illustrated in Fig.1, a decision tree consists of
internal nodes, called decision nodes, and leaf nodes. Each decision node is asso-
ciated with a specific constant called threshold, and each leaf node is associ-
ated with a classification value indicating the classification result. So, a deci-
sion tree has a threshold vector, and we represent it as 'y = {y1, "+ ,¥m},
where m denotes the number of decision nodes. With an n-dimensional fea-
ture vector x = {z1,---,z,} as input, decision tree classification proceeds as
follows. Firstly, for each decision node j, a feature z,(;) is selected from x
for comparison with the corresponding threshold y;, according to a mapping
o:7€{1,2,--- ,m} —ie€{1,2,--- n} for input selection. Then, starting from
the root node, for the current decision node j, the feature x, ;) and threshold
y; is compared. The comparison result b; (b; = 1{x,(;) < y;}) decides which
branch (either left w.r.t. b; = 0 or right w.r.t. b; = 1) to be taken next. This
procedure is repeated until a leaf node k with classification value vy is reached.
The length of the longest path between the root node and a leaf node decides
the tree depth d. Without loss of generality and as in prior works [7,20,21,24],
we assume complete binary decision trees in our security design. This is because
the evaluation of non-complete trees might cause leakage of the tree structure
[21,24]. Note that a complete binary tree with depth d would have m = 2¢ — 1
decision nodes and 2% (i.e., m + 1) leaf nodes. And non-complete decision trees
can be made complete by introducing dummy decision nodes and setting all the
leaf nodes in the subtree of a dummy decision node to the same classification
value [24].

Towards Secure and Efficient Outsourcing of Machine Learning Classification 27

Provider

Fig. 2. Our high-level system architecture.

3.2 System Architecture

Our research targets secure and efficient machine learning classification out-
sourcing based on decision trees. Figure 2 illustrates our system architecture. A
provider (e.g., a medical center or a hospital) holds a trained machine learn-
ing model, in particular a decision tree in our scenario, and offers classification
services via the cloud to the client. The provider chooses to outsource the classi-
fication service to the cloud so as to enjoy the benefits of cloud computing such
as scalability and ease of management. As the decision tree model is proprietary,
the provider would not be willing to place the decision tree in cleartext at the
cloud. Therefore, protection for the decision tree model is demanded.

The client holds a feature vector which may encode private information of
sensitive attributes (e.g., weight, height, heart rate, and blood pressure) and
wants to leverage the cloud-empowered decision tree based classification service
to obtain a classification. Due to privacy concerns, the client is not willing to
supply the feature vector in cleartext in the service so a ciphertext will be sup-
plied instead. In addition, for practicality, it would not be realistic for the client
to promise always staying online to actively participate in the service. For exam-
ple, the client may be in mobile environments, facing challenges such as resource
constraints, network dynamics, and connectivity. So, our system should allow
the client to stay offline after providing the ciphertext of the feature vector to
the cloud, and later just retrieve the encrypted classification result.

In our system, we consider that the power of the cloud is supplied by two
cloud servers Cy and C; which are hosted by independent cloud service providers.
The two cloud servers will collaboratively perform secure decision tree evalua-
tion. We are aware that such a two-server model has gained increasing pop-
ularity in recent years for facilitating security designs for specific applications
[16-18,23]. Our adoption also follows this trend. To our best knowledge, secure
and efficient decision tree based classification outsourcing under the two-server

28 Y. Zheng et al.

model has not been explored before, and requires specialized treatment due to
the special structure of decision trees and complex computation in decision tree
classification.

In our system, for the sake of assuring both privacy and efficiency, we will
employ the lightweight cryptographic technique — additive secret sharing, to
encrypt the client’s feature vector and the provider’s decision tree. That is, the
client splits the feature vector into two secret shares, each of which will be
given to a cloud server. The provider’s decision tree is also specially encrypted
via additive secret sharing and deployed at the cloud in advance for use. Upon
receiving the secret shares of the client’s feature vector, the two cloud servers will
run a tailored secure protocol and produce the encrypted classification result,
which can be sent to the client for decryption on demand.

3.3 Threat Model

We consider that the threats are primarily from the engagement of the cloud
in the service. Similar to most of prior works under the two-server model (e.g.,
[6,8,16,27,28], to just list a few), we assume a semi-honest and non-colluding
adversary model in our security design. That is, the two cloud servers will faith-
fully follow our protocol, yet are interested in inferring private information about
the client’s feature vector and the provider’s decision tree and will do so inde-
pendently. Such a threat assumption is based on the practical intuition that
cloud service providers are typically from well-established companies like Ama-
zon and Google, so they have little incentives to put the reputation at risk. Other
rationale may include the existence of audits and the fear of legal /financial reper-
cussion. We also remark that although weaker than a malicious adversary model,
a semi-honest model allows for much more efficient protocols in practice [2].
Consistent with prior works [12,20,24], we consider that the client wishes to
keep private the values {z;}_; in her feature vector x as well as the classifica-
tion result (i.e., the classification value vy corresponding to x). On the provider
side, we consider that the provider wishes to keep private against the cloud the
proprietary threshold values y of the decision nodes, the mapping ¢ for input
selection, and the classification value associated with each leaf node throughout
the protocol execution. Meanwhile, the provider may also require that per clas-
sification query the client should learn no additional private information about
the decision tree other than the classification value corresponding to her feature
vector. As in prior works [20,24], we do not aim to protect the following generic
meta-parameters about the decision tree: the depth d of the decision tree, the
dimension n of the feature vector, and the number [of bits needed to represent
each element in the feature vector and the threshold vector. These parameters
are assumed public in our system. Meanwhile, similar to existing works on pri-
vate machine learning classification, we deem dealing with attacks on machine
learning models via exploiting classification results out of the scope of this paper.

Towards Secure and Efficient Outsourcing of Machine Learning Classification 29

4 Design of Secure and Efficient Outsourcing of Decision
Tree Based Classification

4.1 Design Overview

At a high level, our custom protocol consists of the following phases: secure input
preparation, secure input selection, secure decision node evaluation, secure path
evaluation, and secure classification generation. In the secure input preparation
phase, the provider sends a properly encrypted decision tree to the cloud and
the client supplies the encrypted feature vector. In the secure input selection
phase, for each decision node, a feature from the encrypted feature vector will
be obliviously selected, according to the (encrypted) mapping for input selection.
In the secure decision node evaluation phase, a secure comparison is made for
each decision node, between the corresponding encrypted threshold and feature.
In the secure path evaluation phase, the path to each leaf node is obliviously
evaluated, leveraging the encrypted comparison results from the previous phase.
In the secure classification generation phase, the encrypted classification result
corresponding to the client’s feature vector is generated. All the above phases in
our design will be instantiated under the lightweight cryptographic technique—
additive secret sharing, in a secure and efficient manner. Our tailored protocol is
built from the ground up, through careful examination of the decision tree evalu-
ation procedure and unique combination of the additive secret sharing technique
with structure-specific computation of decision tree evaluation. In what follows,
we describe in detail each phase of our protocol.

4.2 Protocol

Secure Input Preparation. We adopt additive secret sharing for fast encryp-
tion of the client’s feature vector and the provider’s decision tree. In particular,
given the feature vector x = {z;};, the client first generates a vector r of ran-
dom values, which has the same size as x. Here, each value in r is random in the
ring Zo:, where [is a parameter that determines the size of Zq:. Then, the client
produces the ciphertext of the feature vector as [x]o = {(x; — r;) mod 2!},
and [x]; = {r; mod 2'}? ;. Here, [x], represents the share to be sent to the
cloud server C, (o € {0,1}). Note that in an element-wise manner we have
x = ([x]o + [x]1) mod 2'. Similarly, the provider generates the ciphertexts [y]o
and [y]; for the threshold vector y. As for the classification values v asso-
ciated with the leaf nodes, the provider generates ciphertexts [v], and [v],
over Z, (p is a prime), which will be used in secure classification genera-
tion shown later. In addition, recall that the provider also has a mapping
o:je{l,2,---,m} - i€ {1,2,---,n} for input selection for the decision
tree, which demands protection as well.

The challenge here is how to encrypt the mapping ¢ so that it can be hidden
from the cloud servers while still functioning well in the subsequent secure input
selection phase. To tackle this challenge, the key idea is to represent the mapping
o as an input selection matrix M, and then encrypt this matrix via additive

30 Y. Zheng et al.

secret sharing. Here, the input selection matrix M has a size m X n. Each row
vector w; of M is a binary vector with n elements where all are 0 except for the
element at the position o(j) set to 1. It is easy to see that z,(;) = w;x. With
M, the provider generates the secret shares [M]y and [M];. Finally, the secret
shares of y, v, and M are sent to each cloud server accordingly.

Input: Shares [M] and [x].
Output: Shares [x,] = [M - x].

1: C, computes [E], = [M], — [Uly and [f]o = [X]o — [8]a-
2: Cy and C; jointly reconstruct E and f.
3: Co computes M -x]o =a-E-f+E-[g]s+[Ulq -+ [2]a

Fig. 3. Secure input selection.

Secure Input Selection. Given the secret shares of the client’s feature vector
and the provider’s decision tree, we now describe how to perform secure input
selection. In this phase, the result is that each cloud server obtains a secret
share of the feature corresponding to each decision node, while being oblivious
to which feature is selected from the feature vector. Hereafter, all arithmetic
operations related with secret shares take place in Zq:, unless otherwise stated.
So, for ease of presentation, we will omit the modulo operation in our design.

Below we first introduce in detail how to support atomic operations (i.e.,
addition/subtraction and multiplication) under additive secret sharing. Suppose
that each cloud server holds a secret share of the values a; and as. Then, the
secret sharing [a; 4+ az] (resp. [a; — as]) of the addition a1 + ay (resp. subtraction
a1 — az) can be computed by each cloud server locally, i.e., [a1 + az]o = [a1]a +
[az]a (resp. [a1 — az]a = [a1]a — [a2]a). For multiplication by a constant ¢ on the
value aq, each cloud server C, can simply compute [a1 - c]o = ¢ [a1]a-

As for multiplication of secret-shared inputs, we note that the Beaver’s mul-
tiplication triple trick [3] can be adopted. Suppose that there is a multiplication
triple (u, g, z) satisfying z = u - g and is secret-shared between the two cloud
servers. To obtain the secret sharing [a; - ag], each cloud server C, first locally
computes [e]o = [a1]a — [u]a and [fla = [a2]a — [9]a- Then, each cloud server
broadcasts [e], and [f]., and subsequently reconstructs e and f. With e and
f, each cloud server C, now produces a secret share [a) - as], via computing
[a1 - az]e = a-e-f+e-[gla + [[u]la+ [2]a. For correctness proof, we refer
the readers to [3] for details. The security of the Beaver’s trick ensures that
each cloud server learns nothing about the underlying plaintext values a; and as
from the protocol execution. Note that the multiplication triples are data inde-
pendent, so they can be efficiently made available to the two cloud servers in an
offtine phase, e.g., via an additional semi-honest third party [19]. So, throughout
this paper, we assume that the multiplication triples are available at the cloud
side for use and focus on the online secure decision tree evaluation procedure.

Towards Secure and Efficient Outsourcing of Machine Learning Classification 31

With the above secure atomic operations, we now describe how to perform
secure input selection. Recall that according to our construction for the input
selection matrix in the previous phase, we have x, = M - x. So, given that
each cloud server C, holds a secret share of the feature vector x and the input
selection matrix M, what we need here is secure multiplication which takes as
input the secret sharing [x] and [M], and produces the secret sharing [M - x].

Here, for better efficiency, we adapt the Beaver’s trick and work under a vec-
torized setting, inspired by some recent works [14,16]. In particular, the multipli-
cation triple is now in a vectorized form, say (U, g, z), which satisfiesz=U - g
and is secret-shared between the two cloud servers. Then, as shown in Fig. 3,
we can compute the secret sharing [M - x| as follows. Firstly, each cloud server
Co computes [E], = [M], — [Ul], and [f]o = [X]o — [g]a. Then, each cloud
server broadcasts [E], and [f],, and subsequently reconstructs E and f. With
the reconstructed E and f, each cloud server C, now produces a secret share
[M - x], via computing [M x|, = a-E-f+E-[g]s + [Ula - f + [2]o. Note that
working under a vectorized setting does not affect the security of the Beaver’s
trick. That is, the plaintext values in M and x are still kept confidential.

Input: Shares [y;] and [2,;)].
Output: Shares [b;] over Z,,.

1: Cq computes [a]o = [Yjla — [To@)]a-

// Bit extraction ({-) denotes sharing over Zs)

2: Let p denote Cy’s share [a]g, with the bit string being p;, -+, p1.
Let ¢ denote Cy’s share [a];, with the bit string being ¢, - , ¢1.
Define the secret sharing (wy) over Zg as {{wy), = P, (Wk); =
qr}. Also, define (py) as ((pr)g = P, (Pk); = 0) and (gx) as
{{ar)o = 0,(ar)1 = ax}-

3: Cg and Cy compute (c1) = (p1) - {q1)-

4: For k € [2,---,1—1],

(a) Cp and C; compute (k) - {qr) + 1.
(b) Co and C; compute (ex) = (wg) - {cx—1) + 1.
(¢) Co and C; compute ((ex) - (d) + 1.
) (ci—1), with (a;) defined as

Ck) =

5: Cp and C; compute {(a;
{a)y = t1, (@), = ta}.
// Conversion from Z, to Z,

6: Let [t1] over Z, be defined as {[t1], = t1, [t1], = 0} and [t2] as
{[t]p = 0, [t=], = t2}-

7: Co and C; compute [a;] = [t1] + [t2] — 2 - [t1] - [t2]-

8: Output [b;] = [ai]-

[
g
+

Fig. 4. Secure decision node evaluation (for each decision node j).

32 Y. Zheng et al.

Secure Decision Node Evaluation. For each decision node j, given the secret
shares of the threshold y; and the corresponding feature z,(;), a secure compar-
ison needs to be conducted. The result from this phase is that for each decision
node j, the two cloud servers obtain the secret sharing of the comparison result
bj. So, here we need to consider how to directly perform efficient and secure
comparison over the secret-shared threshold and feature. As mentioned before,
prior art requires bitwise encryption of inputs for secure decision node evaluation
from the very beginning, so they cannot be extended to work in our scenario
and we need to design from the ground up.

We propose to transform the in-the-cloud secure decision node evaluation
problem into a simpler bit extraction problem. Our observation is that as long as
a large [is used (say typically | = 64 [29]), the non-negative values and negative
values can be distinctly separate in the lower half ([O7 2i=1 1]) and upper half
([2'71,2" = 1]) of the values in the ring Zyi. So, the most significant bit (MSB)
of non-negative values over Zy will be 0 and be 1 of negative values. Based on
this important observation, we can first compute the subtraction a = y; — z4(j)
(over Zgy) and then extract the MSB q; of a, as the comparison result b;.

To instantiate this idea in the secret sharing domain, we first need to get the
secret sharing [a] = [y; — 2,(;)], which can be easily computed by the two cloud
servers locally, given [y;] and [z,(;)]. Then, to obtain the secret sharing of the
comparison result b;, our idea is to employ a bit extraction protocol which can
extract the secret sharing of the MSB of a. Our starting point is the protocol in
[7], which can take as input the secret sharing [y; — x,;] and produces a certain
secret sharing of the MSB q; (i.e., b;).

However, simply adopting this protocol does not facilitate subsequent com-
putation in our design, as the produced secret sharing for a; is over Zs, denoted
as (a;). Therefore, we need to consider how to convert the secret sharing (a;)
over Zy to [a;] over Z,, where p is a sufficiently large prime. Here, the reason
that we convert to Z,, is that we need to perform multiplicative masking later in
the secure classification phase, so we need to work over a field [22]. More details
will be given later on. Let (a;) : {(a1), = t1, (@), = t2} be a valid additive
sharing over Zy. We observe that the value a; (0 or 1) over Z, can be expressed
through a; = t1 + to — 2 % 1 * ty of which the computation is over Z,. So, if
we can compute the secret sharing [[¢1 + ta — 2 t1 % t3] over Z,, we will get
the secret sharing [a;] over Z,. Let [t;] be defined as {[t:], = t1,[t:1], = 0}
and [to] as {[t2], = 0, [t2]; = t2}. Then, given [t;] and [to], it is easy to
compute the secret sharing [b;] = [a;] = [t1 +t2 — 2%ty * t2], just through
secure addition/subtraction and multiplication. The details of secure decision
node evaluation are given in Fig. 4.

Secure Path Evaluation. In this phase, the path to each leaf node is oblivi-
ously evaluated based on the encrypted comparison result at each decision node
from the previous phase. Recall that we have managed to obtain the secret shar-
ing [[b;] of the comparison result at each decision node j. To utilize the encrypted
comparison results for path evaluation, we leverage the state-of-the-art path cost
mechanism [20], which deals with linear functions and only needs secure addi-

Towards Secure and Efficient Outsourcing of Machine Learning Classification 33

tion. In comparison with [20] which relies on homomorphic encryption, we newly
realize the path cost mechanism in the additive secret sharing to enable secure
path evaluation in our outsourcing design.

At a high level, this mechanism first computes a path cost for each leaf node,
which has a unique path in the decision tree, based on the comparison results
at decision nodes. The path cost of a leaf node can then be used to determine
whether that leaf node carries the classification result. Specifically, the path cost
mechanism is as follows. Firstly, it is noted that each decision node is associated
with two outgoing edges. According to [20], for each decision node, we can assign
a cost to the left edge as ec;,0 = b;, and a cost to the right edge as ec;1 = 1 —b;,
respectively. In this way, all the edges in the decision tree has a cost value.
Then, the path cost pcy, for each leaf node k is defined by the sum of all the edge
costs along that path. A classification value vy is the classification result if and
only if its associated path cost pcy is 0. For more details about the concept and
correctness of path cost, we refer the readers to [20].

Input: Shares [b;] for each decision node j.
Output: Shares [pei] for each leaf node k.

1: For each decision node j,
(a) Cq sets [ecjo], = [b], as the secret-shared left edge
cost.
(b) Co sets [ecj1], = 1 — [b;], and Cy sets [ec;1], = [b;];,
where [ec; 1] is the secret-shared right edge cost.
2: For each leaf node k, the secret-shared path cost [pex] is
computed by summing up each edge cost [ec] along that
path.

Fig. 5. Secure path evaluation.

With the path mechanism, as shown in Fig. 5, the secure path evaluation in
our design works as follows. Firstly, the secret sharings of the left edge cost and
right edge cost are computed. For each decision node j, the two cloud servers set
the secret sharing [ec; o] of the left edge cost ec; o to [b;]. For the secret sharing
lec;i] of the right edge cost ec; 1, the cloud server Cq sets [ec; 1], = 1 — [bj],
and Cy sets [ec; 1], = [b;],. After that, for each leaf node k, the secret sharing
[pck] of the path cost is computed by summing up each secret-shared edge cost
[ec] along that path, which can be easily done by each cloud server locally.

Secure Classification Generation. From the previous phase, we have
obtained the secret sharing of the path cost for each leaf node. We now describe
how to leverage the secret-shared path costs to generate ciphertexts from which
the client is able to derive the classification result.

At a high level, we first apply random masking at the cloud side to the path
cost and the classification values in the secret sharing domain, with [ry - pcg]

34 Y. Zheng et al.

and [}, - pck, + vg] produced for each leaf node, where r, and), are random
values from Z;. Later, the client reconstructs the randomized path costs and
classification values, and extracts the correct classification result by checking
which received path cost is equal to zero. The classification value associated
with the 0 path cost is then the correct classification result. Otherwise, the
client only sees random values. Note that the multiplicative masking applied on
the path costs is to randomize the exact values of those non-zero path costs from
the client. For this to effectively work, it is crucial that we work over a field such
as Zj, [22]. This accounts for why we convert the encrypted comparison result to
Zyp in the above secure decision node evaluation phase, as we need to leverage
them to compute secret-shared path costs over Z,, for use in secure classification
generation.

In more detail, as shown in Fig. 6, the secure classification generation phase
works as follows. For each leaf node k, the cloud server Cy generates two random
values 7 and 7}, from Zj. Then, Cy computes [pci], = [rx - pexly = 7 - [pexly
and [vi], = [} - pex +or]y = 73, - [pcrly + [vi]y. Next, Co applies a random
permutation 7 over {1,---, K} to {[pc;] =, and {[v;],}+—;, and obtains
{Hpcj‘r(k)ﬂo}kl(zl and {Hv;(k)ﬂo}k[{:r Here, K is the number of leaf nodes. The

random masks 7y and 7}, and the permutation 7 are shared with the cloud server
C1. Then, the cloud server C first computes [pc;], = [rx - pck]; = r-[pex], and
[vil, = [y, - per +vi]; = 77, - [pex]y + [vk];- The same random permutation is

applied to the resulting shares. So, the cloud server C; produces { Hpc;(k)ﬂ 1}521

Input: Shares [pci] and [uvg] for each leaf node k.
Output: Classification result.

1: Co computes [pci]l, = [rr - perly = 7% - [pex] and [vi], =
[- pek + vklg = i - [pcklly + [vel,-
2: Cp applies a random permutation 7 to the above shares, and

obtains {Hpc;"r(k)ﬂo}f:l and {Hv:(k)ﬂo},ﬁl.

3: C1 computes [pci], = [rk - per]; = i - [pex]; and [vp], =
[- pex + vkl = - [pekly + [vely-

4: C; applies the same random permutation and produces

{ [[Pci(k)ﬂ 1}5:1 and { H”;(k)ﬂ l}fzr
5: Client receives the secret sharings {[[pc;(k)ﬂ M, and
{Hv;(k)ﬂ S |, and reconstructs {pcj‘r(k)}le and {v;(k)}ff:l.

6: Checking that a pc:(k) is 0, client outputs U;(k) as the clas-
sification result.

Fig. 6. Secure classification generation.

Towards Secure and Efficient Outsourcing of Machine Learning Classification 35

and { Hv;(k)ﬂ }le. Upon receiving the request for the classification result, each

cloud server C, sends the shares {Hpc;(k)ﬂa}kf(:l and {Hv;(k)ﬂa}le to the

client. The client combines the shares to reconstruct the randomized path costs
{pcfr(k,)}fz1 and randomized classification values {v;(k)}le. The client checks
that a particular pcjr(k) is 0 and outputs ”;(k) is the classification result.

4.3 Security Guarantees

Theorem 1. Our design guarantees that each cloud server learns no private
information about the client’s feature vector and the provider’s decision tree,
given the security of additive secret sharing, Beaver’s triple trick, and multi-
plicative masking, and the semi-honest non-colluding assumption. Besides, our
design ensures that the client learns no additional private information about the
decision tree other than the classification result.

Proof. We give some sketches here. Firstly, we analyze the security against the
cloud servers. In the beginning, the two cloud servers receive respective secret
shares of the client’s feature vector and the provider’s decision tree. The security
of additive secret sharing ensures that each cloud server learns nothing about
the plaintext values underlying its shares. During protocol execution, the two
cloud servers operate over their respective secret shares locally and have some
interactions when necessary. The interactions, always with secret-shared values
produced, are either for secure multiplication under the Beaver’s triple trick (in
the secure input selection phase and secure decision node evaluation phase), or
for sharing the random masks and random permutation (in the secure classifi-
cation generation phase). In a nutshell, each cloud server’s view of the protocol
execution is just random values, so the privacy of the provider’s decision tree
and the client’s feature vector follows.

Table 1. Computation performance of the provider (in ms).

Provider Operation d=3, d=4, d=38, d=13, |d=17,
n=13 n=15 n=9 n=13 n=>57
Node Encryption 0.0013 0.002 0.03 0.8791 14.129
Selection Matrix Encryption | 0.0131 0.0254 0.2686 13.9693 | 871.658
Total 0.0144 0.0274 0.2986 14.8484 | 885.787

As for the security against the client, the client’s view of the protocol execu-
tion consists of random non-zero numbers, and one zero path cost associated with
one classification value. Recall that according to the computation correctness of
path costs, there is only one 0 path cost, which corresponds to the classification
result. All other path costs are non-zero numbers. Therefore, after the random
masking, only the path cost corresponding to the classification result will remain

36 Y. Zheng et al.

as 0, and the other non-zero path costs are random (non-zero) numbers. Sim-
ilarly, all randomized classification values except the one associated with the
0 path cost are random numbers. As the masked path costs and classification
values are randomly shuffled, the true position of the classification result in the
decision tree is also concealed. So, from received randomized path costs and clas-
sification values, the client only learns the classification result corresponding to
his feature vector.

5 Experiments

5.1 Setup

We implement and empirically evaluate our protocol to demonstrate the prac-
ticality. The implementation is in C++, with GNU GMP library used for big
number manipulation and Eigen library for matrix operations. We compiled the
code with Clang 10.0 and optimization level O3. All experiments are run on
a Macbook Pro with 2.6 GHz i7 CPU and 32 GB memory. In our experiments,
we use synthetic decision trees with realistic problem sizes that could arise in
practice, following prior works [20,24]. In particular, the depth d of a decision
tree ranges from 3 to 17, and the number n of features ranges from 9 to 57.

Table 2. Computation performance of the client (in ms).

Client Operation d=3, d=4, d=3s, d=13, d=17,
n=13 n=15 n=9 n=13 n=>57

Feature Vector Encryption 0.0018 0.0021 0.0017 0.0018 0.0065
Sec. Classification Generation | 0.0018 0.0034 0.0504 1.567 25.3779
Total 0.0036 0.0055 0.0521 1.5688 25.3844

5.2 Evaluation

We first examine the computation cost at the provider, the client, and the cloud,
respectively. Recall that the provider only needs to have one-off encryption of
the decision model in the very beginning, which includes the encryption of the
values at decision nodes and leaf nodes, as well as the encryption of the input
selection matrix. Table1 shows the computation performance of the provider
with varying realistic combinations of the decision tree depth d and the number
of features n, as in prior work. As seen, the one-off computation cost of the
provider is quite small. Even for our largest tested decision tree (d = 17 and
n = 57), the one-off computation cost of the provider is less than 1 s.

The client’s computation cost is due to the encryption of the feature vector,
and the extraction of the classification result from the randomized path costs
and classification values. Table2 reports the computation performance of the
client. It can be seen that the computation cost is dominated by the component

Towards Secure and Efficient Outsourcing of Machine Learning Classification 37

of secure classification generation. In most cases (d < 13), the cost is below
2ms; whereas even for the largest decision tree setting (d = 17 and thus 131071
decision nodes), it is below 26 ms, which is highly efficient. We emphasize that
our design has the distinct advantage that the client can be offline after supplying
the encrypted feature vector, which is a highly desirable property for realistic
service deployment, especially in mobile environments. Besides, compared with
state-of-the-art designs under the client-provider setting, our secure outsourcing
design brings substantial computational saving for the client. For example, the
design in [20] already takes about 10 s at the client even for the much smaller
problem size of 2000 decision nodes; and the design in [21] requires roughly 3 s
for a decision tree with d = 14. So, with d = 17 (131071 decision nodes) in our
test, our design outperforms the design [20] by at least four orders of magnitude,
and the design [21] by at least 118x.

Lastly, we evaluate the computation cost at the cloud side. Table 3 gives the
computation cost at the cloud side (the sum of two cloud servers’ computation
costs), including the costs of secure input selection, secure decision node evalu-
ation, secure path evaluation, and secure classification generation. Overall, the
computation for secure decision tree evaluation at the cloud side is quite efficient,
ranging from 0.3034 ms to 14.6396 s.

We now examine the communication performance. Table4 shows the com-
munication cost of the provider. The provider’s communication cost is due to the
secret shares of the decision model, which includes the secret shares of the thresh-
old values at decision nodes, classification values at leaf nodes, and the input
selection matrix. According to Table4, the communication cost is dominated by
the shares of the selection matrix. For most cases (d < 13), the communica-
tion cost is less than 2 MB. For the largest decision tree in our test, the one-off
communication cost is about 118 MB.

Table 3. Computation performance at the cloud side (in ms).

Cloud Operation d=3, d=4, d=38, d=13, d=17,
n=13 n=15 n=9 n=13 n=>57
Sec. Input Selection 0.2172 0.5141 4.9688 200.836 13054.443
Sec. Decision Node Evaluation | 0.0794 0.1726 2.9603 98.6439 1482.1668
Sec. Path Evaluation 0.0022 0.0062 0.1093 3.4813 59.5199
Sec. Classification Generation | 0.0046 0.007 0.0672 2.2878 43.4859
Total 0.3034 0.6999 8.1056 305.249 14639.6156

Table 4. Communication performance of the provider (in KB).

Component d=3, d=4, d=38, d=13, d=17,
n=13 n=15 n=9 n=13 n=>57
Node Shares 0.23 0.48 7.98 255.98 4095.98
Selection Matrix Shares | 1.42 3.52 35.86 1663.8 116735.11
Total 1.65 4 43.84 1919.78 120831.09

38 Y. Zheng et al.

The client’s communication cost, as shown in Table5, is from the upload
of the secret shares of the feature vector in the beginning, and the download
of the secret shares of the randomized path costs and classification values in
secure classification generation. The communication cost is dominated by the
download of shares. As seen from Table 5, the communication cost of the client
in our outsourcing design is fully practical, ranging from 0.45 KB with d = 3
to 4MB with d = 17 (131071 decision nodes). In comparison, we note that
the state-of-the-art design [20] working under the client-provider setting already
requires more than 10 MB for just 2000 decision nodes (thus roughly 655 MB
would be required for 131071 decision nodes and thus 163x less efficient), and
the design [21] requires about 2MB for a decision tree with d = 14 (4x less
efficient compared to about 512 KB for d = 14 in our design).

We also report the communication cost at the cloud side, i.e., the amount
of data exchanged between the two cloud servers for secure decision tree classi-
fication. The communication cost at the cloud side is mainly due to the call of
secure multiplication of secret-shared values in secure input selection and secure
decision node evaluation, and the sharing of the random masks and random
permutation in secure classification generation. Table 6 summarizes the cloud
side communication cost in different phases of secure decision tree evaluation.
In most cases, the communication cost is less than 3 MB. Even for the largest
decision tree, it only requires 132.6249 MB, which is practically affordable at the
resource-rich cloud.

Table 5. Communication performance of the client (in KB).

Component d=3, d=4, d=3§, d=13, |d=17,
n=13 n=15 n=9 n=13 n=>57
Feature Vector Shares 0.2 0.23 0.14 0.2 0.89
Classification Result Shares | 0.25 0.5 8 256 4096
Total 0.45 0.73 8.14 256.2 4096.89

Table 6. Communication performance at the cloud side (in MB).

Operation d=3, d=4, d=38, d=13, d=17,
n=13 n=15 n=9 n=13 n=>57
Sec. Input Selection 0.0016 0.0037 0.0352 1.625 114

Sec. Decision Node Evaluation | 0.0008 0.0018 0.0304 0.9764 15.6249
Sec. Classification Generation |0.0002 0.0004 0.0059 0.1875 3
Total 0.0026 0.0058 0.0715 2.7889 132.6249

Towards Secure and Efficient Outsourcing of Machine Learning Classification 39

6 Conclusion

In this paper, we proposed the first framework for secure and efficient machine
learning classification outsourcing based on decision trees. Our design allows a
provider to leverage the power of the cloud to deliver secure and efficient decision
tree based classification service to the client. As we manage to delicately shift
the processing to the cloud side, neither the provider nor the client needs to
stay online for active participation in the service. Our design operates under the
increasingly popular two-server model and provides the first solution for secure
and efficient classification outsourcing based on decision trees. We crafted our
design from the ground up, leveraging the lightweight additive secret sharing
technique and the problem specifics of decision tree based classification. Our
evaluation shows the practical performance of our design, as well as the sub-
stantial performance advantage for the client over prior art.

Acknowledgement. This work was supported in part by the Research Grants Coun-
cil of Hong Kong under Grants CityU 11276816, CityU 11212717, and CityU C1008-
16G, by the Innovation and Technology Commission of Hong Kong under ITF Project
1TS/168/17, and by the National Natural Science Foundation of China under Grant
61572412.

References

1. Azar, A.T., El-Metwally, S.M.: Decision tree classifiers for automated medical diag-
nosis. Neural Comput. Appl. 23(7-8), 2387-2403 (2013)

2. Baldimtsi, F., Papadopoulos, D., Papadopoulos, S., Scafuro, A., Triandopoulos, N.:
Server-aided secure computation with off-line parties. In: Foley, S.N., Gollmann,
D., Snekkenes, E. (eds.) ESORICS 2017. LNCS, vol. 10492, pp. 103-123. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-66402-6_8

3. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigen-
baum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420-432. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-46766-1_34

4. Bost, R., Popa, R.A., Tu, S., Goldwasser, S.: Machine learning classification over
encrypted data. In: Proceedings of NDSS (2015)

5. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: Proceediongs of ITCS (2012)

6. Cai, C., Zheng, Y., Wang, C.: Leveraging crowdsensed data streams to discover and
sell knowledge: a secure and efficient realization. In: Proceedings of IEEE ICDCS
(2018)

7. Cock, M.D., et al.: Efficient and private scoring of decision trees, support vector
machines and logistic regression models based on pre-computation. IEEE Trans.
Dependable Secure Comput. 16(2), 217-230 (2017). 101109/ TDSC20172679189

8. Erkin, Z., Veugen, T., Toft, T., Lagendijk, R.L.: Generating private recommenda-
tions efficiently using homomorphic encryption and data packing. IEEE Trans. Inf.
Forensics Secur. 7(3), 1053-1066 (2012)

9. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A
completeness theorem for protocols with honest majority. In: Proceedings of ACM
STOC (1987)

https://doi.org/10.1007/978-3-319-66402-6_8
https://doi.org/10.1007/3-540-46766-1_34

40

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Y. Zheng et al.

Joye, M., Salehi, F.: Private yet efficient decision tree evaluation. In: Kerschbaum,
F., Paraboschi, S. (eds.) DBSec 2018. LNCS, vol. 10980, pp. 243-259. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-95729-6_16

Juvekar, C., Vaikuntanathan, V., Chandrakasan, A.: GAZELLE: A low latency
framework for secure neural network inference. In: Proceedings of USENIX Security
Symposium (2018)

Kiss, A., Naderpour, M., Liu, J., Asokan, N., Schneider, T.: Sok: modular and
efficient private decision tree evaluation. PoPETs 2019(2), 187-208 (2019)
Libbrecht, M.W., Noble, W.S.: Machine learning applications in genetics and
genomics. Nat. Rev. Genet. 16(6), 321-332 (2015)

Liu, J., Juuti, M., Lu, Y., Asokan, N.: Oblivious neural network predictions via
minionn transformations. In: Proceedings of ACM CCS (2017)

Min, J.H., Lee, Y.: Bankruptcy prediction using support vector machine with opti-
mal choice of kernel function parameters. Expert Syst. Appl. 28(4), 603-614 (2005)
Mohassel, P., Zhang, Y.: Secureml: a system for scalable privacy-preserving
machine learning. In: Proceedings of IEEE S&P (2017)

Nikolaenko, V., Ioannidis, S., Weinsberg, U., Joye, M., Taft, N., Boneh, D.: Privacy-
preserving matrix factorization. In: Proceedings of ACM CCS (2013)

Nikolaenko, V., Weinsberg, U., loannidis, S., Joye, M., Boneh, D., Taft, N.: Privacy-
preserving ridge regression on hundreds of millions of records. In: Proceedings of
IEEE SP (2013)

Riazi, M.S., Weinert, C., Tkachenko, O., Songhori, E.M., Schneider, T., Koushan-
far, F.: Chameleon: a hybrid secure computation framework for machine learning
applications. In: Proceedings of AsiaCCS (2018)

Tai, R.K.H., Ma, J.P.K., Zhao, Y., Chow, S.S.M.: Privacy-preserving decision trees
evaluation via linear functions. In: Proceedins of ESORICS (2017)

Tueno, A., Kerschbaum, F., Katzenbeisser, S.: Private evaluation of decision trees
using sublinear cost. POPETs 2019(1), 266-286 (2019)

Wagh, S., Gupta, D., Chandran, N.: Securenn: efficient and private neural network
training. PoPETs 2019(3), 26—49 (2019)

Wang, Q., Wang, J., Hu, S., Zou, Q., Ren, K.: Sechog: privacy-preserving outsourc-
ing computation of histogram of oriented gradients in the cloud. In: Proceedings
of ACM AsiaCCS (2016)

Wu, D.J., Feng, T., Naehrig, M., Lauter, K.E.: Privately evaluating decision trees
and random forests. PoOPETs 2016(4), 335-355 (2016)

Yao, A.C.: How to generate and exchange secrets. In: Proceedings of FOCS (1986)
Yap, B.W., Ong, S., Husain, N.H.M.: Using data mining to improve assessment
of credit worthiness via credit scoring models. Expert Syst. Appl. 38(10), 13274—
13283 (2011)

Zheng, Y., Cui, H., Wang, C., Zhou, J.: Privacy-preserving image denoising from
external cloud databases. IEEE Trans. Inf. Forensics Secur. 12(6), 1285-1298
(2017)

Zheng, Y., Duan, H., Wang, C.: Learning the truth privately and confidently:
encrypted confidence-aware truth discovery in mobile crowdsensing. IEEE Trans.
Inf. Forensics Secur. 13(10), 2475-2489 (2018)

Ziegeldorf, J.H., Metzke, J., Riith, J., Henze, M., Wehrle, K.: Privacy-preserving
HMM forward computation. In: Proceedings of CODASPY (2017)

https://doi.org/10.1007/978-3-319-95729-6_16

®

Check for
updates

Confidential Boosting with Random
Linear Classifiers for Outsourced
User-Generated Data

Sagar Sharma™) and Keke Chen

Data Intensive Analysis and Computing (DIAC) Lab, Kno.e.sis Center,
Wright State University, Dayton, OH 45435, USA
{sharma.74,keke.chen}@uright.edu

Abstract. User-generated data is crucial to predictive modeling in
many applications. With a web/mobile/wearable interface, a data owner
can continuously record data generated by distributed users and build
various predictive models from the data to improve its operations, ser-
vices, and revenue. Due to the large size and evolving nature of users
data, a data owner may rely on public cloud service providers (Cloud) for
storage and computation scalability. Exposing sensitive user-generated
data and advanced analytic models to Cloud raises privacy concerns. We
present a confidential learning framework, SecureBoost, for data own-
ers that want to learn predictive models from aggregated user-generated
data but offload the storage and computational burden to Cloud with-
out having to worry about protecting the sensitive data. SecureBoost
allows users to submit encrypted or randomly masked data to desig-
nated Cloud directly. Our framework utilizes random linear classifiers
(RLCs) as the base classifiers in the boosting framework to dramatically
simplify the design of the proposed confidential protocols, yet still pre-
serve the model quality. A Cryptographic Service Provider (CSP) is used
to assist the Cloud’s processing, reducing the complexity of the proto-
col constructions. We present two constructions of SecureBoost: HE+GC
and SecSh+GC, using combinations of homomorphic encryption, garbled
circuits, and random masking to achieve both security and efficiency. For
a boosted model, Cloud learns only the RLCs and the CSP learns only
the weights of the RLCs. Finally, the data owner collects the two parts
to get the complete model. We conduct extensive experiments to under-
stand the quality of the RLC-based boosting and the cost distribution
of the constructions. Our results show that SecureBoost can efficiently
learn high-quality boosting models from protected user-generated data.

1 Introduction

It is a common scenario in which a data owner delivers services such as search
engines, movie recommendations, healthcare informatics, and social network-
ing to its subscribing or affiliated users (henceforth referred as users) via
web/mobile/wearable applications. By collecting users’ activities such as click-
throughs, tweets, reviews, and other information, the data owner accumulates

© Springer Nature Switzerland AG 2019
K. Sako et al. (Eds.): ESORICS 2019, LNCS 11735, pp. 41-65, 2019.
https://doi.org/10.1007/978-3-030-29959-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29959-0_3&domain=pdf
https://doi.org/10.1007/978-3-030-29959-0_3

42 S. Sharma and K. Chen

a large amount of user-related data, which are used to build analytic models
aimed at improving the quality of related services and operations, and increase
revenues. However, due to the ever-growing size of data and associated computa-
tion complexities, data owners often rely on easily available public cloud services
(Cloud) to outsource storage and computations.

The reliance on Cloud for the massive collection of user data along with
building powerful big data analytic models raise great concerns of user pri-
vacy and intellectual property protection. First, the Cloud’s infrastructures, if
poorly secured, can be compromised by external hackers which damages the data
owner’s reputation and users’ privacy. Recent data breach incidents involved
Target, Ashley Madison, and Equifax [28,34]. Second, the potential threat of
unauthorized retrieval, sharing, or misuse of sensitive data by insiders [7,11]
are difficult to detect and prevent. The data owners have a great responsibility
for protecting the confidentiality of the sensitive data collection and analytics in
Cloud. Thus, confidential data mining frameworks for outsourced data are highly
desirable to data owners. Note that differential privacy does not fully address
the problem, as it does not protect intellectual property and cannot prevent
model-inversion attacks [14,33] as models are exposed to the adversaries.

Naive applications of the well-known cryptographic primitives such as the
fully homomorphic encryption (FHE) scheme [18], garbled circuits (GC) [35],
and secret sharing [10] in building confidential computing frameworks prove too
expensive to be practical [27,30]. A few recent studies [10,29-31] started blending
multiple cryptographic primitives and adapted to certain privacy architectures
to work around the performance bottlenecks. These “hybrid” constructions mix
different cryptographic primitives to implement the key algorithmic components
of a protocol with reasonable overheads.

While the hybrid approach is promising, it does not fundamentally address
the basic complexity of building a confidential version of a learning algorithm.
We believe it is more critical to modify the original algorithm or adopt a “crypto-
friendly” alternative algorithm to significantly reduce the associated complexity.
However, the current solutions are mostly focusing on translating the original
algorithms to confidential ones, from simple linear algorithms with weak predic-
tion power, such as linear classifiers and linear regressions [19,29,31], to powerful
yet enormously expensive models, such as shallow neural networks [29].

1.1 Scope of Work and Contributions

While deep learning methods [26] have dominated the image and sequence-based
learning tasks, boosting is among the most powerful methods such as SVM and
Random Forest [5] for other prediction tasks. For example, it has also been a
popular method (e.g., XGBoost [9]) in learning to rank [6] and a top choice of
many Kaggle competition winners. Surprisingly, no work has sufficiently explored
the power of boosting in confidential learning.

Confidential Boosting with Random Linear Classifiers 43

The core idea of our SecureBoost approach is to fully utilize the powerful
boosting theory [15] that requires only weak classifiers (e.g., each classifier’s
accuracy is only slightly exceeding 50% for two-class problems) to derive a pow-
erful prediction model. This flexibility allows us to revise the original boosting
algorithm (i.e., AdaBoost [15]) that uses non-crypto-friendly decision stumps to
adopt crypto-friendly random linear classifiers as the base classifiers. We con-
sider our work as the first step towards developing confidential versions for other
boosting algorithms such as gradient-boosting [16].

In the popular AdaBoost framework for classification [15], decision stumps
(DS) have been used as the weak classifiers for their simplicity and fast conver-
gence of boosting. Although the training algorithm for a decision stump is quite
simple, it is expensive to implement its confidential version due to the associated
complexity of secure comparisons. Our core design of confidential boosting is to
use random linear classifiers (RLCs) as the weak classifiers. For a linear classifier
f(x) = wTz, where x is the feature vector and w is the parameter vector to learn,
an RLC sets w to be random using a specific generation method independent
of training data. This random generation of classifier dramatically simplifies the
training step and it only requires to determine whether the random classifier is
a valid weak classifier (e.g., accuracy >50%). In experiments, we found that our
random RLC generation method works satisfactorily - for every 1-2 random tries
we can find a valid weak classifier. The resulting boosting models are compara-
ble to those generated by using decision stumps as base classifiers, although it
converges slightly slower. The use of RLC also allows us to conveniently protect
feature vectors and labels and to greatly reduce the costs of other related steps.

We have designed two secure constructions to implement the RLC-based
boosting framework to understand the effect of different cryptographic primitives
on the associated complexities and expenses. The constructions are based on
the non-colluding honest-but-curious Cloud-CSP setting that has been used by
recent related work [29-31]. CSP is a cryptographic service provider that will be
responsible to manage encryption keys and assist Cloud with the intermediate
steps of the boosting framework. Cloud takes over the major computation and
storage burden but is not interested in protecting user privacy. Both of our
protocols result in models with distributed parameters between the Cloud and
the CSP: the Cloud holding the RLCs’ parameters and the CSP holding the base
classifier’s weights of the boosted models. An alternate setting (i.e., our SecSh
setting) is that two servers take an equal share of computation and storage. For
simplicity, we unify the two settings to Cloud-CSP.

We carefully analyze the security of the constructions based on the uni-
versally composable (UC) security paradigm [3,4] and show that no additional
information is leaked except for CSP knowing a leakage function. Both the con-
structions of SecureBoost expose a leakage function to CSP - the correctness of
RLC’s prediction on training examples. We analyze the leaked information of
the function and show that it is safe to use under our security assumption.

44 S. Sharma and K. Chen

We summarize the unique contributions as follows:

— We propose to use random linear classifiers as a crypto-friendly building block
to simplify the implementation of confidential boosting.

— We develop two hybrid constructions: HE+GC and SecSh+GC, with the com-
bination of GC, SHE, Secret Sharing, AHE, and random masking to show that
the RLC-based boosting can be elegantly implemented.

— Our framework provably preserves the confidentiality of users’ submitted
data, including both feature vectors and their associated labels, and the gen-
erated boosting models from both curious Cloud and CSP.

— We conduct an extensive experimental evaluation of the two constructions
with both synthetic and real datasets to fully understand the costs and asso-
ciated tradeoffs.

2 Preliminary

We use lowercase letters for vectors or scalars; capital letters for matrices and
large integers; and single indexed lowercase or capital case letters for vectors.

Boosting. Boosting is an ensemble strategy [21] that generates a high-quality
classifier with a linear combination of 7 weak base classifiers (whose prediction
power is slightly better than random guessing). Specifically, given training exam-
ples {(x;,v:),i = 1...n}, where x; are feature vectors and y; are labels, it learns
a model H(x) = > ;_; auhi(x), where hy is a weak classifier that outputs the
prediction g for the actual label y and «y is the learned weight for h;. Algorithm 2
in Appendix A.1 outlines the boosting algorithm for the two-class problem. The
most popular weak classifier has been the decision stump [15], which is merely
based on conditions like if X; < wj;, output 1; otherwise, —1, where X; is a
certain feature and X; < v; is some optimal split that gives the best prediction
accuracy among all possible single-feature splits for the training dataset.

Additive Homomorphic Encryption. For any two integers « and 3, an AHE
scheme allows the additive homomorphic operation: E(« + §) = f(E(a), E(B))
where the function f works on encrypted values without decryption. For exam-
ple, Paillier encryption [32] is one of the most efficient AHE implementations.
Conceptually', with one operand, either a or 3, unencrypted, we can derive
the pseudo-homomorphic multiplication, e.g., E(af) = E(Z;B:l «). Similarly,
we can derive pseudo-homomorphic vector dot-product, matrix-vector multipli-
cation, and matrix-matrix multiplication, as long as one of the operands is in
plaintext.

RLWE Homomorphic Encryption. The RLWE scheme is based on the
intractability of the learning-with-error (LWE) problem in certain polynomial
rings [2]. It allows both homomorphic addition and multiplication. RLWE allows
multiple levels of multiplication with a rising cost. For details, please refer to

! Paillier encryption allows more efficient multiplication.

Confidential Boosting with Random Linear Classifiers 45

Brakerski et al. [2]. Message packing [2] was invented to pack multiple cipher-
texts into one polynomial, greatly reducing the ciphertext size - e.g., we can
pack about 600 encrypted values (slots) into one degree-12,000 polynomial. With
message packing, vector dot-products and matrix-vector multiplication can be
carried out efficiently as shown by [20].

Randomized Secret Sharing. The randomized secret sharing method [10]
protects data by splitting it into two (or multiple) random shares, the sum of
which recovers the original data, and distributing them to two (or multiple) par-
ties. Several protocols have been developed to enable fundamental operations
such as addition and multiplication based on distributed random shares, pro-
ducing results that are also random shares, such as the multiplicative triplet
generation method [10,29].

Garbled Circuits. Garbled Circuits (GC) [35] allow two parties, each holding
an input to a function, to securely evaluate a function without revealing any
information about the input data. The function is implemented with a circuit
using a number of basic gates such as AND and XOR gates. The truth table
of each gate is encrypted so that no information is leaked during the evalua-
tion. One party creates the circuit and the other one evaluates it. All inputs
are securely encoded as labels and passed to the evaluator via the 1-out-of-2
Oblivious Transfer (OT) [1] protocol. During the recent years, a number of opti-
mization techniques have been developed to minimize the cost of GC, such as
free XOR gates [24], half AND gates [36], and OT extension [1].

3 Framework

Figure1 shows the SecureBoost framework and the involved parties: the data
owner, the cloud service provider (Cloud), the users who contribute their per-
sonal data for model training, and the Cryptographic Service Provider (CSP).
The learning protocol consists of multiple rounds of Cloud-CSP interactions,
which builds a boosted model on the global pool of user-contributed training
data. Ultimately, Cloud learns the parameter of each base classifier but no addi-
tional knowledge about the protected user data; and CSP learns the weights
of the base classifiers and a certain type of leakage information that does not
help breach the confidentiality of protected user data. The learned models can
be either downloaded and reconstructed by the data owner for local applica-
tions or used by data owner by submitting encrypted new records to Cloud and
undergoing Cloud-CSP evaluation.

Data owner designates a cloud provider to collect user-generated data
in encrypted form and undertake the major storage cost and the major
computation-intensive components of the confidential learning protocol. CSP
is a party with limited resources. It mainly assists Cloud in intermediate steps,
e.g. encrypting or decrypting intermediate results and constructing garbled cir-
cuits. CSP is allowed to learn some leakage function but remains oblivious to
users’ data or the learned models. The concept of CSP has been used and justi-
fied by other related works [30,31] as a practical semi-honest setting to release

46 S. Sharma and K. Chen

[@5
Model split 1
Data Owner
Cloud
oProtocol ___|
Parallel Processing Interactions
Model split 1

b B I

HE submissions ‘ ’ SecSh submissions

Model split 2

Crypto-Service
Provider (CSP)
Crypto Operations
Model split 2

Fig. 1. SecureBoost Framework.

data owner from complex interactions. If using randomized secret sharing, the
users upload shares of their submissions to both Cloud and CSP as depicted by
the dotted lines in Fig. 1.

3.1 SecureBoost Learning Protocol

In this section, we describe the rationale and benefits of using RLCs as the base
classifiers, the major components of the SecureBoost protocol, and the security
goals.

RLCs as Base Classifiers. The original boosting framework has used decision
stumps as the base classifiers. RLCs are overly ignored due to its slower conver-
gence rate. However, it is expensive to implement decision stumps on encrypted
data due to the O(knlogn) comparisons in the optimal implementation, where
n is the number of records and k is the dimensionality. It is known that compar-
ison on encrypted data is expensive for both homomorphically encrypted data
[27] or garbled circuits [25]. To reduce the cost involving comparisons, we use
randomly generated linear classifiers (RLC) instead. An RLC generates a clas-
sification plane in the form of h(x) = w’z + b with randomly selected w and b,
which can be done by one party, i.e., Cloud. Thus, no comparison is needed in
base-classifier generation.

However, blindly selecting w and b is not efficient. As Fig. 2 shows, the gen-
erated plane needs to shatter the training data space into two partitions of
significant sizes. For this purpose, we require the submitted data to be normal-
ized so that the training vectors are distributed around the origin. In practice,
with the standardization procedure, i.e., each dimension X; is normalized with
(X;—p;) /0, where p; is the mean and o; is the standard deviation of the dimen-
sion X;, most dimensional values should be in the range [—2,2]. Thus, we can
choose b, the intercept, in the range [—2, 2], while each element of w is chosen
uniformly from [—1, 1]. Note that p; and o; can be roughly estimated by the data
owner with low-cost sampling and aggregation of users’ submissions and shared
with the users. For clarity, we ignore the details of such simple protocols. With
this setting, we find in our experiments that a valid random linear classifier can

Confidential Boosting with Random Linear Classifiers 47

be found in about 1-2 tries. We have also verified with our experiments that
boosting with RLCs can generate high-quality models comparable to those with
decision stumps.

