
Kazue Sako · Steve Schneider ·
Peter Y. A. Ryan (Eds.)

LN
CS

 1
17

35

24th European Symposium
on Research in Computer Security
Luxembourg, September 23–27, 2019, Proceedings, Part I

Computer Security –
ESORICS 2019

Lecture Notes in Computer Science 11735

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Kazue Sako • Steve Schneider •

Peter Y. A. Ryan (Eds.)

Computer Security –

ESORICS 2019
24th European Symposium
on Research in Computer Security
Luxembourg, September 23–27, 2019
Proceedings, Part I

123

Editors
Kazue Sako
NEC Corporation
Kawasaki, Japan

Steve Schneider
University of Surrey
Guildford, UK

Peter Y. A. Ryan
University of Luxembourg
Esch-sur-Alzette, Luxembourg

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-29958-3 ISBN 978-3-030-29959-0 (eBook)
https://doi.org/10.1007/978-3-030-29959-0

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-8365-6993
https://orcid.org/0000-0002-1677-9034
https://doi.org/10.1007/978-3-030-29959-0

Preface

This book contains the papers that were selected for presentation and publication at the
24th European Symposium on Research in Computer Security (ESORICS 2019) which
was held together with affiliated workshops in Luxembourg, September 23–27, 2019.
The aim of ESORICS is to further the progress of research in computer, information,
and cyber security, as well as in privacy, by establishing a European forum for bringing
together researchers in these areas, by promoting the exchange of ideas with system
developers, and by encouraging links with researchers in related fields.

In response to the call for papers, 344 papers were submitted to the conference.
These papers were evaluated on the basis of their significance, novelty, and technical
quality. Each paper was reviewed by at least three members of the Program Committee
and external reviewers, and papers authored by Program Committee members had four
reviewers. The reviewing process was single-blind. The Program Committee had
intensive discussions which were held via EasyChair. Finally, 67 papers were selected
for presentation at the conference, giving an acceptance rate of 19.5%. We were also
delighted to welcome keynote talks from Adi Shamir, Véronique Cortier, and Bart
Preneel.

Following the reviews, two papers were selected for joint Best Paper Award, to
share the 1,000 EUR prize generously provided by Springer: “A Frame-work for
Evaluating Security in the Presence of Signal Injection Attacks,” by Ilias Giechaskiel,
Youqian Zhang, and Kasper Rasmussen; and “Breakdown Resilience of Key Exchange
Protocols: NewHope, TLS 1.3, and Hybrids,” by Jacqueline Brendel, Marc Fischlin,
and Felix Günther.

The Program Committee consisted of 95 members across 24 countries. There were
submissions from a total of 1,071 authors across 46 countries, with 23 countries
represented among the accepted papers.

ESORICS 2019 would not have been possible without the contributions of the many
volunteers who freely gave their time and expertise. We would like to thank the
members of the Program Committee and the external reviewers for their substantial
work in evaluating the papers. We would also like to thank the organization chair,
Peter B. Roenne, the workshop chair, Joaquin Garcia-Alfaro, and all workshop
co-chairs, the posters chair, Alfredo Rial, the publicity chair, Cristina Alcaraz, and the
ESORICS Steering Committee and its chair, Sokratis Katsikas.

Finally, we would like to express our thanks to the authors who submitted papers to
ESORICS. They, more than anyone else, are what makes this conference possible.

We hope that you found the program to be stimulating and a source of inspiration
for future research.

July 2019 Kazue Sako
Steve Schneider

Peter Y. A. Ryan

Organization

ESORICS Steering Committee

Sokratis Katsikas (Chair) NTNU, Norway
Michael Backes Saarland University, Germany
Joachim Biskup TU Dortmund, Germany
Frederic Cuppens IMT Atlantique, France
Sabrina De Capitani

di Vimercati
Università degli Studi di Milano, Italy

Dieter Gollmann Hamburg University of Technology, Germany
Mirek Kutylowski Wroclaw University of Technology, Poland
Javier Lopez University of Malaga, Spain
Jean-Jacques Quisquater University of Louvain, Belgium
Peter Y. A. Ryan University of Luxembourg, Luxembourg
Pierangela Samarati Università degli Studi di Milano, Italy
Einar Snekkenes NTNU, Norway
Michael Waidner Fraunhofer, Germany

Program Committee

Mitsuaki Akiyama NTT, Japan
Cristina Alcaraz University of Malaga, Spain
Elli Androulaki IBM Research - Zurich, Switzerland
Frederik Armknecht Universität Mannheim, Germany
Vijay Atluri Rutgers University, USA
Marina Blanton University at Buffalo, USA
Carlo Blundo Università degli Studi di Salerno, Italy
Christian Cachin University of Bern, Switzerland
Alvaro Cardenas The University of Texas at Dallas, USA
Aldar C-F. Chan University of Hong Kong, Hong Kong, China
Yan Chen Northwestern University, USA
Sherman S. M. Chow The Chinese University of Hong Kong, Hong Kong,

China
Mauro Conti University of Padua, Italy
Jorge Cuellar Siemens AG, Germany
Frédéric Cuppens Telecom Bretagne, France
Nora Cuppens-Boulahia IMT Atlantique, France
Marc Dacier EURECOM, France
Sabrina De Capitani

di Vimercati
Università degli Studi di Milano, Italy

Hervé Debar Telecom SudParis, France
Stéphanie Delaune CNRS, France

Roberto Di Pietro Hamad Bin Khalifa University, Qatar
Josep Domingo-Ferrer Universitat Rovira i Virgili, Spain
Haixin Duan Tsinghua University, China
François Dupressoir University of Surrey, UK
José M. Fernandez Ecole Polytechnique de Montreal, Canada
Jose-Luis Ferrer-Gomila University of the Balearic Islands, Spain
Simone Fischer-Hübner Karlstad University, Sweden
Simon Foley Norwegian NTNU, Norway
Sara Foresti Università degli Studi di Milano, Italy
David Galindo University of Birmingham, UK
Debin Gao Singapore Management University, Singapore
Joaquin Garcia-Alfaro Telecom SudParis, France
Dieter Gollmann Hamburg University of Technology, Germany
Stefanos Gritzalis University of the Aegean, Greece
Guofei Gu Texas A&M University, USA
Juan Hernández-Serrano Universitat Politècnica de Catalunya, Spain
Xinyi Huang Fujian Normal University, China
Ghassan Karame NEC Laboratories Europe, Germany
Vasilios Katos Bournemouth University, UK
Sokratis Katsikas NTNU, Norway
Stefan Katzenbeisser University of Passau, Germany
Steve Kremer Inria, France
Marina Krotofil FireEye, USA
Costas Lambrinoudakis University of Piraeus, Greece
Yingjiu Li Singapore Management University, Singapore
Kaitai Liang University of Surrey, UK
Hoon Wei Lim Royal Holloway, University of London, UK
Joseph Liu Monash University, Australia
Peng Liu The Pennsylvania State University, USA
Xiapu Luo The Hong Kong Polytechnic, Hong Kong, China
Konstantinos

Markantonakis
Royal Holloway, University of London, UK

Fabio Martinelli IIT-CNR, Italy
Ivan Martinovic University of Oxford, UK
Sjouke Mauw University of Luxembourg, Luxembourg
Catherine Meadows NRL, USA
Weizhi Meng Technical University of Denmark, Denmark
Chris Mitchell Royal Holloway, University of London, UK
John Mitchell Stanford University, USA
Tatsuya Mori Waseda University, Japan
Haralambos Mouratidis University of Brighton, UK
David Naccache DIENS, ENS, CNRS, PSL University, Paris, France
Satoshi Obana Hosei University, Japan
Martín Ochoa Cyxtera Technologies, Colombia
Rolf Oppliger eSECURITY Technologies, Switzerland
Andrew Paverd Microsoft Research, UK

viii Organization

Olivier Pereira UCLouvain, Belgium
Günther Pernul Universität Regensburg, Germany
Joachim Posegga University of Passau, Germany
Bart Preneel Katholieke Universiteit Leuven, Belgium
Christina Pöpper New York University, USA
Indrajit Ray Colorado State University, USA
Giovanni Russello The University of Auckland, New Zealand
Mark Ryan University of Birmingham, UK
Reyhaneh Safavi-Naini University of Calgary, Canada
Kazue Sako NEC, Japan
Pierangela Samarati Università degli Studi di Milano, Italy
Damien Sauveron XLIM – University of Limoges, UMR CNRS 7252,

France
Steve Schneider University of Surrey, UK
Einar Snekkenes NTNU, Norway
Willy Susilo University of Wollongong, Australia
Pawel Szalachowski SUTD, Singapore
Qiang Tang Luxembourg Institute of Science and Technology,

Luxembourg
Qiang Tang New Jersey Institute of Technology, USA
Juan Tapiador Universidad Carlos III de Madrid, Spain
Nils Ole Tippenhauer CISPA, Germany
Helen Treharne University of Surrey, UK
Aggeliki Tsohou Ionian University, Greece
Jaideep Vaidya Rutgers University, USA
Luca Viganö King’s College London, UK
Michael Waidner Fraunhofer, Germany
Cong Wang City University of Hong Kong, Hong Kong, China
Lingyu Wang Concordia University, Canada
Edgar Weippl SBA Research, Austria
Christos Xenakis University of Piraeus, Greece
Zhe Xia Wuhan University of Technology, China
Kehuan Zhang The Chinese University of Hong Kong, Hong Kong,

China
Sencun Zhu The Pennsylvania State University, USA

Additional Reviewers

Abidin, Aysajan
Abusalah, Hamza
Aggelogianni, Anna
Ahmed, Chuadhry Mujeeb
Akand, Mamunur
Al Maqbali Fatma

Al-Mallah, Ranwa
Andriotis, Panagiotis
Anglès-Tafalla, Carles
Anikeev, Maxim
Asif, Hafiz
Avizheh, Sepideh

Bamiloshin, Michael
Bampatsikos, Michail
Batra, Gunjan
Belgacem, Boutheyna
Belles, Marta
Berger, Christian

Organization ix

Bezawada, Bruhadeshwar
Bkakria, Anis
Blanco-Justicia, Alberto
Blazy, Olivier
Bolgouras, Vaios
Bountakas, Panagiotis
Boureanu, Ioana
Brandt, Markus
Böhm, Fabian
Cao, Chen
Catuogno, Luigi
Cetinkaya, Orhan
Chadha, Rohit
Chan, Mun Choon
Chawla, Gagandeep
Chen, Haixia
Chen, Jianjun
Chen, Liqun
Chen, Long
Chen, Xihui
Chen, Yueqi
Chothia, Tom
Ciampi, Michele
Cook, Andrew
Cortier, Véronique
Costa, Nüria
Cui, Shujie
Dang, Hung
Dargahi, Tooska
Dashevskyi, Stanislav
de Miceli, Jean-Yves
De Salve, Andrea
Debant, Alexandre
Deo, Amit
Diamantopoulou, Vasiliki
Dietz, Marietheres
Divakaran, Dinil Mon
Dominguez Trujillo,

Antonio
Dryja, Tadge
Du, Minxin
Du, Xuechao
Dufour Sans, Edouard
Duman, Onur
Duong, Dung
Elkhiyaoui, Kaoutar

Englbrecht, Ludwig
Espes, David
Fan, Xiong
Farao, Aristeidis
Farhang, Sadegh
Fdhila, Walid
Fenghao, Xu
Ferreira Torres, Christof
Gangwal, Ankit
Ge, Chunpeng
Geneiatakis, Dimitris
Georgiopoulou,
Zafeiroula
Giorgi, Giacomo
Groll, Sebastian
Gupta, Maanak
Gusenbauer, Matthias
Han, Jinguang
Hassan, Fadi
Hermans, Jens
Hicks, Christopher
Hirschi, Lucca
Hlavacek, Tomas
Homoliak, Ivan
Horne, Ross
Hu, Kexin
Iliou, Christos
Jacomme, Charlie
Jeitner, Philipp
Jiongyi, Chen
Jonker, Hugo
Judmayer, Aljosha
Kalloniatis, Christos
Kambourakis, Georgios
Karamchandani, Neeraj
Kasinathan, Prabhakaran
Kavousi, Mohammad
Kern, Sascha
Khan, Muhammad Hassan
Kim, Jongkil
Klaedtke, Felix
Kohls, Katharina
Kostoulas, Theodoros
Koutroumpouxos,

Nikolaos
Kuchta, Veronika

Köstler, Johannes
La Marra, Antonio
Labani, Hasan
Lakshmanan, Sudershan
Lal, Chhagan
Lazzeretti, Riccardo
Lee, Jehyun
Leng, Xue
León, Olga
Li, Li
Li, Shujun
Li, Wanpeng
Li, Wenjuan
Li, Xing
Li, Xusheng
Li, Yanan
Li, Zengpeng
Li, Zhenyuan
Libert, Benoît
Lin, Chengjun
Lin, Yan
Liu, Ximing
Lobe Kome, Ivan Marco
Losiouk, Eleonora
Loukas, George
Lu, Yang
Lu, Yuan
Lyvas, Christos
Ma, Haoyu
Ma, Jack P. K.
Maene, Pieter
Majumdar, Suryadipta
Malliaros, Stefanos
Mardziel, Piotr
Marin, Eduard
Marson, Giorgia
Martinez, Sergio
Matyunin, Nikolay
Menges, Florian
Menghan, Sun
Michailidou, Christina
Milani, Simone
Minaud, Brice
Minematsu, Kazuhiko
Mizera, Andrzej
Moch, Alexander

x Organization

Moessner, Klaus
Mohamady, Meisam
Mohammadi, Farnaz
Moisan, Frederic
Moreau, Solène
Moreira, Josè
Murayama, Yuko
Murmann, Patrick
Muñoz, Jose L.
Mykoniati, Maria
Ng, Lucien K. L.
Ngamboe, Mikaela
Nguyen, Quoc Phong
Ning, Jianting
Niu, Liang
Nomikos, Nikolaos
Ntantogian, Christoforos
Oqaily, Alaa
Oqaily, Momen
Ouattara, Jean-Yves
Oya, Simon
Panaousis, Manos
Papaioannou, Thanos
Parra Rodriguez, Juan D.
Parra-Arnau, Javier
Pasa, Luca
Paspatis, Ioannis
Peeters, Roel
Pelosi, Gerardo
Petrovic, Slobodan
Pfeffer, Katharina
Pitropakis, Nikolaos
Poh, Geong Sen
Polian, Ilia
Prestwich, Steve
Puchta, Alexander
Putz, Benedikt
Pöhls, Henrich C.
Qiu, Tian
Ramírez-Cruz, Yunior
Ray, Indrani
Reuben, Jenni

Rezk, Tamara
Rios, Ruben
Rizos, Athanasios
Román-García, Fernando
Rozic, Vladimir
Rupprecht, David
Sakuma, Jun
Saracino, Andrea
Schindler, Philipp
Schmidt, Carsten
Schnitzler, Theodor
Schumi, Richard
Sempreboni, Diego
Sengupta, Binanda
Sentanoe, Stewart
Sepideh Avizheh,

Shuai Li
Shikfa, Abdullatif
Shioji, Eitaro
Shirani, Paria
Shrishak, Kris
Shuaike, Dong
Simo, Hervais
Singelée, Dave
Siniscalchi, Luisa
Situ, Lingyun
Smith, Zach
Smyth, Ben
Song, Yongcheng
Soriente, Claudio
Soumelidou, Aikaterini
Stifter, Nicholas
Sun, Yuanyi
Sundararajan, Vaishnavi
Tabiban, Azadeh
Tajan, Louis
Taubmann, Benjamin
Thomasset, Corentin
Tian, Yangguang
Tripathi, Nikhil
Tueno, Anselme
Ullrich, Johanna

Vanhoef, Mathy
Venugopalan, Sarad
Veroni, Eleni
Vielberth, Manfred
Viet Xuan Phuong, Tran
Walzer, Stefan
Wang, Daibin
Wang, Hongbing
Wang, Jiafan
Wang, Tielei
Wang, Xiaolei
Wang, Xiuhua
Wang, Zhi
Wattiau, Gaetan
Wesemeyer, Stephan
Wong, Harry W. H.
Wu, Daoyuan
Wu, Huangting
Xu, Jia
Xu, Jiayun
Xu, Ke
Xu, Shengmin
Xu, Yanhong
Yang, Kang
Yang, Shaojun
Yang, Wenjie
Yautsiukhin, Artsiom
Yuan, Chen
Zalonis, Jasmin
Zamyatin, Alexei
Zavatteri, Matteo
Zhang, Chao
Zhang, Liang Feng
Zhang, Yuexin
Zhao, Guannan
Zhao, Yongjun
Zheng, Yu
Zhou, Dehua
Zhou, Wei
Zhu, Tiantian
Zou, Qingtian
Zuo, Cong

Organization xi

Abstracts of Keynote Talks

The Insecurity of Machine Learning:
Problems and Solutions

Adi Shamir

Computer Science Department, The Weizmann Institute of Science, Israel

Abstract. The development of deep neural networks in the last decade had
revolutionized machine learning and led to major improvements in the precision
with which we can perform many computational tasks. However, the discovery
five years ago of adversarial examples in which tiny changes in the input can
fool well trained neural networks makes it difficult to trust such results when the
input can be manipulated by an adversary. This problem has many applications
and implications in object recognition, autonomous driving, cyber security, etc,
but it is still far from being understood. In particular, there had been no con-
vincing explanations why such adversarial examples exist, and which parame-
ters determine the number of input coordinates one has to change in order to
mislead the network. In this talk I will describe a simple mathematical frame-
work which enables us to think about this problem from a fresh perspective,
turning the existence of adversarial examples in deep neural networks from a
baffling phenomenon into an unavoidable consequence of the geometry of Rn

under the Hamming distance, which can be quantitatively analyzed.

Electronic Voting: A Journey to Verifiability
and Vote Privacy

Véronique Cortier

CNRS, LORIA, UMR 7503, 54506, Vandoeuvre-lès-Nancy, France

Abstract. Electronic voting aims to achieve the same properties as traditional
paper based voting. Even when voters vote from their home, they should be
given the same guarantees, without having to trust the election authorities, the
voting infrastructure, and/or the Internet network. The two main security goals
are vote privacy: no one should know how I voted; and verifiability: a voter
should be able to check that the votes have been properly counted. In this talk,
we will explore the subtle relationships between these properties and we will see
how they can be realized and proved.

First, verifiability and privacy are often seen as antagonistic and some
national agencies even impose a hierarchy between them: first privacy, and then
verifiability as an additional feature. Verifiability typically includes individual
verifiability (a voter can check that her ballot is counted); universal verifiability
(anyone can check that the result corresponds to the published ballots); and
eligibility verifiability (only legitimate voters may vote). Actually, we will see
that privacy implies individual verifiability. In other words, systems without
individual verifiability cannot achieve privacy (under the same trust assump-
tions).

Moreover, it has been recently realised that all existing definitions of vote
privacy in a computational setting implicitly assume an honest voting server: an
adversary cannot tamper with the bulletin board. As a consequence, voting
schemes are proved secure only against an honest voting server while they are
designed and claimed to resist a dishonest voting server. Not only are the
security guarantees too weak, but attacks are missed. We propose a novel notion
of ballot privacy against a malicious bulletin board. The notion is flexible in that
it captures various capabilities of the attacker to tamper with the ballots, yielding
different flavours of security.

Finally, once the security definitions are set, we need to carefully establish
when a scheme satisfies verifiability and vote privacy. We have developed a
framework in EasyCrypt for proving both verifiability and privacy, yielding
machine-checked security proof. We have applied our framework to two
existing schemes, namely Helios and Belenios, and many of their variants.

Cryptocurrencies and Distributed Consensus:
Hype and Science

Bart Preneel

COSIC, an imec lab at KU Leuven, Belgium

Abstract. This talk will offer a perspective on the fast rise of cryptocurrencies
based on proof of work, with Bitcoin as most prominent example. In about a
decade, a white paper of nine pages has resulted in massive capital investments,
a global ecosystem with a market capitalization of several hundreds of billions
of dollars and the redefinition of the term crypto (which now means cryp-
tocurrencies). We will briefly describe the history of electronic currencies and
clarify the main principles behind Nakamoto Consensus. Next, we explain how
several variants attempt to improve the complex tradeoffs between public ver-
ifiability, robustness, privacy and performance. We describe how Markov
Decision processes can be used to compare in an objective way the proposed
improvements in terms of chain quality, censorship resistance and robustness
against selfish mining and double spending attacks. We conclude with a dis-
cussion of open problems.

Contents – Part I

Machine Learning

Privacy-Enhanced Machine Learning with Functional Encryption 3
Tilen Marc, Miha Stopar, Jan Hartman, Manca Bizjak,
and Jolanda Modic

Towards Secure and Efficient Outsourcing of Machine
Learning Classification . 22

Yifeng Zheng, Huayi Duan, and Cong Wang

Confidential Boosting with Random Linear Classifiers for Outsourced
User-Generated Data . 41

Sagar Sharma and Keke Chen

BDPL: A Boundary Differentially Private Layer Against Machine
Learning Model Extraction Attacks . 66

Huadi Zheng, Qingqing Ye, Haibo Hu, Chengfang Fang, and Jie Shi

Information Leakage

The Leakage-Resilience Dilemma . 87
Bryan C. Ward, Richard Skowyra, Chad Spensky, Jason Martin,
and Hamed Okhravi

A Taxonomy of Attacks Using BGP Blackholing . 107
Loïc Miller and Cristel Pelsser

Local Obfuscation Mechanisms for Hiding Probability Distributions 128
Yusuke Kawamoto and Takao Murakami

A First Look into Privacy Leakage in 3D Mixed Reality Data 149
Jaybie A. de Guzman, Kanchana Thilakarathna, and Aruna Seneviratne

Signatures and Re-encryption

Flexible Signatures: Making Authentication Suitable
for Real-Time Environments. 173

Duc V. Le, Mahimna Kelkar, and Aniket Kate

DGM: A Dynamic and Revocable Group Merkle Signature 194
Maxime Buser, Joseph K. Liu, Ron Steinfeld, Amin Sakzad,
and Shi-Feng Sun

Puncturable Proxy Re-Encryption Supporting to Group Messaging Service. . . 215
Tran Viet Xuan Phuong, Willy Susilo, Jongkil Kim, Guomin Yang,
and Dongxi Liu

Generic Traceable Proxy Re-encryption and Accountable Extension
in Consensus Network . 234

Hui Guo, Zhenfeng Zhang, Jing Xu, and Mingyuan Xia

Side Channels

Side-Channel Aware Fuzzing . 259
Philip Sperl and Konstantin Böttinger

NetSpectre: Read Arbitrary Memory over Network 279
Michael Schwarz, Martin Schwarzl, Moritz Lipp, Jon Masters,
and Daniel Gruss

maskVerif: Automated Verification of Higher-Order Masking
in Presence of Physical Defaults . 300

Gilles Barthe, Sonia Belaïd, Gaëtan Cassiers, Pierre-Alain Fouque,
Benjamin Grégoire, and Francois-Xavier Standaert

Automated Formal Analysis of Side-Channel Attacks
on Probabilistic Systems . 319

Chris Novakovic and David Parker

Formal Modelling and Verification

A Formal Model for Checking Cryptographic API Usage in JavaScript 341
Duncan Mitchell and Johannes Kinder

Contingent Payments on a Public Ledger: Models and Reductions
for Automated Verification. 361

Sergiu Bursuc and Steve Kremer

Symbolic Analysis of Terrorist Fraud Resistance. 383
Alexandre Debant, Stéphanie Delaune, and Cyrille Wiedling

Secure Communication Channel Establishment: TLS 1.3
(over TCP Fast Open) vs. QUIC . 404

Shan Chen, Samuel Jero, Matthew Jagielski, Alexandra Boldyreva,
and Cristina Nita-Rotaru

xx Contents – Part I

Attacks

Where to Look for What You See Is What You Sign? User Confusion
in Transaction Security . 429

Vincent Haupert and Stephan Gabert

On the Security and Applicability of Fragile Camera Fingerprints 450
Erwin Quiring, Matthias Kirchner, and Konrad Rieck

Attacking Speaker Recognition Systems with Phoneme Morphing 471
Henry Turner, Giulio Lovisotto, and Ivan Martinovic

Practical Bayesian Poisoning Attacks on Challenge-Based Collaborative
Intrusion Detection Networks . 493

Weizhi Meng, Wenjuan Li, Lijun Jiang, Kim-Kwang Raymond Choo,
and Chunhua Su

A Framework for Evaluating Security in the Presence of Signal
Injection Attacks . 512

Ilias Giechaskiel, Youqian Zhang, and Kasper B. Rasmussen

Secure Protocols

Formalizing and Proving Privacy Properties of Voting Protocols
Using Alpha-Beta Privacy . 535

Sébastien Gondron and Sebastian Mödersheim

ProCSA: Protecting Privacy in Crowdsourced Spectrum Allocation 556
Max Curran, Xiao Liang, Himanshu Gupta, Omkant Pandey,
and Samir R. Das

Breaking Unlinkability of the ICAO 9303 Standard for e-Passports
Using Bisimilarity . 577

Ihor Filimonov, Ross Horne, Sjouke Mauw, and Zach Smith

Symmetric-Key Corruption Detection: When XOR-MACs Meet
Combinatorial Group Testing . 595

Kazuhiko Minematsu and Norifumi Kamiya

Useful Tools

Finding Flaws from Password Authentication Code in Android Apps 619
Siqi Ma, Elisa Bertino, Surya Nepal, Juanru Li, Diethelm Ostry,
Robert H. Deng, and Sanjay Jha

Contents – Part I xxi

Identifying Privilege Separation Vulnerabilities in IoT Firmware
with Symbolic Execution . 638

Yao Yao, Wei Zhou, Yan Jia, Lipeng Zhu, Peng Liu, and Yuqing Zhang

iCAT: An Interactive Customizable Anonymization Tool 658
Momen Oqaily, Yosr Jarraya, Mengyuan Zhang, Lingyu Wang,
Makan Pourzandi, and Mourad Debbabi

Monitoring the GDPR . 681
Emma Arfelt, David Basin, and Søren Debois

Blockchain and Smart Contracts

Incentives for Harvesting Attack in Proof of Work Mining Pools 703
Yevhen Zolotavkin and Veronika Kuchta

A Lattice-Based Linkable Ring Signature Supporting Stealth Addresses 726
Zhen Liu, Khoa Nguyen, Guomin Yang, Huaxiong Wang,
and Duncan S. Wong

Annotary: A Concolic Execution System for Developing Secure
Smart Contracts . 747

Konrad Weiss and Julian Schütte

PDFS: Practical Data Feed Service for Smart Contracts 767
Juan Guarnizo and Pawel Szalachowski

Towards a Marketplace for Secure Outsourced Computations 790
Hung Dang, Dat Le Tien, and Ee-Chien Chang

Author Index . 809

xxii Contents – Part I

Contents – Part II

Software Security

Automatically Identifying Security Checks for Detecting Kernel
Semantic Bugs . 3

Kangjie Lu, Aditya Pakki, and Qiushi Wu

Uncovering Information Flow Policy Violations in C Programs
(Extended Abstract) . 26

Darion Cassel, Yan Huang, and Limin Jia

BinEye: Towards Efficient Binary Authorship Characterization
Using Deep Learning. 47

Saed Alrabaee, ElMouatez Billah Karbab, Lingyu Wang,
and Mourad Debbabi

Static Detection of Uninitialized Stack Variables in Binary Code 68
Behrad Garmany, Martin Stoffel, Robert Gawlik, and Thorsten Holz

Towards Automated Application-Specific Software Stacks 88
Nicolai Davidsson, Andre Pawlowski, and Thorsten Holz

Cryptographic Protocols

Identity-Based Encryption with Security Against the KGC:
A Formal Model and Its Instantiation from Lattices. 113

Keita Emura, Shuichi Katsumata, and Yohei Watanabe

Forward-Secure Puncturable Identity-Based Encryption for Securing
Cloud Emails . 134

Jianghong Wei, Xiaofeng Chen, Jianfeng Wang, Xuexian Hu,
and Jianfeng Ma

Feistel Structures for MPC, and More . 151
Martin R. Albrecht, Lorenzo Grassi, Léo Perrin, Sebastian Ramacher,
Christian Rechberger, Dragos Rotaru, Arnab Roy,
and Markus Schofnegger

Arithmetic Garbling from Bilinear Maps . 172
Nils Fleischhacker, Giulio Malavolta, and Dominique Schröder

Security Models

SEPD: An Access Control Model for Resource Sharing
in an IoT Environment. 195

Henrique G. G. Pereira and Philip W. L. Fong

Nighthawk: Transparent System Introspection from Ring -3 217
Lei Zhou, Jidong Xiao, Kevin Leach, Westley Weimer, Fengwei Zhang,
and Guojun Wang

Proactivizer: Transforming Existing Verification Tools into Efficient
Solutions for Runtime Security Enforcement. 239

Suryadipta Majumdar, Azadeh Tabiban, Meisam Mohammady,
Alaa Oqaily, Yosr Jarraya, Makan Pourzandi, Lingyu Wang,
and Mourad Debbabi

Enhancing Security and Dependability of Industrial Networks
with Opinion Dynamics . 263

Juan E. Rubio, Mark Manulis, Cristina Alcaraz, and Javier Lopez

Searchable Encryption

Dynamic Searchable Symmetric Encryption with Forward
and Stronger Backward Privacy . 283

Cong Zuo, Shi-Feng Sun, Joseph K. Liu, Jun Shao, and Josef Pieprzyk

Towards Efficient Verifiable Forward Secure Searchable
Symmetric Encryption . 304

Zhongjun Zhang, Jianfeng Wang, Yunling Wang, Yaping Su,
and Xiaofeng Chen

Generic Multi-keyword Ranked Search on Encrypted Cloud Data 322
Shabnam Kasra Kermanshahi, Joseph K. Liu, Ron Steinfeld,
and Surya Nepal

An Efficiently Searchable Encrypted Data Structure for Range Queries 344
Florian Kerschbaum and Anselme Tueno

Privacy

GDPiRated – Stealing Personal Information On- and Offline 367
Matteo Cagnazzo, Thorsten Holz, and Norbert Pohlmann

Location Privacy-Preserving Mobile Crowd Sensing
with Anonymous Reputation . 387

Xun Yi, Kwok-Yan Lam, Elisa Bertino, and Fang-Yu Rao

xxiv Contents – Part II

OCRAM-Assisted Sensitive Data Protection on ARM-Based Platform 412
Dawei Chu, Yuewu Wang, Lingguang Lei, Yanchu Li, Jiwu Jing,
and Kun Sun

Privacy-Preserving Collaborative Medical Time Series Analysis
Based on Dynamic Time Warping. 439

Xiaoning Liu and Xun Yi

Key Exchange Protocols

IoT-Friendly AKE: Forward Secrecy and Session Resumption Meet
Symmetric-Key Cryptography. 463

Gildas Avoine, Sébastien Canard, and Loïc Ferreira

Strongly Secure Identity-Based Key Exchange with Single
Pairing Operation . 484

Junichi Tomida, Atsushi Fujioka, Akira Nagai, and Koutarou Suzuki

A Complete and Optimized Key Mismatch Attack on NIST
Candidate NewHope . 504

Yue Qin, Chi Cheng, and Jintai Ding

Breakdown Resilience of Key Exchange Protocols: NewHope,
TLS 1.3, and Hybrids . 521

Jacqueline Brendel, Marc Fischlin, and Felix Günther

Web Security

The Risks of WebGL: Analysis, Evaluation and Detection 545
Alex Belkin, Nethanel Gelernter, and Israel Cidon

Mime Artist: Bypassing Whitelisting for the Web with JavaScript
Mimicry Attacks . 565

Stefanos Chaliasos, George Metaxopoulos, George Argyros,
and Dimitris Mitropoulos

Fingerprint Surface-Based Detection of Web Bot Detectors 586
Hugo Jonker, Benjamin Krumnow, and Gabry Vlot

Testing for Integrity Flaws in Web Sessions . 606
Stefano Calzavara, Alvise Rabitti, Alessio Ragazzo,
and Michele Bugliesi

Author Index . 625

Contents – Part II xxv

Machine Learning

Privacy-Enhanced Machine Learning
with Functional Encryption

Tilen Marc1,2, Miha Stopar1, Jan Hartman1, Manca Bizjak1(B),
and Jolanda Modic1

1 XLAB d.o.o., Ljubljana, Slovenia
{tilen.marc, miha.stopar, jan.hartman, manca.bizjak,

jolanda.modic}@xlab.si
2 Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia

Abstract. Functional encryption is a generalization of public-key
encryption in which possessing a secret functional key allows one to learn
a function of what the ciphertext is encrypting. This paper introduces
the first fully-fledged open source cryptographic libraries for functional
encryption. It also presents how functional encryption can be used to
build efficient privacy-enhanced machine learning models and it pro-
vides an implementation of three prediction services that can be applied
on the encrypted data. Finally, the paper discusses the advantages and
disadvantages of the alternative approach for building privacy-enhanced
machine learning models by using homomorphic encryption.

Keywords: Functional encryption · Cryptographic library ·
Machine learning · Homomorphic encryption · Privacy

1 Introduction

Today, almost every part of our lives is digitalized: products, services, business
operations. With the constant increase in connectivity and digitalization, huge
amounts of personal data are often collected without any real justification or
need. On the other hand, there is a growing concern over who is in possession
of this data and how it is being used. With increasingly more privacy-aware
individuals and with ever stricter data protection requirements (GDPR, ePri-
vacy CCPA), organizations are seeking a compromise that will enable them to
collect and analyse their users’ data, to innovate, optimize, and grow their busi-
nesses, while at the same time comply with legal frameworks and keep trust and
confidence of their users.

When individuals themselves use technologies like end-to-end encryption to
protect their data, this can greatly improve their privacy online because the ser-
vice providers never see raw data. But when a service provider does not have

T. Marc and M. Stopar—Contributed equally to this work.

c© Springer Nature Switzerland AG 2019
K. Sako et al. (Eds.): ESORICS 2019, LNCS 11735, pp. 3–21, 2019.
https://doi.org/10.1007/978-3-030-29959-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29959-0_1&domain=pdf
https://doi.org/10.1007/978-3-030-29959-0_1

4 T. Marc et al.

access to raw data, it cannot analyse the data and it thus cannot offer func-
tionalities like search or data classification. Indeed, almost all rich functionality
to which users are accustomed today is out of the question when encryption
is used. However, there are encryption techniques which do not impose a dras-
tic reduction of data utility and consequently functionality. The probably most
known such technique is Homomorphic Encryption (HE). HE enables additions
and multiplications over the encrypted data, which consequently enables higher-
level functionality such as machine learning on the encrypted data. However,
HE is computationally expensive and significantly reduces service performance.
Another technique, perhaps lesser known, is Functional Encryption (FE). Simi-
larly as HE, it allows computation on encrypted data. More precisely, the owner
of a decryption key can learn a function of the encrypted data. This gives a pos-
sibility to use the encrypted data for various analysis or machine learning models
by controlling the information one can get from it. In this paper we present first
two fully-fledged FE libraries, we outline how they can be used to build machine
learning services on encrypted data, and we discuss strengths and limitations of
FE compared to the HE approach.

While there exist schemes for general FE (see [15,28,29,44]), they rely on
non-standard, ill-understood assumptions and are in many cases extremely time-
consuming. On the contrary, we focused on the implementation of efficient
schemes of restricted functionality but still of practical interest. Our aim was
a flexible and modular implementation that can be applied to various applica-
tions and does not predetermine usage. We offer our work as open-source; all the
code with guidelines is available online on the FENTEC GitHub account [23].

Contributions. This paper addresses the lack of implementations of practi-
cal FE schemes that enable computation on the encrypted data through the
following contributions:

1. Implementation of FE libraries. We present two fully-fledged FE crypto-
graphic libraries, named GoFE and CiFEr. We overview the different under-
lying primitives (modular arithmetic, pairings, lattices) which can be chosen
by the user of the library when instantiating an FE scheme. This is presented
in Sects. 2 and 3.

2. Performance evaluation of FE libraries. In Sect. 4, we compare the efficiency
of various FE schemes and underlying primitives.

3. Design and implementation of privacy-enhanced machine learning services.
In Sects. 5, 6, 7, we present the implementation and performance of three
privacy-enhanced analysis services based on FE.

4. Comparison of FE and HE approaches. Furthermore, in Sects. 5, 6, 7, we dis-
cuss the advantages and disadvantages of FE compared to the HE approach.

2 Functional Encryption Libraries

FE is a cryptographic procedure which allows to delegate the computation of
certain functions of the encrypted data to third parties. This can be achieved

Privacy-Enhanced Machine Learning with Functional Encryption 5

by generating specific secret keys for these functions. An FE scheme consists
of a set of five algorithms. The setup algorithm takes a security parameter as
input and generates a mathematical group where operations take place. The
master key generation creates a public key together with a master secret key.
The functional key derivation algorithm takes as input the master secret key and
a particular function f to generate a key depending on f . To encrypt a message
x, the encryption algorithm has to be run on input x and using the public
key (some schemes are private-key and require also a secret key) to obtain a
ciphertext. Then, given the encryption of a message x, the holder of the key
corresponding to the function f is able to compute the value of f(x) using the
decryption algorithm but nothing else about the encrypted data is revealed.

Many recent papers [3,4,6,16,22] developed various FE encryption schemes
with an aim to make such schemes practical. Nevertheless, most of them remain
theoretical, since they do not provide implementation or practical evaluation of
the schemes. We fill this gap by presenting two FE libraries: GoFE [27] and CiFEr
[26]. GoFE is implemented in the programming language Go and is simpler to
use, while CiFEr is implemented in C and aims at a lower level, possibly IoT
related applications. Both provide the same FE schemes via a similar API, any
differences are due only to the different paradigms of the two programming
languages.

2.1 Implemented Schemes

Due to the computational complexity and impracticality of general purpose FE
schemes, different schemes were designed for evaluation of various functions
of lesser complexity. We separated them into three categories: inner-product
schemes, quadratic schemes, and attribute-based encryption (ABE) schemes.

Schemes in GoFE and CiFEr use cryptographic primitives based on either
modular arithmetic, pairings, or lattices. Most schemes can be instantiated from
different primitives – the user can choose the primitive based on the performance
requirements. In the following sections, we list the schemes and the security
assumptions they are based on. The following assumptions are used: Decisional
Diffie-Hellman (DDH), Decisional Composite Residuosity (DCR) (both modular
arithmetic), Generic Group Model (GGM), Symmetric eXternal Diffie-Hellman
(SXDH), Decisional Bilinear Diffie-Hellman (BDH), Decisional Linear (DLIN)
(all pairings), Learning With Errors (LWE), and Ring Learning With Errors
(ring-LWE) (both lattices).

Inner-Product Schemes. Inner-product FE schemes allow encryption of a
vector x ∈ Z

n and independently generation of a key sky depending on a vector
y ∈ Z

n, such that given the encryption of x together with sky one can perform a
computation on the encrypted x to obtain the value x ·y (inner-product of x and
y). This simple function proves itself very useful: simple statistics of encrypted
data, linear or logistic regression, and more functions can be seen as computing
certain inner-product of the data. We discuss two possible applications based on
the inner-product in Sects. 5 and 6.

6 T. Marc et al.

The libraries currently provide inner-product schemes based on the following
papers:

– Simple Functional Encryption Schemes for Inner Products [3].
The first efficient schemes for inner-products, based on the DDH or LWE
assumptions.

– Fully Secure Functional Encryption for Inner Products, from Stan-
dard Assumptions [6]. Inner-product encryption schemes with a higher
level of (adaptive) security. In addition to DDH- and LWE-based schemes, a
more efficient DCR-based scheme is introduced.

– Multi-Input Functional Encryption for Inner Products: Function-
Hiding Realizations and Constructions without Pairings [4]. Multi-
input FE scheme for inner-products is a scheme supporting encryption of
elements of vector distributed among different clients. The scheme can be
instantiated on DDH, LWE, and DCR assumptions.

– Decentralized Multi-client Functional Encryption for Inner Prod-
uct [16]. This scheme allows various users to generate ciphertexts supporting
inner-product evaluation without the presence of a central authority and with
functional decryption keys that can also be generated in a decentralized way.
Based on SXDH assumption.

– Decentralizing Inner-Product Functional Encryption [2]. A general
procedure that decentralizes multi-client inner-product schemes. The scheme
can be instantiated on DDH, LWE, and DCR assumptions.

Additionally, we implemented a prototype ring-LWE based inner-product
scheme for which a security proof will be provided in a future work.

Quadratic Schemes. To provide an FE scheme able to evaluate an arbitrary
function on encrypted data, one needs to build an FE system computing polyno-
mials of arbitrary order. Currently, no practical FE schemes for polynomials of
order higher than 2 exist. Nevertheless, many complex functions can be realized
as evaluations of quadratic polynomials. A quadratic FE scheme, implemented
in CiFEr and GoFE, allows encryption of vectors x1, x2 ∈ Z

n and independently
generation of a key skH depending on a matrix H ∈ Z

n×n, such that given
the encryption of x1, x2 together with skH one can obtain the value xT

1 Hx2

(quadratic-product of x1, x2 and H). In particular, if x1 = x2, this is a quadratic
polynomial of values of x1. Such functions are sufficient for performing many
machine learning tasks on encrypted data. We demonstrate its use in Sect. 7 on
a task of classifying encrypted images with a 2-layer neural network.

GoFE and CiFEr provide the implementation of the currently most efficient
quadratic FE scheme:

– Reading in the Dark: Classifying Encrypted Digits with Functional
Encryption [22]. A scheme for quadratic multi-variate polynomials enabling
efficient computation of quadratic polynomials on encrypted vectors. It can
be instantiated on GGM assumption.

Privacy-Enhanced Machine Learning with Functional Encryption 7

ABE Schemes. Attribute-based encryption is not strictly classified as FE, but
it allows secure access control over data and constructions of certain functionali-
ties on encrypted data [45]. For the latter reason, we included two such schemes
in the libraries. The basic idea of ABE is that users are given keys depending on
their attributes and are able to decrypt given data only if their attributes are
sufficient.