Non-effective ones Effective seed

i
‘/\\/ P . ﬂ hyperplanes

S| ’,/Q Distribution center
ST covers >95% population

Fig. 2. Effective Random Linear Classifier Generation

RLCs have extra advantages. First, they allow learning with both the fea-
ture vectors and labels protected. We can transform the training data as
z «— (z,1) and w < (w,b), with which the hypothesis function simply changes
to h(z) = wlx. For a two-class problem with labels y € {—1,1}, if the result
h(z) gives a correct prediction, i.e., the same sign as the label y, we always get
h(z)y = wlzy > 0; otherwise w’xy < 0. Note that zy stays together in the
evaluation, and thus users can submit the encrypted version of xy, E(xy), pro-
tecting both feature vectors and labels. Second, they simplify the learning of base
classifiers. As w is randomly generated, there is no need for Cloud to consider
sample weights during learning. Meanwhile, the learning of the a; weights can
be individually done by CSP. Finally, this process allows only the CSP to learn
the weights of base models, and Cloud to learn the base classifiers, preventing
either party learning the complete final model.

SecureBoost Protocol. The SecureBoost learning protocol is defined with
a 4-tuple: SB-Learning = (Setup, BaseApply, ResultEval, Update).
Algorithm 1 depicts the use of these components in the boosting framework.
For a boosted model H(z) = Y [_, auhi(z), Cloud learns the base models
{hi(z) = wlz,t = 1.7}, and CSP learns the model weights {ay,t = 1..7}.

(K,E(Z),{w;,i = 1..p},6;) «Setup(1¥, 7, p): (1) The key K is generated
by a certain party or parties (CSP, Cloud, or both) as required, with the desired
security level 1%; all public keys are published. (2) CSP initializes d; with 1/n.
(3) The training data Z of n instances contains row vectors z; = x;y;, which
is protected with either a public-key encryption scheme or random masking
(e.g., in the secret-sharing construction) to generate E(Z). (4) Data owner sets
the desired number of classifiers, 7, and instructs Cloud to generate a pool of
prospective RLCs with parameters w; for ¢t = 1...p, where p is the pool size
proportionally larger than 7, e.g., p = 1.57.

{E(ht(z;)),s = 1.n} — BaseApply(K, E(Z), wy): With the encrypted
training data E(Z) and a model parameter w;, the procedure will output the
model h;’s encrypted prediction results on all training instances.

48 S. Sharma and K. Chen

Algorithm 1. SecureBoost Framework

1: (KaE(Z)v{w’ul = 1"p}761)<_setup(1k’ Ty p);
2: for t — 1 to pdo

3: {E(hi(z;)),t =1.n} «— BaseApply(K, E(Z), w:);
4: I — ResultEval(K, {E(ht(x;),i = 1..n});

5: (0441, 4, e1)— Update(K, d;, I;); //by CSP only
6: if 7 effective base models have been found then

7 stop the iteration;

8: end if

9: end for

I; — ResultEval(K, {E(h:(z;)),i = 1..n}): With the encrypted prediction
results, ResultEval allows CSP (not Cloud) to learn the indicator vector I of
length n, indicating the correctness of h;’s prediction for each training instance.

(0¢41, ¢, €¢) «— Update(d;, I;): CSP takes Iy, §; to compute the weighted
error rate e; = ItTét and if hy is a valid base classifier i.e. accuracy > 50% (or
accuracy < 50% with the RLC decisions reversed), updates its weight a; =
0.5In((1 — et)/et) and computes d;11 for the next iteration with sample weight
updating formula.

In the end, Cloud learns {w;,t = 1..p} and CSP learns {ay,t = 1..p}. A two-
party function evaluation protocol can be easily developed for Cloud to apply
the model for classification, which, however, is not the focus of this paper. The
data owner can simply download the model components from the two parties
and reconstruct the final model for local application. The design of leaking I;
represents a careful balance between security and efficiency. While it is possible
to hide I, the complexity of Cloud and CSP processing will be dramatically
increased. We have carefully studied the implication of I; in Sect.7 and found
its impact on security is minimal.

3.2 Security Model

We make some relevant security assumptions here: (1) Both Cloud and CSP are
honest-but-curious parties, i.e., they follow the protocols exactly and provide
services as expected. However, they are interested in the users’ data. (2) Cloud
and CSP do not collude, (3) The data owner owns data and models thus is a fully
trusted party, (4) All infrastructures and communication channels are secure.
While the integrity of data and computation is equally important, we consider
it orthogonal to our study. We are mainly concerned with the confidentiality of
the following assets.

— Confidentiality of training data. User-generated training data may
include personal sensitive information. We consider both feature values and
the labels sensitive. For example, a user’s fitness activity dataset may contain
sensitive features such as heart rate and locations, while the labels, i.e., the
type of activity, may imply their activity patterns and health conditions.

Confidential Boosting with Random Linear Classifiers 49

— Confidentiality of prediction models. The learned models are proprietary
to the data owner and can link to confidential users’ data. Therefore, the
model parameters are split and distributed between Cloud and CSP. No single
party can learn the complete model.

We adopt the universally composable (UC) security [3,4] to formally define
the protocol security. We consider an ideal protocol m implementing the ideal
functionality F corresponding to a SecureBoost protocol, involving Cloud and
CSP. In the Real world, an honest-but-curious adversary A can corrupt any
of the parties and gain access to all the inputs and outputs of that party. We
say that 7 securely realizes F (or 7 is UC-secure) if for any A in real world
there exists an ideal-process simulator S in ideal world running probabilistic
algorithms in polynomial time (i.e., PPT), such that for any environment Z and

inputs m = (mz,mays, Mcioud/csP);

|Pr(Real; 4.z(k,z,m) =1) — Pr(Idealr s z(k, z,m) = 1)| = negl(k),

where negl(k) is a negligible function [23]. In Sect. 7, we propose two theorems
that can be proved to show that SecureBoost protocols are UC-secure.

4 Construction with HE and GC

In this section, we present the homomorphic encryption (HE) and GC based
construction of SecureBoost. With the HE encrypted data, the Base Apply pro-
cedure is essentially the homomorphic operation F(Z)w, that is allowed by both
Paillier [32] and RLWE [2] cryptosystems. We use a garbled-circuit based proto-
col to allow only CSP to learn the indicator vector I}, without leaking any other
information to the parties. In the following, we first describe the construction of
the protocol components and then discuss several key technical details.

Setup. CSP generates the HE public and private key and distributes the pub-
lic key to the users and Cloud. The private key accessible to the data owner
when necessary. Users encrypt their submissions. Cloud generates the pool of p
prospective weak classifier vectors, {wy,t = 1..p}.

BaseApply. With the matrix-vector homomorphic operations enabled by HE,
Cloud computes {E(u¢) = E(Zw;),t = 1..p}. As this step can be done locally
by Cloud, Cloud may choose to conduct this work offline before the protocol
interactions start.

ResultEval. The problem setting is that Cloud holds E(u;) and CSP securely
identifies the sign of each element of uy, i.e., Zw; > 0 implying correct prediction
by the RLC, which sets the corresponding element of I; to 1; otherwise to 0.
The sign of element is related to the specific integer encoding, which we will
elaborate more. With our encoding scheme, we only need to check a specific bit
to determine whether Zw,; > 0 is true. To satisfy all the security goals, we decide
to use a GC protocol for this step that will be discussed in more detail.

As the last step Update does not involve crypto operations, we can skip its
discussion. Figure 3(a) depicts all the associated Cloud-CSP interactions in this
construction.

50 S. Sharma and K. Chen

CSP [I, =msh(uy)
I

n many
[2b+ log,k+1] bit
Subtractors: u; - U4

Cloud | E(w+2)

Learns: (GC,input wire labels)

E(Z)v_}&: Wi E, (1) "
fort=1..71| — — — —"="——— —>|fort=1..1

b1 = A Upo=Uy + Ay

U,
Cloud CspP

(a) (b)

Fig. 3. (a) Cloud-CSP interactions in HE+GC construction. E; represents HE encryp-
tions whereas F represents GC labels for the GC outputs. (b) GC-based sign checking
protocol.

4.1 Technical Detail

Now, we discuss the key problems mentioned in the sketch of the construction
above.

Choice of HE Schemes. We consider two choices of HE: Paillier [32] and
RLWE [2] in our evaluations. Paillier scheme provides a large bit space allow-
ing to preserve more precisions in floating-integer conversion. Our evaluation
shows that with message packing, all RLWE operations including encryption,
decryption, addition and one-level multiplication are much faster than Paillier,
although the ciphertext size might be larger than that of Paillier.

Integer Conversion. The HE schemes work on integers only. For a floating-
point value z, x € R, to preserve m-digit precision after the decimal point upon
conversion and recovery, we have: v = |10™x| mod ¢, where ¢ is a large integer
such that 10™z € (—¢/2, q/2). Let the modulo operation map the values to [0, ¢),
in such a way that the negative values are mapped to the upper range (q/2,q).
It is easy to check that x is recoverable: if v > ¢/2, x = (v — q)/10™; otherwise,
x ~ v/10™. The modulo additions and multiplications preserve the signs and
are thus recoverable. Furthermore, this encoding simplifies the evaluation of the
RLC base classifiers, which involves checking the sign of h¢(z). Let b be the total
number of bits to represent the values in [0,¢). It is trivial to learn that if the
b-th bit of a value in the range [0, ¢) is 1, then the value is in the range (¢/2, q),
which is negative; otherwise, the value is positive. With large enough ¢ we can
accommodate the desired multiplication and addition results without overflow.
An n-bit plaintext space that allows one multiplication followed by « additions,
as used in our protocol, spares (n — «)/2 bits to encode the original value. For
easier processing, we normalize the original real values in the same dimension of
training data before converting them to b bit integers.

Secure Matrix-Vector Multiplication. The core operation E(Zw;) involves
encrypted E(Z) and Cloud generated random plaintext w;. Thus, both AHE
and SHE schemes can be applied.

Securely Checking Signs of E(u;). CSP needs to check the result of base clas-
sifier prediction, E(u;) = E(Zw;) to learn the correctness of prediction on each

Confidential Boosting with Random Linear Classifiers 51

instance, so that the error rate, the model weight, and the sample weight update
can be computed. With the described integer conversion encoding method, the
sign checking u;; < 07 is determined by a specific bit in the result. Note that
letting CSP know w; directly may reveal too much information significantly
weakening the security. To balance between security and efficiency, we decide to
let CSP only learn the signs indicating if the base classifier h; correctly classified
the training instances, and nothing else is leaked. Lu et al. [27] have proposed a
comparison protocol based only on RLWE, however, it is extremely expensive to
be adapted to our framework. Therefore, we rely on a noise addition procedure
to hide the decrypted u; from CSP and a GC-based de-noising and bit extraction
procedure to let CSP learn the specific bit for sign checking. We give the details
of these procedures next.

To hide the plaintext u; from CSP, we use a noise addition method that
can be easily implemented by Cloud on the encrypted vector with homomorphic
addition: E(uo) = E(ut) + E(A\), where A is a noise vector generated by the
pseudo-random number generator G. Then, CSP can decrypt E(u;) to learn
the noisy result. Let u;; = A: held by Cloud. Now the problem is turned to
using a GC to securely compute u; = u¢o — u,1 and return the specific bit of
each element of u;.

Figure 3(b) shows the GC based de-noising and bit extraction protocol. CSP’s
input to the circuit is the binary form of u} elements whereas Cloud’s inputs
are the binary form of \; elements. With associated oblivious transfer (OT)
protocol and wire label transfers, the circuit can securely evaluate uj — A¢ and
extract the most significant bit, msb(u; ;),j = 1..n, of the result without leaking
anything else. Cloud evaluates the circuits and returns the extracted encrypted
bits (represented as output labels in GC) to CSP. CSP can then decrypt (re-map)
the labels to generate the indicator vector I;.

5 Construction with SecSh and GC

Alternatively, we design our framework with a mixture of secret sharing and
garbled circuit techniques. We call this construction “SecSh + GC”. A somewhat
similar approach was taken by [29] in constructing confidential gradient-descent
based learning. It differs from the HE based construction in two aspects: (1) user
data protection uses secret sharing, and (2) matrix-vector multiplication happen
over secret random splits of training data held by Cloud and CSP.

Instead of encryption, users randomly split their training data into two
shares, one for Cloud and the other for CSP. The sum of shares recovers the
original values. Any intermediate results that need protection are also in the
form of random shares distributed between Cloud and CSP. As a result, multi-
plication of two values, say, a and b, each as random shares (e.g., Cloud holds
ap and by while CSP holds a7 and by, where ag + a; = a and by + by = b), needs
the help of AHE encryption to compute each party’s random share for ab. As
for sign checking, we reuse the GC protocol designed earlier for HE+GC.

52 S. Sharma and K. Chen

Setup. Each user splits their data Z into a random matrix Zy and Z;, where
7y = Z — Zy, and securely distributes Zy to Cloud and Z; to CSP. Cloud also
generates a key pair for a chosen AHE scheme and shares the public key with

CSP.

BaseApply. With Cloud holding Zy and w¢, and CSP holding Z;, BaseApply
will generate random shares of the result u; = Zw; = us g — w1t U and uy g
held by Cloud and CSP, respectively. This is implemented with a special matrix-
vector multiplication algorithm, which we will describe later.

ResultEval. With the random shares: u; o and u;; held by Cloud and CSP
respectively, we can apply the same GC protocol presented in the last section
for computing © = us o — us,1 and extracting the specific bits.

5.1 Technical Detail

The SecSh+GC construction reuses the integer conversion and the GC-based
sign checking components. Here, we focus on the major difference: the protocol
for computing matrix-vector multiplication with random shares.

Random-Share-Based Matrix-vector Multiplication. To initiate, Cloud
and CSP respectively hold the two shares Z, and Z; of user data in plaintext,
and Cloud also holds w; in plaintext. The goal is to derive random shares of Zw;
and each party learns only one of the shares.

Table 1. BigO estimation for SecureBoost constructions

Construction | Party | Encryption | Decryption | Enc. Mult/Add | Enc. Comm | GC Comm | Storage

HE+GC User | O(nk) - - O(nk) - -
Cloud | O(pn) - O(pnk) O(pn) O(pnb) O(nk)
CSP |- O(pn) - - - -

SecSh+GC | User |- - - - - -
Cloud | O(pk) O(pn) - O(p(n + k)) | O(pnb) O(nk)
CSP | O(pn) - O(pnk) - - O(nk)

Cloud computes the part Zyw; in plaintext by itself. The challenge is to col-
lect the other part Z;w; without CSP knowing w; and no party knowing the com-
plete result, Zw;. We use the following procedure to achieve this security goal.
(1) Cloud encrypts w; with an AHE scheme and sends F(w;) to CSP so that CSP
can apply pseudo-homomorphic multiplication to compute E(Zyw;) = Z1 E(w;).
(2) CSP generates a random vector A, with the pseudo-random number generator
G, encrypts it with the public key provided by Cloud, and apply homomorphic
addition to get E(Zyw; + A¢), which is sent back to Cloud. (3) Cloud decrypts it
and sums up with the other part Zow; to get Zw; + A;. In the end, Cloud gets
ut,o = Zwy + Ay and CSP gets uy,;; = A¢. At this point, Cloud and CSP use the
GC protocol for sign checking in Sect. 4.

Confidential Boosting with Random Linear Classifiers 53

6 Cost Analysis

Table 1 summarizes the associated big-O estimation of communication and com-
putation broken down into different operations/components. The notations are
the same as defined. In summary, we observe that HE+GC constructions demand
no CSP storage and CSP only needs to conduct decryptions and GC con-
structions. In contrast, the workload and storage are almost equally distributed
between Cloud and CSP in SecSh+GC. However, as user-generated data is not
encrypted but split into random shares in SecSh+GC, users’ costs and overall
storage costs are much lower.

7 Security Analysis

According to the security model outlined in Sect. 3.2, we focus on the subcom-
ponents of the protocols that involve both Cloud and CSP and implement a
specific ideal function F. The security is proved by finding a simulator S in the
ideal scenario corresponding to the adversary A in the real scenario such that the
environment Z cannot distinguish the probabilistic outputs of Ideal and Real.

The major interaction happens in computing the indicator vector I; for an
iteration ¢. The corresponding ideal function is defined as F(mcioud,t, Mcsp,i) —
I, where m¢ioud,t, mesp,: are Cloud’s and CSP’s inputs to the function and the
function’s output is the indicator vector I; as defined by our protocols. We
present two theorems next, the proofs which can be read in the extended version
of this paper?.

Theorem 1. If the random number generator G is pseudo-random, and both the
HE scheme and GC are CPA-secure, then the HE+GC construction of Secure-
Boost is secure in computing I; with an honest-but-curious adversary.

Theorem 2. If the random number generator G is pseudo-random and both
the AHE scheme and GC are CPA-secure, then the SecSH+GC' construction is
secure in computing Iy with an honest-but-curious adversary.

7.1 Implication of Revealing I; to CSP

CSP learns the indicator function Iy ; (he(z;) == y;), for i = 1..n in the iteration ¢
of SecureBoost. It is clear that this leakage does not help CSP learn the complete
boosted model H(z) as long as Cloud randomly generates and holds {w;,t =
1..7} as secrets. However, we must understand if such leakage may help CSP
learn anything about the training data.

Recall that an element of indicator vector I;(h:(x;) == y;) represent if the
base RLC h; classifies the training instance x; correctly or incorrectly (1 and 0,
respectively). At the end of learning, each record z; gets p prediction results for p
base classifiers hy,t = 1..p, respectively, which is denoted as ¢; = (¢;1,...,¢ip)s

2 https://arxiv.org/abs,/1802.08288.

https://arxiv.org/abs/1802.08288

54 S. Sharma and K. Chen

¢i; € {0,1}. Let ¢; be the characterization vector (CV) for the record ;.
The intuition tells that two similar records (i.e., relatively small Euclidean dis-
tance) with the same label will lead to similar CVs. However, our experiments
show that the reverse is clearly false (Fig.6 in Sect.8)—if the reverse was true
then adversaries could utilize CV similarity to infer record similarity. In par-
ticular, the records having identical CVs have distances (and their standard
deviations) not significantly different from those having other types of CVs.

8 Experiments

We design our experiment set on both real and synthetic datasets with three
goals: (1) show random linear classifiers are effective weak classifiers for boosting;
(2) evaluate associated computation, communication, and storage costs, and
their distributions amongst the users, Cloud, and CSP for both the constructions;
and (3) understand the trade-off between costs and model quality, including
a comparison with another state-of-the-art confidential classification learning
framework.

Implementation. We adopt the HELib library [20] for the RLWE encryp-
tion scheme, implement the Paillier cryptosystem [32] for the AHE encryp-
tion scheme, and use the ObliVM (oblivim.com) library for the garbled circuits.
ObliVM has included the state-of-the-art GC optimization techniques such as
half AND gates, free XOR gates, and OT extention. The core algorithms for
data encoding, encryption, matrix-vector multiplications, and additive pertur-
bation are implemented with C++ using the GMP library. Users’ submissions
are encoded with the 7-bit floating-integer conversion method (Sect.4.1). We
use the scikit-learn toolkit (scikit-learn.org) to evaluate the model quality for
existing classifier learning methods selected for comparison purpose.

Parameter Selection. We pick cryptographic parameters corresponding to
112-bit security. The RLWE parameters allow 32-bit message-space overall, 1
full vector replication, and at least 2 levels of multiplication. The degree of the
corresponding cyclotomic polynomial is set to ¢(m) = 12,000 and ¢ = 7 modulus
switching matrices, which gives us h = 600 slots for message packing. The Paillier
cryptosystem uses 2048-bit key-size to achieve approximately 112-bit security.
Our GC-based sign checking protocol accommodates (2b + log,(k))-bit inputs,
where b is the bit-precision (i.e., b=7 in experiments) and k is the dimension of
the training data. Note that HELib uses a text format to store the ciphertext
which we zip to minimize the costs.

Datasets. We test SecureBoost with both the synthetic and real datasets.
Table 2 summarizes the dataset properties. Datasets are selected to cover a dis-
parate range of dimensions and number of instances. All selected datasets contain
only two classes to simplify the evaluation. The real datasets come from the UCI
Machine Learning Repository [13]. The synthetic dataset is deliberately designed
to generate non-linearly separable classes. It is used to conveniently explore and
understand the behaviors of RLC-based boosting and the quality of non-linear
classification modeling methods.

Confidential Boosting with Random Linear Classifiers 55

Table 2. Dataset statistics.

Dataset Instances | Attributes | Adaboost accuracy | Number of decision stumps
ionosphere 351 34 92.02% + 4.26% 50
credit 1,000 24 74.80% + 3.50% 100
spambase 4,601 57 92.31% + 4.40% 75
epileptic 11,500 | 179 86.95% + 3.40% 200
synthetic | 150,000 10 89.51% + 2.10% 75

8.1 Effectiveness of RLC Boosting

The performance of boosting is characterized by the convergence rate and the
final accuracy. The speed of convergence is directly related to the overall cost of
the SecureBoost protocols. We look at the number of base classifiers (1) needed
to attain a certain level of accuracy. As a randomly generated RLC may fail
(i.e., RLCs having ~ 50% accuracy for the two-class datasets) and be discarded
in some of the rounds, we also assess the actual number (p) of RLCs that are
tried to generate the final model. All the accuracy results are for 10-fold cross-
validation. The following results can be reproduced and verified with the scripts
we have uploaded to https://sites.google.com/site/testsboost/.

e sy ogoBessing v DSWBoosing w RLC 9SS R
100% ; f & & 90%
oy : 2 oo g 80% 5
g 8 80% g) 3 85%
3 80% : 3 g 60% S 00
2 3 2 609 < < 8%
0% i . 607% ~ Boostingw.DS | T2 40% b 75%
Y) i b ~—Boosting w. LMC | 8 _ R /_‘4_\/
Z ; . — Boosting w. RLC | < 20% < 0%
< o ‘ R L] S —— 09 [
- . - - N e \
10 10° 10° 10! 10° 10° B _9_ _5 e
Number of Base Classifiers 7 Number of Base Classifiers 7 Datasets Precision bits (b)
(a) (b) () (d)

Fig.4. (a) Convergence of boosting with RLCs. (b) Convergence of boosting with
RLCs, LMCs, and DSes for the synthetic dataset. (¢) Model quality: boosting with
RLCs vs. boosting with DSes. (d) Bit precision vs. model accuracy

Figure 4(a) analyzes the convergence of RLC-based boosting for each dataset.
We observe that overall only about 200 base classifiers are sufficient to reach a
stable model accuracy level for the considered datasets. Figure4(b) compares
boosting with different base classifiers: RLC, decision stumps (DS), and linear
means classifiers (LMC) when learning on the synthetic dataset. Clearly, DS has
the advantage of converging faster in about 75-80 rounds. On the other hand,
boosting with LMC does not reach the desired accuracy, because the centers
of class (i.e., the “means”) that are used to define the classification plane stay
stable even with changed sample weights. The result is a bunch of highly similar
base classifiers in the final boosting model, which does not take advantage of the
boosting framework.

https://sites.google.com/site/testsboost/

56 S. Sharma and K. Chen

Figure 4(c) shows the final model quality produced by RLC boosting and the
DS boosting (i.e., the default boosting method). We use 200 RLCs and varying
number of DSes as shown in Table 2 as the base classifiers for the datasets. In
every case, both methods generate models with almost identical accuracy. All of
the above results suggest that RLC boosting is robust and generates high-quality
classification models.

Encoding Bits. The number of bits for encoding affects the cost of GC-related
components and the precision in floating-integer conversion, which in turn affects
the final model quality. Figure4(d) shows the effect of preserved bits on model
accuracy. It seems preserving 7 bits is sufficient to get optimal quality models.

Cost Comparison with DS. As there is no DS learning algorithm on encrypted
data (possibly due to its high expense), we develop a DS learning protocol that
fits our framework to estimate the costs as shown in Appendix A.2.

8.2 Cost Distribution

We now inspect the associated costs for each involved party in the two construc-
tions. Table 3 shows the parameter settings for different datasets that led to the
desired model quality. 7 is the number of base classifiers in the final boosting
model. p represents the total number of RLCs that are tried in the modeling
process, which determines the actual protocol costs. Overall, in about 1-2 tries
on average, we can find a valid RLC (with accuracy > 50%).

Table 3. Parameter setting for cost evaluation. 7 and p - number of desired and tried
RLCs

Dataset T p Accuracy
ionosphere | 200 | 226 | 91.5% + 3.1%
credit 200 | 342 | 73.4% + 2.4%

spambase | 200|229 | 87.4% + 4.8%
epileptic | 200 | 331 | 84.41% + 2.9%
synthetic | 200 | 244 | 87.91% + 3.2%

User’s Costs. A user’s costs depend on the size of training data, i.e. the num-
ber of training records n, and the number of dimensions k per record. The Pail-
lier+GC construction requires each user to encrypt their submission element-
wise in streaming or batched manner. The RLWE+GC construction requires
each user to batch her submissions and encrypt them as a column-wise matrix
E(Z) with message packing (see Sect. 2). For the SecSh+GC construction, users
simply apply the one-time padding method to generate the masks and distribute
the splits to Cloud and CSP, respectively.

Confidential Boosting with Random Linear Classifiers

Table 4. User’s cost for a batch of 600 records

Dataset HE+GC (RLWE/Paillier) | SecSh+GC
Enc. (secs) | Upload (MB) | Upload. (MB)

ionosphere | 1.54/235.83 | 38.50/10.25 | 0.04

credit 1.09/168.45 | 27.50/7.32 0.03

spambase |2.54/390.80 |63.80/16.99 | 0.07

epileptic | 7.91/1,212.84 198.0/52.73 | 0.09

synthetic |0.48/74.12 12.1/3.22 0.05

57

Table4 depicts the user’s costs in encrypting and submitting one batch of
records with the batch size h = 600. The HE4+GC constructions are more expen-
sive than SecSh+GC in all aspects, but still quite acceptable in most cases.
RLWE+GC results in larger ciphertext but far less computations than Pail-
lier+GC.

Cloud and CSP Cost Distribution. As Cloud’s and CSP’s costs are highly
inter-related in the SecureBoost constructions we discuss them together. Note:
We use the Paillier cryptosystem in SecSh+GC as the required AHE scheme.
Table 5 sums up the costs for all the components. For the smaller datasets, the
RLWE+GC construction does not show much benefit over the other two. For
datasets with the larger number of records such as the synthetic dataset, both
Cloud and CSP take less computational time with RLWE+GC construction in
comparison with the other two. For datasets with larger dimensions such as the
epileptic dataset, RLWE+GC is more onerous to the Cloud whereas beneficial to
the CSP in terms of computation cost. As for storage and communication costs,
Paillier+GC and SecSH+GC are favorable across the board. We provide further
cost breakdown and analyze cost growth for Cloud and CSP with an increasing
number of records and dimensions in Appendix A.3.

Table 5. Overall Cloud and CSP Costs: Storage, Comp. (computation), Comm. (com-
munication)

HE+GC (RLWE / Paillier) SecSh+GC

Dataset Storage(MB) Comp. (minutes) Comm. (MB) St.(MB) |[Comp. (minutes)||Comm.(MB)
Cloud Cloud C Cloud| CSP || Cloud | CSP
38.5/6.0 13.5/21.1 35/16.3 286.2/81.0 26 | 2.6 17.8 19.6 84.8
credit 550/122 28.0/83.2 129/70.5 1,119.2/537.2 81 | 81 || 721 | 816 541.3
spambase 510.4/130.3 129.5/358.6 33.3/268.6 3,842.6/1,876.6 76.4 | 76.4 || 271.8 | 3553 1,885.1
epileptic [|(3,960.0/1,010.7|| 932.2/1,453.0 | 128.2/777.0 12,291.6/6,868.3 |||653.4[653.4|| 788.1 | 1.441.8 6897.4
synthetic 3,025.0/805.7 |[1.414.7/8,147.3]1,175.4 / 7,424.0{|106,891.1 / 57,662.2 || 383.9 |383.9||7.424.5| 8,146.8 || 57,663.5

8.3 Comparing with Other Methods

In this section, we compare SecureBoost with the recently developed SecureML
method [29]. It implements the stochastic gradient-descent (SGD) learning based
on secret sharing [10], which is then used for logistic regression (LR) and neural

58 S. Sharma and K. Chen

network (NN) [21]. We tried different shapes of inner hidden layers and found
the minimum-cost setting for satisfactorily handle the non-linearly separable
synthetic dataset. SGD is conducted with a mini-batch size of 128 records in
training. Both algorithms are run enough iterations until convergence.

] I . B RLWE+GC B Paillier+GC 1SecSh+GC
100% 'L(nglstlc iNeuralNet!SecureBoost nSecureML LR™SecureML NN

oy i ; 104 g 107

& = m

§ 80% Y 6 =

2 I £

s 60% é =)

z 2 2 2
40%ionosphere credit spambase epileptic synthetic = 0 SU Bl_

(a) (b)

Fig.5. (a) Comparison of model accuracy: Secure-Boost vs. SecureML - Logistic
Regression and Neural Network. (b) Overall cost comparison: SecureBoost construc-
tions vs. SecureML neural network and SecureML logistic regression for the synthetic
dataset.

Figure5(a) shows that SecureBoost and SecureML-NN perform similarly,
while SecureML-LR due to its inherent linearity [21] underperforms significantly
on the non-linearly separable data. This result can also be reproduced and ver-
ified with the scripts we have uploaded online®. Figure5(b) shows that Secure-
Boost constructions are more efficient than SecureML neural network. The cost
patterns will vary for different datasets due to the varying number of train-
ing epochs. For this specific dataset, SecureBoost takes 200 iterations, while
SecureML NN takes 20 epochs to converge. Logistic regression converges quickly
within 10 epochs but gets stuck at a non-optimal result. It appears the per-
iteration cost of SecureML NN is much higher.

8.4 Effect of Releasing I

We want to verify if similar characterization vectors infer similar training records
to understand the leaked information by I;. Figure6 measures the average
Euclidean distances between the training record pairs corresponding to the char-
acteristic vectors differing by k bits. It is evident that the similarity of charac-
terization vectors does not infer the similarity of training records as shown by
similar average distances and standard deviation for all values of k. An attacker
may suspect the training records that generate the same characteristic vector as
the anchor (attack) record to be closer to the anchor vector as compared to other
training records, however it is evident such is not the case. A further analysis on
leakage of the indicator vector will be interesting in a malicious cloud setting.

3 https:/ /sites.google.com /site/testsboost/.

https://sites.google.com/site/testsboost/

Confidential Boosting with Random Linear Classifiers 59

W g

0 10 20 30 40 50 70 10 20 30 40 50 0 5 10 15 20 25 "0 20 40 60 80 100120
k k k k

nnnnnnnnnn

istance
o
g

B —

o = -

o
o o
s 3

0O 4 an
> oo oo

Average Distance

Average Distance

Average Distance
oo s an
o @ o oo

Average Di

Fig. 6. Avg. distance between record-pairs generating characterization vectors differing
by k-bits.

9 Related Work

The current implementations of FHE are still too expensive to apply on complex
functions. ML Confidential [19] shows that simple linear models can be learned
by a semi-honest Cloud from FHE-encrypted data with acceptable costs. How-
ever, these simple models are unable to handle non-linearly separable datasets.
Lu et al. [27] show that PCA and linear regression can be implemented on FHE
encrypted data with reasonable costs for a strictly small number of iterations
in the algorithms. Moreover, the comparison operation based on FHE is very
expensive [27], which hinders the FHE’s application in many algorithms.

Despite new optimization of GC with techniques, such as free XOR gates
[24], half AND gates [36], and OT Extension [1], its adaptation in confidential
frameworks is still costly. Nikolaenko et al. [30,31] use FastGC [22] and AHE
to implement matrix factorization and linear ridge regression solutions. Use of
GCs in the expensive operations led these protocols to suffer from unbearable
communication costs between CSP and Cloud. In our designs, we carefully craft
the primitive operations to minimize the performance impact of the GC-related
operations.

Demmler et al. [10] have shown that basic matrix operations can be imple-
mented on random shares held by different parties when using secret sharing
secure multi-party computations. SecureML [29] utilized these operations and
GC to implement the gradient-descent learning method with a two-server model.
However, we note that these models are more expensive than ours to achieve the
same level of model quality.

Users may also submit locally perturbed data that satisfy locally differential
privacy (e.g., RAPPOR [12]). However, the model quality is significantly affected
by the reduced data quality, and the models are also exposed to model-inversion
attacks [14,33].

Gamb’s et al. [17] proposed algorithms enabling two or more participants to
construct a boosting classifier, however, their goal is to train a combined model
without sharing the horizontally partitioned training data with one another, not
outsourcing it.

Chen and Guo [8] consider using a pool of random linear classifiers in their
random space perturbation (RASP) based boosting framework for cloud com-
puting. Unlike our framework, the framework does not provide semantic security.

60 S. Sharma and K. Chen

10 Conclusion

We develop the SecureBoost protocol for data owners to learn high-quality
boosted classification models from encrypted or randomly partitioned users’
data using public Cloud. The key idea is to use random linear classifiers as
the base classifiers to simplify the protocol design. Two constructions: HE+GC
and SecSh+GC have been developed, using a novel combination of homomor-
phic encryption, garbled circuits, and randomized secret sharing to protect the
confidentiality and achieve efficiency. We formally analyze the security of the pro-
tocol and show that SecureBoost constructions satisfy the universally compos-
able security for multiparty computation. Our experimental evaluation examines
the intrinsic relationships among the primitive selection, cost distribution, and
model quality. Our results show that the SecureBoost approach is very practi-
cal in learning high-quality classification models. Our constructions are the first
batch of boosting protocols with practical costs, compared to the expenses of
the start-of-the-art implementation of other major predictive modeling methods
(e.g., Neural Networks by SecureML). We will extend the study to explore the
effect of sub-sampling the training data and differentially private release of the
leakage function in the future. Similarly, we will extend the work to multi-class
classification problem and other types of boosting.

A Appendix

A.1 Boosting Algorithm

Algorithm 2. Boosting(T, 7)

input: training data samples T" = {(zs,¥:),4 = 1...n, where z; € R and y; €
{1, —1}}, number of base classifiers: 7
Initialize the sample weights §1; < 1/n fori=1...n;
for t — 1to 7 do
learn a weak classifier h:(x) with sample weights 0;;, = 1...n;
for i — 1 ton do
et; = 1 if he(0¢,52:) == y; else 0;
end for
error =y o €4i0t;
ar = In((1 — error)/error);
5,54,.1,1' = 51571' eXp(Oéiet,i) fori=1... n;
Oey1 = Oev1/|0eal;
end for
Output: H(z) = ;_; arhi(x)

Confidential Boosting with Random Linear Classifiers 61

A.2 Confidential Decision Stump Learning

As there is no confidential DS learning algorithm reported, we present our initial
design of DS learning that fits our boosting framework. Learning DS involves
finding the optimal split for each feature in the training data with maximum
information gain. The original algorithm takes O(nlogn) comparisons to sort
the values for each feature. However, sorting the dimensions may reveal the
ordering information and breach data confidentiality, therefore, sorting may not
be used in the confidential version of DS learning. Instead, we use a fixed binning
scheme - i.e., partitioning the domain of each normalized dimension (e.g., (—4,4))
into s bins and enumerate all possible decision stumps - for two-class problems
and k dimensions, there are 2sk such stumps (each split value gets two conjugate
stumps: e.g., Stump 1: if X; < v; return 1 else return 0, Stump 2: if X; > v;
return 1 else return 0). We will describe the HE+GC construction for DS learning
here.

The users encrypt their records E(z;) and labels E(y;), with y; € {0, 1},
separately with the public key distributed by the CSP. (1) Cloud will start to
evaluate each of the sk decision stumps for every record with a slightly modified
version of GC described in Sect. 4. Specifically, for each instance (z;,y;), it will
securely check whether the class label y; matches the classifier output, e.g., if
X; < v; return 1 else return 0. Similarly, the evaluation of each DS will give
an indicator vector I, r = 1..sk, where 1 represents prediction error, reverse
to the indicator vector described in Sect. 3.1, I, is known to both Cloud and
CSP. We can flip the indicator vector for the conjugate DS. (2) CSP starts a
base classifier selection process, and computes the weight a; for each selected
DS hy(z). Specifically, with training sample weights (initialized to 1/n), w;, at
iteration 7, CSP will find one of the sk DSes that minimizes the weighted error,
argmin, (I.,w;), for r = 1..sk. In the end, CSP only knows the index of the
DS. It does not know the base classifier parameters, i.e. neither X; nor v;. Note
that this step does not involve decryption and encryption. (3) The indices of the
selected DSes and «; are submitted by CSP to Data Owner. Data Owner can
retrieve the actual DSes from Cloud.

Therefore, the overall cost is dominated by the sk rounds of evaluation in
stage (1), not subject to the number of selected base classifiers. To get results
close enough to the DS-based boosting model, we may need to take finely divided
bins, e.g., s=100. For a 10-dimension dataset, the cost is about equivalent to
trying 1000 base classifiers in the RLC protocol. Furthermore, CSP takes a
significant amount of storage and computing burden—it will need to keep all
the sk indicator vectors for DS selection, the size of which is much larger than
the original data, and conduct sk dot products on plaintext if the final model
contains 7 base classifiers.

A.3 Cloud and CSP Cost Breakdown and Scaling

First, we analyze the shared GC components for the selected real and synthetic
datasets in Table 2. Then, we analyze the cost growth of the constructions for
with increasing number of records and dimensions.

62 S. Sharma and K. Chen

As all the constructions share the same GC component for sign checking,
we list the GC costs together in Table 6. The number of AND gates represents
the size of GC. The computational and communication costs include the total of
both Cloud’s and CSP’s. GC’s associated costs are linear to n and bit precision b.
By comparing Table 5 in Sect. 8.2 and Table 6, it is clear that the GC-component
dominates the overall communication cost of our protocols.

Table 6. Costs of the GC component: Computation (comp.) and Communication
(Comm.)

Dataset AND Gates | Comp. (m) | Comm. (MB)
ionosphere 2,016,846 5.1 43.1

credit 8,840,000 | 20.3 371.2
spambase 37,268,100 | 47.2 1,202.6
epileptic | 87,549,500 | 101.3 5,00.6
synthetic | 695,400,000 | 927.4 39791.1

Now, we try to understand the relationship between the size of training data
and associated costs using synthetic datasets of several sizes and dimensions.
First, we fix the number of dimensions k£ = 20 and see how number of records
n affects the costs. Figure 7(a) shows that both Cloud’s and CSP’s costs in
RILWE++GC grow much slower than the other two’s. CSP’s growth rates are
almost same for SecSh+GC and Paillier+GC, as they involve the same number
of decryption operations.

1.500 Cloud’s Cost 1500, CSP’s Cost 950 Cloud’s Cost 250 CSP’s Cost
T haileroc Bt ~ | —RuwEsGe S RLWE+GC
= 1,000+ SessheGc 1,000~ SessheG 200 Cnes _200F s
1 5 Z 150 2150
> oo 1'% M
E 500 & 500 £ 100 E100] T
50 50
0 0 0 of ———————
002010608 1 002010608 1 TS0 0 10 5 00 I
Number of Records 7 loj Number of Records 7 loj Dimensions k Dimensions k
(a) (b)

Fig. 7. Computation cost. (a) Over increasing records (n) with fixed number of dimen-
sions (k = 20). (b) Over increasing dimensions (k) (bottom) and fixed number of
records (n = 10,000).

Figure 7(b) depicts the effect of increasing the dimensions while fixing the
number of records to n = 10,000. We observe that RLWE+GC cost for
Cloud grows much faster for the larger dimensions. This is due to the associ-
ated dimension-wise RLWE replication cost in the matrix-vector multiplication.

Confidential Boosting with Random Linear Classifiers 63

On the other hand, CSP’s cost when using RLWE+GC is much lower than with
the other two constructions, as the RLWE decryptions are much cheaper than
that of Paillier. Both Cloud’s and CSP’s costs when using Paillier+GC and
SecSh+GC stay almost flat as only n dominates the overall cost.

References

10.

11.

12.

13.

14.

Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivious trans-
fer and extensions for faster secure computation. In: 2013 ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS’13, Berlin, Germany, pp.
535-548 (2013). https://doi.org/10.1145/2508859.2516738, http://doi.acm.org/10.
1145/2508859.2516738

Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: Proceedings of the 3rd Innovations in The-
oretical Computer Science Conference. ITCS 2012, pp. 309-325. ACM, New York
(2012)

Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: Proceedings 2001 IEEE International Conference on Cluster Com-
puting, pp. 136-145 (2001)

Canetti, R., Cohen, A., Lindell, Y.: A simpler variant of universally composable
security for standard multiparty computation (2015)

Caruana, R., Niculescu-Mizil, A.: An empirical comparison of supervised learn-
ing algorithms. In: Proceedings of International Conference on Machine Learning
(ICML), pp. 161-168. ACM, New York (2006)

Chapelle, O., Chang, Y.: Yahoo! learning to rank challenge overview. J. Mach.
Learn. Res. Proc. Track 14, 1-24 (2011)

Chen, A.: GCreep: Google engineer stalked teens, spied on chats. Gawker (2010).
http://gawker.com /5637234 /gcreep-google-engineer-stalked- teens-spied-on-chats
Chen, K., Guo, S.: Rasp-boost: confidential boosting-model learning with per-
turbed data in the cloud. IEEE Trans. Cloud Comput. 6(2), 584-597 (2018)
Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: SIGKDD
Conference on Knowledge Discovery and Data Mining (2016)

Demmler, D., Schneider, T., Zohner, M.: ABY-a framework for efficient mixed-
protocol secure two-party computation. In: 22nd Annual Network and Distributed
System Security Symposium, NDSS 2015, San Diego, California, USA, February
8-11, 2015 (2015)

Duncan, A.J., Creese, S., Goldsmith, M.: Insider attacks in cloud computing. In:
2012 IEEE 11th International Conference on Trust, Security and Privacy in Com-
puting and Communications (2012)

Erlingsson, U., Korolova, A., Pihur, V.: RAPPOR: randomized aggregatable
privacy-preserving ordinal response. CoRR abs/1407.6981 (2014). http://arxiv.
org/abs/1407.6981

Frank, A., Asuncion, A.: UCI machine learning repository (2010). http://archive.
ics.uci.edu/ml

Fredrikson, M., Lantz, E., Jha, S., Lin, S., Page, D., Ristenpart, T.: Privacy in phar-
macogenetics: an end-to-end case study of personalized warfarin dosing. In: 23rd
USENIX Security Symposium USENIX Security 14, pp. 17-32. USENIX Associa-
tion, San Diego (2014)

https://doi.org/10.1145/2508859.2516738
http://doi.acm.org/10.1145/2508859.2516738
http://doi.acm.org/10.1145/2508859.2516738
http://gawker.com/5637234/gcreep-google-engineer-stalked-teens-spied-on-chats
http://arxiv.org/abs/1407.6981
http://arxiv.org/abs/1407.6981
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

64

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
27.

28.

29.

30.

31.

32.

S. Sharma and K. Chen

Freund, Y., Schapire, R.E.: A short introduction to boosting. In: International Joint
Conferences on Artificial Intelligence, pp. 1401-1406. Morgan Kaufmann (1999)
Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann.
Stat. 29(5), 1189-1232 (2001)

Gambs, S., Kégl, B., Aimeur, E.: Privacy-preserving boosting. Data Min. Knowl.
Discov. 14(1), 131-170 (2007). https://doi.org/10.1007/s10618-006-0051-9
Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Annual ACM
Symposium on Theory of Computing, pp. 169-178. ACM, New York (2009)
Graepel, T., Lauter, K., Naehrig, M.: ML confidential: machine learning on
encrypted data. In: Kwon, T., Lee, M.-K., Kwon, D. (eds.) ICISC 2012. LNCS,
vol. 7839, pp. 1-21. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-37682-5_1

Halevi, S., Shoup, V.: Algorithms in HEIlib. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014. LNCS, vol. 8616, pp. 554-571. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44371-2_31

Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning.
Springer, New York (2001). https://doi.org/10.1007/978-0-387-21606-5

Huang, Y., Evans, D., Katz, J., Malka, L.: Faster secure two-party computation
using garbled circuits. In: Proceedings of the 20th USENIX Conference on Security.
SEC 2011, pp. 35-35. USENIX Association, Berkeley (2011)

Katz, J., Lindell, Y.: Introduction to Modern Cryptography. Chapman and
Hall/CRC, Boca Raton (2007)

Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and
applications. In: Aceto, L., Damgard, I., Goldberg, L.A., Halldérsson, M.M.,
Ingdélfsdbttir, A., Walukiewicz, 1. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 486-498.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70583-3-40
Lazzeretti, R., Barni, M.: Division between encrypted integers by means of gar-
bled circuits. In: 2011 IEEE International Workshop on Information Forensics and
Security, pp. 1-6, November 2011. https://doi.org/10.1109/WIFS.2011.6123132
LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)
Lu, W., Kawasaki, S., Sakuma, J.: Using fully homomorphic encryption for statis-
tical analysis of categorical, ordinal and numerical data. IACR Cryptology ePrint
Archive 2016, 1163 (2016)

Mansfield-Devine, S.: The Ashley Madison affair. Network Secur. 2015(9), 8-16
(2015)

Mohassel, P., Zhang, Y.: SecureML: a system for scalable privacy-preserving
machine learning. In: 2017 IEEE Symposium on Security and Privacy (SP), pp.
19-38, May 2017. https://doi.org/10.1109/SP.2017.12

Nikolaenko, V., Ioannidis, S., Weinsberg, U., Joye, M., Taft, N., Boneh, D.: Privacy-
preserving matrix factorization. In: Proceedings of the 2013 ACM SIGSAC Con-
ference on Computer and Communications Security, pp. 801-812. ACM, New York
(2013)

Nikolaenko, V., Weinsberg, U., loannidis, S., Joye, M., Boneh, D., Taft, N.: Privacy-
preserving ridge regression on hundreds of millions of records. In: Proceedings of
the 2013 IEEE Symposium on Security and Privacy, pp. 334—-348. IEEE Computer
Society (2013)

Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223-238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_16

https://doi.org/10.1007/s10618-006-0051-9
https://doi.org/10.1007/978-3-642-37682-5_1
https://doi.org/10.1007/978-3-642-37682-5_1
https://doi.org/10.1007/978-3-662-44371-2_31
https://doi.org/10.1007/978-0-387-21606-5
https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1109/WIFS.2011.6123132
https://doi.org/10.1109/SP.2017.12
https://doi.org/10.1007/3-540-48910-X_16

33.

34.

35.

36.

Confidential Boosting with Random Linear Classifiers 65

Shokri, R., Stronati, M., Song, C., Shmatikov, V.: Membership inference attacks
against machine learning models. In: 2017 IEEE Symposium on Security and Pri-
vacy (SP) (2016)

Unger, L.: Breaches to customer account data. Comput. Internet Lawyer 32(2),
14-20 (2015)

Yao, A.C.: How to generate and exchange secrets. In: IEEE Symposium on Foun-
dations of Computer Science, pp. 162-167 (1986)

Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 220-250. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_8

https://doi.org/10.1007/978-3-662-46803-6_8

)

Check for
updates

BDPL: A Boundary Differentially Private
Layer Against Machine Learning Model
Extraction Attacks

Huadi Zheng'®) | Qingging Ye'2, Haibo Hu', Chengfang Fang®, and Jie Shi®

! The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
huadi.zheng@connect.polyu.hk,haibo.hu@polyu.edu.hk
2 Renmin University of China, Beijing, China
yeqq@ruc.edu.cn
3 Huawei International, Shanghai, China
{fang.chengfang,shi.jiel}@huawei.com

Abstract. Machine learning models trained by large volume of propri-
etary data and intensive computational resources are valuable assets of
their owners, who merchandise these models to third-party users through
prediction service API. However, existing literature shows that model
parameters are vulnerable to extraction attacks which accumulate a
large number of prediction queries and their responses to train a replica
model. As countermeasures, researchers have proposed to reduce the rich
API output, such as hiding the precise confidence level of the predic-
tion response. Nonetheless, even with response being only one bit, an
adversary can still exploit fine-tuned queries with differential property
to infer the decision boundary of the underlying model. In this paper,
we propose boundary differential privacy (e-BDP) as a solution to pro-
tect against such attacks by obfuscating the prediction responses near
the decision boundary. e-BDP guarantees an adversary cannot learn the
decision boundary by a predefined precision no matter how many queries
are issued to the prediction API. We design and prove a perturbation
algorithm called boundary randomized response that can achieve e-BDP.
The effectiveness and high utility of our solution against model extrac-
tion attacks are verified by extensive experiments on both linear and
non-linear models.

1 Introduction

Recent advance in deep learning has fostered the business of machine learning
services. Service providers train machine learning models using large datasets
owned or acquired by themselves, and use these models to offer online services,
such as face and voice recognition, through a public prediction API. Popular
products include Microsoft Azure Face API, Google Cloud Speech-to-Text, and
Amazon Comprehend. However, a prediction APT call, which consists of a query
and its response, can be vulnerable to adversarial attacks that disclose the inter-
nal states of these models. Particularly, a model extraction attack [19] is able

© Springer Nature Switzerland AG 2019
K. Sako et al. (Eds.): ESORICS 2019, LNCS 11735, pp. 66-83, 2019.
https://doi.org/10.1007/978-3-030-29959-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29959-0_4&domain=pdf
https://doi.org/10.1007/978-3-030-29959-0_4

BDPL: Boundary Differentially Private Layer 67

to restore important model parameters using the rich information (e.g., model
type, prediction confidence) provided by the prediction API. Once the model
is extracted, an adversary can further apply model inversion attack [7] to learn
the proprietary training data, compromising the privacy of data contributors.
Another follow-up attack on the extracted model is evasion attack [16,23], which
avoids a certain prediction result by modifying its query. For example, a hacker
modifies the executable binaries of a malware or the contents of a phishing email
in order not to be detected by an antivirus or spam email filter.

There are two state-of-the-art countermeasures against model extraction
attacks. One is to restrict rich information in the prediction API, for exam-
ple, by rounding the prediction confidence value to a low granularity. However,
even if the service provider completely eliminates this value in the prediction
API, that is, to offer prediction label only, an adversary can still defeat this pro-
tection by issuing large number of fine-tuned queries and train a replica of the
original model with great similarity [13,16,19]. The second countermeasure is to
detect malicious extraction by monitoring feature coverage [10] or query distri-
bution [9], and stop the service when a certain threshold is reached. However,
since we cannot preclude user collusion, all queries and responses must be con-
sidered aggregately, which leads to significant false positive cases and eventually
the early termination of service.

To address the disadvantages, in this paper we propose a new countermeasure
that obfuscates the output label of a prediction response. There are three main
concerns when designing this obfuscation mechanism. First, the accuracy of pre-
diction API is highly correlated with the degree of obfuscation—if obfuscation
needs to be applied to most queries, the utility of the machine learning service
will degrade severely. Second, the obfuscation mechanism should be independent
of both the adversarial attacks stated above and the underlying machine learn-
ing models. Third, the obfuscation mechanism should be customizable. That is,
it should allow user-defined parameters that can trade utility for model privacy
or vice versa.

Our key observation is that most model extraction attacks exploit fine-tuned
queries near the decision boundary of a machine learning model. The responses
of these queries disclose the details of model parameters and therefore should
be obfuscated with priority. To this end, we propose a boundary differential
private layer (BDPL) for machine learning services. BDPL provides a param-
eterized approach to obfuscate binary responses whose queries fall in a prede-
fined boundary-sensitive zone. The notion of differential privacy guarantees the
responses of all queries in the boundary-sensitive zone are indistinguishable from
one another. As such, adversary cannot learn the decision boundary no matter
how many queries are issued to the prediction API. On the other hand, the
majority of queries from normal users are far away from the decision boundary
and therefore are free from obfuscation. In this way, we can make the best use
of the obfuscation and retain high utility of the machine learning service. To
summarize, our contributions in this paper are as follows.

68 H. Zheng et al.

— We propose a new protection mechanism, namely, boundary differential pri-
vacy, against model extraction with fine-tuned queries while balancing service
utility and model protection level.

— We develop an efficient method to identify queries in the boundary-sensitive
zone, and design a perturbation algorithm called boundary randomized
response to guarantee boundary differential privacy.

— We conduct extensive empirical study on both linear and non-linear machine
learning models to evaluate the effectiveness of our solution.

The rest of the paper is organized as follows. Section 2 introduces the prelim-
inaries for machine learning and model extraction. Section 3 elaborates on the
threat model and problem definition with boundary-sensitive zone and bound-
ary differential privacy. Section4 presents the details of boundary differentially
private layer. Section 5 introduces evaluation metrics and shows the experimen-
tal results of BDPL against model extractions. Section6 reviews the related
literature, and Sect. 7 concludes this paper and discusses future work.

2 Preliminaries

2.1 Supervised Machine Learning Model

A dataset X contains samples in a d-dimensional feature space. Each sample
has a membership in a set of predefined classes called labels. Supervised machine
learning trains a statistical model by such sample-label pairs to make predictions
of labels on unknown samples. Without loss of generality, in this paper we focus
on binary models which have only two labels—positive and negative. Formally,
a binary model f produces a response y to a query sample x as follows.