– Attribute-Based Encryption for Fine-Grained Access Control of
Encrypted Data [32]. The first scheme which enables fine-grained shar-
ing of encrypted data with distribution process that enables decryption only
for users in possession of specified attributes. Based on BDH assumption.

– FAME: Fast Attribute-based Message Encryption [5]. A scheme that
enables attribute based limitation of the access to encrypted data specified
through the encryption process. Based on DLIN assumption.

3 Implementation of Cryptographic Primitives

GoFE and CiFEr aim at providing a flexible implementation of FE schemes. We
do not use specially chosen groups and parameters which enable better perfor-
mance (this can still be done by the user). Instead, we provide flexibility in terms
of choosing the mathematical groups where operations take place and security
parameters which determine the key lengths.

Practical FE schemes are based either on modular arithmetic, pairings, or
lattices. Implementation of FE schemes based on modular arithmetic is rela-
tively straight-forward. Our implementation is based on the representation of
arbitrarily large numbers using the GMP library [43] in C and the standard
library package Big in Go. On the other hand, the implementation of schemes
based on pairings and lattices requires lower-level math artillery.

Quite surprisingly, we found only one pairings library which provides all
required functionality. Furthermore, there is no fully-fledged library for lattice-
based cryptography that could be easily reused. In what follows we present
cryptographic primitives needed in FE schemes and address the issues of (lack
of) their implementations.

3.1 Pairing Schemes

Numerous libraries for pairings are available, but most lack at least some essen-
tial functionality or performance optimization. The latter is crucial since the
pairing operation presents a bottleneck in many schemes. Considering existing
open source implementations such as PBC [36], RELIC [24], Apache Milagro
Cryptographic Library (AMCL) [10], the latter was chosen as an underlying
pairing library for CiFEr because it is portable, small, and optimized to fit into
the smallest possible embedded footprint. Choosing a Go pairing library to be
used in GoFE was more challenging. Barreto-Naehrig [11] bilinear pairings are
frequently used as they allow a high security and efficiency level. Two well-known

8 T. Marc et al.

Barreto-Naehrig pairing libraries exist for the Go programming language: bn256
[34] is a part of the official Go crypto library while Cloudflare bn256 [17] is an
optimized version of the former. Neither of them provide hashing operations for
pairing groups. We forked [17] and provided hashing operations for both groups.
For G1, we implemented the try-and-increment algorithm [12], while for G2, we
implemented the technique from [25]. Further algorithms and optimizations will
be considered in the future.

3.2 Lattice Schemes

The resistance of cryptographic protocols to post-quantum attacks is becoming
ever more important as we get closer to the realization of quantum computers.
Lattice-based cryptography is believed to be secure against quantum computers.
Its cryptographic constructions are based on the presumed hardness of lattice
problems (e.g., for example, the shortest vector problem). Currently, the most
used constructions are based on the Learning With Errors (LWE) problem [41]
or its algebraic ring variation (ring-LWE) [37]. At this time, FE schemes are
built only on the LWE assumption; however, there are two main bottlenecks in
all such schemes. These are sampling random values distributed according to the
discrete Gaussian distribution and matrix multiplications.

Discrete Gaussian Sampling. Discrete Gaussian sampling is a problem of
sampling values distributed according to Gaussian distribution but limited only
to discrete values. Many algorithms and software implementations have tackled
this issue, see [20,21,31,33]. Practical implementation of (ring-)LWE schemes
available as open source libraries mostly solve this problem in two ways. Either
they avoid Gaussian sampling by replacing it with a uniform or binomial dis-
tribution or implement a fast sampler optimized by precomputations for chosen
parameters. Neither of the two solutions is applicable in FE schemes. On the one
hand, proofs of the security of (ring-)LWE FE schemes depend on the distribu-
tion being Gaussian and can easily be broken for uniform distribution. Moreover,
precomputations are not just in conflict with the flexibility of GoFE and CiFEr,
but are not feasible due to higher variance needed in FE schemes.

For this reason, we implemented a discrete Gaussian sampler based on the
algorithm from [21]. It is based on sampling discrete Gaussian values with small
variance from pre-computed tables together with uniform sampling. Such sam-
pling is efficient but still presents a bottleneck of the schemes.

Matrix Multiplications. The second bottleneck of FE schemes based on the
LWE problem is due to matrix-vector and matrix-matrix multiplications. The
reason for this is that the matrices generated in the existing FE scheme have
much higher dimensions and inputs. This cannot be fixed implementation-wise;
thus the construction of efficient LWE based FE schemes remains an open prob-
lem. One way of avoiding costly operations and spacious public keys is by replac-
ing LWE schemes with ring-LWE schemes [37].

Privacy-Enhanced Machine Learning with Functional Encryption 9

3.3 ABE Schemes

ABE schemes provide functionality where clients can be allowed (or disallowed)
to access the decryption of a ciphertext based on a set of attributes that they
possess. Most ABE schemes use pairings as an underlying cryptographic primi-
tive, but there is another, ABE specific, primitive needed: Linear Secret Sharing
Scheme (LSSS) matrices.

A part of every ABE scheme is a policy that defines which entity can decrypt
the ciphertext based on the attributes. A Monotone Span Program (MSP) is
defined as a policy that accepts a subset of attributes as sufficient if a certain
subset of chosen vectors spans a vector of ones. Hence, to create an MSP policy,
one must carefully choose a set of vectors representing attributes in a way that
they describe the desired rules of decryption. This set of vectors is also known as
an LSSS matrix. On the other hand, expressing rules of decryption as a boolean
expression is preferred for practical usage and interpretability. Therefore, we have
implemented an algorithm that transforms a boolean expression into an MSP
structure. We have chosen the Lewko-Waters algorithm [35] for this task due to
its simplicity and efficiency. The algorithm can transform an arbitrary boolean
expression that does not include a “NOT” operation (¬) into a set of vectors (a
matrix) whose dimensions only depend on the number of “AND” operators (∧)
and the number of variables in the expression.

4 Benchmarks

In the following section, we focus on a practical evaluation of implemented
schemes, comparing the benefits and downsides, and discussing their practi-
cality for the possible uses. As noted in Sect. 3, the schemes are implemented
with the goal of flexibility and having an easy-to-use API. Thus, the schemes
can be initialized with an arbitrary level of security and other metaparameters.
Since there is no universal benchmark to compare all the schemes, we evaluate
them on various sets of parameters, exposing many properties of the schemes.
Due to space limitations, we do not present the benchmarks of all the imple-
mented schemes here but rather focus on the demonstrative results. All of the
benchmarks were performed on an Intel(R) Core(TM) i7-6700 CPU @ 3.40 GHz.

4.1 Inner-Product Schemes

Recall that an inner-product FE scheme is such that it allows encrypting a vector
x ∈ Z

� and independently generating a key sky depending on a vector y ∈ Z
�, so

that one can perform computations on the encrypted x and use sky to decrypt
the inner-product x · y and nothing more.

As noted in Sect. 2, the schemes are based on different security assumptions.
GoFE and CiFEr include implementation of five inner-product schemes (exclud-
ing decentralized and multi-client ones), where two of them are based on the
DDH assumption, two of them are based on the LWE assumption, and one on

10 T. Marc et al.

Table 1. Performance of key generation (in seconds) in inner product schemes w.r.t.
vector length l

l Paillier[Go] Paillier[C] LWE[Go] LWE[C] DDH[Go] DDH[C]

1 0.1549 0.0657 12.9523 7.3909 0.0080 0.0041

5 0.5612 0.2938 62.1945 46.2466 0.0402 0.0204

10 1.0600 0.5756 122.7627 74.8795 0.0840 0.0411

20 2.0551 1.1384 266.5059 196.6151 0.1584 0.0849

50 5.0520 2.8410 878.3684 559.6070 0.3954 0.2055

100 10.0916 5.7032 N/A N/A 0.7829 0.4149

200 20.0883 11.3700 N/A N/A 1.5710 0.8190

the DCR assumption. Since both of the DDH-based and both of the LWE-based
schemes have similar performance, we only compare the DDH-based scheme from
[6], the LWE-based scheme from [3], and the DCR-based scheme from [6] which
is also known as Paillier-based FE scheme.

The DDH schemes assume the difficulty of computing a discrete logarithm
in a quadratic residues subgroup of Z∗

p, where the security of such assumption
depends on the bit size of the prime number p. To achieve resistance to all known
attacks with complexity less than O(2128), it is common practice to pick p to
be a safe prime with 3072 bits. The DCR assumption relies on the difficulty of
distinguishing the so-called n-residues in Z

∗
n2 group, which further relies on the

difficulty of factoring a large number n. We choose n to be a 3072-bit number and
a product of two safe primes as it is considered safe for attacks with complexity
in O(2128).

The security level of the LWE assumption is harder to access due to its
novelty. The papers developing the LWE-based FE schemes argue its security
based on the original work of Regev [41] while it has become a common practice
in the recent proposals of (ring-)LWE-based schemes [7,8,13] to evaluate this
security through evaluation of attacks on the assumption. For this reason, we
implemented a setup procedure that generates the parameters for each instanti-
ation of the scheme that are secure for the so-called primal and dual attack on
LWE. This was necessary since the originally proposed parameters are estimated
to possess significantly less security than claimed. For additional information on
the attacks, we direct the reader to the above references.

Each inner-product scheme comprises five parts: setup, generation of master
keys, encryption, derivation of an inner-product key, and decryption. In the
following tables, we evaluate the performance for key generation, encryption, and
decryption. The complexity of the functional key derivation process is negligible
in all the schemes compared to the other steps, while the setup procedure is quite
time-consuming but can be avoided for practical applications since generating a
new group for every deployment does not bring additional security.

Privacy-Enhanced Machine Learning with Functional Encryption 11

Table 2. Performance of encryption (in seconds) in inner product schemes w.r.t. vector
length �

l Paillier[Go] Paillier[C] LWE[Go] LWE[C] DDH[Go] DDH[C]

1 0.0796 0.0461 4.4148 6.5212 0.0120 0.0062

5 0.2389 0.1389 5.5039 6.8358 0.0276 0.0145

10 0.4367 0.2528 6.3218 7.6660 0.0473 0.0246

20 0.8357 0.4840 7.2797 8.9215 0.0864 0.0464

50 2.0245 1.1751 7.8941 12.6611 0.2048 0.1078

100 4.0087 2.3266 N/A N/A 0.4027 0.2103

200 7.8847 4.6275 N/A N/A 0.7984 0.4141

We demonstrate the efficiency of the schemes depending on parameters �,
defining the dimensionality of the encrypted vectors, and b, being the upper
bound for the coordinates of the inner product vectors. All the results are aver-
ages of many runs on different random inputs.

In Table 1 we compare the key generation procedure across different schemes
with fixed b = 1000 and increasing �. The values show that for practical param-
eters the generation of keys in inner-product schemes is linearly dependent on
conventionality �. This is in contrast with the dependency on b (not shown in the
table), increasing which only mildly increases the generation if at all, assuming
it is not extremely large. The table shows that LWE-based schemes are practi-
cal only for small parameters. Note a slightly slower performance of the Paillier
scheme compared to the DDH-based scheme which is attributed to the need of
Gaussian sampling, described in Sect. 3. In Table 2 similar observations can be
done for the encryption process.

The biggest difference between the schemes is demonstrated in Fig. 1, measur-
ing the decryption times of the schemes depending on the bound b of the inputs.
While the Paillier scheme has only a slight linear increase in computation times
when b is increased, DDH-based schemes prove themselves practical only for vec-
tors with a small bound b. The latter is owed to finding a discrete logarithm in
its decryption procedure, the performance of which is directly connected to the
size of the decrypted value. Interestingly, LWE-based schemes have the fastest
decryption. Figure 1 shows the dependency for bounded random vectors.

4.2 Decentralized Inner-Product Scheme

Multi-client schemes allow encryption of vectors by many independent clients.
Decentralized schemes eliminate the need for the central trusted authority for
key generation and derivation. See Sect. 6 for an application of a decentralized
scheme.

The implemented decentralized inner-product schemes are either based on a
decentralizing procedure from [2] applied to schemes from [4] or as described

12 T. Marc et al.

Fig. 1. Performance graph of decryption in inner product schemes w.r.t. bound b

in [16]. Here, we benchmark the latter, which is based on pairings (SXDH
assumption). The results are presented in Table 3. Note that the generation
of keys and the encryption process have better performance than basic inner-
product schemes since both are distributed among users and counted only per
user. The communication overhead is not included in the measurements. The
decryption process involves computing a discrete logarithm as well as perform-
ing a pairing operation.

Table 3. Performance of the decentralized (D) and quadratic (Q) schemes in GoFE
(in seconds)

params KeyGen[D] KeyGen[Q] Encrypt[D] Encrypt[Q] Decrypt[D] Decrypt[Q]

b = 1000, l = 1 0.0009 0.0001 0.0001 0.0026 0.0211 0.2903

b = 1000, l = 5 0.0009 0.0001 0.0001 0.0117 0.0401 0.9039

b = 1000, l = 10 0.0009 0.0001 0.0001 0.0224 0.0540 1.6454

b = 1000, l = 20 0.0009 0.0002 0.0001 0.0437 0.0731 2.4223

b = 5000, l = 1 0.0009 0.0001 0.0001 0.0025 0.0827 1.8973

b = 10000, l = 1 0.0009 0.0001 0.0001 0.0027 0.1614 3.1074

b = 5000, l = 10 0.0009 0.0001 0.0001 0.0228 0.2376 14.2446

4.3 Quadratic Scheme

Quadratic schemes are a powerful tool for evaluating more complex functions
on encrypted data. Table 3 evaluates the performance of the quadratic scheme
from [22]. The decryption process turns out to be time-consuming as it requires

Privacy-Enhanced Machine Learning with Functional Encryption 13

computing a discrete logarithm and pairing operation. Note that the input value
for a discrete logarithm is bigger compared to the inner-product schemes due
to the quadratic operations applied on the input vector x. We demonstrate in
Sect. 7 that the scheme’s performance is still sufficient for the real-world use
cases.

5 Privacy-Friendly Prediction of Cardiovascular Diseases

In this section, we demonstrate how FE can enable privacy-enhanced analyses.
We show how the risk of general cardiovascular disease (CVD) can be evaluated
using only encrypted data.

The demonstrator comprises the following components: Key Server is a cen-
tral authority component generating keys, Analyses Service is a component to
which the user sends encrypted data and obtains the risk evaluation of CVD, and
Client component which obtains the public key from the Key Server, encrypts
user’s data with the public key and sends it to the Service, see Fig. 2.

Fig. 2. Interactions between CVD demonstrator components

The Framingham heart study [19] followed patients from Framingham, Mas-
sachusetts, for many decades starting in 1948. Many multivariable risk algo-
rithms used to assess the risk of specific atherosclerotic cardiovascular disease
events have been developed based on the original Framingham study. Algorithms
most often estimate the 10-year or 30-year CVD risk of an individual.

The input parameters for algorithms are sex, age, total and high-density
lipoprotein cholesterol, systolic blood pressure, treatment for hypertension,
smoking, and diabetes status. The demonstrator shows how the risk score can
be computed using only the encrypted values of the input parameters. The user
specifies the parameters in the Client program; these are encrypted and sent to
the Analyses Service component. The service computes the 30-year risk [39] and
returns it to the user.

The source code for all three components is available on FENTEC GitHub
account [40]. We use the inner-product FE scheme based on Paillier cryptosystem

14 T. Marc et al.

[6] due to its fast decryption operation. The Client component prepares a vector
x which contains the eight input parameters, which in GoFE looks like:

x := data.NewVector([]*big.Int{sex, age, systolicBloodPressure,
totalCholest, hdlCholest, smoker, treatedBloodPressure, diabetic})

Framingham risk score algorithms are based on Cox proportional hazards
model [18]. Part of it is multiplication of the input parameters by regression fac-
tors which are real numbers. In the 30-year algorithm, the vector x is multiplied
by two vectors (inner-product):

y_1 = (0.34362, 2.63588, 1.8803, 1.12673, -0.90941, 0.59397,
0.5232, 0.68602)
y_2 = (0.48123, 3.39222, 1.39862, -0.00439, 0.16081, 0.99858,
0.19035, 0.49756)

Regression factors need to be converted into integers because cryptographic
schemes operate with integers. This is straight-forward in FE schemes: we mul-
tiply factors by the power of 10 to obtain whole numbers. The Client encrypts
vector x using public key obtained from the Key Server:

ciphertext, err := paillier.Encrypt(x, masterPubKey)

The Client then sends ciphertext to the Service. Service beforehand obtained
two functional encryption keys from the Key Server: a key to compute the inner-
product of x and y1, and a key to compute the inner-product of x and y2. Now
it can compute the inner-products:

xy_1, err := paillier.Decrypt(ciphertext, key_1, y_1)
xy_2, err := paillier.Decrypt(ciphertext, key_2, y_2)

To obtain the risk score the algorithm computes exy1−21.29326612,
exy2−20.12840698 followed by 1340 · 1340 power functions, 1340 · 3 multiplications,
and 1340 additions on the obtained values. For details, see [39] or the source code
[40]. These operations are executed by the Service and returned to the Client
component.

A user thus does not need to know anything about the algorithm to obtain
the personal CVD risk score, and at the same time the Service does not know
anything about the user’s parameters (except the inner-products of x with vec-
tors y1 and y2).

However, it has to be noted that the Service does know the risk score. This
is one of the main differences with HE. HE computes the encryption of the risk
score, which is then decrypted by the user (and thus known only by the user).

Paper [14] reports on the implementation of the 10-year CVD risk score
using HE. While this approach has a clear advantage of prediction service not
knowing the risk score, it is also far less efficient than the approach with FE. In
a setup which enables the evaluation of higher degree polynomials (such as 7),
one multiplication of ciphertexts requires around 5 s on a modern laptop (Intel
Core i7-3520M at 2.9 GHz). Note that higher degree polynomials are needed to

Privacy-Enhanced Machine Learning with Functional Encryption 15

approximate the exponential function by a Taylor series. While in the 10-year
CVD risk algorithm, there is only one evaluation of the exponential function,
the 30-year algorithm uses two evaluations. An evaluation of the exponential
function in [14] requires more than 30 s since computing the Taylor series of the
degree 7 takes more than 30 s (the powers of x already require six multiplications
at 5 s each). On the contrary, our FE approach returns the result in a matter of
milliseconds.

Furthermore, there is a significant communication overhead in HE approach
as the ciphertext can grow to roughly one megabyte (16384 coefficients of 512-
bit). Communication messages in FE are much smaller – a few kilobytes.

HE approach could be sped up with computing the encryption of only the
inner-products (as it is in FE). However, as the prediction service would know
only the encryption of the inner-product, the rest of the risk score algorithm
would need to be computed at the user’s side and would require to move signif-
icant parts of the prediction logic to the Client component. In many scenarios,
this might not be desirable, especially if the prediction logic is computation-
ally expensive. As a matter of fact, for all services where the prediction logic is
computationally expensive, the FE approach is far more performant, but at the
expense that the prediction service knows the predicted value.

6 London Underground Anonymous Heatmap

In this section, we demonstrate how a traffic heatmap can be generated based
on encrypted data. Given the encrypted information about users of the London
Underground, our service can measure the traffic density at each particular sta-
tion. Thus, congestions and potential increases in traffic density can be detected
while the user data is encrypted and remains private.

DMCFE scheme [16] is used for the demonstration [9]. The scheme allows
each user to encrypt the location data in a way that neither the central service
nor the other users can know it. The only information that the central service
can obtain is the information about all the users, preserving the privacy of each
individual. Furthermore, the functional keys needed by the central service are
derived in a decentralized manner, without a centralized authority for generating
keys. Indeed, functional key parts are provided by the users and then combined
by the central service.

Each user locally encrypts the vector specifying the path that was traveled.
The length of the vector is the same as the number of the stations. It con-
sists of 0s and 1s: 1 for stations which the user visited (see Fig. 3a for a visual
representation). In GoFE the code looks like:

// pathVec[i] is the value of i-th station, label its name,
// c[i] is its encryption
label = station[i]
c[i], _ := client.Encrypt(pathVec[i], label)

16 T. Marc et al.

(a) Path of one user (b) Heatmap

Fig. 3. Information of one user vs. information the central service obtains.

While we use randomly generated user data for this demonstration, one can
easily imagine a smartphone app which tracks the user’s path, generates a vector,
encrypts it (all operations performed locally), and finally sends it to the central
service.

In the decentralized scheme [16], the FE keys are generated by the users (no
trusted authority is needed). The users thus provide a functional key to a central
service component. In our case, a functional key for an inner-product vector y
of 1s is provided (the vector length is the number of users). This is because the
central authority decrypts the sum of all the users that traveled through that
station, i.e. a value that can be represented as an inner-product of y and a vector
x of 0s and 1s indicating which users traveled through that station. Each user
provides a key share:

// create a vector of 1s:
vecOfOnes := data.NewConstantVector(numClients, big.NewInt(1))
// keyShares is a vector of all the key shares
keyShares[k], _ := clients[k].GenerateKeyShare(vecOfOnes)
}

The central service component collects all the key shares and can now com-
pute (decrypt) the density for each station. The code for this looks like:

for i := 0; i < numStations; i++ {
label := stations[i]
dec = fullysec.NewDMCFEDecryptor(vecOfOnes, label, ciphers[i],
keyShares, numClients)
heatmap[i], _ = dec.Decrypt()

}

Using a described approach, a variety of other analysis services can be built on
the encrypted data, for example, the power consumption of a group of houses in a
neighborhood, measurements from IoT devices, etc. In the former case, the power
consumption could be encrypted for each hour and sent to the central component.

Privacy-Enhanced Machine Learning with Functional Encryption 17

The central component could then compute (decrypt) the overall consumption
(across all houses) for each particular hour. Based on such privacy-enhanced
computations, various prediction services can be built using only encrypted data.
Note that all such applications cannot be built with HE since the derivation of a
functional decryption key is needed for the central service to decrypt the results.

7 Neural Networks on Encrypted MNIST Dataset

In the previous two sections, we saw how to implement privacy-friendly predictive
services by using efficient FE for inner-products. Using linear functions (inner-
products), many efficient machine learning models can be built based on linear
or logistic regression.

However, in many cases linear models do not suffice. One of such tasks is
image classification where linear classifiers mostly achieve significantly lower
accuracy compared to the higher-degree classifiers – for example, classifiers for
the well-known MNIST dataset where handwritten digits need to be recognized.
A linear classifier on MNIST dataset is reported to have 92% accuracy (Tensor-
Flow’s tutorial [42]), while more complex classifiers achieve over 99% accuracy.

GoFE and CiFEr include a scheme [22] for quadratic multi-variate polyno-
mials which enable computation of quadratic polynomials on encrypted vectors.
This allows richer machine learning models and even basic versions of neural
networks. We provide a machine learning project [38] to demonstrate how an
accurate neural network classifier can be built on the MNIST dataset and how
FE can be used to apply a classifier on the encrypted dataset. This means that
an entity holding an FE key for a classifier can classify encrypted images, i.e.,
can classify each image depending on the digit in the encrypted image, but can-
not see anything else within the image (for example, some characteristics of the
handwriting).

The demonstration uses the GoFE library and the widely-used machine learn-
ing library TensorFlow [1]. The MNIST dataset consists of 60 000 images of
handwritten digits. Each image is a 28 × 28 pixel array, where each pixel is rep-
resented by its gray level. The model we used is a 2-layer neural network with
quadratic function as a non-linear activation function. Training of the model
needs to be done on unencrypted data, while prediction is done on encrypted
images. The images have been presented as 785-coordinate vectors (28 · 28 + 1
for bias). We achieved the accuracy of 97%, a result that is reported also in
[22]. The decryption of one image (applying the trained model on the encrypted
image) takes approximately a second.

Similarly, CryptoNets [30], an HE approach for applying neural networks to
encrypted data, needs an already trained model. The model they use is signifi-
cantly more complex than ours (the trained network has nine layers) and pro-
vides an accuracy of 99%. Note that as currently no efficient FE schemes exist for
polynomials of degree greater than 2, no such complex models are possible with
FE. On the other hand, the execution when using HE approach is significantly
slower. Applying the network on encrypted data using CryptoNets takes 570 s

18 T. Marc et al.

on a PC with a single Intel Xeon E5-1620 CPU running at 3.5 GHz. But note
that applying the network allows executing many predictions simultaneously if
this is needed.

Thus, compared to the FE approach, HE can provide more complex machine
learning models and consequently ones with higher accuracy. Nevertheless, HE
has a limitation which is particularly important in the present application. HE
can only serve as privacy-friendly outsourcing of computation, while the result
of this computation can be decrypted only by the owner of the secret key. FE
allows the third party to decrypt the result, in our case the digit in the image,
without exposing the image itself. One can easily imagine a more complex FE
alert system on encrypted video, where the system detects the danger without
violating the privacy of the subjects in the video when there is none. Currently,
only primitive versions of such a system are possible as more efficient schemes
(in terms of performance and polynomial degree) are needed.

8 Conclusions and Future Work

In this paper, we presented the first two fully-fledged functional encryption
libraries. The two libraries are implemented in Go and C programming lan-
guages and offer an easy-to-use API to various FE schemes. We focused on
creating a flexible and efficient implementation to support various use cases and
have demonstrated the practicality by presenting three possible applications of
the libraries: an online privacy-friendly predictor of cardiovascular diseases, an
anonymous traffic heatmap service, and image classification on encrypted data.
We compared the FE with the HE approach on the latter examples, showing
how FE can provide new applications or improve performance by revealing some
information. The libraries are filling the gap between academic research of FE
schemes and their applications to real-life scenarios. As such, they offer a plat-
form for the developers to prototype their products as well as a test place for
academic research on FE.

In our future work, we plan to implement further FE schemes, in partic-
ular, recent multi-client and multi-input schemes which enable a wide range
of applications like running queries on encrypted databases, computation over
encrypted data streams, and multi-client delegation of computation. Further-
more, we plan to implement and evaluate function-hiding schemes which enable
privacy-preserving queries to the prediction services. Also, further optimizations
will be applied.

Acknowledgements. The research was supported, in part, by grant H2020-DS-2017-
780108 (FENTEC).

References

1. Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. In: 12th
USENIX Symposium on Operating Systems Design and Implementation (OSDI
16), pp. 265–283 (2016)

Privacy-Enhanced Machine Learning with Functional Encryption 19

2. Abdalla, M., Benhamouda, F., Kohlweiss, M., Waldner, H.: Decentralizing inner-
product functional encryption. In: Lin, D., Sako, K. (eds.) PKC 2019. LNCS, vol.
11443, pp. 128–157. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17259-6 5

3. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption
schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733–
751. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 33

4. Abdalla, M., Catalano, D., Fiore, D., Gay, R., Ursu, B.: Multi-input functional
encryption for inner products: function-hiding realizations and constructions with-
out pairings. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol.
10991, pp. 597–627. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96884-1 20

5. Agrawal, S., Chase, M.: FAME: fast attribute-based message encryption. In: Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, pp. 665–682. ACM (2017)

6. Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner
products, from standard assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016. LNCS, vol. 9816, pp. 333–362. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53015-3 12

7. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. J. Math. Cryptol. 9(3), 169–203 (2015)

8. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange –
a new hope. In: 25th USENIX Security Symposium (USENIX Security 2016), pp.
327–343 (2016)

9. Anonymous heatmap: https://github.com/fentec-project/anonymous-heatmap
10. Apache Milagro Crypto Library: https://github.com/milagro-crypto/amcl
11. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In:

Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer,
Heidelberg (2006). https://doi.org/10.1007/11693383 22

12. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In: Boyd,
C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45682-1 30

13. Bos, J., et al.: Frodo: take off the ring! practical, quantum-secure key exchange
from LWE. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, pp. 1006–1018. ACM (2016)

14. Bos, J.W., Lauter, K., Naehrig, M.: Private predictive analysis on encrypted med-
ical data. J. Biomed. Inform. 50, 234–243 (2014)

15. Boyle, E., Chung, K.-M., Pass, R.: On extractability obfuscation. In: Lindell, Y.
(ed.) TCC 2014. LNCS, vol. 8349, pp. 52–73. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-54242-8 3

16. Chotard, J., Dufour Sans, E., Gay, R., Phan, D.H., Pointcheval, D.: Decentralized
multi-client functional encryption for inner product. In: Peyrin, T., Galbraith, S.
(eds.) ASIACRYPT 2018. LNCS, vol. 11273, pp. 703–732. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03329-3 24

17. Cloudflare implementation of Barreto-Naehrig bilinear pairings: https://github.
com/cloudflare/bn256

18. Cox, D.R.: Regression models and life-tables. J. R. Stat. Soc. Ser. B (Methodol.)
34(2), 187–202 (1972)

19. D’agostino, R.B., et al.: General cardiovascular risk profile for use in primary care.
Circulation 117(6), 743–753 (2008)

https://doi.org/10.1007/978-3-030-17259-6_5
https://doi.org/10.1007/978-3-030-17259-6_5
https://doi.org/10.1007/978-3-662-46447-2_33
https://doi.org/10.1007/978-3-319-96884-1_20
https://doi.org/10.1007/978-3-319-96884-1_20
https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-662-53015-3_12
https://github.com/fentec-project/anonymous-heatmap
https://github.com/milagro-crypto/amcl
https://doi.org/10.1007/11693383_22
https://doi.org/10.1007/3-540-45682-1_30
https://doi.org/10.1007/978-3-642-54242-8_3
https://doi.org/10.1007/978-3-642-54242-8_3
https://doi.org/10.1007/978-3-030-03329-3_24
https://github.com/cloudflare/bn256
https://github.com/cloudflare/bn256

20 T. Marc et al.

20. De Clercq, R., Roy, S.S., Vercauteren, F., Verbauwhede, I.: Efficient software imple-
mentation of ring-LWE encryption. In: Proceedings of the 2015 Design, Automa-
tion & Test in Europe Conference & Exhibition, pp. 339–344. EDA Consortium
(2015)

21. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and
bimodal Gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol.
8042, pp. 40–56. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
40041-4 3

22. Dufour Sans, E., Gay, R., Pointcheval, D.: Reading in the dark: classifying
encrypted digits with functional encryption. IACR Cryptol. ePrint Archive 2018,
206 (2018)

23. FENTEC project Github accunt: https://github.com/fentec-project
24. de Freitas Aranha, D., Gouvea, C.P.L., Markmann, T.: RELIC. https://github.

com/dis2/bls12
25. Fuentes-Castaneda, L., Knapp, E., Rodŕıguez-Henŕıquez, F.: Faster hashing to

G2. In: International Workshop on Selected Areas in Cryptography, pp. 412–430.
Springer (2011)

26. Functional encryption library in C: https://github.com/fentec-project/CiFEr
27. Functional encryption library in Go: https://github.com/fentec-project/gofe
28. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate

indistinguishability obfuscation and functional encryption for all circuits. SIAM J.
Comput. 45(3), 882–929 (2016)

29. Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Fully secure attribute based encryp-
tion from multilinear maps. IACR Cryptol. ePrint Archive 2014, 622 (2014)

30. Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K., Naehrig, M., Wernsing, J.:
CryptoNets: applying neural networks to encrypted data with high throughput and
accuracy. In: International Conference on Machine Learning, pp. 201–210 (2016)

31. Göttert, N., Feller, T., Schneider, M., Buchmann, J., Huss, S.: On the design of
hardware building blocks for modern lattice-based encryption schemes. In: Prouff,
E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 512–529. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-33027-8 30

32. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Proceedings of the 13th ACM Con-
ference on Computer and Communications Security, pp. 89–98. ACM (2006)

33. Knuth, D., Yao, A.: Algorithms and complexity: new directions and recent results,
chapter the complexity of nonuniform random number generation (1976)

34. Langley, A., Burke, K., Valsorda, F., Symonds, D.: Package bn256 (2012). https://
godoc.org/golang.org/x/crypto/bn256

35. Lewko, A., Waters, B.: Decentralizing attribute-based encryption. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 568–588. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-20465-4 31

36. Lynn, B.: The Pairing Based Cryptography library. https://crypto.stanford.edu/
pbc/

37. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 1

38. Neural network on encrypted data: https://github.com/fentec-project/neural-
network-on-encrypted-data

39. Pencina, M.J., D’Agostino Sr., R.B., Larson, M.G., Massaro, J.M., Vasan, R.S.:
Predicting the thirty-year risk of cardiovascular disease: the framingham heart
study. Circulation 119(24), 3078 (2009)

https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1007/978-3-642-40041-4_3
https://github.com/fentec-project
https://github.com/dis2/bls12
https://github.com/dis2/bls12
https://github.com/fentec-project/CiFEr
https://github.com/fentec-project/gofe
https://doi.org/10.1007/978-3-642-33027-8_30
https://godoc.org/golang.org/x/crypto/bn256
https://godoc.org/golang.org/x/crypto/bn256
https://doi.org/10.1007/978-3-642-20465-4_31
https://crypto.stanford.edu/pbc/
https://crypto.stanford.edu/pbc/
https://doi.org/10.1007/978-3-642-13190-5_1
https://github.com/fentec-project/neural-network-on-encrypted-data
https://github.com/fentec-project/neural-network-on-encrypted-data

Privacy-Enhanced Machine Learning with Functional Encryption 21

40. Private prediction analyses: https://github.com/fentec-project/privacy-friendly-
analyses

41. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM (JACM) 56(6), 34 (2009)

42. Tensorflow tutorial: https://www.tensorflow.org/tutorials#evaluating our model
43. The GNU Multiple Precision Arithmetic Library: https://gmplib.org
44. Waters, B.: A punctured programming approach to adaptively secure functional

encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol.
9216, pp. 678–697. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-48000-7 33

45. Zheng, Q., Xu, S., Ateniese, G.: VABKS: verifiable attribute-based keyword search
over outsourced encrypted data. In: IEEE INFOCOM 2014-IEEE Conference on
Computer Communications, pp. 522–530. IEEE (2014)

https://github.com/fentec-project/privacy-friendly-analyses
https://github.com/fentec-project/privacy-friendly-analyses
https://www.tensorflow.org/tutorials#evaluating_our_model
https://gmplib.org
https://doi.org/10.1007/978-3-662-48000-7_33
https://doi.org/10.1007/978-3-662-48000-7_33

Towards Secure and Efficient Outsourcing
of Machine Learning Classification

Yifeng Zheng1,2, Huayi Duan1,2, and Cong Wang1,2(B)

1 City University of Hong Kong, Hong Kong, China
{yifeng.zheng,hduan2-c}@my.cityu.edu.hk, congwang@cityu.edu.hk

2 City University of Hong Kong Shenzhen Research Institute, Shenzhen, China

Abstract. Machine learning classification has been successfully applied
in numerous applications, such as healthcare, finance, and more. Out-
sourcing classification services to the cloud has become an intriguing
practice as this brings many prominent benefits like ease of management
and scalability. Such outsourcing, however, raises critical privacy con-
cerns to both the machine learning model provider and the client inter-
ested in using the classification service. In this paper, we focus on classi-
fication outsourcing with decision trees, one of the most popular classi-
fiers. We propose for the first time a secure framework allowing decision
tree based classification outsourcing while maintaining the confidential-
ity of the provider’s model (parameters) and the client’s input feature
vector. Our framework requires no interaction from the provider and the
client—they can go offline after the initial submission of their respective
encrypted inputs to the cloud. This is a distinct advantage over prior
art for practical deployment, as they all work under the client-provider
setting where synchronous online interactions between the provider and
client is required. Leveraging the lightweight additive secret sharing tech-
nique, we build our protocol from the ground up to enable secure and
efficient outsourcing of decision tree evaluation, tailored to address the
challenges posed by secure in-the-cloud dealing with versatile compo-
nents including input feature selection, decision node evaluation, path
evaluation, and classification generation. Through evaluation we show
the practical performance of our design, and the substantial client-side
savings over prior art, say up to four orders of magnitude in computation
and 163× in communication.

Keywords: Cloud security · Machine learning · Secure outsourcing

1 Introduction

Machine learning classification has gained widespread use in many applications
such as healthcare [1,13], finance [15], and more. A well-trained machine learning
model can be used to automatically predict the accurate classification label of a
unseen/new input. As an example, a model trained by a medical institution or
a hospital over a dataset of medical profiles may be used to make a prediction
c© Springer Nature Switzerland AG 2019
K. Sako et al. (Eds.): ESORICS 2019, LNCS 11735, pp. 22–40, 2019.
https://doi.org/10.1007/978-3-030-29959-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29959-0_2&domain=pdf
https://doi.org/10.1007/978-3-030-29959-0_2

Towards Secure and Efficient Outsourcing of Machine Learning Classification 23

about a new patient’s health [1]. For practical deployment, outsourcing such
classification services to the cloud is intriguing as this brings the machine learning
model provider and the client many well-known benefits like ease of management,
scalability, and ubiquitous access.

Despite the prominent benefits, such outsourcing also entails critical privacy
challenges to both the provider and the client. On the provider side, the trained
model could be proprietary as the provider might have invested a significant
amount of resources in gathering the training datasets and training the model.
Besides, the model may also constitute a competitive commercial advantage. So,
the provider might not be willing to expose the plaintext model to the cloud.
On the client side, the model input data are personal and could also be sensitive
(like medical data or financial data). So, while interested in the classification
service, the client may be reluctant to supply the input in cleartext. Therefore,
it is important that security must be embedded in the classification outsourcing
design from the very beginning so that we can safeguard the privacy of both the
provider and client.

In this paper, we focus on secure and efficient classification outsourcing based
on decision trees, one of the most popular classifiers due to its effectiveness and
ease of use. Decision trees have a wide range of practical applications, such as
medical diagnosis [1] and credit-risk assessment [26]. Briefly speaking, a decision
tree consists of internal nodes called decision nodes and leaf nodes. Each decision
node is used for comparing an attribute in the input feature vector with a specific
constant, and each leaf node indicates a classification result. Given a feature
vector as input, decision tree evaluation is done via tree traversal until a leaf
node is reached.

Contributions. The challenging problem we aim to tackle is how to enable
secure and efficient decision tree evaluation outsourcing, which has not been
studied before. To this end, we present a secure framework allowing a decision
tree model provider to deploy decision tree based classification services in the
cloud for the client, while preserving the privacy of both the provider and client.
The high-level service workflow in our framework is as follows. Initially, the
provider deploys a properly encrypted decision tree model in the cloud. Later, a
client can supply an encrypted feature vector to the cloud to get a classification.
Throughout the procedure, the decision tree and feature vector are kept private.

To securely and efficiently instantiate the above service, our main insight
is to leverage lightweight cryptography and craft a protocol design tailored for
decision tree classification outsourcing. This immediately precludes the consid-
eration on using heavy cryptographic techniques such as (fully) homomorphic
encryption [5] and generic secure multi-party computation (such as garbled cir-
cuits [25] and GMW protocol [9]). Specifically, in our solution, we turn to the
lightweight cryptographic technique called additive secret sharing to completely
build our decision tree classification outsourcing design. At a high level, with
such technique, the encryption of the decision tree and the feature vector can
be fast performed via properly splitting the data into secret shares. Secure deci-
sion tree evaluation is then conducted over the secret shares of the decision tree
model and feature vector in the cloud.

24 Y. Zheng et al.

To be compatible with the working paradigm of additive secret sharing and
also make the provider and the client free of active online participation in the ser-
vice, our framework leverages the two-server model and explores the full support
for secure decision tree evaluation at the cloud side. In particular, we consider
that the power of the cloud is split into two cloud servers maintained by inde-
pendent cloud providers. Such a two-server model has also gained increasing use
in previous security designs tailored for different applications, including privacy-
preserving machine learning (over other kinds of models) (e.g., [16,18,23]). We
consider our adoption of such model to be among the trend and it is, for the first
time, customized for secure and efficient decision tree evaluation outsourcing.

Based on the lightweight additive secret sharing technique, we build our
outsourcing protocol from the ground up, and delicately tackle the following
challenges. Firstly, how to properly encrypt the decision tree model in the very
beginning so that it can later function well at the cloud side for classification?
Note that a decision tree model not only contains data values (parameters) that
demand protection, but also carry structure-specific information like the map-
ping for input selection from the feature vector, which should be protected as
well. To tackle this challenge, we properly represent the mapping as an input
selection matrix so that the encryption of the mapping can be done via encryp-
tion of the matrix. As a result, we manage to effectively transform secure input
selection into the problem of secure matrix-vector multiplication.

Secondly, at the two cloud servers, how to accomplish secure and efficient
comparison at each decision node and produce encrypted comparison results
with usability for encrypted tree traversal? We note that for secure comparison
at decision nodes, most prior works in the non-outsourcing setting (i.e., a client-
provider setting, see Sect. 2 for more discussion) rely on protocols that require
bitwise (homomorphic) encryption of the inputs from the very beginning. Such
highly inefficient restriction on input encryption, together with the incompati-
bility of prior works with our new outsourcing setting, makes it necessary for
us to craft a new design for secure and efficient decision node evaluation from
the ground up. Our idea is to transform the problem of secure decision node
evaluation into a simpler secure bit-extraction problem so that there is no need
for the provider and client to supply inputs in bitwise encrypted form, and the
bit-level secure processing is shifted to the cloud. We also further consider how
to correctly transform the encrypted comparison results into appropriate secret
sharing domain so that they preserve usability for encrypted tree traversal.

Thirdly, at the two cloud servers, how to securely and efficiently evaluate the
path to each leaf node so that the leaf node carrying the classification result
can be correctly identified by the client? To answer this challenge, we leverage
our observation on the latest path cost mechanism [20] and newly bridge it with
additive secret sharing technique to support secure and efficient path evaluation
for leaf nodes, and correctly produce encrypted classification result ultimately.

We make an implementation of our design and conduct experiments for per-
formance evaluation, over various realistic problem sizes of decision tree classi-
fication. The results demonstrate the practicality of our design. To our best

Towards Secure and Efficient Outsourcing of Machine Learning Classification 25

knowledge, this paper presents the first framework for secure and efficient
machine learning classification outsourcing based on decision trees. The rest of
this paper is organized as follows. Section 2 discusses the related work. Section 3
presents the problem statement. Section 4 gives our detailed security design.
Section 5 shows the experimental results. Section 6 concludes the whole paper.

2 Related Work

Secure Evaluation of Decision Trees. There have been some previous
research efforts on secure decision tree evaluation [4,7,10,20,21,24]. These works
mostly rely on the use of heavy cryptographic techniques like fully/additively
homomorphic encryption, garbled circuits, and ORAM, for the online secure
classification service. More notably, all prior works target a client-provider set-
ting, where the provider holding the plaintext decision tree model and the client
holding the plaintext feature vector directly engage in a synchronous and inter-
active protocol. Our work departs definitively from the previous works by, for
the first time, targeting secure and efficient outsourcing of decision tree classifi-
cation to the cloud and designing our tailored protocol from the ground up to
enable such outsourcing. With our design, the provider (e.g., a medical institu-
tion) and the client (e.g., a patient) are endowed with the opportunity to enjoy
the benefits of cloud computing without compromising privacy. They can also
both stay offline after supplying their respective inputs to the cloud, which is a
highly desirable property for practical service deployment. In addition, as will be
shown by our evaluation (Sect. 5), our new outsourcing design also brings sub-
stantial performance improvement for the client. For example, compared with
one state-of-the-art design [20] (ESORICS’17), our design brings the client at
least four orders of magnitude improvement in computation and 163× improve-
ment in communication. We emphasize that prior designs are specialized for the
conceptually different client-provider setting and do not imply simple extensions
to work under an outsourcing setting, due to the special structure of decision
trees and the complex computation in decision tree classification.

Secure Evaluation of Other Models. Our research is also related to a line of
works on secure evaluation of other machine learning models (e.g., [4,11,14,16],
to just list a few) such as hyperplane decision [4], Näıve Bayes [4], neural net-
works [11,14,16]. Most previous works operate under the client-provider setting.
As different kinds of classifiers require different specific computation, the com-
mon blueprint in these works is to build security protocols tailored for differ-
ent models, using different kinds of cryptographic techniques. For example, Liu
et al. [14] leverage secret sharing and garbled circuits for secure neural network
evaluation; Juvekar et al. [11] uniquely combine homomorphic encryption and
garbled circuits for low latency secure neural network inference. In addition to
the above works, a recent system called SecureML [16] also supports secure eval-
uation of some machine learning models. The SecureML system also operates
under the two-server model, and provides protocols specialized for linear regres-
sion, logistic regression, and neural networks [16]. Our design works under the

26 Y. Zheng et al.

?

?

?

Fig. 1. Illustration of a decision tree.

similar two-server model and newly explore secure and efficient decision tree
classification outsourcing.

3 Problem Statement

3.1 Background on Decision Trees

Decision trees is one of the most popular machine learning models used in prac-
tice for data classification. As illustrated in Fig. 1, a decision tree consists of
internal nodes, called decision nodes, and leaf nodes. Each decision node is asso-
ciated with a specific constant called threshold, and each leaf node is associ-
ated with a classification value indicating the classification result. So, a deci-
sion tree has a threshold vector, and we represent it as y = {y1, · · · , ym},
where m denotes the number of decision nodes. With an n-dimensional fea-
ture vector x = {x1, · · · , xn} as input, decision tree classification proceeds as
follows. Firstly, for each decision node j, a feature xσ(j) is selected from x
for comparison with the corresponding threshold yj , according to a mapping
σ : j ∈ {1, 2, · · · ,m} → i ∈ {1, 2, · · · , n} for input selection. Then, starting from
the root node, for the current decision node j, the feature xσ(j) and threshold
yj is compared. The comparison result bj (bj = 1{xσ(j) < yj}) decides which
branch (either left w.r.t. bj = 0 or right w.r.t. bj = 1) to be taken next. This
procedure is repeated until a leaf node k with classification value vk is reached.
The length of the longest path between the root node and a leaf node decides
the tree depth d. Without loss of generality and as in prior works [7,20,21,24],
we assume complete binary decision trees in our security design. This is because
the evaluation of non-complete trees might cause leakage of the tree structure
[21,24]. Note that a complete binary tree with depth d would have m = 2d − 1
decision nodes and 2d (i.e., m + 1) leaf nodes. And non-complete decision trees
can be made complete by introducing dummy decision nodes and setting all the
leaf nodes in the subtree of a dummy decision node to the same classification
value [24].

Towards Secure and Efficient Outsourcing of Machine Learning Classification 27

Client Provider

Cloud

Fig. 2. Our high-level system architecture.

3.2 System Architecture

Our research targets secure and efficient machine learning classification out-
sourcing based on decision trees. Figure 2 illustrates our system architecture. A
provider (e.g., a medical center or a hospital) holds a trained machine learn-
ing model, in particular a decision tree in our scenario, and offers classification
services via the cloud to the client. The provider chooses to outsource the classi-
fication service to the cloud so as to enjoy the benefits of cloud computing such
as scalability and ease of management. As the decision tree model is proprietary,
the provider would not be willing to place the decision tree in cleartext at the
cloud. Therefore, protection for the decision tree model is demanded.

The client holds a feature vector which may encode private information of
sensitive attributes (e.g., weight, height, heart rate, and blood pressure) and
wants to leverage the cloud-empowered decision tree based classification service
to obtain a classification. Due to privacy concerns, the client is not willing to
supply the feature vector in cleartext in the service so a ciphertext will be sup-
plied instead. In addition, for practicality, it would not be realistic for the client
to promise always staying online to actively participate in the service. For exam-
ple, the client may be in mobile environments, facing challenges such as resource
constraints, network dynamics, and connectivity. So, our system should allow
the client to stay offline after providing the ciphertext of the feature vector to
the cloud, and later just retrieve the encrypted classification result.

In our system, we consider that the power of the cloud is supplied by two
cloud servers C0 and C1 which are hosted by independent cloud service providers.
The two cloud servers will collaboratively perform secure decision tree evalua-
tion. We are aware that such a two-server model has gained increasing pop-
ularity in recent years for facilitating security designs for specific applications
[16–18,23]. Our adoption also follows this trend. To our best knowledge, secure
and efficient decision tree based classification outsourcing under the two-server

28 Y. Zheng et al.

model has not been explored before, and requires specialized treatment due to
the special structure of decision trees and complex computation in decision tree
classification.

In our system, for the sake of assuring both privacy and efficiency, we will
employ the lightweight cryptographic technique — additive secret sharing, to
encrypt the client’s feature vector and the provider’s decision tree. That is, the
client splits the feature vector into two secret shares, each of which will be
given to a cloud server. The provider’s decision tree is also specially encrypted
via additive secret sharing and deployed at the cloud in advance for use. Upon
receiving the secret shares of the client’s feature vector, the two cloud servers will
run a tailored secure protocol and produce the encrypted classification result,
which can be sent to the client for decryption on demand.

3.3 Threat Model

We consider that the threats are primarily from the engagement of the cloud
in the service. Similar to most of prior works under the two-server model (e.g.,
[6,8,16,27,28], to just list a few), we assume a semi-honest and non-colluding
adversary model in our security design. That is, the two cloud servers will faith-
fully follow our protocol, yet are interested in inferring private information about
the client’s feature vector and the provider’s decision tree and will do so inde-
pendently. Such a threat assumption is based on the practical intuition that
cloud service providers are typically from well-established companies like Ama-
zon and Google, so they have little incentives to put the reputation at risk. Other
rationale may include the existence of audits and the fear of legal/financial reper-
cussion. We also remark that although weaker than a malicious adversary model,
a semi-honest model allows for much more efficient protocols in practice [2].

Consistent with prior works [12,20,24], we consider that the client wishes to
keep private the values {xi}n

i=1 in her feature vector x as well as the classifica-
tion result (i.e., the classification value vk corresponding to x). On the provider
side, we consider that the provider wishes to keep private against the cloud the
proprietary threshold values y of the decision nodes, the mapping σ for input
selection, and the classification value associated with each leaf node throughout
the protocol execution. Meanwhile, the provider may also require that per clas-
sification query the client should learn no additional private information about
the decision tree other than the classification value corresponding to her feature
vector. As in prior works [20,24], we do not aim to protect the following generic
meta-parameters about the decision tree: the depth d of the decision tree, the
dimension n of the feature vector, and the number l of bits needed to represent
each element in the feature vector and the threshold vector. These parameters
are assumed public in our system. Meanwhile, similar to existing works on pri-
vate machine learning classification, we deem dealing with attacks on machine
learning models via exploiting classification results out of the scope of this paper.

Towards Secure and Efficient Outsourcing of Machine Learning Classification 29

4 Design of Secure and Efficient Outsourcing of Decision
Tree Based Classification

4.1 Design Overview

At a high level, our custom protocol consists of the following phases: secure input
preparation, secure input selection, secure decision node evaluation, secure path
evaluation, and secure classification generation. In the secure input preparation
phase, the provider sends a properly encrypted decision tree to the cloud and
the client supplies the encrypted feature vector. In the secure input selection
phase, for each decision node, a feature from the encrypted feature vector will
be obliviously selected, according to the (encrypted) mapping for input selection.
In the secure decision node evaluation phase, a secure comparison is made for
each decision node, between the corresponding encrypted threshold and feature.
In the secure path evaluation phase, the path to each leaf node is obliviously
evaluated, leveraging the encrypted comparison results from the previous phase.
In the secure classification generation phase, the encrypted classification result
corresponding to the client’s feature vector is generated. All the above phases in
our design will be instantiated under the lightweight cryptographic technique—
additive secret sharing, in a secure and efficient manner. Our tailored protocol is
built from the ground up, through careful examination of the decision tree evalu-
ation procedure and unique combination of the additive secret sharing technique
with structure-specific computation of decision tree evaluation. In what follows,
we describe in detail each phase of our protocol.

4.2 Protocol

Secure Input Preparation. We adopt additive secret sharing for fast encryp-
tion of the client’s feature vector and the provider’s decision tree. In particular,
given the feature vector x = {xi}n

i=1, the client first generates a vector r of ran-
dom values, which has the same size as x. Here, each value in r is random in the
ring Z2l , where l is a parameter that determines the size of Z2l . Then, the client
produces the ciphertext of the feature vector as [x]0 = {(xi − ri) mod 2l}n

i=1

and [x]1 = {ri mod 2l}n
i=1. Here, [x]α represents the share to be sent to the

cloud server Cα (α ∈ {0, 1}). Note that in an element-wise manner we have
x = ([x]0 + [x]1) mod 2l. Similarly, the provider generates the ciphertexts [y]0
and [y]1 for the threshold vector y. As for the classification values v asso-
ciated with the leaf nodes, the provider generates ciphertexts [[v]]0 and [[v]]1
over Zp (p is a prime), which will be used in secure classification genera-
tion shown later. In addition, recall that the provider also has a mapping
σ : j ∈ {1, 2, · · · ,m} → i ∈ {1, 2, · · · , n} for input selection for the decision
tree, which demands protection as well.

The challenge here is how to encrypt the mapping σ so that it can be hidden
from the cloud servers while still functioning well in the subsequent secure input
selection phase. To tackle this challenge, the key idea is to represent the mapping
σ as an input selection matrix M, and then encrypt this matrix via additive

30 Y. Zheng et al.

secret sharing. Here, the input selection matrix M has a size m × n. Each row
vector wj of M is a binary vector with n elements where all are 0 except for the
element at the position σ(j) set to 1. It is easy to see that xσ(j) = wjx. With
M, the provider generates the secret shares [M]0 and [M]1. Finally, the secret
shares of y, v, and M are sent to each cloud server accordingly.

Input: Shares [M] and [x].
Output: Shares [xσ] = [M · x].

1: Cα computes [E]α = [M]α − [U]α and [f]α = [x]α − [g]α.
2: C0 and C1 jointly reconstruct E and f .
3: Cα computes [M · x]α = α ·E · f +E · [g]α + ·[U]α · f + [z]α.

Fig. 3. Secure input selection.

Secure Input Selection. Given the secret shares of the client’s feature vector
and the provider’s decision tree, we now describe how to perform secure input
selection. In this phase, the result is that each cloud server obtains a secret
share of the feature corresponding to each decision node, while being oblivious
to which feature is selected from the feature vector. Hereafter, all arithmetic
operations related with secret shares take place in Z2l , unless otherwise stated.
So, for ease of presentation, we will omit the modulo operation in our design.

Below we first introduce in detail how to support atomic operations (i.e.,
addition/subtraction and multiplication) under additive secret sharing. Suppose
that each cloud server holds a secret share of the values a1 and a2. Then, the
secret sharing [a1 +a2] (resp. [a1 −a2]) of the addition a1 +a2 (resp. subtraction
a1 − a2) can be computed by each cloud server locally, i.e., [a1 + a2]α = [a1]α +
[a2]α (resp. [a1 −a2]α = [a1]α − [a2]α). For multiplication by a constant c on the
value a1, each cloud server Cα can simply compute [a1 · c]α = c · [a1]α.

As for multiplication of secret-shared inputs, we note that the Beaver’s mul-
tiplication triple trick [3] can be adopted. Suppose that there is a multiplication
triple (u, g, z) satisfying z = u · g and is secret-shared between the two cloud
servers. To obtain the secret sharing [a1 · a2], each cloud server Cα first locally
computes [e]α = [a1]α − [u]α and [f]α = [a2]α − [g]α. Then, each cloud server
broadcasts [e]α and [f]α, and subsequently reconstructs e and f . With e and
f , each cloud server Cα now produces a secret share [a1 · a2]α via computing
[a1 · a2]α = α · e · f + e · [g]α + f · [u]α + [z]α. For correctness proof, we refer
the readers to [3] for details. The security of the Beaver’s trick ensures that
each cloud server learns nothing about the underlying plaintext values a1 and a2

from the protocol execution. Note that the multiplication triples are data inde-
pendent, so they can be efficiently made available to the two cloud servers in an
offline phase, e.g., via an additional semi-honest third party [19]. So, throughout
this paper, we assume that the multiplication triples are available at the cloud
side for use and focus on the online secure decision tree evaluation procedure.

Towards Secure and Efficient Outsourcing of Machine Learning Classification 31

With the above secure atomic operations, we now describe how to perform
secure input selection. Recall that according to our construction for the input
selection matrix in the previous phase, we have xσ = M · x. So, given that
each cloud server Cα holds a secret share of the feature vector x and the input
selection matrix M, what we need here is secure multiplication which takes as
input the secret sharing [x] and [M], and produces the secret sharing [M · x].

Here, for better efficiency, we adapt the Beaver’s trick and work under a vec-
torized setting, inspired by some recent works [14,16]. In particular, the multipli-
cation triple is now in a vectorized form, say (U,g, z), which satisfies z = U · g
and is secret-shared between the two cloud servers. Then, as shown in Fig. 3,
we can compute the secret sharing [M · x] as follows. Firstly, each cloud server
Cα computes [E]α = [M]α − [U]α and [f]α = [x]α − [g]α. Then, each cloud
server broadcasts [E]α and [f]α, and subsequently reconstructs E and f . With
the reconstructed E and f , each cloud server Cα now produces a secret share
[M · x]α via computing [M · x]α = α ·E · f +E · [g]α + [U]α · f + [z]α. Note that
working under a vectorized setting does not affect the security of the Beaver’s
trick. That is, the plaintext values in M and x are still kept confidential.

Input: Shares [yj] and [xσ(j)].
Output: Shares [[bj]] over Zp.

1: Cα computes [a]α = [yj]α − [xσ(j)]α.
// Bit extraction (〈·〉 denotes sharing over Z2)

2: Let p denote C0’s share [a]0, with the bit string being pl, · · · , p1.
Let q denote C1’s share [a]1, with the bit string being ql, · · · , q1.
Define the secret sharing 〈wk〉 over Z2 as {〈wk〉0 = pk, 〈wk〉1 =
qk}. Also, define 〈pk〉 as (〈pk〉0 = pk, 〈pk〉1 = 0) and 〈qk〉 as
{〈qk〉0 = 0, 〈qk〉1 = qk}.

3: C0 and C1 compute 〈c1〉 = 〈p1〉 · 〈q1〉.
4: For k ∈ [2, · · · , l − 1],

(a) C0 and C1 compute 〈dk〉 = 〈pk〉 · 〈qk〉 + 1.
(b) C0 and C1 compute 〈ek〉 = 〈wk〉 · 〈ck−1〉 + 1.
(c) C0 and C1 compute 〈ck〉 = 〈ek〉 · 〈dk〉 + 1.

5: C0 and C1 compute 〈al〉 = 〈wl〉 + 〈cl−1〉, with 〈al〉 defined as
{〈al〉0 = t1, 〈al〉1 = t2}.
// Conversion from Z2 to Zp

6: Let [[t1]] over Zp be defined as {[[t1]]0 = t1, [[t1]]1 = 0} and [[t2]] as
{[[t2]]0 = 0, [[t2]]1 = t2}.

7: C0 and C1 compute [[al]] = [[t1]] + [[t2]] − 2 · [[t1]] · [[t2]].
8: Output [[bj]] = [[al]].

Fig. 4. Secure decision node evaluation (for each decision node j).

32 Y. Zheng et al.

Secure Decision Node Evaluation. For each decision node j, given the secret
shares of the threshold yj and the corresponding feature xσ(j), a secure compar-
ison needs to be conducted. The result from this phase is that for each decision
node j, the two cloud servers obtain the secret sharing of the comparison result
bj . So, here we need to consider how to directly perform efficient and secure
comparison over the secret-shared threshold and feature. As mentioned before,
prior art requires bitwise encryption of inputs for secure decision node evaluation
from the very beginning, so they cannot be extended to work in our scenario
and we need to design from the ground up.

We propose to transform the in-the-cloud secure decision node evaluation
problem into a simpler bit extraction problem. Our observation is that as long as
a large l is used (say typically l = 64 [29]), the non-negative values and negative
values can be distinctly separate in the lower half (

[
0, 2l−1 − 1

]
) and upper half

(
[
2l−1, 2l − 1

]
) of the values in the ring Z2l . So, the most significant bit (MSB)

of non-negative values over Z2l will be 0 and be 1 of negative values. Based on
this important observation, we can first compute the subtraction a = yj − xσ(j)

(over Z2l) and then extract the MSB al of a, as the comparison result bj .
To instantiate this idea in the secret sharing domain, we first need to get the

secret sharing [a] = [yj − xσ(j)], which can be easily computed by the two cloud
servers locally, given [yj] and [xσ(j)]. Then, to obtain the secret sharing of the
comparison result bj , our idea is to employ a bit extraction protocol which can
extract the secret sharing of the MSB of a. Our starting point is the protocol in
[7], which can take as input the secret sharing [yj − xσj] and produces a certain
secret sharing of the MSB al (i.e., bj).

However, simply adopting this protocol does not facilitate subsequent com-
putation in our design, as the produced secret sharing for al is over Z2, denoted
as 〈al〉. Therefore, we need to consider how to convert the secret sharing 〈al〉
over Z2 to [[al]] over Zp, where p is a sufficiently large prime. Here, the reason
that we convert to Zp is that we need to perform multiplicative masking later in
the secure classification phase, so we need to work over a field [22]. More details
will be given later on. Let 〈al〉 : {〈al〉0 = t1, 〈al〉1 = t2} be a valid additive
sharing over Z2. We observe that the value al (0 or 1) over Zp can be expressed
through al = t1 + t2 − 2 ∗ t1 ∗ t2 of which the computation is over Zp. So, if
we can compute the secret sharing [[t1 + t2 − 2 ∗ t1 ∗ t2]] over Zp, we will get
the secret sharing [[al]] over Zp. Let [[t1]] be defined as {[[t1]]0 = t1, [[t1]]1 = 0}
and [[t2]] as {[[t2]]0 = 0, [[t2]]1 = t2}. Then, given [[t1]] and [[t2]], it is easy to
compute the secret sharing [[bj]] = [[al]] = [[t1 + t2 − 2 ∗ t1 ∗ t2]], just through
secure addition/subtraction and multiplication. The details of secure decision
node evaluation are given in Fig. 4.

Secure Path Evaluation. In this phase, the path to each leaf node is oblivi-
ously evaluated based on the encrypted comparison result at each decision node
from the previous phase. Recall that we have managed to obtain the secret shar-
ing [[bj]] of the comparison result at each decision node j. To utilize the encrypted
comparison results for path evaluation, we leverage the state-of-the-art path cost
mechanism [20], which deals with linear functions and only needs secure addi-

Towards Secure and Efficient Outsourcing of Machine Learning Classification 33

tion. In comparison with [20] which relies on homomorphic encryption, we newly
realize the path cost mechanism in the additive secret sharing to enable secure
path evaluation in our outsourcing design.

At a high level, this mechanism first computes a path cost for each leaf node,
which has a unique path in the decision tree, based on the comparison results
at decision nodes. The path cost of a leaf node can then be used to determine
whether that leaf node carries the classification result. Specifically, the path cost
mechanism is as follows. Firstly, it is noted that each decision node is associated
with two outgoing edges. According to [20], for each decision node, we can assign
a cost to the left edge as ecj,0 = bj , and a cost to the right edge as ecj,1 = 1− bj ,
respectively. In this way, all the edges in the decision tree has a cost value.
Then, the path cost pck for each leaf node k is defined by the sum of all the edge
costs along that path. A classification value vk is the classification result if and
only if its associated path cost pck is 0. For more details about the concept and
correctness of path cost, we refer the readers to [20].

Input: Shares [[bj]] for each decision node j.
Output: Shares [[pck]] for each leaf node k.

1: For each decision node j,
(a) Cα sets [[ecj,0]]α = [[bj]]α as the secret-shared left edge

cost.
(b) C0 sets [[ecj,1]]0 = 1 − [[bj]]0 and C1 sets [[ecj,1]]1 = [[bj]]1,

where [[ecj,1]] is the secret-shared right edge cost.
2: For each leaf node k, the secret-shared path cost [[pck]] is

computed by summing up each edge cost [[ec]] along that
path.

Fig. 5. Secure path evaluation.

With the path mechanism, as shown in Fig. 5, the secure path evaluation in
our design works as follows. Firstly, the secret sharings of the left edge cost and
right edge cost are computed. For each decision node j, the two cloud servers set
the secret sharing [[ecj,0]] of the left edge cost ecj,0 to [[bj]]. For the secret sharing
[[ecj,1]] of the right edge cost ecj,1, the cloud server C0 sets [[ecj,1]]0 = 1 − [[bj]]0
and C1 sets [[ecj,1]]1 = [[bj]]1. After that, for each leaf node k, the secret sharing
[[pck]] of the path cost is computed by summing up each secret-shared edge cost
[[ec]] along that path, which can be easily done by each cloud server locally.

Secure Classification Generation. From the previous phase, we have
obtained the secret sharing of the path cost for each leaf node. We now describe
how to leverage the secret-shared path costs to generate ciphertexts from which
the client is able to derive the classification result.

At a high level, we first apply random masking at the cloud side to the path
cost and the classification values in the secret sharing domain, with [[rk · pck]]

34 Y. Zheng et al.

and [[r′
k · pck + vk]] produced for each leaf node, where rk and r′

k are random
values from Z

∗
p. Later, the client reconstructs the randomized path costs and

classification values, and extracts the correct classification result by checking
which received path cost is equal to zero. The classification value associated
with the 0 path cost is then the correct classification result. Otherwise, the
client only sees random values. Note that the multiplicative masking applied on
the path costs is to randomize the exact values of those non-zero path costs from
the client. For this to effectively work, it is crucial that we work over a field such
as Zp [22]. This accounts for why we convert the encrypted comparison result to
Zp in the above secure decision node evaluation phase, as we need to leverage
them to compute secret-shared path costs over Zp for use in secure classification
generation.

In more detail, as shown in Fig. 6, the secure classification generation phase
works as follows. For each leaf node k, the cloud server C0 generates two random
values rk and r′

k from Z
∗
p. Then, C0 computes [[pc∗

k]]0 = [[rk · pck]]0 = rk · [[pck]]0
and [[v∗

k]]0 = [[r′
k · pck + vk]]0 = r′

k · [[pck]]0 + [[vk]]0. Next, C0 applies a random
permutation π over {1, · · · ,K} to {[[pc∗

k]]0}K
k=1 and {[[v∗

k]]0}K
k=1, and obtains

{
[[

pc∗
π(k)

]]

0
}K

k=1 and {
[[

v∗
π(k)

]]

0
}K

k=1. Here, K is the number of leaf nodes. The

random masks rk and r′
k and the permutation π are shared with the cloud server

C1. Then, the cloud server C1 first computes [[pc∗
k]]1 = [[rk · pck]]1 = rk · [[pck]]1 and

[[v∗
k]]1 = [[r′

k · pck + vk]]1 = r′
k · [[pck]]1 + [[vk]]1. The same random permutation is

applied to the resulting shares. So, the cloud server C1 produces {
[[

pc∗
π(k)

]]

1
}K

k=1

Input: Shares [[pck]] and [[vk]] for each leaf node k.
Output: Classification result.

1: C0 computes [[pc∗
k]]0 = [[rk · pck]]0 = rk · [[pck]]0 and [[v∗

k]]0 =
[[r′

k · pck + vk]]0 = r′
k · [[pck]]0 + [[vk]]0.

2: C0 applies a random permutation π to the above shares, and
obtains {

[[
pc∗

π(k)

]]

0
}K

k=1 and {
[[

v∗
π(k)

]]

0
}K

k=1.

3: C1 computes [[pc∗
k]]1 = [[rk · pck]]1 = rk · [[pck]]1 and [[v∗

k]]1 =
[[r′

k · pck + vk]]1 = r′
k · [[pck]]1 + [[vk]]1.

4: C1 applies the same random permutation and produces
{
[[

pc∗
π(k)

]]

1
}K

k=1 and {
[[

v∗
π(k)

]]

1
}K

k=1.

5: Client receives the secret sharings {
[[

pc∗
π(k)

]]
}K

k=1 and

{
[[

v∗
π(k)

]]
}K

k=1, and reconstructs {pc∗
π(k)}K

k=1 and {v∗
π(k)}K

k=1.
6: Checking that a pc∗

π(k) is 0, client outputs v∗
π(k) as the clas-

sification result.

Fig. 6. Secure classification generation.

Towards Secure and Efficient Outsourcing of Machine Learning Classification 35

and {
[[

v∗
π(k)

]]

1
}K

k=1. Upon receiving the request for the classification result, each

cloud server Cα sends the shares {
[[

pc∗
π(k)

]]

α
}K

k=1 and {
[[

v∗
π(k)

]]

α
}K

k=1 to the
client. The client combines the shares to reconstruct the randomized path costs
{pc∗

π(k)}K
k=1 and randomized classification values {v∗

π(k)}K
k=1. The client checks

that a particular pc∗
π(k) is 0 and outputs v∗

π(k) is the classification result.

4.3 Security Guarantees

Theorem 1. Our design guarantees that each cloud server learns no private
information about the client’s feature vector and the provider’s decision tree,
given the security of additive secret sharing, Beaver’s triple trick, and multi-
plicative masking, and the semi-honest non-colluding assumption. Besides, our
design ensures that the client learns no additional private information about the
decision tree other than the classification result.

Proof. We give some sketches here. Firstly, we analyze the security against the
cloud servers. In the beginning, the two cloud servers receive respective secret
shares of the client’s feature vector and the provider’s decision tree. The security
of additive secret sharing ensures that each cloud server learns nothing about
the plaintext values underlying its shares. During protocol execution, the two
cloud servers operate over their respective secret shares locally and have some
interactions when necessary. The interactions, always with secret-shared values
produced, are either for secure multiplication under the Beaver’s triple trick (in
the secure input selection phase and secure decision node evaluation phase), or
for sharing the random masks and random permutation (in the secure classifi-
cation generation phase). In a nutshell, each cloud server’s view of the protocol
execution is just random values, so the privacy of the provider’s decision tree
and the client’s feature vector follows.

Table 1. Computation performance of the provider (in ms).

Provider Operation d =3,
n=13

d = 4,
n = 15

d=8,
n=9

d = 13,
n = 13

d= 17,
n=57

Node Encryption 0.0013 0.002 0.03 0.8791 14.129

Selection Matrix Encryption 0.0131 0.0254 0.2686 13.9693 871.658

Total 0.0144 0.0274 0.2986 14.8484 885.787

As for the security against the client, the client’s view of the protocol execu-
tion consists of random non-zero numbers, and one zero path cost associated with
one classification value. Recall that according to the computation correctness of
path costs, there is only one 0 path cost, which corresponds to the classification
result. All other path costs are non-zero numbers. Therefore, after the random
masking, only the path cost corresponding to the classification result will remain

36 Y. Zheng et al.

as 0, and the other non-zero path costs are random (non-zero) numbers. Sim-
ilarly, all randomized classification values except the one associated with the
0 path cost are random numbers. As the masked path costs and classification
values are randomly shuffled, the true position of the classification result in the
decision tree is also concealed. So, from received randomized path costs and clas-
sification values, the client only learns the classification result corresponding to
his feature vector.

5 Experiments

5.1 Setup

We implement and empirically evaluate our protocol to demonstrate the prac-
ticality. The implementation is in C++, with GNU GMP library used for big
number manipulation and Eigen library for matrix operations. We compiled the
code with Clang 10.0 and optimization level O3. All experiments are run on
a Macbook Pro with 2.6 GHz i7 CPU and 32 GB memory. In our experiments,
we use synthetic decision trees with realistic problem sizes that could arise in
practice, following prior works [20,24]. In particular, the depth d of a decision
tree ranges from 3 to 17, and the number n of features ranges from 9 to 57.

Table 2. Computation performance of the client (in ms).

Client Operation d=3,
n =13

d = 4,
n = 15

d=8,
n=9

d = 13,
n = 13

d= 17,
n=57

Feature Vector Encryption 0.0018 0.0021 0.0017 0.0018 0.0065

Sec. Classification Generation 0.0018 0.0034 0.0504 1.567 25.3779

Total 0.0036 0.0055 0.0521 1.5688 25.3844

5.2 Evaluation

We first examine the computation cost at the provider, the client, and the cloud,
respectively. Recall that the provider only needs to have one-off encryption of
the decision model in the very beginning, which includes the encryption of the
values at decision nodes and leaf nodes, as well as the encryption of the input
selection matrix. Table 1 shows the computation performance of the provider
with varying realistic combinations of the decision tree depth d and the number
of features n, as in prior work. As seen, the one-off computation cost of the
provider is quite small. Even for our largest tested decision tree (d = 17 and
n = 57), the one-off computation cost of the provider is less than 1 s.

The client’s computation cost is due to the encryption of the feature vector,
and the extraction of the classification result from the randomized path costs
and classification values. Table 2 reports the computation performance of the
client. It can be seen that the computation cost is dominated by the component

Towards Secure and Efficient Outsourcing of Machine Learning Classification 37

of secure classification generation. In most cases (d ≤ 13), the cost is below
2 ms; whereas even for the largest decision tree setting (d = 17 and thus 131071
decision nodes), it is below 26 ms, which is highly efficient. We emphasize that
our design has the distinct advantage that the client can be offline after supplying
the encrypted feature vector, which is a highly desirable property for realistic
service deployment, especially in mobile environments. Besides, compared with
state-of-the-art designs under the client-provider setting, our secure outsourcing
design brings substantial computational saving for the client. For example, the
design in [20] already takes about 10 s at the client even for the much smaller
problem size of 2000 decision nodes; and the design in [21] requires roughly 3 s
for a decision tree with d = 14. So, with d = 17 (131071 decision nodes) in our
test, our design outperforms the design [20] by at least four orders of magnitude,
and the design [21] by at least 118×.

Lastly, we evaluate the computation cost at the cloud side. Table 3 gives the
computation cost at the cloud side (the sum of two cloud servers’ computation
costs), including the costs of secure input selection, secure decision node evalu-
ation, secure path evaluation, and secure classification generation. Overall, the
computation for secure decision tree evaluation at the cloud side is quite efficient,
ranging from 0.3034 ms to 14.6396 s.

We now examine the communication performance. Table 4 shows the com-
munication cost of the provider. The provider’s communication cost is due to the
secret shares of the decision model, which includes the secret shares of the thresh-
old values at decision nodes, classification values at leaf nodes, and the input
selection matrix. According to Table 4, the communication cost is dominated by
the shares of the selection matrix. For most cases (d ≤ 13), the communica-
tion cost is less than 2 MB. For the largest decision tree in our test, the one-off
communication cost is about 118 MB.

Table 3. Computation performance at the cloud side (in ms).

Cloud Operation d=3,
n=13

d=4,
n=15

d=8,
n=9

d=13,
n=13

d=17,
n=57

Sec. Input Selection 0.2172 0.5141 4.9688 200.836 13054.443

Sec. Decision Node Evaluation 0.0794 0.1726 2.9603 98.6439 1482.1668

Sec. Path Evaluation 0.0022 0.0062 0.1093 3.4813 59.5199

Sec. Classification Generation 0.0046 0.007 0.0672 2.2878 43.4859

Total 0.3034 0.6999 8.1056 305.249 14639.6156

Table 4. Communication performance of the provider (in KB).

Component d=3,
n=13

d=4,
n=15

d=8,
n=9

d=13,
n=13

d=17,
n=57

Node Shares 0.23 0.48 7.98 255.98 4095.98

Selection Matrix Shares 1.42 3.52 35.86 1663.8 116735.11

Total 1.65 4 43.84 1919.78 120831.09

38 Y. Zheng et al.

The client’s communication cost, as shown in Table 5, is from the upload
of the secret shares of the feature vector in the beginning, and the download
of the secret shares of the randomized path costs and classification values in
secure classification generation. The communication cost is dominated by the
download of shares. As seen from Table 5, the communication cost of the client
in our outsourcing design is fully practical, ranging from 0.45 KB with d = 3
to 4 MB with d = 17 (131071 decision nodes). In comparison, we note that
the state-of-the-art design [20] working under the client-provider setting already
requires more than 10 MB for just 2000 decision nodes (thus roughly 655 MB
would be required for 131071 decision nodes and thus 163× less efficient), and
the design [21] requires about 2 MB for a decision tree with d = 14 (4× less
efficient compared to about 512 KB for d = 14 in our design).

We also report the communication cost at the cloud side, i.e., the amount
of data exchanged between the two cloud servers for secure decision tree classi-
fication. The communication cost at the cloud side is mainly due to the call of
secure multiplication of secret-shared values in secure input selection and secure
decision node evaluation, and the sharing of the random masks and random
permutation in secure classification generation. Table 6 summarizes the cloud
side communication cost in different phases of secure decision tree evaluation.
In most cases, the communication cost is less than 3 MB. Even for the largest
decision tree, it only requires 132.6249 MB, which is practically affordable at the
resource-rich cloud.

Table 5. Communication performance of the client (in KB).

Component d = 3,
n = 13

d=4,
n=15

d = 8,
n = 9

d= 13,
n=13

d = 17,
n = 57

Feature Vector Shares 0.2 0.23 0.14 0.2 0.89

Classification Result Shares 0.25 0.5 8 256 4096

Total 0.45 0.73 8.14 256.2 4096.89

Table 6. Communication performance at the cloud side (in MB).

Operation d = 3,
n = 13

d = 4,
n = 15

d = 8,
n = 9

d = 13,
n = 13

d = 17,
n = 57

Sec. Input Selection 0.0016 0.0037 0.0352 1.625 114

Sec. Decision Node Evaluation 0.0008 0.0018 0.0304 0.9764 15.6249

Sec. Classification Generation 0.0002 0.0004 0.0059 0.1875 3

Total 0.0026 0.0058 0.0715 2.7889 132.6249

Towards Secure and Efficient Outsourcing of Machine Learning Classification 39

6 Conclusion

In this paper, we proposed the first framework for secure and efficient machine
learning classification outsourcing based on decision trees. Our design allows a
provider to leverage the power of the cloud to deliver secure and efficient decision
tree based classification service to the client. As we manage to delicately shift
the processing to the cloud side, neither the provider nor the client needs to
stay online for active participation in the service. Our design operates under the
increasingly popular two-server model and provides the first solution for secure
and efficient classification outsourcing based on decision trees. We crafted our
design from the ground up, leveraging the lightweight additive secret sharing
technique and the problem specifics of decision tree based classification. Our
evaluation shows the practical performance of our design, as well as the sub-
stantial performance advantage for the client over prior art.

Acknowledgement. This work was supported in part by the Research Grants Coun-
cil of Hong Kong under Grants CityU 11276816, CityU 11212717, and CityU C1008-
16G, by the Innovation and Technology Commission of Hong Kong under ITF Project
ITS/168/17, and by the National Natural Science Foundation of China under Grant
61572412.

References

1. Azar, A.T., El-Metwally, S.M.: Decision tree classifiers for automated medical diag-
nosis. Neural Comput. Appl. 23(7–8), 2387–2403 (2013)

2. Baldimtsi, F., Papadopoulos, D., Papadopoulos, S., Scafuro, A., Triandopoulos, N.:
Server-aided secure computation with off-line parties. In: Foley, S.N., Gollmann,
D., Snekkenes, E. (eds.) ESORICS 2017. LNCS, vol. 10492, pp. 103–123. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-66402-6 8

3. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigen-
baum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-46766-1 34

4. Bost, R., Popa, R.A., Tu, S., Goldwasser, S.: Machine learning classification over
encrypted data. In: Proceedings of NDSS (2015)

5. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: Proceediongs of ITCS (2012)

6. Cai, C., Zheng, Y., Wang, C.: Leveraging crowdsensed data streams to discover and
sell knowledge: a secure and efficient realization. In: Proceedings of IEEE ICDCS
(2018)

7. Cock, M.D., et al.: Efficient and private scoring of decision trees, support vector
machines and logistic regression models based on pre-computation. IEEE Trans.
Dependable Secure Comput. 16(2), 217–230 (2017). 101109/TDSC20172679189

8. Erkin, Z., Veugen, T., Toft, T., Lagendijk, R.L.: Generating private recommenda-
tions efficiently using homomorphic encryption and data packing. IEEE Trans. Inf.
Forensics Secur. 7(3), 1053–1066 (2012)

9. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A
completeness theorem for protocols with honest majority. In: Proceedings of ACM
STOC (1987)

https://doi.org/10.1007/978-3-319-66402-6_8
https://doi.org/10.1007/3-540-46766-1_34

40 Y. Zheng et al.

10. Joye, M., Salehi, F.: Private yet efficient decision tree evaluation. In: Kerschbaum,
F., Paraboschi, S. (eds.) DBSec 2018. LNCS, vol. 10980, pp. 243–259. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-95729-6 16

11. Juvekar, C., Vaikuntanathan, V., Chandrakasan, A.: GAZELLE: A low latency
framework for secure neural network inference. In: Proceedings of USENIX Security
Symposium (2018)

12. Kiss, Á., Naderpour, M., Liu, J., Asokan, N., Schneider, T.: Sok: modular and
efficient private decision tree evaluation. PoPETs 2019(2), 187–208 (2019)

13. Libbrecht, M.W., Noble, W.S.: Machine learning applications in genetics and
genomics. Nat. Rev. Genet. 16(6), 321–332 (2015)

14. Liu, J., Juuti, M., Lu, Y., Asokan, N.: Oblivious neural network predictions via
minionn transformations. In: Proceedings of ACM CCS (2017)

15. Min, J.H., Lee, Y.: Bankruptcy prediction using support vector machine with opti-
mal choice of kernel function parameters. Expert Syst. Appl. 28(4), 603–614 (2005)

16. Mohassel, P., Zhang, Y.: Secureml: a system for scalable privacy-preserving
machine learning. In: Proceedings of IEEE S&P (2017)

17. Nikolaenko, V., Ioannidis, S., Weinsberg, U., Joye, M., Taft, N., Boneh, D.: Privacy-
preserving matrix factorization. In: Proceedings of ACM CCS (2013)

18. Nikolaenko, V., Weinsberg, U., Ioannidis, S., Joye, M., Boneh, D., Taft, N.: Privacy-
preserving ridge regression on hundreds of millions of records. In: Proceedings of
IEEE SP (2013)

19. Riazi, M.S., Weinert, C., Tkachenko, O., Songhori, E.M., Schneider, T., Koushan-
far, F.: Chameleon: a hybrid secure computation framework for machine learning
applications. In: Proceedings of AsiaCCS (2018)

20. Tai, R.K.H., Ma, J.P.K., Zhao, Y., Chow, S.S.M.: Privacy-preserving decision trees
evaluation via linear functions. In: Proceedins of ESORICS (2017)

21. Tueno, A., Kerschbaum, F., Katzenbeisser, S.: Private evaluation of decision trees
using sublinear cost. PoPETs 2019(1), 266–286 (2019)

22. Wagh, S., Gupta, D., Chandran, N.: Securenn: efficient and private neural network
training. PoPETs 2019(3), 26–49 (2019)

23. Wang, Q., Wang, J., Hu, S., Zou, Q., Ren, K.: Sechog: privacy-preserving outsourc-
ing computation of histogram of oriented gradients in the cloud. In: Proceedings
of ACM AsiaCCS (2016)

24. Wu, D.J., Feng, T., Naehrig, M., Lauter, K.E.: Privately evaluating decision trees
and random forests. PoPETs 2016(4), 335–355 (2016)

25. Yao, A.C.: How to generate and exchange secrets. In: Proceedings of FOCS (1986)
26. Yap, B.W., Ong, S., Husain, N.H.M.: Using data mining to improve assessment

of credit worthiness via credit scoring models. Expert Syst. Appl. 38(10), 13274–
13283 (2011)

27. Zheng, Y., Cui, H., Wang, C., Zhou, J.: Privacy-preserving image denoising from
external cloud databases. IEEE Trans. Inf. Forensics Secur. 12(6), 1285–1298
(2017)

28. Zheng, Y., Duan, H., Wang, C.: Learning the truth privately and confidently:
encrypted confidence-aware truth discovery in mobile crowdsensing. IEEE Trans.
Inf. Forensics Secur. 13(10), 2475–2489 (2018)

29. Ziegeldorf, J.H., Metzke, J., Rüth, J., Henze, M., Wehrle, K.: Privacy-preserving
HMM forward computation. In: Proceedings of CODASPY (2017)

https://doi.org/10.1007/978-3-319-95729-6_16

Confidential Boosting with Random
Linear Classifiers for Outsourced

User-Generated Data

Sagar Sharma(B) and Keke Chen

Data Intensive Analysis and Computing (DIAC) Lab, Kno.e.sis Center,
Wright State University, Dayton, OH 45435, USA

{sharma.74,keke.chen}@wright.edu

Abstract. User-generated data is crucial to predictive modeling in
many applications. With a web/mobile/wearable interface, a data owner
can continuously record data generated by distributed users and build
various predictive models from the data to improve its operations, ser-
vices, and revenue. Due to the large size and evolving nature of users
data, a data owner may rely on public cloud service providers (Cloud) for
storage and computation scalability. Exposing sensitive user-generated
data and advanced analytic models to Cloud raises privacy concerns. We
present a confidential learning framework, SecureBoost, for data own-
ers that want to learn predictive models from aggregated user-generated
data but offload the storage and computational burden to Cloud with-
out having to worry about protecting the sensitive data. SecureBoost
allows users to submit encrypted or randomly masked data to desig-
nated Cloud directly. Our framework utilizes random linear classifiers
(RLCs) as the base classifiers in the boosting framework to dramatically
simplify the design of the proposed confidential protocols, yet still pre-
serve the model quality. A Cryptographic Service Provider (CSP) is used
to assist the Cloud’s processing, reducing the complexity of the proto-
col constructions. We present two constructions of SecureBoost: HE+GC
and SecSh+GC, using combinations of homomorphic encryption, garbled
circuits, and random masking to achieve both security and efficiency. For
a boosted model, Cloud learns only the RLCs and the CSP learns only
the weights of the RLCs. Finally, the data owner collects the two parts
to get the complete model. We conduct extensive experiments to under-
stand the quality of the RLC-based boosting and the cost distribution
of the constructions. Our results show that SecureBoost can efficiently
learn high-quality boosting models from protected user-generated data.