“positive” label
y= f(m) = « fra??
negative” label

Binary models have been widely adopted in many machine learning applications,
particularly in spam filtering, malware detection, and disease diagnosis. Depend-
ing on the nature of these applications, the model f can be either linear (e.g.,
logistic regression) or non-linear (e.g., neural network).

2.2 Model Extraction with only Labels

In a model extraction attack, a malicious party attempts to replicate a model
from the original one by continuously exploiting the prediction API. Technically
any queries can constitute such an attack. However, the more queries the more
likely this malicious attack will be exposed. As such, in the literature most model
extraction attacks fabricate fine-tuned queries by differential techniques such as
line search [13,19] and Jacobian augmentation [16]. These queries are carefully
selected to capture the information about decision boundary where prediction
results vary drastically.

BDPL: Boundary Differentially Private Layer 69

Formally, a model extraction attack selects a set of fine-tuned queries Xgy; ¢
and obtains their responses Vg;ss to train a replica model f’.

Xuipg = {x1,®2,...,xp}, ®ERY,

ydlff :{yl,y27"'7yn}7 yéRl,
Elm, xl eXd”“f’ d'LSt(a}7.’I},):5 A y;ﬁyz

where dist(-)! measures the distance between two queries and § is the unit

distance adopted in the differential techniques when searching for boundary,
i.e., where two corresponding responses y # y’.

3 Problem Definition

3.1 Motivation and Threat Model

l Machine Learning Service |

o]

.

I I
i & —Upload—» @—Q —Train—> OO _Deploy%"‘&;g i
| I
I I

Private Data Owner Proprietary Data Pool Model f(X) Prediction API

x*" can be fine-tuned by:
Line Search, Active Learning, Xad"
Jacobian Augmentation and etc.

| Malicious Party l

| Model Inversion,

| Model Evasion, &—Apply— Oo &—Extract— 8 &—Collect— O
| Resell$$s O @

| Xadv={X1, X2, X3...}
Replica Model f(X) Y ={y1, o, V3..} Adversary

Fig. 1. Motivation and threat model

A machine learning service provides a binary prediction result using a propri-
etary model as shown in Fig. 1. An adversary wants to produce a replica of this
model by continuously querying it through the provided prediction API. We
assume he can store all queries and their responses, i.e., labels, and the attack is

! In general, this notation can be any distance metrics (e.g., Manhattan distance,
Euclidean distance). The implications of distance metrics to detailed algorithms will
be discussed in Sect. 4.1.

70 H. Zheng et al.

white-box, i.e., he can extract a replicated model using the same model type
(e.g., convolutional neural network) and hyperparameters as the original one.?

3.2 Boundary-Sensitive Zone

_ Decision Boundary

Margin of Boundary-
Sensitive Zone

—> Zone Parameter A

() Positive Label

\4

o Negative Label

Linear Model Non-linear Model

Fig. 2. Illustration of decision boundary and boundary-sensitive zone in 2D

Our problem is to protect against model extraction attacks by obfuscating query
responses. Before we formally define the security model, we first introduce the
notion of decision boundary and boundary-sensitive zone. For most supervised
models, a decision boundary is a critical borderline in the feature space where
labels are different on both sides. Figure 2 illustrates the decision boundaries of
a linear and a non-linear model, respectively, in a 2D feature space. In a multi-
dimensional feature space, a line boundary becomes a hyperplane, and a curve
boundary becomes a hypersurface.

Our key idea is to protect the query responses near the decision boundary
against most model extraction attacks. To this end, we introduce the notion of
boundary-sensitive zone.

Definition 1 (Boundary-Sensitive Zone). Given feature space Z, a model f and
a parameter A chosen by the model owner, all feature vectors adjacent to the
decision boundary of [constitute a subspace Za of Z, where

Za = {x € RY| dist(zx, f) < A},

where dist(-) measures the distance between a feature vector & and the decision
boundary of f. All queries in this zone Z, are considered sensitive and have
high risk of revealing the decision boundary of this model.

2 The white-box assumption is based on the fact that state-of-the-art models in spe-
cific application domains, such as image classification, are usually public knowledge.
Nonetheless, our solution can also work against black-box attacks where such knowl-
edge is proprietary.

BDPL: Boundary Differentially Private Layer 71

3.3 Boundary Differential Privacy

All queries in the boundary-sensitive zone need obfuscation, whose objective is
to perturb the responses of any two sensitive queries so that they are indistin-
guishable for the adversary to determine the true decision boundary within this
zone. To this end, we adopt the notion of differential privacy and formally define
boundary differential privacy as follows.

Definition 2 (e-Boundary Differential Privacy). A perturbation algorithm A(-)
achieves e-boundary differential privacy, if and only if for any two queries a1,
x5 in the boundary-sensitive zone Z A, the following inequality always holds for
the true responses y1 and yo and the perturbed ones A(yy) and A(ys).

o < Prlys = y2| A1), Ay)]
= Prlys # y2| Ay), Ay2)]

The above inequality guarantees that an adversary cannot deduce whether
two perturbed responses A(y;) and A(ysz) originate from the same (y; = y2) or
different labels (y; # y2) with high confidence (controlled by €). As such, the
adversary cannot use fine-tuned queries, no matter how many they are, to find
the decision boundary within the granule of boundary-sensitive zone.

<ef

4 Boundary Differentially Private Layer

In this section, we present our solution to protect against model extraction
attacks with respect to e-boundary differential privacy (e-BDP) by appending a
BDP layer to the model output. According to Definition 2, this layer consists of
two major steps—identifying sensitive queries, and perturbing the responses of
sensitive queries to satisfy BDP. In what follows, we first introduce a technique to
identify sensitive queries with the notion of corner points. Then we design a per-
turbation algorithm called boundary randomized response to guarantee e-BDP.
Finally, we summarize the procedures of the boundary differentially private layer
in Algorithm 1.

4.1 Identifying Sensitive Queries

A query is identified as sensitive if it falls in the boundary-sensitive zone accord-
ing to Definition 1. However, in practice the decision boundary may not have
a closed form (especially for complex models such as neural networks). In this
subsection, we propose a method to determine if a query x, is sensitive without
deriving the boundary-sensitive zone. The idea is to test if a ball centered at x,
with radius A intersects with the decision boundary®. In theory, this is equiva-
lent to finding if there exists a flipping point @’ in the ball that has a different
label from that of the query point x,. Formally,

3 The case of tangency is rarely reached in real life given that the feature space is
usually continuous. For simplicity, we mainly consider intersection.

72 H. Zheng et al.

Definition 3 (Query Sensitivity). A query x, is sensitive, if and only if:
Jx’ € B(z,, A), s.t., f(&') # f(z,),

where B(zy, A) = {x € R? |dist(z,z,) < A} is the ball centered at x, with
radius A.

The above definition needs to test infinite number of points in the ball, which
is infeasible. Nonetheless, we observe that if the ball is convex and small enough,*
a sufficient condition of query x, being sensitive is that at least one of the corner
points in each dimension of this ball B(x,, A) is a flipping point. As such, the
sensitivity of query x, can be approximated by testing the labels of 2d corner
points of x, without false negatives. Furthermore, if the distance metric is the
L1 distance (i.e., Manhattan distance), this is also a necessary condition, which
means that testing corner points leads to the exact sensivitity. The following
theorem proves this.

Theorem 1 (Flipping Corner Theorem). A sufficient condition of query x,
being sensitive is that,

1 A; EA'I, f(winz)#f(wq)v

where I is the identity matriz, A; is the projected interval on some dimension i,
and xq+ A; denotes the two corner points in dimension i. If the distance metric
18 the L1 distance, this equation is also a necessary condition.

Proof. Let x; be one of the corner points in dimension 3.

— (Sufficient Condition) For any x;, the decision boundary must exist between
x; and x, where f(x;) # f(xq). It intersects line x;x, at point b;. As x;, x,
and b; are on the same straight line, we have

dist(xz;, b;) + dist(xq, b;) = dist(x;, xq) = A.

Since dist(zg,f) is the minimum distance between @, and any point on the
decision boundary, we have

dist(wq, f) < dist(wq, bl) =A-— dist(mi, bl) < A.

According to Definition 1, query x, is sensitive and this proves the sufficient
condition.

— (Necessary Condition for L1 Distance) If x, is a sensitive query, an L1-ball
centered at x, with radius A will be given by

B(x,,A) = {x e R? | distpi(w, xq) < A} (1)

4 If A is small, the decision boundary near the ball can be treated as a hyperplane.

BDPL: Boundary Differentially Private Layer 73

Let by, be the point which is the closest to &, on the decision boundary of
f. According to Definition 3, we have

diStLl(il:q, bm) = distr (wq, f) < A.
Since x4 is sensitive, b, must be inside this L1-ball:
b, € B(zg, A).

This means that the decision boundary must intersect the ball at b,,. As such,
at least one convex vertex of the ball is on a different side of the decision
boundary than point x,. Since the convex vertices of an L1-ball are exactly
those corner points, there exists at least one corner point x; such that f(x;) #
f(xq). And this proves the necessary condition. O

4.2 Perturbation Algorithm: Boundary Randomized Response

Randomized response [22] is a privacy-preserving survey technique developed
for surveying sensitive questions. A randomized boolean value is given to the
answer and provides plausible deniability. As the perturbation algorithm defined
in boundary differential privacy has exactly two output choices, we design the
following BRR. algorithm based on randomized response to satisfy e-BDP.

Definition 4 (Boundary Randomized Response, BRR). Given query sample x,
and its true response y, € {0,1}, the boundary randomized response algorithm
A(yq) perturbs y, by the following:

VeZe—1
Yq» w.p. +
A<yq) = { 1

242e€
e2€

T T242ec

N D=
T
—

1-y4, w.p.

Theorem 2. The boundary randomized response algorithm A(y,) satisfies
e-BDP.

Proof. To satisfy e-BDP, the following inequality must hold according to

Definition 2. p A A
rlyr = vl A, Alw)] _ o @)
Priys # y2| A(y1), A(y2)]
We assume p is the probability of retaining y, and 1 — p the probability of

flipping y,. According to algorithm A, for any two responses y1,y2 € {0,1}, the
four possible cases for the above inequality are:

Priyy = y2|A(y1) =0, A(y2) = 0] Prlyr = y2|A(y1) =1, A(y2) =1] _ p"+ (1 —p)
Priyy # y2|A(y1) = 0, A(y2) = 0] Priyy # y2|A(y1) =1, A(y2) =1 2p-(1—p) ’
Priyi = y2| A1) = 0,A(y2) = 1] Priys = y2|A(y1) =1,A(y2) =0] _ 2p-(1—p)
Prlyt # y2|A(y1) = 0, Ay2) = 1] Priyn # y2|A(n1) =1, A(y2) =0 p>+ (1 —p)?

74 H. Zheng et al.

Given 0 < p < 1, it is easy to prove that the former two cases are always
larger than the latter. If we further use equality instead of ineqaulity in Eq. 2,
we can derive the following equation of p:

p2+(1_p>2 — ¢€
2p-(1-p)

By solving the above equation, we can derive p as

(2 +2€°) £ /(2 + 2€°)2 — 4(2 + 2¢°)

2(2 + 2e°)
1 e — 1 1 e —1
L=t e P2 T 5 T (3)

Finally, we need to test the validity of both solutions. Let u = e€, the deriva-
tive of py in Eq. 3 with respect to u is:

o _(EZIWED
ou (24 2u)? -

As such, p; is monotonic with respect to u and €. Since € € [0, +00], the lower
and upper bounds of p; are obtained when € = 0 and € = +oc:

I [7 S
T o e 2

2e _ 1—6%
i {1 eil}:hm {1 i\/"’}_
e—-+o00 2

3" ot 2 * 242

1 626—1}_1

e——+00

As such, the derived p; in Eq. 3 is in the range of [%, 1) and is thus valid.
Similarly, we can prove ps is in the range of (0, %] and is thus invalid. O

4.3 Summary

Algorithm 1 summarizes the detailed procedures of BDP layer that can be tapped
to the output of any machine learning model f. When a new query x, arrives, if
it has already been queried before, the layer directly returns the cached response
y; to prevent attacker from learning multiple perturbed responses of the same
query response, which can lead to a less private BDP. Otherwise, the layer first
obtains the real result y, from model f. Then it determines whether x, is in
the boundary-sensitive zone by checking all corner points. As long as one corner
point is as a flipping point, the query is identified as sensitive, and the boundary
randomized response algorithm BRR(-) with privacy budget ¢ will be invoked.
The layer will thus return the perturbed result y, and cache it for future use.
Otherwise, if &, is not sensitive after checking all corner points, the real result
yq Will be returned.

BDPL: Boundary Differentially Private Layer 75

5 Experiments

In this section, we evaluate the effectiveness of boundary differentially private
layer (BDPL) against model extraction attacks. Specifically, we implement those
extraction attacks using fine-tuned queries as in [13,19] and compare the success
rates of these attacks with and without BDPL. All experiments are implemented
with Python 3.6 on a desktop computer running Windows 10 with Intel Core
i7-7700 3.6 GHz CPU and 32G DDR4 RAM.

Algorithm 1. Boundary Differentially Private Layer

Input: Query z, € R?
Model f
Boundary-Sensitive Zone Parameter A
Boundary Privacy Budget e

Output: Perturbed Response y

Procedure:

1: if x4 is not cached then

2: Yq = f(2q)

3: CornerPoints = getCornerPoints(A, xq)
4: for x; in CornerPoints do

5: if x; is a flipping point then
6: yq = BRR(yq, €)

7: Cache(zq, y5)

8: return y,

9: return y,

10: else

11: Yo = getCached(z,)

12: return y;

5.1 Setup

Datasets and Machine Learning Models. We evaluate two datasets and two
models used in the literature [19]—a Botany dataset Mushrooms (113 attributes,
8124 records) and a census dataset Adult (109 attributes, 48842 records), both
of which are obtained from UCI machine learning repository [4]. All categorical
items are processed by one-hot-encoding [8] and missing values are replaced with
the mean value of this attribute. We adopt min-mazx normalization to unify all
feature domains into [—1,1]. In the Mushrooms dataset, the binary label shows
whether a mushroom is poisonous or edible, and in the Adult dataset, the binary
label shows whether the annual income of an adult exceeds 50 K.

We train both a linear model, namely, logistic regression, and a non-linear
model, namely, 3-layer neural network, to predict unknown labels on both
datasets. Logistic regression is implemented using cross-entropy loss with L2 reg-
ularizer. Neural network is implemented using TensorFlow r1.12 [1]. The hidden
layer contains 20 neurons with tanh activation. The output layer is implemented
with a sigmoid function for binary prediction.

76 H. Zheng et al.

Evaluation Metrics. We implement the extraction attack defined in Sect.2
using fine-tuned queries generated by the line-search technique. It is a full white-
box attack which produces an extracted model f’ with the same hyperparameters
and architectures as the original model f. To compare f and f’, we adopt extrac-
tion rate [10,19] to measure the proportion of matching predictions (i.e., both f
and f’ predict the same label) in an evaluation query set. Formally,

— Extraction Rate. Given an evaluation query set X, the extraction rate

1 /
R = @ Z]l(f(mz) :f(ml))a

T;EXe

where 1(+) is an indicator function that outputs 1 if the input condition holds
and 0 otherwise. The extraction rate essentially measures the similarity of
model outputs given the same inputs. In our experiments, the evaluation
query set could come from either the dataset or uniformly sampled points in
the feature space.

— Utility. This second metric measures the proportion of responses that are
perturbed (i.e., flipped) by BDPL. It indicates how useful these responses are
from a normal user’s perspective. Formally, given the entire set of queries &
issued by clients, and the set of (perturbed) responses), from the service
provider,

U= 1 Z L(f(xi) = i)

‘X‘I| T, EX, s
i€EXG,Yi €Yy

5.2 Overall Evaluation

To evaluate how well the decision boundary can be protected by BDPL, we
launch extraction attacks on 4 model/dataset combinations and plot the extrac-
tion rate R of sensitive queries in Fig. 3 as the number of queries increases. For
BDPL, we set A =1/8, and € = 0.01. In all combinations, except for the initial
extraction stage (query size less than 5K), BDPL exhibits a significant protec-
tion effect (up to 12% drop on R) compared with no defense. Furthermore, even
though the two models are very diverse (the parameters of the neural network
are 20 times more than that of the logistic regression), BDPL shows consistent
protection effect by a similar drop of R.

The secondary axis of Fig. 3 also plots the utility of BDPL. We observe that
the utility saturates at over 80% after 20 K queries in all combinations except for
Adult w/ Logistic Regression. This model has the fewest parameters and features,
so BDPL has to perturb more sensitive queries to retain the same BDP level as
the others. The impact on utility by A and e will be shown in Sect. 5.4.

BDPL: Boundary Differentially Private Layer 77

—+~BDPL (R) =+=No Defense (R) ==BDPL (U) —+~BDPL (R) ===No Defense (R) ==BDPL (U)
1 1 1 1
0.9 0.9 0.9 0.9
0.8 0.8 0.8 0.8

= =)
0.7 0.7 0.7 0.7
0.6 0.6 0.6 0.6
0.5 0.5 0.5 0.5
1K SK 10K 15K 20K 1K SK 10K 15K 20K
Query Size Query Size
(a) Mushrooms w/ Logistic Regression (b) Mushrooms w/ Neural Network
~~BDPL(R) —-No Defense (R) ==BDPL (U) —~~BDPL(R) —=No Defense (R) ==BDPL (U)
1 1 1 1
0.9 0.9 0.9 0.9
0.8 0.8 0.8 0.8
-4 o X
0.7 0.7 0.7 0.7
0.6 I I I 0.6 0.6 0.6
0.5 0.5 0.5 0.5
1K SK 10K 15K 20K 1K SK 10K 15K 20K
Query Size Query Size
(c¢) Adult w/ Logistic Regression (d) Adult w/ Neural Network

Fig. 3. Overall protection effect by BDPL: extraction rate and utility

5.3 BDPL vs. Uniform Perturbation

—e—Uniform Perturbation (Overall) ——Uniform Perturbation (Sensitive)

—+<BDPL (Overall) ~+—~BDPL (Sensitive)

1 —l
0.9
0.8 Y

=4
0.7
0.6
0.5
0.5K 1K 2K 3K 4K 5K 6K
Query Size

Fig. 4. BDPL vs. uniform perturbation

In this experiment, we compare BDPL with a uniform perturbation mechanism
that randomly flips the response label by a certain probability, whether the

78 H. Zheng et al.

query is sensitive or not. To have a fair comparison, we use trial-and-error® to
find this probability so that the overall extraction rates of both mechanisms
are almost the same. We then plot the extraction rates of both mechanisms for
sensitive queries in Fig. 4. Due to space limitation, we only show the results for
Mushrooms with Logistic Regression with A = 1/8 and € = 0.01. We observe that
BDPL outperforms uniform perturbation by 5%-7%, which is very significant
as this leads to an increase of misclassification rate by 30%-50%. As such, we
can conclude that BDPL is very effective in protecting the decision boundary by
differentiating sensitive queries from non-sensitive ones, and therefore it retains
high utility for query samples that are faraway from the boundary.

5.4 Impact of € and A

In this subsection, we evaluate BDPL performance with respect to various values
of boundary-sensitive zone parameter A and privacy budget €. In each experi-
ment, we fix the value of € (resp. A) and vary A (resp. €) for all 4 model/dataset
combinations. A ranges between 1/64 and 1/8 while e ranges between 0.01 and
0.64. Figures 5 and 6 show the evaluation results on varying A and e respectively.

1.0 1.0
0.9 0.9
x 0.8 x 0.8
0.714 A=1/32 0717 A=1/32
e A=1/16 4 A=1/16
’ —— A=1/8 —— A=1/8
0.6 5K 10K 15K 20 K 0.6 5K 10K 15K 20 K
Query Size Query Size
(a) Mushrooms w/ Logistic Regression (b) Mushrooms w/ Neural Network
1.0 1.0

_____ PR
g
-

= passe- SRR SRR

0.91 7 0.9
e« 0.84/ x 0.8
' —e A=1/64
0.7 A=1/32 0.7
Lo A=1/16
—— A=1/8
0.6 5K 10K 15K 20K 0.6 5K 10K 15K 20K
Query Size Query Size
(¢) Adult w/ Logistic Regression (d) Adult w/ Neural Network

Fig. 5. Impact of varying A

5 To do this, we start with 1 random flip out of all responses and measure its overall
extraction rate. We then repeatedly increment this number by 1 until the overall
extraction rate is very close to that of BDPL.

BDPL: Boundary Differentially Private Layer 79

Impact on Extraction Rate. When A increases from 1/64 to 1/8, the extrac-
tion rate is significantly reduced in both logistic regression (up to 12% drop) and
neural network (up to 10% drop). Nonetheless, for neural networks, the extract
rate does not change much when A increases from 1/64 to 1/32, which indicates
that if the boundary-sensitive zone is too small, BDPL may not provide effective
protection, especially when the decision boundary is non-linear.

1.0 1.0
0.9 0.9
< 0.8 x 0.8
0.7 4 €=0.08 07! ¥ €=0.08
A £=0.02 A £=0.02
—— £=0.01 —— £=0.01
0.6 5K 10K 15K 20K 0.6 5K 10K 15K 20K
Query Size Query Size
(a) Mushrooms w/ Logistic Regression (b) Mushrooms w/ Neural Network
1.0 1.0
0.9 0.9
x 0.8 x 0.8
071 €=0.08 0.7k
4 £=0.02
—— £=0.01
0.6 5K 10K 15K 20 K 0.6 5K 10K 15K 20 K
Query Size Query Size
(c) Adult w/ Logistic Regression (d) Adult w/ Neural Network

Fig. 6. Impact of varying e

As for privacy budget ¢, its impact is not as significant as A. We only observe
up to 4% drop of extraction rate when e decreases from 0.64 to 0.01 for all 4
model/dataset combinations.

Last but not the least, the extraction rates under all these settings saturate as
the query size increases. In most cases, they start to saturate before 5 K queries,
and even in the worst case, they saturate at 15K or 20 K. This indicates that
BDPL imposes a theoretical upper bound on the extraction rate no matter how
many queries are issued.

Impact on Utility. In Fig. 7, we plot the final utility after 20 K queries for all
A and e combinations. Except for Adult w/ Logistic Regression, all utilities are
higher than 80% and most of them are above 90%, which means that BDPL does
not severely sacrifice the accuracy of a machine learning service. As expected,

80 H. Zheng et al.

the utility reaches peak when A = 1/64 (smallest zone size) and € = 0.64 (least
probability of perturbation). Furthermore, as is coincided with the extraction
rate, the utility is more sensitive to A than to e. For example, an increase of A
from 0.01 to 0.1 leads to a drop of utility by 10%, whereas a decrease of € from
0.1 to 0.01 leads to only 5% drop.

To conclude, BDPL permanently protects decision boundary of both linear
and non-linear models with moderate utility loss. The changes of A and € (par-
ticularly the former) have some modest impact on the extraction rate and utility.

0.95
0.9
0.85
0.8
0.75

0.95
0.9
0.85
0.8
0.75

0.03
0.06
A 0.09 013 0.1 03

(b) Mushrooms w/ Neural Network

(c) Adult w/ Logistic Regression (d) Adult w/ Neural Network

Fig. 7. Utility vs. A and €

6 Related Works

There are three streams of related works, namely, machine learning model extrac-
tion, defense, and differential privacy.

Model Extraction. Machine-learning-as-a-service (MLaaS) has furnished
model extraction attacks through the rich information available from predic-
tion APL. Tramer et al. [19] proposed extraction methods that leveraged the
confidence information in the API and managed to extract the full set of model
parameters using equation-solving. Papernot [16] et al. introduced a Jacobian-
based data augmentation technique to create synthetic queries and to train a sub-
stitute DNN. Similarly, Juuti et al. [9] leveraged both optimal hyperparameters
and the Jacobian to extract models. Oh et al. [14] developed a model-of-model
to infer internal information of a neural network such as layer type and kernel
sizes. Orekondy et al. [15] proposed a knockoff model to steal the functionality
of an image classification model with black-box API access. Besides extracting

BDPL: Boundary Differentially Private Layer 81

internal parameters, Wang et al. [21] also extracted the hyperparamters of a
fully trained model by utilizing the zero gradient technique.

Model extraction without confidence is similar to learning with membership
query [3,20], which learns a concept through querying membership on an oracle.
This technique has been exploited by Lowd et al. to extract binary classifiers [13].
They used line search to produce optimized queries for linear model extraction.
This technique was extended by Tramer et al. [19] to non-linear models such as
a polynomial kernel support vector machine. They adopted adaptive techniques
such as active learning to synthesize fine-tuned queries and to approximate the
decision boundary of a model.

Model Extraction Defense. Confidence rounding and ensemble model were
shown effective against equation-solving extractions in [19]. Lee et al. [12] pro-
posed perturbations using the mechanism of reverse sigmoid to inject deceptive
noises to output confidence, which preserved the validity of top and bottom
rank labels. Kesarwani et al. [10] monitored user-server streams to evaluate the
threat level of model extraction with two strategies based on entropy and com-
pact model summaries. The former derived information gain with a decision
tree while the latter measured feature coverage of the input space partitioned
by source model, both of which were highly correlated to extraction level. Juuti
et al. [9] adopted a different approach to monitor consecutive queries based on the
uniqueness of extraction behavior. A warning would be generated when queries
deviated from a benign distribution due to malicious probing. Quiring et al. [17]
adopted the notion of closeness-to-the-boundary in digital watermarking and
applied it to protect against extraction attacks on decision trees. The defense
strategy was devised from protection of watermark detector and it monitored
the number of queries that fell into security margin.

Differential Privacy. Differential privacy (DP) was first proposed by Dwork
[6] to guarantee the privacy of a centralized dataset with standardized math-
ematical notation. Duchi et al. [5] extended this notation to local differential
privacy (LDP) for distributed data sources. Randomized response proposed by
Warner et al. [22] is the baseline perturbation algorithm for LDP, which pro-
tects binary answers of individuals. Although differential privacy has not been
used in model extraction and defense, it has been applied in several adversarial
machine learning tasks. For example, Abadi et al. [2] introduced differentially
private stochastic gradient descent to deep learning, which can preserve private
information of the training set. Lee et al. [11] further improved its effectiveness
using an adaptive privacy budget. Their approaches are shown effective against
model inversion attack [7] or membership inference attack [18].

7 Conclusion and Future Work

In this paper, we propose boundary differential private layer to defend binary
machine learning models against extraction attacks by obfuscating the query
responses near the decision boundary. This layer guarantees boundary differ-
ential privacy (e-BDP) in a user-specified boundary-sensitive zone. To identify

82 H. Zheng et al.

sensitive queries that fall in this zone, we develop an efficient approach that use
corner points as indicators. We design boundary randomized response as the
perturbation algorithm to obfuscate query responses. This algorithm is proved
to satisfy e-BDP. Through extensive experimental results, we demonstrate the
effectiveness and flexibility of our defense layer on protecting decision boundary
while retaining high utility of the machine learning service.

For future work, we plan to generalize our defense layer to a multi-class model
and adapt the perturbation algorithm to it. We also plan to extend our defense
layer to protect against other machine learning attacks such as model evasion
and inversion.

Acknowledgement. This work was supported by National Natural Science Foun-
dation of China (Grant No: 61572413, U1636205, 91646203, 61532010, 91846 204, and
61532016), the Research Grants Council, Hong Kong SAR, China (Grant No: 15238116,
15222118 and C1008-16G), and a research grant from Huawei Technologies.

References

1. Abadi, M., Agarwal, A., Barham, P., et al.: TensorFlow: large-scale machine learn-
ing on heterogeneous systems (2015). https://www.tensorflow.org/, software avail-
able from tensorflow.org

2. Abadi, M., et al.: Deep learning with differential privacy. In: Proceedings of ACM
SIGSAC Conference on Computer and Communications Security, pp. 308-318
(2016)

3. Angluin, D.: Queries and concept learning. Mach. Learn. 2, 319-342 (1987)

4. Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.
edu/ml

5. Duchi, J.C., Jordan, M.I., Wainwright, M.J.: Local privacy and statistical minimax
rates. In: IEEE Symposium on Foundations of Computer Science, pp. 429-438
(2013)

6. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener,
I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1-12. Springer, Heidelberg (2006).
https://doi.org/10.1007/11787006-1

7. Fredrikson, M., Jha, S., Ristenpart, T.: Model inversion attacks that exploit con-

fidence information and basic countermeasures. In: Proceedings of ACM SIGSAC

Conference on Computer and Communications Security, pp. 1322-1333 (2015)

Harris, D.M., Harris, S.L.: Digital design and computer architecture (2007)

9. Juuti, M., Szyller, S., Dmitrenko, A., Marchal, S., Asokan, N.: Prada: Protecting
against DNN model stealing attacks. CoRR abs/1805.02628 (2018)

10. Kesarwani, M., Mukhoty, B., Arya, V., Mehta, S.: Model extraction warning in
MLAAS paradigm. In: Annual Computer Security Applications Conference (2018)

11. Lee, J., Kifer, D.: Concentrated differentially private gradient descent with adap-
tive per-iteration privacy budget. In: ACM SIGKDD Conference on Knowledge
Discovery and Data Mining (2018)

12. Lee, T., Edwards, B., Molloy, L., Su, D.: Defending against model stealing attacks
using deceptive perturbations. CoRR abs/1806.00054 (2018)

13. Lowd, D., Meek, C.: Adversarial learning. In: Proceedings of the Eleventh ACM
SIGKDD International Conference on Knowledge Discovery in Data Mining. KDD
2005, pp. 641-647. ACM (2005)

®

https://www.tensorflow.org/
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1007/11787006_1

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

BDPL: Boundary Differentially Private Layer 83

Oh, S.J., Augustin, M., Schiele, B., Fritz, M.: Towards reverse-engineering black-
box neural networks. In: International Conference on Learning Representations
(2018)

Orekondy, T., Schiele, B., Fritz, M.: Knockoff nets: stealing functionality of black-
box models. CoRR abs/1812.02766 (2018)

Papernot, N., McDaniel, P., Goodfellow, 1., Jha, S., Celik, Z.B., Swami, A.: Practi-
cal black-box attacks against machine learning. In: Proceedings of the 2017 ACM on
Asia Conference on Computer and Communications Security, pp. 506-519 (2017)
Quiring, E., Arp, D., Rieck, K.: Forgotten siblings: Unifying attacks on machine
learning and digital watermarking. In: IEEE European Symposium on Security
and Privacy (EuroS&P), pp. 488-502 (2018)

Shokri, R., Stronati, M., Shmatikov, V.. Membership inference attacks against
machine learning models. In: IEEE Symposium on Security and Privacy, pp. 3-18
(2017)

Tramer, F., Zhang, F., Juels, A., Reiter, M.K., Ristenpart, T.: Stealing machine
learning models via prediction APIS. In: Proceedings of the 25th USENIX Con-
ference on Security Symposium, pp. 601-618 (2016)

Valiant, L.G.: A theory of the learnable. In: ACM Symposium on Theory of Com-
puting (1984)

Wang, B., Gong, N.Z.: Stealing hyperparameters in machine learning. In: IEEE
Symposium on Security and Privacy, pp. 36—52 (2018)

Warner, S.L.: Randomized response: a survey technique for eliminating evasive
answer bias. J. Am. Stat. Assoc. 60(309), 63-69 (1965)

Xu, W., Qi, Y., Evans, D.: Automatically evading classifiers: a case study on PDF
malware classifiers. In: Annual Network and Distributed System Security Sympo-
sium (2016)

Information Leakage

®

Check for
updates

The Leakage-Resilience Dilemma

Bryan C. Ward!, Richard Skowyra!, Chad Spensky?, Jason Martin',
and Hamed Okhravi!®)

1 MIT Lincoln Laboratory, Lexington, USA
{bryan.ward,richard.skowyra, jnmartin,hamed.okhravi}@ll.mit.edu
2 University of California, Santa Barbara, USA
cspensky@cs.ucsb.edu

Abstract. Many control-flow-hijacking attacks rely on information
leakage to disclose the location of gadgets. To address this, several
leakage-resilient defenses, have been proposed that fundamentally limit
the power of information leakage. Examples of such defenses include
address-space re-randomization, destructive code reads, and execute-only
code memory. Underlying all of these defenses is some form of code
randomization. In this paper, we illustrate that randomization at the
granularity of a page or coarser is not secure, and can be exploited by
generalizing the idea of partial pointer overwrites, which we call the Rel-
ative ROP (RelROP) attack. We then analyzed more that 1,300 common
binaries and found that 94% of them contained sufficient gadgets for an
attacker to spawn a shell. To demonstrate this concretely, we built a
proof-of-concept exploit against PHP 7.0.0. Furthermore, randomization
at a granularity finer than a memory page faces practicality challenges
when applied to shared libraries. Our findings highlight the dilemma that
faces randomization techniques: course-grained techniques are efficient
but insecure and fine-grained techniques are secure but impractical.

1 Introduction

Memory-corruption attacks continue to be one of the primary attack vectors
against modern computer systems [2]. The sophistication of memory-corruption
attacks has increased from simple code injection [38] to various forms of code-
reuse attacks [11,43] in response to widespread deployment of defenses such as
W @ X (a.k.a. Data Execution Prevention — DEP).

Leakage-resilient memory-protection techniques [4,7,12,14,35,50,53] are
considered the state-of-the-art in one of several approaches to mitigate the

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is
unlimited.

This material is based upon work supported by the Under Secretary of Defense for
Research and Engineering under Air Force Contract No. FA8702-15-D-0001. Any opin-
ions, findings, conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the Under Secretary of Defense
for Research and Engineering.

© Springer Nature Switzerland AG 2019

K. Sako et al. (Eds.): ESORICS 2019, LNCS 11735, pp. 87-106, 2019.
https://doi.org/10.1007/978-3-030-29959-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29959-0_5&domain=pdf
https://doi.org/10.1007/978-3-030-29959-0_5

88 B. C. Ward et al.

impact of memory corruption attacks. Such techniques protect the code against
various forms of information-leakage attacks (i.e., direct [45,47], indirect [16,41],
or side-channel-based [8,42]), thus ensuring that the effects of the underlying ran-
domization cannot be sidestepped by an attacker. Leakage-resilient techniques
include various forms of execute-only techniques via memory permissions [4,14]
or destructive reads [50], code-pointer protection via code and data decoupling
[35], and runtime re-randomization techniques [7,12,53].

All of these leakage-resilient techniques crucially rely on the underlying code-
randomization mechanism and its granularity. For example, execute-only mem-
ory can be easily bypassed if an attacker knows the code-section layout. Code-
randomization techniques fall into two categories: virtual-memory randomiza-
tion and physical-memory randomization. Virtual-memory randomization only
changes the mapping of virtual addresses to physical addresses, and does not
change the contents of physical memory. Because such mapping can only be as
fine as a page, virtual-memory-randomization mechanisms have page-level gran-
ularity or coarser. Examples of such mechanisms include library-level random-
ization [7,39] and page-level randomization [5]. The second category, physical-
memory randomization, is any technique that changes the contents of physi-
cal memory. These include function-level [23,31], basic-block-level [12,51], and
instruction-level [18,30] randomization mechanisms.

In this paper, we study the security and practicality tradeoffs of code random-
ization for leakage-resilient defenses. We first show that virtual-memory random-
ization provides insufficient security guarantees. Extending the idea of partial
pointer overwrites, we illustrate an attack, which we call Relative ROP (Rel-
ROP), that can bypass such techniques in the absence of additional, protection
mechanisms. Specifically, we show that by simply overwriting the least-significant
bytes of a pointer, an attacker can address sufficient gadgets within a page to
build an exploit, and because the granularity of virtual-memory randomization
cannot be finer than a page, this limits their effectiveness in practice.

Although the idea of partial pointer overwrites existed in the literature before
[8,19], building a complete attack based on them faces a number of challenges,
including the difficulty of chaining gadgets together and the lack of access to
many gadgets due to randomization of their addresses. To overcome these chal-
lenges, we illustrate how the Procedure Linkage Table (PLT) and the Global
Offset Table (GOT) can be abused as a layer of indirection to facilitate exploita-
tion. We show that function pointers within the GOT may be partially over-
written to point instead to gadgets within the page of the original target. We
illustrate that numerous gadgets are accessible in each page through partially
overwriting GOT entries. We analyze many popular Linux applications and find
that many such gadgets can be invoked while the system is protected by code
randomization and many different leakage-resilient defenses.

To further demonstrate the realism of RelROP, we build a proof-of-concept
exploit against PHP (Sect.6), which deterministically bypasses many leakage-
resilient defenses that rely on virtual-memory randomization.

The Leakage-Resilience Dilemma 89

We then investigate physical-memory randomization mechanisms. While
these techniques can be arbitrarily fine-grained, and are thus secure against
partial-overwrite attacks, they face many practicality challenges. Among them,
is the fact that such techniques require actually moving memory contents, which
creates challenges for shared libraries. Such challenges give rise to tradeoffs
between security and performance or practicality.

Our findings highlight the dilemma when designing leakage-resilient memory-
protection techniques, and illustrate that design choices must consider a fine
trade-off between security and practicality in this domain. Since all of the pro-
posed techniques in this domain face either security challenges or practicality
challenges (or both), we posit that more research is needed to build effective and
efficient leakage-resilient techniques.

The contributions of this paper are as follows:

— We provide an in-depth study of security and practicality implications of code
randomization in leakage-resilient memory-protection techniques.

— We illustrate that virtual memory-based code randomization provides insuf-
ficient security. We leverage the idea of partial pointer overwrite to build a
generic attack, called RelROP, that overwrites one or two least significant
byte of a code pointer to access gadgets within the same page as the target.

— We conduct extensive analysis of the prevalence of RelROP gadgets, and find
that sufficient RelROP gadgets are found in 94% of analyzed binaries.

— We show the realism of RelROP via a proof-of-concept exploit against PHP.

— We discuss the practicality challenges of physical-memory-based randomiza-
tion techniques and argue that security and practicality trade-offs need to be
considered when leveraging code randomization for leakage resilience.

2 Randomization Granularity

Leakage-resilient techniques, including TASR [7], Shuffler [53], Remix [12], Iso-
meron [16], Oxymoron [5], Heisenbyte [50], NEAR [52], Morton et al. [36], XnR
[4], and HideM [22] mitigate the impact of information-leakage attacks on code
randomization/diversification. They employ various mechanisms including mem-
ory permissions [4,14], destructive reads [50], code pointer protection [35], and
runtime re-randomization [7,12,53] to prevent direct memory disclosures (e.g.,
[4,5,22,52]) and sometimes both direct and indirect memory disclosures (e.g.,
[7,12,14,16,35,53]).

A key component of every leakage-resilient scheme is a one-time randomiza-
tion of memory (or more, in the case of re-randomization) in order to obscure
the memory layout from the attacker. Once obscured, the remainder of the tech-
nique (e.g., execute-only memory) seeks to ensure that the attacker cannot leak
memory in order to discover the memory layout.

2.1 Virtual-Memory Randomization

One approach to randomizing memory is to randomize the mapping between
virtual- and physical-memory addresses. Attackers relying on code reuse must

90 B. C. Ward et al.

know the virtual-memory address at which physical code pages are mapped. This
is the driving principle behind ASLR [39] and its descendants, for example.

Randomizing virtual addresses is straightforward, as only the page tables for
that process need to be changed rather than the underlying physical memory
(i.e., no memory moves or copies are required). Therefore, such randomization
can be performed efficiently, and ensures that physical pages mapped into mul-
tiple processes (e.g., shared libraries) experience no disruption.

Randomization Granularity. Relying on virtual-memory randomization imposes
a fundamental limitation on the granularity of randomization. Objects smaller
than a page of memory cannot be independently randomized, as page tables
cannot be used to reference the addresses of memory objects smaller than a
page. Thus, some of the low-order bits of an address remain unchanged after
randomization. While the exact size of memory pages is architecture-specific,
4KB is the smallest page size supported by common architectures such as x86,
x86-64, and ARM.

In practice, defenses using virtual-memory randomization operate on the
library- or page-level. Library-level is the most coarse-grained approach to
memory randomization, in which the application binary and base addresses of
shared libraries are randomized. It is implemented at load-time by ASLR [39].
TASR [7] provides a leakage-resilient version by re-randomizing in response to
input/output system-call pairs. Note that in either case, all memory objects
within a library remain at fixed relative offsets to one another, but the relative
offsets among libraries are randomized.

Page-level randomization, implemented by Oxymoron [5] at load-time,
attempts to provide enhanced security by randomizing at a finer granularity.
This ensures that inter-page offsets are randomized, but leaves intra-page offsets
fixed.

2.2 Physical-Memory Randomization

Rather than change virtual-to-physical mappings, a randomization technique can
instead reorder data/code in physical memory. This requires memory copies that
induce overhead, but can operate at an arbitrary level of granularity. Physical
memory randomization must also account for how randomization of shared pages
is handled, since different processes may be simultaneously attempting to access
them. This can have both security and practicality implications.

Randomization Granularity. Unlike virtual-memory randomization, physical-
memory randomization may operate at any level of granularity.! This can dra-
matically limit, or entirely remove, the availability of gadgets near code pointers.
Recall that low-order bits are fixed in virtual-memory randomization, because

! In practice, physical-memory randomization has only been applied at the sub-page
level, as virtual-memory randomization is more efficient for coarser granularities.

The Leakage-Resilience Dilemma 91

addresses are necessarily page-aligned (i.e., the lower 12 bits are an offset into
a page, and the upper bits specify the page in a 4K-size page).

Physical memory randomization does not have this constraint (as it does not
rely on page tables), and can fully randomize the address of a memory object.
For example, it could shift a function by a single byte. This would modify every
bit in the address of that function, preventing an attacker from using their local
copy of an application to infer anything about the victim’s memory layout.

Physical-memory-randomization defenses have been presented at the func-
tion [53], basic-block [12,51], and instruction [26] randomization levels. Shuffler
[63] randomizes the base address of all functions in a process image. Shared
libraries are statically linked at load-time, in order to ensure that their functions
can be safely relocated. Remix [12] and Binary Stirring [51] both randomize
at the basic-block level. The former re-randomizes periodically, while that latter
performs a single load-time randomization. ILR [26] uses process-level virtualiza-
tion to randomize at the instruction granularity on program load. None of these
approaches randomize shared libraries. We will discuss why later in Sect. 8.

3 Threat Model

We assume that a remote attacker has access to a memory-corruption vulnera-
bility that enables arbitrary read and write access to userspace memory. This is
consistent with common vulnerabilities that, for example, give attackers control
over a buffer index (e.g., CVE-2016-0034), or do not properly safeguard format
strings (e.g., CVE-2015-8617).

We make the following assumptions about the defensive configuration of the
victim process. (1) W@ X is deployed on the system being attacked, so that code
injection and code modification are prevented. (2) A leakage-resilient defense is
deployed that prevents direct memory disclosures (i.e., leakage of code pages).
(3) The Global Offset Table exists. A GOT exists as long as shared libraries are
used, and is even present for an isolated binary if it is compiled to be position-
independent. Additionally, the majority of leakage-resilient defenses identified in
this paper do not extend protections to the GOT, with the exceptions of Oxy-
moron [5] and Readactor [14]. In Sect. 8, we discuss the implications of requiring
GOT protection in more detail. (4) The layout of code regions in memory have
been randomized, so that the attacker does not have a priori knowledge of the
location of code in memory.

This threat model is consistent with that of existing leakage-resilient defenses.

4 Relative ROP Attacks

In this section, we describe a code-reuse attack that generically circumvents
many leakage-resilient defenses that rely on virtual-memory randomization. We
show that an attacker can use existing code pointers to launch meaningful
exploits. This is achieved by partially overwriting the low-order byte of code
pointers such that they point to a relative offset within the randomized region,

92 B. C. Ward et al.

without knowing or needing to corrupt the randomized high-order bytes of that
pointer. Thus, we refer to these attacks as Relative ROP (RelROP).

4.1 Partial Pointer Overwriting

A critical assumption to the security of memory randomization is that pointers
can only be corrupted in toto. However, pointers in modern architectures are not
atomic, and in fact require multiple bytes of memory to encode. Furthermore,
byte-level memory writes are possible on most common architectures, including
x86, x64, ARM, and MIPS. A partial pointer overwrite can be used to overwrite
select bytes within a word. Partial pointer overwrites have been leveraged in
previous exploits [8,19], however, in this work we leverage them in a more general
attack technique, RelROP.

In this paper, we assume each memory page is 4 KB, and aligned on 4 KB
boundaries. Therefore, the low-order 12 bits of each address represent the offset
of the address within the page, while the high-order bits identify the page itself.
We define a memory paragraph to be the subset of a page that is addressable
by overwriting the low-order byte of a pointer. Thus, paragraphs are aligned
28 = 256 byte regions of memory.

If virtual-memory

. . . OXFF..: >

randomization is app-
. Functi Function
lied, then the con- oot ontor

—- 9340824 Attacker 0x??B2
tents of each page I 02052 Provided : 0x2?275 «—— Attacker
are fixed, and can | | Provided

. . | 0x??7B

be determined offline | 0x40B2 - i

| enign

. - | Function

by an attacker. There P, | Gadget

| co - 0x??7B
fore, the memory para- !

Borni

graphs are also fixed, ... 0x4082 Funstion

and the attacker can i 0x27B2

overwrite the low-order [

byte of an address to N E . e
point to any gadget 0200
X
within the paragraph. Full Pointer Partial Pointer
Overwrite Overwrite

This general concept is
depicted in Fig. 1. The
question marks denote
that those bytes of the pointer are both unknown to the attacker (due to the pres-
ence of a leakage-resilient technique) and uncorrupted by the attacker. The low-
order byte, however, which denotes an offset into the paragraph, are corrupted
by the attacker by only overwriting a subset of the bits encoding the pointer.
The corrupted pointer now points to a gadget within the paragraph, despite the
presence of a leakage-resilient technique that protects pointers from disclosure.
Note that the attacker-controlled pointer cannot point outside of the page with-
out learning or guessing the value of randomized high-order bytes. Moreover,
it cannot point to any other paragraph within the target page because even

Fig. 1. Partial vs. full pointer overwrites

The Leakage-Resilience Dilemma 93

though bits 9-12 of the address are known to the attacker (from an attacker’s
local copy), they cannot be overwritten by byte-granularity memory-corruption.

At a high level, all that is required to carry out the attack is the ability to
overwrite the low-order byte of the pointer that encodes a position within the
pointed-to paragraph, while avoiding any corruption of the randomized higher-
order bytes. This can be accomplished using a direct memory-write vulnerability
(similar to CVE-2017-0106).2 Such vulnerabilities arise from unchecked array
offset references, for example.

4.2 RelROP Chaining

In order to construct a ReIROP gadget chain, we leverage the layer of indirection
afforded by the procedure linking table (PLT) and the global offset table (GOT).
Each externally linked function, such as those in libc, is invoked via a call
instruction to an absolute address within the PLT. The code within the PLT
performs a lookup of the address of the called function within the GOT, and
redirects control flow to that address. The GOT and PLT have two key features
that enable RelROP chaining.

First, the GOT is in the data region, which is subject to neither the write
protections of W@ X nor to randomization. Thus, entries in the GOT are vulner-
able to partial pointer overwrites. By corrupting GOT entries, the pointer can
be offset relative to the function’s intended entry point into an attacker-chosen
memory region within the paragraph pointed to by that entry.

Second, the PLT is not part of the .text/.code section, and is therefore not
randomized. It does contain code pages, however, so both W & X and leakage-
resilience are in effect. Thus, the PLT itself cannot be directly leaked. How-
ever, the GOT contains pointers into the PLT in order to support lazy loading
of library functions. This standard functionality allows function addresses to
be resolved only on use, increasing the speed of program loading. However, it
requires pointing un-initialized function pointers (e.g., _exit should contain an
entry back to its PLT entry) to stub code in the PLT, thus leaking its location.

With these capabilities, a series of pointers to functions in the PLT can be
placed on the stack, similar to a standard ROP attack. When these pointers are
dereferenced, they will be redirected via the corrupted GOT to attacker-chosen
gadgets. This permits chaining of RelROP attacks.

5 RelROP Prevalence Analysis

RelROP attacks leverage GOT entries to address gadgets at a relative offset from
that pointer’s initial location. In order to investigate the prevalence of gadgets
accessible at the paragraph level of granularity, we constructed an analysis tool
and applied it to over 1,300 binaries, analyzing the libraries and functions that
were dynamically linked by these binaries. In this analysis, we identify all gadgets
that are accessible by partially overwriting the low-order byte of a GOT entry.

2 Note that other vulnerability types could also be used. For example, buffer overflows
(resp. underflows) could be used, in little-endian (resp. big-endian) architectures.

94 B. C. Ward et al.

Analysis Tool

= = = = = = = = = = e = = e e e -
1 1
1 1 1
1 Gadget 1 1
1 P %rax 1
1 Gadget Gadget 2 !
1 Finder mo 13, trdx 1
ca. * ($rbx) I
BINARY | Gadget 3 foo ()
T pop Srsi 1
dd $rsp, 0x2 Gadget 1
1 i:rj srsp, 0x28 1
1
! , | reporT
I Correlation
" I Binary Control-Flow Graph Engine 1
- 1 Analyzer y T
e 1 foo ()/ - X 1
esi | (bar () 1
: . \ !
1 . 1
1 1
Dynamically 1 1
Linked Library 1 1
1 1
1 1
1 1

Fig. 2. RelROP gadget prevalence analysis tool architecture

5.1 Analysis-Tool Architecture

The high-level architecture of our analysis tool is depicted in Fig.2. An input
binary is processed in three phases.

First, we leverage angr [44], an open-source binary analysis framework, to
identify all of the libraries that are linked to a given binary. Then, all conventional
ROP gadgets are identified in all of these libraries using an off-the-shelf tool
(these are filtered later). We chose to use the open-source tool rp++ [3] for this
purpose, with a search depth of 8 instructions (i.e., each identified gadget is at
most 8 instructions long).

Next, we use angr to identify all functions from libraries that are actually
imported by the binary. That is, we only consider functions that actually appear
in the binary’s PLT, and are thus usable by RelROP. Finally, we use the function
information from angr to identify all of the gadgets that can be accessed by
overwriting the low-order byte of that function’s GOT entry. Note that for each
case, gadgets can be found within the function (i.e., a positive offset) or within
the memory before the function (i.e., a negative offset). This is because the
physical memory pages of these libraries must remain static during runtime.
Thus, in the case of paragraph level randomization we consider every gadget
within the memory paragraph (e.g., if the function pointer is 0x11223344, any
gadget in the range 0x11223300-0x112233FF is accessible).

5.2 Analysis of Real-World Binaries

In order to characterize how prevalent RelROP gadgets are, we ran our tool
on every binary contained within the /usr/bin and /usr/sbin directories on a
developer machine (Ubuntu 16.04), totaling 1,365 binaries with 577 dynamically

The Leakage-Resilience Dilemma 95

linked libraries. The results of this analysis are summarized in Table1. In this
table, the first column represents the major gadget classes, and the next two
columns depict the percentage and total, respectively, of analyzed binaries that
include a gadget of each class at the paragraph granularity. The percentage of
binaries with such gadgets accessible through libc is also included alongside the
results, as attacks using libc gadgets are more desirable because of their reusabil-
ity across binaries. These results demonstrate that there are ample gadgets avail-
able via partial pointer overwriting even when the attacker is constrained to the
gadgets within a single byte of a code pointer.

The results in Table1 summarize paple 1. Gadgets within paragraph of
raw metrics on the number of gadgets GOT entry
available, but do not directly address
whether there are sufficient gadgets
to carry out a RelROP attack. The
next step in our evaluation is to iden-
tify the fraction of applications that
have enough RelROP gadgets to carry PP &% 80.8%/70.2% 64493/12196
out a more complete malicious pay- mov rax|99.7%/99.7% |1118428/378268
load, such as spawning a shell. Specif- Pop rbx 99.7%/96.3% | 2326697/550486
ically, we consider an application vul- mov rbx|82.3%/69.0% 81541/21715
nerable to a RelROP-spawned shell if pop rcx|79.2%/63.4% 43827/14253
it includes either a mov or pop gad- mov rcx 90.8%/83.7% | 214140/81593
get for all the registers needed for pop rdx 66.9%/46.7% 28827/11845
the execve syscall (i.c., rax, rdx, | o 4. 99.7%/99.7% | 418448/151041

rsi, and rdi), as well as a syscall .
gadget. Our analysis determined that pop rsi 95.6%/92.2% 123090/20512
i199.7%/99.7% 426279/96681

94.4% of the binaries we considered ™V TSt
are vulnerable, and 91.4% are vulner- POP rdi 95.2%/91.6% 97963/22853
able if gadgets are restricted to libc mov rdi|93.6%/86.9% | 831198/189329
only. These results suggest that vir- syscall|94.8%/93.5% |1067064/814589
tual memory randomization is not, on

its own, sufficient to prevent RelROP attacks.