1 Introduction

It is a common scenario in which a data owner delivers services such as search
engines, movie recommendations, healthcare informatics, and social network-
ing to its subscribing or affiliated users (henceforth referred as users) via
web/mobile/wearable applications. By collecting users’ activities such as click-
throughs, tweets, reviews, and other information, the data owner accumulates
c© Springer Nature Switzerland AG 2019
K. Sako et al. (Eds.): ESORICS 2019, LNCS 11735, pp. 41–65, 2019.
https://doi.org/10.1007/978-3-030-29959-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29959-0_3&domain=pdf
https://doi.org/10.1007/978-3-030-29959-0_3

42 S. Sharma and K. Chen

a large amount of user-related data, which are used to build analytic models
aimed at improving the quality of related services and operations, and increase
revenues. However, due to the ever-growing size of data and associated computa-
tion complexities, data owners often rely on easily available public cloud services
(Cloud) to outsource storage and computations.

The reliance on Cloud for the massive collection of user data along with
building powerful big data analytic models raise great concerns of user pri-
vacy and intellectual property protection. First, the Cloud’s infrastructures, if
poorly secured, can be compromised by external hackers which damages the data
owner’s reputation and users’ privacy. Recent data breach incidents involved
Target, Ashley Madison, and Equifax [28,34]. Second, the potential threat of
unauthorized retrieval, sharing, or misuse of sensitive data by insiders [7,11]
are difficult to detect and prevent. The data owners have a great responsibility
for protecting the confidentiality of the sensitive data collection and analytics in
Cloud. Thus, confidential data mining frameworks for outsourced data are highly
desirable to data owners. Note that differential privacy does not fully address
the problem, as it does not protect intellectual property and cannot prevent
model-inversion attacks [14,33] as models are exposed to the adversaries.

Naive applications of the well-known cryptographic primitives such as the
fully homomorphic encryption (FHE) scheme [18], garbled circuits (GC) [35],
and secret sharing [10] in building confidential computing frameworks prove too
expensive to be practical [27,30]. A few recent studies [10,29–31] started blending
multiple cryptographic primitives and adapted to certain privacy architectures
to work around the performance bottlenecks. These “hybrid” constructions mix
different cryptographic primitives to implement the key algorithmic components
of a protocol with reasonable overheads.

While the hybrid approach is promising, it does not fundamentally address
the basic complexity of building a confidential version of a learning algorithm.
We believe it is more critical to modify the original algorithm or adopt a “crypto-
friendly” alternative algorithm to significantly reduce the associated complexity.
However, the current solutions are mostly focusing on translating the original
algorithms to confidential ones, from simple linear algorithms with weak predic-
tion power, such as linear classifiers and linear regressions [19,29,31], to powerful
yet enormously expensive models, such as shallow neural networks [29].

1.1 Scope of Work and Contributions

While deep learning methods [26] have dominated the image and sequence-based
learning tasks, boosting is among the most powerful methods such as SVM and
Random Forest [5] for other prediction tasks. For example, it has also been a
popular method (e.g., XGBoost [9]) in learning to rank [6] and a top choice of
many Kaggle competition winners. Surprisingly, no work has sufficiently explored
the power of boosting in confidential learning.

Confidential Boosting with Random Linear Classifiers 43

The core idea of our SecureBoost approach is to fully utilize the powerful
boosting theory [15] that requires only weak classifiers (e.g., each classifier’s
accuracy is only slightly exceeding 50% for two-class problems) to derive a pow-
erful prediction model. This flexibility allows us to revise the original boosting
algorithm (i.e., AdaBoost [15]) that uses non-crypto-friendly decision stumps to
adopt crypto-friendly random linear classifiers as the base classifiers. We con-
sider our work as the first step towards developing confidential versions for other
boosting algorithms such as gradient-boosting [16].

In the popular AdaBoost framework for classification [15], decision stumps
(DS) have been used as the weak classifiers for their simplicity and fast conver-
gence of boosting. Although the training algorithm for a decision stump is quite
simple, it is expensive to implement its confidential version due to the associated
complexity of secure comparisons. Our core design of confidential boosting is to
use random linear classifiers (RLCs) as the weak classifiers. For a linear classifier
f(x) = wT x, where x is the feature vector and w is the parameter vector to learn,
an RLC sets w to be random using a specific generation method independent
of training data. This random generation of classifier dramatically simplifies the
training step and it only requires to determine whether the random classifier is
a valid weak classifier (e.g., accuracy >50%). In experiments, we found that our
random RLC generation method works satisfactorily - for every 1–2 random tries
we can find a valid weak classifier. The resulting boosting models are compara-
ble to those generated by using decision stumps as base classifiers, although it
converges slightly slower. The use of RLC also allows us to conveniently protect
feature vectors and labels and to greatly reduce the costs of other related steps.

We have designed two secure constructions to implement the RLC-based
boosting framework to understand the effect of different cryptographic primitives
on the associated complexities and expenses. The constructions are based on
the non-colluding honest-but-curious Cloud-CSP setting that has been used by
recent related work [29–31]. CSP is a cryptographic service provider that will be
responsible to manage encryption keys and assist Cloud with the intermediate
steps of the boosting framework. Cloud takes over the major computation and
storage burden but is not interested in protecting user privacy. Both of our
protocols result in models with distributed parameters between the Cloud and
the CSP: the Cloud holding the RLCs’ parameters and the CSP holding the base
classifier’s weights of the boosted models. An alternate setting (i.e., our SecSh
setting) is that two servers take an equal share of computation and storage. For
simplicity, we unify the two settings to Cloud-CSP.

We carefully analyze the security of the constructions based on the uni-
versally composable (UC) security paradigm [3,4] and show that no additional
information is leaked except for CSP knowing a leakage function. Both the con-
structions of SecureBoost expose a leakage function to CSP - the correctness of
RLC’s prediction on training examples. We analyze the leaked information of
the function and show that it is safe to use under our security assumption.

44 S. Sharma and K. Chen

We summarize the unique contributions as follows:

– We propose to use random linear classifiers as a crypto-friendly building block
to simplify the implementation of confidential boosting.

– We develop two hybrid constructions: HE+GC and SecSh+GC, with the com-
bination of GC, SHE, Secret Sharing, AHE, and random masking to show that
the RLC-based boosting can be elegantly implemented.

– Our framework provably preserves the confidentiality of users’ submitted
data, including both feature vectors and their associated labels, and the gen-
erated boosting models from both curious Cloud and CSP.

– We conduct an extensive experimental evaluation of the two constructions
with both synthetic and real datasets to fully understand the costs and asso-
ciated tradeoffs.

2 Preliminary

We use lowercase letters for vectors or scalars; capital letters for matrices and
large integers; and single indexed lowercase or capital case letters for vectors.

Boosting. Boosting is an ensemble strategy [21] that generates a high-quality
classifier with a linear combination of τ weak base classifiers (whose prediction
power is slightly better than random guessing). Specifically, given training exam-
ples {(xi, yi), i = 1 . . . n}, where xi are feature vectors and yi are labels, it learns
a model H(x) =

∑τ
t=1 αtht(x), where ht is a weak classifier that outputs the

prediction ŷ for the actual label y and αt is the learned weight for ht. Algorithm 2
in AppendixA.1 outlines the boosting algorithm for the two-class problem. The
most popular weak classifier has been the decision stump [15], which is merely
based on conditions like if Xj < vj , output 1; otherwise, −1, where Xj is a
certain feature and Xj < vj is some optimal split that gives the best prediction
accuracy among all possible single-feature splits for the training dataset.

Additive Homomorphic Encryption. For any two integers α and β, an AHE
scheme allows the additive homomorphic operation: E(α + β) = f(E(α), E(β))
where the function f works on encrypted values without decryption. For exam-
ple, Paillier encryption [32] is one of the most efficient AHE implementations.
Conceptually1, with one operand, either α or β, unencrypted, we can derive
the pseudo-homomorphic multiplication, e.g., E(αβ) = E(

∑β
i=1 α). Similarly,

we can derive pseudo-homomorphic vector dot-product, matrix-vector multipli-
cation, and matrix-matrix multiplication, as long as one of the operands is in
plaintext.

RLWE Homomorphic Encryption. The RLWE scheme is based on the
intractability of the learning-with-error (LWE) problem in certain polynomial
rings [2]. It allows both homomorphic addition and multiplication. RLWE allows
multiple levels of multiplication with a rising cost. For details, please refer to

1 Paillier encryption allows more efficient multiplication.

Confidential Boosting with Random Linear Classifiers 45

Brakerski et al. [2]. Message packing [2] was invented to pack multiple cipher-
texts into one polynomial, greatly reducing the ciphertext size - e.g., we can
pack about 600 encrypted values (slots) into one degree-12,000 polynomial. With
message packing, vector dot-products and matrix-vector multiplication can be
carried out efficiently as shown by [20].

Randomized Secret Sharing. The randomized secret sharing method [10]
protects data by splitting it into two (or multiple) random shares, the sum of
which recovers the original data, and distributing them to two (or multiple) par-
ties. Several protocols have been developed to enable fundamental operations
such as addition and multiplication based on distributed random shares, pro-
ducing results that are also random shares, such as the multiplicative triplet
generation method [10,29].

Garbled Circuits. Garbled Circuits (GC) [35] allow two parties, each holding
an input to a function, to securely evaluate a function without revealing any
information about the input data. The function is implemented with a circuit
using a number of basic gates such as AND and XOR gates. The truth table
of each gate is encrypted so that no information is leaked during the evalua-
tion. One party creates the circuit and the other one evaluates it. All inputs
are securely encoded as labels and passed to the evaluator via the 1-out-of-2
Oblivious Transfer (OT) [1] protocol. During the recent years, a number of opti-
mization techniques have been developed to minimize the cost of GC, such as
free XOR gates [24], half AND gates [36], and OT extension [1].

3 Framework

Figure 1 shows the SecureBoost framework and the involved parties: the data
owner, the cloud service provider (Cloud), the users who contribute their per-
sonal data for model training, and the Cryptographic Service Provider (CSP).
The learning protocol consists of multiple rounds of Cloud-CSP interactions,
which builds a boosted model on the global pool of user-contributed training
data. Ultimately, Cloud learns the parameter of each base classifier but no addi-
tional knowledge about the protected user data; and CSP learns the weights
of the base classifiers and a certain type of leakage information that does not
help breach the confidentiality of protected user data. The learned models can
be either downloaded and reconstructed by the data owner for local applica-
tions or used by data owner by submitting encrypted new records to Cloud and
undergoing Cloud-CSP evaluation.

Data owner designates a cloud provider to collect user-generated data
in encrypted form and undertake the major storage cost and the major
computation-intensive components of the confidential learning protocol. CSP
is a party with limited resources. It mainly assists Cloud in intermediate steps,
e.g. encrypting or decrypting intermediate results and constructing garbled cir-
cuits. CSP is allowed to learn some leakage function but remains oblivious to
users’ data or the learned models. The concept of CSP has been used and justi-
fied by other related works [30,31] as a practical semi-honest setting to release

46 S. Sharma and K. Chen

Fig. 1. SecureBoost Framework.

data owner from complex interactions. If using randomized secret sharing, the
users upload shares of their submissions to both Cloud and CSP as depicted by
the dotted lines in Fig. 1.

3.1 SecureBoost Learning Protocol

In this section, we describe the rationale and benefits of using RLCs as the base
classifiers, the major components of the SecureBoost protocol, and the security
goals.

RLCs as Base Classifiers. The original boosting framework has used decision
stumps as the base classifiers. RLCs are overly ignored due to its slower conver-
gence rate. However, it is expensive to implement decision stumps on encrypted
data due to the O(kn log n) comparisons in the optimal implementation, where
n is the number of records and k is the dimensionality. It is known that compar-
ison on encrypted data is expensive for both homomorphically encrypted data
[27] or garbled circuits [25]. To reduce the cost involving comparisons, we use
randomly generated linear classifiers (RLC) instead. An RLC generates a clas-
sification plane in the form of h(x) = wT x + b with randomly selected w and b,
which can be done by one party, i.e., Cloud. Thus, no comparison is needed in
base-classifier generation.

However, blindly selecting w and b is not efficient. As Fig. 2 shows, the gen-
erated plane needs to shatter the training data space into two partitions of
significant sizes. For this purpose, we require the submitted data to be normal-
ized so that the training vectors are distributed around the origin. In practice,
with the standardization procedure, i.e., each dimension Xi is normalized with
(Xi−μi)/σi, where μi is the mean and σi is the standard deviation of the dimen-
sion Xi, most dimensional values should be in the range [−2, 2]. Thus, we can
choose b, the intercept, in the range [−2, 2], while each element of w is chosen
uniformly from [−1, 1]. Note that μi and σi can be roughly estimated by the data
owner with low-cost sampling and aggregation of users’ submissions and shared
with the users. For clarity, we ignore the details of such simple protocols. With
this setting, we find in our experiments that a valid random linear classifier can

Confidential Boosting with Random Linear Classifiers 47

be found in about 1–2 tries. We have also verified with our experiments that
boosting with RLCs can generate high-quality models comparable to those with
decision stumps.

Fig. 2. Effective Random Linear Classifier Generation

RLCs have extra advantages. First, they allow learning with both the fea-
ture vectors and labels protected. We can transform the training data as
x ← (x, 1) and w ← (w, b), with which the hypothesis function simply changes
to h(x) = wT x. For a two-class problem with labels y ∈ {−1, 1}, if the result
h(x) gives a correct prediction, i.e., the same sign as the label y, we always get
h(x)y = wT xy > 0; otherwise wT xy ≤ 0. Note that xy stays together in the
evaluation, and thus users can submit the encrypted version of xy, E(xy), pro-
tecting both feature vectors and labels. Second, they simplify the learning of base
classifiers. As w is randomly generated, there is no need for Cloud to consider
sample weights during learning. Meanwhile, the learning of the αt weights can
be individually done by CSP. Finally, this process allows only the CSP to learn
the weights of base models, and Cloud to learn the base classifiers, preventing
either party learning the complete final model.

SecureBoost Protocol. The SecureBoost learning protocol is defined with
a 4-tuple: SB-Learning = (Setup, BaseApply, ResultEval, Update).
Algorithm 1 depicts the use of these components in the boosting framework.
For a boosted model H(x) =

∑τ
t=1 αtht(x), Cloud learns the base models

{ht(x) = wT
t x, t = 1..τ}, and CSP learns the model weights {αt, t = 1..τ}.

(K,E(Z), {wi, i = 1..p}, δ1) ←Setup(1k, τ , p): (1) The key K is generated
by a certain party or parties (CSP, Cloud, or both) as required, with the desired
security level 1k; all public keys are published. (2) CSP initializes δ1 with 1/n.
(3) The training data Z of n instances contains row vectors zi = xiyi, which
is protected with either a public-key encryption scheme or random masking
(e.g., in the secret-sharing construction) to generate E(Z). (4) Data owner sets
the desired number of classifiers, τ , and instructs Cloud to generate a pool of
prospective RLCs with parameters wt for t = 1 . . . p, where p is the pool size
proportionally larger than τ , e.g., p = 1.5τ .

{E(ht(xi)), i = 1..n} ← BaseApply(K, E(Z), wt): With the encrypted
training data E(Z) and a model parameter wt, the procedure will output the
model ht’s encrypted prediction results on all training instances.

48 S. Sharma and K. Chen

Algorithm 1. SecureBoost Framework
1: (K, E(Z), {wi, i = 1..p}, δ1)←Setup(1k, τ , p);
2: for t ← 1 to p do
3: {E(ht(xi)), i = 1..n} ← BaseApply(K, E(Z), wt);
4: It ← ResultEval(K, {E(ht(xi), i = 1..n});
5: (δt+1, αt, et)← Update(K, δt, It); //by CSP only
6: if τ effective base models have been found then
7: stop the iteration;
8: end if
9: end for

It ← ResultEval(K, {E(ht(xi)), i = 1..n}): With the encrypted prediction
results, ResultEval allows CSP (not Cloud) to learn the indicator vector It of
length n, indicating the correctness of ht’s prediction for each training instance.

(δt+1, αt, et) ← Update(δt, It): CSP takes It, δt to compute the weighted
error rate et = IT

t δt and if ht is a valid base classifier i.e. accuracy > 50% (or
accuracy < 50% with the RLC decisions reversed), updates its weight αt =
0.5ln((1 − et)/et) and computes δt+1 for the next iteration with sample weight
updating formula.

In the end, Cloud learns {wt, t = 1..p} and CSP learns {αt, t = 1..p}. A two-
party function evaluation protocol can be easily developed for Cloud to apply
the model for classification, which, however, is not the focus of this paper. The
data owner can simply download the model components from the two parties
and reconstruct the final model for local application. The design of leaking It

represents a careful balance between security and efficiency. While it is possible
to hide It, the complexity of Cloud and CSP processing will be dramatically
increased. We have carefully studied the implication of It in Sect. 7 and found
its impact on security is minimal.

3.2 Security Model

We make some relevant security assumptions here: (1) Both Cloud and CSP are
honest-but-curious parties, i.e., they follow the protocols exactly and provide
services as expected. However, they are interested in the users’ data. (2) Cloud
and CSP do not collude, (3) The data owner owns data and models thus is a fully
trusted party, (4) All infrastructures and communication channels are secure.
While the integrity of data and computation is equally important, we consider
it orthogonal to our study. We are mainly concerned with the confidentiality of
the following assets.

– Confidentiality of training data. User-generated training data may
include personal sensitive information. We consider both feature values and
the labels sensitive. For example, a user’s fitness activity dataset may contain
sensitive features such as heart rate and locations, while the labels, i.e., the
type of activity, may imply their activity patterns and health conditions.

Confidential Boosting with Random Linear Classifiers 49

– Confidentiality of prediction models. The learned models are proprietary
to the data owner and can link to confidential users’ data. Therefore, the
model parameters are split and distributed between Cloud and CSP. No single
party can learn the complete model.

We adopt the universally composable (UC) security [3,4] to formally define
the protocol security. We consider an ideal protocol π implementing the ideal
functionality F corresponding to a SecureBoost protocol, involving Cloud and
CSP. In the Real world, an honest-but-curious adversary A can corrupt any
of the parties and gain access to all the inputs and outputs of that party. We
say that π securely realizes F (or π is UC-secure) if for any A in real world
there exists an ideal-process simulator S in ideal world running probabilistic
algorithms in polynomial time (i.e., PPT), such that for any environment Z and
inputs m = (mZ ,mA/S ,mCloud/CSP),

|Pr(Realπ,A,Z(k, z,m) = 1) − Pr(IdealF,S,Z(k, z,m) = 1)| = negl(k),

where negl(k) is a negligible function [23]. In Sect. 7, we propose two theorems
that can be proved to show that SecureBoost protocols are UC-secure.

4 Construction with HE and GC

In this section, we present the homomorphic encryption (HE) and GC based
construction of SecureBoost. With the HE encrypted data, the BaseApply pro-
cedure is essentially the homomorphic operation E(Z)wt that is allowed by both
Paillier [32] and RLWE [2] cryptosystems. We use a garbled-circuit based proto-
col to allow only CSP to learn the indicator vector It, without leaking any other
information to the parties. In the following, we first describe the construction of
the protocol components and then discuss several key technical details.

Setup. CSP generates the HE public and private key and distributes the pub-
lic key to the users and Cloud. The private key accessible to the data owner
when necessary. Users encrypt their submissions. Cloud generates the pool of p
prospective weak classifier vectors, {wt, t = 1..p}.

BaseApply. With the matrix-vector homomorphic operations enabled by HE,
Cloud computes {E(ut) = E(Zwt), t = 1..p}. As this step can be done locally
by Cloud, Cloud may choose to conduct this work offline before the protocol
interactions start.

ResultEval. The problem setting is that Cloud holds E(ut) and CSP securely
identifies the sign of each element of ut, i.e., Zwt > 0 implying correct prediction
by the RLC, which sets the corresponding element of It to 1; otherwise to 0.
The sign of element is related to the specific integer encoding, which we will
elaborate more. With our encoding scheme, we only need to check a specific bit
to determine whether Zwt > 0 is true. To satisfy all the security goals, we decide
to use a GC protocol for this step that will be discussed in more detail.

As the last step Update does not involve crypto operations, we can skip its
discussion. Figure 3(a) depicts all the associated Cloud-CSP interactions in this
construction.

50 S. Sharma and K. Chen

Fig. 3. (a) Cloud-CSP interactions in HE+GC construction. E1 represents HE encryp-
tions whereas E2 represents GC labels for the GC outputs. (b) GC-based sign checking
protocol.

4.1 Technical Detail

Now, we discuss the key problems mentioned in the sketch of the construction
above.

Choice of HE Schemes. We consider two choices of HE: Paillier [32] and
RLWE [2] in our evaluations. Paillier scheme provides a large bit space allow-
ing to preserve more precisions in floating-integer conversion. Our evaluation
shows that with message packing, all RLWE operations including encryption,
decryption, addition and one-level multiplication are much faster than Paillier,
although the ciphertext size might be larger than that of Paillier.

Integer Conversion. The HE schemes work on integers only. For a floating-
point value x, x ∈ R, to preserve m-digit precision after the decimal point upon
conversion and recovery, we have: v = �10mx� mod q, where q is a large integer
such that 10mx ∈ (−q/2, q/2). Let the modulo operation map the values to [0, q),
in such a way that the negative values are mapped to the upper range (q/2, q).
It is easy to check that x is recoverable: if v > q/2, x ≈ (v − q)/10m; otherwise,
x ≈ v/10m. The modulo additions and multiplications preserve the signs and
are thus recoverable. Furthermore, this encoding simplifies the evaluation of the
RLC base classifiers, which involves checking the sign of ht(x). Let b be the total
number of bits to represent the values in [0, q). It is trivial to learn that if the
b-th bit of a value in the range [0, q) is 1, then the value is in the range (q/2, q),
which is negative; otherwise, the value is positive. With large enough q we can
accommodate the desired multiplication and addition results without overflow.
An n-bit plaintext space that allows one multiplication followed by α additions,
as used in our protocol, spares (n − α)/2 bits to encode the original value. For
easier processing, we normalize the original real values in the same dimension of
training data before converting them to b bit integers.

Secure Matrix-Vector Multiplication. The core operation E(Zwt) involves
encrypted E(Z) and Cloud generated random plaintext wt. Thus, both AHE
and SHE schemes can be applied.

Securely Checking Signs of E(ut). CSP needs to check the result of base clas-
sifier prediction, E(ut) = E(Zwt) to learn the correctness of prediction on each

Confidential Boosting with Random Linear Classifiers 51

instance, so that the error rate, the model weight, and the sample weight update
can be computed. With the described integer conversion encoding method, the
sign checking ut,i < 0? is determined by a specific bit in the result. Note that
letting CSP know ut directly may reveal too much information significantly
weakening the security. To balance between security and efficiency, we decide to
let CSP only learn the signs indicating if the base classifier ht correctly classified
the training instances, and nothing else is leaked. Lu et al. [27] have proposed a
comparison protocol based only on RLWE, however, it is extremely expensive to
be adapted to our framework. Therefore, we rely on a noise addition procedure
to hide the decrypted ut from CSP and a GC-based de-noising and bit extraction
procedure to let CSP learn the specific bit for sign checking. We give the details
of these procedures next.

To hide the plaintext ut from CSP, we use a noise addition method that
can be easily implemented by Cloud on the encrypted vector with homomorphic
addition: E(ut,0) = E(ut) + E(λt), where λt is a noise vector generated by the
pseudo-random number generator G. Then, CSP can decrypt E(ut,0) to learn
the noisy result. Let ut,1 = λt held by Cloud. Now the problem is turned to
using a GC to securely compute ut = ut,0 − ut,1 and return the specific bit of
each element of ut.

Figure 3(b) shows the GC based de-noising and bit extraction protocol. CSP’s
input to the circuit is the binary form of u′

t elements whereas Cloud’s inputs
are the binary form of λt elements. With associated oblivious transfer (OT)
protocol and wire label transfers, the circuit can securely evaluate u′

t − λt and
extract the most significant bit, msb(ut,j), j = 1..n, of the result without leaking
anything else. Cloud evaluates the circuits and returns the extracted encrypted
bits (represented as output labels in GC) to CSP. CSP can then decrypt (re-map)
the labels to generate the indicator vector It.

5 Construction with SecSh and GC

Alternatively, we design our framework with a mixture of secret sharing and
garbled circuit techniques. We call this construction “SecSh + GC”. A somewhat
similar approach was taken by [29] in constructing confidential gradient-descent
based learning. It differs from the HE based construction in two aspects: (1) user
data protection uses secret sharing, and (2) matrix-vector multiplication happen
over secret random splits of training data held by Cloud and CSP.

Instead of encryption, users randomly split their training data into two
shares, one for Cloud and the other for CSP. The sum of shares recovers the
original values. Any intermediate results that need protection are also in the
form of random shares distributed between Cloud and CSP. As a result, multi-
plication of two values, say, a and b, each as random shares (e.g., Cloud holds
a0 and b0 while CSP holds a1 and b1, where a0 + a1 = a and b0 + b1 = b), needs
the help of AHE encryption to compute each party’s random share for ab. As
for sign checking, we reuse the GC protocol designed earlier for HE+GC.

52 S. Sharma and K. Chen

Setup. Each user splits their data Z into a random matrix Z0 and Z1, where
Z1 = Z − Z0, and securely distributes Z0 to Cloud and Z1 to CSP. Cloud also
generates a key pair for a chosen AHE scheme and shares the public key with
CSP.

BaseApply. With Cloud holding Z0 and wt, and CSP holding Z1, BaseApply
will generate random shares of the result ut = Zwt = ut,0 − ut,1: ut,0 and ut,1

held by Cloud and CSP, respectively. This is implemented with a special matrix-
vector multiplication algorithm, which we will describe later.

ResultEval. With the random shares: ut,0 and ut,1 held by Cloud and CSP
respectively, we can apply the same GC protocol presented in the last section
for computing u = ut,0 − ut,1 and extracting the specific bits.

5.1 Technical Detail

The SecSh+GC construction reuses the integer conversion and the GC-based
sign checking components. Here, we focus on the major difference: the protocol
for computing matrix-vector multiplication with random shares.

Random-Share-Based Matrix-vector Multiplication. To initiate, Cloud
and CSP respectively hold the two shares Z0 and Z1 of user data in plaintext,
and Cloud also holds wt in plaintext. The goal is to derive random shares of Zwt

and each party learns only one of the shares.

Table 1. BigO estimation for SecureBoost constructions

Construction Party Encryption Decryption Enc. Mult/Add Enc. Comm GC Comm Storage

HE+GC User O(nk) - - O(nk) - -

Cloud O(pn) - O(pnk) O(pn) O(pnb) O(nk)

CSP - O(pn) - - - -

SecSh+GC User - - - - - -

Cloud O(pk) O(pn) - O(p(n + k)) O(pnb) O(nk)

CSP O(pn) - O(pnk) - - O(nk)

Cloud computes the part Z0wt in plaintext by itself. The challenge is to col-
lect the other part Z1wt without CSP knowing wt and no party knowing the com-
plete result, Zwt. We use the following procedure to achieve this security goal.
(1) Cloud encrypts wt with an AHE scheme and sends E(wt) to CSP so that CSP
can apply pseudo-homomorphic multiplication to compute E(Z1wt) = Z1E(wt).
(2) CSP generates a random vector λt with the pseudo-random number generator
G, encrypts it with the public key provided by Cloud, and apply homomorphic
addition to get E(Z1wt +λt), which is sent back to Cloud. (3) Cloud decrypts it
and sums up with the other part Z0wt to get Zwt + λt. In the end, Cloud gets
ut,0 = Zwt + λt and CSP gets ut,1 = λt. At this point, Cloud and CSP use the
GC protocol for sign checking in Sect. 4.

Confidential Boosting with Random Linear Classifiers 53

6 Cost Analysis

Table 1 summarizes the associated big-O estimation of communication and com-
putation broken down into different operations/components. The notations are
the same as defined. In summary, we observe that HE+GC constructions demand
no CSP storage and CSP only needs to conduct decryptions and GC con-
structions. In contrast, the workload and storage are almost equally distributed
between Cloud and CSP in SecSh+GC. However, as user-generated data is not
encrypted but split into random shares in SecSh+GC, users’ costs and overall
storage costs are much lower.

7 Security Analysis

According to the security model outlined in Sect. 3.2, we focus on the subcom-
ponents of the protocols that involve both Cloud and CSP and implement a
specific ideal function F . The security is proved by finding a simulator S in the
ideal scenario corresponding to the adversary A in the real scenario such that the
environment Z cannot distinguish the probabilistic outputs of Ideal and Real.

The major interaction happens in computing the indicator vector It for an
iteration t. The corresponding ideal function is defined as F(mCloud,t,mCSP,t) →
It, where mCloud,t,mCSP,t are Cloud’s and CSP’s inputs to the function and the
function’s output is the indicator vector It as defined by our protocols. We
present two theorems next, the proofs which can be read in the extended version
of this paper2.

Theorem 1. If the random number generator G is pseudo-random, and both the
HE scheme and GC are CPA-secure, then the HE+GC construction of Secure-
Boost is secure in computing It with an honest-but-curious adversary.

Theorem 2. If the random number generator G is pseudo-random and both
the AHE scheme and GC are CPA-secure, then the SecSH+GC construction is
secure in computing It with an honest-but-curious adversary.

7.1 Implication of Revealing It to CSP

CSP learns the indicator function It,i(ht(xi) == yi), for i = 1..n in the iteration t
of SecureBoost. It is clear that this leakage does not help CSP learn the complete
boosted model H(x) as long as Cloud randomly generates and holds {wt, t =
1..τ} as secrets. However, we must understand if such leakage may help CSP
learn anything about the training data.

Recall that an element of indicator vector It(ht(xi) == yi) represent if the
base RLC ht classifies the training instance xi correctly or incorrectly (1 and 0,
respectively). At the end of learning, each record xi gets p prediction results for p
base classifiers ht, t = 1..p, respectively, which is denoted as ci = (ci,1, . . . , ci,p),

2 https://arxiv.org/abs/1802.08288.

https://arxiv.org/abs/1802.08288

54 S. Sharma and K. Chen

ci,j ∈ {0, 1}. Let ci be the characterization vector (CV) for the record xi.
The intuition tells that two similar records (i.e., relatively small Euclidean dis-
tance) with the same label will lead to similar CVs. However, our experiments
show that the reverse is clearly false (Fig. 6 in Sect. 8)—if the reverse was true
then adversaries could utilize CV similarity to infer record similarity. In par-
ticular, the records having identical CVs have distances (and their standard
deviations) not significantly different from those having other types of CVs.

8 Experiments

We design our experiment set on both real and synthetic datasets with three
goals: (1) show random linear classifiers are effective weak classifiers for boosting;
(2) evaluate associated computation, communication, and storage costs, and
their distributions amongst the users, Cloud, and CSP for both the constructions;
and (3) understand the trade-off between costs and model quality, including
a comparison with another state-of-the-art confidential classification learning
framework.

Implementation. We adopt the HELib library [20] for the RLWE encryp-
tion scheme, implement the Paillier cryptosystem [32] for the AHE encryp-
tion scheme, and use the ObliVM (oblivm.com) library for the garbled circuits.
ObliVM has included the state-of-the-art GC optimization techniques such as
half AND gates, free XOR gates, and OT extention. The core algorithms for
data encoding, encryption, matrix-vector multiplications, and additive pertur-
bation are implemented with C++ using the GMP library. Users’ submissions
are encoded with the 7-bit floating-integer conversion method (Sect. 4.1). We
use the scikit-learn toolkit (scikit-learn.org) to evaluate the model quality for
existing classifier learning methods selected for comparison purpose.

Parameter Selection. We pick cryptographic parameters corresponding to
112-bit security. The RLWE parameters allow 32-bit message-space overall, 1
full vector replication, and at least 2 levels of multiplication. The degree of the
corresponding cyclotomic polynomial is set to φ(m) = 12, 000 and c = 7 modulus
switching matrices, which gives us h = 600 slots for message packing. The Paillier
cryptosystem uses 2048-bit key-size to achieve approximately 112-bit security.
Our GC-based sign checking protocol accommodates (2b + log2(k))-bit inputs,
where b is the bit-precision (i.e., b = 7 in experiments) and k is the dimension of
the training data. Note that HELib uses a text format to store the ciphertext
which we zip to minimize the costs.

Datasets. We test SecureBoost with both the synthetic and real datasets.
Table 2 summarizes the dataset properties. Datasets are selected to cover a dis-
parate range of dimensions and number of instances. All selected datasets contain
only two classes to simplify the evaluation. The real datasets come from the UCI
Machine Learning Repository [13]. The synthetic dataset is deliberately designed
to generate non-linearly separable classes. It is used to conveniently explore and
understand the behaviors of RLC-based boosting and the quality of non-linear
classification modeling methods.

Confidential Boosting with Random Linear Classifiers 55

Table 2. Dataset statistics.

Dataset Instances Attributes Adaboost accuracy Number of decision stumps

ionosphere 351 34 92.02% ± 4.26% 50

credit 1,000 24 74.80% ± 3.50% 100

spambase 4,601 57 92.31% ± 4.40% 75

epileptic 11,500 179 86.95% ± 3.40% 200

synthetic 150,000 10 89.51% ± 2.10% 75

8.1 Effectiveness of RLC Boosting

The performance of boosting is characterized by the convergence rate and the
final accuracy. The speed of convergence is directly related to the overall cost of
the SecureBoost protocols. We look at the number of base classifiers (τ) needed
to attain a certain level of accuracy. As a randomly generated RLC may fail
(i.e., RLCs having ≈ 50% accuracy for the two-class datasets) and be discarded
in some of the rounds, we also assess the actual number (p) of RLCs that are
tried to generate the final model. All the accuracy results are for 10-fold cross-
validation. The following results can be reproduced and verified with the scripts
we have uploaded to https://sites.google.com/site/testsboost/.

101 102 103
40%

60%

80%

100%

Number of Base Classifiers τ

Av
g.
A
cc
ur
ac
y

ionosphere credit spambase
epileptic synthetic

101 102 103
40%

60%

80%

Number of Base Classifiers τ

Av
g.
A
cc
ur
ac
y

Boosting w. DS
Boosting w. LMC
Boosting w. RLC

ionos
phere credi

t
spam

baseepile
ptic

synth
etic

0%

20%

40%

60%

80%
100%

Datasets

Av
g.
A
cc
ur
ac
y

Boosting w. DS Boosting w. RLC

5 9 15 real
70%
75%
80%
85%
90%
95

Precision bits (b)

Av
g.
A
cc
ur
ac
y
ionosphere credit spambase
epileptic synthetic

(a) (b) (c) (d)

%

Fig. 4. (a) Convergence of boosting with RLCs. (b) Convergence of boosting with
RLCs, LMCs, and DSes for the synthetic dataset. (c) Model quality: boosting with
RLCs vs. boosting with DSes. (d) Bit precision vs. model accuracy

Figure 4(a) analyzes the convergence of RLC-based boosting for each dataset.
We observe that overall only about 200 base classifiers are sufficient to reach a
stable model accuracy level for the considered datasets. Figure 4(b) compares
boosting with different base classifiers: RLC, decision stumps (DS), and linear
means classifiers (LMC) when learning on the synthetic dataset. Clearly, DS has
the advantage of converging faster in about 75–80 rounds. On the other hand,
boosting with LMC does not reach the desired accuracy, because the centers
of class (i.e., the “means”) that are used to define the classification plane stay
stable even with changed sample weights. The result is a bunch of highly similar
base classifiers in the final boosting model, which does not take advantage of the
boosting framework.

https://sites.google.com/site/testsboost/

56 S. Sharma and K. Chen

Figure 4(c) shows the final model quality produced by RLC boosting and the
DS boosting (i.e., the default boosting method). We use 200 RLCs and varying
number of DSes as shown in Table 2 as the base classifiers for the datasets. In
every case, both methods generate models with almost identical accuracy. All of
the above results suggest that RLC boosting is robust and generates high-quality
classification models.

Encoding Bits. The number of bits for encoding affects the cost of GC-related
components and the precision in floating-integer conversion, which in turn affects
the final model quality. Figure 4(d) shows the effect of preserved bits on model
accuracy. It seems preserving 7 bits is sufficient to get optimal quality models.

Cost Comparison with DS. As there is no DS learning algorithm on encrypted
data (possibly due to its high expense), we develop a DS learning protocol that
fits our framework to estimate the costs as shown in AppendixA.2.

8.2 Cost Distribution

We now inspect the associated costs for each involved party in the two construc-
tions. Table 3 shows the parameter settings for different datasets that led to the
desired model quality. τ is the number of base classifiers in the final boosting
model. p represents the total number of RLCs that are tried in the modeling
process, which determines the actual protocol costs. Overall, in about 1–2 tries
on average, we can find a valid RLC (with accuracy > 50%).

Table 3. Parameter setting for cost evaluation. τ and p - number of desired and tried
RLCs

Dataset τ p Accuracy

ionosphere 200 226 91.5% ± 3.1%

credit 200 342 73.4% ± 2.4%

spambase 200 229 87.4% ± 4.8%

epileptic 200 331 84.41% ± 2.9%

synthetic 200 244 87.91% ± 3.2%

User’s Costs. A user’s costs depend on the size of training data, i.e. the num-
ber of training records n, and the number of dimensions k per record. The Pail-
lier+GC construction requires each user to encrypt their submission element-
wise in streaming or batched manner. The RLWE+GC construction requires
each user to batch her submissions and encrypt them as a column-wise matrix
E(Z) with message packing (see Sect. 2). For the SecSh+GC construction, users
simply apply the one-time padding method to generate the masks and distribute
the splits to Cloud and CSP, respectively.

Confidential Boosting with Random Linear Classifiers 57

Table 4. User’s cost for a batch of 600 records

Dataset HE+GC (RLWE/Paillier) SecSh+GC

Enc. (secs) Upload (MB) Upload. (MB)

ionosphere 1.54/235.83 38.50/10.25 0.04

credit 1.09/168.45 27.50/7.32 0.03

spambase 2.54/390.80 63.80/16.99 0.07

epileptic 7.91/1,212.84 198.0/52.73 0.09

synthetic 0.48/74.12 12.1/3.22 0.05

Table 4 depicts the user’s costs in encrypting and submitting one batch of
records with the batch size h = 600. The HE+GC constructions are more expen-
sive than SecSh+GC in all aspects, but still quite acceptable in most cases.
RLWE+GC results in larger ciphertext but far less computations than Pail-
lier+GC.

Cloud and CSP Cost Distribution. As Cloud’s and CSP’s costs are highly
inter-related in the SecureBoost constructions we discuss them together. Note:
We use the Paillier cryptosystem in SecSh+GC as the required AHE scheme.
Table 5 sums up the costs for all the components. For the smaller datasets, the
RLWE+GC construction does not show much benefit over the other two. For
datasets with the larger number of records such as the synthetic dataset, both
Cloud and CSP take less computational time with RLWE+GC construction in
comparison with the other two. For datasets with larger dimensions such as the
epileptic dataset, RLWE+GC is more onerous to the Cloud whereas beneficial to
the CSP in terms of computation cost. As for storage and communication costs,
Paillier+GC and SecSH+GC are favorable across the board. We provide further
cost breakdown and analyze cost growth for Cloud and CSP with an increasing
number of records and dimensions in AppendixA.3.

Table 5. Overall Cloud and CSP Costs: Storage, Comp. (computation), Comm. (com-
munication)

Dataset
HE+GC (RLWE / Paillier) SecSh+GC

Storage(MB) Comp. (minutes) Comm. (MB) St.(MB) Comp. (minutes) Comm.(MB)
Cloud Cloud CSP Cloud CSP Cloud CSP

ionosphere 38.5 / 6.0 13.5 / 21.1 3.5 / 16.3 286.2 / 81.0 2.6 2.6 17.8 19.6 84.8
credit 55.0 / 12.2 28.0 / 83.2 12.9 / 70.5 1,119.2 / 537.2 8.1 8.1 72.1 81.6 541.3

spambase 510.4 / 130.3 129.5 / 358.6 33.3 / 268.6 3,842.6 / 1,876.6 76.4 76.4 271.8 355.3 1,885.1
epileptic 3,960.0 / 1,010.7 932.2 / 1,453.0 128.2 / 777.0 12,291.6 / 6,868.3 653.4 653.4 788.1 1,441.8 6897.4
synthetic 3,025.0 / 805.7 1,414.7 / 8,147.3 1,175.4 / 7,424.0 106,891.1 / 57,662.2 383.9 383.9 7,424.5 8,146.8 57,663.5

8.3 Comparing with Other Methods

In this section, we compare SecureBoost with the recently developed SecureML
method [29]. It implements the stochastic gradient-descent (SGD) learning based
on secret sharing [10], which is then used for logistic regression (LR) and neural

58 S. Sharma and K. Chen

network (NN) [21]. We tried different shapes of inner hidden layers and found
the minimum-cost setting for satisfactorily handle the non-linearly separable
synthetic dataset. SGD is conducted with a mini-batch size of 128 records in
training. Both algorithms are run enough iterations until convergence.

Fig. 5. (a) Comparison of model accuracy: Secure-Boost vs. SecureML - Logistic
Regression and Neural Network. (b) Overall cost comparison: SecureBoost construc-
tions vs. SecureML neural network and SecureML logistic regression for the synthetic
dataset.

Figure 5(a) shows that SecureBoost and SecureML-NN perform similarly,
while SecureML-LR due to its inherent linearity [21] underperforms significantly
on the non-linearly separable data. This result can also be reproduced and ver-
ified with the scripts we have uploaded online3. Figure 5(b) shows that Secure-
Boost constructions are more efficient than SecureML neural network. The cost
patterns will vary for different datasets due to the varying number of train-
ing epochs. For this specific dataset, SecureBoost takes 200 iterations, while
SecureML NN takes 20 epochs to converge. Logistic regression converges quickly
within 10 epochs but gets stuck at a non-optimal result. It appears the per-
iteration cost of SecureML NN is much higher.

8.4 Effect of Releasing It

We want to verify if similar characterization vectors infer similar training records
to understand the leaked information by It. Figure 6 measures the average
Euclidean distances between the training record pairs corresponding to the char-
acteristic vectors differing by k bits. It is evident that the similarity of charac-
terization vectors does not infer the similarity of training records as shown by
similar average distances and standard deviation for all values of k. An attacker
may suspect the training records that generate the same characteristic vector as
the anchor (attack) record to be closer to the anchor vector as compared to other
training records, however it is evident such is not the case. A further analysis on
leakage of the indicator vector will be interesting in a malicious cloud setting.

3 https://sites.google.com/site/testsboost/.

https://sites.google.com/site/testsboost/

Confidential Boosting with Random Linear Classifiers 59

Fig. 6. Avg. distance between record-pairs generating characterization vectors differing
by k-bits.

9 Related Work

The current implementations of FHE are still too expensive to apply on complex
functions. ML Confidential [19] shows that simple linear models can be learned
by a semi-honest Cloud from FHE-encrypted data with acceptable costs. How-
ever, these simple models are unable to handle non-linearly separable datasets.
Lu et al. [27] show that PCA and linear regression can be implemented on FHE
encrypted data with reasonable costs for a strictly small number of iterations
in the algorithms. Moreover, the comparison operation based on FHE is very
expensive [27], which hinders the FHE’s application in many algorithms.

Despite new optimization of GC with techniques, such as free XOR gates
[24], half AND gates [36], and OT Extension [1], its adaptation in confidential
frameworks is still costly. Nikolaenko et al. [30,31] use FastGC [22] and AHE
to implement matrix factorization and linear ridge regression solutions. Use of
GCs in the expensive operations led these protocols to suffer from unbearable
communication costs between CSP and Cloud. In our designs, we carefully craft
the primitive operations to minimize the performance impact of the GC-related
operations.

Demmler et al. [10] have shown that basic matrix operations can be imple-
mented on random shares held by different parties when using secret sharing
secure multi-party computations. SecureML [29] utilized these operations and
GC to implement the gradient-descent learning method with a two-server model.
However, we note that these models are more expensive than ours to achieve the
same level of model quality.

Users may also submit locally perturbed data that satisfy locally differential
privacy (e.g., RAPPOR [12]). However, the model quality is significantly affected
by the reduced data quality, and the models are also exposed to model-inversion
attacks [14,33].

Gamb’s et al. [17] proposed algorithms enabling two or more participants to
construct a boosting classifier, however, their goal is to train a combined model
without sharing the horizontally partitioned training data with one another, not
outsourcing it.

Chen and Guo [8] consider using a pool of random linear classifiers in their
random space perturbation (RASP) based boosting framework for cloud com-
puting. Unlike our framework, the framework does not provide semantic security.

60 S. Sharma and K. Chen

10 Conclusion

We develop the SecureBoost protocol for data owners to learn high-quality
boosted classification models from encrypted or randomly partitioned users’
data using public Cloud. The key idea is to use random linear classifiers as
the base classifiers to simplify the protocol design. Two constructions: HE+GC
and SecSh+GC have been developed, using a novel combination of homomor-
phic encryption, garbled circuits, and randomized secret sharing to protect the
confidentiality and achieve efficiency. We formally analyze the security of the pro-
tocol and show that SecureBoost constructions satisfy the universally compos-
able security for multiparty computation. Our experimental evaluation examines
the intrinsic relationships among the primitive selection, cost distribution, and
model quality. Our results show that the SecureBoost approach is very practi-
cal in learning high-quality classification models. Our constructions are the first
batch of boosting protocols with practical costs, compared to the expenses of
the start-of-the-art implementation of other major predictive modeling methods
(e.g., Neural Networks by SecureML). We will extend the study to explore the
effect of sub-sampling the training data and differentially private release of the
leakage function in the future. Similarly, we will extend the work to multi-class
classification problem and other types of boosting.

A Appendix

A.1 Boosting Algorithm

Algorithm 2. Boosting(T , τ)
input: training data samples T = {(xi, yi), i = 1 . . . n, where xi ∈ R and yi ∈
{1, −1}}, number of base classifiers: τ
Initialize the sample weights δ1i ← 1/n for i = 1 . . . n;
for t ← 1 to τ do

learn a weak classifier ht(x) with sample weights δt,i,i = 1 . . . n;
for i ← 1 to n do

et,i = 1 if ht(δt,ixi) == yi else 0;
end for
error =

∑n
i=1 et,iδt,i;

αt = ln((1 − error)/error);
δt+1,i = δt,i exp(αiet,i) for i = 1 . . . n;
δt+1 = δt+1/|δt+1|;

end for
Output: H(x) =

∑τ
t=1 αtht(x)

Confidential Boosting with Random Linear Classifiers 61

A.2 Confidential Decision Stump Learning

As there is no confidential DS learning algorithm reported, we present our initial
design of DS learning that fits our boosting framework. Learning DS involves
finding the optimal split for each feature in the training data with maximum
information gain. The original algorithm takes O(n log n) comparisons to sort
the values for each feature. However, sorting the dimensions may reveal the
ordering information and breach data confidentiality, therefore, sorting may not
be used in the confidential version of DS learning. Instead, we use a fixed binning
scheme - i.e., partitioning the domain of each normalized dimension (e.g., (−4, 4))
into s bins and enumerate all possible decision stumps - for two-class problems
and k dimensions, there are 2sk such stumps (each split value gets two conjugate
stumps: e.g., Stump 1: if Xj < vj return 1 else return 0, Stump 2: if Xj ≥ vj

return 1 else return 0). We will describe the HE+GC construction for DS learning
here.

The users encrypt their records E(xi) and labels E(yi), with yi ∈ {0, 1},
separately with the public key distributed by the CSP. (1) Cloud will start to
evaluate each of the sk decision stumps for every record with a slightly modified
version of GC described in Sect. 4. Specifically, for each instance (xi, yi), it will
securely check whether the class label yi matches the classifier output, e.g., if
Xj < vj return 1 else return 0. Similarly, the evaluation of each DS will give
an indicator vector Ir, r = 1..sk, where 1 represents prediction error, reverse
to the indicator vector described in Sect. 3.1, Ir is known to both Cloud and
CSP. We can flip the indicator vector for the conjugate DS. (2) CSP starts a
base classifier selection process, and computes the weight αt for each selected
DS ht(x). Specifically, with training sample weights (initialized to 1/n), wi, at
iteration i, CSP will find one of the sk DSes that minimizes the weighted error,
arg minr (̇Ir, wi), for r = 1..sk. In the end, CSP only knows the index of the
DS. It does not know the base classifier parameters, i.e. neither Xj nor vj . Note
that this step does not involve decryption and encryption. (3) The indices of the
selected DSes and αi are submitted by CSP to Data Owner. Data Owner can
retrieve the actual DSes from Cloud.

Therefore, the overall cost is dominated by the sk rounds of evaluation in
stage (1), not subject to the number of selected base classifiers. To get results
close enough to the DS-based boosting model, we may need to take finely divided
bins, e.g., s = 100. For a 10-dimension dataset, the cost is about equivalent to
trying 1000 base classifiers in the RLC protocol. Furthermore, CSP takes a
significant amount of storage and computing burden—it will need to keep all
the sk indicator vectors for DS selection, the size of which is much larger than
the original data, and conduct skτ dot products on plaintext if the final model
contains τ base classifiers.

A.3 Cloud and CSP Cost Breakdown and Scaling

First, we analyze the shared GC components for the selected real and synthetic
datasets in Table 2. Then, we analyze the cost growth of the constructions for
with increasing number of records and dimensions.

62 S. Sharma and K. Chen

As all the constructions share the same GC component for sign checking,
we list the GC costs together in Table 6. The number of AND gates represents
the size of GC. The computational and communication costs include the total of
both Cloud’s and CSP’s. GC’s associated costs are linear to n and bit precision b.
By comparing Table 5 in Sect. 8.2 and Table 6, it is clear that the GC-component
dominates the overall communication cost of our protocols.

Table 6. Costs of the GC component: Computation (comp.) and Communication
(Comm.)

Dataset AND Gates Comp. (m) Comm. (MB)

ionosphere 2,016,846 5.1 43.1

credit 8,840,000 20.3 371.2

spambase 37,268,100 47.2 1,202.6

epileptic 87,549,500 101.3 5,009.6

synthetic 695,400,000 927.4 39791.1

Now, we try to understand the relationship between the size of training data
and associated costs using synthetic datasets of several sizes and dimensions.
First, we fix the number of dimensions k = 20 and see how number of records
n affects the costs. Figure 7(a) shows that both Cloud’s and CSP’s costs in
RLWE+GC grow much slower than the other two’s. CSP’s growth rates are
almost same for SecSh+GC and Paillier+GC, as they involve the same number
of decryption operations.

0 0.2 0.4 0.6 0.8 1
·105

0

500

1,000

1,500

Number of Records n

Ti
m
e(
s)

Cloud’s Cost
RLWE+GC
Paillier+GC
SecSh+GC

0 0.2 0.4 0.6 0.8 1
·105

0

500

1,000

1,500

Number of Records n

Ti
m
e(
s)

CSP’s Cost
RLWE+GC
Paillier+GC
SecSh+GC

10 20 30 40 50
0
50
100
150
200
250

Dimensions k

Ti
m
e(
s)

Cloud’s Cost
RLWE+GC
Paillier+GC
SecSh+GC

10 20 30 40 50
0
50
100
150
200
250

Dimensions k

T i
m
e(
s)

CSP’s Cost
RLWE+GC
Paillier+GC
SecSh+GC

(a) (b)

Fig. 7. Computation cost. (a) Over increasing records (n) with fixed number of dimen-
sions (k = 20). (b) Over increasing dimensions (k) (bottom) and fixed number of
records (n = 10, 000).

Figure 7(b) depicts the effect of increasing the dimensions while fixing the
number of records to n = 10, 000. We observe that RLWE+GC cost for
Cloud grows much faster for the larger dimensions. This is due to the associ-
ated dimension-wise RLWE replication cost in the matrix-vector multiplication.

Confidential Boosting with Random Linear Classifiers 63

On the other hand, CSP’s cost when using RLWE+GC is much lower than with
the other two constructions, as the RLWE decryptions are much cheaper than
that of Paillier. Both Cloud’s and CSP’s costs when using Paillier+GC and
SecSh+GC stay almost flat as only n dominates the overall cost.

References

1. Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivious trans-
fer and extensions for faster secure computation. In: 2013 ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS’13, Berlin, Germany, pp.
535–548 (2013). https://doi.org/10.1145/2508859.2516738, http://doi.acm.org/10.
1145/2508859.2516738

2. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: Proceedings of the 3rd Innovations in The-
oretical Computer Science Conference. ITCS 2012, pp. 309–325. ACM, New York
(2012)

3. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: Proceedings 2001 IEEE International Conference on Cluster Com-
puting, pp. 136–145 (2001)

4. Canetti, R., Cohen, A., Lindell, Y.: A simpler variant of universally composable
security for standard multiparty computation (2015)

5. Caruana, R., Niculescu-Mizil, A.: An empirical comparison of supervised learn-
ing algorithms. In: Proceedings of International Conference on Machine Learning
(ICML), pp. 161–168. ACM, New York (2006)

6. Chapelle, O., Chang, Y.: Yahoo! learning to rank challenge overview. J. Mach.
Learn. Res. Proc. Track 14, 1–24 (2011)

7. Chen, A.: GCreep: Google engineer stalked teens, spied on chats. Gawker (2010).
http://gawker.com/5637234/gcreep-google-engineer-stalked-teens-spied-on-chats

8. Chen, K., Guo, S.: Rasp-boost: confidential boosting-model learning with per-
turbed data in the cloud. IEEE Trans. Cloud Comput. 6(2), 584–597 (2018)

9. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: SIGKDD
Conference on Knowledge Discovery and Data Mining (2016)

10. Demmler, D., Schneider, T., Zohner, M.: ABY-a framework for efficient mixed-
protocol secure two-party computation. In: 22nd Annual Network and Distributed
System Security Symposium, NDSS 2015, San Diego, California, USA, February
8–11, 2015 (2015)

11. Duncan, A.J., Creese, S., Goldsmith, M.: Insider attacks in cloud computing. In:
2012 IEEE 11th International Conference on Trust, Security and Privacy in Com-
puting and Communications (2012)

12. Erlingsson, Ú., Korolova, A., Pihur, V.: RAPPOR: randomized aggregatable
privacy-preserving ordinal response. CoRR abs/1407.6981 (2014). http://arxiv.
org/abs/1407.6981

13. Frank, A., Asuncion, A.: UCI machine learning repository (2010). http://archive.
ics.uci.edu/ml

14. Fredrikson, M., Lantz, E., Jha, S., Lin, S., Page, D., Ristenpart, T.: Privacy in phar-
macogenetics: an end-to-end case study of personalized warfarin dosing. In: 23rd
USENIX Security Symposium USENIX Security 14, pp. 17–32. USENIX Associa-
tion, San Diego (2014)

https://doi.org/10.1145/2508859.2516738
http://doi.acm.org/10.1145/2508859.2516738
http://doi.acm.org/10.1145/2508859.2516738
http://gawker.com/5637234/gcreep-google-engineer-stalked-teens-spied-on-chats
http://arxiv.org/abs/1407.6981
http://arxiv.org/abs/1407.6981
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

64 S. Sharma and K. Chen

15. Freund, Y., Schapire, R.E.: A short introduction to boosting. In: International Joint
Conferences on Artificial Intelligence, pp. 1401–1406. Morgan Kaufmann (1999)

16. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann.
Stat. 29(5), 1189–1232 (2001)

17. Gambs, S., Kégl, B., Aı̈meur, E.: Privacy-preserving boosting. Data Min. Knowl.
Discov. 14(1), 131–170 (2007). https://doi.org/10.1007/s10618-006-0051-9

18. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Annual ACM
Symposium on Theory of Computing, pp. 169–178. ACM, New York (2009)

19. Graepel, T., Lauter, K., Naehrig, M.: ML confidential: machine learning on
encrypted data. In: Kwon, T., Lee, M.-K., Kwon, D. (eds.) ICISC 2012. LNCS,
vol. 7839, pp. 1–21. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-37682-5 1

20. Halevi, S., Shoup, V.: Algorithms in HElib. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014. LNCS, vol. 8616, pp. 554–571. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44371-2 31

21. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning.
Springer, New York (2001). https://doi.org/10.1007/978-0-387-21606-5

22. Huang, Y., Evans, D., Katz, J., Malka, L.: Faster secure two-party computation
using garbled circuits. In: Proceedings of the 20th USENIX Conference on Security.
SEC 2011, pp. 35–35. USENIX Association, Berkeley (2011)

23. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. Chapman and
Hall/CRC, Boca Raton (2007)

24. Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and
applications. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 486–498.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70583-3 40

25. Lazzeretti, R., Barni, M.: Division between encrypted integers by means of gar-
bled circuits. In: 2011 IEEE International Workshop on Information Forensics and
Security, pp. 1–6, November 2011. https://doi.org/10.1109/WIFS.2011.6123132

26. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)
27. Lu, W., Kawasaki, S., Sakuma, J.: Using fully homomorphic encryption for statis-

tical analysis of categorical, ordinal and numerical data. IACR Cryptology ePrint
Archive 2016, 1163 (2016)

28. Mansfield-Devine, S.: The Ashley Madison affair. Network Secur. 2015(9), 8–16
(2015)

29. Mohassel, P., Zhang, Y.: SecureML: a system for scalable privacy-preserving
machine learning. In: 2017 IEEE Symposium on Security and Privacy (SP), pp.
19–38, May 2017. https://doi.org/10.1109/SP.2017.12

30. Nikolaenko, V., Ioannidis, S., Weinsberg, U., Joye, M., Taft, N., Boneh, D.: Privacy-
preserving matrix factorization. In: Proceedings of the 2013 ACM SIGSAC Con-
ference on Computer and Communications Security, pp. 801–812. ACM, New York
(2013)

31. Nikolaenko, V., Weinsberg, U., Ioannidis, S., Joye, M., Boneh, D., Taft, N.: Privacy-
preserving ridge regression on hundreds of millions of records. In: Proceedings of
the 2013 IEEE Symposium on Security and Privacy, pp. 334–348. IEEE Computer
Society (2013)

32. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 16

https://doi.org/10.1007/s10618-006-0051-9
https://doi.org/10.1007/978-3-642-37682-5_1
https://doi.org/10.1007/978-3-642-37682-5_1
https://doi.org/10.1007/978-3-662-44371-2_31
https://doi.org/10.1007/978-0-387-21606-5
https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1109/WIFS.2011.6123132
https://doi.org/10.1109/SP.2017.12
https://doi.org/10.1007/3-540-48910-X_16

Confidential Boosting with Random Linear Classifiers 65

33. Shokri, R., Stronati, M., Song, C., Shmatikov, V.: Membership inference attacks
against machine learning models. In: 2017 IEEE Symposium on Security and Pri-
vacy (SP) (2016)

34. Unger, L.: Breaches to customer account data. Comput. Internet Lawyer 32(2),
14–20 (2015)

35. Yao, A.C.: How to generate and exchange secrets. In: IEEE Symposium on Foun-
dations of Computer Science, pp. 162–167 (1986)

36. Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 220–250. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 8

https://doi.org/10.1007/978-3-662-46803-6_8

BDPL: A Boundary Differentially Private
Layer Against Machine Learning Model

Extraction Attacks

Huadi Zheng1(B), Qingqing Ye1,2, Haibo Hu1, Chengfang Fang3, and Jie Shi3

1 The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
huadi.zheng@connect.polyu.hk,haibo.hu@polyu.edu.hk

2 Renmin University of China, Beijing, China
yeqq@ruc.edu.cn

3 Huawei International, Shanghai, China
{fang.chengfang,shi.jie1}@huawei.com

Abstract. Machine learning models trained by large volume of propri-
etary data and intensive computational resources are valuable assets of
their owners, who merchandise these models to third-party users through
prediction service API. However, existing literature shows that model
parameters are vulnerable to extraction attacks which accumulate a
large number of prediction queries and their responses to train a replica
model. As countermeasures, researchers have proposed to reduce the rich
API output, such as hiding the precise confidence level of the predic-
tion response. Nonetheless, even with response being only one bit, an
adversary can still exploit fine-tuned queries with differential property
to infer the decision boundary of the underlying model. In this paper,
we propose boundary differential privacy (ε-BDP) as a solution to pro-
tect against such attacks by obfuscating the prediction responses near
the decision boundary. ε-BDP guarantees an adversary cannot learn the
decision boundary by a predefined precision no matter how many queries
are issued to the prediction API. We design and prove a perturbation
algorithm called boundary randomized response that can achieve ε-BDP.
The effectiveness and high utility of our solution against model extrac-
tion attacks are verified by extensive experiments on both linear and
non-linear models.

1 Introduction

Recent advance in deep learning has fostered the business of machine learning
services. Service providers train machine learning models using large datasets
owned or acquired by themselves, and use these models to offer online services,
such as face and voice recognition, through a public prediction API. Popular
products include Microsoft Azure Face API, Google Cloud Speech-to-Text, and
Amazon Comprehend. However, a prediction API call, which consists of a query
and its response, can be vulnerable to adversarial attacks that disclose the inter-
nal states of these models. Particularly, a model extraction attack [19] is able
c© Springer Nature Switzerland AG 2019
K. Sako et al. (Eds.): ESORICS 2019, LNCS 11735, pp. 66–83, 2019.
https://doi.org/10.1007/978-3-030-29959-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29959-0_4&domain=pdf
https://doi.org/10.1007/978-3-030-29959-0_4

BDPL: Boundary Differentially Private Layer 67

to restore important model parameters using the rich information (e.g., model
type, prediction confidence) provided by the prediction API. Once the model
is extracted, an adversary can further apply model inversion attack [7] to learn
the proprietary training data, compromising the privacy of data contributors.
Another follow-up attack on the extracted model is evasion attack [16,23], which
avoids a certain prediction result by modifying its query. For example, a hacker
modifies the executable binaries of a malware or the contents of a phishing email
in order not to be detected by an antivirus or spam email filter.

There are two state-of-the-art countermeasures against model extraction
attacks. One is to restrict rich information in the prediction API, for exam-
ple, by rounding the prediction confidence value to a low granularity. However,
even if the service provider completely eliminates this value in the prediction
API, that is, to offer prediction label only, an adversary can still defeat this pro-
tection by issuing large number of fine-tuned queries and train a replica of the
original model with great similarity [13,16,19]. The second countermeasure is to
detect malicious extraction by monitoring feature coverage [10] or query distri-
bution [9], and stop the service when a certain threshold is reached. However,
since we cannot preclude user collusion, all queries and responses must be con-
sidered aggregately, which leads to significant false positive cases and eventually
the early termination of service.

To address the disadvantages, in this paper we propose a new countermeasure
that obfuscates the output label of a prediction response. There are three main
concerns when designing this obfuscation mechanism. First, the accuracy of pre-
diction API is highly correlated with the degree of obfuscation—if obfuscation
needs to be applied to most queries, the utility of the machine learning service
will degrade severely. Second, the obfuscation mechanism should be independent
of both the adversarial attacks stated above and the underlying machine learn-
ing models. Third, the obfuscation mechanism should be customizable. That is,
it should allow user-defined parameters that can trade utility for model privacy
or vice versa.

Our key observation is that most model extraction attacks exploit fine-tuned
queries near the decision boundary of a machine learning model. The responses
of these queries disclose the details of model parameters and therefore should
be obfuscated with priority. To this end, we propose a boundary differential
private layer (BDPL) for machine learning services. BDPL provides a param-
eterized approach to obfuscate binary responses whose queries fall in a prede-
fined boundary-sensitive zone. The notion of differential privacy guarantees the
responses of all queries in the boundary-sensitive zone are indistinguishable from
one another. As such, adversary cannot learn the decision boundary no matter
how many queries are issued to the prediction API. On the other hand, the
majority of queries from normal users are far away from the decision boundary
and therefore are free from obfuscation. In this way, we can make the best use
of the obfuscation and retain high utility of the machine learning service. To
summarize, our contributions in this paper are as follows.

68 H. Zheng et al.

– We propose a new protection mechanism, namely, boundary differential pri-
vacy, against model extraction with fine-tuned queries while balancing service
utility and model protection level.

– We develop an efficient method to identify queries in the boundary-sensitive
zone, and design a perturbation algorithm called boundary randomized
response to guarantee boundary differential privacy.

– We conduct extensive empirical study on both linear and non-linear machine
learning models to evaluate the effectiveness of our solution.

The rest of the paper is organized as follows. Section 2 introduces the prelim-
inaries for machine learning and model extraction. Section 3 elaborates on the
threat model and problem definition with boundary-sensitive zone and bound-
ary differential privacy. Section 4 presents the details of boundary differentially
private layer. Section 5 introduces evaluation metrics and shows the experimen-
tal results of BDPL against model extractions. Section 6 reviews the related
literature, and Sect. 7 concludes this paper and discusses future work.

2 Preliminaries

2.1 Supervised Machine Learning Model

A dataset X contains samples in a d-dimensional feature space. Each sample
has a membership in a set of predefined classes called labels. Supervised machine
learning trains a statistical model by such sample-label pairs to make predictions
of labels on unknown samples. Without loss of generality, in this paper we focus
on binary models which have only two labels—positive and negative. Formally,
a binary model f produces a response y to a query sample x as follows.

y = f(x) =

{
“positive” label
“negative” label

Binary models have been widely adopted in many machine learning applications,
particularly in spam filtering, malware detection, and disease diagnosis. Depend-
ing on the nature of these applications, the model f can be either linear (e.g.,
logistic regression) or non-linear (e.g., neural network).

2.2 Model Extraction with only Labels

In a model extraction attack, a malicious party attempts to replicate a model
from the original one by continuously exploiting the prediction API. Technically
any queries can constitute such an attack. However, the more queries the more
likely this malicious attack will be exposed. As such, in the literature most model
extraction attacks fabricate fine-tuned queries by differential techniques such as
line search [13,19] and Jacobian augmentation [16]. These queries are carefully
selected to capture the information about decision boundary where prediction
results vary drastically.

BDPL: Boundary Differentially Private Layer 69

Formally, a model extraction attack selects a set of fine-tuned queries Xdiff

and obtains their responses Ydiff to train a replica model f ′.

Xdiff = {x1,x2, . . . ,xn}, x ∈ R
d,

Ydiff = {y1, y2, . . . , yn}, y ∈ R
1,

∃x, x′ ∈ Xdiff , dist(x,x′) = δ ∧ y �= y′,

where dist(·)1 measures the distance between two queries and δ is the unit
distance adopted in the differential techniques when searching for boundary,
i.e., where two corresponding responses y �= y′.

3 Problem Definition

3.1 Motivation and Threat Model

Xadv={x1, x2, x3 ...}
Yadv={y1, y2, y3 ...}

Upload

yadv
xadv can be fine-tuned by:

Line Search, AcƟve Learning,
Jacobian AugmentaƟon and etc.

xadv

Machine Learning Service

Model Inversion,
Model Evasion,

Resell$$$

Train

Proprietary Data Pool Model f(X) PredicƟon API

Replica Model f’(X) Adversary

Private Data Owner

ExtractApply Collect

Deploy

Malicious Party

Fig. 1. Motivation and threat model

A machine learning service provides a binary prediction result using a propri-
etary model as shown in Fig. 1. An adversary wants to produce a replica of this
model by continuously querying it through the provided prediction API. We
assume he can store all queries and their responses, i.e., labels, and the attack is

1 In general, this notation can be any distance metrics (e.g., Manhattan distance,
Euclidean distance). The implications of distance metrics to detailed algorithms will
be discussed in Sect. 4.1.

70 H. Zheng et al.

white-box, i.e., he can extract a replicated model using the same model type
(e.g., convolutional neural network) and hyperparameters as the original one.2

3.2 Boundary-Sensitive Zone

Non-linear Model

Margin of Boundary-
SensiƟve Zone

PosiƟve Label

NegaƟve Label

Decision Boundary

Linear Model

Zone Parameter Δ

Fig. 2. Illustration of decision boundary and boundary-sensitive zone in 2D

Our problem is to protect against model extraction attacks by obfuscating query
responses. Before we formally define the security model, we first introduce the
notion of decision boundary and boundary-sensitive zone. For most supervised
models, a decision boundary is a critical borderline in the feature space where
labels are different on both sides. Figure 2 illustrates the decision boundaries of
a linear and a non-linear model, respectively, in a 2D feature space. In a multi-
dimensional feature space, a line boundary becomes a hyperplane, and a curve
boundary becomes a hypersurface.

Our key idea is to protect the query responses near the decision boundary
against most model extraction attacks. To this end, we introduce the notion of
boundary-sensitive zone.

Definition 1 (Boundary-Sensitive Zone). Given feature space Z, a model f and
a parameter Δ chosen by the model owner, all feature vectors adjacent to the
decision boundary of f constitute a subspace ZΔ of Z, where

ZΔ = {x ∈ R
d | dist(x, f) < Δ},

where dist(·) measures the distance between a feature vector x and the decision
boundary of f . All queries in this zone ZΔ are considered sensitive and have
high risk of revealing the decision boundary of this model.

2 The white-box assumption is based on the fact that state-of-the-art models in spe-
cific application domains, such as image classification, are usually public knowledge.
Nonetheless, our solution can also work against black-box attacks where such knowl-
edge is proprietary.

BDPL: Boundary Differentially Private Layer 71

3.3 Boundary Differential Privacy

All queries in the boundary-sensitive zone need obfuscation, whose objective is
to perturb the responses of any two sensitive queries so that they are indistin-
guishable for the adversary to determine the true decision boundary within this
zone. To this end, we adopt the notion of differential privacy and formally define
boundary differential privacy as follows.

Definition 2 (ε-Boundary Differential Privacy). A perturbation algorithm A(·)
achieves ε-boundary differential privacy, if and only if for any two queries x1,
x2 in the boundary-sensitive zone ZΔ, the following inequality always holds for
the true responses y1 and y2 and the perturbed ones A(y1) and A(y2).

e−ε ≤ Pr
[
y1 = y2

∣∣A(y1), A(y2)
]

Pr
[
y1 �= y2

∣∣A(y1), A(y2)
] ≤ eε

The above inequality guarantees that an adversary cannot deduce whether
two perturbed responses A(y1) and A(y2) originate from the same (y1 = y2) or
different labels (y1 �= y2) with high confidence (controlled by ε). As such, the
adversary cannot use fine-tuned queries, no matter how many they are, to find
the decision boundary within the granule of boundary-sensitive zone.

4 Boundary Differentially Private Layer

In this section, we present our solution to protect against model extraction
attacks with respect to ε-boundary differential privacy (ε-BDP) by appending a
BDP layer to the model output. According to Definition 2, this layer consists of
two major steps—identifying sensitive queries, and perturbing the responses of
sensitive queries to satisfy BDP. In what follows, we first introduce a technique to
identify sensitive queries with the notion of corner points. Then we design a per-
turbation algorithm called boundary randomized response to guarantee ε-BDP.
Finally, we summarize the procedures of the boundary differentially private layer
in Algorithm 1.

4.1 Identifying Sensitive Queries

A query is identified as sensitive if it falls in the boundary-sensitive zone accord-
ing to Definition 1. However, in practice the decision boundary may not have
a closed form (especially for complex models such as neural networks). In this
subsection, we propose a method to determine if a query xq is sensitive without
deriving the boundary-sensitive zone. The idea is to test if a ball centered at xq

with radius Δ intersects with the decision boundary3. In theory, this is equiva-
lent to finding if there exists a flipping point x′ in the ball that has a different
label from that of the query point xq. Formally,

3 The case of tangency is rarely reached in real life given that the feature space is
usually continuous. For simplicity, we mainly consider intersection.

72 H. Zheng et al.

Definition 3 (Query Sensitivity). A query xq is sensitive, if and only if:

∃x′ ∈ B(xq,Δ), s.t., f(x′) �= f(xq),

where B(xq,Δ) = {x ∈ R
d |dist(x,xq) ≤ Δ} is the ball centered at xq with

radius Δ.

The above definition needs to test infinite number of points in the ball, which
is infeasible. Nonetheless, we observe that if the ball is convex and small enough,4

a sufficient condition of query xq being sensitive is that at least one of the corner
points in each dimension of this ball B(xq,Δ) is a flipping point. As such, the
sensitivity of query xq can be approximated by testing the labels of 2d corner
points of xq without false negatives. Furthermore, if the distance metric is the
L1 distance (i.e., Manhattan distance), this is also a necessary condition, which
means that testing corner points leads to the exact sensivitity. The following
theorem proves this.

Theorem 1 (Flipping Corner Theorem). A sufficient condition of query xq

being sensitive is that,

∃ Δi ∈ Δ · I, f(xq ± Δi) �= f(xq),

where I is the identity matrix, Δi is the projected interval on some dimension i,
and xq ±Δi denotes the two corner points in dimension i. If the distance metric
is the L1 distance, this equation is also a necessary condition.

Proof. Let xi be one of the corner points in dimension i.

– (Sufficient Condition) For any xi, the decision boundary must exist between
xi and xq where f(xi) �= f(xq). It intersects line xixq at point bi. As xi, xq

and bi are on the same straight line, we have

dist(xi, bi) + dist(xq, bi) = dist(xi,xq) = Δ.

Since dist(xq,f) is the minimum distance between xq and any point on the
decision boundary, we have

dist(xq, f) ≤ dist(xq, bi) = Δ − dist(xi, bi) < Δ.

According to Definition 1, query xq is sensitive and this proves the sufficient
condition.

– (Necessary Condition for L1 Distance) If xq is a sensitive query, an L1-ball
centered at xq with radius Δ will be given by

B(xq,Δ) = {x ∈ R
d

∣∣ distL1(x,xq) ≤ Δ}. (1)

4 If Δ is small, the decision boundary near the ball can be treated as a hyperplane.

BDPL: Boundary Differentially Private Layer 73

Let bm be the point which is the closest to xq on the decision boundary of
f . According to Definition 3, we have

distL1(xq, bm) = distL1(xq, f) < Δ.

Since xq is sensitive, bm must be inside this L1-ball:

bm ∈ B(xq,Δ).

This means that the decision boundary must intersect the ball at bm. As such,
at least one convex vertex of the ball is on a different side of the decision
boundary than point xq. Since the convex vertices of an L1-ball are exactly
those corner points, there exists at least one corner point xi such that f(xi) �=
f(xq). And this proves the necessary condition. ��

4.2 Perturbation Algorithm: Boundary Randomized Response

Randomized response [22] is a privacy-preserving survey technique developed
for surveying sensitive questions. A randomized boolean value is given to the
answer and provides plausible deniability. As the perturbation algorithm defined
in boundary differential privacy has exactly two output choices, we design the
following BRR algorithm based on randomized response to satisfy ε-BDP.

Definition 4 (Boundary Randomized Response, BRR). Given query sample xq

and its true response yq ∈ {0, 1}, the boundary randomized response algorithm
A(yq) perturbs yq by the following:

A(yq) =

{
yq, w.p. 1

2 +
√

e2ε−1
2+2eε

1 − yq, w.p. 1
2 −

√
e2ε−1

2+2eε

Theorem 2. The boundary randomized response algorithm A(yq) satisfies
ε-BDP.

Proof. To satisfy ε-BDP, the following inequality must hold according to
Definition 2.

Pr[y1 = y2|A(y1), A(y2)]
Pr[y1 �= y2|A(y1), A(y2)]

≤ eε (2)

We assume p is the probability of retaining yq and 1 − p the probability of
flipping yq. According to algorithm A, for any two responses y1, y2 ∈ {0, 1}, the
four possible cases for the above inequality are:

Pr[y1 = y2|A(y1) = 0, A(y2) = 0]

Pr[y1 �= y2|A(y1) = 0, A(y2) = 0]
,
P r[y1 = y2|A(y1) = 1, A(y2) = 1]

Pr[y1 �= y2|A(y1) = 1, A(y2) = 1]
=

p2 + (1 − p)2

2p · (1 − p)
,

P r[y1 = y2|A(y1) = 0, A(y2) = 1]

Pr[y1 �= y2|A(y1) = 0, A(y2) = 1]
,
P r[y1 = y2|A(y1) = 1, A(y2) = 0]

Pr[y1 �= y2|A(y1) = 1, A(y2) = 0]
=

2p · (1 − p)

p2 + (1 − p)2
.

74 H. Zheng et al.

Given 0 ≤ p ≤ 1, it is easy to prove that the former two cases are always
larger than the latter. If we further use equality instead of ineqaulity in Eq. 2,
we can derive the following equation of p:

p2 + (1 − p)2

2p · (1 − p)
= eε

By solving the above equation, we can derive p as

p =
(2 + 2eε) ± √

(2 + 2eε)2 − 4(2 + 2eε)
2(2 + 2eε)

p1 =
1
2

+
√

e2ε − 1
2 + 2eε

, p2 =
1
2

−
√

e2ε − 1
2 + 2eε

(3)

Finally, we need to test the validity of both solutions. Let u = eε, the deriva-
tive of p1 in Eq. 3 with respect to u is:

∂p

∂u
=

(2
u−1)(

√
u2 − 1)

(2 + 2u)2
≥ 0

As such, p1 is monotonic with respect to u and ε. Since ε ∈ [0,+∞], the lower
and upper bounds of p1 are obtained when ε = 0 and ε = +∞:

lim
ε→0

[1
2

+
√

e2ε − 1
2 + 2eε

]
=

1
2
,

lim
ε→+∞

[1
2

+
√

e2ε − 1
2 + 2eε

]
= lim

ε→+∞

[1
2

+

√
1 − 1

e2ε

2
eε + 2

]
= 1.

As such, the derived p1 in Eq. 3 is in the range of [12 , 1) and is thus valid.
Similarly, we can prove p2 is in the range of (0, 1

2] and is thus invalid. ��

4.3 Summary

Algorithm 1 summarizes the detailed procedures of BDP layer that can be tapped
to the output of any machine learning model f . When a new query xq arrives, if
it has already been queried before, the layer directly returns the cached response
y′

q to prevent attacker from learning multiple perturbed responses of the same
query response, which can lead to a less private BDP. Otherwise, the layer first
obtains the real result yq from model f . Then it determines whether xq is in
the boundary-sensitive zone by checking all corner points. As long as one corner
point is as a flipping point, the query is identified as sensitive, and the boundary
randomized response algorithm BRR(·) with privacy budget ε will be invoked.
The layer will thus return the perturbed result y′

q and cache it for future use.
Otherwise, if xq is not sensitive after checking all corner points, the real result
yq will be returned.

BDPL: Boundary Differentially Private Layer 75

5 Experiments

In this section, we evaluate the effectiveness of boundary differentially private
layer (BDPL) against model extraction attacks. Specifically, we implement those
extraction attacks using fine-tuned queries as in [13,19] and compare the success
rates of these attacks with and without BDPL. All experiments are implemented
with Python 3.6 on a desktop computer running Windows 10 with Intel Core
i7-7700 3.6 GHz CPU and 32G DDR4 RAM.

Algorithm 1. Boundary Differentially Private Layer
Input: Query xq ∈ Rd

Model f
Boundary-Sensitive Zone Parameter Δ
Boundary Privacy Budget ε

Output: Perturbed Response y
Procedure:

1: if xq is not cached then
2: yq = f(xq)
3: CornerPoints = getCornerPoints(Δ, xq)
4: for xi in CornerPoints do
5: if xi is a flipping point then
6: y′

q = BRR(yq, ε)
7: Cache(xq, y′

q)
8: return y′

q

9: return yq

10: else
11: y′

q = getCached(xq)
12: return y′

q

5.1 Setup

Datasets and Machine Learning Models. We evaluate two datasets and two
models used in the literature [19]—a Botany dataset Mushrooms (113 attributes,
8124 records) and a census dataset Adult (109 attributes, 48842 records), both
of which are obtained from UCI machine learning repository [4]. All categorical
items are processed by one-hot-encoding [8] and missing values are replaced with
the mean value of this attribute. We adopt min-max normalization to unify all
feature domains into [−1, 1]. In the Mushrooms dataset, the binary label shows
whether a mushroom is poisonous or edible, and in the Adult dataset, the binary
label shows whether the annual income of an adult exceeds 50 K.

We train both a linear model, namely, logistic regression, and a non-linear
model, namely, 3-layer neural network, to predict unknown labels on both
datasets. Logistic regression is implemented using cross-entropy loss with L2 reg-
ularizer. Neural network is implemented using TensorFlow r1.12 [1]. The hidden
layer contains 20 neurons with tanh activation. The output layer is implemented
with a sigmoid function for binary prediction.

76 H. Zheng et al.

Evaluation Metrics. We implement the extraction attack defined in Sect. 2
using fine-tuned queries generated by the line-search technique. It is a full white-
box attack which produces an extracted model f ′ with the same hyperparameters
and architectures as the original model f . To compare f and f ′, we adopt extrac-
tion rate [10,19] to measure the proportion of matching predictions (i.e., both f
and f ′ predict the same label) in an evaluation query set. Formally,

– Extraction Rate. Given an evaluation query set Xe, the extraction rate

R =
1

|Xe|
∑

xi∈Xe

1(f(xi) = f ′(xi)),

where 1(·) is an indicator function that outputs 1 if the input condition holds
and 0 otherwise. The extraction rate essentially measures the similarity of
model outputs given the same inputs. In our experiments, the evaluation
query set could come from either the dataset or uniformly sampled points in
the feature space.

– Utility. This second metric measures the proportion of responses that are
perturbed (i.e., flipped) by BDPL. It indicates how useful these responses are
from a normal user’s perspective. Formally, given the entire set of queries Xq

issued by clients, and the set of (perturbed) responses Yq from the service
provider,

U =
1

|Xq|
∑

xi∈Xq,yi∈Yq

1(f(xi) = yi).

5.2 Overall Evaluation

To evaluate how well the decision boundary can be protected by BDPL, we
launch extraction attacks on 4 model/dataset combinations and plot the extrac-
tion rate R of sensitive queries in Fig. 3 as the number of queries increases. For
BDPL, we set Δ = 1/8, and ε = 0.01. In all combinations, except for the initial
extraction stage (query size less than 5 K), BDPL exhibits a significant protec-
tion effect (up to 12% drop on R) compared with no defense. Furthermore, even
though the two models are very diverse (the parameters of the neural network
are 20 times more than that of the logistic regression), BDPL shows consistent
protection effect by a similar drop of R.