We note that in practice, an application may have gadgets that affect all of the
necessary registers, but chaining the gadgets together for a successful attack may
not be feasible given other side effects present in the gadgets. Additionally, our
results are predicated on the completeness of our gadget-analysis tool, and other
gadget analyses may identify other gadgets. These results are thus presented as
indicative of RelROP prevalence, but are not claimed to be comprehensive.

Gadget | Percentage of | Total number
binaries with | of gadgets/libc
gadgets/libc | portion
portion

6 Real-World Exploit

For our real-word exploit, we selected our target based on disclosed CVEs and not
the availability of gadgets, since our prevalence analysis had already shown that
there were likely enough gadgets to construct an exploit payload. Our real-world
exploit targets the popular PHP: Hypertext Preprocessor (PHP). Specifically we

96 B. C. Ward et al.

Table 2. List of ROP gadgets identified within the entry paragraph of library functions
used by PHP 7.0.0

Library Function Offset Gadget
libc-2.23.s0 inet_ntoa 0x47 pop rax; mov rax,rbx;
pop rdx; pop rbx; ret;
libc-2.23.s0 uname 0x05 syscall;
libicuuc.s0.55.1 u_isISOControl_55 0x05 pop rsi; setnbe dl; cmp edi,0x0000009F;

setbe al; and eax,edx; ret;
libicuuc.so0.55.1 UnicodeString::doCompare 0x03 pop rdi; or byte [rcx-0xOA],al; ret;
libxml2.50.2.9.3 xmlParseBalancedChunkMemory 0x04 pop rcx; add byte [rax],al;

add byte [rsi+0x06],bh; ret;

targeted PHP version 7.0.0, and leveraged a known format-string vulnerability
(i.e., CVE-2015-8617 [1]) as a proof-of-concept for both leaking and exploiting
the GOT.

Note that because of the existence of W & X, code regions cannot be written
to and data regions cannot be executed. Moreover, because of the deployment
of a leakage-resilient defense, code regions cannot be reliably read. As a result,
we only assume a read/write capability to data pages of memory in our exploit.

6.1 Exploit Detalils

The goal of our exploit is to achieve control-flow hijacking while PHP is protected
by a leakage-resilient defense using virtual-memory randomization up to and
including page-level randomization (thus, we are restricted to gadgets within the
paragraph of a function pointer). Since PHP is an interpreter, we assume that
the attacker is permitted to execute their own malicious PHP file on a remote
server, as is common on most hosting providers. To demonstrate a powerful
attack, we design an exploit that invokes the execve system call to spawn a
new shell. This provides the attacker with powerful remote control over the
compromised machine with elevated privileges from that of the original PHP
script. To accomplish this, we must find a syscall-instruction gadget and a set
of gadgets to set the necessary argument registers (i.e., rax, rdi, rsi, and rdx).

We applied the tool described in Sect.5 to analyze, offline, a local copy of
PHP to identify all of the gadgets that are contained within the entry paragraph
(i.e., the paragraph surrounding the pointer to a function’s entry point) of every
function that is imported by PHP. Note that we can craft our malicious PHP file
to specifically call those functions that contain the required gadgets to ensure
that the GOT will be populated before our exploit. Our attack is limited to only
use gadgets that are contained within entry paragraphs (i.e., the single-byte
offset from the function-entry point), which is encoded in the GOT. This constant
offset can be added by overwriting only the low-order byte in the GOT entry,
which is not affected by randomization at the page-level or coarser granularity.
The gadgets identified by our tool are shown in Table 2.

It is worth noting that our pop rdi gadget depends on the value of rcx-0x0A
being a valid and writable memory region. Similarly, our pop rcx gadget requires

The Leakage-Resilience Dilemma 97

rax and rsi+0x06 to be writable. Fortunately, we have both pop rax and pop
rsi gadgets that we can use to set these values to known locations in the GOT,
which we know to be writable. We can then similarly set rcx to a known GOT
address to achieve a complete payload.

In traditional ROP attacks, the attacker places the absolute address of the
gadgets directly on the stack in order to execute them in the payload. However, in
RelROP, we are working with the constraint of virtual-memory randomization
and leakage resilience, thus RelROP places the PLT addresses on the stack,
which will be automatically resolved to our corrupted GOT entries.

To set up the exploit, we leverage the

fact that the .data segment, including the 37— *| uieteoronteor So0ms

GOT, is not randomized and is always at — :_|2

a fixed memory location. In the case where T

this is not true, we could use our memory- 3 JUNK

read vulnerability (i.e., our format-string i::: nl::@?m [~

vulnerability) to leak the location of the one

GOT. Given any GOT address, we can triv- JUNK 4

ially calculate the base address, and there- : L i

fore the address of the functions containing [P

our gadgets, as the order of the GOT entries Lyl o istsocontrol sserir |

do not change. This same format string can zel 0 6

be leveraged to read the contents of the B i“et*J"U:O;@PLT M

GOT to obtain the base address of the PLT, 7 or

as unresolved functions will store pointers 0x38 zax

to their PLT entry due to lazy binding of 1 i”e“}“UtNOKa@PLT

library functions. v 5 8
At this point, we have enough informa- JONK

tion to modify the GOT entries and build UnicodeSteing: idoronpareGoLt

the set of values that need to be placed on 9 L -

the stack when the exploit begins executing.

Next, we modify the lower-order bits
of the GOT entries for gethostbyname,
php_uname, intltz_to_date_time_zone,
IntlChar: :isIS0Control, and DOMDocument : : appendXML (PHP functions that
call the functions listed in Table 2) by partially overwriting each entry with the
offset of the gadget located in each respective function.

We start by using an assumed arbitrary-write stack-corruption vulnerability
to place the proper values on the stack and point the return address to the first
gadget. The stack is setup similarly to a traditional ROP payload, containing
data that will end up in registers, and addresses of gadgets to be executed.
Instead of using the absolute address of the gadgets, however, we use the address
of the PLT entries of the functions containing the gadgets. It is important to
emphasize that we know the addresses in the PLT from pointers in the GOT
used for lazy binding, not from a leakage of the PLT that is prevented by the
leakage-resilient defense. The stack during our RelROP attack is shown in Fig. 3.
The full exploit is shown in Fig. 4.

Fig. 3. The stack during exploitation

98 B. C. Ward et al.

STACK PLT GOT Libraries
u_islsoControl 5 LIBC
SQPLT inet_ntoa@LIBC L
L0x47 0x47
/ = [~ inet ntoa |
inet_ntoa@PLT unameeépLT &K /¢ 0 1 pB——————-
ul ne@LIBC
; 0x05
inet_ntoa@PLT T_isISOControl 55 +0x0 e |roxo0s

@PLT

u_isISOCont
4 inet _ntoaeeir L‘LLBCVLSUC LIBXML
+0x0

¥mlParseBalancedC
hunkMe: @pPLT

0x04

[xmlparseBalance |
dChunkMemory

U_1s150Control_
S5Q@PLT

xmlParseBalanced
inet_ntoa@PLT hunkMemory@PLT

L

xmlParseBalancedCh LIBCUUIC

unkMemory@LIBXML _ — _ _ _ _ 1}Foxo0s
+0x04 u_isISoControl
5

inet_ntoa@PLT

UnicodeString::
doCompare@PLT [} 0x03

UnicodeString::
uname@PLT doCompare

Fig. 4. PHP RelROP exploit

7 Impact on Defenses

In this section, we consider the impact of RelROP attacks on two classes of
defenses. Randomization-focused defenses are those whose primary mechanism
for mitigating attacks is (re)-randomization of memory at a specific level of gran-
ularity. Randomization-dependent defenses are those that require fine-grained
memory randomization, but whose primary contribution is orthogonal to ran-
domization (e.g., execute-only memory).

7.1 Randomization-Focused Defenses

Table 3 summarizes the impact of RelROP on leakage-resilient defenses. These
include both leakage-resilient defenses that rely on memory re-randomization,
and fine-grained randomization mechanisms that may be used by leakage-
resilient defenses that are dependent on a fine-grained randomizer. The table
also indicates whether the requirements to conduct a RelROP attack are sat-
isfied. We require a GOT to exist and not be additionally protected, and that
the target be protected by either virtual-memory randomization, or physical-
memory randomization that does not extend to shared libraries.

TASR is susceptible RelROP attacks. It is a leakage-resilient defense that
re-randomizes code at the library level. Since the GOT is in the data region, it is
not randomized by TASR. Re-randomization is applied on every read/write pair
to mitigate the effects of memory disclosures. While its coverage does extend
to shared libraries, it is implemented via virtual-memory randomization, and is
therefore susceptible to RelROP attacks given the analysis presented in Sect. 5.

Remix is a leakage-resilient defense that periodically permutes the basic-block
ordering within functions. This necessitates physical memory copies and code
patching to ensure that direct jumps point to the correct target. Consequently,

Table 3. Susceptibility of leakage-resilient techniques to RelROP

The Leakage-Resilience Dilemma 99

Defense name Granularity | Randomization | Unprotected | Unprotected | ReIROP
GOT libraries

Leakage resilience through memory re-randomization

TASR [7] Library Virtual Yes No Yes

Shuffler [53] Function Physical No No No

Remix [12] Basic Block | Physical Yes Yes Yes

Memory randomization

Oxymoron [5] Page Virtual No No No

Binary Stirring [51] | Basic Block | Physical Yes Yes Yes

ILR [26] Instruction | Physical Yes Yes Yes

Remix does not protect shared libraries. Since RelROP attacks use only gadgets
in shared libraries, Remix is susceptible to RelROP.

Binary Stirring [51] is a load-time basic-block-level randomization technique.
It relies on load-time patching of the binary to redirect direct jumps to ran-
domly determined basic-block locations. Consequently, shared libraries are not
randomized and can be leveraged to conduct RelROP attacks.

ILR [26] uses process-level virtualization to perform instruction-level ran-
domization. Since this does not extend across processes, shared libraries are not
protected and RelROP attacks can bypass it.

Oxymoron [5] randomizes code on the page level, as well as replacing func-
tion pointers with trampolines into a protected, GOT-like memory region. This
region is isolated via memory segmentation and segment registers. This prevents
RelROP attacks due to the inability to partially corrupt function pointers in
the GOT. Unfortunately, attacks against it have already been demonstrated [16]
and memory segmentation is largely unsupported in 64-bit architectures.

Shuffler is a leakage-resilient defense that is not susceptible to RelROP
attacks, as it removes the GOT and relies purely on direct calls to libraries
that are statically linked at load time. It periodically re-randomizes code at
the function level at a configurable interval. Since functions may be smaller
than pages, this randomization requires physical memory copying. This neces-
sitates statically linking shared libraries. Due to the way Shuffler implements
re-randomization, the size of each process’ code image (including all libraries)
is approximately doubled. As a result, the memory overhead on a multi-process
system may be prohibitive. Shuffler also requires a dedicated per-process thread
to asynchronously perform physical memory copies, which may impact cache and
memory performance. Unfortunately, no analysis is provided as to the perfor-
mance of Shuffler in a multi-process environment, so the true overhead is difficult
to estimate.

100 B. C. Ward et al.

7.2 Randomization-Dependent Leakage-Resilient Defenses

The defenses considered in this section rely on the existence of a fine-grained ran-
domization mechanism, but their primary contribution is an orthogonal approach
to leakage resilience. Since “fine-grained randomization” is often underspecified,
the effect of RelROP attacks on each defense cannot be empirically evaluated.
Thus, we instead consider whether the GOT/PLT is additionally protected or
other implementation details disrupt RelROP attacks.

Multivariant Exzecution. Multivariant-execution defenses, such as Isomeron [16],
are designed to disrupt ROP and JIT-ROP attacks by probabilistically switch-
ing program execution among two or more replicas of code, each with different
memory layouts. Isomeron specifically applies “fine-grained” code randomiza-
tion to one of two replicas, and leaves the other unmodified. Execution switches
uniformly at random between each replica at the function-call granularity. This
disrupts code-reuse attacks that rely on absolute jumps to memory addresses,
as the location of gadgets may change at every gadget invocation. However,
if the underlying code randomization is virtual-memory randomization, it does
not disrupt RelROP attacks. GOT entries in Isomeron are resolved prior to
diversification, and Isomeron adds a constant offset to the result if it elects to
change the replica being run. Since RelROP attacks corrupt GOT entries prior
to this calculation, they are “fixed” by Isomeron to point to the correct replica.
If physical-memory randomization is applied to either replica, the partially cor-
rupted pointer would point to a different location in each replica, and therefore
the attack would not succeed.

Destructive Code Reads and Execute-Only Memory. Techniques that implement
destructive code reads [36,50,52] aim to prevent code-reuse attacks that rely on
direct memory disclosure. While all code pages can be both read and executed
(in contrast to execute-only memory), attempting to execute code that has pre-
viously been read will trigger an error. In response to inference attacks that
allow implicit disclosure of code by reading adjacent bytes [46], this approach
has recently been combined with semantic-preserving binary re-randomization
[36]. Execute-only-memory defenses [4,22] aim to stop the same class of threats
as defenses that implement destructive code reads. Rather than destroying code
that is read, however, execute-only defenses cause a memory-permission violation
at any attempt to read executable memory.

Both of these defense classes rely on the necessity of an attacker reading code
pages prior to executing that code. However, RelROP attacks rely entirely on
reading data pages and corrupting code pointers without first disclosing that
code (or its address). Only the GOT itself needs to be read, which, as data, does
not trigger destruction. Therefore, if virtual-memory randomization is used, then
partial pointer overwriting can be used to corrupt code pointers to known gadgets
within the containing code paragraph. However, if physical-memory randomiza-
tion is applied, then the byte value needed for the partial overwrite cannot
be determined without first disclosing the randomization, and thus physical-
memory randomization would prevent a RelROP attack.

The Leakage-Resilience Dilemma 101

Code-Pointer Protection. Another approach to preventing code-reuse attacks
is to protect all pointers to code from disclosure or corruption. Pointguard
[13] encrypts pointers and decrypts them just prior to use via a register-stored
key. ASLR-Guard [35] uses a combination of encryption and protected lookup
tables to hide the value of function pointers. Readactor [14,15] combines execute-
only memory, fine-grained code randomization, register randomization, PLT ran-
domization, and replacement of function pointers with trampolines into a pro-
tected lookup table. Notably, however, Readactor has been shown vulnerable to
profiling-based attacks [41].

Encrypting or otherwise protecting all bytes of function pointers prevents
partial overwrites, as low-order bits are no longer vulnerable. In addition, use of
trampolines into lookup tables decouples the pointer value from any gadgets near
its eventual target, thus making relative-address attacks only able to (at best)
change the index into the lookup table. If table randomization and booby traps
are used, as in Readactor, even this capability is removed. Thus, code-pointer
protection techniques are effective in countering RelROP attacks.

8 Discussion

Physical-memory randomization at the granularity of instruction or basic-blocks,
applied ubiquitously to the binary and its linked libraries would not be vulner-
able to the RelROP attack described earlier. However, such a technique faces
a number of practicality challenges. Furthermore, subsequent design decisions
to address those challenges themselves come with security/practicality impli-
cations. All of these challenges arise from dealing with shared physical memory
pages, such as those in linked libraries. In this section, we first discuss the practi-
cal challenges of physical-memory randomization, then we discuss other possible
RelROP mitigations.

8.1 Implications of Physical-Memory Randomization

Cross-Process Disclosures. Many physical-memory randomization defenses (see
[34] for an overview) apply randomization at compile time, by, for example,
inserting NOPs to change relative distances between instructions. These one-
time randomization approaches suffer from the fact that a memory disclosure in
any process using a shared code page (e.g., libc pages) allows the attacker to de-
randomize that page in all processes using that code page. Thus, leakage-resilient
defenses must be applied to every process that links shared libraries.

Shared-Library Synchronization. Physical-memory randomization that takes
place at load- or run-time must deal with the fact that multiple processes execut-
ing code from shared libraries do not synchronize their accesses, as these pages
are traditionally read-only. This becomes problematic when attempting to move
that code to another physical memory region. Each process may have stack/heap
pointers to different regions of the shared library (especially if library functions

102 B. C. Ward et al.

call each other), and have instruction pointers at different addresses within that
library. All of these pointers must be adjusted to point to the library’s new
location in a way that is transparent to each running application.

Shuffler [53] addresses the issue by statically linking all libraries into a pro-
cess image at load time, and maintaining two copies of the process binary and
libraries. One copy is active and used for execution, and the other is asyn-
chronously re-randomized by a dedicated thread. When the copy is complete,
execution shifts to the new version and re-randomization is applied to the other
copy. Unfortunately, this means that if n processes are executing on a system,
there are 2n copies of libc, 2n copies of each application binary, and up to 2n
copies of other shared libraries. Remix [12], Binary Stirring [51], and ILR [26]
address this issue by simply not protecting shared libraries, and limiting them-
selves to the unshared physical pages corresponding to the main application
binary. As shown in Sect. 5, however, this still provides ample attack surface to
create a malicious payload. In fact, most valuable gadgets, such as those capable
of invoking a system call, are found in 1ibc and not the binary itself.

Memory Thrashing. Runtime re-randomization based on physical-memory ran-
domization, such as Remix [12] and Shuffler [53], periodically perform physical
memory copies in order to relocate code regions. This interferes with the per-
formance of the cache and memory subsystem due to large-scale invalidation of
cache lines, and additional memory traffic. Depending on the rate at which re-
randomization is performed, memory thrashing can become a significant source
of overhead. A study of cache and memory performance observed such cache and
memory contention can result in slowdowns of a factor of up to 2.5x [32].

8.2 RELRO

A defensive feature in some operating systems called Relocation Read-Only (or
RELRO) is sometimes used to protect GOT. Partial RELRO forces GOT to
come before BSS, preventing some types of buffer overflows on global variables.
Full RELRO marks the entire GOT as read-only.

While partial RELRO has no impact on RelROP, full RELRO breaks it.
However, full RELRO has several performance tradeoffs, and is not commonly
deployed in practice. A recent study shows that as low as 3% of binaries are
protected with full RELRO [48]. There are a few reasons for this. Full RELRO
requires all symbols to be resolved at load time, which significantly slows down
program startup. Full RELRO is also not a default option in GCC (partial
RELRO is). Many Linux distros also do not have RELRO, such a RHEL v6
(and earlier), which will be actively supported until 2021.

9 Related Work

Our work mainly relates to memory-corruption vulnerabilities and mitigation
thereof. The literature in these areas is vast. We refer the interested reader to

The Leakage-Resilience Dilemma 103

the relevant surveys [10,34,49] and focus on closely related work. Since we have
already discussed may related efforts in the context of our attack, we limit the
work referenced in this section to the remaining closely related ones.

In a concurrent work with ours, a similar attack, PIROP [24], also uses partial
pointer overwrites to bypass leakage-resilient defenses. However, PIROP’s app-
roach is significantly different from ours in the following aspects. First, PIROP
is based on the concept of memory massaging, in which a carefully chosen set of
inputs causes the program to place code pointers on the stack. These are then
adjusted via partial pointer overwrites. This approach is probabilistic under fine-
grained randomization, with probability of success decreasing as the required
number of gadgets increases. RelROP attacks, conversely, are deterministic and
can scale to arbitrary payload sizes. Second, it is unclear how well PIROP attacks
generalize or could be automated. Each proof of concept exploit presented in that
work requires study and use of application-specific execution semantics. Rel-
ROP attacks only require knowledge of the target binary’s GOT. Third, PIROP
attacks are only able to bypass memory re-randomization defenses if they are
restricted to live pointers that are actively being tracked by the re-randomizer.
They cannot rely on stale pointers, such as those remaining from old stack frames
whose associated function has already returned. RelROP attacks bypass any vir-
tual memory re-randomization technique. Fourth, PIROP’s evaluation focuses
on the amount of entropy provided by various existing defenses. Since RelROP
attacks are deterministic, this does not apply to our technique. We instead ana-
lyze the tradeoffs between virtual and physical memory randomization, and their
implications for practical leakage-resilient defenses.

There are also a large number of randomization-based techniques proposed in
the literature that perform compile-time [28,29,33], load-time [17,26], or runtime
[27,37] randomization. It has been shown that information-leakage attacks of
various types, including direct memory disclosures [47], timing-based and fault-
based side-channel attacks [8,42], script-based leaks [45], indirect pointer leaks
[16], profiling attacks [41], and cache-based side-channel attacks [25], can be used
to bypass randomization-based defenses. Other orthogonal attacks against many
leakage-resilient defenses have also been studied, the details of which are beyond
our scope [6,9,16,20,40,41,45,46].

Control flow integrity (CFI) and all of its variants [10] are another class
of memory corruption defenses that are orthogonal to and not impacted by
RelROP. They are, however, vulnerable to attacks on the imprecisions of the
control flow graph [21].

10 Conclusion

In this paper, we analyzed the security and practicality of memory-
randomization mechanisms supporting leakage-resilient defenses. We illustrated
an attack, RelROP, that bypasses page-level or coarser virtual-memory random-
ization via partial overwriting of code pointers. We analyzed the prevalence of
RelROP gadgets in popular code bases, and built a proof-of-concept exploit

104 B. C. Ward et al.

against PHP 7.0.0. In addition, we enumerated the challenges associated with
practical deployment of physical-memory randomization defenses that arise from
protecting shared memory objects (e.g., shared libraries). Our findings indicate
that additional research is needed to design efficient and effective leakage-resilient
memory-protection techniques.

References

1. CVE-2015-8617. “Available from MITRE, CVE-ID CVE-2015-8617” (2015).
http://cve.mitre.org/cgi-bin/cvename.cgi’name=CVE-2015-8617

2. Threat LandScape Report Q2 2017. Fortinet (2017). https://www.fortinet.com/
content/dam /fortinet /assets/threat-reports/Fortinet- Threat-Report-Q2-2017.
pdf

3. OverclOk: rp++, April 2017. https://github.com/OverclOk/rp

4. Backes, M., Holz, T., Kollenda, B., Koppe, P., Niirnberger, S., Pewny, J.: You can
run but you can’t read: preventing disclosure exploits in executable code. In: ACM
Conference on Computer and Communications Security. CCS (2014)

5. Backes, M., Niirnberger, S.: Oxymoron: making fine-grained memory randomiza-
tion practical by allowing code sharing. In: 23rd USENIX Security Symposium.
USENIX Sec (2014)

6. Barresi, A., Razavi, K., Payer, M., Gross, T.R.: CAIN: silently breaking ASLR in
the cloud. In: 9th USENIX Security Symposium. WOOT 2015 (2015)

7. Bigelow, D., Hobson, T., Rudd, R., Streilein, W., Okhravi, H.: Timely rerandom-
ization for mitigating memory disclosures. In: ACM Conference on Computer and
Communications Security. CCS (2015)

8. Bittau, A., Belay, A., Mashtizadeh, A.J., Mazieres, D., Boneh, D.: Hacking blind.
In: 35th IEEE Symposium on Security and Privacy. S&P (2014)

9. Bosman, E., Razavi, K., Bos, H., Giuffrida, C.: Dedup est machina: Memory dedu-
plication as an advanced exploitation vector. In: 37th IEEE Symposium on Security
and Privacy (2016)

10. Burow, N., et al.: Control-flow integrity: precision, security, and performance. ACM
Comput. Surv. 50(1), 16:1-16:33 (2017)

11. Checkoway, S., Davi, L., Dmitrienko, A., Sadeghi, A., Shacham, H., Winandy, M.:
Return-oriented programming without returns. In: ACM Conference on Computer
and Communications Security. CCS (2010)

12. Chen, Y., Wang, Z., Whalley, D., Lu, L.: Remix: on-demand live randomization.
In: Proceedings of the Sixth ACM Conference on Data and Application Security
and Privacy, pp. 50-61. ACM (2016)

13. Cowan, C., Beattie, S., Johansen, J., Wagle, P.: Pointguard: protecting point-
ers from buffer overflow vulnerabilities. In: 12th USENIX Security Symposium.
USENIX Sec (2003)

14. Crane, S., et al.: Readactor: practical code randomization resilient to memory
disclosure. In: 36th IEEE Symposium on Security and Privacy. S&P (2015)

15. Crane, S., et al.: It’s a TRaP: table randomization and protection against function-
reuse attacks. In: ACM Conference on Computer and Communications Security.
CCS (2015)

16. Davi, L., Liebchen, C., Sadeghi, A.R., Snow, K.Z., Monrose, F.: Isomeron: code
randomization resilient to (Just-In-Time) return-oriented programming. In: 22nd
Annual Network and Distributed System Security Symposium. NDSS (2015)

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-8617
https://www.fortinet.com/content/dam/fortinet/assets/threat-reports/Fortinet-Threat-Report-Q2-2017.pdf
https://www.fortinet.com/content/dam/fortinet/assets/threat-reports/Fortinet-Threat-Report-Q2-2017.pdf
https://www.fortinet.com/content/dam/fortinet/assets/threat-reports/Fortinet-Threat-Report-Q2-2017.pdf
https://github.com/0vercl0k/rp

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

The Leakage-Resilience Dilemma 105

Davi, L.V., Dmitrienko, A., Niirnberger, S., Sadeghi, A.R.: Gadge me if you can:
secure and efficient ad-hoc instruction-level randomization for x86 and ARM. In:
ASTACCS, pp. 299-310 (2013)

De Sutter, B., Anckaert, B., Geiregat, J., Chanet, D., De Bosschere, K.: Instruction
set limitation in support of software diversity. In: Lee, P.J., Cheon, J.H. (eds.)
ICISC 2008. LNCS, vol. 5461, pp. 152-165. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-00730-9_10

Durden, T.: Bypassing PaX ASLR protection (2002). http://www.phrack.org/
issues.html?issue=59&id=9

Evans, 1., et al.: Missing the point(er): on the effectiveness of code pointer integrity.
In: 36th IEEE Symposium on Security and Privacy. S&P (2015)

Evans, 1., et al.: Control jujutsu: on the weaknesses of fine-grained control flow
integrity. In: ACM Conference on Computer and Communications Security. CCS
(2015)

Gionta, J., Enck, W., Ning, P.: HideM: protecting the contents of userspace memory
in the face of disclosure vulnerabilities. In: 5th ACM Conference on Data and
Application Security and Privacy. CODASPY (2015)

Giuffrida, C., Kuijsten, A., Tanenbaum, A.S.: Enhanced operating system security
through efficient and fine-grained address space randomization. In: 21st USENIX
Security Symposium. USENIX Sec (2012)

Goktas, E., et al.: Position-independent code reuse: on the effectiveness of ASLR
in the absence of information disclosure. In: IEEE EuroS&P (2018)

Gras, B., Razavi, K., Bosman, E., Bos, H., Giuffrida, C.: ASLR on the line: Prac-
tical cache attacks on the MMU. NDSS, February 2017 (2017)

Hiser, J., Nguyen, A; Co, M., Hall, M., Davidson, J.: ILR: Where’d my gadgets
go. In: 33rd IEEE Symposium on Security and Privacy. S&P (2012)

Homescu, A., Brunthaler, S., Larsen, P., Franz, M.: Librando: transparent code
randomization for just-in-time compilers. In: ACM Conference on Computer &
Communications security, pp. 993-1004 (2013)

Homescu, A., Neisius, S., Larsen, P., Brunthaler, S., Franz, M.: Profile-guided
automated software diversity. In: International Symposium on Code Generation
and Optimization (CGO), pp. 1-11. IEEE (2013)

Jackson, T., et al.: Compiler-generated software diversity. In: Moving Target
Defense. Advances in Information Security (2011)

Jackson, T., Homescu, A., Crane, S., Larsen, P., Brunthaler, S., Franz, M.: Diver-
sifying the software stack using randomized NOP insertion. In: Moving Target
Defense. Advances in Information Security (2013)

Kil, C., Jun, J., Bookholt, C., Xu, J., Ning, P.: Address space layout permuta-
tion (ASLP): towards fine-grained randomization of commodity software. In: 22nd
Annual Computer Security Applications Conference. ACSAC (2006)

Kim, N., Ward, B.C., Chisholm, M., Anderson, J.H., Smith, F.D.: Attacking the
one-out-of-m multicore problem by combining hardware management with mixed-
criticality provisioning. Real-Time Syst. 53(5), 709-759 (2017)

Koo, H., Chen, Y., Lu, L., Kemerlis, V.P., Polychronakis, M.: Compiler-assisted
code randomization. In: IEEE Symposium on Security & Privacy (SP) (2018)
Larsen, P., Homescu, A., Brunthaler, S., Franz, M.: SoK: automated software diver-
sity. In: 35th IEEE Symposium on Security and Privacy. S&P (2014)

Lu, K., Song, C., Lee, B., Chung, S.P., Kim, T., Lee, W.: ASLR-Guard: stopping
address space leakage for code reuse attacks. In: ACM Conference on Computer
and Communications Security. CCS (2015)

https://doi.org/10.1007/978-3-642-00730-9_10
https://doi.org/10.1007/978-3-642-00730-9_10
http://www.phrack.org/issues.html?issue=59&id=9
http://www.phrack.org/issues.html?issue=59&id=9

106

36.

37.

38.

39.
40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

B. C. Ward et al.

Morton, M., Koo, H., Li, F., Snow, K.Z., Polychronakis, M., Monrose, F.: Defeating
zombie gadgets by re-randomizing code upon disclosure. In: International Sympo-
sium on Engineering Secure Software and Systems, pp. 143—-160 (2017)

Novark, G., Berger, E.D.: Dieharder: securing the heap. In: ACM Conference on
Computer and Communications Security. CCS, pp. 573-584 (2010)

One, A.: Smashing the stack for fun and profit. Phrack Mag. 7, 14-16 (1996)
PaX: PaX address space layout randomization (2003)

Razavi, K., Gras, B., Bosman, E., Preneel, B., Giuffrida, C., Bos, H.: Flip feng shui:
hammering a needle in the software stack. In: 25th USENIX Security Symposium.
USENIX Sec (2016)

Rudd, R., et al.: Address-oblivious code reuse: on the effectiveness of leakage
resilient diversity. In: Proceedings of the Network and Distributed System Security
Symposium. NDSS 2017, February 2017

Seibert, J., Okhravi, H., Soderstrém, E.: Information leaks without memory dis-
closures: Remote side channel attacks on diversified code. In: ACM Conference on
Computer and Communications Security. CCS (2014)

Shacham, H.: The geometry of innocent flesh on the bone: return-into-libc without
function calls (on the x86). In: ACM Conference on Computer and Communications
Security. CCS (2007)

Shoshitaishvili, Y., et al.: SoK: (State of) the art of war: Offensive techniques in
binary analysis. In: IEEE Symposium on Security and Privacy (2016)

Snow, K.Z., Monrose, F., Davi, L., Dmitrienko, A., Liebchen, C., Sadeghi, A.:
Just-in-time code reuse: on the effectiveness of fine-grained address space layout
randomization. In: 34th IEEE Symposium on Security and Privacy. S&P (2013)
Snow, K.Z., Rogowski, R., Werner, J., Koo, H., Monrose, F., Polychronakis, M.:
Return to the zombie gadgets: undermining destructive code reads via code infer-
ence attacks. In: 37th IEEE Symposium on Security and Privacy (2016)

Strackx, R., Younan, Y., Philippaerts, P., Piessens, F., Lachmund, S., Walter, T.:
Breaking the memory secrecy assumption. In: 2nd European Workshop on System
Security. EUROSEC (2009)

Saito, T., Yokoyama, M., Sugawara, S., Suzaki, K.: Safe trans loader: mitigation
and prevention of memory corruption attacks for released binaries. In: Inomata,
A., Yasuda, K. (eds.) IWSEC 2018. LNCS, vol. 11049, pp. 68-83. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-97916-8_5

Szekeres, L., Payer, M., Wei, T., Song, D.: Sok: eternal war in memory. In: Pro-
ceedings of IEEE Symposium on Security and Privacy (2013)

Tang, A., Sethumadhavan, S., Stolfo, S.: Heisenbyte: thwarting memory disclo-
sure attacks using destructive code reads. In: ACM Conference on Computer and
Communications Security. CCS (2015)

Wartell, R., Mohan, V., Hamlen, K.W., Lin, Z.: Binary stirring: self-randomizing
instruction addresses of legacy x86 binary code. In: ACM Conference on Computer
and Communications Security. CCS (2012)

Werner, J., et al.: No-execute-after-read: preventing code disclosure in commodity
software. In: 11th ACM Symposium on Information, Computer and Communica-
tions Security. ASTACCS (2016)

Williams-King, D., et al.: Shuffler: fast and deployable continuous code re-
randomization. In: Proceedings of the 12th USENIX Conference on Operating
Systems Design and Implementation, pp. 367-382 (2016)

https://doi.org/10.1007/978-3-319-97916-8_5

®

Check for
updates

A Taxonomy of Attacks Using BGP
Blackholing

Loic Miller® and Cristel Pelsser

University of Strasbourg, 4 Rue Blaise Pascal, 67081 Strasbourg, France
{loicmiller,pelsser}@unistra.fr

Abstract. BGP blackholing is a common technique used to mitigate
DDoS attacks. Generally, the victim sends in a request for traffic to the
attacked IP(s) to be dropped. Unfortunately, remote parties may misuse
blackholing [29,57] and send requests for IPs they do not own, turning
a defense technique into a new attack vector. As DDoS attacks grow in
number, blackholing will only become more popular, creating a greater
risk this service will be exploited. In this work, we develop a taxonomy of
attacks combining hijacks with blackholing: BGP blackjacks (blackhole
hijacks). We show that those attacks effectively grant more reach and
stealth to the attacker than regular hijacks, and assess the usability of
those attacks in various security deployments. We then find that routing
security mechanisms for BGP [30,31] do not provide an adequate protec-
tion against some of those attacks, and propose additional mechanisms
to properly defend against or mitigate them.

Keywords: BGP - Security - Blackholing -+ DDoS - Communities -
Hijacks - Leaks

1 Introduction

DDoS attacks are one of the most potent threats to the Internet. With the rise of
the Internet of Things (IoT), the number of connected devices is exploding. The
potential of a botnet to launch massive Distributed Denial of Service (DDoS)
attacks is taking scary proportions [40]. New attack vectors [1,38] are being
discovered and are enabling the largest attacks we have ever seen. In February
2018 for example, Github was under attack, receiving up to 1.3 Thps of traffic
through its CDN, Akamai. Such a high amount of traffic can flood many access
links, rendering services behind those links unavailable.

These attacks can be motivated by multiple reasons, including but not limited
to revenge [27], activism [41], vandalism [42], financial reasons [32] or political
reasons [6].

Fortunately, numerous techniques exist to mitigate DDoS attacks [48,49].
Those techniques can be roughly separated in two categories: proactive mitiga-
tion techniques and reactive mitigation techniques. Proactive techniques encom-
pass all the mitigation techniques put in place before an attack happens, like

© Springer Nature Switzerland AG 2019
K. Sako et al. (Eds.): ESORICS 2019, LNCS 11735, pp. 107-127, 2019.
https://doi.org/10.1007/978-3-030-29959-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29959-0_6&domain=pdf
https://doi.org/10.1007/978-3-030-29959-0_6

108 L. Miller and C. Pelsser

(20 - 30:666 - 192.02.1/32)

P:192.02.1/24)

Fig. 1. BGP Blackholing

designing protocols with a reduced amplification factor (the amount of traffic
one can get in a response compared to the amount of traffic one has to send in a
request), or reducing the number of amplifiers available to attackers. Proactive
techniques also include response rate limiting, using sessions for UDP, filtering
spoofed packets, making use of anycast or even using Access Control Lists.

DDoS attacks can also be dealt with in a reactive way, by using traffic scrub-
bing services, where a third party processes the victim’s incoming traffic, detects
and mitigates the attack, and then forwards the legitimate traffic to the victim.

While filtering provides a great amount of flexibility, it runs into scalability
issues in terms of number of entries and packet rate [29], as well as resources
and reaction time [14]. A mitigation technique based on forwarding is thus much
more scalable, and this is where BGP blackholing shines.

Blackholing [29,57] uses the Border Gateway Protocol (BGP) [43] as a means
to announce the need for mitigation. BGP is the de-facto inter-domain routing
protocol in the Internet, and it’s primary function is to allow Autonomous Sys-
tems (ASes) to communicate with others by exchanging reachability informa-
tion. More specifically, blackholing is announced via BGP communities [8,28],
optional transitive BGP attributes which are “used to pass additional informa-
tion to both neighboring and remote BGP peers” [8]. The communities forwarded
with an advertisement are interpreted by ASes, which use this information to
apply a specific treatment to the route.

Figure 1 depicts blackholing being used to mitigate a DDoS attack. AS 20’s
server located at 192.0.2.1/32 is under a DDoS attack going through both its
neighbors, AS 10 and AS 30. To mitigate the attack, AS 20 sends an adver-
tisement to AS 30, indicating to blackhole prefix 192.0.2.1/32 by adding the
community used to signal blackholing to AS 30, ‘30:666". The community sent,
‘30:666’ means that AS 30 needs to apply blackholing. In addition to this infor-
mation, we also usually attach either the NO_EXPORT or the NO_ADVERTISE
community to the advertisement, respectively, to keep the scope local to the AS
or the router [28].

Blackholing is a very effective mitigation technique [13], but it has a double-
edged sword effect: all malicious traffic destined to the blackholed prefix is
dropped, but so is legitimate traffic.

The literature highlights shortcomings in BGP communities, namely the lack
of standardization and authentication. Firstly, only a handful of communities

A Taxonomy of Attacks Using BGP Blackholing 109

have a semantic meaning defined in RFCs, the vast majority of them being
defined by the AS ‘owning’ them, making them AS-specific [54]. This lack of
standardization makes communities harder to classify [15]. In addition, doc-
umentation for communities is scattered and incomplete [54]. In the case of
blackholing, Giotsas et al. found 307 different community values used to signal
blackholing, with an additionnal 115 labeled as likely [22]. Blackholing is never-
theless frequently used [13], and its use is increasing [22], as it is a very effective
way to mitigate DDoS attacks [13,22]. Even though ASes should keep the scope
of blackholing local to the AS or the router, it has been shown that 50% (80%) of
blackhole communities still traverse up to two (four) ASes, with some blackhole
communities traversing as many as eleven ASes [54].

Communities are also vulnerable because they can be altered by third par-
ties: “Because BGP communities are optional transitive BGP attributes, BGP
communities may be acted upon or otherwise used by routing policies in other
Autonomous Systems (ASes) on the Internet.” [24]. With other ASes being able
to modify communities associated with a BGP advertisement, communities can
become a vector of attacks. Solutions to secure Internet routing exist [30,31], but
they focus on securing the AS path, leaving other BGP attributes unprotected.
Those solutions also suffer from a lack or absence of deployment, due to the lack
of incentives to do so [20].

Attacks trying to falsify BGP attributes to gain an advantage are not new.
As BGP is a distributed protocol, lacking authentication of route origins and
verification of paths, ASes can advertise illegitimate routes for prefixes they do
not own, attracting some or all of the traffic to these prefixes. Those advertise-
ments propagate and pollute the Internet, affecting service availability, integrity,
and confidentiality of communications [52]. This phenomenon is called prefix
hijacking. In this work, we build on top of prefix hijacking to create new attacks
through BGP blackholing: blackjacks. Hijacks and blackjacks are similar, in that
they both impact reachability of the affected prefix. However, regular hijacks
only poison the ASes near the attacker, whereas blackjacks drop traffic directly
at the ASes receiving the advertisement, regardless of AS path length. This
means blackjacks have more reach, and are stealthier than simple hijacks.

Considering routing attacks and defenses (Sect. 2), we construct an attack tax-
onomy using blackholing as an attack vector (Sect. 3) and assess the usability of
those attacks in different security deployments (Sect. 4). We then detail good prac-
tices and implementations to protect against such attacks (Sect.5). Finally, we
review related work (Sect.6) and conclude in Sect. 7 by reviewing our contribu-
tions and describing the possible perspectives and areas of future work.

2 Background

Prefix hijacking can be caused by misconfiguration [47], or with malicious intent,
possibly motivated by retaliation [56], information gathering [34], economical
reasons [23] or political reasons [35].

On Fig. 2, AS 10 (the victim) advertises a route for the prefix 192.0.2.0/24.
The hijacker (AS 40) can fake a direct connection to this network by advertising

110 L. Miller and C. Pelsser

- ~ |3040-192.02.1/24| 40-192.0.2.1/24

AS 10))) " AS 40 kk
_ Victim S . AS20 { . AS30 { (.

P \ \ . \ coeeany / Attacker
(P1920214/24 0 (| RN T ‘

Fig. 2. Prefix hijacking

192.0.2.0/24 to AS 30. Preferring the shorter AS path, AS 30 will choose a new
best route going through AS 40, and forward the advertisement to AS 20. AS
20’s original route is already the best one, so it does not accept the new route
and does not forward the advertisement to AS 10.

We base our work on a hijack taxonomy developed in [52], which is based on
three dimensions:

— The manipulation of the AS path.
— The affected prefix.
— The way (hijacked) data traffic is treated.

To illustrate those hijack types, let us reconsider Fig.2, where AS 10 (the
victim) owns and legitimately announces 192.0.2.0/24, and AS 40 is the hijacker.
For the sake of simplicity, a BGP advertisement is noted as an announced prefix
tagged with an AS path. For example, {AS20, AS10 - 192.0.2.0/24} is a BGP
advertisement for prefix 192.0.2.0/24 with AS path {AS20, AS10}, originated
by the legitimate AS (AS 10). In their paper, they first classify by AS path
manipulation, creating three categories of hijacks:

— Origin AS (or Type-0) hijacking: The hijacker announces as its own
a prefix that it is not authorized to originate (e.g. {AS40 - 192.0.2.0/24}).
This type of hijack is sometimes called prefix re-origination, and is the most
commonly observed type of hijack [52].

— Type-N hijacking (N > 1): Also called path manipulation in the literature
[10,11,19]. The hijacker announces an illegitimate path for a prefix it does not
own, creating fake adjacencies between ASes. The path contains the ASN of
the hijacker as the last hop (e.g. {AS40, AS20, AS10 - 192.0.2.0/24}). Here,
AS 40 creates a fake adjacency between itself and AS 20. The position of
the rightmost fake link in the forged advertisement determines the type. For
example, {AS40, AS10 - 192.0.2.0/24} is a Type-1 hijacking, {AS40, AS20,
AS10 - 192.0.2.0/24} is a Type-2 hijacking, etc.

— Type-U hijacking: The hijacker leaves the legitimate AS path unaltered
(but may alter the advertised prefix). In the case both the AS path and the
prefix are left unaltered, the event is not a hijack but rather a traffic manip-
ulation attempt, performed by adding communities to the advertisement for
example.

The second discriminant is the affected prefix. The hijacker can either per-
form an exact prefix hijack, where he announces a path for the same prefix that

A Taxonomy of Attacks Using BGP Blackholing 111

is announced by the legitimate AS, or he can perform a sub-prefix hijack, where
he announces a more specific prefix. In the case of an exact prefix hijack, only the
part of the Internet that is close to the hijacker (in terms of AS hops) switches to
routes towards the hijacker. In the case of a sub-prefix hijack, the entire Internet
traffic is sent towards the hijacker to reach the announced sub-prefix. Note that
since most routers do not accept BGP advertisements containing a prefix past
a certain length (usually /24) to reduce routing table size, a sub-prefix hijack
advertising a /25 or more may not be very effective, as the advertisements will
be dropped. There is also the case of squatting, where the hijacker announces a
prefix owned but not (currently) announced by the legitimate AS. In this work,
we disregard squatting as it is not applicable to blackjack attacks.

The last discriminant is the way the data-plane traffic is handled. Once the
hijack is accomplished, the attacker attracts some or all of the traffic origi-
nally destined to the hijacked prefix to his own AS. The attacker can then drop
the packets (blackhole), impersonate the services tied to the hijacked prefix by
responding to the victims (imposture), eavesdrop on the traffic and forward it
back to the victim (interception) [52,62], and event send spam [59] or carry out
other activities.

For example, the hijack depicted in Fig.2 is a Type-0 exact prefix hijack, as AS
40 re-originates 192.0.2.0/24.

In our work, we will classify the attacks only by AS path manipulation and
affected prefix, as blackholing attacks have the sole purpose of dropping traffic.
Note that this taxonomy can be extended, as it does not cover cases where, for
example, the attacker possesses two or more ASes.

Even though techniques to protect oneself against hijacks lack deployment,
they still exist and are the go-to solutions to make BGP more secure.

2.1 BGP Routing Security

When receiving an advertisement, a router might want to verify that the included
AS path is legitimate. This process is broken down in two validation steps:

— Origin validation: Does the origin AS have a right to announce this prefix?
— Path validation: Does the sequence of ASes in the AS path reflect the
sequence of ASes crossed by this advertisement?

The Resource Public Key Infrastructure. Origin validation can be
achieved through the Resource Public Key Infrastructure [30]. The RPKI is
a distributed, hierarchic public key infrastructure. It allows prefix holders (legit-
imate holders of IP address space) to emit digitally signed objects, Route Origin
Authorizations (ROAs), attesting that a given AS is authorized to originate
routes for a set of prefixes.

This way, a given AS can verify that the origin AS present in a given adver-
tisement is authorized to originate the prefix (Route Origin Validation (ROV)).
While the RPKI provides digitally signed routing objects, it does not sign BGP
advertisements, and operates separately from BGP. An advantage of RPKI is
that the mapping of prefixes to origin ASes is formally verifiable [37].

112 L. Miller and C. Pelsser

BGPsec. Path validation can be achieved through BGPsec [31]. BGPsec relies
on RPKI as it makes use of certificates.

To secure the path attribute, BGPsec relies on an new optional non-transitive
BGP path attribute which replaces the AS_PATH attribute: BGPsec_.PATH. The
attribute carries digital signatures providing cryptographic assurance that every
AS on the path of ASes listed in the advertisement has explicitly authorized the
advertisement of the route. BGPsec-compliant BGP speakers (BGPsec speakers)
wishing to send BGPsec advertisements to eBGP peers need to possess a private
key associated with an RPKI router certificate [46] that corresponds to the
BGPsec speakers’s ASNs.

Traditional BGP advertisements may still be sent between BGPsec speakers,
meaning an attacker can potentially downgrade a BGPsec speaker to regular
BGP [33]. BGPsec also does not protect against BGP leaks, which is defined
as a violation of the standard model of routing policies, pinpointed by Gao
and Rexford [17,18]. Simply put, the Gao-Rexford model states that ASes have
incentives to send traffic along customer routes (which generate revenue), as
opposed to peer routes (which do not generate revenue) or provider routes (which
come at a monetary cost). It also models ASes’ willingness to transit traffic from
one neighbor to another only when paid to do so by a customer. This is important
to keep in mind for one of the attacks we define in Sect. 3.

3 Threat Model and Attack Taxonomy

This section is dedicated to the elaboration of an attack taxonomy. We consider
a common and general hijacking threat model [50,52]. An attacker controls a
single AS and its border routers. He also has full control of the control plane
and the data plane within its own AS. The attacker can arbitrarily manipulate
the advertisements that it sends to its neighboring ASes and the traffic that
crosses its network. He has no control over advertisements and traffic exchanged
between two other ASes.

Even though these attacks can work in numerous configurations, we assume
for the sake of explanations that:

Assumption 1. FEvery AS uses the Gao-Rexford routing policy model.

Assumption 2. Every AS follows the best practices defined in [9] when receiv-
ing a blackhole request.

Those best practices can be summarized as:

1. Set local-preference to 200 (higher preference)
2. Set origin-type to IGP (higher preference)
3. Add the NO_EXPORT community to the advertisement

Following those best practices means that the blackholing advertisement is pre-
ferred over other routes and that blackholing is limited to the AS receiving the
advertisement.

A Taxonomy of Attacks Using BGP Blackholing 113

For the sake of simplicity, a BGP advertisement is noted as an announced
prefix tagged with an AS path and communities. For example, {AS20, AS10 -
<blackholer AS>:666 - 192.0.2.0/24} is an advertisement for prefix 192.0.2.0/24
with AS path {AS20, AS10}, originated by AS 10, and bearing the blackhole
community <blackholer AS>:666, where <blackholer AS>is the AS providing
the blackholing service.

Type-0 Blackjack. This first attack is also the simplest. Performing a Type-0
blackjack is done by performing a Type-0 hijack and attaching the blackhole
community to the advertisement.

Figure 3 shows AS 30 (the victim) advertising a route for 192.0.2.0/24. AS
10 (the attacker) can perform a Type-0 blackjack by re-originating the pre-
fix 192.0.2.0/24, and attaching the blackhole community to the advertisement.
Thus, AS 10 sends {10 - 20:666 - 192.0.2.0/24} to its peer. As AS 20 (the black-
holer) follows Assumptions 1 and 2, it blackholes traffic destined to 192.0.2.0/24.

This example highlights two main advantages of blackjack attacks:

<> Autonomous
VO Sy e DR (AS105 system (AS)
_ \\ _/ N \\\ N
AS 10 AS 20 . ———— Peer-to-Peer link
~ Attacker ~ Blackholer®,
\) { \) Customer-to-
N \/ Y a— Provider link
~—~ - ~ — ///' ! L t t
Type-0: 10 - 20:666 - 192.0.2.1/24 pgogimae
Type-N: 10 30 - 20:666 - 192.0.2.1/24 K
Ve VALY Attacker
- AS 30 N\ -~ > Advertisement
L Vietim {0 eewi prefix
(P:19202.1/24 1
AN ~ 74 Traffic Flow
a c-U an c- acKjacks cgen
(a) Type-0 and Type-N Blackjack (b) Legend

Fig. 3. Type-0 and Type-N Blackjacks

— Reach: The attacker can potentially drop more traffic by sending blackholing
advertisements to its neighbors than by hijacking the prefix and blackholing
the traffic at his AS. If AS 10 tried to do so, it could not have dropped
traffic going through AS 20, as AS 20 would prefer the route going through
its customer (AS 30). This is not the case anymore with the blackjack attack,
since AS 20 now prefers the advertisement of AS 10 per Assumption 2, thus
dropping all traffic destined to the blackholed prefix.

114 L. Miller and C. Pelsser

Blackholing also grants precedence over AS path length, so the longer AS
path that generally comes with hijacks is no longer a problem. Considering
this, an attacker can effectively target a specific blackholer multiple AS hops
away, by using their specific blackhole community value.

One thing to consider when performing sub-prefix blackjacks with a far away
blackholer is that all ASes on the path between the attacker and the blackholer
need to forward the advertisement. Since most routers do not accept adver-
tisements containing a prefix past a certain length (usually /24) to reduce
routing table size, the blackjack might not reach the blackholer if the tar-
geted prefix is too specific.

Moreover, when the blackholer applies blackholing, a good practice is to add
the NO_EXPORT community, which means that a blackjack targeting a prefix
advertised in the Internet will stop the blackholer from advertising this prefix,
causing even more disruption. In the case of a sub-prefix blackjack, the prefix
will still be advertised, but traffic to the target of the attack will still be
dropped at the blackholer even though no routes changed.

— Stealth: As the attacker is not the one dropping the traffic, he hides himself
better from potential onlookers. Note that it may still be possible to retrieve
the source of the attack by looking at the advertisements received by the
relevant routers at the time of the attack, even though it might be hard to
do so, considering those routers are not likely in the network of the victim.
It is also worth noting that an even stealthier attack is possible, if the black-
holer(s) is(are) at multiple hops from the attacker. In this case, not only will
the attacker not blackhole the traffic himself, but he will also not be the only
one that could have sent a blackhole advertisement, as potentially other ASes
could have performed the attack. Since an attacker can target a blackholer
that is far away, an attack can propagate far from the source of the attack,
increasing the difficulty to detect it and identify the attacker.

In our example, AS 20 is blackholing the traffic, even though it was AS 10
that performed the attack.

A disadvantage of Type-0 blackjack attacks is that some defense mechanisms
can detect and counter them. By performing Route Origin Validation, either
using IRR records or the RPKI, an AS can effectively know which AS is autho-
rized to announce which prefix. Since in a Type-0 blackjack, the attacker is the
origin AS, this type of attack is not effective against ASes performing ROV.

Type-N Blackjack. Type-N blackjacks circumvent ROV by creating a false
adjacency between the attacker and an AS, in the same way Type-N hijacks
work. Indeed, if an AS tries to verify the origin of an AS path, as the origin is
legitimate, the AS will deem the origin valid.

Figure3 depicts a Type-N blackjack. Analogous to our Type-0 blackjack
example, AS 30 advertises a route for 192.0.2.0/24. AS 10 can perform a Type-N
blackjack by faking an adjacency with AS 30, and attaching the blackhole com-
munity to the advertisement. Thus, AS 10 sends {10, 30 - 20:666 - 192.0.2.0/24}
to its neighbor. As AS 20 follows Assumptions 1 and 2, it blackholes traffic

A Taxonomy of Attacks Using BGP Blackholing 115

[OP-GF{V: 20 30 40 - 10:666 - 192.0.2.1/24]
Y \J
(AS 10 /

Blackholer ' ™\
A
(OP: 10 30 - 20:666 - 192.0.2.1/24) &' — \ .
[Ast0) (As20 y, (As20 (As30 |/
~ Attacker A / Blackholer | /7 Attacker ~ Blackholer

NOP: 40 - 30:666 - 192A0.2.1/24J

AN /, N ‘. /) . 9 N . J
~ — ~— ' ~— - S~ ¢ =
S . P N yd 2
/ . /7 ’
, .
P .
.