The secondary axis of Fig. 3 also plots the utility of BDPL. We observe that
the utility saturates at over 80% after 20 K queries in all combinations except for
Adult w/ Logistic Regression. This model has the fewest parameters and features,
so BDPL has to perturb more sensitive queries to retain the same BDP level as
the others. The impact on utility by Δ and ε will be shown in Sect. 5.4.

BDPL: Boundary Differentially Private Layer 77

1

0.9

0.8

0.7

0.6

0.5

1

0.9

0.8

0.7

0.6

0.5
15K 20K

UR

1K 5K 10K
Query Size

BDPL (R) No Defense (R) BDPL (U)

(a) Mushrooms w/ Logistic Regression

1

0.9

0.8

0.7

0.6

0.5

1

0.9

0.8

0.7

0.6

0.5
15K 20K

UR

1K 5K 10K
Query Size

BDPL (R) No Defense (R) BDPL (U)

(b) Mushrooms w/ Neural Network

1

0.9

0.8

0.7

0.6

0.5

1

0.9

0.8

0.7

0.6

0.5
15K 20K

UR

1K 5K 10K
Query Size

BDPL (R) No Defense (R) BDPL (U)

(c) Adult w/ Logistic Regression

1

0.9

0.8

0.7

0.6

0.5

1

0.9

0.8

0.7

0.6

0.5
15K 20K

UR

1K 5K 10K
Query Size

BDPL (R) No Defense (R) BDPL (U)

(d) Adult w/ Neural Network

Fig. 3. Overall protection effect by BDPL: extraction rate and utility

5.3 BDPL vs. Uniform Perturbation

0.5

0.6

0.7

0.8

0.9

1

0.5K 1K 2K 3K 4K 5K 6K

R

Query Size

Uniform Perturbation (Overall) Uniform Perturbation (Sensitive)
BDPL (Overall) BDPL (Sensitive)

Fig. 4. BDPL vs. uniform perturbation

In this experiment, we compare BDPL with a uniform perturbation mechanism
that randomly flips the response label by a certain probability, whether the

78 H. Zheng et al.

query is sensitive or not. To have a fair comparison, we use trial-and-error5 to
find this probability so that the overall extraction rates of both mechanisms
are almost the same. We then plot the extraction rates of both mechanisms for
sensitive queries in Fig. 4. Due to space limitation, we only show the results for
Mushrooms with Logistic Regression with Δ = 1/8 and ε = 0.01. We observe that
BDPL outperforms uniform perturbation by 5%–7%, which is very significant
as this leads to an increase of misclassification rate by 30%–50%. As such, we
can conclude that BDPL is very effective in protecting the decision boundary by
differentiating sensitive queries from non-sensitive ones, and therefore it retains
high utility for query samples that are faraway from the boundary.

5.4 Impact of ε and Δ

In this subsection, we evaluate BDPL performance with respect to various values
of boundary-sensitive zone parameter Δ and privacy budget ε. In each experi-
ment, we fix the value of ε (resp. Δ) and vary Δ (resp. ε) for all 4 model/dataset
combinations. Δ ranges between 1/64 and 1/8 while ε ranges between 0.01 and
0.64. Figures 5 and 6 show the evaluation results on varying Δ and ε respectively.

(a) Mushrooms w/ Logistic Regression (b) Mushrooms w/ Neural Network

(c) Adult w/ Logistic Regression (d) Adult w/ Neural Network

Fig. 5. Impact of varying Δ

5 To do this, we start with 1 random flip out of all responses and measure its overall
extraction rate. We then repeatedly increment this number by 1 until the overall
extraction rate is very close to that of BDPL.

BDPL: Boundary Differentially Private Layer 79

Impact on Extraction Rate. When Δ increases from 1/64 to 1/8, the extrac-
tion rate is significantly reduced in both logistic regression (up to 12% drop) and
neural network (up to 10% drop). Nonetheless, for neural networks, the extract
rate does not change much when Δ increases from 1/64 to 1/32, which indicates
that if the boundary-sensitive zone is too small, BDPL may not provide effective
protection, especially when the decision boundary is non-linear.

(a) Mushrooms w/ Logistic Regression (b) Mushrooms w/ Neural Network

(c) Adult w/ Logistic Regression (d) Adult w/ Neural Network

Fig. 6. Impact of varying ε

As for privacy budget ε, its impact is not as significant as Δ. We only observe
up to 4% drop of extraction rate when ε decreases from 0.64 to 0.01 for all 4
model/dataset combinations.

Last but not the least, the extraction rates under all these settings saturate as
the query size increases. In most cases, they start to saturate before 5 K queries,
and even in the worst case, they saturate at 15 K or 20 K. This indicates that
BDPL imposes a theoretical upper bound on the extraction rate no matter how
many queries are issued.

Impact on Utility. In Fig. 7, we plot the final utility after 20 K queries for all
Δ and ε combinations. Except for Adult w/ Logistic Regression, all utilities are
higher than 80% and most of them are above 90%, which means that BDPL does
not severely sacrifice the accuracy of a machine learning service. As expected,

80 H. Zheng et al.

the utility reaches peak when Δ = 1/64 (smallest zone size) and ε = 0.64 (least
probability of perturbation). Furthermore, as is coincided with the extraction
rate, the utility is more sensitive to Δ than to ε. For example, an increase of Δ
from 0.01 to 0.1 leads to a drop of utility by 10%, whereas a decrease of ε from
0.1 to 0.01 leads to only 5% drop.

To conclude, BDPL permanently protects decision boundary of both linear
and non-linear models with moderate utility loss. The changes of Δ and ε (par-
ticularly the former) have some modest impact on the extraction rate and utility.

Fig. 7. Utility vs. Δ and ε

6 Related Works

There are three streams of related works, namely, machine learning model extrac-
tion, defense, and differential privacy.

Model Extraction. Machine-learning-as-a-service (MLaaS) has furnished
model extraction attacks through the rich information available from predic-
tion API. Tramer et al. [19] proposed extraction methods that leveraged the
confidence information in the API and managed to extract the full set of model
parameters using equation-solving. Papernot [16] et al. introduced a Jacobian-
based data augmentation technique to create synthetic queries and to train a sub-
stitute DNN. Similarly, Juuti et al. [9] leveraged both optimal hyperparameters
and the Jacobian to extract models. Oh et al. [14] developed a model-of-model
to infer internal information of a neural network such as layer type and kernel
sizes. Orekondy et al. [15] proposed a knockoff model to steal the functionality
of an image classification model with black-box API access. Besides extracting

BDPL: Boundary Differentially Private Layer 81

internal parameters, Wang et al. [21] also extracted the hyperparamters of a
fully trained model by utilizing the zero gradient technique.

Model extraction without confidence is similar to learning with membership
query [3,20], which learns a concept through querying membership on an oracle.
This technique has been exploited by Lowd et al. to extract binary classifiers [13].
They used line search to produce optimized queries for linear model extraction.
This technique was extended by Tramer et al. [19] to non-linear models such as
a polynomial kernel support vector machine. They adopted adaptive techniques
such as active learning to synthesize fine-tuned queries and to approximate the
decision boundary of a model.

Model Extraction Defense. Confidence rounding and ensemble model were
shown effective against equation-solving extractions in [19]. Lee et al. [12] pro-
posed perturbations using the mechanism of reverse sigmoid to inject deceptive
noises to output confidence, which preserved the validity of top and bottom
rank labels. Kesarwani et al. [10] monitored user-server streams to evaluate the
threat level of model extraction with two strategies based on entropy and com-
pact model summaries. The former derived information gain with a decision
tree while the latter measured feature coverage of the input space partitioned
by source model, both of which were highly correlated to extraction level. Juuti
et al. [9] adopted a different approach to monitor consecutive queries based on the
uniqueness of extraction behavior. A warning would be generated when queries
deviated from a benign distribution due to malicious probing. Quiring et al. [17]
adopted the notion of closeness-to-the-boundary in digital watermarking and
applied it to protect against extraction attacks on decision trees. The defense
strategy was devised from protection of watermark detector and it monitored
the number of queries that fell into security margin.

Differential Privacy. Differential privacy (DP) was first proposed by Dwork
[6] to guarantee the privacy of a centralized dataset with standardized math-
ematical notation. Duchi et al. [5] extended this notation to local differential
privacy (LDP) for distributed data sources. Randomized response proposed by
Warner et al. [22] is the baseline perturbation algorithm for LDP, which pro-
tects binary answers of individuals. Although differential privacy has not been
used in model extraction and defense, it has been applied in several adversarial
machine learning tasks. For example, Abadi et al. [2] introduced differentially
private stochastic gradient descent to deep learning, which can preserve private
information of the training set. Lee et al. [11] further improved its effectiveness
using an adaptive privacy budget. Their approaches are shown effective against
model inversion attack [7] or membership inference attack [18].

7 Conclusion and Future Work

In this paper, we propose boundary differential private layer to defend binary
machine learning models against extraction attacks by obfuscating the query
responses near the decision boundary. This layer guarantees boundary differ-
ential privacy (ε-BDP) in a user-specified boundary-sensitive zone. To identify

82 H. Zheng et al.

sensitive queries that fall in this zone, we develop an efficient approach that use
corner points as indicators. We design boundary randomized response as the
perturbation algorithm to obfuscate query responses. This algorithm is proved
to satisfy ε-BDP. Through extensive experimental results, we demonstrate the
effectiveness and flexibility of our defense layer on protecting decision boundary
while retaining high utility of the machine learning service.

For future work, we plan to generalize our defense layer to a multi-class model
and adapt the perturbation algorithm to it. We also plan to extend our defense
layer to protect against other machine learning attacks such as model evasion
and inversion.

Acknowledgement. This work was supported by National Natural Science Foun-
dation of China (Grant No: 61572413, U1636205, 91646203, 61532010, 91846 204, and
61532016), the Research Grants Council, Hong Kong SAR, China (Grant No: 15238116,
15222118 and C1008-16G), and a research grant from Huawei Technologies.

References

1. Abadi, M., Agarwal, A., Barham, P., et al.: TensorFlow: large-scale machine learn-
ing on heterogeneous systems (2015). https://www.tensorflow.org/, software avail-
able from tensorflow.org

2. Abadi, M., et al.: Deep learning with differential privacy. In: Proceedings of ACM
SIGSAC Conference on Computer and Communications Security, pp. 308–318
(2016)

3. Angluin, D.: Queries and concept learning. Mach. Learn. 2, 319–342 (1987)
4. Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.

edu/ml
5. Duchi, J.C., Jordan, M.I., Wainwright, M.J.: Local privacy and statistical minimax

rates. In: IEEE Symposium on Foundations of Computer Science, pp. 429–438
(2013)

6. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener,
I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006).
https://doi.org/10.1007/11787006 1

7. Fredrikson, M., Jha, S., Ristenpart, T.: Model inversion attacks that exploit con-
fidence information and basic countermeasures. In: Proceedings of ACM SIGSAC
Conference on Computer and Communications Security, pp. 1322–1333 (2015)

8. Harris, D.M., Harris, S.L.: Digital design and computer architecture (2007)
9. Juuti, M., Szyller, S., Dmitrenko, A., Marchal, S., Asokan, N.: Prada: Protecting

against DNN model stealing attacks. CoRR abs/1805.02628 (2018)
10. Kesarwani, M., Mukhoty, B., Arya, V., Mehta, S.: Model extraction warning in

MLAAS paradigm. In: Annual Computer Security Applications Conference (2018)
11. Lee, J., Kifer, D.: Concentrated differentially private gradient descent with adap-

tive per-iteration privacy budget. In: ACM SIGKDD Conference on Knowledge
Discovery and Data Mining (2018)

12. Lee, T., Edwards, B., Molloy, I., Su, D.: Defending against model stealing attacks
using deceptive perturbations. CoRR abs/1806.00054 (2018)

13. Lowd, D., Meek, C.: Adversarial learning. In: Proceedings of the Eleventh ACM
SIGKDD International Conference on Knowledge Discovery in Data Mining. KDD
2005, pp. 641–647. ACM (2005)

https://www.tensorflow.org/
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1007/11787006_1

BDPL: Boundary Differentially Private Layer 83

14. Oh, S.J., Augustin, M., Schiele, B., Fritz, M.: Towards reverse-engineering black-
box neural networks. In: International Conference on Learning Representations
(2018)

15. Orekondy, T., Schiele, B., Fritz, M.: Knockoff nets: stealing functionality of black-
box models. CoRR abs/1812.02766 (2018)

16. Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practi-
cal black-box attacks against machine learning. In: Proceedings of the 2017 ACM on
Asia Conference on Computer and Communications Security, pp. 506–519 (2017)

17. Quiring, E., Arp, D., Rieck, K.: Forgotten siblings: Unifying attacks on machine
learning and digital watermarking. In: IEEE European Symposium on Security
and Privacy (EuroS&P), pp. 488–502 (2018)

18. Shokri, R., Stronati, M., Shmatikov, V.: Membership inference attacks against
machine learning models. In: IEEE Symposium on Security and Privacy, pp. 3–18
(2017)

19. Tramèr, F., Zhang, F., Juels, A., Reiter, M.K., Ristenpart, T.: Stealing machine
learning models via prediction APIS. In: Proceedings of the 25th USENIX Con-
ference on Security Symposium, pp. 601–618 (2016)

20. Valiant, L.G.: A theory of the learnable. In: ACM Symposium on Theory of Com-
puting (1984)

21. Wang, B., Gong, N.Z.: Stealing hyperparameters in machine learning. In: IEEE
Symposium on Security and Privacy, pp. 36–52 (2018)

22. Warner, S.L.: Randomized response: a survey technique for eliminating evasive
answer bias. J. Am. Stat. Assoc. 60(309), 63–69 (1965)

23. Xu, W., Qi, Y., Evans, D.: Automatically evading classifiers: a case study on PDF
malware classifiers. In: Annual Network and Distributed System Security Sympo-
sium (2016)

Information Leakage

The Leakage-Resilience Dilemma

Bryan C. Ward1, Richard Skowyra1, Chad Spensky2, Jason Martin1,
and Hamed Okhravi1(B)

1 MIT Lincoln Laboratory, Lexington, USA
{bryan.ward,richard.skowyra,jnmartin,hamed.okhravi}@ll.mit.edu

2 University of California, Santa Barbara, USA
cspensky@cs.ucsb.edu

Abstract. Many control-flow-hijacking attacks rely on information
leakage to disclose the location of gadgets. To address this, several
leakage-resilient defenses, have been proposed that fundamentally limit
the power of information leakage. Examples of such defenses include
address-space re-randomization, destructive code reads, and execute-only
code memory. Underlying all of these defenses is some form of code
randomization. In this paper, we illustrate that randomization at the
granularity of a page or coarser is not secure, and can be exploited by
generalizing the idea of partial pointer overwrites, which we call the Rel-
ative ROP (RelROP) attack. We then analyzed more that 1,300 common
binaries and found that 94% of them contained sufficient gadgets for an
attacker to spawn a shell. To demonstrate this concretely, we built a
proof-of-concept exploit against PHP 7.0.0. Furthermore, randomization
at a granularity finer than a memory page faces practicality challenges
when applied to shared libraries. Our findings highlight the dilemma that
faces randomization techniques: course-grained techniques are efficient
but insecure and fine-grained techniques are secure but impractical.

1 Introduction

Memory-corruption attacks continue to be one of the primary attack vectors
against modern computer systems [2]. The sophistication of memory-corruption
attacks has increased from simple code injection [38] to various forms of code-
reuse attacks [11,43] in response to widespread deployment of defenses such as
W ⊕ X (a.k.a. Data Execution Prevention – DEP).

Leakage-resilient memory-protection techniques [4,7,12,14,35,50,53] are
considered the state-of-the-art in one of several approaches to mitigate the

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is
unlimited.
This material is based upon work supported by the Under Secretary of Defense for
Research and Engineering under Air Force Contract No. FA8702-15-D-0001. Any opin-
ions, findings, conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the Under Secretary of Defense
for Research and Engineering.

c© Springer Nature Switzerland AG 2019
K. Sako et al. (Eds.): ESORICS 2019, LNCS 11735, pp. 87–106, 2019.
https://doi.org/10.1007/978-3-030-29959-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29959-0_5&domain=pdf
https://doi.org/10.1007/978-3-030-29959-0_5

88 B. C. Ward et al.

impact of memory corruption attacks. Such techniques protect the code against
various forms of information-leakage attacks (i.e., direct [45,47], indirect [16,41],
or side-channel-based [8,42]), thus ensuring that the effects of the underlying ran-
domization cannot be sidestepped by an attacker. Leakage-resilient techniques
include various forms of execute-only techniques via memory permissions [4,14]
or destructive reads [50], code-pointer protection via code and data decoupling
[35], and runtime re-randomization techniques [7,12,53].

All of these leakage-resilient techniques crucially rely on the underlying code-
randomization mechanism and its granularity. For example, execute-only mem-
ory can be easily bypassed if an attacker knows the code-section layout. Code-
randomization techniques fall into two categories: virtual-memory randomiza-
tion and physical-memory randomization. Virtual-memory randomization only
changes the mapping of virtual addresses to physical addresses, and does not
change the contents of physical memory. Because such mapping can only be as
fine as a page, virtual-memory-randomization mechanisms have page-level gran-
ularity or coarser. Examples of such mechanisms include library-level random-
ization [7,39] and page-level randomization [5]. The second category, physical-
memory randomization, is any technique that changes the contents of physi-
cal memory. These include function-level [23,31], basic-block-level [12,51], and
instruction-level [18,30] randomization mechanisms.

In this paper, we study the security and practicality tradeoffs of code random-
ization for leakage-resilient defenses. We first show that virtual-memory random-
ization provides insufficient security guarantees. Extending the idea of partial
pointer overwrites, we illustrate an attack, which we call Relative ROP (Rel-
ROP), that can bypass such techniques in the absence of additional, protection
mechanisms. Specifically, we show that by simply overwriting the least-significant
bytes of a pointer, an attacker can address sufficient gadgets within a page to
build an exploit, and because the granularity of virtual-memory randomization
cannot be finer than a page, this limits their effectiveness in practice.

Although the idea of partial pointer overwrites existed in the literature before
[8,19], building a complete attack based on them faces a number of challenges,
including the difficulty of chaining gadgets together and the lack of access to
many gadgets due to randomization of their addresses. To overcome these chal-
lenges, we illustrate how the Procedure Linkage Table (PLT) and the Global
Offset Table (GOT) can be abused as a layer of indirection to facilitate exploita-
tion. We show that function pointers within the GOT may be partially over-
written to point instead to gadgets within the page of the original target. We
illustrate that numerous gadgets are accessible in each page through partially
overwriting GOT entries. We analyze many popular Linux applications and find
that many such gadgets can be invoked while the system is protected by code
randomization and many different leakage-resilient defenses.

To further demonstrate the realism of RelROP, we build a proof-of-concept
exploit against PHP (Sect. 6), which deterministically bypasses many leakage-
resilient defenses that rely on virtual-memory randomization.

The Leakage-Resilience Dilemma 89

We then investigate physical-memory randomization mechanisms. While
these techniques can be arbitrarily fine-grained, and are thus secure against
partial-overwrite attacks, they face many practicality challenges. Among them,
is the fact that such techniques require actually moving memory contents, which
creates challenges for shared libraries. Such challenges give rise to tradeoffs
between security and performance or practicality.

Our findings highlight the dilemma when designing leakage-resilient memory-
protection techniques, and illustrate that design choices must consider a fine
trade-off between security and practicality in this domain. Since all of the pro-
posed techniques in this domain face either security challenges or practicality
challenges (or both), we posit that more research is needed to build effective and
efficient leakage-resilient techniques.

The contributions of this paper are as follows:

– We provide an in-depth study of security and practicality implications of code
randomization in leakage-resilient memory-protection techniques.

– We illustrate that virtual memory-based code randomization provides insuf-
ficient security. We leverage the idea of partial pointer overwrite to build a
generic attack, called RelROP, that overwrites one or two least significant
byte of a code pointer to access gadgets within the same page as the target.

– We conduct extensive analysis of the prevalence of RelROP gadgets, and find
that sufficient RelROP gadgets are found in 94% of analyzed binaries.

– We show the realism of RelROP via a proof-of-concept exploit against PHP.
– We discuss the practicality challenges of physical-memory-based randomiza-

tion techniques and argue that security and practicality trade-offs need to be
considered when leveraging code randomization for leakage resilience.

2 Randomization Granularity

Leakage-resilient techniques, including TASR [7], Shuffler [53], Remix [12], Iso-
meron [16], Oxymoron [5], Heisenbyte [50], NEAR [52], Morton et al. [36], XnR
[4], and HideM [22] mitigate the impact of information-leakage attacks on code
randomization/diversification. They employ various mechanisms including mem-
ory permissions [4,14], destructive reads [50], code pointer protection [35], and
runtime re-randomization [7,12,53] to prevent direct memory disclosures (e.g.,
[4,5,22,52]) and sometimes both direct and indirect memory disclosures (e.g.,
[7,12,14,16,35,53]).

A key component of every leakage-resilient scheme is a one-time randomiza-
tion of memory (or more, in the case of re-randomization) in order to obscure
the memory layout from the attacker. Once obscured, the remainder of the tech-
nique (e.g., execute-only memory) seeks to ensure that the attacker cannot leak
memory in order to discover the memory layout.

2.1 Virtual-Memory Randomization

One approach to randomizing memory is to randomize the mapping between
virtual- and physical-memory addresses. Attackers relying on code reuse must

90 B. C. Ward et al.

know the virtual-memory address at which physical code pages are mapped. This
is the driving principle behind ASLR [39] and its descendants, for example.

Randomizing virtual addresses is straightforward, as only the page tables for
that process need to be changed rather than the underlying physical memory
(i.e., no memory moves or copies are required). Therefore, such randomization
can be performed efficiently, and ensures that physical pages mapped into mul-
tiple processes (e.g., shared libraries) experience no disruption.

Randomization Granularity. Relying on virtual-memory randomization imposes
a fundamental limitation on the granularity of randomization. Objects smaller
than a page of memory cannot be independently randomized, as page tables
cannot be used to reference the addresses of memory objects smaller than a
page. Thus, some of the low-order bits of an address remain unchanged after
randomization. While the exact size of memory pages is architecture-specific,
4KB is the smallest page size supported by common architectures such as x86,
x86-64, and ARM.

In practice, defenses using virtual-memory randomization operate on the
library- or page-level. Library-level is the most coarse-grained approach to
memory randomization, in which the application binary and base addresses of
shared libraries are randomized. It is implemented at load-time by ASLR [39].
TASR [7] provides a leakage-resilient version by re-randomizing in response to
input/output system-call pairs. Note that in either case, all memory objects
within a library remain at fixed relative offsets to one another, but the relative
offsets among libraries are randomized.

Page-level randomization, implemented by Oxymoron [5] at load-time,
attempts to provide enhanced security by randomizing at a finer granularity.
This ensures that inter-page offsets are randomized, but leaves intra-page offsets
fixed.

2.2 Physical-Memory Randomization

Rather than change virtual-to-physical mappings, a randomization technique can
instead reorder data/code in physical memory. This requires memory copies that
induce overhead, but can operate at an arbitrary level of granularity. Physical
memory randomization must also account for how randomization of shared pages
is handled, since different processes may be simultaneously attempting to access
them. This can have both security and practicality implications.

Randomization Granularity. Unlike virtual-memory randomization, physical-
memory randomization may operate at any level of granularity.1 This can dra-
matically limit, or entirely remove, the availability of gadgets near code pointers.
Recall that low-order bits are fixed in virtual-memory randomization, because

1 In practice, physical-memory randomization has only been applied at the sub-page
level, as virtual-memory randomization is more efficient for coarser granularities.

The Leakage-Resilience Dilemma 91

addresses are necessarily page-aligned (i.e., the lower 12 bits are an offset into
a page, and the upper bits specify the page in a 4K-size page).

Physical memory randomization does not have this constraint (as it does not
rely on page tables), and can fully randomize the address of a memory object.
For example, it could shift a function by a single byte. This would modify every
bit in the address of that function, preventing an attacker from using their local
copy of an application to infer anything about the victim’s memory layout.

Physical-memory-randomization defenses have been presented at the func-
tion [53], basic-block [12,51], and instruction [26] randomization levels. Shuffler
[53] randomizes the base address of all functions in a process image. Shared
libraries are statically linked at load-time, in order to ensure that their functions
can be safely relocated. Remix [12] and Binary Stirring [51] both randomize
at the basic-block level. The former re-randomizes periodically, while that latter
performs a single load-time randomization. ILR [26] uses process-level virtualiza-
tion to randomize at the instruction granularity on program load. None of these
approaches randomize shared libraries. We will discuss why later in Sect. 8.

3 Threat Model

We assume that a remote attacker has access to a memory-corruption vulnera-
bility that enables arbitrary read and write access to userspace memory. This is
consistent with common vulnerabilities that, for example, give attackers control
over a buffer index (e.g., CVE-2016-0034), or do not properly safeguard format
strings (e.g., CVE-2015-8617).

We make the following assumptions about the defensive configuration of the
victim process. (1) W⊕X is deployed on the system being attacked, so that code
injection and code modification are prevented. (2) A leakage-resilient defense is
deployed that prevents direct memory disclosures (i.e., leakage of code pages).
(3) The Global Offset Table exists. A GOT exists as long as shared libraries are
used, and is even present for an isolated binary if it is compiled to be position-
independent. Additionally, the majority of leakage-resilient defenses identified in
this paper do not extend protections to the GOT, with the exceptions of Oxy-
moron [5] and Readactor [14]. In Sect. 8, we discuss the implications of requiring
GOT protection in more detail. (4) The layout of code regions in memory have
been randomized, so that the attacker does not have a priori knowledge of the
location of code in memory.

This threat model is consistent with that of existing leakage-resilient defenses.

4 Relative ROP Attacks

In this section, we describe a code-reuse attack that generically circumvents
many leakage-resilient defenses that rely on virtual-memory randomization. We
show that an attacker can use existing code pointers to launch meaningful
exploits. This is achieved by partially overwriting the low-order byte of code
pointers such that they point to a relative offset within the randomized region,

92 B. C. Ward et al.

without knowing or needing to corrupt the randomized high-order bytes of that
pointer. Thus, we refer to these attacks as Relative ROP (RelROP).

4.1 Partial Pointer Overwriting

A critical assumption to the security of memory randomization is that pointers
can only be corrupted in toto. However, pointers in modern architectures are not
atomic, and in fact require multiple bytes of memory to encode. Furthermore,
byte-level memory writes are possible on most common architectures, including
x86, x64, ARM, and MIPS. A partial pointer overwrite can be used to overwrite
select bytes within a word. Partial pointer overwrites have been leveraged in
previous exploits [8,19], however, in this work we leverage them in a more general
attack technique, RelROP.

In this paper, we assume each memory page is 4 KB, and aligned on 4 KB
boundaries. Therefore, the low-order 12 bits of each address represent the offset
of the address within the page, while the high-order bits identify the page itself.
We define a memory paragraph to be the subset of a page that is addressable
by overwriting the low-order byte of a pointer. Thus, paragraphs are aligned
28 = 256 byte regions of memory.

Function
Pointer
0x40B2
0x205A

Benign
Function

Gadget

Function
Pointer
0x??B2
0x??7B

Benign
Function

Gadget

0x40B2

0x40B2
0x205A

0x205A

0x??7B

0x??B2

0x??7B

0x??B2

Attacker
Provided

0xFF…

0x00…

Full Pointer
Overwrite

Partial Pointer
Overwrite

Attacker
Provided

Fig. 1. Partial vs. full pointer overwrites

If virtual-memory
randomization is app-
lied, then the con-
tents of each page
are fixed, and can
be determined offline
by an attacker. There-
fore, the memory para-
graphs are also fixed,
and the attacker can
overwrite the low-order
byte of an address to
point to any gadget
within the paragraph.
This general concept is
depicted in Fig. 1. The
question marks denote
that those bytes of the pointer are both unknown to the attacker (due to the pres-
ence of a leakage-resilient technique) and uncorrupted by the attacker. The low-
order byte, however, which denotes an offset into the paragraph, are corrupted
by the attacker by only overwriting a subset of the bits encoding the pointer.
The corrupted pointer now points to a gadget within the paragraph, despite the
presence of a leakage-resilient technique that protects pointers from disclosure.
Note that the attacker-controlled pointer cannot point outside of the page with-
out learning or guessing the value of randomized high-order bytes. Moreover,
it cannot point to any other paragraph within the target page because even

The Leakage-Resilience Dilemma 93

though bits 9–12 of the address are known to the attacker (from an attacker’s
local copy), they cannot be overwritten by byte-granularity memory-corruption.

At a high level, all that is required to carry out the attack is the ability to
overwrite the low-order byte of the pointer that encodes a position within the
pointed-to paragraph, while avoiding any corruption of the randomized higher-
order bytes. This can be accomplished using a direct memory-write vulnerability
(similar to CVE-2017-0106).2 Such vulnerabilities arise from unchecked array
offset references, for example.

4.2 RelROP Chaining

In order to construct a RelROP gadget chain, we leverage the layer of indirection
afforded by the procedure linking table (PLT) and the global offset table (GOT).
Each externally linked function, such as those in libc, is invoked via a call
instruction to an absolute address within the PLT. The code within the PLT
performs a lookup of the address of the called function within the GOT, and
redirects control flow to that address. The GOT and PLT have two key features
that enable RelROP chaining.

First, the GOT is in the data region, which is subject to neither the write
protections of W⊕X nor to randomization. Thus, entries in the GOT are vulner-
able to partial pointer overwrites. By corrupting GOT entries, the pointer can
be offset relative to the function’s intended entry point into an attacker-chosen
memory region within the paragraph pointed to by that entry.

Second, the PLT is not part of the .text/.code section, and is therefore not
randomized. It does contain code pages, however, so both W ⊕ X and leakage-
resilience are in effect. Thus, the PLT itself cannot be directly leaked. How-
ever, the GOT contains pointers into the PLT in order to support lazy loading
of library functions. This standard functionality allows function addresses to
be resolved only on use, increasing the speed of program loading. However, it
requires pointing un-initialized function pointers (e.g., exit should contain an
entry back to its PLT entry) to stub code in the PLT, thus leaking its location.

With these capabilities, a series of pointers to functions in the PLT can be
placed on the stack, similar to a standard ROP attack. When these pointers are
dereferenced, they will be redirected via the corrupted GOT to attacker-chosen
gadgets. This permits chaining of RelROP attacks.

5 RelROP Prevalence Analysis

RelROP attacks leverage GOT entries to address gadgets at a relative offset from
that pointer’s initial location. In order to investigate the prevalence of gadgets
accessible at the paragraph level of granularity, we constructed an analysis tool
and applied it to over 1,300 binaries, analyzing the libraries and functions that
were dynamically linked by these binaries. In this analysis, we identify all gadgets
that are accessible by partially overwriting the low-order byte of a GOT entry.
2 Note that other vulnerability types could also be used. For example, buffer overflows

(resp. underflows) could be used, in little-endian (resp. big-endian) architectures.

94 B. C. Ward et al.

Fig. 2. RelROP gadget prevalence analysis tool architecture

5.1 Analysis-Tool Architecture

The high-level architecture of our analysis tool is depicted in Fig. 2. An input
binary is processed in three phases.

First, we leverage angr [44], an open-source binary analysis framework, to
identify all of the libraries that are linked to a given binary. Then, all conventional
ROP gadgets are identified in all of these libraries using an off-the-shelf tool
(these are filtered later). We chose to use the open-source tool rp++ [3] for this
purpose, with a search depth of 8 instructions (i.e., each identified gadget is at
most 8 instructions long).

Next, we use angr to identify all functions from libraries that are actually
imported by the binary. That is, we only consider functions that actually appear
in the binary’s PLT, and are thus usable by RelROP. Finally, we use the function
information from angr to identify all of the gadgets that can be accessed by
overwriting the low-order byte of that function’s GOT entry. Note that for each
case, gadgets can be found within the function (i.e., a positive offset) or within
the memory before the function (i.e., a negative offset). This is because the
physical memory pages of these libraries must remain static during runtime.
Thus, in the case of paragraph level randomization we consider every gadget
within the memory paragraph (e.g., if the function pointer is 0x11223344, any
gadget in the range 0x11223300 -0x112233FF is accessible).

5.2 Analysis of Real-World Binaries

In order to characterize how prevalent RelROP gadgets are, we ran our tool
on every binary contained within the /usr/bin and /usr/sbin directories on a
developer machine (Ubuntu 16.04), totaling 1,365 binaries with 577 dynamically

The Leakage-Resilience Dilemma 95

linked libraries. The results of this analysis are summarized in Table 1. In this
table, the first column represents the major gadget classes, and the next two
columns depict the percentage and total, respectively, of analyzed binaries that
include a gadget of each class at the paragraph granularity. The percentage of
binaries with such gadgets accessible through libc is also included alongside the
results, as attacks using libc gadgets are more desirable because of their reusabil-
ity across binaries. These results demonstrate that there are ample gadgets avail-
able via partial pointer overwriting even when the attacker is constrained to the
gadgets within a single byte of a code pointer.

Table 1. Gadgets within paragraph of
GOT entry

Gadget Percentage of
binaries with
gadgets/libc
portion

Total number
of gadgets/libc
portion

pop rax 80.8%/70.2% 64493/12196

mov rax 99.7%/99.7% 1118428/378268

pop rbx 99.7%/96.3% 2326697/550486

mov rbx 82.3%/69.0% 81541/21715

pop rcx 79.2%/63.4% 43827/14253

mov rcx 90.8%/83.7% 214140/81593

pop rdx 66.9%/46.7% 28827/11845

mov rdx 99.7%/99.7% 418448/151041

pop rsi 95.6%/92.2% 123090/20512

mov rsi 99.7%/99.7% 426279/96681

pop rdi 95.2%/91.6% 97963/22853

mov rdi 93.6%/86.9% 831198/189329

syscall 94.8%/93.5% 1067064/814589

The results in Table 1 summarize
raw metrics on the number of gadgets
available, but do not directly address
whether there are sufficient gadgets
to carry out a RelROP attack. The
next step in our evaluation is to iden-
tify the fraction of applications that
have enough RelROP gadgets to carry
out a more complete malicious pay-
load, such as spawning a shell. Specif-
ically, we consider an application vul-
nerable to a RelROP-spawned shell if
it includes either a mov or pop gad-
get for all the registers needed for
the execve syscall (i.e., rax, rdx,
rsi, and rdi), as well as a syscall
gadget. Our analysis determined that
94.4% of the binaries we considered
are vulnerable, and 91.4% are vulner-
able if gadgets are restricted to libc
only. These results suggest that vir-
tual memory randomization is not, on
its own, sufficient to prevent RelROP attacks.

We note that in practice, an application may have gadgets that affect all of the
necessary registers, but chaining the gadgets together for a successful attack may
not be feasible given other side effects present in the gadgets. Additionally, our
results are predicated on the completeness of our gadget-analysis tool, and other
gadget analyses may identify other gadgets. These results are thus presented as
indicative of RelROP prevalence, but are not claimed to be comprehensive.

6 Real-World Exploit

For our real-word exploit, we selected our target based on disclosed CVEs and not
the availability of gadgets, since our prevalence analysis had already shown that
there were likely enough gadgets to construct an exploit payload. Our real-world
exploit targets the popular PHP: Hypertext Preprocessor (PHP). Specifically we

96 B. C. Ward et al.

Table 2. List of ROP gadgets identified within the entry paragraph of library functions
used by PHP 7.0.0

targeted PHP version 7.0.0, and leveraged a known format-string vulnerability
(i.e., CVE-2015-8617 [1]) as a proof-of-concept for both leaking and exploiting
the GOT.

Note that because of the existence of W ⊕X, code regions cannot be written
to and data regions cannot be executed. Moreover, because of the deployment
of a leakage-resilient defense, code regions cannot be reliably read. As a result,
we only assume a read/write capability to data pages of memory in our exploit.

6.1 Exploit Details

The goal of our exploit is to achieve control-flow hijacking while PHP is protected
by a leakage-resilient defense using virtual-memory randomization up to and
including page-level randomization (thus, we are restricted to gadgets within the
paragraph of a function pointer). Since PHP is an interpreter, we assume that
the attacker is permitted to execute their own malicious PHP file on a remote
server, as is common on most hosting providers. To demonstrate a powerful
attack, we design an exploit that invokes the execve system call to spawn a
new shell. This provides the attacker with powerful remote control over the
compromised machine with elevated privileges from that of the original PHP
script. To accomplish this, we must find a syscall-instruction gadget and a set
of gadgets to set the necessary argument registers (i.e., rax, rdi, rsi, and rdx).

We applied the tool described in Sect. 5 to analyze, offline, a local copy of
PHP to identify all of the gadgets that are contained within the entry paragraph
(i.e., the paragraph surrounding the pointer to a function’s entry point) of every
function that is imported by PHP. Note that we can craft our malicious PHP file
to specifically call those functions that contain the required gadgets to ensure
that the GOT will be populated before our exploit. Our attack is limited to only
use gadgets that are contained within entry paragraphs (i.e., the single-byte
offset from the function-entry point), which is encoded in the GOT. This constant
offset can be added by overwriting only the low-order byte in the GOT entry,
which is not affected by randomization at the page-level or coarser granularity.
The gadgets identified by our tool are shown in Table 2.

It is worth noting that our pop rdi gadget depends on the value of rcx-0x0A
being a valid and writable memory region. Similarly, our pop rcx gadget requires

The Leakage-Resilience Dilemma 97

rax and rsi+0x06 to be writable. Fortunately, we have both pop rax and pop
rsi gadgets that we can use to set these values to known locations in the GOT,
which we know to be writable. We can then similarly set rcx to a known GOT
address to achieve a complete payload.

In traditional ROP attacks, the attacker places the absolute address of the
gadgets directly on the stack in order to execute them in the payload. However, in
RelROP, we are working with the constraint of virtual-memory randomization
and leakage resilience, thus RelROP places the PLT addresses on the stack,
which will be automatically resolved to our corrupted GOT entries.

Fig. 3. The stack during exploitation

To set up the exploit, we leverage the
fact that the .data segment, including the
GOT, is not randomized and is always at
a fixed memory location. In the case where
this is not true, we could use our memory-
read vulnerability (i.e., our format-string
vulnerability) to leak the location of the
GOT. Given any GOT address, we can triv-
ially calculate the base address, and there-
fore the address of the functions containing
our gadgets, as the order of the GOT entries
do not change. This same format string can
be leveraged to read the contents of the
GOT to obtain the base address of the PLT,
as unresolved functions will store pointers
to their PLT entry due to lazy binding of
library functions.

At this point, we have enough informa-
tion to modify the GOT entries and build
the set of values that need to be placed on
the stack when the exploit begins executing.

Next, we modify the lower-order bits
of the GOT entries for gethostbyname,
php uname, intltz to date time zone,
IntlChar::isISOControl, and DOMDocument::appendXML (PHP functions that
call the functions listed in Table 2) by partially overwriting each entry with the
offset of the gadget located in each respective function.

We start by using an assumed arbitrary-write stack-corruption vulnerability
to place the proper values on the stack and point the return address to the first
gadget. The stack is setup similarly to a traditional ROP payload, containing
data that will end up in registers, and addresses of gadgets to be executed.
Instead of using the absolute address of the gadgets, however, we use the address
of the PLT entries of the functions containing the gadgets. It is important to
emphasize that we know the addresses in the PLT from pointers in the GOT
used for lazy binding, not from a leakage of the PLT that is prevented by the
leakage-resilient defense. The stack during our RelROP attack is shown in Fig. 3.
The full exploit is shown in Fig. 4.

98 B. C. Ward et al.

inet_ntoa@PLT

STACK PLT GOT Libraries

inet_ntoa@PLT uname@PLT

u_isISOControl_55
@PLT

inet_ntoa@PLT

UnicodeString::
doCompare@PLT

xmlParseBalanced
ChunkMemory@PLT

uname@LIBC
+0x05

inet_ntoa@LIBC
+0x47

u_isISOControl_55
@LIBCUUC
+0x05

xmlParseBalancedCh
unkMemory@LIBXML

+0x04

inet_ntoa

u_isISOControl_
55@PLT

xmlParseBalancedC
hunkMemory@PLT

u_isISOControl_
55

inet_ntoa@PLT

inet_ntoa@PLT

xmlParseBalance
dChunkMemory

UnicodeString::
doCompare

u_isISOControl_5
5@PLT

uname

0x47

0x05

0x05

0x03

0x04

UnicodeString::
doCompare@PLT

uname@PLT

UnicodeString::
doCompare@LIBCUUC

+0x03

LIBC

LIBXML

LIBCUUIC

Fig. 4. PHP RelROP exploit

7 Impact on Defenses

In this section, we consider the impact of RelROP attacks on two classes of
defenses. Randomization-focused defenses are those whose primary mechanism
for mitigating attacks is (re)-randomization of memory at a specific level of gran-
ularity. Randomization-dependent defenses are those that require fine-grained
memory randomization, but whose primary contribution is orthogonal to ran-
domization (e.g., execute-only memory).

7.1 Randomization-Focused Defenses

Table 3 summarizes the impact of RelROP on leakage-resilient defenses. These
include both leakage-resilient defenses that rely on memory re-randomization,
and fine-grained randomization mechanisms that may be used by leakage-
resilient defenses that are dependent on a fine-grained randomizer. The table
also indicates whether the requirements to conduct a RelROP attack are sat-
isfied. We require a GOT to exist and not be additionally protected, and that
the target be protected by either virtual-memory randomization, or physical-
memory randomization that does not extend to shared libraries.

TASR is susceptible RelROP attacks. It is a leakage-resilient defense that
re-randomizes code at the library level. Since the GOT is in the data region, it is
not randomized by TASR. Re-randomization is applied on every read/write pair
to mitigate the effects of memory disclosures. While its coverage does extend
to shared libraries, it is implemented via virtual-memory randomization, and is
therefore susceptible to RelROP attacks given the analysis presented in Sect. 5.