// -

AS30 ' Asa0
_ Victim { L_ Victim :
(P 19202.1/241) ((P.192.021/24)
N e L Nt L
T\ 4 N
Fig. 4. On Path Blackjack Fig.5. OP-GRV and NOP Blackjacks

destined to 192.0.2.0/24. A Type-N blackjack has the same reach and stealth
properties as a Type-0 blackjack.

Type-N blackjacks can circumvent ROV by creating fake adjacencies, but
some defense mechanisms can still detect and counter Type-N blackjacks. By
using BGPsec, ASes can verify that the sequence of ASes in the AS path reflects
the sequence of ASes crossed by received BGPsec advertisements. In this case,
no AS path manipulation is possible, but an attacker can still make use of a
subset of Type-U blackjacks.

Type-U Blackjack. The Type-U blackjack category regroups all attacks where
the AS path is unaltered, meaning the origin AS is authorized to announce the
prefix (not like Type-0 blackjacks), and the adjacencies in the AS path reflect
real adjacencies (not like Type-N blackjacks).

This category can be broken down into three sub-categories:

— On Path blackjacks.
— On Path blackjacks which violate the Gao-Rexford export rule.
— Not On Path blackjacks.

1. On Path Blackjack (OP). An on path blackjack is characterized by the
attacker being on the path of a legitimate advertisement.

Figure4 depicts an On Path blackjack. Like in the other examples, AS 30
advertises a route for 192.0.2.0/24. AS 10 can perform an On Path blackjack
by sending {10, 30 - 20:666 - 192.0.2.0/24} to AS 20. Normally, AS 20 would
prefer the route going through its customer (AS 30), however, the blackhole
community in the advertisement of AS 10 makes this advertisement preferable
to the advertisement of AS 30. Thus, AS 20 will blackhole all traffic destined to
192.0.2.0/24.

116 L. Miller and C. Pelsser

2. On path Blackjack with Gao-Rexford Violation (OP-GRV). In this
sub-category, the attacker is also on the path of a legitimate advertisement,
but violates the Gao-Rexford export rule when propagating the advertisement,
imitating the behavior of a BGP leak.

Figure5 depicts an On Path blackjack which breaks this rule. AS 20 can
perform an On Path blackjack with Gao-Rexford violation by sending the adver-
tisement {20, 30, 40 - 10:666 - 192.0.2.0/24} to its provider (AS 10), making AS
10 blackhole traffic destined to 192.0.2.0/24.

3. Not On Path Blackjack (NOP). The last sub-category contains all other
Type-U blackjacks, that is, blackjacks where the attacker is not on the path of an
advertisement, but announces a legitimate path. In this sub-category, the origin
AS in the AS path is authorized to announce the prefix, the adjacencies in the
path reflect real adjacencies, but the attacker is not in the AS path.

Figure 5 gives an example of a NOP blackjack: AS 20 sends the advertisement
{40 - 30:666 - 192.0.2.0/24} to AS 30, making AS 30 blackhole traffic destined
to 192.0.2.0/24.

On Path blackjacks can be considered stealthier than Type-0 and Type-N
blackjacks, as the attacker does not re-originate the prefix and does not create
false adjacencies in the AS path. NOP blackjacks are even stealthier, as the
attacker is not in the AS path.

Malformed Blackjacks. This last category contains all blackjacks not covered
by the other categories. They correspond to blackjacks where the AS path is
malformed, meaning all or some of the links between the ASes of the AS path
do not exist and /or the origin AS is neither the attacker nor a legitimate AS. We
assessed malformed blackjacks to be of little interest when looking for blackhole-
based attacks, so we disregard them in the remainder of the paper.

4 Routing Security Deployments

To protect oneself against such attacks, several routing security mechanisms
can be employed. Depending on the adoption rate of such mechanisms in the
Internet, those attacks have a variable chance of success. In this section, we will
consider five such deployments, each implementing those security mechanisms
to different extents:

— No security: ASes neither use RPKI nor BGPsec.

— RPKI (partial): A subset of ASes uses the RPKI, but no AS is using
BGPsec.

— RPKI (full): All ASes use the RPKI, but no AS is using BGPsec.

— BGPsec (partial): A subset of ASes uses both RPKI and BGPsec. The
other ASes either use only RPKI or do not use any security mechanisms.

— BGPsec (full): All ASes use both RPKI and BGPsec.

A Taxonomy of Attacks Using BGP Blackholing 117

It is important to keep in mind that although we consider multiple security
deployments, BGPsec is not deployed at all and RPKI is only partially deployed.
The RPKI covered around 5-6% of advertised prefixes in 2015 [19,26,61], and
covers 13% of advertised prefixes today [39]. Although harder to measure, the
deployment status of ROV has also been studied [44,45] and shows that only
a few ASes are currently performing ROV. This means the deployment corre-
sponding the most to a real-life scenario is the ‘RPKI (partial)’ deployment.

Tables 1 and 2 summarize which blackjack attacks can work under those dif-
ferent security deployments, the former against exact prefix blackjacks and the
latter against sub-prefix blackjacks. Each row of the table represents a security
deployment scenario, and each column represents an attack. Thus, the intersec-
tion of a line and a column shows how a particular security deployment fares
against a given attack:

- : The security deployment is resistant to the attack.
-0 : The security deployment is not resistant to the attack.
| : The resistance of the security deployment to the attack is determined

by other factors (network topology, where security is deployed, ...)

The next sections go over the different deployments, and describe the attacks
possible in each context.

Table 1. Security deployments against exact prefix blackjacks

Security Deployment Type-0 Type-N NOP OP OP-GRV

BGPsec (full) [] [| [| O O
BGPsec (partial) 4 4 4 O O
RPKI (full) [| O O O O
RPKI (partial)] O O O O
No security O O O O O

Table 2. Security deployments against sub-prefix blackjacks

Security Deployment Type-0 Type-N NOP OP OP-GRV

BGPsec (full) [] [] [] [| |
BGPsec (partial) 4 4 7] [| |
RPKI (full) [| | [| | |
RPKI (partial) 4 4 4 | |
No security O O O [| [|

118 L. Miller and C. Pelsser

4.1 Fully Deployed BGPsec

In this subsection, we consider a situation where every AS has deployed, and
uses, BGPsec and RPKI/ROV according to best practices [7,25,30,31,37].

In this deployment, every AS can be assured that the AS path attribute is
protected and legitimate in every advertisement they receive, and that the origin
AS is authorized to announce the prefix. Since the attacker needs to send signed
BGPsec advertisements for them to be considered by other ASes, he can only
potentially perform either variations of On Path blackjacks. There can also be no
sub-prefix blackjacks, since all ASes in this deployment can detect the sub-prefix
via the RPKI.

4.2 Partially Deployed BGPsec

We now consider a situation where a subset of AS have deployed, and use,
BGPsec and RPKI/ROV according to best practices [7,25,30,31,37]. The other
ASes either use only RPKI/ROV [25,30,37] or do not use any security mecha-
nisms.

Depending on which ASes on the path of the advertisement from the attacker
to the blackholer deployed which security mechanisms, multiple cases arise. If
ASes on the path implement no security mechanisms, the case can be assimilated
to a ‘No Security’ deployment. If at least one of the ASes on the path uses ROV,
the case can be assimilated to a ‘RPKI (partial)’ deployment (see Subsect. 4.4).
Those two cases can also be assimilated in the case of sub-prefix blackjacks.

If at least one of the ASes on the path uses BGPsec and the RPKI/ROV,
then the attacker can potentially make use of both On Path attacks, as well as
possibly Type-0 blackjacks (see Subsect.4.4). The attacker can also potentially
make use of Type-N and NOP blackjacks if he can perform downgrade attacks
[33] on the ASes using BGPsec.

For sub-prefix blackjacks in this case, the attacker can potentially use Type-
0 blackjacks (see Subsect.4.4). The attacker can also make use of Type-N and
NOP sub-prefix blackjacks if he can perform downgrade attacks on the ASes
using BGPsec, and the legitimate prefix covering the targeted sub-prefix is either
not in the RPKI, or is loose. A prefix is loose “when not all sub-prefizes of the
mazimum length allowed by the ROA are advertised in BGP” [19] (e.g. a ROA
allowing a prefix to be advertised up to /24, but the advertised prefix is a /20).
The attacker cannot make use of On Path blackjacks in this case, since it would
require a prior advertisement of the sub-prefix, which is not possible since we
only have one attacker in our attack model.

4.3 Fully Deployed RPKI

In this subsection, every AS has deployed, and uses, RPKI and ROV according
to best practices [25,30,37].

Here, every AS can verify the association of the advertised prefix and the
AS originating it, which means an attacker can potentially carry out all attacks

A Taxonomy of Attacks Using BGP Blackholing 119

Table 3. Security detail of the ‘RPKI (partial)’ deployment against blackjacks

Prefix in RPKI Prefix not in RPKI
ROA is loose ROA is not loose
ROV Type-N/NOP sub-prefix BJ [| AS policy
no ROV O O O

except Type-0 blackjacks. For sub-prefix blackjacks, no attack is possible since
all ASes in this deployment can detect the sub-prefix via the RPKI.

It is important to keep in mind that in a real scenario, it may still be possible
to perform Type-0 blackjacks even if ROV is put in place, simply because of the
order the router’s filter are applied [54]. Instead of discarding an ‘invalid’ route
in case of a Type-0 blackjack, the router might accept the advertisement because
blackholing takes precedence.

4.4 Partially Deployed RPKI

In this subsection, a subset of AS have deployed, and use, RPKI and ROV
according to best practices [25,30,37].

In this deployment, the attacks potentially usable by an attacker depend on
three factors:

— The presence (or absence) of ROV at ASes on the path of the advertisement
from the attacker to the blackholer.

— The presence (or absence) of the targeted prefix in the RPKI.

— If the prefix is in the RPKI, the fact that the ROA for the prefix is loose or
not.

As you can see in Table 3, if ASes on the path of the advertisement do not
enforce ROV, the case can be assimilated to a ‘No Security’ deployment.

Second, if the at least one AS on the path of the advertisement enforces ROV,
and the prefix is not in the RPKI, it is up to the AS enforcing ROV to decide
what to do (RPKI validation state = ‘unknown’). The AS can either diminish
its preference of the route, or drop the route. In the former case, exact prefix
blackjacks (of all types) will be possible as the AS classifies all routes to this
prefix as ‘unknown’, even the one from the legitimate AS: blackjacks can win the
BGP decision process. Sub-prefix blackjacks are also possible (except both On
Path variations), and are not even penalized by a diminished preference, as they
are more specific than the legitimate advertised prefix. All in all, for prefixes not
in the RPKI, an AS enforcing ROV and lowering preferences for ‘unknown’ route
validity states behaves in the same way as an AS not enforcing ROV. In this
case, possible attacks are the same as in the ‘No Security’ deployment. If the AS
drops ‘unknown’ routes, those attacks are no longer possible, but in the current
deployment state of RPKI, dropping ‘unknown’ routes would equate to dropping

120 L. Miller and C. Pelsser

routes to 87% of the Internet, so for now, a compromise between reachability
and security must be made.

Third, if the AS receiving the forged advertisement enforces ROV and the
prefix is in the RPKI, two cases arise: either the ROA for the prefix is loose,
or it is not. If the ROA is not loose, the deployment can be assimilated to a
‘RPKI (full)” deployment. If the ROA is loose, in addition to attacks possible in
the ‘RPKI (full)’ deployment, an attacker can also perform Type-N and NOP
sub-prefix blackjacks within the range of maxLength, as the origin AS will match
the asID in the ROA.

4.5 No Security

In this subsection, ASes do not use any of the aforementioned security mech-
anisms. If neither BGPsec nor RPKI and ROV are deployed, an attacker can
perform all the attacks of the taxonomy. In the case of sub-prefix blackjacks,
an attacker can use all the attacks except On Path blackjacks, since it would
require a prior advertisement of the sub-prefix, which is not possible since we
only have one attacker in our attack model.

5 Good Practices

We highlight two items having an influence on preventing attacks from the
taxonomy:

— Authorized origin: The origin is authorized if the association between the
origin AS and the prefix is ‘valid’ according to IRRs or the RPKI.

— Valid path: The path is considered ‘Valid’ if the AS path reflects the actual
path the advertisement went through. This can be verified using BGPsec.

Even if an AS implements both RPKI and BGPsec, it is still vulnerable to
both exact prefix On Path blackjacks, as well as possibly Type-0 exact and sub-
prefix blackjacks depending on the state of the prefix in relation to the RPKI
(see Table 3).

For an AS not to be vulnerable against Type-0 blackjacks, it needs help
from third parties, (e.g. another AS registering its prefixes in the RPKI). How-
ever, an AS can protect itself against On Path attacks by adding constraints on
advertisements it receives.

5.1 Additional Verification Rules
We suggest two verification steps to protect an AS against On Path blackjacks:

— Legitimate peer: The peer sending the blackhole advertisement is legitimate
if the leftmost AS in the AS path is the ASN specified in the BGP OPEN
message that created the session.

A Taxonomy of Attacks Using BGP Blackholing 121

— Direct connection: The AS sending the blackhole advertisement is directly
connected to the local AS. This can be verified by making sure there is only
one AS in the AS path.

If an AS can make sure it has a direct connection to the AS sending the
blackhole advertisement, it is then only vulnerable to Type-0 and 1-hop NOP
blackjacks (e.g. the one in Fig.5) by definition. If this AS can also verify this
peer is legitimate and authorized to advertise the prefix, then the AS is protected
against all the attacks of the taxonomy without needing BGPsec.

It is worth keeping in mind that at this point, acknowledging the deployment
state of RPKI and BGPsec, an AS peering through an IXP virtually has no
protection against the attacks, as it must trust the IXP to verify the ‘Legitimate
peer’ rule and the route server may not perform ROV'.

5.2 Additional Good Blackholing Practices

In addition to the rules, other good practices can be put in place. Those good
practices help to limit the possible damage caused by an inadvertent blackholing.

A Filter for Less Specific Blackholing Advertisements. The literature
specifies that operators should accept blackholing advertisements up to /32 for
IPv4, and /128 for IPv6, but does not specify a limit on prefixes which are less
specific. We propose that operators reject blackholing advertisements if they are
not specific enough, in order to avoid accidental blackholing of large IP blocks.

Acknowledging the distribution of blackholing prefix length [13], we advise
to set it to /24, thus only accepting blackholing advertisements from /24 up to
/32. This filter can be applied as both an inbound and outbound filter.

Concerning IPv6, observed IXPs put the limit at /19 [12,16]. The literature
does not have any specific information enabling us to determine a good limit for
IPv6 blackholing prefix specificity, more research needs to be done.

An Outbound Filter for More Specific Blackholing Advertisements.
When using blackholing across AS boundaries, an outbound filter should be set
on eBGP peering sessions to deny all prefixes longer than the longest prefix
expected to be announced, unless that prefix is tagged with a blackhole com-
munity. This does not help with accidental blackholing directly, but prevents an
AS from advertising more specific prefixes inadvertently.

Considering some of these good practices might not be applicable depending
on the situation, or can constrain the blackhole service too much, we propose
using a BGPsec extension as a possible alternative to protect against attacks of
the taxonomy.

! This might be changing as several IXPs now seem to implement ROV [3].

122 L. Miller and C. Pelsser

5.3 A BGPsec Solution

In a full deployment of BGPsec and RPKI, only On Path attacks are still pos-
sible. Thus, the goal of integrating communities to BGPsec is to be able to
attribute the changes made to communities to an AS. This attribution is crucial
for blackholing, because it allows an AS to accept or reject a blackhole request
based on the identity of the AS requesting the blackhole. A blackholing adver-
tisement can then be analyzed, to determine the source of the request, and a
decision can be made based on whether or not this AS has a right to blackhole
this prefix. Moreover, given an unwanted blackholing event, those responsible
for it can be held accountable.

We propose such an extension in [36]. With this extension, as we know which
ASes introduced which communities, an AS could simply generate a table asso-
ciating an AS to a set of prefixes this AS is authorized to blackhole. This table
could be populated by RPKI/IRR data, but also manually with trusted peers,
or other associations the operator deems relevant. Then, this AS could accept
a blackhole request if the AS requesting the blackhole and the prefix in the
advertisement matches an association in the table.

6 Related Work

Over the last years, efforts have been made towards characterizing usage and
behavior of communities in the Internet. Donnet et al. proposed the first clas-
sification of BGP communities [15], and found that community usage increased
from 2004 to 2007. The increased popularity of communities has since been estab-
lished multiple times [13,21,22,54]. Streibelt et al. also found that even though
communities are typically relevant only between directly connected ASes, they
seem to be propagated beyond, increasing the risks of attacks.

Streibelt et al. also demonstrated that attacks using BGP blackholing are not
only possible in theory, but also in an experimental setup and in the wild [54].
In comparison to this paper, they only consider Type-0 blackjacks, so a possible
area of future work is to test the other attacks of the taxonomy. Numerous
efforts have also been made towards characterizing DDoS attacks, as well as
the detection and mitigation techniques that can be used against them [48,49].
Dietzel et al. study the shortcomings of blackholing, and propose Stellar, an
advanced blackholing mechanism [14] which can perform fine-grained blackholing
using extended communities as a signaling mechanism.

Finally, BGP hijacking has been studied extensively, to characterize them
[5,51,52,58,59], to detect them [52,53,60,62], or even to conduct further attacks
[2,4,55,59]. A possible area of future work is the adaptation of those detection
techniques to blackhole-based attacks.

7 Conclusion

In this paper, we construct a taxonomy using blackholing as an attack vector,
and assess the usability of those attacks in various security deployments. We also

A Taxonomy of Attacks Using BGP Blackholing 123

show those attacks have better reach and stealth than regular hijacks. Namely,
blackholing takes precedence over AS relationships and AS path length, meaning
a blackjack can affect more ASes than hijacks. By using the specific blackhole
community value of a blackholer, an attacker can also drop traffic at ASes much
further away than hijacks can. As the attacker is not the one dropping traffic
and blackjacks may propagate far, blackjacks are stealthier than hijacks.

We also want to draw attention to the fact that since blackjacks make use of
the blackholing service of an AS, making this blackholing information publicly
available might not be a good idea without proper standardization and security.

Through attacks suited against the considered security mechanisms (RPKI
and BGPsec), we highlight the poor state BGP security deployment is in, and
suggest additional rules as well as good practices to protect against the attacks
of our taxonomy. In a more general way, we want to emphasize the need for BGP
community authentication, either through an extension to BGPsec or another
mechanism.

As part of our future work, we want to test the attacks not already covered
by Streibelt et al. [54] in a real world setting, to demonstrate those attacks can
be carried out and present numerous advantages compared to regular hijacks.
Another area to investigate is the existence and characteristics of ASes proposing
blackholing services to perform blackhole-based attacks, much like open DNS
resolvers can be used to carry out DDoS attacks. More work can also be done
to adapt hijack detection techniques to blackhole-based attacks.

The feasibility and subtleties of blackjack attacks remain to be studied in
a real-world setting. Since BGPsec has yet to be deployed, and there is still
little experience with RPKI, those security mechanisms and their limitations
can hardly be tested against at this time. Further research is needed to assess
the severity of blackjack attacks in the wild, since actual configuration (e.g.
blackholing precedence over other policies, community handling, RTBH provider
policy, blackholing propagation, ...) might differ from expectations, and from AS
to AS.

Acknowledgments. This project has been made possible in part by a grant from the
Cisco University Research Program Fund, an advised fund of Silicon Valley Community
Foundation.

References

1. Akamai: Memcached-fueled 1.3 Thps attacks, March 2018. https://blogs.akamai.
com/2018/03/memcached-fueled-13-tbps-attacks.html. Accessed 29 Apr 2019

2. Pilosov, A., Kapela, T.: Stealing The Internet: An Internet-Scale Man In The
Middle Attack, August 2008. https://www.defcon.org/images/defcon-16/dc16-
presentations/defcon-16-pilosov-kapela.pdf. Accessed 29 Apr 2019

3. Reuter, A., Bush, R., Katz-Bassett, E., Cunha, I., Schmidt, T.C., Wihlisch,
M.: Measuring Adoption of RPKI Route Origin Validation and Filtering, May
2018. https://ripe76.ripe.net/presentations/63-rov_filtering_update.pdf. Accessed
29 Apr 2019

https://blogs.akamai.com/2018/03/memcached-fueled-13-tbps-attacks.html
https://blogs.akamai.com/2018/03/memcached-fueled-13-tbps-attacks.html
https://www.defcon.org/images/defcon-16/dc16-presentations/defcon-16-pilosov-kapela.pdf
https://www.defcon.org/images/defcon-16/dc16-presentations/defcon-16-pilosov-kapela.pdf
https://ripe76.ripe.net/presentations/63-rov_filtering_update.pdf

124

4.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

L. Miller and C. Pelsser

Apostolaki, M., Zohar, A., Vanbever, L.: Hijacking bitcoin: routing attacks on
cryptocurrencies. In: 2017 IEEE Symposium on Security and Privacy (SP), pp.
375-392. IEEE (2017)

Ballani, H., Francis, P., Zhang, X.: A study of prefix hijacking and interception in
the Internet. ACM SIGCOMM Comput. Commun. Rev. 37(4), 265-276 (2007)

. Brewster, T.: Cyber Attacks Strike Zimbabweans Around Controversial Elec-

tion, August 2013. http://www.silicon.co.uk/workspace /zimbabwe-election-cyber-
attacks-123938. Accessed 29 Apr 2019

Bush, R.: BGPsec Operational Considerations. BCP 211, RFC Editor, September
2017

Chandra, R., Traina, P., Li, T.: BGP Communities Attribute. RFC 1997, RFC
Editor, August 1996

Cisco: Remotely Triggered Black Hole Filtering - Destination Based and Source
Based (2005). https://www.cisco.com/c/dam/en/us/products/collateral /security /
ios-network-foundation-protection-nfp/prod_white_paper0900aecd80313fac.pdf.
Accessed 29 Apr 2019

Cohen, A., Gilad, Y., Herzberg, A., Schapira, M.: One hop for RPKI, one giant
leap for BGP security. In: Proceedings of the 14th ACM Workshop on Hot Topics
in Networks, p. 10. ACM (2015)

Cohen, A., Gilad, Y., Herzberg, A., Schapira, M.: Jumpstarting BGP security with
path-end validation. In: Proceedings of the 2016 ACM SIGCOMM Conference, pp.
342-355. ACM (2016)

DE-CIX: DE-CIX Blackholing Service July 2018. https://www.de-cix.net/_
Resources/Persistent /4277e7d4867a78ae923c0f5b3b66d 7{f6aeb61{8 /DE-CIX-
Blackholing-Service.pdf. Accessed 29 Apr 2019; Slide 3

Dietzel, C., Feldmann, A., King, T.: Blackholing at IXPs: on the effectiveness of
DDoS mitigation in the wild. In: Karagiannis, T., Dimitropoulos, X. (eds.) Passive
and Active Measurement, pp. 319-332. Springer International Publishing, Cham
(2016)

Dietzel, C., Smaragdakis, G., Wichtlhuber, M., Feldmann, A.: Stellar: network
attack mitigation using advanced blackholing. In: Proceedings of the 14th Inter-
national Conference on emerging Networking EXperiments and Technologies, pp.
152-164. ACM (2018)

Donnet, B., Bonaventure, O.: On BGP communities. ACM SIGCOMM Comput.
Commun. Rev. 38(2), 55-59 (2008)

France-IX: France-IX Blackholing Service, July 2018. https://www.franceix.net/
fr/technical/blackholing/. Accessed 29 Apr 2019

Gao, L., Griffin, T.G., Rexford, J.: Inherently safe backup routing with BGP. In:
Proceedings IEEE INFOCOM 2001. Conference on Computer Communications.
Twentieth Annual Joint Conference of the IEEE Computer and Communications
Society (Cat. No.01CH37213), vol. 1, pp. 547-556. IEEE, April 2001. https://doi.
org/10.1109/INFCOM.2001.916777

Gao, L., Rexford, J.: Stable Internet routing without global coordination.
IEEE/ACM Trans. Netw. (TON) 9(6), 681-692 (2001)

Gilad, Y., Cohen, A., Herzberg, A., Schapira, M., Shulman, H.: Are We There Yet?
On RPKT’s Deployment and Security. IACR Cryptology ePrint Archive 2016, 1010
(2016)

Gill, P., Schapira, M., Goldberg, S.: Let the market drive deployment: a strategy for
transitioning to BGP security. ACM SIGCOMM Comput. Commun. Rev. 41(4),
14-25 (2011)

http://www.silicon.co.uk/workspace/zimbabwe-election-cyber-attacks-123938
http://www.silicon.co.uk/workspace/zimbabwe-election-cyber-attacks-123938
https://www.cisco.com/c/dam/en/us/products/collateral/security/ios-network-foundation-protection-nfp/prod_white_paper0900aecd80313fac.pdf
https://www.cisco.com/c/dam/en/us/products/collateral/security/ios-network-foundation-protection-nfp/prod_white_paper0900aecd80313fac.pdf
https://www.de-cix.net/_Resources/Persistent/4277e7d4867a78ae923c0f5b3b66d7ff6aeb61f8/DE-CIX-Blackholing-Service.pdf
https://www.de-cix.net/_Resources/Persistent/4277e7d4867a78ae923c0f5b3b66d7ff6aeb61f8/DE-CIX-Blackholing-Service.pdf
https://www.de-cix.net/_Resources/Persistent/4277e7d4867a78ae923c0f5b3b66d7ff6aeb61f8/DE-CIX-Blackholing-Service.pdf
https://www.franceix.net/fr/technical/blackholing/
https://www.franceix.net/fr/technical/blackholing/
https://doi.org/10.1109/INFCOM.2001.916777
https://doi.org/10.1109/INFCOM.2001.916777

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

A Taxonomy of Attacks Using BGP Blackholing 125

Giotsas, V., Dietzel, C., Smaragdakis, G., Feldmann, A., Berger, A., Aben, E.:
Detecting peering infrastructure outages in the wild. In: Proceedings of the Con-
ference of the ACM Special Interest Group on Data Communication, pp. 446—459.
ACM (2017)

Giotsas, V., Smaragdakis, G., Dietzel, C., Richter, P., Feldmann, A., Berger, A.:
Inferring BGP blackholing activity in the Internet. In: Proceedings of the 2017
Internet Measurement Conference, pp. 1-14. ACM (2017)

Greenberg, A.: Hacker Redirects Traffic From 19 Internet Providers to Steal Bit-
coins, August 2014. https://www.wired.com/2014/08/isp-bitcoin-theft/. Accessed
29 Apr 2019

Heitz, J., Snijders, J., Patel, K., Bagdonas, 1., Hilliard, N.: BGP Large Communi-
ties Attribute. RFC 8092, RFC Editor, February 2017

Huston, G., Michaelson, G.: Validation of Route Origination Using the Resource
Certificate Public Key Infrastructure (PKI) and Route Origin Authorizations
(ROAs). RFC 6483, RFC Editor, February 2012

Tamartino, D., Pelsser, C., Bush, R.: Measuring BGP route origin registration and
validation. In: Mirkovic, J., Liu, Y. (eds.) PAM 2015. LNCS, vol. 8995, pp. 28—40.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15509-8_3
Kandagatla, N.: Disgruntled ex-employees, DDoS attacks and the revenge of the
nerds. https://www.wittysparks.com/disgruntled-ex-employees-ddos-attacks-and-
the-revenge-of-the-nerds/, November 2017. Accessed 29 Apr 2019

King, T., Dietzel, C., Snijders, J., Doering, G., Hankins, G.: BLACKHOLE Com-
munity. RFC 7999, RFC Editor, October 2016

Kumari, W., McPherson, D.: Remote Triggered Black Hole Filtering with Unicast
Reverse Path Forwarding (uRPF). RFC 5635, RFC Editor, August 2009
Lepinski, M., Kent, S.: An Infrastructure to Support Secure Internet Routing.
RFC 6480, RFC Editor, February 2012. http://www.rfc-editor.org/rfc/rfc6480.txt,
http://www.rfc-editor.org/rfc/rfc6480.txt

Lepinski, M., Sriram, K.: BGPsec Protocol Specification. RFC 8205, RFC Editor,
September 2017

Leyden, J.: US credit card firm fights DDoS attack, September 2004. http://www.
theregister.co.uk/2004/09/23/authorize_ddos_attack/. Accessed 29 Apr 2019
Lychev, R., Goldberg, S., Schapira, M.: BGP security in partial deployment: is
the juice worth the squeeze? SIGCOMM Comput. Commun. Rev. 43(4), 171-182
(2013). https://doi.org/10.1145/2534169.2486010

Madory, D.: BackConnect’s Suspicious BGP Hijacks, September 2016. https://
dyn.com/blog/backconnects-suspicious-bgp-hijacks/. Accessed 29 Apr 2019
Madory, D.: Iran Leaks Censorship via BGP Hijacks, January 2017. https://dyn.
com/blog/iran-leaks-censorship-via-bgp-hijacks/. Accessed 29 Apr 2019

Miller, L., Pelsser, C., Cateloin, S.: DDoS, BGP Leaks and Hijack Mitigation Tech-
niques, August 2018. https://loicmiller.com/documents/hijack_ddos_mitigation.
pdf. Accessed 29 Apr 2019

Mohapatra, P., Scudder, J., Ward, D., Bush, R., Austein, R.: BGP Prefix Origin
Validation. RFC 6811, RFC Editor, January 2013. http://www.rfc-editor.org/rfc/
rfc6811.txt, http://www.rfc-editor.org/rfc/rfc6811.txt

Morales, C.: NETSCOUT Arbor Confirms 1.7 Thps DDoS Attack; The Terabit
Attack Era Is Upon Us, March 2018. https://www.arbornetworks.com/blog/
asert /netscout-arbor-confirms- 1- 7-tbps-ddos-attack- terabit-attack-era-upon-us/.
Accessed 29 Apr 2019

https://www.wired.com/2014/08/isp-bitcoin-theft/
https://doi.org/10.1007/978-3-319-15509-8_3
https://www.wittysparks.com/disgruntled-ex-employees-ddos-attacks-and-the-revenge-of-the-nerds/
https://www.wittysparks.com/disgruntled-ex-employees-ddos-attacks-and-the-revenge-of-the-nerds/
http://www.rfc-editor.org/rfc/rfc6480.txt
http://www.rfc-editor.org/rfc/rfc6480.txt
http://www.theregister.co.uk/2004/09/23/authorize_ddos_attack/
http://www.theregister.co.uk/2004/09/23/authorize_ddos_attack/
https://doi.org/10.1145/2534169.2486010
https://dyn.com/blog/backconnects-suspicious-bgp-hijacks/
https://dyn.com/blog/backconnects-suspicious-bgp-hijacks/
https://dyn.com/blog/iran-leaks-censorship-via-bgp-hijacks/
https://dyn.com/blog/iran-leaks-censorship-via-bgp-hijacks/
https://loicmiller.com/documents/hijack_ddos_mitigation.pdf
https://loicmiller.com/documents/hijack_ddos_mitigation.pdf
http://www.rfc-editor.org/rfc/rfc6811.txt
http://www.rfc-editor.org/rfc/rfc6811.txt
http://www.rfc-editor.org/rfc/rfc6811.txt
https://www.arbornetworks.com/blog/asert/netscout-arbor-confirms-1-7-tbps-ddos-attack-terabit-attack-era-upon-us/
https://www.arbornetworks.com/blog/asert/netscout-arbor-confirms-1-7-tbps-ddos-attack-terabit-attack-era-upon-us/

126

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

L. Miller and C. Pelsser

National Institute of Standards and Technology: Global Prefix/Origin Validation
using RPKI, April 2019. https://rpki-monitor.antd.nist.gov/. Accessed 29 Apr
2019

Newman, L.H.: The Botnet That Broke the Internet Isn’t Going Away, September
2016. https://www.wired.com/2016/12/botnet-broke-internet-isnt-going-away /.
Accessed 29 Apr 2019

Pras, A., et al.: Attacks by “Anonymous” WikiLeaks Proponents not Anonymous
(2010)

Prince, M.: The DDoS That Almost Broke the Internet, March 2013. https://blog.
cloudflare.com/the-ddos-that-almost-broke-the-internet /. Accessed 29 Apr 2019
Rekhter, Y., Li, T., Hares, S.: A Border Gateway Protocol 4 (BGP-4). RFC 4271,
RFC Editor, January 2006. http://www.rfc-editor.org/rfc/rfc4271.txt

Reuter, A., Bush, R., Cunha, 1., Katz-Bassett, E., Schmidt, T.C., Wéahlisch, M.:
Towards a rigorous methodology for measuring adoption of RPKI route validation
and filtering. ACM SIGCOMM Comput. Commun. Rev. 48(1), 19-27 (2018)
Reuter, A., Bush, R., Cunha, 1., Katz-Bassett, E., Schmidt, T.C., Wahlisch, M.:
Measuring RPKI Route Origin Validation Deployment, April 2019. https://rov.
rpki.net/. Accessed 29 Apr 2019

Reynolds, M., Turner, S., Kent, S.: A Profile for BGPsec Router Certificates,
Certificate Revocation Lists, and Certification Requests. RFC 8209, RFC Editor,
September 2017

RIPE NCC: YouTube Hijacking: A RIPE NCC RIS case study, March
2008. https://www.ripe.net/publications/news/industry-developments/youtube-
hijacking-a-ripe-ncc-ris-case-study. Accessed 29 Apr 2019

Rossow, C.: Amplification Hell: Revisiting Network Protocols for DDoS Abuse. In:
NDSS (2014)

Ryba, F.J., Orlinski, M., Wahlisch, M., Rossow, C., Schmidt, T.C.: Amplifica-
tion and DRDoS attack defense-a survey and new perspectives. arXiv preprint
arXiv:1505.07892 (2015)

Schlamp, J., Holz, R., Jacquemart, Q., Carle, G., Biersack, E.W.: HEAP: reliable
assessment of BGP hijacking attacks. IEEE J. Sel. Areas Commun. 34(6), 1849—
1861 (2016)

Sermpezis, P., Kotronis, V., Dainotti, A., Dimitropoulos, X.: A survey among net-
work operators on BGP prefix hijacking. ACM SIGCOMM Comput. Commun.
Rev. 48(1), 64-69 (2018)

Sermpezis, P., et al.: Artemis: neutralizing BGP hijacking within a minute.
IEEE/ACM Trans. Netw. (TON) 26(6), 2471-2486 (2018)

Shi, X., Xiang, Y., Wang, Z., Yin, X., Wu, J.: Detecting prefix hijackings in the
internet with argus. In: Proceedings of the 2012 Internet Measurement Conference,
pp. 15-28. ACM (2012)

Streibelt, F., et al.: BGP communities: even more worms in the routing can. In:
Proceedings of the Internet Measurement Conference 2018, pp. 279-292. ACM
(2018)

Sun, Y., et al.: {RAPTOR}: routing attacks on privacy in Tor. In: 24th {USENIX}
Security Symposium ({USENIX} Security 15), pp. 271-286 (2015)

Tomlinson, K.: Cyber battle rages on Internet after arrest of cyber crime sus-
pects, September 2016. http://www.archersecuritygroup.com/cyber-battle-rages-
internet-arrest-cyber-crime-suspects/. Accessed 29 Apr 2019

Turk, D.: Configuring BGP to Block Denial-of-Service Attacks. RFC 3882, RFC
Editor, September 2004

https://rpki-monitor.antd.nist.gov/
https://www.wired.com/2016/12/botnet-broke-internet-isnt-going-away/
https://blog.cloudflare.com/the-ddos-that-almost-broke-the-internet/
https://blog.cloudflare.com/the-ddos-that-almost-broke-the-internet/
http://www.rfc-editor.org/rfc/rfc4271.txt
https://rov.rpki.net/
https://rov.rpki.net/
https://www.ripe.net/publications/news/industry-developments/youtube-hijacking-a-ripe-ncc-ris-case-study
https://www.ripe.net/publications/news/industry-developments/youtube-hijacking-a-ripe-ncc-ris-case-study
http://arxiv.org/abs/1505.07892
http://www.archersecuritygroup.com/cyber-battle-rages-internet-arrest-cyber-crime-suspects/
http://www.archersecuritygroup.com/cyber-battle-rages-internet-arrest-cyber-crime-suspects/

58.

59.

60.

61.

62.

A Taxonomy of Attacks Using BGP Blackholing 127

Vervier, P.A., et al.: Malicious BGP hijacks: appearances can be deceiving. In:
2014 IEEE International Conference on Communications (ICC), pp. 884-889. IEEE
(2014)

Vervier, P.A., Thonnard, O., Dacier, M.: Mind Your Blocks: On the Stealthiness
of Malicious BGP Hijacks. In: NDSS (2015)

Wahlisch, M., Maennel, O., Schmidt, T.C.: Towards detecting BGP route hijack-
ing using the RPKI. In: Proceedings of the ACM SIGCOMM 2012 Conference on
Applications, Technologies, Architectures, and Protocols for Computer Communi-
cation, pp. 103-104. Citeseer (2012)

Wahlisch, M., Schmidt, R., Schmidt, T.C., Maennel, O., Uhlig, S., Tyson, G.:
RiPKI: The tragic story of RPKI deployment in the Web ecosystem. In: Proceed-
ings of the 14th ACM Workshop on Hot Topics in Networks. p. 11. ACM (2015)
Zheng, C., Ji, L., Pei, D., Wang, J., Francis, P.: A light-weight distributed scheme
for detecting IP prefix hijacks in real-time. In: ACM SIGCOMM Computer Com-
munication Review. vol. 37, pp. 277-288. ACM (2007)

l‘)

Check for
updates

1

Differential privacy [1] is a quantitative notion of privacy that has been applied
to a wide range of areas, including databases, geo-locations, and social network.
The protection of differential privacy can be achieved by adding controlled noise
to given data that we wish to hide or obfuscate. In particular, a number of recent
studies have proposed local obfuscation mechanisms [2—-4], namely, randomized
algorithms that perturb each single “point” data (e.g., a geo-location point) by
adding certain probabilistic noise before sending it out to a data collector. How-
ever, the obfuscation of a probability distribution of points (e.g., a distribution

This work was partially supported by JSPS KAKENHI Grant JP17K12667,

Local Obfuscation Mechanisms for Hiding
Probability Distributions

&)@ and Takao Murakami?

Yusuke Kawamoto
1 AIST, Tsukuba, Japan
yusuke.kawamoto.aist@gmail.com
2 AIST, Tokyo, Japan

Abstract. We introduce a formal model for the information leakage of
probability distributions and define a notion called distribution privacy
as the local differential privacy for probability distributions. Roughly,
the distribution privacy of a local obfuscation mechanism means that
the attacker cannot significantly gain any information on the distribu-
tion of the mechanism’s input by observing its output. Then we show
that existing local mechanisms can hide input distributions in terms of
distribution privacy, while deteriorating the utility by adding too much
noise. For example, we prove that the Laplace mechanism needs to add a
large amount of noise proportionally to the infinite Wasserstein distance
between the two distributions we want to make indistinguishable. To
improve the tradeoff between distribution privacy and utility, we intro-
duce a local obfuscation mechanism, called a tupling mechanism, that
adds random dummy data to the output. Then we apply this mechanism
to the protection of user attributes in location based services. By experi-
ments, we demonstrate that the tupling mechanism outperforms popular
local mechanisms in terms of attribute obfuscation and service quality.

Keywords: Local differential privacy - Obfuscation mechanism -
Location privacy - Attribute privacy + Wasserstein metric -
Compositionality

Introduction

JP19H04113, and Inria LOGIS project.

© Springer Nature Switzerland AG 2019
K. Sako et al. (Eds.): ESORICS 2019, LNCS 11735, pp. 128-148, 2019.
https://doi.org/10.1007/978-3-030-29959-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29959-0_7&domain=pdf
http://orcid.org/0000-0002-2151-9560
http://orcid.org/0000-0002-5110-1261
https://doi.org/10.1007/978-3-030-29959-0_7

Local Obfuscation Mechanisms for Hiding Probability Distributions 129

of locations of users at home/outside home) still remains to be investigated in
terms of differential privacy.

For example, a location-based service (LBS) provider collects each user’s geo-
location data to provide a service (e.g., navigation or point-of-interest search),
and has been widely studied in terms of the privacy of user locations. As shown
in [3,5], users can hide their accurate locations by sending to the LBS provider
only approximate location information calculated by an obfuscation mechanism.

Nevertheless, a user’s location information can be used for an attacker to
infer the user’s attributes (e.g., age, gender, social status, and residence area)
or activities (e.g., working, sleeping, and shopping) [6-9]. For example, when an
attacker knows the distribution of residence locations, he may detect whether
given users are at home or outside home after observing their obfuscated loca-
tions. For another example, an attacker may learn whether users are rich or poor
by observing their obfuscated behaviors. These attributes can be used by robbers
hence should be protected from them. Privacy issues of such attribute inference
are also known in other applications, including recommender systems [10,11]
and online social networks [12,13]. However, to our knowledge, no literature has
addressed the protection of attributes in terms of local differential privacy.

To illustrate the privacy of attributes in an LBS, let us consider a running
example where users try to prevent an attacker from inferring whether they are
at home or not. Let Apome and A, be the probability distributions of loca-
tions of the users at home and outside home, respectively. Then the privacy of
this attribute means that the attacker cannot learn from an obfuscated location
whether the actual location follows the distribution Apome O Apyt-

This can be formalized using differential privacy. For each ¢t € {home, out},
we denote by p(y | A¢) the probability of observing an obfuscated location y when
an actual location is distributed over A;. Then the privacy of ¢ is defined by:

p(y ‘)‘home) <ef
p(y | Aout)

)

which represents that the attacker cannot distinguish whether the users follow
the distribution Apome or Ay With degree of e.

To generalize this, we define a notion, called distribution privacy (DistP),
as the differential privacy for probability distributions. Roughly, we say that a
mechanism A provides DistP w.r.t. Apome and A,y if no attacker can detect
whether the actual location (input to A) is sampled from A pme Or Agyr after he
observed an obfuscated location y (output by A)'. Here we note that each user
applies the mechanism A locally by herself, hence can customize the amount of
noise added to y according to the attributes she wants to hide.

Although existing local differential privacy mechanisms are designed to pro-
tect point data, they also hide the distribution that the point data follow. How-
ever, we demonstrate that they need to add a large amount of noise to obfuscate
distributions, and thus deteriorate the utility of the mechanisms.

! In our setting, the attacker observes only a sampled output of A, and not the exact
histogram of A’s output distribution. See Sect. 3.5 for more details.

130 Y. Kawamoto and T. Murakami

To achieve both high utility and strong privacy of attributes, we introduce
a mechanism, called the tupling mechanism, that not only perturbs an actual
input, but also adds random dummy data to the output. Then we prove that
this mechanism provides DistP. Since the random dummy data obfuscate the
shape of the distribution, users can instead reduce the amount of noise added to
the actual input, hence they get better utility (e.g., quality of a POI service).

This implies that DistP is a relaxation of differential privacy that guaran-
tees the privacy of attributes while achieving higher utility by weakening the
differentially private protection of point data. For example, suppose that users
do not mind revealing their actual locations outside home, but want to hide
(e.g., from robbers) the fact that they are outside home. When the users employ
the tupling mechanism, they output both their (slightly perturbed) actual loca-
tions and random dummy locations. Since their outputs include their (roughly)
actual locations, they obtain high utility (e.g., learning shops near their loca-
tions), while their actual location points are protected only weakly by differential
privacy. However, their attributes at home/outside home are hidden among the
dummy locations, hence protected by DistP. By experiments, we demonstrate
that the tupling mechanism is useful to protect the privacy of attributes, and out-
performs popular existing mechanisms (the randomized response [14], the planar
Laplace [3] and Gaussian mechanisms) in terms of DistP and service quality.

Our Contributions. The main contributions of this work are given as follows:

— We propose a formal model for the privacy of probability distributions in
terms of differential privacy. Specifically, we define the notion of distribution
privacy (DistP) to represent that the attacker cannot significantly gain infor-
mation on the distribution of a mechanism’s input by observing its output.

— We provide theoretical foundation of DistP, including its useful properties
(e.g., compositionality) and its interpretation (e.g., in terms of Bayes factor).

— We quantify the effect of distribution obfuscation by existing local mecha-
nisms. In particular, we show that (extended) differential privacy mechanisms
are able to make any two distributions less distinguishable, while deteriorating
the utility by adding too much noise to protect all point data.

— For instance, we prove that extended differential privacy mechanisms (e.g.,
the Laplace mechanism) need to add a large amount of noise proportionally
to the co-Wasserstein distance Woo 4(Ao, A1) between the two distributions
Ao and A; that we want to make indistinguishable.

— We show that DistP is a useful relaxation of differential privacy when users
want to hide their attributes, but not necessarily to protect all point data.

— To improve the tradeoff between DistP and utility, we introduce the tupling
mechanism, which locally adds random dummies to the output. Then we show
that this mechanism provides DistP and hight utility for users.

— We apply local mechanisms to the obfuscation of attributes in location based
services (LBSs). Then we show that the tupling mechanism outperforms pop-
ular existing mechanisms in terms of DistP and service quality.

All proofs of technical results can be found in [15].

Local Obfuscation Mechanisms for Hiding Probability Distributions 131

2 Preliminaries

In this section we recall some notions of privacy and metrics used in this paper.
Let N>9 be the set of positive integers, and R>? (resp. RZ?) be the set of
positive (resp. non-negative) real numbers. Let [0, 1] be the set of non-negative
real numbers not grater than 1. Let ¢,e9,e; € RZ° and §,dy,6; € [0, 1].

2.1 Notations for Probability Distributions

We denote by DX the set of all probability distributions

over a set X', and by |X| the number of elements in a finite Ao

set X. T 2
Given a finite set X and a distribution A € DX, the 0.1

probability of drawing a value z from A is denoted by A[z]. 7 0'21 /o%

For a finite subset X’ C X we define A[X’] by: A[X”]

> wrex Alz']. For a distribution A over a finite set X, its), . I
support supp(A) is defined by supp(A) = {x € X': Alx] > 0}. -

Given a A € DX and a f : X — R, the expected value of L2008

fover Ais: Egoa[f ()] def er){ Al f(z). Fig. 1. Coupling ~.

For a randomized algorithm A : X — D) and a set R C) we denote by
A(x)[R] the probability that given input x, A outputs one of the elements of
R. Given a randomized algorithm A : X — DY and a distribution A over X,
we define A% ()\) as the distribution of the output of A. Formally, for a finite
set X, the lifting of A w.r.t. X is the function A# : DX — DY such that

AR € Y, cx Mzl A(2)[R).

2.2 Differential Privacy (DP)

Differential privacy [1] captures the idea that given two “adjacent” inputs x and
2’ (from a set X of data with an adjacency relation @), a randomized algorithm
A cannot distinguish = from 2’ (with degree of ¢ and up to exceptions §).

Definition 1 (Differential privacy). Let e be the base of natural logarithm.
A randomized algorithm A : X — DY provides (e, §)-differential privacy (DP)
w.r.t. an adjacency relation & C X x X if for any (z,2’) € ® and any R C),

Pr[A(x) € R] < e®Pr[A(z') € R] +§

where the probability is taken over the random choices in A.

2.3 Differential Privacy Mechanisms and Sensitivity

Differential privacy can be achieved by a privacy mechanism, namely a ran-
domized algorithm that adds probabilistic noise to a given input that we want
to protect. The amount of noise added by some popular mechanisms (e.g., the
exponential mechanism) depends on a wutility function u : X x) — R that maps
a pair of input and output to a utility score. More precisely, the noise is added
according to the “sensitivity” of w, which we define as follows.

132 Y. Kawamoto and T. Murakami

Definition 2 (Utility distance). The utility distance w.r.t a utility function
u: (AxY) — Ris the function d given by: d(z,a’) o maxyey|u(z, y)—u(a’,y)|.

Note that d is a pseudometric. Hereafter we assume that for all z,y, u(z,y) =0
is logically equivalent to = y. Then the utility distance d is a metric.

Definition 3 (Sensitivity w.r.t. an adjacency relation). The sensitivity of
a utility function u w.r.t. an adjacency relation @ C X x X is defined as:

Ag 4 ' max d(z,2') = max max|u(z,y) — u(z’,y)|.
(z,2")ed (z,2")ed YEY

2.4 Extended Differential Privacy (XDP)

We review the notion of extended differential privacy [16], which relaxes DP by
incorporating a metric d. Intuitively, this notion guarantees that when two inputs
z and z’ are closer in terms of d, the output distributions are less distinguishable.

Definition 4 (Extended differential privacy). For a metric d: X x X — R,
we say that a randomized algorithm A : X — DY provides (e, d, d)-extended
differential privacy (XDP) if for all z,2’ € X and for any R C),

Pr[A(z) € R] < *@*) Pr[A(a) € R] + 6.

2.5 Wasserstein Metric
We recall the notion of probability coupling as follows.

Definition 5 (Coupling). Given \y € DXy and A\; € DX}, a coupling of Ao
and A1 is a v € D(Xy x X;) such that Ao and A; are v’s marginal distributions,
i.e., for each xg € Xy, Ag[xo] :Zz;exﬂ[xovx/l] and for each x1 € X, A\i[z1] =
Z%e%v[xg, x1]. We denote by cp(Ag, A1) the set of all couplings of Ag and A;.

Ezample 1 (Coupling as transformation of distributions). Let us consider two
distributions \g and A; shown in Fig. 1. A coupling v of Ag and A\; shows a way
of transforming Ag to A;. For example, v[2,1] = 0.1 moves from Ag[2] to A1[1].

We then recall the co-Wasserstein metric [17] between two distributions.

Definition 6 (oo-Wasserstein metric). Let d be a metric over X. The
oo-Wasserstein metric Wos g w.r.t. d is defined by: for any Ao, A; € DX,

Weo,da(Xo, A1) = min max d(zg,z1).
v€cp(No,A1) (zo,71)Esupp(7)

Local Obfuscation Mechanisms for Hiding Probability Distributions 133

The oo-Wasserstein metric Weo ¢(Ao, A1) represents the minimum largest
move between points in a transportation from Ay to A;. Specifically, in a trans-
portation 7, Max g, 2,)esupp(y) @(Z0, 1) represents the largest move from a point
in Ag to another in A\;. For instance, in the coupling v in Example 1, the largest
move is 1 (from A\g[2] to A1[1], and from Ag[2] to A1[3]). Such a largest move is
minimized by a coupling that achieves the co-Wasserstein metric. We denote by
I, q the set of all couplings that achieve the co-Wasserstein metric.

Finally, we recall the notion of the lifting of relations.

Definition 7 (Lifting of relations). Given a relation @ C X x X, the lifting
of @ is the maximum relation 7 C DX x DX such that for any (\g, \;) € 7,
there exists a coupling v € cp(Ag, A1) satisfying supp(y) C P.

Note that by Definition 5, the coupling 7 is a probability distribution over ¢
whose marginal distributions are Ao and ;. If ® = X x X, then # = DX x DX.

3 Privacy Notions for Probability Distributions

In this section we introduce a formal model for the privacy of user attributes,
which is motivated in Sect. 1.

3.1 Modeling the Privacy of User Attributes in Terms of DP

As a running example, we consider an LBS (location based service) in which
each user queries an LBS provider for a list of shops nearby. To hide a user’s
exact location x from the provider, the user applies a randomized algorithm
A : X — DY, called a local obfuscation mechanism, to her location x, and
obtains an approximate information y with the probability A(z)[y].

To illustrate the privacy of attributes, let us consider an example in which
users try to prevent an attacker from inferring whether they are male or female
by obfuscating their own exact locations using a mechanism A. For each t €
{male, female}, let \; € DX be the prior distribution of the location of the users
who have the attribute ¢. Intuitively, Aqie (r€Sp. Afemate) r€presents an attacker’s
belief on the location of the male (resp. female) users before the attacker observes
an output of the mechanism A. Then the privacy of ¢t can be modeled as a
property that the attacker has no idea on whether the actual location z follows
the distribution Aj,ge O Afemate after observing an output y of A.

This can be formalized in terms of e-local DP. For each t € {male, female},
we denote by p(y | A¢) the probability of observing an obfuscated location y when
an actual location z is distributed over A, ie., p(y|A)) = D cp Ae[z]A(2)[y].
Then we can define the privacy of ¢ by:

p(y ‘)‘marle) < €
Iovoe wa— e,
p(y | Afemute) -

134 Y. Kawamoto and T. Murakami

3.2 Distribution Privacy and Extended Distribution Privacy

We generalize the privacy of attributes (in Sect.3.1) and define the notion of
distribution privacy (DistP) as the differential privacy where the input is a prob-
ability distribution of data rather than a value of data. This notion models a
level of obfuscation that hides which distribution a data value is drawn from.
Intuitively, we say a randomized algorithm A provides DistP if, by observing an
output of A, we cannot detect from which distribution an input to A is generated.