Remix is a leakage-resilient defense that periodically permutes the basic-block
ordering within functions. This necessitates physical memory copies and code
patching to ensure that direct jumps point to the correct target. Consequently,

The Leakage-Resilience Dilemma 99

Table 3. Susceptibility of leakage-resilient techniques to RelROP

Defense name Granularity Randomization Unprotected
GOT

Unprotected
libraries

RelROP

Leakage resilience through memory re-randomization

TASR [7] Library Virtual Yes No Yes

Shuffler [53] Function Physical No No No

Remix [12] Basic Block Physical Yes Yes Yes

Memory randomization

Oxymoron [5] Page Virtual No No No

Binary Stirring [51] Basic Block Physical Yes Yes Yes

ILR [26] Instruction Physical Yes Yes Yes

Remix does not protect shared libraries. Since RelROP attacks use only gadgets
in shared libraries, Remix is susceptible to RelROP.

Binary Stirring [51] is a load-time basic-block-level randomization technique.
It relies on load-time patching of the binary to redirect direct jumps to ran-
domly determined basic-block locations. Consequently, shared libraries are not
randomized and can be leveraged to conduct RelROP attacks.

ILR [26] uses process-level virtualization to perform instruction-level ran-
domization. Since this does not extend across processes, shared libraries are not
protected and RelROP attacks can bypass it.

Oxymoron [5] randomizes code on the page level, as well as replacing func-
tion pointers with trampolines into a protected, GOT-like memory region. This
region is isolated via memory segmentation and segment registers. This prevents
RelROP attacks due to the inability to partially corrupt function pointers in
the GOT. Unfortunately, attacks against it have already been demonstrated [16]
and memory segmentation is largely unsupported in 64-bit architectures.

Shuffler is a leakage-resilient defense that is not susceptible to RelROP
attacks, as it removes the GOT and relies purely on direct calls to libraries
that are statically linked at load time. It periodically re-randomizes code at
the function level at a configurable interval. Since functions may be smaller
than pages, this randomization requires physical memory copying. This neces-
sitates statically linking shared libraries. Due to the way Shuffler implements
re-randomization, the size of each process’ code image (including all libraries)
is approximately doubled. As a result, the memory overhead on a multi-process
system may be prohibitive. Shuffler also requires a dedicated per-process thread
to asynchronously perform physical memory copies, which may impact cache and
memory performance. Unfortunately, no analysis is provided as to the perfor-
mance of Shuffler in a multi-process environment, so the true overhead is difficult
to estimate.

100 B. C. Ward et al.

7.2 Randomization-Dependent Leakage-Resilient Defenses

The defenses considered in this section rely on the existence of a fine-grained ran-
domization mechanism, but their primary contribution is an orthogonal approach
to leakage resilience. Since “fine-grained randomization” is often underspecified,
the effect of RelROP attacks on each defense cannot be empirically evaluated.
Thus, we instead consider whether the GOT/PLT is additionally protected or
other implementation details disrupt RelROP attacks.

Multivariant Execution. Multivariant-execution defenses, such as Isomeron [16],
are designed to disrupt ROP and JIT-ROP attacks by probabilistically switch-
ing program execution among two or more replicas of code, each with different
memory layouts. Isomeron specifically applies “fine-grained” code randomiza-
tion to one of two replicas, and leaves the other unmodified. Execution switches
uniformly at random between each replica at the function-call granularity. This
disrupts code-reuse attacks that rely on absolute jumps to memory addresses,
as the location of gadgets may change at every gadget invocation. However,
if the underlying code randomization is virtual-memory randomization, it does
not disrupt RelROP attacks. GOT entries in Isomeron are resolved prior to
diversification, and Isomeron adds a constant offset to the result if it elects to
change the replica being run. Since RelROP attacks corrupt GOT entries prior
to this calculation, they are “fixed” by Isomeron to point to the correct replica.
If physical-memory randomization is applied to either replica, the partially cor-
rupted pointer would point to a different location in each replica, and therefore
the attack would not succeed.

Destructive Code Reads and Execute-Only Memory. Techniques that implement
destructive code reads [36,50,52] aim to prevent code-reuse attacks that rely on
direct memory disclosure. While all code pages can be both read and executed
(in contrast to execute-only memory), attempting to execute code that has pre-
viously been read will trigger an error. In response to inference attacks that
allow implicit disclosure of code by reading adjacent bytes [46], this approach
has recently been combined with semantic-preserving binary re-randomization
[36]. Execute-only-memory defenses [4,22] aim to stop the same class of threats
as defenses that implement destructive code reads. Rather than destroying code
that is read, however, execute-only defenses cause a memory-permission violation
at any attempt to read executable memory.

Both of these defense classes rely on the necessity of an attacker reading code
pages prior to executing that code. However, RelROP attacks rely entirely on
reading data pages and corrupting code pointers without first disclosing that
code (or its address). Only the GOT itself needs to be read, which, as data, does
not trigger destruction. Therefore, if virtual-memory randomization is used, then
partial pointer overwriting can be used to corrupt code pointers to known gadgets
within the containing code paragraph. However, if physical-memory randomiza-
tion is applied, then the byte value needed for the partial overwrite cannot
be determined without first disclosing the randomization, and thus physical-
memory randomization would prevent a RelROP attack.

The Leakage-Resilience Dilemma 101

Code-Pointer Protection. Another approach to preventing code-reuse attacks
is to protect all pointers to code from disclosure or corruption. Pointguard
[13] encrypts pointers and decrypts them just prior to use via a register-stored
key. ASLR-Guard [35] uses a combination of encryption and protected lookup
tables to hide the value of function pointers. Readactor [14,15] combines execute-
only memory, fine-grained code randomization, register randomization, PLT ran-
domization, and replacement of function pointers with trampolines into a pro-
tected lookup table. Notably, however, Readactor has been shown vulnerable to
profiling-based attacks [41].

Encrypting or otherwise protecting all bytes of function pointers prevents
partial overwrites, as low-order bits are no longer vulnerable. In addition, use of
trampolines into lookup tables decouples the pointer value from any gadgets near
its eventual target, thus making relative-address attacks only able to (at best)
change the index into the lookup table. If table randomization and booby traps
are used, as in Readactor, even this capability is removed. Thus, code-pointer
protection techniques are effective in countering RelROP attacks.

8 Discussion

Physical-memory randomization at the granularity of instruction or basic-blocks,
applied ubiquitously to the binary and its linked libraries would not be vulner-
able to the RelROP attack described earlier. However, such a technique faces
a number of practicality challenges. Furthermore, subsequent design decisions
to address those challenges themselves come with security/practicality impli-
cations. All of these challenges arise from dealing with shared physical memory
pages, such as those in linked libraries. In this section, we first discuss the practi-
cal challenges of physical-memory randomization, then we discuss other possible
RelROP mitigations.

8.1 Implications of Physical-Memory Randomization

Cross-Process Disclosures. Many physical-memory randomization defenses (see
[34] for an overview) apply randomization at compile time, by, for example,
inserting NOPs to change relative distances between instructions. These one-
time randomization approaches suffer from the fact that a memory disclosure in
any process using a shared code page (e.g., libc pages) allows the attacker to de-
randomize that page in all processes using that code page. Thus, leakage-resilient
defenses must be applied to every process that links shared libraries.

Shared-Library Synchronization. Physical-memory randomization that takes
place at load- or run-time must deal with the fact that multiple processes execut-
ing code from shared libraries do not synchronize their accesses, as these pages
are traditionally read-only. This becomes problematic when attempting to move
that code to another physical memory region. Each process may have stack/heap
pointers to different regions of the shared library (especially if library functions

102 B. C. Ward et al.

call each other), and have instruction pointers at different addresses within that
library. All of these pointers must be adjusted to point to the library’s new
location in a way that is transparent to each running application.

Shuffler [53] addresses the issue by statically linking all libraries into a pro-
cess image at load time, and maintaining two copies of the process binary and
libraries. One copy is active and used for execution, and the other is asyn-
chronously re-randomized by a dedicated thread. When the copy is complete,
execution shifts to the new version and re-randomization is applied to the other
copy. Unfortunately, this means that if n processes are executing on a system,
there are 2n copies of libc, 2n copies of each application binary, and up to 2n
copies of other shared libraries. Remix [12], Binary Stirring [51], and ILR [26]
address this issue by simply not protecting shared libraries, and limiting them-
selves to the unshared physical pages corresponding to the main application
binary. As shown in Sect. 5, however, this still provides ample attack surface to
create a malicious payload. In fact, most valuable gadgets, such as those capable
of invoking a system call, are found in libc and not the binary itself.

Memory Thrashing. Runtime re-randomization based on physical-memory ran-
domization, such as Remix [12] and Shuffler [53], periodically perform physical
memory copies in order to relocate code regions. This interferes with the per-
formance of the cache and memory subsystem due to large-scale invalidation of
cache lines, and additional memory traffic. Depending on the rate at which re-
randomization is performed, memory thrashing can become a significant source
of overhead. A study of cache and memory performance observed such cache and
memory contention can result in slowdowns of a factor of up to 2.5x [32].

8.2 RELRO

A defensive feature in some operating systems called Relocation Read-Only (or
RELRO) is sometimes used to protect GOT. Partial RELRO forces GOT to
come before BSS, preventing some types of buffer overflows on global variables.
Full RELRO marks the entire GOT as read-only.

While partial RELRO has no impact on RelROP, full RELRO breaks it.
However, full RELRO has several performance tradeoffs, and is not commonly
deployed in practice. A recent study shows that as low as 3% of binaries are
protected with full RELRO [48]. There are a few reasons for this. Full RELRO
requires all symbols to be resolved at load time, which significantly slows down
program startup. Full RELRO is also not a default option in GCC (partial
RELRO is). Many Linux distros also do not have RELRO, such a RHEL v6
(and earlier), which will be actively supported until 2021.

9 Related Work

Our work mainly relates to memory-corruption vulnerabilities and mitigation
thereof. The literature in these areas is vast. We refer the interested reader to

The Leakage-Resilience Dilemma 103

the relevant surveys [10,34,49] and focus on closely related work. Since we have
already discussed may related efforts in the context of our attack, we limit the
work referenced in this section to the remaining closely related ones.

In a concurrent work with ours, a similar attack, PIROP [24], also uses partial
pointer overwrites to bypass leakage-resilient defenses. However, PIROP’s app-
roach is significantly different from ours in the following aspects. First, PIROP
is based on the concept of memory massaging, in which a carefully chosen set of
inputs causes the program to place code pointers on the stack. These are then
adjusted via partial pointer overwrites. This approach is probabilistic under fine-
grained randomization, with probability of success decreasing as the required
number of gadgets increases. RelROP attacks, conversely, are deterministic and
can scale to arbitrary payload sizes. Second, it is unclear how well PIROP attacks
generalize or could be automated. Each proof of concept exploit presented in that
work requires study and use of application-specific execution semantics. Rel-
ROP attacks only require knowledge of the target binary’s GOT. Third, PIROP
attacks are only able to bypass memory re-randomization defenses if they are
restricted to live pointers that are actively being tracked by the re-randomizer.
They cannot rely on stale pointers, such as those remaining from old stack frames
whose associated function has already returned. RelROP attacks bypass any vir-
tual memory re-randomization technique. Fourth, PIROP’s evaluation focuses
on the amount of entropy provided by various existing defenses. Since RelROP
attacks are deterministic, this does not apply to our technique. We instead ana-
lyze the tradeoffs between virtual and physical memory randomization, and their
implications for practical leakage-resilient defenses.

There are also a large number of randomization-based techniques proposed in
the literature that perform compile-time [28,29,33], load-time [17,26], or runtime
[27,37] randomization. It has been shown that information-leakage attacks of
various types, including direct memory disclosures [47], timing-based and fault-
based side-channel attacks [8,42], script-based leaks [45], indirect pointer leaks
[16], profiling attacks [41], and cache-based side-channel attacks [25], can be used
to bypass randomization-based defenses. Other orthogonal attacks against many
leakage-resilient defenses have also been studied, the details of which are beyond
our scope [6,9,16,20,40,41,45,46].

Control flow integrity (CFI) and all of its variants [10] are another class
of memory corruption defenses that are orthogonal to and not impacted by
RelROP. They are, however, vulnerable to attacks on the imprecisions of the
control flow graph [21].

10 Conclusion

In this paper, we analyzed the security and practicality of memory-
randomization mechanisms supporting leakage-resilient defenses. We illustrated
an attack, RelROP, that bypasses page-level or coarser virtual-memory random-
ization via partial overwriting of code pointers. We analyzed the prevalence of
RelROP gadgets in popular code bases, and built a proof-of-concept exploit

104 B. C. Ward et al.

against PHP 7.0.0. In addition, we enumerated the challenges associated with
practical deployment of physical-memory randomization defenses that arise from
protecting shared memory objects (e.g., shared libraries). Our findings indicate
that additional research is needed to design efficient and effective leakage-resilient
memory-protection techniques.

References

1. CVE-2015-8617. “Available from MITRE, CVE-ID CVE-2015-8617” (2015).
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-8617

2. Threat LandScape Report Q2 2017. Fortinet (2017). https://www.fortinet.com/
content/dam/fortinet/assets/threat-reports/Fortinet-Threat-Report-Q2-2017.
pdf

3. 0vercl0k: rp++, April 2017. https://github.com/0vercl0k/rp
4. Backes, M., Holz, T., Kollenda, B., Koppe, P., Nürnberger, S., Pewny, J.: You can

run but you can’t read: preventing disclosure exploits in executable code. In: ACM
Conference on Computer and Communications Security. CCS (2014)

5. Backes, M., Nürnberger, S.: Oxymoron: making fine-grained memory randomiza-
tion practical by allowing code sharing. In: 23rd USENIX Security Symposium.
USENIX Sec (2014)

6. Barresi, A., Razavi, K., Payer, M., Gross, T.R.: CAIN: silently breaking ASLR in
the cloud. In: 9th USENIX Security Symposium. WOOT 2015 (2015)

7. Bigelow, D., Hobson, T., Rudd, R., Streilein, W., Okhravi, H.: Timely rerandom-
ization for mitigating memory disclosures. In: ACM Conference on Computer and
Communications Security. CCS (2015)

8. Bittau, A., Belay, A., Mashtizadeh, A.J., Mazières, D., Boneh, D.: Hacking blind.
In: 35th IEEE Symposium on Security and Privacy. S&P (2014)

9. Bosman, E., Razavi, K., Bos, H., Giuffrida, C.: Dedup est machina: Memory dedu-
plication as an advanced exploitation vector. In: 37th IEEE Symposium on Security
and Privacy (2016)

10. Burow, N., et al.: Control-flow integrity: precision, security, and performance. ACM
Comput. Surv. 50(1), 16:1–16:33 (2017)

11. Checkoway, S., Davi, L., Dmitrienko, A., Sadeghi, A., Shacham, H., Winandy, M.:
Return-oriented programming without returns. In: ACM Conference on Computer
and Communications Security. CCS (2010)

12. Chen, Y., Wang, Z., Whalley, D., Lu, L.: Remix: on-demand live randomization.
In: Proceedings of the Sixth ACM Conference on Data and Application Security
and Privacy, pp. 50–61. ACM (2016)

13. Cowan, C., Beattie, S., Johansen, J., Wagle, P.: Pointguard: protecting point-
ers from buffer overflow vulnerabilities. In: 12th USENIX Security Symposium.
USENIX Sec (2003)

14. Crane, S., et al.: Readactor: practical code randomization resilient to memory
disclosure. In: 36th IEEE Symposium on Security and Privacy. S&P (2015)

15. Crane, S., et al.: It’s a TRaP: table randomization and protection against function-
reuse attacks. In: ACM Conference on Computer and Communications Security.
CCS (2015)

16. Davi, L., Liebchen, C., Sadeghi, A.R., Snow, K.Z., Monrose, F.: Isomeron: code
randomization resilient to (Just-In-Time) return-oriented programming. In: 22nd
Annual Network and Distributed System Security Symposium. NDSS (2015)

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-8617
https://www.fortinet.com/content/dam/fortinet/assets/threat-reports/Fortinet-Threat-Report-Q2-2017.pdf
https://www.fortinet.com/content/dam/fortinet/assets/threat-reports/Fortinet-Threat-Report-Q2-2017.pdf
https://www.fortinet.com/content/dam/fortinet/assets/threat-reports/Fortinet-Threat-Report-Q2-2017.pdf
https://github.com/0vercl0k/rp

The Leakage-Resilience Dilemma 105

17. Davi, L.V., Dmitrienko, A., Nürnberger, S., Sadeghi, A.R.: Gadge me if you can:
secure and efficient ad-hoc instruction-level randomization for x86 and ARM. In:
ASIACCS, pp. 299–310 (2013)

18. De Sutter, B., Anckaert, B., Geiregat, J., Chanet, D., De Bosschere, K.: Instruction
set limitation in support of software diversity. In: Lee, P.J., Cheon, J.H. (eds.)
ICISC 2008. LNCS, vol. 5461, pp. 152–165. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-00730-9 10

19. Durden, T.: Bypassing PaX ASLR protection (2002). http://www.phrack.org/
issues.html?issue=59&id=9

20. Evans, I., et al.: Missing the point(er): on the effectiveness of code pointer integrity.
In: 36th IEEE Symposium on Security and Privacy. S&P (2015)

21. Evans, I., et al.: Control jujutsu: on the weaknesses of fine-grained control flow
integrity. In: ACM Conference on Computer and Communications Security. CCS
(2015)

22. Gionta, J., Enck, W., Ning, P.: HideM: protecting the contents of userspace memory
in the face of disclosure vulnerabilities. In: 5th ACM Conference on Data and
Application Security and Privacy. CODASPY (2015)

23. Giuffrida, C., Kuijsten, A., Tanenbaum, A.S.: Enhanced operating system security
through efficient and fine-grained address space randomization. In: 21st USENIX
Security Symposium. USENIX Sec (2012)

24. Göktas, E., et al.: Position-independent code reuse: on the effectiveness of ASLR
in the absence of information disclosure. In: IEEE EuroS&P (2018)

25. Gras, B., Razavi, K., Bosman, E., Bos, H., Giuffrida, C.: ASLR on the line: Prac-
tical cache attacks on the MMU. NDSS, February 2017 (2017)

26. Hiser, J., Nguyen, A; Co, M., Hall, M., Davidson, J.: ILR: Where’d my gadgets
go. In: 33rd IEEE Symposium on Security and Privacy. S&P (2012)

27. Homescu, A., Brunthaler, S., Larsen, P., Franz, M.: Librando: transparent code
randomization for just-in-time compilers. In: ACM Conference on Computer &
Communications security, pp. 993–1004 (2013)

28. Homescu, A., Neisius, S., Larsen, P., Brunthaler, S., Franz, M.: Profile-guided
automated software diversity. In: International Symposium on Code Generation
and Optimization (CGO), pp. 1–11. IEEE (2013)

29. Jackson, T., et al.: Compiler-generated software diversity. In: Moving Target
Defense. Advances in Information Security (2011)

30. Jackson, T., Homescu, A., Crane, S., Larsen, P., Brunthaler, S., Franz, M.: Diver-
sifying the software stack using randomized NOP insertion. In: Moving Target
Defense. Advances in Information Security (2013)

31. Kil, C., Jun, J., Bookholt, C., Xu, J., Ning, P.: Address space layout permuta-
tion (ASLP): towards fine-grained randomization of commodity software. In: 22nd
Annual Computer Security Applications Conference. ACSAC (2006)

32. Kim, N., Ward, B.C., Chisholm, M., Anderson, J.H., Smith, F.D.: Attacking the
one-out-of-m multicore problem by combining hardware management with mixed-
criticality provisioning. Real-Time Syst. 53(5), 709–759 (2017)

33. Koo, H., Chen, Y., Lu, L., Kemerlis, V.P., Polychronakis, M.: Compiler-assisted
code randomization. In: IEEE Symposium on Security & Privacy (SP) (2018)

34. Larsen, P., Homescu, A., Brunthaler, S., Franz, M.: SoK: automated software diver-
sity. In: 35th IEEE Symposium on Security and Privacy. S&P (2014)

35. Lu, K., Song, C., Lee, B., Chung, S.P., Kim, T., Lee, W.: ASLR-Guard: stopping
address space leakage for code reuse attacks. In: ACM Conference on Computer
and Communications Security. CCS (2015)

https://doi.org/10.1007/978-3-642-00730-9_10
https://doi.org/10.1007/978-3-642-00730-9_10
http://www.phrack.org/issues.html?issue=59&id=9
http://www.phrack.org/issues.html?issue=59&id=9

106 B. C. Ward et al.

36. Morton, M., Koo, H., Li, F., Snow, K.Z., Polychronakis, M., Monrose, F.: Defeating
zombie gadgets by re-randomizing code upon disclosure. In: International Sympo-
sium on Engineering Secure Software and Systems, pp. 143–160 (2017)

37. Novark, G., Berger, E.D.: Dieharder: securing the heap. In: ACM Conference on
Computer and Communications Security. CCS, pp. 573–584 (2010)

38. One, A.: Smashing the stack for fun and profit. Phrack Mag. 7, 14–16 (1996)
39. PaX: PaX address space layout randomization (2003)
40. Razavi, K., Gras, B., Bosman, E., Preneel, B., Giuffrida, C., Bos, H.: Flip feng shui:

hammering a needle in the software stack. In: 25th USENIX Security Symposium.
USENIX Sec (2016)

41. Rudd, R., et al.: Address-oblivious code reuse: on the effectiveness of leakage
resilient diversity. In: Proceedings of the Network and Distributed System Security
Symposium. NDSS 2017, February 2017

42. Seibert, J., Okhravi, H., Söderström, E.: Information leaks without memory dis-
closures: Remote side channel attacks on diversified code. In: ACM Conference on
Computer and Communications Security. CCS (2014)

43. Shacham, H.: The geometry of innocent flesh on the bone: return-into-libc without
function calls (on the x86). In: ACM Conference on Computer and Communications
Security. CCS (2007)

44. Shoshitaishvili, Y., et al.: SoK: (State of) the art of war: Offensive techniques in
binary analysis. In: IEEE Symposium on Security and Privacy (2016)

45. Snow, K.Z., Monrose, F., Davi, L., Dmitrienko, A., Liebchen, C., Sadeghi, A.:
Just-in-time code reuse: on the effectiveness of fine-grained address space layout
randomization. In: 34th IEEE Symposium on Security and Privacy. S&P (2013)

46. Snow, K.Z., Rogowski, R., Werner, J., Koo, H., Monrose, F., Polychronakis, M.:
Return to the zombie gadgets: undermining destructive code reads via code infer-
ence attacks. In: 37th IEEE Symposium on Security and Privacy (2016)

47. Strackx, R., Younan, Y., Philippaerts, P., Piessens, F., Lachmund, S., Walter, T.:
Breaking the memory secrecy assumption. In: 2nd European Workshop on System
Security. EUROSEC (2009)

48. Saito, T., Yokoyama, M., Sugawara, S., Suzaki, K.: Safe trans loader: mitigation
and prevention of memory corruption attacks for released binaries. In: Inomata,
A., Yasuda, K. (eds.) IWSEC 2018. LNCS, vol. 11049, pp. 68–83. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-97916-8 5

49. Szekeres, L., Payer, M., Wei, T., Song, D.: Sok: eternal war in memory. In: Pro-
ceedings of IEEE Symposium on Security and Privacy (2013)

50. Tang, A., Sethumadhavan, S., Stolfo, S.: Heisenbyte: thwarting memory disclo-
sure attacks using destructive code reads. In: ACM Conference on Computer and
Communications Security. CCS (2015)

51. Wartell, R., Mohan, V., Hamlen, K.W., Lin, Z.: Binary stirring: self-randomizing
instruction addresses of legacy x86 binary code. In: ACM Conference on Computer
and Communications Security. CCS (2012)

52. Werner, J., et al.: No-execute-after-read: preventing code disclosure in commodity
software. In: 11th ACM Symposium on Information, Computer and Communica-
tions Security. ASIACCS (2016)

53. Williams-King, D., et al.: Shuffler: fast and deployable continuous code re-
randomization. In: Proceedings of the 12th USENIX Conference on Operating
Systems Design and Implementation, pp. 367–382 (2016)

https://doi.org/10.1007/978-3-319-97916-8_5

A Taxonomy of Attacks Using BGP
Blackholing

Löıc Miller(B) and Cristel Pelsser

University of Strasbourg, 4 Rue Blaise Pascal, 67081 Strasbourg, France
{loicmiller,pelsser}@unistra.fr

Abstract. BGP blackholing is a common technique used to mitigate
DDoS attacks. Generally, the victim sends in a request for traffic to the
attacked IP(s) to be dropped. Unfortunately, remote parties may misuse
blackholing [29,57] and send requests for IPs they do not own, turning
a defense technique into a new attack vector. As DDoS attacks grow in
number, blackholing will only become more popular, creating a greater
risk this service will be exploited. In this work, we develop a taxonomy of
attacks combining hijacks with blackholing: BGP blackjacks (blackhole
hijacks). We show that those attacks effectively grant more reach and
stealth to the attacker than regular hijacks, and assess the usability of
those attacks in various security deployments. We then find that routing
security mechanisms for BGP [30,31] do not provide an adequate protec-
tion against some of those attacks, and propose additional mechanisms
to properly defend against or mitigate them.

Keywords: BGP · Security · Blackholing · DDoS · Communities ·
Hijacks · Leaks

1 Introduction

DDoS attacks are one of the most potent threats to the Internet. With the rise of
the Internet of Things (IoT), the number of connected devices is exploding. The
potential of a botnet to launch massive Distributed Denial of Service (DDoS)
attacks is taking scary proportions [40]. New attack vectors [1,38] are being
discovered and are enabling the largest attacks we have ever seen. In February
2018 for example, Github was under attack, receiving up to 1.3 Tbps of traffic
through its CDN, Akamai. Such a high amount of traffic can flood many access
links, rendering services behind those links unavailable.

These attacks can be motivated by multiple reasons, including but not limited
to revenge [27], activism [41], vandalism [42], financial reasons [32] or political
reasons [6].

Fortunately, numerous techniques exist to mitigate DDoS attacks [48,49].
Those techniques can be roughly separated in two categories: proactive mitiga-
tion techniques and reactive mitigation techniques. Proactive techniques encom-
pass all the mitigation techniques put in place before an attack happens, like
c© Springer Nature Switzerland AG 2019
K. Sako et al. (Eds.): ESORICS 2019, LNCS 11735, pp. 107–127, 2019.
https://doi.org/10.1007/978-3-030-29959-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29959-0_6&domain=pdf
https://doi.org/10.1007/978-3-030-29959-0_6

108 L. Miller and C. Pelsser

AS 10
AS 20

AS 30

P: 192.0.2.1/24

20 - 30:666 - 192.0.2.1/32

Fig. 1. BGP Blackholing

designing protocols with a reduced amplification factor (the amount of traffic
one can get in a response compared to the amount of traffic one has to send in a
request), or reducing the number of amplifiers available to attackers. Proactive
techniques also include response rate limiting, using sessions for UDP, filtering
spoofed packets, making use of anycast or even using Access Control Lists.

DDoS attacks can also be dealt with in a reactive way, by using traffic scrub-
bing services, where a third party processes the victim’s incoming traffic, detects
and mitigates the attack, and then forwards the legitimate traffic to the victim.

While filtering provides a great amount of flexibility, it runs into scalability
issues in terms of number of entries and packet rate [29], as well as resources
and reaction time [14]. A mitigation technique based on forwarding is thus much
more scalable, and this is where BGP blackholing shines.

Blackholing [29,57] uses the Border Gateway Protocol (BGP) [43] as a means
to announce the need for mitigation. BGP is the de-facto inter-domain routing
protocol in the Internet, and it’s primary function is to allow Autonomous Sys-
tems (ASes) to communicate with others by exchanging reachability informa-
tion. More specifically, blackholing is announced via BGP communities [8,28],
optional transitive BGP attributes which are “used to pass additional informa-
tion to both neighboring and remote BGP peers” [8]. The communities forwarded
with an advertisement are interpreted by ASes, which use this information to
apply a specific treatment to the route.

Figure 1 depicts blackholing being used to mitigate a DDoS attack. AS 20’s
server located at 192.0.2.1/32 is under a DDoS attack going through both its
neighbors, AS 10 and AS 30. To mitigate the attack, AS 20 sends an adver-
tisement to AS 30, indicating to blackhole prefix 192.0.2.1/32 by adding the
community used to signal blackholing to AS 30, ‘30:666’. The community sent,
‘30:666’ means that AS 30 needs to apply blackholing. In addition to this infor-
mation, we also usually attach either the NO EXPORT or the NO ADVERTISE
community to the advertisement, respectively, to keep the scope local to the AS
or the router [28].

Blackholing is a very effective mitigation technique [13], but it has a double-
edged sword effect: all malicious traffic destined to the blackholed prefix is
dropped, but so is legitimate traffic.

The literature highlights shortcomings in BGP communities, namely the lack
of standardization and authentication. Firstly, only a handful of communities

A Taxonomy of Attacks Using BGP Blackholing 109

have a semantic meaning defined in RFCs, the vast majority of them being
defined by the AS ‘owning’ them, making them AS-specific [54]. This lack of
standardization makes communities harder to classify [15]. In addition, doc-
umentation for communities is scattered and incomplete [54]. In the case of
blackholing, Giotsas et al. found 307 different community values used to signal
blackholing, with an additionnal 115 labeled as likely [22]. Blackholing is never-
theless frequently used [13], and its use is increasing [22], as it is a very effective
way to mitigate DDoS attacks [13,22]. Even though ASes should keep the scope
of blackholing local to the AS or the router, it has been shown that 50% (80%) of
blackhole communities still traverse up to two (four) ASes, with some blackhole
communities traversing as many as eleven ASes [54].

Communities are also vulnerable because they can be altered by third par-
ties: “Because BGP communities are optional transitive BGP attributes, BGP
communities may be acted upon or otherwise used by routing policies in other
Autonomous Systems (ASes) on the Internet.” [24]. With other ASes being able
to modify communities associated with a BGP advertisement, communities can
become a vector of attacks. Solutions to secure Internet routing exist [30,31], but
they focus on securing the AS path, leaving other BGP attributes unprotected.
Those solutions also suffer from a lack or absence of deployment, due to the lack
of incentives to do so [20].

Attacks trying to falsify BGP attributes to gain an advantage are not new.
As BGP is a distributed protocol, lacking authentication of route origins and
verification of paths, ASes can advertise illegitimate routes for prefixes they do
not own, attracting some or all of the traffic to these prefixes. Those advertise-
ments propagate and pollute the Internet, affecting service availability, integrity,
and confidentiality of communications [52]. This phenomenon is called prefix
hijacking. In this work, we build on top of prefix hijacking to create new attacks
through BGP blackholing: blackjacks. Hijacks and blackjacks are similar, in that
they both impact reachability of the affected prefix. However, regular hijacks
only poison the ASes near the attacker, whereas blackjacks drop traffic directly
at the ASes receiving the advertisement, regardless of AS path length. This
means blackjacks have more reach, and are stealthier than simple hijacks.

Considering routing attacks and defenses (Sect. 2), we construct an attack tax-
onomy using blackholing as an attack vector (Sect. 3) and assess the usability of
those attacks in different security deployments (Sect. 4). We then detail good prac-
tices and implementations to protect against such attacks (Sect. 5). Finally, we
review related work (Sect. 6) and conclude in Sect. 7 by reviewing our contribu-
tions and describing the possible perspectives and areas of future work.

2 Background

Prefix hijacking can be caused by misconfiguration [47], or with malicious intent,
possibly motivated by retaliation [56], information gathering [34], economical
reasons [23] or political reasons [35].

On Fig. 2, AS 10 (the victim) advertises a route for the prefix 192.0.2.0/24.
The hijacker (AS 40) can fake a direct connection to this network by advertising

110 L. Miller and C. Pelsser

40 - 192.0.2.1/24

AS 20 AS 30
AS 40

Attacker

AS 10
Victim

P: 192.0.2.1/24

30 40 - 192.0.2.1/24

Fig. 2. Prefix hijacking

192.0.2.0/24 to AS 30. Preferring the shorter AS path, AS 30 will choose a new
best route going through AS 40, and forward the advertisement to AS 20. AS
20’s original route is already the best one, so it does not accept the new route
and does not forward the advertisement to AS 10.

We base our work on a hijack taxonomy developed in [52], which is based on
three dimensions:

– The manipulation of the AS path.
– The affected prefix.
– The way (hijacked) data traffic is treated.

To illustrate those hijack types, let us reconsider Fig. 2, where AS 10 (the
victim) owns and legitimately announces 192.0.2.0/24, and AS 40 is the hijacker.
For the sake of simplicity, a BGP advertisement is noted as an announced prefix
tagged with an AS path. For example, {AS20, AS10 - 192.0.2.0/24} is a BGP
advertisement for prefix 192.0.2.0/24 with AS path {AS20, AS10}, originated
by the legitimate AS (AS 10). In their paper, they first classify by AS path
manipulation, creating three categories of hijacks:

– Origin AS (or Type-0) hijacking: The hijacker announces as its own
a prefix that it is not authorized to originate (e.g. {AS40 - 192.0.2.0/24}).
This type of hijack is sometimes called prefix re-origination, and is the most
commonly observed type of hijack [52].

– Type-N hijacking (N ≥ 1): Also called path manipulation in the literature
[10,11,19]. The hijacker announces an illegitimate path for a prefix it does not
own, creating fake adjacencies between ASes. The path contains the ASN of
the hijacker as the last hop (e.g. {AS40, AS20, AS10 - 192.0.2.0/24}). Here,
AS 40 creates a fake adjacency between itself and AS 20. The position of
the rightmost fake link in the forged advertisement determines the type. For
example, {AS40, AS10 - 192.0.2.0/24} is a Type-1 hijacking, {AS40, AS20,
AS10 - 192.0.2.0/24} is a Type-2 hijacking, etc.

– Type-U hijacking: The hijacker leaves the legitimate AS path unaltered
(but may alter the advertised prefix). In the case both the AS path and the
prefix are left unaltered, the event is not a hijack but rather a traffic manip-
ulation attempt, performed by adding communities to the advertisement for
example.

The second discriminant is the affected prefix. The hijacker can either per-
form an exact prefix hijack, where he announces a path for the same prefix that

A Taxonomy of Attacks Using BGP Blackholing 111

is announced by the legitimate AS, or he can perform a sub-prefix hijack, where
he announces a more specific prefix. In the case of an exact prefix hijack, only the
part of the Internet that is close to the hijacker (in terms of AS hops) switches to
routes towards the hijacker. In the case of a sub-prefix hijack, the entire Internet
traffic is sent towards the hijacker to reach the announced sub-prefix. Note that
since most routers do not accept BGP advertisements containing a prefix past
a certain length (usually /24) to reduce routing table size, a sub-prefix hijack
advertising a /25 or more may not be very effective, as the advertisements will
be dropped. There is also the case of squatting, where the hijacker announces a
prefix owned but not (currently) announced by the legitimate AS. In this work,
we disregard squatting as it is not applicable to blackjack attacks.

The last discriminant is the way the data-plane traffic is handled. Once the
hijack is accomplished, the attacker attracts some or all of the traffic origi-
nally destined to the hijacked prefix to his own AS. The attacker can then drop
the packets (blackhole), impersonate the services tied to the hijacked prefix by
responding to the victims (imposture), eavesdrop on the traffic and forward it
back to the victim (interception) [52,62], and event send spam [59] or carry out
other activities.
For example, the hijack depicted in Fig. 2 is a Type-0 exact prefix hijack, as AS
40 re-originates 192.0.2.0/24.

In our work, we will classify the attacks only by AS path manipulation and
affected prefix, as blackholing attacks have the sole purpose of dropping traffic.
Note that this taxonomy can be extended, as it does not cover cases where, for
example, the attacker possesses two or more ASes.

Even though techniques to protect oneself against hijacks lack deployment,
they still exist and are the go-to solutions to make BGP more secure.

2.1 BGP Routing Security
When receiving an advertisement, a router might want to verify that the included
AS path is legitimate. This process is broken down in two validation steps:
– Origin validation: Does the origin AS have a right to announce this prefix?
– Path validation: Does the sequence of ASes in the AS path reflect the

sequence of ASes crossed by this advertisement?

The Resource Public Key Infrastructure. Origin validation can be
achieved through the Resource Public Key Infrastructure [30]. The RPKI is
a distributed, hierarchic public key infrastructure. It allows prefix holders (legit-
imate holders of IP address space) to emit digitally signed objects, Route Origin
Authorizations (ROAs), attesting that a given AS is authorized to originate
routes for a set of prefixes.

This way, a given AS can verify that the origin AS present in a given adver-
tisement is authorized to originate the prefix (Route Origin Validation (ROV)).
While the RPKI provides digitally signed routing objects, it does not sign BGP
advertisements, and operates separately from BGP. An advantage of RPKI is
that the mapping of prefixes to origin ASes is formally verifiable [37].

112 L. Miller and C. Pelsser

BGPsec. Path validation can be achieved through BGPsec [31]. BGPsec relies
on RPKI as it makes use of certificates.

To secure the path attribute, BGPsec relies on an new optional non-transitive
BGP path attribute which replaces the AS PATH attribute: BGPsec PATH. The
attribute carries digital signatures providing cryptographic assurance that every
AS on the path of ASes listed in the advertisement has explicitly authorized the
advertisement of the route. BGPsec-compliant BGP speakers (BGPsec speakers)
wishing to send BGPsec advertisements to eBGP peers need to possess a private
key associated with an RPKI router certificate [46] that corresponds to the
BGPsec speakers’s ASNs.

Traditional BGP advertisements may still be sent between BGPsec speakers,
meaning an attacker can potentially downgrade a BGPsec speaker to regular
BGP [33]. BGPsec also does not protect against BGP leaks, which is defined
as a violation of the standard model of routing policies, pinpointed by Gao
and Rexford [17,18]. Simply put, the Gao-Rexford model states that ASes have
incentives to send traffic along customer routes (which generate revenue), as
opposed to peer routes (which do not generate revenue) or provider routes (which
come at a monetary cost). It also models ASes’ willingness to transit traffic from
one neighbor to another only when paid to do so by a customer. This is important
to keep in mind for one of the attacks we define in Sect. 3.

3 Threat Model and Attack Taxonomy

This section is dedicated to the elaboration of an attack taxonomy. We consider
a common and general hijacking threat model [50,52]. An attacker controls a
single AS and its border routers. He also has full control of the control plane
and the data plane within its own AS. The attacker can arbitrarily manipulate
the advertisements that it sends to its neighboring ASes and the traffic that
crosses its network. He has no control over advertisements and traffic exchanged
between two other ASes.

Even though these attacks can work in numerous configurations, we assume
for the sake of explanations that:

Assumption 1. Every AS uses the Gao-Rexford routing policy model.

Assumption 2. Every AS follows the best practices defined in [9] when receiv-
ing a blackhole request.

Those best practices can be summarized as:

1. Set local-preference to 200 (higher preference)
2. Set origin-type to IGP (higher preference)
3. Add the NO EXPORT community to the advertisement

Following those best practices means that the blackholing advertisement is pre-
ferred over other routes and that blackholing is limited to the AS receiving the
advertisement.

A Taxonomy of Attacks Using BGP Blackholing 113

For the sake of simplicity, a BGP advertisement is noted as an announced
prefix tagged with an AS path and communities. For example, {AS20, AS10 -
<blackholer AS>:666 - 192.0.2.0/24} is an advertisement for prefix 192.0.2.0/24
with AS path {AS20, AS10}, originated by AS 10, and bearing the blackhole
community <blackholer AS>:666, where <blackholer AS>is the AS providing
the blackholing service.

Type-0 Blackjack. This first attack is also the simplest. Performing a Type-0
blackjack is done by performing a Type-0 hijack and attaching the blackhole
community to the advertisement.

Figure 3 shows AS 30 (the victim) advertising a route for 192.0.2.0/24. AS
10 (the attacker) can perform a Type-0 blackjack by re-originating the pre-
fix 192.0.2.0/24, and attaching the blackhole community to the advertisement.
Thus, AS 10 sends {10 - 20:666 - 192.0.2.0/24} to its peer. As AS 20 (the black-
holer) follows Assumptions 1 and 2, it blackholes traffic destined to 192.0.2.0/24.

This example highlights two main advantages of blackjack attacks:

Fig. 3. Type-0 and Type-N Blackjacks

– Reach: The attacker can potentially drop more traffic by sending blackholing
advertisements to its neighbors than by hijacking the prefix and blackholing
the traffic at his AS. If AS 10 tried to do so, it could not have dropped
traffic going through AS 20, as AS 20 would prefer the route going through
its customer (AS 30). This is not the case anymore with the blackjack attack,
since AS 20 now prefers the advertisement of AS 10 per Assumption 2, thus
dropping all traffic destined to the blackholed prefix.

114 L. Miller and C. Pelsser

Blackholing also grants precedence over AS path length, so the longer AS
path that generally comes with hijacks is no longer a problem. Considering
this, an attacker can effectively target a specific blackholer multiple AS hops
away, by using their specific blackhole community value.
One thing to consider when performing sub-prefix blackjacks with a far away
blackholer is that all ASes on the path between the attacker and the blackholer
need to forward the advertisement. Since most routers do not accept adver-
tisements containing a prefix past a certain length (usually /24) to reduce
routing table size, the blackjack might not reach the blackholer if the tar-
geted prefix is too specific.
Moreover, when the blackholer applies blackholing, a good practice is to add
the NO EXPORT community, which means that a blackjack targeting a prefix
advertised in the Internet will stop the blackholer from advertising this prefix,
causing even more disruption. In the case of a sub-prefix blackjack, the prefix
will still be advertised, but traffic to the target of the attack will still be
dropped at the blackholer even though no routes changed.

– Stealth: As the attacker is not the one dropping the traffic, he hides himself
better from potential onlookers. Note that it may still be possible to retrieve
the source of the attack by looking at the advertisements received by the
relevant routers at the time of the attack, even though it might be hard to
do so, considering those routers are not likely in the network of the victim.
It is also worth noting that an even stealthier attack is possible, if the black-
holer(s) is(are) at multiple hops from the attacker. In this case, not only will
the attacker not blackhole the traffic himself, but he will also not be the only
one that could have sent a blackhole advertisement, as potentially other ASes
could have performed the attack. Since an attacker can target a blackholer
that is far away, an attack can propagate far from the source of the attack,
increasing the difficulty to detect it and identify the attacker.
In our example, AS 20 is blackholing the traffic, even though it was AS 10
that performed the attack.