Definition 8 (Distribution privacy). Let ¢ € RZ% and § € [0,1]. We say
that a randomized algorithm A : X — DY provides (g, d)-distribution privacy
(DistP) w.r.t. an adjacency relation ¥ C DX x DX if its lifting A% : DA — DY
provides (g,6)-DP w.r.t. ¥, i.e., for all pairs (A, \') € ¥ and all R C), we have:

AF(N)[R]) < e - AT(N)[R] +6.
We say A provides (g,8)-DistP w.r.t. A C DX if it provides (¢, §)-DistP w.r.t. A2

For example, the privacy of a user attribute ¢ € {male, female} described in
Sect. 3.1 can be formalized as (g, 0)-DistP w.r.t. {Anaic, Afemate }-

Mathematically, DistP is not a new notion but the DP for distributions. To
contrast with DistP, we refer to the DP for data values as point privacy.

Next we introduce an extended form of distribution privacy to a metric.
Intuitively, extended distribution privacy guarantees that when two input dis-
tributions are closer, then the output distributions must be less distinguishable.

Definition 9 (Extended distribution privacy). Let d : (DX x DX) — R be
a utility distance, and ¥ C DX x DX. We say that a mechanism A : X — DY
provides (e,d, §)-extended distribution privacy (XDistP) w.r.t. W if the lifting A%
provides (e,d,§)-XDP w.r.t. ¥, i.e., for all (A\,\') € ¥ and all R C), we have:

A#(N)[R] < ™) . A#(X)[R] + 6.

3.3 Interpretation by Bayes Factor

The interpretation of DP has been explored in previous work [16,18] using the
notion of Bayes factor. Similarly, the meaning of DistP can also be explained in
terms of Bayes factor, which compares the attacker’s prior and posterior beliefs.
Assume that an attacker has some belief on the input distribution before
observing the output values of an obfuscater A. We denote by p(A) the prior
probability that a distribution A is chosen as the input distribution. By observing
an output y of A, the attacker updates his belief on the input distribution. We
denote by p(Aly) the posterior probability of A being chosen, given an output y.
For two distributions Ag, A1, the Bayes factor K (A, A\1,y) is defined as the
ratio of the two posteriors divided by that of the two priors: K (Ao, A1,y) =
ifm/%? If the Bayes factor is far from 1 the attacker significantly updates

hlb belief on the distribution by observing a perturbed output y of A.

Local Obfuscation Mechanisms for Hiding Probability Distributions 135

Assume that A provides (e, 0)-DistP. By Bayes’ theorem, we obtain:

A

1 1 1 # 1
KOu) = 505 305 - 003 -) <
Intuitively, if the attacker believes that Ag is k times more likely than A\; before
the observation, then he believes that A\g is k- e times more likely than \; after
the observation. This means that for a small value of ¢, DistP guarantees that
the attacker does not gain information on the distribution by observing y.
In the case of XDistP, the Bayes factor K (Ao, A1,y) is bounded above by

ec40:M1) Hence the attacker gains more information for a larger distance
d(Xg, A1)-
Table 1. Summary of basic properties of DistP.
Sequential composition ® Ay is (ep, 0p)-DistP
= A, ® Ap is (Eo + €1, ((50 + 61) . ‘@l)—DiStP
Sequential composition e Ay is (ep, 0p)-DistP
= A, e A is (80 +e1,00 + 51)—DiStP
Post-processing Ap is (g,0)-DistP = A1 0 Ag is (g, §)-DistP
Pre-processing (by c-stable T') | A is (g,0)-DistP = Ao T is (ce, §)-DistP

3.4 Privacy Guarantee for Attackers with Close Beliefs

In the previous sections, we assume that we know the distance between two
actual input distributions, and can determine the amount of noise required for
distribution obfuscation. However, an attacker may have different beliefs on the
distributions that are closer to the actual ones, e.g., more accurate distributions
obtained by more observations and specific situations (e.g., daytime/nighttime).
To see this, for each A € DX, let A be an attacker’s belief on A. We say that
an attacker has (c, d)-close beliefs if each distribution X satisfies d(\,\) < c.
Then extended distribution privacy in the presence of an attacker is given by:

Proposition 1 (XDistP with close beliefs). Let A : X — DY provide
(¢,d,0)-XDistP w.r.t. some W C X x X. If an attacker has (c, d)-close beliefs,
then for all (Ao, A1) € ¥ and all R C'Y, we have A% (X\g)[R] < es(d(ro.A)+20) .
A#(\)[R].

When the attacker’s beliefs are closer to ours, then ¢ is smaller, hence a
stronger distribution privacy is guaranteed. See [15] for a proposition with DistP.
Note that assuming some attacker’s beliefs are inevitable also in many previous
studies, e.g., when we want to protect the privacy of correlated data [19-21].

136 Y. Kawamoto and T. Murakami

3.5 Difference from the Histogram Privacy

Finally, we present a brief remark on the difference between DistP and the dif-
ferential privacy of histogram publication (e.g., [22]). Roughly, a histogram pub-
lication mechanism is a central mechanism that aims at hiding a single record
x € X and outputs an obfuscated histogram, e.g., a distribution p € D)), whereas
a DistP mechanism is a local mechanism that aims at hiding an input distribution
A € DX and outputs a single perturbed value y €).

Note that neither of these implies the other. The ¢-DP of a histogram pub-
lication mechanism means that for any two adjacent inputs z,z2’ € X and any

histogram p € DY, ;’ . ;l: |‘I,) < e°. However, this does not derive e-DistP, i.e., for
p(uIA)

any adjacent input distributions A, \’ € DX and any output y € Y, 1Y) < €.

4 Basic Properties of Distribution Privacy

In Table 1, we show basic properties of DistP. (See the arXiv version [15] for the
full table with XDistP and their detailed proofs.)

The composition A1 ®Ag means that an identical input x is given to two DistP
mechanisms Ay and A;, whereas the composition A; e Ay means that independent
inputs x; are provided to mechanisms A [23]. The compositionality can be
used to quantify the attribute privacy against an attacker who obtains multiple
released data each obfuscated for the purpose of protecting a different attribute.
For example, let ¥ = {(Amaie, Afemate)s (Ahome, Aout)}, and Ao (resp. A1) be
a mechanism providing €o-DistP (resp. £1-DistP) w.r.t. ¥. When Ag (resp. A1)
obfuscates a location xg for the sake of protecting male/female (resp. home/out),
then both male/female and home/out are protected with (g¢ + €1)-DistP.

As for pre-processing, the stability notion is different from that for DP:

Definition 10 (Stability). Let ¢ € N>° & C DX x DX, and W be a metric
over DX. A transformation T : DX — DX is (¢, ¥)-stable if for any (Mg, A1) € &,
T'(X\o) can be reached from T'(\1) at most c-steps over ¥. Analogously, T : DX —
DX is (¢, W)-stable if for any Ao, A\; € DX, W(T'(Ng), T(A1)) < cW ()Xo, A1).

We present relationships among privacy notions in [15]. An important prop-
erty is that when the relation ¥ C DX x DX includes pairs of point distributions
(i.e., distributions having single points with probability 1), DistP (resp. XDistP)
implies DP (resp. XDP). In contrast, if ¥ does not include pairs of point distri-
butions, DistP (resp. XDistP) may not imply DP (resp. XDP), as in Sect. 6.

5 Distribution Obfuscation by Point Obfuscation

In this section we present how the point obfuscation mechanisms (including DP
and XDP mechanisms) contribute to the obfuscation of probability distributions.

Local Obfuscation Mechanisms for Hiding Probability Distributions 137

5.1 Distribution Obfuscation by DP Mechanisms
We first show every DP mechanism provides DistP. (See Definition 7 for &#.)

Theorem 1 ((£,)-DP = (¢, - |P|)-DistP). Let P C X x X. If A: X — DY
provides (g,0)-DP w.r.t. @, then it provides (g, - |®|)-DistP w.r.t. &#.

This means that the mechanism A makes any pair (Mg, A1) € ®# indistin-
guishable up to the threshold ¢ and with exceptions ¢ - |@|. Intuitively, when Ag
and \; are adjacent w.r.t. the relation ®#, we can construct A; from A\ only by
moving mass from Ag[zo] to Ai[z1] where (zg,21) € @ (i.e., g is adjacent to x1).

Ezample 2 (Randomized response). By Theorem 1, the (e,0)-DP randomized
response [14] and RAPPOR [4] provide (g, 0)-DistP. When we use these mecha-
nisms, the estimation of the input distribution is harder for a smaller €. However,
these DP mechanisms tend to have small utility, because they add much noise
to hide not only the input distributions, but everything about inputs.

5.2 Distribution Obfuscation by XDP Mechanisms

Compared to DP mechanisms, XDP mechanisms are known to provide better
utility. Alvim et al. [24] show the planar Laplace mechanism [3] adds less noise
than the randomized response, since XDP hides only closer locations. However,
we show XDP mechanisms still need to add much noise proportionally to the oco-
Wasserstein distance between the distributions we want make indistinguishable.

The oo-Wasserstein Distance W, 4 as Utility Distance. We first observe
how much ¢’ is sufficient for an &’-XDP mechanism (e.g., the Laplace mechanism)
to make two distribution A\g and \; indistinguishable in terms of e-DistP.

Suppose that A\g and Ay are point distributions such that Ag[zo] = M[z1] =1
for some xg,z1 € X. Then an ¢/-XDP mechanism A satisfies:

Do (A% (Xo) || A% (A1) = Do (A(wo) | A(21)) < €'d(ao, 1)

In order for A to provide e-DistP, &’ should be defined as m That is, the
noise added by A should be proportional to the distance between xy and .
To extend this to arbitrary distributions, we need to define a utility metric
between distributions. A natural possible definition would be the largest distance
between values of A\g and A1, i.e., the diameter over the supports defined by:

diam(Xp, A1) = max d(xg,x1).

xo€supp(Ao),z1Esupp(A1)

However, when there is an outlier in Ag or Ay that is far from other values in the
supports, then the diameter diam(Ag, A1) is large. Hence the mechanisms that
add noise proportionally to the diameter would lose utility too much.

To have better utility, we employ the co-Wasserstein metric Wy, 4. The idea
is that given two distributions Ay and A; over X, we consider the cost of a
transportation of weights from \g to A;. The transportation is formalized as a

138 Y. Kawamoto and T. Murakami

coupling v of Ag and A\; (see Definition 5), and the cost of the largest move is

Asupp(v),d = ~ max d(xo, 1), i.e., the sensitivity w.r.t. the adjacency rela-
' (z0,21)€Esupp(y)

tion supp(y) C X x X (Definition 3). The minimum cost of the largest move is

given by the co-Wasserstein metric: Woo a(Xo, A1) = min Agpp(q),a-
v€cp(Xo,A1)

XDP implies XDistP. We show every XDP mechanism provides XDistP with
the metric Wy, 4. To formalize this, we define a lifted relation @fvm as the

maximum relation over DX s.t. for any (Ao, A1) € @ﬁw, there is a coupling

v € cp(Ao, A1) satisfying supp(y) € & and v € I 4(Ao, A1). Then @ﬁ,@ C o#
holds.

Theorem 2 ((¢,d,0)-XDP = (¢, Wy 4,0 - |®|)-XDistP). If A : X — DY
provides (e,d,8)-XDP w.r.t. & C X x X, it provides (&, Weo,q,9-|®P|)-XDistP
w.r.t. @?fvoo.

Algorithm 1. Tupling mechanism Q" ,

Input: z: input, k: #dummies, v: distribution of dummies, A: randomized algorithm
Output: y = (r1,...,7i,8,Ti+1,...,Tk): the output value of the tupling mechanism

s & A(z); // Draw an obfuscated value s of an input =
1,72, ..., Tk & v; // Draw k dummies from a given distribution v

i & {1,2,...,k+1}; // Draw i to decide the order of the outputs
return (r1,...,7, 8, Tit1, .-, Tk);

By Theorem 2, when § > 0, the noise required for obfuscation is propor-
tional to |®|, which is at most the domain size squared |X'|2. This implies that
for a larger domain X, the Gaussian mechanism is not suited for distribution
obfuscation. We will demonstrate this by experiments in Sect. 7.4.

In contrast, the Laplace/exponential mechanisms provide (g, Wa, 4, 0)-DistP.
Since Weo,d(Ao, A1) < diam(Ag, A1), the noise added proportionally to W, 4 can
be smaller than diam. This implies that obfuscating a distribution requires less
noise than obfuscating a set of data. However, the required noise can still be
very large when we want to make two distant distributions indistinguishable.

6 Distribution Obfuscation by Random Dummies

In this section we introduce a local mechanism called a tupling mechanism to
improve the tradeoff between DistP and utility, as motivated in Sect. 1.

Local Obfuscation Mechanisms for Hiding Probability Distributions 139

6.1 Tupling Mechanism

We first define the tupling mechanism as a local mechanism that obfuscates a
given input z by using a point perturbation mechanism A (not necessarily in
terms of DP or XDP), and that also adds k¥ random dummies r1,73,...,7% to
the output to obfuscate the input distribution (Algorithm 1). The probability
that given an input z, the mechanism Q;?V, 4 outputs ¢ is given by QZE’M A(@)[y).

6.2 Privacy of the Tupling Mechanism

Next we show that the tupling mechanism provides DistP w.r.t. the following
class of distributions. Given 3,7 € [0,1] and A : X — DY, we define Ag, 4 by:

$
Agga={NeDX | Prly < Y : A* N[y < B8] >1-n}.
For instance, a distribution A satisfying max, Alz] < 3 belongs to Ago. 4.

Theorem 3 (DistP of the tupling mechanism). Let k € N>° v be the
uniform distribution over Y, A : X — DY, and B,n € [0,1]. Given an 0 <

a2
a < ﬁ, let e = In %W and 0n = Zefiﬁ + 1. Then the (k,v, A)-tupling

mechanism provides (&, &)-DistP w.r.t. A%,n,A'

This claim states that just adding random dummies achieves DistP without
any assumption on A (e.g., A does not have to provide DP). For a smaller range
size || and a larger number k of dummies, we obtain a stronger DistP.

Note that the distributions protected by Q,tc'?y’ 4 belong to the set Ag, a.

— When 8 =1, Ag 4 is the set of all distributions (i.e., 41,4 = DX) while
€q and d, tend to be large.

— For a smaller 3, the set Ag , 4 is smaller while e, and J, are smaller; that is,
the mechanism provides a stronger DistP for a smaller set of distributions.

— If A provides €4-DP, Ag, 4 goes to DX for e4 — 0. More generally, Ag, a
is larger when the maximum output probability max, A% (\)[y] is smaller.

In practice, even when € 4 is relatively large, a small number of dummies enables
us to provide a strong DistP, as shown by experiments in Sect. 7.

We note that Theorem 3 may not imply DP of the tupling mechanism,
depending on A. For example, suppose that A is the identity function. For small
€o and d,, we have 3 < 1, hence no point distribution A (where A[z] = 1 for
some z) belongs to Ag, 4, namely, the tupling mechanism does not provide
(€ay 0a)-DP.

6.3 Service Quality Loss and Cost of the Tupling Mechanism

When a mechanism outputs a value y closer to the original input z, she obtains a
larger wtility, or equivalently, a smaller service quality loss d(x,y). For example,
in an LBS (location based service), if a user located at submits an obfuscated

140 Y. Kawamoto and T. Murakami

location y, the LBS provider returns the shops near y, hence the service quality

loss can be expressed as the Euclidean distance d(z,y) & |z — yl.

Since each output of the tupling mechanism consists of k + 1 elements, the
quality loss of submitting a tuple § = (y1, y2, - - - , Yx+1) amounts to d(z, §):=min;
d(z,y;). Then the expected quality loss of the mechanism is defined as follows.

Definition 11 (Expected quality loss of the tupling mechanism). For a
A € DX and a metric d : X x Y — R, the expected quality loss of Q,ipy_A is:

L(Itc',)u,A) :Zwe?(deka Al7] Q;’,’y,A(m)[g} min; d(x,y;).

For a larger number k of random dummies, min; d(x,y;) is smaller on aver-
age, hence L(Q;"’V’ A) is also smaller. Furthermore, thanks to the distribution
obfuscation by random dummies, we can instead reduce the perturbation noise
added to the actual input x to obtain the same level of DistP. Therefore, the
service quality is much higher than existing mechanisms, as shown in Sect. 7.

6.4 Improving the Worst-Case Quality Loss

As a point obfuscation mechanism A used in the tupling mechanism Q,i‘?y, A
we define the restricted Laplace (RL) mechanism below. Intuitively, (4, 7)-RL
mechanism adds 4-XDP Laplace noise only within a radius r of the original loca-
tion z. This ensures that the worst-case quality loss of the tupling mechanisms
is bounded above by the radius r, whereas the standard Laplace mechanism
reports a location y that is arbitrarily distant from z with a small probability.

radius = 0.040
radius =

radius =
o |_radius - 0,010 =

4 16 64 256 1024 4096 001 002 0.03 0.04 14 16 64 256 1024 4096
€, of restricted Laplace noise Radius r of restricted Laplace noise g of restricted Laplace noise

4 12 1
Number of dummies

(a) #dummies and (b) e4 of (£4,0.020)- (c¢) A radius r of (d) ea of (ga,7)- RL
e-DistP (when us- RL mechanism and (100,7)-RL mech- mechanism and the
ing (100,0.020)-RL e-DistP (with 10 anism and e-DistP expected loss (with 5
mechanism). dummies). (with 10 dummies). dummies).

Fig. 2. Empirical DistP and quality loss of Q;‘jMA for the attribute male/female.

Definition 12 (RL mechanism). Let YV, , = {y € YV|d(z,y) < r}. We
define (g4, r)-restricted Laplace (RL) mechanism as the A : X — DY defined by:

A(x)]y] ey Y € Vur, and A(x)[y] = 0 otherwise.

= —ed(x,y’
Z?//Eyz,r € S

Local Obfuscation Mechanisms for Hiding Probability Distributions 141

Since the support of A is limited to YV, ,, A provides better service quality
but does not provide DP. Nevertheless, as shown in Theorem 3, Q,Z’?V) 4 provides
DistP, due to dummies in)\ YVz,r. This implies that DistP is a relaxation of
DP that guarantees the privacy of attributes while achieving higher utility by
weakening the DP protection of point data. In other words, DistP mechanisms
are useful when users want both to keep high utility and to protect the attribute
privacy more strongly than what a DP mechanism can guarantee (e.g., when
users do not mind revealing their actual locations outside home, but want to
hide from robbers the fact that they are outside home, as motivated in Sect. 1).

7 Application to Attribute Privacy in LBSs

In this section we apply local mechanisms to the protection of the attribute pri-
vacy in location based services (LBSs) where each user submits her own location
z to an LBS provider to obtain information relevant to x (e.g., shops near x).

7.1 Experimental Setup

We perform experiments on location privacy in Manhattan by using the
Foursquare dataset (Global-scale Check-in Dataset) [25]. We first divide Manhat-
tan into 11 x 10 regions with 1.0 km intervals. To provide more useful information
to users in crowded regions, we further re-divide these regions to 276 regions by
recursively partitioning each crowded region into four until each resulting region
has roughly similar population density.? Let) be the set of those 276 regions,
and X be the set of the 228 regions inside the central 10km x 9km area in).

As an obfuscation mechanism @, we use the tupling mechanism QZ‘)’M 4 that
uses an (g4, 7)-RL mechanism A and the uniform distribution v over Y to gener-
ate dummy locations. Note that v is close to the population density distribution
over), because each region in) is constructed to have roughly similar popu-
lation density. In the definitions of the RL mechanism and the quality loss, we
use the Euclidean distance || - || between the central points of the regions.

In the experiments, we measure the privacy of user attributes, formalized
as DistP. For example, let us consider the attribute male/female. For each t €
{male, female}, let A\, € DX be the prior distribution of the location of the users
having the attribute ¢. Then, Ap,qe (resp.)\female) represents an attacker’s belief
on the location of the male (resp. female) users. We define these as the empirical
distributions that the attacker can calculate from the above Foursquare dataset.

7.2 Evaluation of the Tupling Mechanism

Distribution Privacy. We demonstrate by experiments that the male users
cannot be recognized as which of male or female in terms of DistP. In Fig. 2,

2 This partition may be useful to achieve smaller values (g, §) of DistP, because 3 tends
to be smaller when the population density is closer to the uniform distribution.

142 Y. Kawamoto and T. Murakami

we show the experimental results on the DistP of the tupling mechanism Q,i‘?y, A
For a larger number k of dummy locations, we have a stronger DistP (Fig. 2a).
For a larger €4, (e4,0.020)-RL mechanism A adds less noise, hence the tupling
mechanism provides a weaker DistP (Fig.2b)3. For a larger radius 7, the RL
mechanism A spreads the original distribution A4, and thus provides a strong
DistP (Fig.2c). We also show the relationship between k and DistP in the east-
ern/western Tokyo and London, which have different levels of privacy (Fig. 3).
These results imply that if we add more dummies, we can decrease the noise
level/radius of A to have better utility, while keeping the same level e of DistP.
Conversely, if A adds more noise, we can decrease the number k of dummies.

Expected Quality Loss. In Fig.2d, we show the experimental results on the
expected quality loss of the tupling mechanism. For a larger €4, A adds less noise,
hence the loss is smaller. We confirm that for more dummy data, the expected
quality loss is smaller. Unlike the planar Laplace mechanism (PL), A ensures
that the worst quality loss is bounded above by the radius r. Furthermore, for a
smaller radius r, the expected loss is also smaller as shown in Fig. 2d.

7.3 Appropriate Parameters

We define the attack success rate (ASR) as the ratio that the attacker succeeds
to infer a user has an attribute when she does actually. We use an inference
algorithm based on the Bayes decision rule [26] to minimize the identification
error probability when the estimated posterior probability is accurate [26].

In Fig. 4, we show the relationships between DistP and ASR in Manhattan
for the attribute home, meaning the users located at their home. In theory,
ASR = 0.5 represents the attacker learns nothing about the attribute, whereas

h [T
. Tokyo (east) =====
Y Tokyo (West) =r=rmr=
v London
[}
s

—— 08

(&, 0.001)-DistP
Attack success rate
Expected loss

4 8 12 05 1 15 2 006 008 01 012 014 016
Number of dummies e-DistP e-DistP

Fig.3. k£ and DistP for Fig.4. DistP and ASR Fig.5. (¢,0.001)-DistP and

male/female in different of the tupling (K = 10, expected loss for male/female
cities. r = 0.020). and TM using k& = 10,
r = 0.020.

3 In Fig. 2b, for ea — 0, € does not converge to 0, since the radius r = 0.020 of RL
does not cover the whole). However, if r > max, 4 ||z — y||, € converges to 0.

Local Obfuscation Mechanisms for Hiding Probability Distributions 143

the empirical ASR in our experiments fluctuates around 0.5. This seems to be
caused by the fact that the dataset and the number of locations are finite. From
Fig.4, we conclude that ¢ = 1 is an appropriate parameter for (e,0.001)-DistP
to achieve ASR = 0.5 in our setting, and we confirm this for other attributes.
However, we note that this is an empirical criterion possibly depending on our
setting, and the choice of € for DistP can be as controversial as that for DP and
should also be investigated using approaches for DP (e.g., [27]) in future work.

7.4 Comparison of Obfuscation Mechanisms

We demonstrate that the tupling mechanism (TM) outperforms the popular
mechanisms: the randomized response (RR), the planar Laplace (PL), and the
planar Gaussian (PG). In Fig.5 we compare these concerning the relationship
between e-DistP and expected quality loss. Since PG always has some ¢, it pro-
vides a weaker DistP than PL for the same quality loss. We also confirm that
PL has smaller loss than RR, since it adds noise proportionally to the distance.
Finally, we briefly discuss the computational cost of the tupling mechanism
Q,tc”’y 4» compared to PL. In the implementation, for a larger domain X, PL
deals with a larger size |X| x || of the mechanism’s matrix, since it outputs
each region with a non-zero probability. In contrast, since the RL mechanism A
used in Q;;F:M 4 maps each location z to a region within a radius r of x, the size
of A’s matrix is |X| X | V.|, requiring much smaller memory space than PL.
Furthermore, the users of TM can simply ignore the responses to dummy
queries, whereas the users of PL need to select relevant POIs (point of interests)
from a large radius of z, which could cost computationally for many POlIs.
Therefore, TM is more suited to be used in mobile environments than PL.

8 Related Work

Differential Privacy. Since the seminal work of Dwork [1] on DP, a number
of its variants have been studied to provide different privacy guarantees; e.g., f-
divergence privacy [28], d-privacy [16], Pufferfish privacy [20], local DP [2], and
utility-optimized local DP [29]. All of these are intended to protect the input
data rather than the input distributions. Note that distributional privacy [30] is
different from DistP and does not aim at protecting the privacy of distributions.

To our knowledge, this is the first work that investigates the differential pri-
vacy of probability distributions lying behind the input. However, a few studies
have proposed related notions. Jelasity et al. [31] propose distributional dif-
ferential privacy w.r.t. parameters 6 and 6’ of two distributions, which aims
at protecting the privacy of the distribution parameters but is defined in a
Bayesian style (unlike DP and DistP) to satisfy that for any output sequence v,
p(0ly) < e°p(#'|y). After a preliminary version of this paper appeared in
arXiv [15], a notion generalizing DistP, called profile based privacy, is proposed
in [32].

144 Y. Kawamoto and T. Murakami

Some studies are technically related to our work. Song et al. [21] propose the
Wasserstein mechanism to provide Pufferfish privacy, which protects correlated
inputs. Fernandes et al. [33] introduce Earth mover’s privacy, which is technically
different from DistP in that their mechanism obfuscates a vector (a bag-of-words)
instead of a distribution, and perturbs each element of the vector. Sei et al. [34]
propose a variant of the randomized response to protect individual data and
provide high utility of database. However, we emphasize again that our work
differs from these studies in that we aim at protecting input distributions.

Location Privacy. Location privacy has been widely studied in the literature,
and its survey can be found in [35]. A number of location obfuscation methods
have been proposed so far, and they can be broadly divided into the following
four types: perturbation (adding noise) [3,5,36], location generalization (merg-
ing regions) [37,38], and location hiding (deleting) [37,39], and adding dummy
locations [40-42]. Location obfuscation based on DP (or its variant) have also
been widely studied, and they can be categorized into the ones in the centralized
model [43,44] and the ones in the local model [3,5]. However, these methods aim
at protecting locations, and neither at protecting users’ attributes (e.g., age,
gender) nor activities (e.g., working, shopping) in a DP manner. Despite the fact
that users’ attributes and activities can be inferred from their locations [6-8],
to our knowledge, no studies have proposed obfuscation mechanisms to provide
rigorous DP guarantee for such attributes and activities.

9 Conclusion

We have proposed a formal model for the privacy of probability distributions and
introduced the notion of distribution privacy (DistP). Then we have shown that
existing local mechanisms deteriorate the utility by adding too much noise to
provide DistP. To improve the tradeoff between DistP and utility, we have intro-
duced the tupling mechanism and applied it to the protection of user attributes
in LBSs. Then we have demonstrated that the tupling mechanism outperforms
popular local mechanisms in terms of attribute obfuscation and service quality.

Acknowledgment. We thank the reviewers, Catuscia Palamidessi, Gilles Barthe, and
Frank D. Valencia for their helpful comments on preliminary drafts.

A Experimental Results

In this section we present some of the experimental results on the following four
attributes. See [15] for further experimental results.

— social/less-social represent whether a user’s social status [45] (the number of
followers divided by the number of followings) is greater than 5 or not.

— workplace/non-workplace represent whether a user is at office or not. This
attribute can be thought as sensitive when it implies users are unemployed.

— home/ out represent whether a user is at home or not.

Local Obfuscation Mechanisms for Hiding Probability Distributions 145

— north/south represent whether a user’s home is located in the northern or
southern Manhattan. This attribute needs to be protected from stalkers.

First, we compare different obfuscation mechanisms for various attributes in
Figs. 5, 6a, and b. We also compare different time periods: 00 h-05h, 06 h-11h,
12h-17h, 18 h-23h in Manhattan in Fig. 7.

Next, we compare the experimental results on five cities: Manhattan, east-
ern Tokyo, western Tokyo, London, and Paris. In Table2 we show examples of
parameters that achieve the same levels of DistP in different cities. More detailed
can be found in Fig. 8 (male/female).

Finally, we compare theoretical/empirical values of e-DistP as follows. In
Table 3, we show the theoretical values of € calculated by Theorem 3 for § =
0.001,0.01,0.1. Compared to experiments, those values can only give loose upper
bounds on €, because of the concentration inequality used to derive Theorem 3.

Table 2. The number k of dummies required for achieving DistP in different cities
(MH = Manhattan, TKE = Tokyo (east), TKW = Tokyo (west), LD = London, PR
= Paris) when £4 = 100 and r = 0.020. Note that the data of Paris for male/female
are excluded because of the insufficient sample size.

MH | TKE | TKW |LD | PR
(0.25,0.001)-DistP for male/female 2 >20 |5 10 | —
(0.50,0.001)-DistP for social/less social| 2 >20 |2 3
(1.00,0.001)-DistP for work/non-work | 2 2 >20 |1 2
(1.50,0.001)-DistP for home/outside 3 >20 | >20 4

Table 3. Theoretical/empirical e-DistP of Q,??MA (k =10, ea = 10, r = 0.020).

6=0.001{6=0.01|6=0.1
Theoretical bounds | 2.170 1.625 1.140
Empirical values 0.04450 | 0.03534 | 0.02295

00

Expected loss

Expected loss

001

0005

!
022 020 025 028 03 03 03 036 036 1
eDistP eDistP

(a) (¢,0.001)-DistP and expected loss for (b) (g,0.001)-DistP and expected loss for
social/less-social in Manhattan. home/out in Manhattan.

Fig. 6. Comparison of the randomized response (RR), the planar Laplace mechanism

(PL), the planar Gaussian mechanism (PG), and the tupling mechanism (TM) }thju,A

with k = 10 dummies and a radius » = 0.020.

146 Y. Kawamoto and T. Murakami

0006

0004

Expected loss

2

N, 0002

s 12 I 001 002 003 004 P4 16 e 2% 1024 0%
Number of dummies &4 0f resricted Laplace noise Radius r of restricted Laplace noise £, of restricted Laplace noise

(a) #dummies and (b) ea of (£4,0.020)- (c¢) A radius r of (d) ea of (ea,r)-RL
¢-DistP (when us- RL mechanism and (100,7)-RL mech- mechanism and the
ing (100,0.020)-RL e-DistP (with 10 anism and e-DistP expected loss (with 5
mechanism). dummies). (with 10 dummies). dummies).

Fig. 7. Empirical DistP and loss for male/female in different hours.

Manhattan
Tokyo (easl

(&, 0.001)-DistP

(&, 0.001)-DistP

B s 2 T4 6 e 2w oo o on 008 e s e o 4w
Number of dummies £, 0f restricted Laplace noise Radius r of restricted Laplace noise £ 0f restricted Laplace noise

(a) #dummies and (b) ea of (g4, (c) A radius r of (d)ea of (ea,7)-RL
e-DistP (when us- 0.020)-RL mecha- (100,7)-RL mecha- mechanism and the
ing (100,0.020)-RL nism and e-DistP nism and e-DistP expected loss (with
mechanism). (with 10 dummies). (with 10 dummies). 5 dummies).

Fig. 8. Empirical DistP and loss for male/female in different cities.

References

1. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener,
I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1-12. Springer, Heidelberg (2006).
https://doi.org/10.1007/11787006_1

2. Duchi, J.C., Jordan, M.I., Wainwright, M.J.: Local privacy and statistical minimax
rates. In: Proceedings of FOCS, pp. 429438 (2013)

3. Andrés, M.E., Bordenabe, N.E., Chatzikokolakis, K., Palamidessi, C.: Geo-
indistinguishability: differential privacy for location-based systems. In: Proceedings
of CCS, pp. 901-914. ACM (2013)

4. Erlingsson, U., Pihur, V., Korolova, A.: RAPPOR: randomized aggregatable
privacy-preserving ordinal response. In: Proceedings of CCS, pp. 1054-1067 (2014)

5. Bordenabe, N.E., Chatzikokolakis, K., Palamidessi, C.: Optimal geo-
indistinguishable mechanisms for location privacy. In: Proceedings of CCS,
pp. 251-262 (2014)

6. Liao, L., Fox, D., Kautz, H.: Extracting places and activities from GPS traces using
hierarchical conditional random fields. Int. J. Robot. Res. 1(26), 119-134 (2007)

7. Zheng, V.W., Zheng, Y., Yang, Q.: Joint learning user’s activities and profiles from
GPS data. In: Proceedings of LBSN, pp. 17-20 (2009)

https://doi.org/10.1007/11787006_1

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
27.

Local Obfuscation Mechanisms for Hiding Probability Distributions 147

Matsuo, Y., Okazaki, N., Izumi, K., Nakamura, Y., Nishimura, T., Hasida, K.:
Inferring long-term user properties based on users’ location history. In: Proceedings
of IJCAI, pp. 2159-2165 (2007)

Yang, D., Qu, B., Cudré-Mauroux, P.: Privacy-preserving social media data pub-
lishing for personalized ranking-based recommendation. IEEE Trans. Knowl. Data
Eng. 31(3), 507-520 (2019)

Otterbacher, J.: Inferring gender of movie reviewers: exploiting writing style, con-
tent and metadata. In: Proceedings of CIKM, pp. 369-378 (2010)

Weinsberg, U., Bhagat, S., Ioannidis, S., Taft, N.: BlurMe: inferring and obfuscat-
ing user gender based on ratings. In: Proceedings of RecSys, pp. 195-202 (2012)
Gong, N.Z., Liu, B.: Attribute inference attacks in online social networks. ACM
Trans. Priv. Secur. 21(1), 3:1-3:30 (2018)

Mislove, A., Viswanath, B., Gummadi, P.K., Druschel, P.: You are who you know:
inferring user profiles in online social networks. In: Proceedings of WSDM, pp.
251-260 (2010)

Kairouz, P., Bonawitz, K., Ramage, D.: Discrete distribution estimation under
local privacy. In: Proceedings of ICML, pp. 2436-2444 (2016)

Kawamoto, Y., Murakami, T.: Local obfuscation mechanisms for hiding probability
distributions, CoRR, vol. abs/1812.00939 (2018). arXiv:1812.00939
Chatzikokolakis, K., Andrés, M.E., Bordenabe, N.E., Palamidessi, C.: Broaden-
ing the scope of differential privacy using metrics. In: De Cristofaro, E., Wright,
M. (eds.) PETS 2013. LNCS, vol. 7981, pp. 82-102. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-39077-7_5

Vaserstein, L.: Markovian processes on countable space product describing large
systems of automata. Probl. Peredachi Inf. 5(3), 64-72 (1969)

Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in
private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 265-284. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_14
Kifer, D., Machanavajjhala, A.: No free lunch in data privacy. In: Proceedings of
SIGMOD, pp. 193-204 (2011)

Kifer, D., Machanavajjhala, A.: A rigorous and customizable framework for privacy.
In: Proceedings of PODS, pp. 77-88 (2012)

Song, S., Wang, Y., Chaudhuri, K.: Pufferfish privacy mechanisms for correlated
data. In: Proceedings of SIGMOD, pp. 12911306 (2017)

Xu, J., Zhang, Z., Xiao, X., Yang, Y., Yu, G., Winslett, M.: Differentially private
histogram publication. VLDB J. 22(6), 797-822 (2013)

Kawamoto, Y., Chatzikokolakis, K., Palamidessi, C.: On the compositionality of
quantitative information flow. Log. Methods Comput. Sci. 13(3) (2017)

Alvim, M.S., Chatzikokolakis, K., Palamidessi, C., Pazii, A.: Invited paper: local
differential privacy on metric spaces: optimizing the trade-off with utility. In: Pro-
ceedings of CSF, pp. 262-267 (2018)

Yang, D., Zhang, D., Qu, B.: Participatory cultural mapping based on collective
behavior data in location based social networks. ACM Trans. Intell. Syst. Technol.
7(3), 30:1-30:23 (2015)

Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley, Hoboken (2000)
Hsu, J., et al.: Differential privacy: an economic method for choosing epsilon. In:
Proceedings of CSF, pp. 398-410 (2014)

http://arxiv.org/abs/1812.00939
https://doi.org/10.1007/978-3-642-39077-7_5
https://doi.org/10.1007/11681878_14

148

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

Y. Kawamoto and T. Murakami

Barthe, G., Olmedo, F.: Beyond differential privacy: composition theorems and
relational logic for f-divergences between probabilistic programs. In: Fomin, F.V.,
Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013. LNCS, vol. 7966,
pp- 49-60. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39212-
2.8

Murakami, T., Kawamoto, Y.: Utility-optimized local differential privacy mecha-
nisms for distribution estimation. In: Proceedings of USENIX Security (2019, to
appear)

Blum, A., Ligett, K., Roth, A.: A learning theory approach to noninteractive
database privacy. J. ACM 60(2), 12:1-12:25 (2013)

Jelasity, M., Birman, K.P.: Distributional differential privacy for large-scale smart
metering. In: Proceedings of IH&MMSec, pp. 141-146 (2014)

Geumlek, J., Chaudhuri, K.: Profile-based privacy for locally private computations,
CoRR, vol. abs/1903.09084 (2019)

Fernandes, N., Dras, M., Mclver, A.: Generalised differential privacy for text doc-
ument processing. In: Nielson, F., Sands, D. (eds.) POST 2019. LNCS, vol. 11426,
pp. 123-148. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17138-4_6
Sei, Y., Ohsuga, A.: Differential private data collection and analysis based on
randomized multiple dummies for untrusted mobile crowdsensing. IEEE Trans.
Inf. Forensics Secur. 12(4), 926-939 (2017)

Chatzikokolakis, K., ElSalamouny, E., Palamidessi, C., Anna, P.: Methods for loca-
tion privacy: a comparative overview. Found. Trends® Priv. Secur. 1(4), 199-257
(2017)

Shokri, R., Theodorakopoulos, G., Troncoso, C., Hubaux, J.-P., Boudec, J.-Y.L.:
Protecting location privacy: optimal strategy against localization attacks. In: Pro-
ceedings of CCS, pp. 617-627. ACM (2012)

Shokri, R., Theodorakopoulos, G., Boudec, J.-Y.L., Hubaux, J.-P.: Quantifying
location privacy. In: Proceedings of S&P, pp. 247-262. IEEE (2011)

Xue, M., Kalnis, P., Pung, H.K.: Location diversity: enhanced privacy protection
in location based services. In: Choudhury, T., Quigley, A., Strang, T., Suginuma,
K. (eds.) LoCA 2009. LNCS, vol. 5561, pp. 70-87. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-01721-6_5

Hoh, B., Gruteser, M., Xiong, H., Alrabady, A.: Preserving privacy in GPS traces
via uncertainty-aware path cloaking. In: Proceedings of CCS, pp. 161-171. ACM
(2007)

Bindschaedler, V., Shokri, R.: Synthesizing plausible privacy-preserving location
traces. In: Proceedings of S&P, pp. 546-563 (2016)

Chow, R., Golle, P.: Faking contextual data for fun, profit, and privacy. In: Pro-
ceedings of PES, pp. 105-108. ACM (2009)

Kido, H., Yanagisawa, Y., Satoh, T.: Protection of location privacy using dummies
for location-based services. In: Proceedings of ICDE Workshops, p. 1248 (2005)
Machanavajjhala, A., Kifer, D., Abowd, J.M., Gehrke, J., Vilhuber, L.: Privacy:
theory meets practice on the map. In: Proceedings of ICDE, pp. 277-286. IEEE
(2008)

Ho, S.-S., Ruan, S.: Differential privacy for location pattern mining. In: Proceedings
of SPRINGL, pp. 17-24. ACM (2011)

Cheng, Z., Caverlee, J., Lee, K., Sui, D.Z.: Exploring millions of footprints in
location sharing services. In: Proceedings of ICWSM (2011)

https://doi.org/10.1007/978-3-642-39212-2_8
https://doi.org/10.1007/978-3-642-39212-2_8
https://doi.org/10.1007/978-3-030-17138-4_6
https://doi.org/10.1007/978-3-642-01721-6_5

®

Check for
updates

A First Look into Privacy Leakage in 3D
Mixed Reality Data

Jaybie A. de Guzman'?®)® Kanchana Thilakarathna®3®,
and Aruna Seneviratne®-?

! University of New South Wales, Sydney, NSW 2052, Australia
j.deguzman@student.unsw.edu.au, a.seneviratneQunsw.edu.au
2 Data61 | CSIRO, Sydney, NSW 2015, Australia
3 University of Sydney, Sydney, NSW 2006, Australia
kanchana.thilakarathna@sydney.edu.au

Abstract. We have seen a rise in mized (MR) and augmented real-
ity (AR) applications and devices in recent years. Subsequently, we have
become familiar with the sensing power of these applications and devices,
and we are only starting to realize the nascent risks that these technology
puts over our privacy and security. Current privacy protection measures
are primarily aimed towards known and well-utilised data types (i.e.
location, on-line activity, biometric, and so on) while a few works have
focused on looking into the security and privacy risks of and provid-
ing protection on MR, data, particularly on 3D MR data. In this work,
we primarily reveal the privacy leakage from released 3D MR data and
how the leakage persist even after implementing spatial generalizations
and abstractions. Firstly, we formalize the spatial privacy problem in 3D
mixed reality data as well as the adversary model. Then, we demonstrate
through an inference model how adversaries can identify 3D spaces and,
potentially, infer more spatial information. Moreover, we also demon-
strate how compact 3D MR Data can be in terms of memory usage
which allows adversaries to create lightweight 3D inference models of
user spaces.

Keywords: Mixed and augmented reality - 3D data -
Point cloud data * Security and privacy

1 Introduction

Pokémon Go’s release in 2016 arguably marked the beginning of augmented
reality (AR) and mixed reality (MR) to be part of the mainstream mobile
market. Soon after, Apple launched the ARKit in 2017 and, halfway through
2018, Google followed with the ARCore.! Microsoft, on the other hand, focused
on the head-mounted displays (or HMDs) with the HoloLens and other OEM
headsets running their Windows Mixed Reality platform.? These developments

! See https://developer.apple.com/documentation/arkit for Apple’s ARKit See
https://developers.google.com/ar/ for Google’s ARCore.

2 https://developer.microsoft.com/en-us/windows/mixed-reality.

© Springer Nature Switzerland AG 2019

K. Sako et al. (Eds.): ESORICS 2019, LNCS 11735, pp. 149-169, 2019.
https://doi.org/10.1007/978-3-030-29959-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29959-0_8&domain=pdf
http://orcid.org/0000-0002-2816-7721
http://orcid.org/0000-0003-4332-0082
http://orcid.org/0000-0001-6894-7987
https://developer.apple.com/documentation/arkit
https://developers.google.com/ar/
https://developer.microsoft.com/en-us/windows/mixed-reality
https://doi.org/10.1007/978-3-030-29959-0_8

150 J. A. de Guzman et al.

undoubtedly signifies the very near future with AR and MR being ubiquitous.
(Henceforth, following Milgram’s definition [18], we will be collectively calling
both augmented and mixed reality as mixed reality or MR.)

Most mobile MR development platforms (i.e. ARCore, and ARKit) utilise
a form of visual odometry combined with motion or inertial information to
map the device’s position relative to the real-world, while dedicated HMDs
(i.e. HoloLens), leverage multiple cameras with depth sensors to understand
the environment and create a virtual 3D map. Once a good mapping has been
created, the virtual space (or a coordinate system) is shared with applications
to allow synthetic or augmented content to interact with the physical world such
as anchoring a virtual object on your desk.

However, this environment understanding capability required by MR poses
unforeseen privacy risks for users. Once these captured 3D maps have been
revealed to untrusted parties, potentially sensitive spatial information about the
users’ space are disclosed. Adversaries can vary from a background service that
delivers unsolicited ads based on the objects detected from the user’s surround-
ings to burglars who are able to map the user’s house, and, perhaps, the locations
and dimensions of specific objects in their house based on the released 3D data.
Furthermore, turning off GPS tracking for location privacy may no longer be suf-
ficient once the user starts using MR applications that can expose their locations
through the 3D and visual data that are exposed.?

The recent EU-GDPR ruling aims to address these issues from a policy app-
roach. It aims to empower the users and protect their data privacy. This high-
lights the importance of designing and developing privacy-enhancing technologies
(PETSs). Currently, there are numerous PETs designed for structured data such
as k-anonymity [23], and differential privacy [4], as well as techniques for data
aggregation during information collection [9]. However, current techniques pro-
tecting media are mostly for conventional data types, and are primarily focusing
on facial de-identification for identity privacy [7,19,27] as well as protection
against visual capture recording mechanisms [1,28]. (See [8] for a survey of MR-
related security and privacy protection approaches.)

In this work, we focus on the nascent risks from captured and collected 3D
data used for MR processing. To demonstrate the privacy leakage, we utilize
actual 3D point cloud data, captured by a Microsoft HoloLens, to construct
an adversarial inferrer that can identify spaces from the revealed 3D data. The
inference performance is evaluated over both raw data and different 3D data
generalizations. And we show how such generalizations are ineffective even with
a simple matching-based inference attack. To the best of our knowledge, this

3 For example, Google has unveiled their Visual Positioning Service (or VPS) using
3D data to locate users in space — an offshoot of Project Tango — during their 2018
I/O keynote event.

A First Look into Privacy Leakage in 3D Mixed Reality Data 151

= —‘:ﬂ '

-
- -
Mixed Reality Device —— @
eg. Microsoft Hololens .
True space Historical or previously \
rue space i collected 3D data A Inferrer
> HI|Z
/7 J Hypothesis
@ e

! Privacy

I‘ b \
- 1 1 P . |
Mechanism ’ Function
> i ¥
————— =

Zi Adversarial application
Transformed Example Output
Point Cloud
of the True space

Input Point Cloud
of the True space

Fig. 1. Information flow (following the green solid arrows) for a desired MR functional-
ity G with an intermediate privacy-preserving mechanism M; while an MR adversarial
process (represented by the red broken arrows) may be done off line: (1) adversar-
ial inference modeling or learning from, say, historical 3D data, and (2) adversarial
inference or matching over released 3D data (Color figure online)

is the first work that aims to expose these risks. Consequently, we make the
following specific contributions in this work:

1. We formalize the 3D spatial privacy problem and define the privacy and utility
metrics specific to 3D MR data.

2. We present a 3D adversarial inference model to reveal the spatial privacy
leakage and their effectiveness.

3. Using 3D point cloud data collected from Microsoft HoloLens, which is also
the same 3D data representation format for Google’s ARCore and Apple’s
ARKit, we demonstrate that 3D spatial inference attacks are possible on
these MR platforms.

4. Lastly, results show the insufficient protection provided by spatial generaliza-
tions even by only using simple descriptor-matching for adversarial inference.

The rest of the paper is organized follows. Section 2 elaborates on the 3D
MR data, i.e. point cloud data, and presents the theoretical framework of our
3D privacy problem. In Sect. 4, we describe the evaluation methodology used to
determine the privacy leakage in 3D data with and without spatial generaliza-
tions. The results are presented in Sect.5 and the related work in Sect.6. We
conclude the paper in Sect. 7.

2 3D Privacy Problem

2.1 Why 3D?

With images and video, what the machine sees is practically what the user sees
and a great deal of privacy work have been done on these data forms. Contrari-
wise, in MR, the experience is exported as visual data (e.g. objects augmented

152 J. A. de Guzman et al.

X :true 3D data Z . released 3D data
i 4 P i N N
N I 4 N \
A
NN N
N M VA WY
t ¢)
| ~
N N AN N
space 1 space 1¥=?

Fig. 2. A privacy preserving mechanism M transforms the raw point clouds X to a
potentially privacy-preserving version Z to hide location identity (i =7).

on the user’s view) while its 3D nature, especially of the underlying data, is
not exposed to the users: what the machine sees is different (arguably, even
more) than what the user sees. That is, the digital representation of the physical
world, the 3D point cloud data, is not exposed to the user. This inherent per-
ceptual difference creates a disconnect and, perhaps, affects (or the lack thereof)
how users perceive the sensitivity of 3D information. Furthermore, current MR,
platforms (i.e. Windows MR, ARCore and ARKit) directly operates on these
3D spatial maps or point clouds and, so far, no privacy preservation is applied
before providing these data to third party applications.

3D Point Cloud Data. The 3D points comprising the 3D point cloud can
be described by their {z,y, z}-position in space with an accompanying normal
vector {ng,ny,n,}. Figure2 shows the point clouds as a mesh of 3D points
with associated orientations represented by normal vectors. These are the min-
imum information necessary to capture the geometric properties of 3D spaces.
Where normal vectors are not readily available, it is estimated from the points
themselves. Sometimes, point clouds may also be accompanied by photometric
information such as RGB or light intensity extracted from associated images or
videos. For this work, we will only be focusing on the use of geometric informa-
tion and leverage them for 3D description for emulating adversarial inference.

2.2 Defining the 3D Privacy Problem

We define the elements shown in Fig. 1: the space represented by a point cloud
X identified by a label i; the privacy preserving mechanism M that transforms
X to a privacy-preserved point cloud Z, i.e. M : X — Z as shown in Fig.2; an
intended functionality G that produces an intended output Y, and from which
we derive the utility function U; and an adversarial inferrer J that produces a
hypothesis H to reveal the identity of a given unknown space. The adversarial
processes may be done off line and not necessarily during MR function runtime.
(See Appendix A for detailed definitions on X, M, Z, and G.)

Defining the Function Utility. For a given functionality G, an effective mech-
anism M aims to make the resulting outputs y; from the raw point cloud z; and
its privacy-preserving version z(;) similar, i.e. yz;, =~ y,, or their difference is
small, Dz.x = |yz, — Yzy| — 0. Or in terms of a utility function U which we
intend to maximize (i.e. as close to 1 as possible if we assume that Dz.x < 1),

A First Look into Privacy Leakage in 3D Mixed Reality Data 153

U(Z;X)=1—-Dg.x, where Z=M(X). (1)

The most common functionality in MR is the anchoring of virtual 3D objects
on to real-world surfaces (e.g. the floor, walls, or tables) which requires near-truth
3D point cloud representations to provide consistent anchored augmentations.

Defining the Adversarial Inferrer. An inferrer J produces a hypothesis
h :i* =i about the true location i of a given set of point clouds, z;« or z(;«),
for any query space i* (i.e. J : x4 or z«) for any i* — h :* = i) where the
following inequality holds

P(h:i* =i|zi or z(+)) > P(h:i" =1i°, for any i® # ilxy- or z(+)). (2)

The Privacy-Utility Problem. Consequently, we can now pose the following
privacy function I in terms of the error rate of the inferrer,
|h:i, # gl
(z; X) = —_— 3

(Z:X) = mean 3)
which is simply the mean misclassification rate of an inferrer J about the query
space i, whose true identity is i,. A few works in the literature uses the same
error-based metric for privacy [22,26]. A desired M produces Z that maximizes
both the privacy II and the utility function U.

Privacy and Utility Metrics. Now, we define the specific privacy and utility met-
rics for this work. For privacy, we use the same notion of a high error rate as
high privacy; thus, the same metric defined by Eq. 3 holds. For utility, we use the
same similarity definition defined by Eq. 1 but define the specific components of
the similarity function as,

U(Z; X) = mean(a - (1 — [[z — 2[[) + 5 - (o - 1)) (4)

where the first component is the 3D point similarity of the true/raw point z from
the transformed point z, the second component are their normal vector similarity,
and « and [are contribution weights where «, 8 € [0,1] and ao + 8 = 1. We set
a, 8 = 0.5. We also insert a subjective acceptability metric v € [0, 1] like so,

U(Z; X) = mean [a- (I—M) +4- (an ~an17—1;7>} . (5)

~ allows us to specify the level of error or deviation of the released (i.e. gener-
alized) spaces from the true space — any deviation beyond the set 7y results to a
zero utility. The range of U(X, Z) € [0, 1].

2.3 Adversary Model

Adversaries may desire to, at the very least, infer the location of the users using
released 3D data. They may further infer user poses, movement in space, or,

154 J. A. de Guzman et al.

even, detect changes in user environment. Furthermore, in contrast to video and
image capture, 3D data, when generalized, can provide a much more lightweight
and near-truth representation of user spaces which we will see later (Sect.5.5).
For our evaluation, we will focus on the minimum attack where the adversary
infers the spatial location of the user given historical 3D raw data of user spaces.
We also assume that the adversary is not aware of the generalizations that an
MR platform can perform over 3D data before it is released.

(b) Sample Region

7‘7—5'—-_ =
‘

(a) Complete captured raw point cloud: different (¢) Photo of
regions are differently colored sample region

Fig. 3. Render of the gathered point cloud (1 unit is roughly 1m in the real-world)

Using the definitions in Sect. 2.2, we can formalize the adversary models as
previously shown in Fig. 1. We assume that the adversary has prior knowledge
about the spaces which they can use as reference for building their inference
model J. Prior knowledge can be made available through (1) historical or pub-
licly available 3D spatial data of the user spaces, (2) previously provided data by
the user themselves or other users, or (3) from a colluding application or service
that has access to raw or higher resolution 3D data.

Adversarial Inference. Our adversarial inference is a two-step process as
labelled in Fig.1: (1) the creation of a reference description model or dictio-
nary using the 3D descriptor algorithms (Sect.3.2) over the previously known
spaces as reference, (2) and the inference of unknown spaces by matching their
3D descriptors to that of the reference descriptors from step 1. The construction
of the inference model is detailed in the next section.

3 3D Description and Inference

3.1 3D MR Data

We gathered real 3D point cloud data using the Microsoft HoloLens in an office
environment to demonstrate the leakage from actual human-scale spaces in which

A First Look into Privacy Leakage in 3D Mixed Reality Data 155

an MR device is usually used.* The render of the gathered 3D space is shown in
Fig. 3a. We sliced our gathered point cloud into roughly 2.5 x 2.5 squares about
the xz-plane (i.e. the floor plane) to create a synthetic set of multiple spaces.’
The resulting number of spaces after slicing is 38. Also, we treat the spaces to
be non-contiguous — specifically, spaces that are truly adjacent do not inform
adversarial inference.

3.2 Describing the 3D Space

The 3D point clouds can then be used by the adversary to train an inference
model. Features that describe and discriminate among 3D spaces are usually
used for inference modelling. There are considerable features in 3D point clouds
for it to be directly used as a 3D descriptor, albeit a crude one, and it won’t
be translation- and rotation-invariant by itself. Hence, invariant descriptors are
necessary for adversarial inference models to be resilient.

To provide invariance, we utilize existing 3D description algorithms.® The
curvature-reliant self-similarity (SS) descriptors [10] are very sensitive to point
cloud variations, due to the curvature estimation. To counter this, we explored
the use of non-curvature reliant spin image (SI) descriptors [13,14]. SI descrip-
tors only use the normal vector unlike the SS approach which uses local curvature
mazxima for key point selection. Thus, a vanilla SI computes the descriptor for
every point in the point cloud which produces a dense descriptor space. For our
SI implementation, we extract key points and descriptors from the subsampled
space by factor of 3 (Fig. 5 shows that significant errors only appear at resolutions
< 3) to create a lighter weight descriptor set. Also, the spinning effect reduces
the impact of variations within that spin which makes SI descriptors more robust
compared to SS descriptors. Furthermore, as we will describe in Sect. 4.1, plane
generalization removes curvatures which makes its use as a geometric descrip-
tion information impractical. Validation of the inference performance of these
descriptors are detailed in Sect. 3.3.

3.3 Inferring the 3D Space

For the adversarial inference model, we built two types of inferrers: (1) a baseline
3D Bayesian inference model using directly the 3D point cloud data, and (2) a
matching-based inference model using the rotation-invariant descriptors.

4 There are numerous 3D point cloud datasets such as those listed in http://cvgl.
stanford.edu/resources.html but most of these available 3D data sets are models of
objects or of city-scale models.

5 Note: the resulting surface are of the slice varies due to the walls, and objects within
a slice. It can also be less than 2.5 x 2.5 due to gaps on the space.

5 For a concise discussion and bench marking of different 3D description algorithms,
we direct the reader to [3].

http://cvgl.stanford.edu/resources.html
http://cvgl.stanford.edu/resources.html

156 J. A. de Guzman et al.

Inference Using the Rotation-Invariant Descriptors. It is challenging to
create a straightforward 3D inference model as we would have in a 3D Bayesian
model.” As a work around, we utilize the standard matching-based approach that
is used over high-dimensional descriptors. This approach is rather deterministic
as opposed to the probabilistic Bayesian inference model.

This deterministic approach used for the rotation-invariant descriptors uti-
lizes a matching-based voting mechanism with a reference set of descriptors to
determine a match; then, nearest neighbor distance ratio (or NNDR) is used
to qualify a match. Thus, instead of the probabilistic maximization described
in Eq. 2, we utilize this NNDR-based approach for deterministic inference. See
Appendix B for more details on this descriptor matching process.

Spin Image descriptors

Self-similarity descriptors
(res = 10), Error rate = 0.000

(res = 10), Error rate = 0.132

Bayesian Inference Model Bayesian Inference Model

1 (res = 100), Error rate = 0.000

(res = 10), Error rate = 0.842 N N
6 6

> =

o
=

o

o
o
5

Query Spaces
Rotated Query Spaces

Rotated Query Spaces
Rotated Query Spaces
w oy N
woNoN

>

w NN
>

H
8

8

w
&
w
&
w
&

6 11 16 21 26 31 36
Hypotheses Spaces o

6 11 16 21 26 31 36 1

Hypotheses Spaces

6 11 16 21 26 31 36 1

Hypotheses Spaces

6 11 16 21 26 31 36 1

Hypotheses Spaces
(a) Bayesian (b) Bayesian, (c) Self Similarity (d) Spin Images
(res = 100) rotated queries

1

Fig. 4. Inference performance heatmaps of the different 3D description approaches

Y Sl
Baseline

Self-Similarity

Spin Images

Baseline, Rotated

Self Similarity, Rotated
Spin Images, Rotated

e
- .5°0°9-0..9.0-0 o.
y——!—:‘:ﬁa—’-‘a—g—g—!—;-!i'-&'-&'-nu

7 9 11 13 15 17 19
Point Resolution

me
X
t
4
X
%
t
%
r
X
s
r

Error Rate
Adk o

Fig. 5. Performance of the different 3D description/inference for different resolutions

Validating the Inference Models. We conducted a preliminary validation
to check the effectiveness of the chosen description and inference approaches. To
validate our inference models, we feed them the same data as queries.

" For example, our spin image description implementation have 200 (i.e. 10 x 20)
dimensions; it’ll require 10%°° bins for every key point to be described if we are to
approximate that each dimension will have 10 bins.

A First Look into Privacy Leakage in 3D Mixed Reality Data 157

Using the Bayesian Inference Model. When complete versions of the set of
points x; for each space i is given as a query data, the baseline Bayesian infer-
ence model performs very well as shown by the solid yellow diagonal in the
heatmap/confusion matrix in Fig. 4a. Figure5 shows the results of varying the
resolution from 1 < res < 20. For un-rotated query spaces, the Bayesian infer-
ence model only starts to have errors at resolutions < 10, while its error rate for
rotated query spaces is > 0.8 for all resolutions. As we have indicated earlier in
Sect. 3.2, the baseline inference model is not rotation-invariant and it is clearly
observed here. For example, Fig. 4b shows a heat-map for a lower resolution of
res = 10 with rotated query spaces; we can not see a distinguishable diagonal to
signify good inference performance.

Using the Rotation-Invariant Descriptors. With un-rotated query spaces, the
SS descriptors’ maximum error rate is only 0.4 as shown in Fig. 5, while the
SI descriptors stays 0 even at the smallest resolution of 1. With rotated query
spaces, errors increased for both but significant errors (i.e. > 0.1) only appear at
res < 3 for the SI descriptors, while errors for the SS descriptors already appear
even at higher resolutions of res < 14.

The excellent performance of the spin image descriptors can be better visu-
alized with the heatmaps shown in Fig.4 with res = 10. As can be observed,
the spin images discriminates well as demonstrated by the clearer diagonal in
Fig.4d as compared to Fig.4c. Thus, in the succeeding experiments described
in the next section (with results in Sect.5), we will only be using spin image
descriptors.

True

RANSAC

Fig. 6. Surface generalization, i.e. plane fitting, example: (left) sample raw space, (cen-
ter) RANSAC generalization, and (right) locally-originated generalization.

4 Evaluation Setup

For evaluating the performance of an adversary as described in Sect.2.3, we
check its inference performance over released modified point clouds. We use the
descriptor set extracted from the 3D raw point cloud data as the reference set
available to the adversary (labelled 1 in Fig.1). We, then, implement various
information reduction techniques to investigate how well can the adversary infer
the identity, i.e. spatial location, of the released and modified point cloud.

158 J. A. de Guzman et al.

4.1 3D Information Reduction Strategies

To limit the amount of information released with the point clouds, (1) plane gen-
eralizations and (2) partial releasing can be utilised to provide MR applications
the least information necessary to deliver the desired functionality.

Plane Fitting Generalization. For the generalizations, as we do not intend
to determine an efficient 3D generalization algorithm for our data, we have
employed two simple techniques: the popular Random Sample Consensus (or
RANSAC) plane fitting method [6], and a simple locally-originated plane gener-
alization (we use label LOCAL henceforth). Figure 2 earlier shows what struc-
turally occurs during plane-fitting generalization which can potentially pre-
serve spatial privacy. Please see Appendix C for the generalization pseudo-code
(Algorithms 1 and 2).

RANSAC. For our implementation, we directly utilize the accompanying nor-
mal vector of each point to estimate the planes in the plane fitting process instead
of computing or estimating them from the neighbouring points. Algorithm 1 (in
Appendix C) shows the pseudo-code of our RANSAC implementation, while an
example RANSAC spatial generalization is shown in Fig. 6-center.

LOCAL. On the other hand, LOCAL generalization is an oversimplification of
RANSAC as can be seen in Algorithm 2. We removed the point and plane test
(i.e. Lines 12 and 14 in Algorithm 1) which ensures that a point is a valid member
of the candidate plane and that the candidate plane is the best, i.e. largest,
among all candidate planes. This results in more inaccurate generalizations as
we go further away from the initial test point from which the candidate plane
originated. Figure 6-right shows a sample LOCAL generalization.

g
o
L

....... ﬂﬂg...d

o
o

4
o

o
IS

1 —— Raw
RANSAC
-+fi- LOCAL

Average Privacy
=}

o
o

©

000 025 050 075 1.00 125 150 175 2.00
Partial Radius

Fig. 7. Average privacy (i.e. mean error rate £ margin of error with 95% confidence)
over one-time released partial spaces with varying radii and generalizations

Partial Spaces. In partial spaces, we only release segments of the space with
varying radius. This demonstrates the case when an MR application is provided
with limited 3D spatial information only once, such as a specific surface, a plane
or an anchor point. We apply this technique to both raw and generalized point
clouds. For every partial space level (i.e. radius), we get 10 sample random

A First Look into Privacy Leakage in 3D Mixed Reality Data 159

iterations per space as a user can initiate an MR application from any point
within a space; to demonstrate rotation-invariance, we further vary the spaces by
doing 5 random rotations which results to a total of 50 iterations per space. We,
then, get the mean error rate (with confidence intervals) over these iterations.

4.2 Successive Release of Partial Spaces

We use the information reduction techniques described in Sect. 4.1 as strategies
for privacy protection. First, we evaluated adversarial performance over one-
time released partial spaces as described in Sect.4.1. Then, we introduced more
information by successively releasing partial spaces.

To demonstrate the case when users are moving around and their physical
space is gradually revealed, we included an experimental setup that successively
releases partial spaces. Following the described abstraction strategies in Sect. 4.1,
we have the following different 3D data setups for successively releasing of partial
spaces: (1) from collected raw points, (2) from RANSAC generalized planes,
and (3) from LOCAL generalized planes. Similar to the one-time partial release
case, we do 10 sample iterations, and 5 random rotations for each case in the
successive release setup. (For the extended LOCAL shown in Fig.8d, we do 10
sample iterations but only did one random rotation for demonstration purposes.)

5 Results and Discussion

In the succeeding discussions, we would like to emphasize the trends and rela-
tive values rather than absolute empirical values themselves. We also presented
takeaways whose discussions on trends and relationships can be generalized.

5.1 Inference of Partial Spaces

Figure 7 shows the performance of our adversarial inference over partial spaces
with raw points and of the two generalized cases. For the raw-points case, at
radius r = 0.25, the average privacy IRy is very high, but immediately drops
below IIgq, < 0.8 at r > 0.5. With RANSAC generalization applied, it can be
seen that the inference success is reduced, or essentially prevented, with radii
r < 1.0, but average privacy IIransac starts to decrease for r > 1.0; thus,
RANSAC generalizations are not effective protection strategies. This should not
come as a surprise, since the RANSAC algorithm will try to fit planes as close
to the true/raw space.

On the other hand, locally-originated plane generalizations can prevent infer-
ence for this one-time partial release case. Regardless of the size of the revealed
space, the average privacy stays at II;ocar > 0.9 as shown in Fig. 7. In fact,
contrary to RANSAC generalizations, locally-originated plane generalizations
will maintain a high ITpocar with larger revealed spaces because the LOCAL
algorithm will only produce a generalized plane from a singular local reference
point which may not even be from a true plane or have a normal vector con-
sistent with its neighbours. This results in plane generalizations that are more
likely to be very different from the surfaces of the true spaces.

160 J. A. de Guzman et al.

5.2 Successive Release of Partial Spaces

Following the partial spaces performance, it is tempting to say that we can
maintain privacy by only releasing partial spaces of r < 0.25 even with raw
captured data, but that is only for the single one-time release case. In this section,
as described in Sect. 4.2, we will now show the privacy or inference performance
when we successively release partial spaces.

Raw-Points Spaces. Figure 8a shows the inference performance of successively
released partial raw-points spaces. This is consistent with the results presented
in Fig.7. After a good number of releases, the space is slowly revealed; thus,
the dropping average privacy. For r = 0.25, the IIp4, drops below 0.8 after 4
or more releases, while for the larger radii, > 0.5, the average privacy quickly
drops and even starts at ITrq,, < 0.8 at the first release.

RANSAC Generalized Planes. For the successively released, RANSAC gen-
eralized partial spaces, as shown in Fig.8b, after 4 releases, [Igansac < 0.8
for radius r = 0.75. Similar to the performance shown in Fig. 7, at higher radii,
ITransac for successive release eventually falls below < 0.6 after a good number
of releases. Specifically, for » > 0.5, IIgansac < 0.6 after about 14 releases.

Compared to the successively released partial spaces from raw points, the
RANSAC generalization already contributes some errors to the released spaces.
This reflects on the rather slow drop of ITgransac. Nonetheless, if RANSAC
spaces are continuously released, regardless of its size, the space will be revealed.
However, keeping RANSAC spaces to a small size, i.e. r < 0.5, and limiting
release, e.g. no more than 10 releases, RANSAC can be a potential inference
protection aside from being a generalization technique.

Local Generalized Planes. Similar to the results in Fig. 7, the inference per-
formance from successively released and locally generalized partial spaces, as
shown in Fig.8c, presents error rates above 0.8 within 20 releases. To check
inference performance for more releases using LOCAL, we extend the number of
releases to 96 and checked the inference performance every multiple of 5 succes-
sive releases as shown in Fig. 8d. Now, the average Il oc 4z do drop to < 0.8 for
r = 0.25 (r = 0.75 approaches 0.8 at release 10) but eventually increases with
more releases. Due to the high inaccuracy provided by localized generalizations,
especially at larger partial spaces, more releases do not contribute to improved
inference and only misleads adversarial inference. Partially released planes with
nearby originating points with different normals will produce planes within the
same vicinity but of different orientations. This confuses the inferrer. Thus, if
spatial privacy is a priority, localized generalizations can be used.

Takeaway. Privacy can be arranged as I pqw < Hransac < Hpocar, based
on the form of released data; for continuously released large spaces (r > 0.5),
RANSAC cannot provide adequate privacy, but for small enough spaces (r <
0.5), it can be a potential form of inference protection coupled with limited or
controlled releasing.

A First Look into Privacy Leakage in 3D Mixed Reality Data 161

1.0 1.0
- —$— r=025 R e T T -
308 - r=050 | QO0B] TFug e,
2 k- r=075 | 2 IR BT B
a 0.6 ’ a 0.6
v T_Nm v
g I LN g 041 4 r=o0.25
>0.2 By “ik,;_‘} >0.2 -§- r=050
< il PPN ot o o o o B ~k- r=075
0.0 0.0
1 4 7 10 13 16 19 1 4 7 10 13 16 19
Number of releases Number of releases
(a) Raw Points (b) RANSAC generalized spaces
e s T e o N e b o
908 Sos ¥ﬁ'..’”“-o— <0 -0-9 - 0-0-0
> 1.0 1.0 > 1.04
a 0.6 ¥~# 0.6 _4--—«.1
] 0.9 0.9+4 4. o J
g04] 4 r=o025 ﬂ §04]| - r=0.25 09
g 0.2 -§- r=0.50 0.8 0.8 g 0.2{ —* r=0.50 0.8‘-._.._".
< -k r=0.75 T3 19 20 < — r=0.75
0.0 ool """ 8 91 9%
1 4 7 10 13 16 19 6 16 26 36 46 56 66 76 86 96
Number of releases Number of releases
(c) LOCAL generalized spaces (d) LOCAL generalized extended

Fig. 8. Average privacy (mean error rate + margin of error with 95% confidence) over
successively released partial spaces. For Fig.8a—c, we perform up to 20 releases per
iteration. For Fig. 8c, we extend the LOCAL case to see long-term inference.

5.3 Inference Trends with Spatial Properties

Precision and Recall. We also checked the precision and recall as an inference
performance metric. These values were checked for every space as well as the
impacts of spatial properties on inference and/or privacy. Figure 9a shows the
average precision and recall of our adversarial inferrer as we vary the radius
of partial spaces. As expected, for raw-points and RANSAC-generalized spaces,
precision and recall increases as the radius increases. On the other hand, precision
and recall of LOCAL stays low, < 0.1, and only ever so slightly increases —

_ 10%4 100 s
© .
bl .
g 107 s H
c o 1071
= . P }
8 1072 4 (-/ —A— Recall: Raw Precision: Raw & ;
o —— Recall: RANSAC —4-- Precision: RANSAC o Raw
[T —»— Recall: LOCAL <t~ Precision: LOCAL 10729 e RANSAC

1077 4 e LOCAL

025 050 075 1.00 125 150 1.75 2.00 o i Too
Partial Radius Recall
(a) Precision and recall vs radius (b) Precision vs recall

Fig. 9. Precision and recall over partial spaces

162 J. A. de Guzman et al.

from 0.032 to 0.048 for recall, and from 0.024 to 0.043 for precision — but not
consistently (as we can see with the dips in precision at r = 1.25 & 1.75).

Figure9b shows the scatter plot of the precision and recall values for all
spaces and iterations (averaged in Fig.9a) with the radius (relatively) depicted
by the size of the circle. We can see that the values for the raw-points spaces
crowd on the upper right quadrant, i.e. high precision and recall area, while that
of RANSAC generalized spaces is slightly more scattered but also crowds on
the upper right quadrant. For the locally-generalized spaces, most of the green
circles reside on the lower half which means that recall is spread from low to
mid-high but precision values are mostly very low.

Despite the bad performance of our adversarial inferrer, looking more closely
in to the spaces reveals some consistency. We looked into the top 10 spaces for
raw points, RANSAC generalized, and LOCAL generalized in terms of number
of false positives, precision, recall, and least errors/privacy. (In the interest of
space, we no longer show the list of top 10 spaces.) The list reveals that the
spaces with high recall and least errors are almost the same; thus, high recall
and least errors have a high correlation (i.e. precail least—errors = 0.964).

Furthermore, for the raw and RANSAC cases, the average number of planes
of the top 10 spaces with high false positives are small, i.e. 4.21 and 4.38, respec-
tively, while those of the top 10 spaces in terms of precision have higher averages
at 14.44 and 13.77, respectively. Thus, raw or RANSAC spaces with more planes
have lower uncertainty in being inferred or identified, and, perhaps, if privacy
is desired, we may only release a lower number of planes, i.e. < 5. However, for
the LOCAL generalized case, there is no observable trend among the inference
performance and that of the number of planes.

Takeaway. Raw and RANSAC spaces with higher number of observable or gen-
eralized planes are more likely to be inferred with higher precision; thus, releasing
spatial generalizations with lower number of planes (i.e. < 5) can confuse adver-
sarial inference.

5.4 Computing Utility of Generalizations

Plane-fitting generalizations contribute variations to the released point clouds
from true spaces. Figure 10a shows the computed average utility based on Eq.5
for the different generalizations with varying partial radius and acceptability
metric 7. A v value of 1 means that we accept variations for up to 1 unit-
combined-difference (see Eq.5) of the true point from the released point and the
true normal from the released normal.

For reference, we include the point-level (synonymous to r = 0) utility com-
putation from RANSAC points which produces the highest utility trend, while
other RANSAC generalizations of partial spaces with > 0 comes close second.
The average utility provided by RANSAC generalizations are consistent regard-
less of the size of the released generalized spaces. It does decrease as we decrease
the acceptability value v, but it does not go too low, i.e Ugransac > 0.5 for
~v > 0.1, such that the generalizations are rendered unacceptable. This is due to
how RANSAC generalizations tries to approach the true spaces.

A First Look into Privacy Leakage in 3D Mixed Reality Data 163

1.0 1.0-
eegst
> > Oglogg.ofé:
Zos = 09- .*Q.q .':u-!
= E R B 1
D6 D o8- ols.Rds
() (0] .
o .
@ 0.4 - —- RANSAC, point-level % 0.7 - o
B <« @ RANSAC,r=025 @ LOCAL r=025 E @ RANSAC,y=0.1 °
> 0.2 O f¢ RANSAC,r=0.50 == LOCAL, r=0.50 0.6- @ RANSAC,y=10
. | > ")
< 1 - RANSAC,r=075 ~d LOCAL r=0.75 < @ local,y=01
0.0 - P> RANSAC, r = 1.00 LOCAL, r = 1.00 05. ® Localy=10 [)
0.0 0.2 0.4 0.6 08 1.0 05 06 07 08 09 10
Acceptable level (y) Average Privacy
(a) (b)

Fig. 10. (a) Utility of the generalizations (Note: Utility of true points and planes are
always 1.); (b) Scatter plot of utility and error rate of different partial spaces (radius
is relatively indicated by marker size)

On the other hand, LOCAL generalizations have lower utility trends and go
much lower as the radius increases. This is due to the increased inaccuracies in
the localized generalizations as it disregards point locations and normals other
than the randomly chosen origin point. As a result, the utility trend further
decreases as we increase the radius, and this is true for any «. In fact, at v = 0.1,
Urocar < 0.5 at 7 = 0.25. As expected, if we are to set the acceptable utility
at > 0.8, only localized generalizations of radius 7 < 0.5 can provide such utility
and 7 = 0.5 barely makes the cutoff at v = 1.0. Any lower than that, only
generalizations with r < 0.25 can provide an average utility > 0.8.

In reality, these Urpoc ar values are unacceptable. If we are to set an accept-
ability level of v < 0.2, there is only at most 0.6 chance of getting a locally
generalized point that is close to the true point including its orientation. Thus,
for the rest of the points from a locally generalized point cloud, augmentations
are translated by at most 0.2m (in any direction) and/or rotated by at most
cos~1(0.2) or 78.5°.

The difference in utility and error rate as we vary the radius of partial spaces
is better visualized by the scatter plot in Fig. 10b. Ugpansac stays > 0.8 and

10° 4 -
128.25 MB (Baseline, Complete)

17.86 MB e o—
108 4 (Sl: varying size) .-0-""".'—.‘“

, ‘:_.,, —sye W ¥

107 4 g ...—I—-...—l:li:r._"'—-v—-\-w—.“-['—l—
./l ,_..-Vv-"' 10.19 MB (SS)
:_-;-_1;,1_—:1.<’...-‘-—~‘—-—1-——

1.57 MB (SI: fixed size)

4;‘44—:
Voo U kAT
. — A

ek

Memory (bytes)

=
o
™

-® Baseline, Complete -¥- Spin Images, varying size
- —A: Baseline, Compact -<¢ Spin Images, fixed-size
M- Self-similarity

-
=)
EY

3 5 7 9 11 13 15 17 19
Point Resolution

Fig.11. Used memory by inference models and descriptors extracted from different
point cloud resolutions.

164 J. A. de Guzman et al.

privacy drops as we increase the size, while Upocar is only > 0.8 for smaller
partial size and the privacy is consistently > 0.8. The relatively higher utility of
smaller LOCAL releases is further corroborated by the average privacy values
of the successive release case shown in Fig. 8¢ and d which shows smaller spaces
having lower privacy compared to larger spaces with more releases.

For LOCAL, points nearby the reference point will most likely have similar
normal vector directions, but as we go further away from the reference point on
the same locally generalized plane the variation increases, and thus the utility
drops. Conversely, RANSAC contributed variations are fairly consistent and low
regardless of a point’s distance from a reference point with which the generalized
plane was produced, since it tries to do a good representation of the true space.

Takeaway. Overall, LOCAL generalizations provides high average privacy but
can only provide adequate utility for smaller spaces; for example, utility of U >
0.5 for v < 0.2 can only be achieved with spaces of small radius r < 0.25.

5.5 Memory Compactness of Descriptors and Inference Models

Another interesting aspect is how a very good inferrer can be constructed at
a low resolution res < 10 with discriminative performance similar to that of
higher resolutions (see Fig.5). As shown in Fig. 11, the memory size exponen-
tially increases as we increase the resolution. A baseline Bayesian inference model
with a low resolution of 15 requires a memory size of about 128 MB. This mem-
ory usage is undesirably huge due to the almost complete representation of the
point probabilities in 3D space. However, we can take advantage of the sparsity
of the data points to make it compact. The memory usage by the compact rep-
resentation is also shown in Fig.11. At res = 15, the compact memory usage
is now just 1.30 MB from the original 128 MB — almost 2 orders of magnitude
smaller.

For the rotation-invariant descriptors, at res = 15, a corresponding set of
SS descriptors takes about 10.19 MB, but a corresponding set of SI descriptors —
which, anyway, performs better than SS descriptors — with a fixed descriptor size
is as compact as the baseline inference model (that is not rotation-invariant) at
only 1.58 MB. In fact, we used res = 3 (as previously stated in Sect. 3.2) for the
descriptors used in the inference evaluation discussed in the previous subsections.

Thus, any MR application (trusted or not) with access to 3D data produced
by the user’s MR device can efficiently create a lightweight inference model of
the user’s space. (For reference, the original point-cloud data is about 13 MB;
thus, our inferrer is a much more compact representation of the point-cloud data
at res = 15.)

Takeaway. A compact and efficient inferrer of 3D spaces can be created from
raw point cloud data released by any MR-capable device (which, now, can be any
device with a vision sensor and adequate processing power).

A First Look into Privacy Leakage in 3D Mixed Reality Data 165

6 Related Work

Most privacy work for MR were primarily focused on visual information or media
(i.e. image and video) sanitization [12,20,21]. Aside from that are abstraction
approaches to privacy protection. In the specific 3D use case, significant work
have been done on protecting physiological information using abstractions [5,11]
using the idea of least privilege [25]. The same approach has also been used for
providing visual privacy when using 3D MR browsers [24]. However, these works
did not specifically work on protecting 3D MR data against spatial inference.

Other recent works have focused on protecting MR, outputs specifically in
ensuring user safety [15,16]. Furthermore, as MR devices allow for new modes
of collaboration, issues on power imbalance brought by the directionality of MR
interfaces [2] are now being studied as well [17]. Again, these works do not focus
on spatial inference using 3D MR data.

7 Conclusion

In this work, we demonstrated how we can infer and reveal spaces employing
descriptor-based inference over 3D point cloud data collected using the Microsoft
HoloLens. The same point cloud data representation is also used by Google’s
ARCore and Apple’s ARKit. Therefore, it is possible to easily extend this work
to these mobile MR platforms as well. Currently, these MR platforms do not
apply privacy preservation on released 3D MR data to third party applications
which can allow adversaries to easily perform spatial inference attacks similar to
what we have demonstrated. In addition, we have demonstrated how leakage can
persist even after implementing spatial generalizations: RANSAC generalizations
can’t provide adequate protection when continuous successive generalizations
are released, while LOCAL generalizations provide promise in protecting spa-
tial privacy but utility is currently undesirably low. If directly applied, LOCAL
generalizations cause augmentations to be shifted, translated, and/or rotated by
a great degree, i.e. a maximum combined error of 0.2 with maximum average
utility of only 0.6.8 Moreover, we show how compact in terms of memory usage
these 3D inference models can be, which allows adversaries to keep models for
every users’ set of 3D spaces.

In our future work, we aim to develop a hybrid generalization technique
as a potential privacy solution combining desirable properties from RANSAC
and LOCAL to; perhaps, in conjunction with controlled releasing, where we do
not release a new portion of the space if the requested 3D space overlaps with
those released earlier. Moreover, limiting released generalizations to no more
than 4 planes, and/or limiting the number of partial successive releases may also
provide inference protection. Furthermore, we intend to extend the proposed
geometric information based inference strategy to use additional photometric
information such as (RGB) color profile as well as employing advanced techniques
for adversarial inference.

8 Combined error in terms of rotation (cos A#) and translation (Az); see Eq. 5.

166 J. A. de Guzman et al.

A 3D Spatial Definitions

Defining the Input Space. Let X; be the raw representation of space ¢ in the
physical world. A point-cloud extractor F takes pose information vector v € R?
and releases a point cloud z; , relative to that pose,
F:X;,v — z;,, for any 3D space with location ¢ and a reference pose v.
Combining z; , produces a complete point-cloud representation of space Xj,
which we label as X; = U, zi,v Yv. An extension of this is that for any pose
v € R3, we get a partial point-cloud representation X, of the true space. And
that there exists a set of poses vs C V such that X“, = UUEUS 2, spans X; or

Xiw, = X;.

Defining the Abstraction. A privacy-preserving mechanism M transforms

any released point cloud z; , to a privacy-preserving version 2y ,,

M : 2., — z(i),0, Where we denote the privacy-preservation of 7 by (i) — that

is, the true ¢ of a released z is not divulged or kept secret. Figure2 shows a

simple visualization of the transformation that can occur. In this specific case,

the normal vectors of the adjacent points are aligned to create a flat surface.
Similar to the raw point-clouds z; ,, combining the privacy-preserving point-

cloud representations z(;,,, produces ZA(i) =U, 2(iy,p for allv e V,

or Z(z) = Uv Z(i),v-

Defining the Intended Functionality. An intended deterministic output y
produced by an intended application or functionality G upon taking point clouds
as the input, expressed as G : x;, 0r 2(;) — Y(i)-

B Defining the Feature Matching Process Using
Rotation-Invariant Descriptors

A matching function 7" maps two sets of features f, and f3, of spaces a and b,
like so: T : fo — fo.

To determine good matches, we use the descriptor Euclidean distance as a
measure of their similarity. To accept a match for a key point z,; with feature
fa,1 of an unknown query space a = i*, we get the nearest neighbor distance

ratio (NNDR) of the features like so: M < threshold, where descriptor

fo,1 of xp1 (i-e. key point z1 of known space b = i) is the nearest neighbor of
descriptor f,1 of z41 (i.e. key point z1 of unknown query space a = i*) and fp 2
is the second nearest neighbor, and see if the NNDR falls below a set threshold
(e.g. 0.75 for the self-similarity, or 0.9 for the spin-image descriptors). Then, we
maximum-normalize the distance of the accepted matches to make the maximum
distance be 1. The mean of the distances is multiplied with a Bayesian-inspired

weight, %, where [{fz,. — fz,}| is the number of matched descriptors

of an unknown query space z,—;~ from one of the known reference spaces xy—;, 7 €
Vi, and [{f,. }| is the number of key points or descriptors extracted from the

A First Look into Privacy Leakage in 3D Mixed Reality Data 167

query space z;+. This allows us to create a hypothesis, i.e. h : ¢* = i, also via
argument-maximization as follows,

[{faie = foidl
{fe 3l

where the first product term is the mean similarity (i.e. 1 - mean difference)
while the second term is the Bayesian-inspired weight.

arg max (1 — mean }{||fxi* - fam”}) : (6)

oo g

C Plane Generalization

Our RANSAC plane generalization, shown in Algorithm 1, mainly follows the
described algorithm in [6] except for the normal estimation which we skip and
instead use the estimated normal vectors directly provided by the spatial mesh
produced by the HoloLens. On the other hand, the algorithm for the locally-
originated plane generalization, shown in Algorithm 2, is a crude and simplified
generalization which removes the point (Line 12) and plane (Line 14) discrimi-
nation process from RANSAC.

Algorithm 1. RANSAC algorithm [6]

1 F the number of planes to find = 30
T the point-plane distance threshold = 0.05
3 R the number of RANSAC trials = 100
Data: X = {z1,z2,...,Zn}, a set of 3D points
Result: P = {pz,, : {Zp;,Tpy,..-}}, a set of planes (a 3D point, and a normal) and their
associated co-planar points

N

4 for f— 1to F do

5 bestPlane = {0,0}

6 bestPoints = {}

7 for r — 1 to R do

8 S = s1 = a point at random from X

9 thisPlane = {s1,normals, }

10 thisPoints = {}

11 for z; € X do

12 if (distance(thisPlane,z;) < T) then
13 L thisPoints < thisPoints + x;

14 if |thisPoints| > |bestPoints| then

15 bestPlane « thisPlane

16 bestPoints «— thisPoints

17 P — P + {bestPlane, coPlanarTrans formed(bestPoints)}
18 X «— X — bestPoints

168

J. A. de Guzman et al.

Algorithm 2. Locally-originated plane generalization

1
2

N0 ;s w

F the number of planes to find = 30
r the radius of the local region (e.g. 0.5)
Data: X = {z1,z2,...,xn}, a set of 3D points
Result: P = {p.,, : {Zp;,Tpy,-.-}}, a set of planes (a 3D point, and a normal) and their
associated co-planar points
for f — 1 to F do
S = s1 = a point at random from X
thisPlane = {s1,normals, }
thisPoints = {x; € X : |x; — s1| < r}
P — P + {thisPlane, coPlanarTrans formed(thisPoints)}
X «— X — thisPoints

References

10.

11.

12.

13.

Acquisti, A.: Privacy in the age of augmented reality (2011)

Benford, S., Greenhalgh, C., Reynard, G., Brown, C., Koleva, B.: Understand-
ing and constructing shared spaces with mixed-reality boundaries. ACM Trans.
Comput. Hum. Interact. (TOCHI) 5(3), 185-223 (1998)

Bronstein, A.M., et al.. SHREC 2010: robust feature detection and descrip-
tion benchmark. In: Proceedings of EUROGRAPHICS Workshop on 3D Object
Retrieval (3DOR) (2010)

Dwork, C., Roth, A., et al.: The algorithmic foundations of differential privacy.
Found. Trends® Theor. Comput. Sci. 9(3-4), 211-407 (2014)

Figueiredo, L.S., Livshits, B., Molnar, D., Veanes, M.: Prepose: privacy, security,
and reliability for gesture-based programming. In: 2016 IEEE Symposium on Secu-
rity and Privacy (SP), pp. 122-137. IEEE (2016)

Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography. Commun.
ACM 24(6), 381-395 (1981)

Gross, R., Sweeney, L., de la Torre, F., Baker, S.: Semi-supervised learning of
multi-factor models for face de-identification. In: 2008 IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 1-8, June 2008. https://doi.org/10.
1109/CVPR.2008.4587369

de Guzman, J.A., Thilakarathna, K., Seneviratne, A.: Security and privacy
approaches in mixed reality: a literature survey. arXiv preprint arXiv:1802.05797
(2018)

He, W., Liu, X., Nguyen, H.V., Nahrstedt, K., Abdelzaher, T.: PDA: privacy-
preserving data aggregation for information collection. ACM Trans. Sens. Netw.
(TOSN) 8(1), 6 (2011)

Huang, J., You, S.: Point cloud matching based on 3d self-similarity. In: 2012
IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), pp. 41-48. IEEE (2012)

Jana, S., et al.: Enabling fine-grained permissions for augmented reality applica-
tions with recognizers. In: USENIX Security (2013)

Jana, S., Narayanan, A., Shmatikov, V.: A scanner darkly: protecting user privacy
from perceptual applications. In: 2013 IEEE Symposium on Security and Privacy
(SP), pp. 349-363. IEEE (2013)

Johnson, A.E., Hebert, M.: Using spin images for efficient object recognition in
cluttered 3d scenes. IEEE Trans. Pattern Anal. Mach. Intell. 5, 433-449 (1999)

https://doi.org/10.1109/CVPR.2008.4587369
https://doi.org/10.1109/CVPR.2008.4587369
http://arxiv.org/abs/1802.05797

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

A First Look into Privacy Leakage in 3D Mixed Reality Data 169

Johnson, A.E., Hebert, M.: Surface matching for object recognition in complex
three-dimensional scenes. Image Vis. Comput. 16(9-10), 635-651 (1998)

Lebeck, K., Kohno, T., Roesner, F.: How to safely augment reality: challenges
and directions. In: Proceedings of the 17th International Workshop on Mobile
Computing Systems and Applications, pp. 45-50. ACM (2016)

Lebeck, K., Ruth, K., Kohno, T., Roesner, F.: Securing augmented reality output.
In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 320-337. IEEE (2017)
Lebeck, K., Ruth, K., Kohno, T., Roesner, F.: Towards security and privacy for
multi-user augmented reality: foundations with end users. In: Towards Security
and Privacy for Multi-User Augmented Reality: Foundations with End Users,
p. 0. IEEE (2018)

Milgram, P., Kishino, F.: A taxonomy of mixed reality visual displays. IEICE
Trans. Inf. Syst. 77(12), 1321-1329 (1994)

Newton, E.M., Sweeney, L., Malin, B.: Preserving privacy by de-identifying face
images. IEEE Trans. Knowl. Data Eng. 17(2), 232-243 (2005)

Raval, N., Srivastava, A., Razeen, A., Lebeck, K., Machanavajjhala, A., Cox, L.P.:
What you mark is what apps see. In: Proceedings of the 14th Annual International
Conference on Mobile Systems, Applications, and Services, pp. 249-261. ACM
(2016)

Roesner, F., Molnar, D., Moshchuk, A., Kohno, T., Wang, H.J.: World-driven
access control for continuous sensing. In: Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security, pp. 1169-1181. ACM
(2014)

Shokri, R., Theodorakopoulos, G., Le Boudec, J.Y., Hubaux, J.P.: Quantifying
location privacy. In: 2011 IEEE Symposium on Security and Privacy, pp. 247-262.
IEEE (2011)

Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertain.
Fuzziness Knowl. Based Syst. 10(05), 557-570 (2002)

Vilk, J., et al.: SurroundWeb: mitigating privacy concerns in a 3d web browser. In:
2015 IEEE Symposium on Security and Privacy (SP), pp. 431-446. IEEE (2015)

Vilk, J., et al.: Least privilege rendering in a 3d web browser. Technical report
(2014)

Wagner, 1., Eckhoff, D.: Technical privacy metrics: a systematic survey. ACM Com-
put. Surv. 51(3), 57:1-57:38 (2018). https://doi.org/10.1145/3168389, http://doi.
acm.org/10.1145/3168389

Wu, Y., Yang, F., Ling, H.: Privacy-protective-gan for face de-identification. arXiv
preprint arXiv:1806.08906 (2018)

Zarepour, E., Hosseini, M., Kanhere, S.S., Sowmya, A.: A context-based privacy
preserving framework for wearable visual lifeloggers. In: 2016 IEEE International
Conference on Pervasive Computing and Communication Workshops (PerCom
Workshops), pp. 1-4. IEEE (2016)

https://doi.org/10.1145/3168389
http://doi.acm.org/10.1145/3168389
http://doi.acm.org/10.1145/3168389
http://arxiv.org/abs/1806.08906

Signatures and Re-encryption

®

Check for
updates

Flexible Signatures: Making
Authentication Suitable for Real-Time

Environments

Duc V. Le!®) Mahimna Kelkar?, and Aniket Kate!

! Purdue University, West Lafayette, USA
{1e52,aniket }@purdue. edu
2 Cornell University, Ithaca, USA
mahimna@cs.cornell.edu

Abstract. This work introduces the concept of flexible signatures. In a
flexible signature scheme, the verification algorithm quantifies the valid-
ity of a signature based on the number of computations performed, such
that the signature’s validation (or confidence) level in [0, 1] improves
as the algorithm performs more computations. Importantly, the defini-
tion of flexible signatures does not assume the resource restriction to be
known in advance, a significant advantage when the verification process
is hard stopped by a system interrupt. Prominent traditional signature
schemes such as RSA, (EC)DSA seem unsuitable towards building flexi-
ble signatures because rigid all-or-nothing guarantees offered by the tra-
ditional cryptographic primitives have been particularly unattractive in
these unpredictably resource-constrained environments.

In this work, we find the use of the Lamport-Diffie one-time signa-
ture and Merkle authentication tree to be suitable for building flexible
signatures. We present a flexible signature construction based on these
hash-based primitives and prove its security with concrete security anal-
ysis. We also perform a thorough validity-level analysis demonstrating
an attractive computation-vs-validity trade-off offered by our construc-
tion: a security level of 80 bits can be ensured by performing only around
%rd of the total hash computations for our flexible signature construc-
tion with a Merkle tree of height 20. Finally, we have implemented our
constructions in a resource-constrained environment on a Raspberry Pi.
Our analysis demonstrates that the proposed flexible signature design
is comparable to other standard signature schemes in terms of running
time while offering a quantified level of security at each step of the veri-
fication algorithm.

We see this work as the first step towards realizing the flexible-security
cryptographic primitives. Beyond flexible signatures, our flexible-security
conceptualization offers an interesting opportunity to build similar prim-
itives in the asymmetric as well as symmetric cryptographic domains.

Mahimna Kelkar—This research was completed at Purdue University.

© Springer Nature Switzerland AG 2019
K. Sako et al. (Eds.): ESORICS 2019, LNCS 11735, pp. 173-193, 2019.
https://doi.org/10.1007/978-3-030-29959-0_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29959-0_9&domain=pdf
https://doi.org/10.1007/978-3-030-29959-0_9

174 D. V. Le et al.

1 Introduction

Security for embedded and real-time systems has become a greater concern with
manufacturers increasing connectivity of these traditionally isolated control net-
works to the outside world. The computerization of hitherto purely mechani-
cal elements in vehicular networks, such as connections to the brakes, throttle,
and steering wheel, has led to a life-threatening increase of exploitation power.
In the event that an attacker gains access to an embedded control network,
safety-critical message traffic can be manipulated inducing catastrophic system
failures. In recent years, numerous attacks have impressively demonstrated that
the software running on embedded controllers could be successfully exploited,
often even remotely [17,24,27]. With the rise of the Internet of Things (IoT),
more non-traditional embedded devices have started to get integrated into per-
sonal and commercial computing infrastructures, and security will soon become
a paramount issue for the new-age embedded systems [10,29].

Well-established authentication and integrity protection mechanisms such as
digital signatures or MACs can effectively solve many of the security issues with
embedded systems. However, the industry is hesitant to adopt those as most
embedded devices pose severe resource constraints on the security architecture
regarding memory, computational capacity, energy and time. Given the real-time
deadlines, the embedded devices might not be able complete verifications by the
deadline rendering all verification efforts useless.

Indeed, traditional cryptographic primitives are not designed for such uncer-
tain settings with unpredictable resource constraints. Consider prominent digital
signature schemes (such as RSA and ECDSA) that allow a signer who has cre-
ated a pair of private and public keys to sign messages so that any verifier can
later verify the signature with the signer’s public key. The verification algorithms
of those signature schemes are deterministic and only return a binary answer for
the validity of the signature (i.e., 0 or 1). Such verification mechanisms may be
unsatisfactory for an embedded module with unpredictable computing resources
or time to perform the verification: if the module can only partially complete
the verification process due to resource constraints or some unplanned real-time
system interrupt, there are no partial validity guarantees available.

This calls for a signature scheme that can quantify the validity of the signa-
ture based on the number of computations performed during the verification. In
particular, for a signature scheme instantiation with 128-bit security, we expect
the verification process to be flexible enough to offer a validity (or confidence)
level in [0, 1] based on the resources available during the verification process. We
observe that none of the existing signature schemes offer such a trade-off between
the computation time/resource and the security level in a flexible manner.

Contribution. This paper initiates the study of cryptographic primitives with
flexible security guarantees that can be of tremendous interest to real-time sys-
tems. In particular, we investigate the notion of a flexible signature scheme that
offers partial security for an unpredictably partial verification.

Flexible Signatures 175

As the first step, based on the standard definition of digital signatures, we
propose a new definition of a signature scheme with a flexible verification algo-
rithm. Here, instead of returning a binary answer, the verification algorithm
returns a value, o € [0, 1] U L that quantifies the validity of the signature based
on a number of computations performed.

Next, we provide a provably secure construction of the flexible signature
scheme based on the Lamport-Diffie one-time signature construction [19] and
the Merkle authentication tree [22]. The security of our signature relies on the
difficulty of finding a £-near-collision pair for a collision-resistant hash function.
Through our analysis, we demonstrate that our construction still offers a high-
security level against adaptive chosen message attacks despite performing fewer
computations during verification. For example, a security level of 80 bits requires
performing only around %rd of the total required hash computations for a Merkle
tree of height 20.

Finally, we prototype our constructions in a resource-constrained environ-
ment by implementing those on a Raspberry Pi. We find that the performance of
the proposed constructions is comparable to other prominent signature schemes
in terms of running time while offering a flexible trade-off between the security
level and the number of computations. Importantly, neither the security level
nor the number of computations has to be pre-determined during verification.

Related Work. Fischlin [13] proposed a similar framework for progressively
verifiable message authentication codes (MACs). In particular, the author pre-
sented two concrete constructions for progressively verifiable MACs that allow
the verifier to spot errors or invalid tags after a reasonable number of computa-
tions. Also, the paper introduced the concept of detection probability to denote
the probability that the verifier detects errors after verifying a certain number
of blocks. In this work, we address the open problem of a progressively verifiable
digital signature scheme, and we incorporate the detection probability concept
into the security analysis of our schemes.

Bellare, Goldreich, and Goldwasser [3] introduced incremental signatures.
Here, given a signature on a document, a signer can obtain a (new) signature on a
similar document by partially updating the available signature. The incremental
signature computation is more efficient than computing a signature from scratch
and thus can offer some advantage to a resource-constrained signer. However, it
provides no benefit for a resource-constrained verifier; the verifier still needs to
perform a complete verification of the signature.

Signature scheme with batch verification [2,8] is a cryptographic primitive
that offers an efficient verifying property. Namely, after receiving multiple sig-
natures from different sources, a verifier can efficiently verify the entire set of
signatures at once. Batch verification signature scheme and flexible signature
scheme are similar in that they offer an efficient and flexible verification mecha-
nism. However, while the batch verification signature merely seeks to reduce the
load on a busy server, the flexible signature focuses on a resource-constrained
verifier who can tolerate a partial security guarantee from a signature.

176 D. V. Le et al.

Freitag et al. [14] proposed the concept of signatures with randomized veri-
fication. Here, the verifying algorithm takes as input the public key along with
some random coin to determine the validity of the signature. In those schemes,
the attacker’s advantage of forging a valid message-signature pair, (m*,o*), is
determined by the fraction of coins that accept (m*,o*). Freitag et al. con-
structed a signature scheme with randomized identity-based encryption (IBE)
schemes using Naor’s transformation and show that the security level of their
signature scheme is fixed to the size of the underlying IBE scheme’s identity
space. While our work can be formally defined as a signature scheme with ran-
domized verification, our scheme offers a more flexible verification in which the
security level of the scheme can be efficiently computed based on the output of
the verifying algorithm.

Finally, Fan, Garay, and Mohassel [11] proposed the concept of short and
adjustable signatures. They offered three variants, namely setup adjustable, sign-
ing adjustable, and verification adjustable signatures offering different trade-offs
between the length and the security of the signature. The first two variants allow
the signer to adjust the length of the signature, while the last variant allows the
verifier to shorten the signature during the verification phase. They presented
three constructions for each variant based on indistinguishably obfuscation (:0),
and one concrete construction only for the setup-adjustable variant based on the
BLS Signature Scheme [5]. Unfortunately, none of those constructions is suitable
for constructing flexible signatures tolerating unpredictable interrupts.

2 Preliminaries

Figure 1 presents prominent notational conventions that we use throughout this
work. Our constructions employ the following standard properties of crypto-
graphic hash functions. We use H : L x M — {0, 1}" to denote a family of hash
functions that is parameterized by a key k € K and message m € M and outputs
a binary string of length n. For this work, we consider two security properties
for hash functions from [26], preimage resistance, collision resistance, and one
weaker security notion from [18,21], ¢-near collision resistance.

Preimage Resistance: We call a family H of hash functions (¢uu,€ow)-
preimage resistant, if for any .4 that runs for at most t,,,, the adversary’s advan-
tage is:

kiIC,xiM

Advy’(A) = Pr
i1 (A lyHH(k,x),x'HA(k,y)

: H(k,l’/) = y‘| < €ow

Collision Resistance: We call a family H of hash functions (., €.-)-collision
resistant, if for any 4 that runs for at most t.,, the adversary’s advantage is:

kS K

Adv%r (A) = Pr
i Lx,x') — A(k)

: ('T # :17/) A (H(k7x) = H(k’x,))] < €cr

Flexible Signatures 177

n Security parameter

] {1,...,m}

mq||m2 Concatenation of strings mi and ma»

(di)icpm) Concatenation of m elements, di||dz||...||dm

& x z is chosen uniformly at random from some set X’

Az, y) Hamming distance between two binary strings = and y

f(m) = poly(m) f(m) is a polynomial function in m

f(m) = negl(m) f(m) is a negligible function in m, if f(m) = o(1/m°) Ve € N
[r] Optional parameter r in an algorithm definition

Fig. 1. Notations

{-near-collision Resistance: We call a family H of hash functions
(te-ner, €0-ner)-C-near-collision resistant, if for any A that runs for at most ¢ per
and 0 < ¢ < n, the adversary’s advantage is:

kilC;
r

Advi T (A) =P
#HA (@,2) — Ak, 0)

(x#2) A (AH(E, z), H(Ek,z') < K):| < €p-ner

Generic Attacks. To find the preimage t,,, = 2¢ is required to achieve €,, =
1/2™79 using exhaustive search. Due to the birthday paradox, however, only
tor = 2V/2 i required to find a collision with a success probability of €., ~ 1/2.

Finally, Lamberger et al. showed in [18] that at least ty e = 2"/2/\/2520 (’Z)
is required to find a ¢-near-collision with a success probability of €p,cr &= 1/2.

Unkeyed Hash Functions. In practice, the key for standard hash functions
is public; therefore, from this point, we refer to the cryptographic hash function
H as a fixed function H : M — {0,1}".

3 Security Definition

In this section, we define our flexible signature scheme. We adopt the stan-
dard definition of a signature scheme [16] to the flexible security setting. An
instance of an interrupted flexible signature verification is expected to return a
validity value, «, in the range [0, 1]. To model the notion of runtime interrup-
tions in the signature definition, we introduce the concept of an interruption
oracle iOraclex(1™) for signature scheme X and give the verification algorithm
access to it. The interruption oracle outputs an interruption position r in the
sequence of computation steps involved the verification algorithm. For simplic-
ity, if we denote max to be the maximum number of computations needed (e.g.
clock cycles, number of hash computations, or modular exponentiations) for a
signature verification, then iOraclex(1™) outputs a value r € {0,..., max}. The
specification of the interruption position may vary depending on the choice of
the signature scheme; e.g., in this work, we define the interruption position as
the number of hash computations performed in the verification algorithm.

178 D. V. Le et al.

Definition 1. A flexible signature scheme, X = (Gen,Sign,Ver), consists of
three algorithms:

— Gen(1™) is a probabilistic algorithm that takes a security parameter 1" as
input and outputs a pair (pk, sk) of public key and secret key.

— Sign(sk,m) is a probabilistic algorithm that takes a private key sk and a
message m from a message space M as inputs and oulputs a signature o
from signature space S.

— Ver(pk,m,o,[r]) is a probabilistic algorithm that takes a public key pk, a
message m, a signature o, an optional interruption position r € {0, ..., max}
as inputs. If r is not provided, then the algorithm will query an interruption
oracle, iOraclex;(1™) to determine r € {0, ... ,max}. The algorithm outputs a
real value o € [0,1] U { L}!. The signature is invalid if o = L.

The following correctness condition must hold: For ¥(pk, sk) «— Gen(1™),Vm €
MNre {0,...,max} : Pr[Ver(pk, m,Sign(sk,m),r) = L] =0.

Remark 1. The interruption oracle only serves as a virtual party for definitional
reasons. In practice, the verification algorithm does not receive the interruption
position r as an input, and the algorithm continues to perform computations
until it receives an interruption. To model runtime interruptions using the inter-
ruption oracle iOracles(1™), in this work, we expect the flow of the verification
algorithm to not be affected/biased by the r value offered by iOraclex(1™) at the
beginning of the verification. Also, we note that depending on signature schemes,
there can be more than one way to define the interruption position, r (e.g. clock
cycles, number of hash computations, or modular exponentiations).

Extracting Function. We assume that for a flexible signature scheme, there
exists an efficient function, iExtracty(-), that takes as input the validity of the
signature a and outputs the interruption position r. Intuitively, for the case of
an unexpected interruption, the verifier need not know when the verification
algorithm is interrupted. However, based on the validity output «, the verifier
should be able to use iExtracty(:) to learn the interruption position, r. The
definition of extracting function depends on the specification of the interruption
position and signature scheme. We will define our iExtracts(-) for each of our
proposed constructions in Sects. 4 and 5.

Security of Flexible Signature Scheme. We present a corresponding def-
inition to the existential unforgeability under adaptive chosen message attack
(EUF-CMA) experiment in order to prove the security of our scheme. For a
given flexible signature scheme X = (Gen, Sign,Ver) and « € [0, 1], the attack
experiment is defined as follows:

Experiment FlexExp 4 5(1",) :
1. The challenger C runs Gen(1™) to obtain (pk, sk) and iExtracts(«) to obtain
position 7. C sends (pk,r) to A.

! & = 0 means that no operations are performed in the verification algorithm.

Flexible Signatures 179

2. Attacker A queries C for signatures of its adaptively chosen messages. Let
Qi{g"(Sk") = {mi}icjq be the set of all messages that A queries C where
the i*" query is a message m; € M. After receiving m;, C computes o; «
Sign(sk, m;), and sends o; to A.

3. Eventually, A outputs a pair (m*,0*) € M x 8%, where message m* ¢
Qi{g"(Sk") and sends the pair to C.

4. C computes o — Ver(pk,m*,c*,r). If (a* # 1) and (a* > «), the experi-
ment returns 1; else, it returns 0.

Definition 2. For the security parameter n and o € [0,1], a flexible signa-
ture scheme X is (t, e,q) existential unforgeable under adaptive chosen-message
attack if for all efficient adversaries A that run for at most time t and query
Sign(sk,-) at most q times, the success probability is:

Advtlffz(n) = Pr[FlexExp 4 (1",) = 1] < €

Here, t and € are functions of « and n, and g = poly(n).

4 Flexible Lamport-Diffie One-Time Signature

In this section, we present our concrete construction of the flexible one-time
signature scheme. This construction is based on the Lamport-Diffie one time
signature construction introduced in [19].

4.1 Construction

We show the concrete construction of the flexible Lamport-Diffie one-time sig-
nature in Fig.2. Here, we use the same key generation and signing algorithms
from the Lamport-Diffie signature and modify the verification algorithm.

Key Generation Algorithm. The key generation algorithm takes a parameter
1™ as input, and generates a private key by choosing 2n bit strings each of length
n uniformly at random from {0, 1}", namely, SK =(sk;[b])ic[n)be{0,1} € {0, 1}27°,
The public key is obtained by evaluating the preimage-resistant hash function on
each of the private key’s n bit string, such that PK = (pk;[b])icjn) pef0,13 Where
pk;[b] = F(sk;[b]) and F(-) is the preimage-resistant hash function.

Signing Algorithm. The signing algorithm takes as input the message m and
the private key SK. First, it computes the digest of the message d = G(m) =
(di)iepn) where d; € {0,1} and G(-) is a collision-resistant hash function that
outputs digests of length n. The signature is generated based on the digest d as

o= (Skz [dl})le[n] '

2 The higher validity implies a higher interruption position. Hence, the best strategy
for the adversary is to use the initial position defined by the challenger.

180 D. V. Le et al.

Flexible Verification Algorithm. This algorithm takes as input a message
m, a public key PK, a signature o, and an optional interruption position [r]
and outputs the validity of the signature a. In this construction, we model the
interruption condition r € {0,1,...,n}, as the number of hash F(-) computa-
tions performed during verification. As mentioned earlier in Sect. 3, to faithfully
model the interruption process, the flow of the verification algorithm should not
be biased by the r value in any intelligent manner. First, the verification algo-
rithm will query the interruption oracle to determine the interruption position r.
The algorithm then computes the digest of the message, d = G(m) = (d;)ic[n)-
Now, instead of sequentially verifying the signature bits like the verification in
the standard scheme, the flexible verification algorithm randomly selects a posi-
tion 7 of the signature and checks whether F(o;[d;]) = pk;[d;]. If there is one
invalid preimage, the verification aborts and returns a = L. Otherwise, once the
interruption condition is met or all positions are verified, the algorithm returns
the validity as the fraction of the number of bits that passed the verification check
over the length of the signature. In this Lamport-Diffie construction, given the
validity « value output by the verification algorithm, the verifier simply com-
putes the interruption position as follows: iExtracty, . () = [a - n]

Flexible Lamport-Diffie One-time Signature

Given the security parameter n, a preimage resistant hash function
F :{0,1}" — {0,1}", a collision resistant hash function G : {0,1}* — {0,1}",
the flexible Lamport-Diffie one-time signature scheme Xyors works as follows:
Gen(1") : for each i € [n],b € {0,1} :
choose sk;[b] & {0,1}", set pk;[b] = F(sk;[b])
output : SK = (ski[b])icin)beq0,13, PK = (pki[b]))icin),pe{0,1}
Sign(SK, m) :compute d = G(m) = (di)ic[n), parse SK = (ski[b])icin),pe{0,1}-
output : o = (ski[di])icin)
Ver(PK,m, o, [r]) : if ris not provided: set r < iOracle(1"),
krp =0, N =[n]
compute d = G(m) = (di)icn)
write PK = (pki[b])icn) be{0,1}, & = (Ti)ic[n)
while (r > 0) and (N #0) :
choose i & N
if F(oi) # pki(d;), return a = L
N:Nf{i}7kF:kF+1,T':7”fl

output : a=kp/n

Fig. 2. Construction of the flexible Lamport-Diffie one-time signature

Flexible Signatures 181

4.2 Security Analysis

In the flexible Lamport-Diffie one-time signature setting, as the verification algo-
rithm does not perform verification at every position of the signature, the adver-
sary can increase the probability of winning by outputting two messages whose
hash digests are close. This is equivalent to finding an ¢-near-collision pair where
{ is determined by the adversary. Theorem 1 offers the trade-off between com-
putation time and success probability for the adversary.

Theorem 1. Let F be (tow, €ow) preimage-resistant hash function, G be (to-ner,
€t-ner) L-near-collision-resistant hash function, kp, ke be the number of times
F(),G(-) evaluated in the verification respectively, d be the Hamming distance
between two message digests output by A, and tgen, tsign, tver be the time it takes
to generate keys, sign the message, and verify the signature respectively. With
1 < krp < n, kg = 1, the flexible Lamport-Diffie one-time signature Xyos s
(tfots, Efots; 1) EUF-CMA where:

a=kp/n

tfots = min{towa té—ncr} - tsign — tyer — tgen where 0 <€ <n—kp

krp—1
d
€fots gmin{l,Q-maX{ H (1—‘),471-6074,}} where 0 < d < /4
n—1i

=0

The proof of Theorem 1 is shifted to Appendix A.

Security Level. Towards making the security of flexible Lamport-Diffie one-
time signatures more comprehensible, we adapt the security level computation
from [7]. For any (¢, €) signature scheme, we define the security of the scheme to
be log, (t/€). As, in the flexible setting, the value of the pair (¢, €) may vary as the
adversary decides the Hamming distance ¢, for each value of kr € {0,...,n}, we
compute the adversarial advantage for all values 0 < ¢ < n — kr and output the
minimum value of log, (t fots/€ fots) as the security level of our scheme. A detailed
security level analysis for the Lamport-Diffie one-time signature is available in
Sect. 6.1.

5 Flexible Merkle Tree Signature

We use the Merkle authentication tree [22] to convert the flexible Lamport-Diffie
one-time signature scheme into a flexible many-time signature scheme.

5.1 Construction

In the Merkle tree signature scheme, in addition to verifying the validity of the
signature, the verifier uses the authentication nodes provided by the signer to
check the authenticity of the one-time public key. We are interested in quantify-
ing such values under an interruption. To achieve such a requirement, we require
the signer to provide additional nodes in the authentication path.

182 D. V. Le et al.

Key Generation Algorithm. Our key generation remains the same as the
one proposed in the original Merkle tree signature scheme [22]. For a tree of
height h, the generation algorithm generates 2" Lamport-Diffie one-time key
pairs, (PK;, SKi)iE[Zh]' The leaves of the tree are digests of one-time public keys,
H(PK;), where H(-) is a collision-resistant hash function. An inner node of the
Merkle tree is the hash digest of the concatenation of its left and right children.
Finally, the public key of the scheme is the root of the tree, and the secret key
is the set of 2" one-time secret keys.

Fig. 3. An example of new authentication nodes for PK3 where Auths = (a1, a2, as) is
the set of authentication nodes in the original scheme and Auth§ = (a},a5,a}) is the
set of additional authentication nodes

Modified Signing Algorithm. In the original Merkle signature scheme, a
signature consists of four parts: the signature state s, a one-time signature o, a
one-time public key PK, and a set of authentication nodes Auths = (ai)ie[h]. The
verifier can use PK; to verify the validity of the o; and use nodes in Authg and
state s to efficiently verify the authenticity of PKs. For our signing algorithm,
along with authentication nodes in the old construction, we require the signer
to send the nodes that complete the direct authentication path from the one-
time public key to the root. We call this set of nodes complement authentication
nodes, Auth; = (aj);efn). The reason for including additional authentication
nodes is to allow the verifier to randomly verify any level of the tree. Moreover,
with additional authentication nodes, verifier can verify different levels of the
tree in parallel. Figure3 describes an example of the new requirement for a
tree of height three. The modified signature now consists of five parts: a state
s, a Lamport-Diffie one-time signature o,, a one-time public key PK,, a set
of authentication nodes Auth,, and a set of complement authentication nodes
Auth?.

Flexible Verification Algorithm. With additional authentication nodes, the
verification algorithm can verify the authenticity of the public key at arbitrary
levels of the authentication tree as well as use the flexible verification described
in Sect.4 to partially verify the validity of the one-time signature. In the end,

Flexible Signatures 183

Flexible Merkle Tree Signature Scheme

Given the security parameter n, the height of the tree h, a preimage resistant hash
function F : {0,1}" — {0,1}", a collision resistant hash function H : {0,1}* —
{0,1}", G : {0,1}* — {0,1}", and a flexible Lamport-Diffie one-time signature
scheme Xfors = (GenfomSignfot57VerfozS). The stateful flexible Merkle scheme
Ytms works as follows:

Gen(1™) : generate 2" ots pairs {(PK;,SKi)},c[2n) using Gengors(1™)
compute the inner nodes of the Merkle tree as follows:
node;[j] = H(node;—1[2j — 1]||node;—1[24])
2<i<h+1,1<j<2M
node,[i] = H(PK;),1<i<2"
output : SK = {SK; };c(on), PK = root (i.e. noden11[1]), s =1
Sign(SK, m, s) : compute o5 = Sign;,;,(SKs,m)
compute Auths = (a;);cpn), where
node;[[s/2°71) +1] if [s/2°71] =1 mod 2
T {nodei[(s/QiW —1] if [s/2"7'] =0 mod 2
compute Auth = (a})ic(n), where aj = node;[[s/2"]
output : 0 = (s,0s, PKs, Auths, Authg), s = s + 1
Ver(PK,m,o,[r]) : if r is not provided: set r + iOracle(1"),
set N=[n],T=[h+1],kr =0,kg =0
compute G(m) = d = (di)icin)
extract (8,0 fots, PKiots, Auth, Auth®) « o
write oots = (04)icin]s PKrots = (PKi[b])ic[n) bef0,1}
Auths = (a:)ic[n), Authg = (ai)ie[h]
while r >0 and H # 0 and N # 0 do :
if 1—1/252 <kp/(h+1):
choose i & N, if F(oi) # pki(ds), output : o= 1
N=N—-{i}, kr=kr+1
else : choose j & T, set a'h_H = PK
if j=1:if a} # H(PKs),output : o= L

if j>1:4f a; is not a parent of a;—1 and a;,l :

output o = 1.
T:Tf{j},kHZkH+].
r=r—1

output : o = (kr/n,ku/(h+ 1))

Fig. 4. The flexible merkle signature construction

184 D. V. Le et al.

the verification returns a = («,, @,) that contains both the validity of the sig-
nature and the authenticity of the public key. In this construction, we define the
interruption r € {0,1,...,n+ h+ 1}, as the number of computations performed
during the verification step.

In contrast to the verification performed in the one-time signature scheme,
the security guarantee the verifier gains from the authenticity verification of
the one-time public key only increases linearly as the number of computations
performed on the authentication path increase: The adversary can always gen-
erate a new one-time key pair to sign the message that is not a part of one-time
key pairs created by the generation algorithm. In the original Merkle scheme,
such a key-pair will fail the authenticity check with overwhelming probability
because the verifier can use the authentication nodes to compute and verify the
root. However, in the flexible setting, the verifier may not be able to complete
the authenticity verification, and there is a non-negligible probability that an
invalid one-time public key will be used to verify the validity of the signature.
Therefore, the verifier gains an exponential security guarantee about the validity
of the one-time signature but only a linear guarantee about the authenticity of
the public key as the number of computations increases.

To address this issue, the verification algorithm needs to balance the compu-
tations performed on the authentication path and the computations performed
on the one-time signature. We define the confidence for the validity of the one-
time signature as 1—1/2%7/2 and the confidence for authenticity of the one-time
public key as kg /(h + 1), where kp is the number of computations performed
on the one-time signature, kg is the number of computations performed on the
one-time public key, and h is the height of the Merkle tree. To balance the num-
ber of computations, the verifier needs to maintain 1 — 1/2%7/2 ~ kg /(h + 1).
With the new signing and verifying algorithms described above, we present a
detailed construction of the flexible Merkle signature scheme in Fig.4. In this
Merkle signature construction, given the validity o = (a, @) value output by
the verification algorithm, the verifier can compute the interruption position as
follow: iExtracty,, . (a) = [ayn] + [aq(h +1)].

5.2 Security Analysis

Theorem 2 presents the trade-off between computation time and success proba-
bility for the adversary A.

Theorem 2. Let F be (tow, €ow) preimage-resistant hash function, G be (to-ner,
€0-ner) L-near-collision-resistant hash function, H be (t..,€qr) collision-resistant
hash function, kp, kg, kg be the number of times F(-),G(-),H(-) performed
respectively, d be the smallest Hamming distance between the forged message
digest and other queried message digests, and tgepn,tsign,tver be the time it takes
to generate keys, sign the message, and verify the signature respectively. With
1 <kp <n,0<kyg <h+1, and kg = 1, the flexible Merkle signature
construction (Xym,s) from flexible Lamport-Diffie one-time signature scheme is
(tfms,Efms,2h) EU-CMA, where

Flexible Signatures 185

a = (kF/n,k:H/(h+ 1))

; o) when kg < h+1,
fms min {towa tf—ncra tcr - 2h : tsign - tver - tgen where 0 < 14 <n-— kF

k el d

. H o n

€fms Smln{1,4~max{1 (h+1)’2h E) (171_2,),2}”rl g2 4 '6ow,€cr}}
where 0 < d </

The proof of Theorem 2 is shifted to Appendix A. A more detailed version
of the proof will be included in the extended version [20].

5.3 Other Signature Schemes

Over the last few years, several optimized versions of Merkle tree signature and
one-time signature schemes have been proposed. This includes XMSS [6] and
SPHINCS [4] for the tree signatures, and HORS [23], BIBA [25], HORST [4]
and Winternitz [22] for one-time signatures. While the security analysis for each
scheme may vary, we can use the same technique described above to transform
those schemes into signature schemes with a flexible verification. In this work,
we choose to use Lamport-Diffie One-time signatures in our construction for
two reasons. First, the number of hash evaluations in Lamport-Diffie Signature
verification is fixed for constant size messages, and this gives better and more
precise security proofs. Second, Lamport-Diffie one-time signature has better
performance in terms of the running time. Thus, according to our experiment and
analysis, the Lamport-Diffie One-time signature scheme combined with Merkle
Tree provides a better speed performance and more concrete security proofs.

We also investigate number-theoretic signature schemes and observe that
the similar verification technique can be applied to the Fiat-Shamir Signature
Scheme [12] as its signature is partitioned into different verifiable sets. However,
compared to hash function evaluations, the computation of modular exponenti-
ation is significantly more expensive and thus may not be suitable for flexible
security application environments. On the other hand, lattice-based signature
schemes such as GPV signatures [15] can be an interesting candidate for a flexi-
ble signature construction. For GPV signatures, a public key is a matrix output
by a trapdoor sampling algorithm, and a signature is output by a pre-image
sampling algorithm. The signature verification is performed using a matrix and
vector multiplication. The same randomized verification technique seems to be
applicable here on different rows of the matrix. In the future, we plan to explore
a flexible version of GPV signatures.

6 Evaluation, Performance Analysis, and Discussion

In this section, we evaluate the performance and the security level of the flex-
ible Lamport-Diffie one-time signature and flexible Merkle signature schemes.

186 D. V. Le et al.

For both schemes, the validity value a suggests the number of computations
performed (i.e., kg, kr) during verification. Based on the value «, the verifier
determines the security level achieved by the (interrupted) verification instance.

6.1 Security Level of Flexible Lamport-Diffie One-Time Signature

The security level of a flexible Lamport-Diffie signature depends on the actual
Hamming distance between two message digests output by the adversary and
it can increase its advantage by spending more time to find a near-collision
pair. However, it is unclear how to precisely measure the exact Hamming dis-
tance between those two digests. Therefore, we outline some possible assump-
tions in order to estimate precisely the value of A(G(m),G(m*)). Using the
generic attack on finding near collision pair [18], we can assume that an adver—
sary A who uses a generic birthday attack can always output a pair (m,m*

such that A(G(m),G(m*)) < ¢ after spending teper = 2V2/\/> o (%)
Second, for a fixed value ¢, if the adversary finds a pair (m,m*) such that
A(G(m), G(m*)) < ¥, welet d = A(G(m),G(m*)) is equal to the expected value
of A(G(m), G(m*)). The intuition behind the second assumption is that as we let
the Hamming distance d decrease by 1, the probability that A(G(m), G(m*)) =d
decreases by factor of n; therefore, the actual value of d should be closer to /¢
than to 0.

We define the set By,(G(m)) = {x | € {0,1}" A A(z,G(m)) < (}. If
G(m) and G(m*) is a f-near-collision pair, then G(m*) € By(G(m)). If G(-)
behaves as an uniformly random function, then given ¢, the expected value of

A(G(m),G(m*)) is:

S
E(A(G(m),G(m"))) = jzz:oj . M = Z] : Z@ (”) (1)

=0 i=0 \s

For the case of Lamport-Diffie one-time signature, we have tgen, = 2n,t5i9n =
tyer = n. Combining Theorem 1 and Eq. 1, we have:

2n/2

tfots:max{l, —4n} for{ <n—kp

Yico (i
krp—1
11 ()} where d = E(A(G(m), G(m*)),

Efots < mm{ 2.
=0

given A(G(m),G(m™)) < ¢

Finally, the adversary’s advantage varies depending on the value of £. Therefore,
for a fixed value kg, we compute the adversarial advantage all values £ <n—kp
and output the minimum value of log, (t fots/€ fots) as the security level of the
scheme.

Figure5 gives the trade-off between the number of computations and the
security level of the flexible Lamport-Diffie scheme. Compared to the original

Flexible Signatures 187

Lamport-Diffie scheme, our construction offers a reasonable security level despite
a smaller number of computations. For example, while a complete verification
requires 256 evaluations of F'(-) to achieve the 128-bit security level, with only
128 evaluations of F'(-), the scheme still offers around the 92-bit security level.

6.2 Security Level of Flexible Merkle Tree Signature

For the Merkle tree signature scheme, using the results from [9,28], we have
tgen = 20 2n 4+ 2" — 1t = n+h+1,t54n = (h+1) -n. There are two cases
for the Merkle tree signature: (1) The authenticity check is complete, kg = h+1
and (2) The authenticity check is not complete, kg < h + 1.

When ky < h+ 1, the adversary’s probability of winning is non-negligible,
and the time it needs to spend on the attack is constant; therefore, when the
authenticity check is not complete, we simply let: ¢ s = 1, € s = 1—kp /(h+1).
When the authenticity verification is complete, kg = h + 1, using the equation
described in Theorem 2, we obtain the following parameters for the flexible
Merkle tree scheme:

tfms — max {17 omer — 2h+10g2(h+1)n _ 2h~10g2 2n 210g2(n—h—1)} for ¢ <n — kg

€fms < min {1, oh . kﬁl <1 _ 4)} where d = E(A(G(m), G(m™)))

- n—1
=0

Using those formulas, we compute the security level of the flexible Merkle
signature as 10y (¢ fims/€fms). Figure 6 shows the trade-off between the security
level of the scheme and the number of computations of the flexible Merkle tree
signature with h = 20. Notice that, for small number of computations, the
security level of Merkle tree construction does not increase. The reason is that
if the authenticity of the public key is not completely checked, the probability
that the adversary wins the forgery experiment is always the fraction of the
number of computations on the authentication path over the height of the tree,

=R
o o v H N
B O o N
T T T T
_oR
o o v F N
s O o N ®
T T T

IS
©
T

Security Level
W
[oe]
T

Security Level

w
[N
T
w
N
T

-
o
T
-
o
T

o
o

32 64 96 128 160 192 224 256 00 "32™"%4 96 128 160 192 224 256
Number of Computations Number of Computations

Fig. 5. Security level of flexible Lamport- Fig. 6. Security level of flexible merkle
Diffie one-time signature tree signature

188 D. V. Le et al.

and the forging time remains constant. Moreover, for a tree of height h, there
are 2" instances of flexible Lamport-Diffie one-time signature. Therefore, if F(-)
evaluated only for a small number of times, the cost of finding an ¢-near-collision
pair (for ¢ <n — kp) is cheap. The probability that such a pair passes the one-
time verification step in one instance of 2" instances of flexible Lamport-Diffie
one-time signature is high. This leads to an undesirable security level during the
first few computations.

6.3 Implementation and Performance

We have implemented prototypes of our proposed constructions in C, using the
SHA-256 implementation of OpenSSL. We evaluated the performance of our
proposed constructions on a Raspberry Pi 3, Model B equipped with 1 GB RAM.

Table 1 gives the performance and security levels of the flexible verification
algorithm of both schemes compared to other standard signature schemes (i.e.,
RSA, DSA, ECDSA, and EADSA) based on the percentage of computations
p = 20%,40%, 60%, 80%, and 100% for messages of size 256>. For other signa-
ture schemes, we obtain the performance of those schemes using the OpenSSL
library. More specifically, for ECDSA, we used two standard curves: Ed25519
and nistp256. For the RSA signature scheme, we used the smallest recommended
public key 26 + 1 for the verification algorithm. For the security levels of other
signature schemes, we use the information from [1,6]. As shown in Table1, the
performance of both flexible signature schemes is comparable to other standard
schemes in terms of the verification running time. More importantly, both con-
structions offer an increasing security level at each step of the algorithm while

Table 1. Comparing flexible signature schemes performance for different levels of sig-
nature verification with other signature schemes.

Signature Verification; Output Format: (Timings, Security Level)

Percentage of 20% 40% 60% 80% 100%
computations

RSA 3072, - - - - (1.43 ms, 128)
pk =21 41

DSA 2048 - - - - (4.93 ms, 87)
EdDSA (Ed25519 | - - - - (3.21 ms, 128)
curve)

ECDSA (nistp256 | - - - - (3.39ms, 128)
curve)

Lamport-Diffie (0.16 ms, 35) | (0.31ms, 79) | (0.43ms, 105) | (0.47 ms, 121) | (0.54 ms, 127)
OTS verification,
n = 256

Merkle signature | (0.85ms,1) | (0.93ms,19) | (1.00ms, 61) | (1.06 ms,99) | (1.23ms, 127)
verification,

n = 256, h = 20

3 We focus on the verification algorithm in this work. For the performance of signing,
generation algorithms, and the size of the signature we refer readers to [6,7].

Flexible Signatures 189

other signature schemes can only provide such information at the end of the
verification algorithm, and Table 1 demonstrates that in the form of (Timings,
Security Level) pairs. Also, notice that as the number of verification computa-
tions increases, the Lamport-Diffie OTS gives a higher security level than the
signing shorter hash digest approach which offers the security level that is equal
to half of the length of the hash digest. The main reason is that the verification
algorithm verifies the signature at random locations, and while the adversary
may learn about the number of computations performed, the adversary does
not know which indices of the signature get verified. Thus, the adversary has to
decide how close the two digests should be to maximize his adversarial advantage.
For the case of Merkle tree signatures, we do not see a huge improvement in the
performance of the verification despite a smaller number of computations. This
is because the computation of H(PKts) and G(m) can be expensive, because
of the use the Merkle-Damgard transformation in SHA2 hash family, as those
computations requires more calls to the compression function depending on the
input size. Nevertheless, for real-time environments, we expect messages to be
smaller in size.

7 Conclusion

In this paper, we defined the concept of a signature scheme with a flexible
verification algorithm. We presented two concrete constructions based on the
Lamport-Diffie one-time signature scheme and the Merkle signature scheme and
formally proved their security. We also implemented prototypes of our proposed
constructions and showed that the running time performance of our proposed
designs is comparable to other signature schemes in a resource-constrained envi-
ronment. More importantly, compared to standard signature schemes with deter-
ministic verification, our schemes allow the verifier to put different constraints
on the verification algorithm in a spontaneous manner and still guarantee a
reasonable security level. Our proposed signature scheme is one of the few cryp-
tographic primitives that offers a trade-off between security and resources. It
can be highly useful for cryptographic mechanisms in unpredictably resource
constrained environments such as real-time systems.

In the long run, significant research will be required in this challenging flexible
security area. We plan to explore similar ideas for confidentiality in (symmetric or
asymmetric) encryptions, integrity with MACs, and possibly beyond. We believe
these cryptographic protocols will make security mechanisms more prevalent in
the real-time systems.

Acknowledgment. We thank Mikhail Atallah, Dominique Schréder, and the anony-
mous reviewers for encouraging discussions and suggestions.

A Proofs

In this section, we provided the formal proofs of two stated theorems.

190 D. V. Le et al.

Proof of Theorem 1. Let m be the message asked by A during the experiment
FlexExpy, 4(1",), and (m*,0*) be the forgery pair. We define the distance,
d = A(G(m), G(m™*)). We notice that for a pair (m, m*) output by the adversary
during the forgery experiment, if A(G(m),G(m*)) > n—kp, then by pigeonhole
principle, at least one of different positions will be checked. Therefore, in order
to maximize the success probability, the adversary has to choose ¢ and find a /-
near-collision pair where the Hamming distance of G(m) and G(m™*) is less than ¢
where ¢ < (n—kg). In order to output such near-collision pair, .4 requires at least

t = toper = 2"/2/4/ Zf:o (7;) Also, on the other hand, A may win the forgery
experiment by spending t,, to break the underlying preimage resistant hash
function. Thus, subtracting the running time of generating, signing, and verifying
algorithms, we have: t ors = min{tow, te-ner } — tsign — tgen — tver where 0 < £ <
n — kp. For the success probability, we let Miss be the event that no different
bit gets verified. Since d is the Hamming distance between 2 message digests,
either none of those different positions were checked, or some of those positions
passed the check (i.e. the preimage was found). Thus, we rewrite A’s advantage
for the forging experiment as follows: Pr[FlexExp 4 (1",) = 1] < Pr[Miss] +
Pr[FlexExp 4 (1",) = 1 A Miss].

The event (FlexExp 4 5(1",a) = 1 A Miss) implies that A wins the forgery
experiment by providing a preimage of F(-). Therefore, we can use A to construct
a preimage finder B. The reduction is presented in [7]. One can show:

Pr[FlexExp 4 (1", @) = 1 A Miss] < 4n - Advig:(n) = 4n - €ou (2)

Finally, Pr[Miss] implies the adversary can win the forging experiment if the
challenger does not perform verification on the different bits. Since d is the
number of different bits between two digests, the probability that the challenger
does not perform verification on those positions is:

krp—1 kp—1

Pr[Miss| = [] ”%T: 11 (1—71&.) (3)

i=0 =0

From Egs. (2) and (3), we have:

kp—1
d
Pr[FlexE 1" =1 <min{1,2- 1———),4n-
r[FlexExp 4 5 (1",)]_mm{ , max{ H (n—i)’ n eow}}

=0

which completes the proof. |

Proof of Theorem 2. Intuitively, if adversary A provides an invalid one-time
public key, the verification must fail for at least one level of tree. Otherwise,
A successfully finds a collision of H. However, in our scheme, since every level
of the tree may not be verified, there is a possibility that the forged level is
not checked. We formalize the intuition as following; we let InvalidOPK be the
event that A provides an invalid one-time public key. Consider the Merkle tree
construction based on the one-time signature construction.

Flexible Signatures 191

Pr[FlexExp 4 5 (1", a) = 1] = Pr[FlexExp 4 5(1",a) = 1 A InvalidPK]
+ Pr[FlexExp 4 5;(1", a) = 1 A InvalidPK]

The FlexExp 4 (1", a) = 1 A InvalidPK implies that A provided an invalid one-
time public key but won the forgery experiment. Thus, either the verifier failed
to check a “bad” level of the tree or A found a collision of H(-). For a tree
of height h, there are h + 1 levels that one needs to verify for the complete
authentication. Since kg is the number of times H(-) is evaluated, using a union
bound, we have:

k
Pr[FlexExp 4 5(1",a) = 1 A InvalidPK] < 2 - max {1 - hi—ff ecr} (5)

If A found a collision of H(-), then we can construct a collision finder [7].

The event FlexExp 4 5;(1",) = 1 A InvalidPK implies that A won the flexi-
ble forgery experiment for one-time signature scheme. Since we defined kg to
be the number of F(-) evaluated, the underlying flexible one-time signature is
(tfotss €fots, 1). Therefore, using Theorem 1, we get:

krp—1
d
efot5§2~max{ H (1—‘),477/-6011,} where 0 < d </ <n-—kp

- n-—1
=0

Since there are 2" instances of the flexible Lamport-Diffie one-time signature, it
means that for 0 < d < /¢ <n — kg, A wins the forgery game with probability:

Pr[FlexExp 4 5;(1",a) =1 A InvalidPK]

k‘Ffl d
<2. maX{Qh . H (1 — ,),2h+1°g24" . eow}
n—1

i=0
(6)
From Egs. (4), (5) and (6), for 0 < d < ¢ <n — kg, we have:

kr—1
d
€fms < 4+ maX{l - kH/(h+ 1)72h' H (1 - n_.>’2h+log24n) €owa€cr}

. (3
=0

When kg < h+ 1, we simply let ¢y, = O(1) because A will win the forgery
experiment with probability 1 — kg /(h + 1). When kg = h + 1, we have:
kp—1 p
< 4. h _ h+logy 4n < <y < _
€fms < 4 maX{Z g(l 711—2')’2 eow,ecr} where 0 < d</¢{<n-—kr

and using [7, Theorem 5], we have t . = min{ter, trors } — oh “tsign — tver —tgen-
Now, using Theorem 1, we get: ¢ s = Min{tow, tenerster} — 2 toign — toer —
tgen Where 0 < ¢ < n — k. This completes the proof. | |

192

D. V. Le et al.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Barker, E.: Recommended for key management-part 1: General. https://nvlpubs.

nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt 1r4.pdf

Bellare, M., Garay, J.A., Rabin, T.: Fast batch verification for modular exponen-
tiation and digital signatures. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS,
vol. 1403, pp. 236—250. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0054130

Bellare, M., Goldreich, O., Goldwasser, S.: Incremental cryptography: the case of
hashing and signing. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp.
216-233. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48658-5_22

. Bernstein, D.J., et al.. SPHINCS: practical stateless hash-based signatures. In:

Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 368—
397. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5-15
Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. J. Cryp-
tol. 17(4), 297-319 (2004)

Buchmann, J., Dahmen, E., Hiilsing, A.: XMSS - a practical forward secure sig-
nature scheme based on minimal security assumptions. In: Yang, B.-Y. (ed.)
PQCrypto 2011. LNCS, vol. 7071, pp. 117-129. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-25405-5_8

Buchmann, J., Dahmen, E., Szydlo, M.: Hash-based digital signature schemes. In:
Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.) Post-Quantum Cryptography.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-88702-7_3
Camenisch, J., Hohenberger, S., Pedersen, M.0.: Batch verification of short sig-
natures. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 246—263.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72540-4_14
Dahmen, E., Okeya, K., Takagi, T., Vuillaume, C.: Digital signatures out of second-
preimage resistant hash functions. In: Buchmann, J., Ding, J. (eds.) PQCrypto
2008. LNCS, vol. 5299, pp. 109-123. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-88403-3_8

Denning, T., Kohno, T., Levy, H.M.: Computer security and the modern home.
Commun. ACM 1, 94-103 (2013)

Fan, X., Garay, J., Mohassel, P.: Short and adjustable signatures. Cryptology
ePrint Archive, Report 2016/549 (2016)

Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186-194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12
Fischlin, M.: Progressive verification: the case of message authentication. In:
Johansson, T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 416-429.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-24582-7_31
Freitag, C., et al.: Signature schemes with randomized verification. In: Gollmann,
D., Miyaji, A., Kikuchi, H. (eds.) ACNS 2017. LNCS, vol. 10355, pp. 373-389.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61204-1_19

Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: STOC 2008, pp. 197-206 (2008)

Katz, J., Lindell, Y.: Introduction to Modern Cryptography, chap. 12, pp. 442-443
(2007)

Koscher, K., et al.: Experimental security analysis of a modern automobile. In:
IEEE S&P 2010, pp. 447-462 (2010)

Lamberger, M., Teufl, E.: Memoryless near-collisions, revisited. CoRR, (2012)

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf
https://doi.org/10.1007/BFb0054130
https://doi.org/10.1007/BFb0054130
https://doi.org/10.1007/3-540-48658-5_22
https://doi.org/10.1007/978-3-662-46800-5_15
https://doi.org/10.1007/978-3-642-25405-5_8
https://doi.org/10.1007/978-3-540-88702-7_3
https://doi.org/10.1007/978-3-540-72540-4_14
https://doi.org/10.1007/978-3-540-88403-3_8
https://doi.org/10.1007/978-3-540-88403-3_8
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-540-24582-7_31
https://doi.org/10.1007/978-3-319-61204-1_19

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Flexible Signatures 193

Lamport, L.: Constructing digital signatures from a one way function. SRI intl.
CSL-98 (1979)

Le, D.V., Kelkar, M., Kate, A.: Flexible signatures: towards making authentication
suitable for real-time environments. Cryptology ePrint Archive, Report 2018/343
(2018)

Menezes, A.J., Vanstone, S.A., Oorschot, P.C.V.: Handbook of Applied Cryptog-
raphy, 1st edn. CRC Press, Inc., Boca Raton (1996)

Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218-238. Springer, New York (1990). https://doi.org/10.1007/
0-387-34805-0-21

Perrig, A.: The BiBa one-time signature and broadcast authentication protocol.
In: CCS 2001, pp. 28-37 (2001)

Petit, J., Stottelaar, B., Feiri, M., Kargl, F.: Remote attacks on automated vehicles
sensors: experiments on camera and liDAR. In: Black Hat Europe, November 2015
Reyzin, L., Reyzin, N.: Better than BiBa: short one-time signatures with fast sign-
ing and verifying. In: Batten, L., Seberry, J. (eds.) ACISP 2002. LNCS, vol. 2384,
pp. 144-153. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45450-
0-11

Rogaway, P., Shrimpton, T.: Cryptographic hash-function basics: definitions, impli-
cations, and separations for preimage resistance, second-preimage resistance, and
collision resistance. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp.
371-388. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-25937-
4.24

Sadeghi, A.R., Wachsmann, C., Waidner, M.: Security and privacy challenges in
industrial internet of things. In: DAC 2015, pp. 1-6 (2015)

Szydlo, M.: Merkle tree traversal in log space and time. In: Cachin, C., Camenisch,
J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 541-554. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-24676-3_32

Yu, T., Sekar, V., Seshan, S., Agarwal, Y., Xu, C.: Handling a trillion (unfixable)
flaws on a billion devices: rethinking network security for the internet-of-things.
In: HotNets XIV, pp. 5:1-5:7 (2015)

https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/3-540-45450-0_11
https://doi.org/10.1007/3-540-45450-0_11
https://doi.org/10.1007/978-3-540-25937-4_24
https://doi.org/10.1007/978-3-540-25937-4_24
https://doi.org/10.1007/978-3-540-24676-3_32

q

Check for
updates

DGM: A Dynamic and Revocable Group
Merkle Signature

Maxime Buser' ™) Joseph K. Liu', Ron Steinfeld!, Amin Sakzad',
and Shi-Feng Sun'+2

! Faculty of Information Technology, Monash University, Melbourne, Australia
{maxime .buser, joseph.liu,ron.steinfeld,amin.sakzad,
shifeng.sun}@monash.edu
2 Data61, CSIRO, Melbourne/Sydney, Australia

Abstract. Group signatures are considered as one of the most promi-
nent cryptographic primitives to ensure privacy. In essence, group signa-
tures ensure the authenticity of messages while the author of the message
remains anonymous. In this study, we propose a dynamic post-quantum
group signature (GS) extending the static G-Merkle group signature
(PQCRYPTO 2018). In particular, our dynamic G-Merkle (DGM) allows
new users to join the group at any time. Similar to G-Merkle scheme,
our DGM only involves symmetric primitives and makes use of a One-
Time Signature scheme (OTS). Each member of the group receives a
certain amount of OTS key pairs and can ask the Manager M for more
if needed. Our DGM also provides an innovative way of signing revo-
cation by employing Symmetric Puncturable Encryption (SPE) recently
appeared in (ACM CCS 2018). DGM provides a significantly smaller
signature size than other GSs based on symmetric primitives and also
reduces the influence of the number of group members on the signature
size and on the limitations of the application of G-Merkle.

Keywords: Group signature - Symmetric cryptography -
Post-quantum cryptography + Hash-based signature

1 Introduction

Group signature (GS) schemes firstly introduced in 1991 by Chaum and van
Heyst [10], have attracted a considerable research attention due their promise
to allow members of a group to anonymously sign a digital message on behalf of
the whole group. A manager is responsible for the good functioning of the group.
The literature defines two main different types of GS: static and dynamic. By
a statics GS, we mean that the members are fixed after the setup phase, while
the dynamic configuration allows new members to join the group even after the
setup phase is completed. Moreover, GS can provide revocation, which basically
means that the manager could revoke the ability of signing a message by a group
member.

© Springer Nature Switzerland AG 2019

K. Sako et al. (Eds.): ESORICS 2019, LNCS 11735, pp. 194-214, 2019.
https://doi.org/10.1007/978-3-030-29959-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29959-0_10&domain=pdf
https://doi.org/10.1007/978-3-030-29959-0_10

DGM: A Dynamic and Revocable Group Merkle Signature 195

Another area which is currently receiving a great research attention is the
post-quantum security given, among others, the launch of the NIST project [1].
By definition, a scheme offers post-quantum security if it is secured against an
adversary who has access to a quantum computer.

Thanks to the relevance of both above-mentioned areas, the research inter-
est for designing GS schemes achieving post-quantum security is increasing.
However, in their goal of creating post-quantum GS, researchers face several
challenges. This includes achieving (practical and) acceptable post-quantum sig-
nature sizes and providing dynamicity. When it comes to post-quantum secu-
rity, lattice-based cryptography is commonly used. However, there exists other
approaches like the code-based cryptography, or the use supersingular isogenies.
In this work, we achieve post-quantum security by using symmetric primitives
as in [6,9]. Our construction contributes to complete the actual lack of research,
that is providing dynamicity and revocation to efficient post-quantum group
signatures based on symmetric primitives only. One of the main issues of the
previous post-quantum symmetric solutions is in fact the size of the generated
signatures. Since the standard symmetric cryptographic algorithms like AES or
SHA are efficient and short, our DGM design and algorithms will also be simple
and efficient and signature sizes will be short compared to other GS based on
symmetric primitives.

1.1 Contributions

In this paper, we introduce a dynamic post-quantum group signature using only
symmetric primitives like hash functions and block ciphers. Our starting point
is the static GS G-Merkle, designed by El Bansarkhani and Misoczki [11]. Our
specific contributions are listed below:

— Introducing DGM: We propose a dynamic G-Merkle (DGM) GS and solve
the problem of G-Merkle to deal with large group by using multiple parallel
Merkle trees (Sects. 4 and 5) (See Fig. 3). Moreover, our extension assures that
each correctly generated signature will go through the verification process.
This is in contrast to dynamic GS of [6], in which a signature will be rejected
if a new member has joined the group after the last update of parameters
with the manager (Sect.5).

— Competitive signature size: Our DGM signatures are significantly shorter
(in term of size) than other dynamic GSs based on symmetric primitives.
Moreover, the influence of the number of group members on the size (length)
of the signature is diminished comparing to G-Merkle. All these have also
been verified by numerical results derived from GS application (See Tables 1
and 3).

— Innovative revocation process: We also propose an innovative way of
revoking the ability to sign of a misbehaved group member with the use of
symmetric puncturable encryption (See Sect. 4.2).

Table 1 compares DGM with other Post-Quantum GS schemes and their func-
tionalities. It shows that more than providing dynamicity and revocation, DGM’s

196 M. Buser et al.

Table 1. Comparison of different GSs and their functionalities for N = 2' being the
number of group members, B be the number of OTS keys per member, A be the security
parameters, and rvk be the number of revoked OTS keys.

GS Sig. size Group PK size | Dynamicity | Revocation
Laguillaumie et al. [20] | O(A\% - log N) | O(A? -log N) | Yes No
Gordon et al. [15] O(X\?-N) O()\?-N) No No
Katz et al. [19] O(A-logN) |O(N) No No
Boneh et al. [6] O\-logN) | O(N) Yes Yes
G-Merkle [11] O(log(N - B)) | O()\) No No
Ling et al. [26] o) o) Yes No
DGM O(\) O(X - rvk) Yes Yes

main advantage is to remove the dependency of the signature size on number
of group members N. Indeed, the size of the group signature is set during the
setup phase and will remain unchanged afterwards.

1.2 Related Works

Chaum et al. [10] were the firsts to theorize the concept of anonymously signing
on behalf of a group. However, the most commonly used definition for dynamic
GS is the one presented by Bellare et al. in [5]. In the field of post-quantum
security, the first hash-based signature scheme designed are one-time signature
schemes (OTS) presented in [21], or more recently in [17]. The work of [28§]
transformed OTS to a multi-signature scheme thanks to a Merkle tree. However,
the weakness with the Merkle signature is that the number of possible signatures
is fixed after setup phase. Therefore, Chalkias et al. [8] proposed to add a fall
back mechanism along with the Merkle tree to add more flexibility. Even if
there exist hash-based signatures, when it comes to design post-quantum GS,
most researchers choose lattice-based cryptography rather than using symmetric
primitives. The works of Libert et al. [22,23], Gordon et al. [15], and Ling et al.
[24,25] demonstrate this trend.

Nevertheless, the construction of the Zero-Knowledge proof [14] ZKBoo [13],
constructed only with symmetric primitives, shows that symmetric primitive can
also be used to design post-quantum signature and group signature. ZKBoo uses
the concept presented by Ishai et al, namely the “MPC in the head” [18]. From
this, one can achieve new optimized Zero-Knowledge proofs such as [2,9] or [19].
The state-of-the-art post-quantum signatures based on symmetric primitives are
constructed by Chase et al., who built digital signature schemes by designing
ZKB++ [9], an optimization of ZKBoo. Alongside ZKB++, either Fiat-Shamir
Transform [12] or Unruh Transform [30] were employed to construct an Non-
Interactive Zero-Knowledge proof (NIZK) [3].

A dynamic GS constructed with symmetric primitives is proposed first by
Boneh et al. [6]. Recently, a new draft of post-quantum GS has been proposed by

DGM: A Dynamic and Revocable Group Merkle Signature 197

Katz et al. [19], with an optimized NIZK based on symmetric primitives and
“MPC in the head”. El Bansarkhani and Misoczki [11] presented G-Merkle a
static GS, which is basically a modification of the Merkle signature.

2 Preliminaries

This section aims to introduce all of the theoretical concepts on which our GS is
constructed. We also formally define a GS in this Section. Our scheme relies on
Merkle tree [28] and is based on two main symmetric primitives: hash function
H and symmetric encryption SE composed by a tuple of polynomial-time algo-
rithms SE = (SE.KeyGen, SE.Enc, SE.Dec) (See Appendix B for more details). We
also use a One-Time Signature scheme OTS, that can be easily constructed by
symmetric primitives, only is defined by a tuple of polynomial-time algorithms
OTS = (OTS.KeyGen, OTS.Sign, OTS.Verify) (See Appendix B for details).

2.1 Puncturable Pseudorandom Function

We first introduce the syntax of a keyed puncturable Pseudorandom function
(PRF) [16,29] F : K x X « Y, where K is the key space, X is the input space,
and Y is to the output space. This function takes an input x € X and a key
k € K and outputs y = F(k, z). Furthermore, it has the following two functions

— F.Punc(k,z) = k,: takes as input a PRF key k € K and an element z € X,
and outputs a punctured secret key k, € K, and

— F.Eval(k;, z) = y: takes as input a punctured key k, € K, and an element
z € X, and outputs an element y, where

F(k,x) ifx#£a

1
1 else. (1)

F.Eval(ky,x) = {

2.2 Puncturable Encryption

In this work, we use another symmetric primitive called symmetric puncturable
encryption (SPE) [29]. This was used in the context of searchable encryption.
The term “puncture” is used because the secret key has been revoked the ability
to decrypt some ciphertext. A d-puncturable SPE with message space PM and
tag space 7, is defined by the following four polynomial time algorithms:

~ SPE.KeyGen(1*,d) = SPE.msk: take as inputs a security parameter A\ and a
positive integer d, which indicates the maximum number of allowed punctured
tags. It outputs a random secret key SPE.skg and sets SPE.msk = (SPE.skg, d),

— SPE.Enc(m, SPE.msk, t) = SPE.ct: the encryption algorithm taking SPE.msk,
a message m, and a tag t as inputs and outputs a ciphertext SPE.ct,

— Punc(SPE.sk;_1,t") = SPE.sk;: the puncture algorithm, which takes as inputs
SPE.sk;_1 and a new tag t' and outputs a new key SPE.sk;. The new SPE.sk;
can decrypt every ciphertext that SPE.sk;_; can except the one encrypted
with t/, and

198 M. Buser et al.

— SPE.Enc(SPE.ct,SPE.sk;,t) = m/ L: a deterministic decryption algorithm,
which takes as inputs a punctured key SPE.sk;, a ciphertext SPE.ct, and a
tag t, and finally outputs a plaintext m.

A security model for SPE is formalized in [29], however, we only use the correct-
ness of SPE in our setting with a security parameters A, which is defined as:

Pr[SPE.Dec(SPE.Enc(SPE.msk,m,t), SPE.sk;,t) = m] = 1. (2)

where t € T\ T; , where T; = {t1,t2,...,t,} is an arbitrary set of distinct tags
punctured at SPE.sk;.

2.3 Group Signature (GS)
A GS is composed of three different identities/parties:

— Manager M: the central authority of group responsible for the perfect func-
tioning of the group, allows new members to join the group, can reveal the
identity of a signer, and can revoke the ability to sign to a misbehaved
member.

— Member: one of the identities/users of the group, who can anonymously gen-
erate a signature, and

— Verifier: is an outsider (which can be a member or manager of the group
as well), who can only verify the validity of a group signature using public
parameters.

Our definition of a dynamic GS (DGS) is based on, [5-7]. A DGS is specified by
the following polynomial time algorithms:

— DGS.Setup(1*, DGS.set) = (DGS.param, DGS.msk): The manager M on input
of the security parameter A and setup parameters DGS.set executes this algo-
rithm and outputs the public parameters DGS.param and the manager’s secret
key DGS.msk.

— DGS.Join: This is an interactive process that takes place between M and an
individual user idy, who desires to join the group. Similar to [7], we assume
that all interactions between parties take place over a secure channel.

— DGS.Sign(m, param;y,) = DGS.o: This algorithm is run by the member idy
with its private parameters param;y and outputs a valid anonymous signature
DGS.o.

— DGS.Verify(m,DGS.o,DGS.param) = 0/1: is a deterministic algorithm that
checks the validity of the signature. It outputs 1 if the signature is a valid
signing of m and 0 otherwise.

— DGS.Open(DGS.o, DGS.msk) = idy: is an algorithm ran by M to reveal the
identity of the signer of DGS.o.

— DGS.Revoke(idys) = DGS.param: is an algorithm that updates the pub-
lic parameters DGS.param based on the misbehaved group member idy. It
revokes the ability of user id;; to generate valid signature.

DGM: A Dynamic and Revocable Group Merkle Signature 199

A DGS achieves the following security requirements:

Definition 1 (Correctness). Let DGS.o be a signature produced by an honest
member idy of DGS and message m. This DGS achieves correctness if and only
if

Pr[DGS.Verify(m, DGS.o, DGS.param) = 0] < negl(\). (3)

Definition 2 (Unforgeability) [6]. A DGS achieves unforgeability if an adver-
sary cannot construct a valid signature DGS.o” which can be linked to an honest
memberidy. A DGS achieves unforgeability if and only if for a security parameter
A the advantage Advior‘qe of an adversary A is

Advie = Pr[Empi?ggg(A) = 1] < negl(\), (4)

where Empi%g’s(/\) is defined in Appendiz A.

Definition 3 (Anonymity [7]). A DGS achieves anonymity if and only if the

signature does not reveal the identity of the signer. A DGS achieves anonymity if

and only if for a security parameter \ the advantage Advﬁ"o" of an adversary

A is
Adv"" = | PrEap)sés (V) = 1] — Pr(BapySes ' (A) = 1]| < negl()), (5)
where E:Bpf‘?ggs_b()\) is defined in Appendiz A.

Definition 4 (Traceability [4]). A DGS achieves traceability if and only if no
adversary can generate a valid signature DGS.o which cannot be associated with
an active member of the group, so DGS.Open(DGS.c,DGS.msk) = 0. A DGS
achieves traceability if and only if for a security parameter A the advantage
Adv® of an adversary A is

Advlece = Pr[EmpﬁfSEeS()\) = 1] < negl(\), (6)

where Empﬁrgges(/\) is defined in Appendiz A.

3 G-Merkle (GM) [11]

G-Merkel (GM) is a post-quantum GS constructed from symmetric primitives
and based on the idea of the Merkle signature [28]. GM uses a hash function H,
an OTS scheme, and a symmetric encryption scheme SE. In the following, we
give an overview of such a scheme.

200 M. Buser et al.

GM Overview: The manager M has the responsibility for a group of N users,
and each user will be allowed to sign B messages. This means that each user
possesses B OTS key pairs. Therefore, the group public key GM.gpk will be the
Merkle root of the tree generated over B - N leaves where each leaf is an OTS
public key. Each leaf is labelled from 1 to B- N and the i-th member will receive
the OTS keys corresponding to leaves {B - (i — 1) + 1,..., B - i}. Similar to
traditional Merkle signature, a signature is composed of an OTS signature and
the path from OTS.pk to GM.gpk. However, in order to ensure user anonymity, M
“Shuffles” the set of leaves L. During the “Shuffle” process, the set L is composed
of tuples {(OTS.pk;, GM.pos;), ..., (OTS.pkg.n, GM.posz. 5) }, where GM.pos; =
SE.Enc(i, GM.msk) and GM.msk is the M’s secret key. The “Shuffle” procedure
ends by ordering the set L according to GM.pos. Another modification of the first
layer of nodes is then built by not only including the leaves in the hashes, but
also the encrypted values of the respective leaves, e.g. H(OTS.pk;||GM.pos;) (see
Fig.1). Finally, M generates the Merkle tree which gives GM.gpk. The “Shuffle”
process prevents an adversary from identifying sub-tree and hence guessing the
identity of the signer. Figurel shows the GM tree structure for N = 2 and
B =2, where GM.pos; < GM.pos, < GM.pos, < GM.pos;.

hs = H(hy|lh2) he = H(hs||hs)

‘ hy

hy
= H(OTS.pk, ||GM. pos,)

OTS. pk; OTS. pk, OTS. pks OTS. pky
GM. pos; GM. pos, GM. posz GM. pos,

Fig. 1. G-Merkle: tree structure

GM Limitations: The lack of flexibility of GM appears to be its main limita-
tion. Undeniably, GM is reserved for static groups because the maximum number
of available OTS key pairs will