A disadvantage of Type-0 blackjack attacks is that some defense mechanisms
can detect and counter them. By performing Route Origin Validation, either
using IRR records or the RPKI, an AS can effectively know which AS is autho-
rized to announce which prefix. Since in a Type-0 blackjack, the attacker is the
origin AS, this type of attack is not effective against ASes performing ROV.

Type-N Blackjack. Type-N blackjacks circumvent ROV by creating a false
adjacency between the attacker and an AS, in the same way Type-N hijacks
work. Indeed, if an AS tries to verify the origin of an AS path, as the origin is
legitimate, the AS will deem the origin valid.

Figure 3 depicts a Type-N blackjack. Analogous to our Type-0 blackjack
example, AS 30 advertises a route for 192.0.2.0/24. AS 10 can perform a Type-N
blackjack by faking an adjacency with AS 30, and attaching the blackhole com-
munity to the advertisement. Thus, AS 10 sends {10, 30 - 20:666 - 192.0.2.0/24}
to its neighbor. As AS 20 follows Assumptions 1 and 2, it blackholes traffic

A Taxonomy of Attacks Using BGP Blackholing 115

P: 192.0.2.1/24

OP: 10 30 - 20:666 - 192.0.2.1/24

P

AS 10
Attacker

AS 20
Blackholer

AS 30
Victim

P
P

Fig. 4. On Path Blackjack

OP-GRV: 20 30 40 - 10:666 - 192.0.2.1/24

NOP: 40 - 30:666 - 192.0.2.1/24

AS 20
Attacker

AS 40
Victim

AS 30
Blackholer

AS 10
Blackholer

P

P

P

P: 192.0.2.1/24

Fig. 5. OP-GRV and NOP Blackjacks

destined to 192.0.2.0/24. A Type-N blackjack has the same reach and stealth
properties as a Type-0 blackjack.

Type-N blackjacks can circumvent ROV by creating fake adjacencies, but
some defense mechanisms can still detect and counter Type-N blackjacks. By
using BGPsec, ASes can verify that the sequence of ASes in the AS path reflects
the sequence of ASes crossed by received BGPsec advertisements. In this case,
no AS path manipulation is possible, but an attacker can still make use of a
subset of Type-U blackjacks.

Type-U Blackjack. The Type-U blackjack category regroups all attacks where
the AS path is unaltered, meaning the origin AS is authorized to announce the
prefix (not like Type-0 blackjacks), and the adjacencies in the AS path reflect
real adjacencies (not like Type-N blackjacks).

This category can be broken down into three sub-categories:

– On Path blackjacks.
– On Path blackjacks which violate the Gao-Rexford export rule.
– Not On Path blackjacks.

1. On Path Blackjack (OP). An on path blackjack is characterized by the
attacker being on the path of a legitimate advertisement.

Figure 4 depicts an On Path blackjack. Like in the other examples, AS 30
advertises a route for 192.0.2.0/24. AS 10 can perform an On Path blackjack
by sending {10, 30 - 20:666 - 192.0.2.0/24} to AS 20. Normally, AS 20 would
prefer the route going through its customer (AS 30), however, the blackhole
community in the advertisement of AS 10 makes this advertisement preferable
to the advertisement of AS 30. Thus, AS 20 will blackhole all traffic destined to
192.0.2.0/24.

116 L. Miller and C. Pelsser

2. On path Blackjack with Gao-Rexford Violation (OP-GRV). In this
sub-category, the attacker is also on the path of a legitimate advertisement,
but violates the Gao-Rexford export rule when propagating the advertisement,
imitating the behavior of a BGP leak.

Figure 5 depicts an On Path blackjack which breaks this rule. AS 20 can
perform an On Path blackjack with Gao-Rexford violation by sending the adver-
tisement {20, 30, 40 - 10:666 - 192.0.2.0/24} to its provider (AS 10), making AS
10 blackhole traffic destined to 192.0.2.0/24.

3. Not On Path Blackjack (NOP). The last sub-category contains all other
Type-U blackjacks, that is, blackjacks where the attacker is not on the path of an
advertisement, but announces a legitimate path. In this sub-category, the origin
AS in the AS path is authorized to announce the prefix, the adjacencies in the
path reflect real adjacencies, but the attacker is not in the AS path.

Figure 5 gives an example of a NOP blackjack: AS 20 sends the advertisement
{40 - 30:666 - 192.0.2.0/24} to AS 30, making AS 30 blackhole traffic destined
to 192.0.2.0/24.

On Path blackjacks can be considered stealthier than Type-0 and Type-N
blackjacks, as the attacker does not re-originate the prefix and does not create
false adjacencies in the AS path. NOP blackjacks are even stealthier, as the
attacker is not in the AS path.

Malformed Blackjacks. This last category contains all blackjacks not covered
by the other categories. They correspond to blackjacks where the AS path is
malformed, meaning all or some of the links between the ASes of the AS path
do not exist and/or the origin AS is neither the attacker nor a legitimate AS. We
assessed malformed blackjacks to be of little interest when looking for blackhole-
based attacks, so we disregard them in the remainder of the paper.

4 Routing Security Deployments

To protect oneself against such attacks, several routing security mechanisms
can be employed. Depending on the adoption rate of such mechanisms in the
Internet, those attacks have a variable chance of success. In this section, we will
consider five such deployments, each implementing those security mechanisms
to different extents:

– No security: ASes neither use RPKI nor BGPsec.
– RPKI (partial): A subset of ASes uses the RPKI, but no AS is using

BGPsec.
– RPKI (full): All ASes use the RPKI, but no AS is using BGPsec.
– BGPsec (partial): A subset of ASes uses both RPKI and BGPsec. The

other ASes either use only RPKI or do not use any security mechanisms.
– BGPsec (full): All ASes use both RPKI and BGPsec.

A Taxonomy of Attacks Using BGP Blackholing 117

It is important to keep in mind that although we consider multiple security
deployments, BGPsec is not deployed at all and RPKI is only partially deployed.
The RPKI covered around 5–6% of advertised prefixes in 2015 [19,26,61], and
covers 13% of advertised prefixes today [39]. Although harder to measure, the
deployment status of ROV has also been studied [44,45] and shows that only
a few ASes are currently performing ROV. This means the deployment corre-
sponding the most to a real-life scenario is the ‘RPKI (partial)’ deployment.

Tables 1 and 2 summarize which blackjack attacks can work under those dif-
ferent security deployments, the former against exact prefix blackjacks and the
latter against sub-prefix blackjacks. Each row of the table represents a security
deployment scenario, and each column represents an attack. Thus, the intersec-
tion of a line and a column shows how a particular security deployment fares
against a given attack:

– � : The security deployment is resistant to the attack.
– � : The security deployment is not resistant to the attack.
– : The resistance of the security deployment to the attack is determined

by other factors (network topology, where security is deployed, ...)

The next sections go over the different deployments, and describe the attacks
possible in each context.

Table 1. Security deployments against exact prefix blackjacks

Table 2. Security deployments against sub-prefix blackjacks

118 L. Miller and C. Pelsser

4.1 Fully Deployed BGPsec

In this subsection, we consider a situation where every AS has deployed, and
uses, BGPsec and RPKI/ROV according to best practices [7,25,30,31,37].

In this deployment, every AS can be assured that the AS path attribute is
protected and legitimate in every advertisement they receive, and that the origin
AS is authorized to announce the prefix. Since the attacker needs to send signed
BGPsec advertisements for them to be considered by other ASes, he can only
potentially perform either variations of On Path blackjacks. There can also be no
sub-prefix blackjacks, since all ASes in this deployment can detect the sub-prefix
via the RPKI.

4.2 Partially Deployed BGPsec

We now consider a situation where a subset of AS have deployed, and use,
BGPsec and RPKI/ROV according to best practices [7,25,30,31,37]. The other
ASes either use only RPKI/ROV [25,30,37] or do not use any security mecha-
nisms.

Depending on which ASes on the path of the advertisement from the attacker
to the blackholer deployed which security mechanisms, multiple cases arise. If
ASes on the path implement no security mechanisms, the case can be assimilated
to a ‘No Security’ deployment. If at least one of the ASes on the path uses ROV,
the case can be assimilated to a ‘RPKI (partial)’ deployment (see Subsect. 4.4).
Those two cases can also be assimilated in the case of sub-prefix blackjacks.

If at least one of the ASes on the path uses BGPsec and the RPKI/ROV,
then the attacker can potentially make use of both On Path attacks, as well as
possibly Type-0 blackjacks (see Subsect. 4.4). The attacker can also potentially
make use of Type-N and NOP blackjacks if he can perform downgrade attacks
[33] on the ASes using BGPsec.

For sub-prefix blackjacks in this case, the attacker can potentially use Type-
0 blackjacks (see Subsect. 4.4). The attacker can also make use of Type-N and
NOP sub-prefix blackjacks if he can perform downgrade attacks on the ASes
using BGPsec, and the legitimate prefix covering the targeted sub-prefix is either
not in the RPKI, or is loose. A prefix is loose “when not all sub-prefixes of the
maximum length allowed by the ROA are advertised in BGP” [19] (e.g. a ROA
allowing a prefix to be advertised up to /24, but the advertised prefix is a /20).
The attacker cannot make use of On Path blackjacks in this case, since it would
require a prior advertisement of the sub-prefix, which is not possible since we
only have one attacker in our attack model.

4.3 Fully Deployed RPKI

In this subsection, every AS has deployed, and uses, RPKI and ROV according
to best practices [25,30,37].

Here, every AS can verify the association of the advertised prefix and the
AS originating it, which means an attacker can potentially carry out all attacks

A Taxonomy of Attacks Using BGP Blackholing 119

Table 3. Security detail of the ‘RPKI (partial)’ deployment against blackjacks

except Type-0 blackjacks. For sub-prefix blackjacks, no attack is possible since
all ASes in this deployment can detect the sub-prefix via the RPKI.

It is important to keep in mind that in a real scenario, it may still be possible
to perform Type-0 blackjacks even if ROV is put in place, simply because of the
order the router’s filter are applied [54]. Instead of discarding an ‘invalid’ route
in case of a Type-0 blackjack, the router might accept the advertisement because
blackholing takes precedence.

4.4 Partially Deployed RPKI

In this subsection, a subset of AS have deployed, and use, RPKI and ROV
according to best practices [25,30,37].

In this deployment, the attacks potentially usable by an attacker depend on
three factors:

– The presence (or absence) of ROV at ASes on the path of the advertisement
from the attacker to the blackholer.

– The presence (or absence) of the targeted prefix in the RPKI.
– If the prefix is in the RPKI, the fact that the ROA for the prefix is loose or

not.

As you can see in Table 3, if ASes on the path of the advertisement do not
enforce ROV, the case can be assimilated to a ‘No Security’ deployment.

Second, if the at least one AS on the path of the advertisement enforces ROV,
and the prefix is not in the RPKI, it is up to the AS enforcing ROV to decide
what to do (RPKI validation state = ‘unknown’). The AS can either diminish
its preference of the route, or drop the route. In the former case, exact prefix
blackjacks (of all types) will be possible as the AS classifies all routes to this
prefix as ‘unknown’, even the one from the legitimate AS: blackjacks can win the
BGP decision process. Sub-prefix blackjacks are also possible (except both On
Path variations), and are not even penalized by a diminished preference, as they
are more specific than the legitimate advertised prefix. All in all, for prefixes not
in the RPKI, an AS enforcing ROV and lowering preferences for ‘unknown’ route
validity states behaves in the same way as an AS not enforcing ROV. In this
case, possible attacks are the same as in the ‘No Security’ deployment. If the AS
drops ‘unknown’ routes, those attacks are no longer possible, but in the current
deployment state of RPKI, dropping ‘unknown’ routes would equate to dropping

120 L. Miller and C. Pelsser

routes to 87% of the Internet, so for now, a compromise between reachability
and security must be made.

Third, if the AS receiving the forged advertisement enforces ROV and the
prefix is in the RPKI, two cases arise: either the ROA for the prefix is loose,
or it is not. If the ROA is not loose, the deployment can be assimilated to a
‘RPKI (full)’ deployment. If the ROA is loose, in addition to attacks possible in
the ‘RPKI (full)’ deployment, an attacker can also perform Type-N and NOP
sub-prefix blackjacks within the range of maxLength, as the origin AS will match
the asID in the ROA.

4.5 No Security

In this subsection, ASes do not use any of the aforementioned security mech-
anisms. If neither BGPsec nor RPKI and ROV are deployed, an attacker can
perform all the attacks of the taxonomy. In the case of sub-prefix blackjacks,
an attacker can use all the attacks except On Path blackjacks, since it would
require a prior advertisement of the sub-prefix, which is not possible since we
only have one attacker in our attack model.

5 Good Practices

We highlight two items having an influence on preventing attacks from the
taxonomy:

– Authorized origin: The origin is authorized if the association between the
origin AS and the prefix is ‘valid’ according to IRRs or the RPKI.

– Valid path: The path is considered ‘Valid’ if the AS path reflects the actual
path the advertisement went through. This can be verified using BGPsec.

Even if an AS implements both RPKI and BGPsec, it is still vulnerable to
both exact prefix On Path blackjacks, as well as possibly Type-0 exact and sub-
prefix blackjacks depending on the state of the prefix in relation to the RPKI
(see Table 3).

For an AS not to be vulnerable against Type-0 blackjacks, it needs help
from third parties, (e.g. another AS registering its prefixes in the RPKI). How-
ever, an AS can protect itself against On Path attacks by adding constraints on
advertisements it receives.

5.1 Additional Verification Rules

We suggest two verification steps to protect an AS against On Path blackjacks:

– Legitimate peer: The peer sending the blackhole advertisement is legitimate
if the leftmost AS in the AS path is the ASN specified in the BGP OPEN
message that created the session.

A Taxonomy of Attacks Using BGP Blackholing 121

– Direct connection: The AS sending the blackhole advertisement is directly
connected to the local AS. This can be verified by making sure there is only
one AS in the AS path.

If an AS can make sure it has a direct connection to the AS sending the
blackhole advertisement, it is then only vulnerable to Type-0 and 1-hop NOP
blackjacks (e.g. the one in Fig. 5) by definition. If this AS can also verify this
peer is legitimate and authorized to advertise the prefix, then the AS is protected
against all the attacks of the taxonomy without needing BGPsec.

It is worth keeping in mind that at this point, acknowledging the deployment
state of RPKI and BGPsec, an AS peering through an IXP virtually has no
protection against the attacks, as it must trust the IXP to verify the ‘Legitimate
peer’ rule and the route server may not perform ROV1.

5.2 Additional Good Blackholing Practices

In addition to the rules, other good practices can be put in place. Those good
practices help to limit the possible damage caused by an inadvertent blackholing.

A Filter for Less Specific Blackholing Advertisements. The literature
specifies that operators should accept blackholing advertisements up to /32 for
IPv4, and /128 for IPv6, but does not specify a limit on prefixes which are less
specific. We propose that operators reject blackholing advertisements if they are
not specific enough, in order to avoid accidental blackholing of large IP blocks.

Acknowledging the distribution of blackholing prefix length [13], we advise
to set it to /24, thus only accepting blackholing advertisements from /24 up to
/32. This filter can be applied as both an inbound and outbound filter.

Concerning IPv6, observed IXPs put the limit at /19 [12,16]. The literature
does not have any specific information enabling us to determine a good limit for
IPv6 blackholing prefix specificity, more research needs to be done.

An Outbound Filter for More Specific Blackholing Advertisements.
When using blackholing across AS boundaries, an outbound filter should be set
on eBGP peering sessions to deny all prefixes longer than the longest prefix
expected to be announced, unless that prefix is tagged with a blackhole com-
munity. This does not help with accidental blackholing directly, but prevents an
AS from advertising more specific prefixes inadvertently.

Considering some of these good practices might not be applicable depending
on the situation, or can constrain the blackhole service too much, we propose
using a BGPsec extension as a possible alternative to protect against attacks of
the taxonomy.

1 This might be changing as several IXPs now seem to implement ROV [3].

122 L. Miller and C. Pelsser

5.3 A BGPsec Solution

In a full deployment of BGPsec and RPKI, only On Path attacks are still pos-
sible. Thus, the goal of integrating communities to BGPsec is to be able to
attribute the changes made to communities to an AS. This attribution is crucial
for blackholing, because it allows an AS to accept or reject a blackhole request
based on the identity of the AS requesting the blackhole. A blackholing adver-
tisement can then be analyzed, to determine the source of the request, and a
decision can be made based on whether or not this AS has a right to blackhole
this prefix. Moreover, given an unwanted blackholing event, those responsible
for it can be held accountable.

We propose such an extension in [36]. With this extension, as we know which
ASes introduced which communities, an AS could simply generate a table asso-
ciating an AS to a set of prefixes this AS is authorized to blackhole. This table
could be populated by RPKI/IRR data, but also manually with trusted peers,
or other associations the operator deems relevant. Then, this AS could accept
a blackhole request if the AS requesting the blackhole and the prefix in the
advertisement matches an association in the table.

6 Related Work

Over the last years, efforts have been made towards characterizing usage and
behavior of communities in the Internet. Donnet et al. proposed the first clas-
sification of BGP communities [15], and found that community usage increased
from 2004 to 2007. The increased popularity of communities has since been estab-
lished multiple times [13,21,22,54]. Streibelt et al. also found that even though
communities are typically relevant only between directly connected ASes, they
seem to be propagated beyond, increasing the risks of attacks.

Streibelt et al. also demonstrated that attacks using BGP blackholing are not
only possible in theory, but also in an experimental setup and in the wild [54].
In comparison to this paper, they only consider Type-0 blackjacks, so a possible
area of future work is to test the other attacks of the taxonomy. Numerous
efforts have also been made towards characterizing DDoS attacks, as well as
the detection and mitigation techniques that can be used against them [48,49].
Dietzel et al. study the shortcomings of blackholing, and propose Stellar, an
advanced blackholing mechanism [14] which can perform fine-grained blackholing
using extended communities as a signaling mechanism.

Finally, BGP hijacking has been studied extensively, to characterize them
[5,51,52,58,59], to detect them [52,53,60,62], or even to conduct further attacks
[2,4,55,59]. A possible area of future work is the adaptation of those detection
techniques to blackhole-based attacks.

7 Conclusion

In this paper, we construct a taxonomy using blackholing as an attack vector,
and assess the usability of those attacks in various security deployments. We also

A Taxonomy of Attacks Using BGP Blackholing 123

show those attacks have better reach and stealth than regular hijacks. Namely,
blackholing takes precedence over AS relationships and AS path length, meaning
a blackjack can affect more ASes than hijacks. By using the specific blackhole
community value of a blackholer, an attacker can also drop traffic at ASes much
further away than hijacks can. As the attacker is not the one dropping traffic
and blackjacks may propagate far, blackjacks are stealthier than hijacks.

We also want to draw attention to the fact that since blackjacks make use of
the blackholing service of an AS, making this blackholing information publicly
available might not be a good idea without proper standardization and security.

Through attacks suited against the considered security mechanisms (RPKI
and BGPsec), we highlight the poor state BGP security deployment is in, and
suggest additional rules as well as good practices to protect against the attacks
of our taxonomy. In a more general way, we want to emphasize the need for BGP
community authentication, either through an extension to BGPsec or another
mechanism.

As part of our future work, we want to test the attacks not already covered
by Streibelt et al. [54] in a real world setting, to demonstrate those attacks can
be carried out and present numerous advantages compared to regular hijacks.
Another area to investigate is the existence and characteristics of ASes proposing
blackholing services to perform blackhole-based attacks, much like open DNS
resolvers can be used to carry out DDoS attacks. More work can also be done
to adapt hijack detection techniques to blackhole-based attacks.

The feasibility and subtleties of blackjack attacks remain to be studied in
a real-world setting. Since BGPsec has yet to be deployed, and there is still
little experience with RPKI, those security mechanisms and their limitations
can hardly be tested against at this time. Further research is needed to assess
the severity of blackjack attacks in the wild, since actual configuration (e.g.
blackholing precedence over other policies, community handling, RTBH provider
policy, blackholing propagation, ...) might differ from expectations, and from AS
to AS.

Acknowledgments. This project has been made possible in part by a grant from the
Cisco University Research Program Fund, an advised fund of Silicon Valley Community
Foundation.

References

1. Akamai: Memcached-fueled 1.3 Tbps attacks, March 2018. https://blogs.akamai.
com/2018/03/memcached-fueled-13-tbps-attacks.html. Accessed 29 Apr 2019

2. Pilosov, A., Kapela, T.: Stealing The Internet: An Internet-Scale Man In The
Middle Attack, August 2008. https://www.defcon.org/images/defcon-16/dc16-
presentations/defcon-16-pilosov-kapela.pdf. Accessed 29 Apr 2019

3. Reuter, A., Bush, R., Katz-Bassett, E., Cunha, I., Schmidt, T.C., Wählisch,
M.: Measuring Adoption of RPKI Route Origin Validation and Filtering, May
2018. https://ripe76.ripe.net/presentations/63-rov filtering update.pdf. Accessed
29 Apr 2019

https://blogs.akamai.com/2018/03/memcached-fueled-13-tbps-attacks.html
https://blogs.akamai.com/2018/03/memcached-fueled-13-tbps-attacks.html
https://www.defcon.org/images/defcon-16/dc16-presentations/defcon-16-pilosov-kapela.pdf
https://www.defcon.org/images/defcon-16/dc16-presentations/defcon-16-pilosov-kapela.pdf
https://ripe76.ripe.net/presentations/63-rov_filtering_update.pdf

124 L. Miller and C. Pelsser

4. Apostolaki, M., Zohar, A., Vanbever, L.: Hijacking bitcoin: routing attacks on
cryptocurrencies. In: 2017 IEEE Symposium on Security and Privacy (SP), pp.
375–392. IEEE (2017)

5. Ballani, H., Francis, P., Zhang, X.: A study of prefix hijacking and interception in
the Internet. ACM SIGCOMM Comput. Commun. Rev. 37(4), 265–276 (2007)

6. Brewster, T.: Cyber Attacks Strike Zimbabweans Around Controversial Elec-
tion, August 2013. http://www.silicon.co.uk/workspace/zimbabwe-election-cyber-
attacks-123938. Accessed 29 Apr 2019

7. Bush, R.: BGPsec Operational Considerations. BCP 211, RFC Editor, September
2017

8. Chandra, R., Traina, P., Li, T.: BGP Communities Attribute. RFC 1997, RFC
Editor, August 1996

9. Cisco: Remotely Triggered Black Hole Filtering - Destination Based and Source
Based (2005). https://www.cisco.com/c/dam/en/us/products/collateral/security/
ios-network-foundation-protection-nfp/prod white paper0900aecd80313fac.pdf.
Accessed 29 Apr 2019

10. Cohen, A., Gilad, Y., Herzberg, A., Schapira, M.: One hop for RPKI, one giant
leap for BGP security. In: Proceedings of the 14th ACM Workshop on Hot Topics
in Networks, p. 10. ACM (2015)

11. Cohen, A., Gilad, Y., Herzberg, A., Schapira, M.: Jumpstarting BGP security with
path-end validation. In: Proceedings of the 2016 ACM SIGCOMM Conference, pp.
342–355. ACM (2016)

12. DE-CIX: DE-CIX Blackholing Service July 2018. https://www.de-cix.net/
Resources/Persistent/4277e7d4867a78ae923c0f5b3b66d7ff6aeb61f8/DE-CIX-
Blackholing-Service.pdf. Accessed 29 Apr 2019; Slide 3

13. Dietzel, C., Feldmann, A., King, T.: Blackholing at IXPs: on the effectiveness of
DDoS mitigation in the wild. In: Karagiannis, T., Dimitropoulos, X. (eds.) Passive
and Active Measurement, pp. 319–332. Springer International Publishing, Cham
(2016)

14. Dietzel, C., Smaragdakis, G., Wichtlhuber, M., Feldmann, A.: Stellar: network
attack mitigation using advanced blackholing. In: Proceedings of the 14th Inter-
national Conference on emerging Networking EXperiments and Technologies, pp.
152–164. ACM (2018)

15. Donnet, B., Bonaventure, O.: On BGP communities. ACM SIGCOMM Comput.
Commun. Rev. 38(2), 55–59 (2008)

16. France-IX: France-IX Blackholing Service, July 2018. https://www.franceix.net/
fr/technical/blackholing/. Accessed 29 Apr 2019

17. Gao, L., Griffin, T.G., Rexford, J.: Inherently safe backup routing with BGP. In:
Proceedings IEEE INFOCOM 2001. Conference on Computer Communications.
Twentieth Annual Joint Conference of the IEEE Computer and Communications
Society (Cat. No.01CH37213), vol. 1, pp. 547–556. IEEE, April 2001. https://doi.
org/10.1109/INFCOM.2001.916777

18. Gao, L., Rexford, J.: Stable Internet routing without global coordination.
IEEE/ACM Trans. Netw. (TON) 9(6), 681–692 (2001)

19. Gilad, Y., Cohen, A., Herzberg, A., Schapira, M., Shulman, H.: Are We There Yet?
On RPKI’s Deployment and Security. IACR Cryptology ePrint Archive 2016, 1010
(2016)

20. Gill, P., Schapira, M., Goldberg, S.: Let the market drive deployment: a strategy for
transitioning to BGP security. ACM SIGCOMM Comput. Commun. Rev. 41(4),
14–25 (2011)

http://www.silicon.co.uk/workspace/zimbabwe-election-cyber-attacks-123938
http://www.silicon.co.uk/workspace/zimbabwe-election-cyber-attacks-123938
https://www.cisco.com/c/dam/en/us/products/collateral/security/ios-network-foundation-protection-nfp/prod_white_paper0900aecd80313fac.pdf
https://www.cisco.com/c/dam/en/us/products/collateral/security/ios-network-foundation-protection-nfp/prod_white_paper0900aecd80313fac.pdf
https://www.de-cix.net/_Resources/Persistent/4277e7d4867a78ae923c0f5b3b66d7ff6aeb61f8/DE-CIX-Blackholing-Service.pdf
https://www.de-cix.net/_Resources/Persistent/4277e7d4867a78ae923c0f5b3b66d7ff6aeb61f8/DE-CIX-Blackholing-Service.pdf
https://www.de-cix.net/_Resources/Persistent/4277e7d4867a78ae923c0f5b3b66d7ff6aeb61f8/DE-CIX-Blackholing-Service.pdf
https://www.franceix.net/fr/technical/blackholing/
https://www.franceix.net/fr/technical/blackholing/
https://doi.org/10.1109/INFCOM.2001.916777
https://doi.org/10.1109/INFCOM.2001.916777

A Taxonomy of Attacks Using BGP Blackholing 125

21. Giotsas, V., Dietzel, C., Smaragdakis, G., Feldmann, A., Berger, A., Aben, E.:
Detecting peering infrastructure outages in the wild. In: Proceedings of the Con-
ference of the ACM Special Interest Group on Data Communication, pp. 446–459.
ACM (2017)

22. Giotsas, V., Smaragdakis, G., Dietzel, C., Richter, P., Feldmann, A., Berger, A.:
Inferring BGP blackholing activity in the Internet. In: Proceedings of the 2017
Internet Measurement Conference, pp. 1–14. ACM (2017)

23. Greenberg, A.: Hacker Redirects Traffic From 19 Internet Providers to Steal Bit-
coins, August 2014. https://www.wired.com/2014/08/isp-bitcoin-theft/. Accessed
29 Apr 2019

24. Heitz, J., Snijders, J., Patel, K., Bagdonas, I., Hilliard, N.: BGP Large Communi-
ties Attribute. RFC 8092, RFC Editor, February 2017

25. Huston, G., Michaelson, G.: Validation of Route Origination Using the Resource
Certificate Public Key Infrastructure (PKI) and Route Origin Authorizations
(ROAs). RFC 6483, RFC Editor, February 2012

26. Iamartino, D., Pelsser, C., Bush, R.: Measuring BGP route origin registration and
validation. In: Mirkovic, J., Liu, Y. (eds.) PAM 2015. LNCS, vol. 8995, pp. 28–40.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15509-8 3

27. Kandagatla, N.: Disgruntled ex-employees, DDoS attacks and the revenge of the
nerds. https://www.wittysparks.com/disgruntled-ex-employees-ddos-attacks-and-
the-revenge-of-the-nerds/, November 2017. Accessed 29 Apr 2019

28. King, T., Dietzel, C., Snijders, J., Doering, G., Hankins, G.: BLACKHOLE Com-
munity. RFC 7999, RFC Editor, October 2016

29. Kumari, W., McPherson, D.: Remote Triggered Black Hole Filtering with Unicast
Reverse Path Forwarding (uRPF). RFC 5635, RFC Editor, August 2009

30. Lepinski, M., Kent, S.: An Infrastructure to Support Secure Internet Routing.
RFC 6480, RFC Editor, February 2012. http://www.rfc-editor.org/rfc/rfc6480.txt,
http://www.rfc-editor.org/rfc/rfc6480.txt

31. Lepinski, M., Sriram, K.: BGPsec Protocol Specification. RFC 8205, RFC Editor,
September 2017

32. Leyden, J.: US credit card firm fights DDoS attack, September 2004. http://www.
theregister.co.uk/2004/09/23/authorize ddos attack/. Accessed 29 Apr 2019

33. Lychev, R., Goldberg, S., Schapira, M.: BGP security in partial deployment: is
the juice worth the squeeze? SIGCOMM Comput. Commun. Rev. 43(4), 171–182
(2013). https://doi.org/10.1145/2534169.2486010

34. Madory, D.: BackConnect’s Suspicious BGP Hijacks, September 2016. https://
dyn.com/blog/backconnects-suspicious-bgp-hijacks/. Accessed 29 Apr 2019

35. Madory, D.: Iran Leaks Censorship via BGP Hijacks, January 2017. https://dyn.
com/blog/iran-leaks-censorship-via-bgp-hijacks/. Accessed 29 Apr 2019

36. Miller, L., Pelsser, C., Cateloin, S.: DDoS, BGP Leaks and Hijack Mitigation Tech-
niques, August 2018. https://loicmiller.com/documents/hijack ddos mitigation.
pdf. Accessed 29 Apr 2019

37. Mohapatra, P., Scudder, J., Ward, D., Bush, R., Austein, R.: BGP Prefix Origin
Validation. RFC 6811, RFC Editor, January 2013. http://www.rfc-editor.org/rfc/
rfc6811.txt, http://www.rfc-editor.org/rfc/rfc6811.txt

38. Morales, C.: NETSCOUT Arbor Confirms 1.7 Tbps DDoS Attack; The Terabit
Attack Era Is Upon Us, March 2018. https://www.arbornetworks.com/blog/
asert/netscout-arbor-confirms-1-7-tbps-ddos-attack-terabit-attack-era-upon-us/.
Accessed 29 Apr 2019

https://www.wired.com/2014/08/isp-bitcoin-theft/
https://doi.org/10.1007/978-3-319-15509-8_3
https://www.wittysparks.com/disgruntled-ex-employees-ddos-attacks-and-the-revenge-of-the-nerds/
https://www.wittysparks.com/disgruntled-ex-employees-ddos-attacks-and-the-revenge-of-the-nerds/
http://www.rfc-editor.org/rfc/rfc6480.txt
http://www.rfc-editor.org/rfc/rfc6480.txt
http://www.theregister.co.uk/2004/09/23/authorize_ddos_attack/
http://www.theregister.co.uk/2004/09/23/authorize_ddos_attack/
https://doi.org/10.1145/2534169.2486010
https://dyn.com/blog/backconnects-suspicious-bgp-hijacks/
https://dyn.com/blog/backconnects-suspicious-bgp-hijacks/
https://dyn.com/blog/iran-leaks-censorship-via-bgp-hijacks/
https://dyn.com/blog/iran-leaks-censorship-via-bgp-hijacks/
https://loicmiller.com/documents/hijack_ddos_mitigation.pdf
https://loicmiller.com/documents/hijack_ddos_mitigation.pdf
http://www.rfc-editor.org/rfc/rfc6811.txt
http://www.rfc-editor.org/rfc/rfc6811.txt
http://www.rfc-editor.org/rfc/rfc6811.txt
https://www.arbornetworks.com/blog/asert/netscout-arbor-confirms-1-7-tbps-ddos-attack-terabit-attack-era-upon-us/
https://www.arbornetworks.com/blog/asert/netscout-arbor-confirms-1-7-tbps-ddos-attack-terabit-attack-era-upon-us/

126 L. Miller and C. Pelsser

39. National Institute of Standards and Technology: Global Prefix/Origin Validation
using RPKI, April 2019. https://rpki-monitor.antd.nist.gov/. Accessed 29 Apr
2019

40. Newman, L.H.: The Botnet That Broke the Internet Isn’t Going Away, September
2016. https://www.wired.com/2016/12/botnet-broke-internet-isnt-going-away/.
Accessed 29 Apr 2019

41. Pras, A., et al.: Attacks by “Anonymous” WikiLeaks Proponents not Anonymous
(2010)

42. Prince, M.: The DDoS That Almost Broke the Internet, March 2013. https://blog.
cloudflare.com/the-ddos-that-almost-broke-the-internet/. Accessed 29 Apr 2019

43. Rekhter, Y., Li, T., Hares, S.: A Border Gateway Protocol 4 (BGP-4). RFC 4271,
RFC Editor, January 2006. http://www.rfc-editor.org/rfc/rfc4271.txt

44. Reuter, A., Bush, R., Cunha, I., Katz-Bassett, E., Schmidt, T.C., Wählisch, M.:
Towards a rigorous methodology for measuring adoption of RPKI route validation
and filtering. ACM SIGCOMM Comput. Commun. Rev. 48(1), 19–27 (2018)

45. Reuter, A., Bush, R., Cunha, I., Katz-Bassett, E., Schmidt, T.C., Wählisch, M.:
Measuring RPKI Route Origin Validation Deployment, April 2019. https://rov.
rpki.net/. Accessed 29 Apr 2019

46. Reynolds, M., Turner, S., Kent, S.: A Profile for BGPsec Router Certificates,
Certificate Revocation Lists, and Certification Requests. RFC 8209, RFC Editor,
September 2017

47. RIPE NCC: YouTube Hijacking: A RIPE NCC RIS case study, March
2008. https://www.ripe.net/publications/news/industry-developments/youtube-
hijacking-a-ripe-ncc-ris-case-study. Accessed 29 Apr 2019

48. Rossow, C.: Amplification Hell: Revisiting Network Protocols for DDoS Abuse. In:
NDSS (2014)

49. Ryba, F.J., Orlinski, M., Wählisch, M., Rossow, C., Schmidt, T.C.: Amplifica-
tion and DRDoS attack defense-a survey and new perspectives. arXiv preprint
arXiv:1505.07892 (2015)

50. Schlamp, J., Holz, R., Jacquemart, Q., Carle, G., Biersack, E.W.: HEAP: reliable
assessment of BGP hijacking attacks. IEEE J. Sel. Areas Commun. 34(6), 1849–
1861 (2016)

51. Sermpezis, P., Kotronis, V., Dainotti, A., Dimitropoulos, X.: A survey among net-
work operators on BGP prefix hijacking. ACM SIGCOMM Comput. Commun.
Rev. 48(1), 64–69 (2018)

52. Sermpezis, P., et al.: Artemis: neutralizing BGP hijacking within a minute.
IEEE/ACM Trans. Netw. (TON) 26(6), 2471–2486 (2018)

53. Shi, X., Xiang, Y., Wang, Z., Yin, X., Wu, J.: Detecting prefix hijackings in the
internet with argus. In: Proceedings of the 2012 Internet Measurement Conference,
pp. 15–28. ACM (2012)

54. Streibelt, F., et al.: BGP communities: even more worms in the routing can. In:
Proceedings of the Internet Measurement Conference 2018, pp. 279–292. ACM
(2018)

55. Sun, Y., et al.: {RAPTOR}: routing attacks on privacy in Tor. In: 24th {USENIX}
Security Symposium ({USENIX} Security 15), pp. 271–286 (2015)

56. Tomlinson, K.: Cyber battle rages on Internet after arrest of cyber crime sus-
pects, September 2016. http://www.archersecuritygroup.com/cyber-battle-rages-
internet-arrest-cyber-crime-suspects/. Accessed 29 Apr 2019

57. Turk, D.: Configuring BGP to Block Denial-of-Service Attacks. RFC 3882, RFC
Editor, September 2004

https://rpki-monitor.antd.nist.gov/
https://www.wired.com/2016/12/botnet-broke-internet-isnt-going-away/
https://blog.cloudflare.com/the-ddos-that-almost-broke-the-internet/
https://blog.cloudflare.com/the-ddos-that-almost-broke-the-internet/
http://www.rfc-editor.org/rfc/rfc4271.txt
https://rov.rpki.net/
https://rov.rpki.net/
https://www.ripe.net/publications/news/industry-developments/youtube-hijacking-a-ripe-ncc-ris-case-study
https://www.ripe.net/publications/news/industry-developments/youtube-hijacking-a-ripe-ncc-ris-case-study
http://arxiv.org/abs/1505.07892
http://www.archersecuritygroup.com/cyber-battle-rages-internet-arrest-cyber-crime-suspects/
http://www.archersecuritygroup.com/cyber-battle-rages-internet-arrest-cyber-crime-suspects/

A Taxonomy of Attacks Using BGP Blackholing 127

58. Vervier, P.A., et al.: Malicious BGP hijacks: appearances can be deceiving. In:
2014 IEEE International Conference on Communications (ICC), pp. 884–889. IEEE
(2014)

59. Vervier, P.A., Thonnard, O., Dacier, M.: Mind Your Blocks: On the Stealthiness
of Malicious BGP Hijacks. In: NDSS (2015)

60. Wählisch, M., Maennel, O., Schmidt, T.C.: Towards detecting BGP route hijack-
ing using the RPKI. In: Proceedings of the ACM SIGCOMM 2012 Conference on
Applications, Technologies, Architectures, and Protocols for Computer Communi-
cation, pp. 103–104. Citeseer (2012)

61. Wählisch, M., Schmidt, R., Schmidt, T.C., Maennel, O., Uhlig, S., Tyson, G.:
RiPKI: The tragic story of RPKI deployment in the Web ecosystem. In: Proceed-
ings of the 14th ACM Workshop on Hot Topics in Networks. p. 11. ACM (2015)

62. Zheng, C., Ji, L., Pei, D., Wang, J., Francis, P.: A light-weight distributed scheme
for detecting IP prefix hijacks in real-time. In: ACM SIGCOMM Computer Com-
munication Review. vol. 37, pp. 277–288. ACM (2007)

Local Obfuscation Mechanisms for Hiding
Probability Distributions

Yusuke Kawamoto1(B) and Takao Murakami2

1 AIST, Tsukuba, Japan
yusuke.kawamoto.aist@gmail.com

2 AIST, Tokyo, Japan

Abstract. We introduce a formal model for the information leakage of
probability distributions and define a notion called distribution privacy
as the local differential privacy for probability distributions. Roughly,
the distribution privacy of a local obfuscation mechanism means that
the attacker cannot significantly gain any information on the distribu-
tion of the mechanism’s input by observing its output. Then we show
that existing local mechanisms can hide input distributions in terms of
distribution privacy, while deteriorating the utility by adding too much
noise. For example, we prove that the Laplace mechanism needs to add a
large amount of noise proportionally to the infinite Wasserstein distance
between the two distributions we want to make indistinguishable. To
improve the tradeoff between distribution privacy and utility, we intro-
duce a local obfuscation mechanism, called a tupling mechanism, that
adds random dummy data to the output. Then we apply this mechanism
to the protection of user attributes in location based services. By experi-
ments, we demonstrate that the tupling mechanism outperforms popular
local mechanisms in terms of attribute obfuscation and service quality.

Keywords: Local differential privacy · Obfuscation mechanism ·
Location privacy · Attribute privacy · Wasserstein metric ·
Compositionality

1 Introduction

Differential privacy [1] is a quantitative notion of privacy that has been applied
to a wide range of areas, including databases, geo-locations, and social network.
The protection of differential privacy can be achieved by adding controlled noise
to given data that we wish to hide or obfuscate. In particular, a number of recent
studies have proposed local obfuscation mechanisms [2–4], namely, randomized
algorithms that perturb each single “point” data (e.g., a geo-location point) by
adding certain probabilistic noise before sending it out to a data collector. How-
ever, the obfuscation of a probability distribution of points (e.g., a distribution

This work was partially supported by JSPS KAKENHI Grant JP17K12667,
JP19H04113, and Inria LOGIS project.

c© Springer Nature Switzerland AG 2019
K. Sako et al. (Eds.): ESORICS 2019, LNCS 11735, pp. 128–148, 2019.
https://doi.org/10.1007/978-3-030-29959-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29959-0_7&domain=pdf
http://orcid.org/0000-0002-2151-9560
http://orcid.org/0000-0002-5110-1261
https://doi.org/10.1007/978-3-030-29959-0_7

Local Obfuscation Mechanisms for Hiding Probability Distributions 129

of locations of users at home/outside home) still remains to be investigated in
terms of differential privacy.

For example, a location-based service (LBS) provider collects each user’s geo-
location data to provide a service (e.g., navigation or point-of-interest search),
and has been widely studied in terms of the privacy of user locations. As shown
in [3,5], users can hide their accurate locations by sending to the LBS provider
only approximate location information calculated by an obfuscation mechanism.

Nevertheless, a user’s location information can be used for an attacker to
infer the user’s attributes (e.g., age, gender, social status, and residence area)
or activities (e.g., working, sleeping, and shopping) [6–9]. For example, when an
attacker knows the distribution of residence locations, he may detect whether
given users are at home or outside home after observing their obfuscated loca-
tions. For another example, an attacker may learn whether users are rich or poor
by observing their obfuscated behaviors. These attributes can be used by robbers
hence should be protected from them. Privacy issues of such attribute inference
are also known in other applications, including recommender systems [10,11]
and online social networks [12,13]. However, to our knowledge, no literature has
addressed the protection of attributes in terms of local differential privacy.

To illustrate the privacy of attributes in an LBS, let us consider a running
example where users try to prevent an attacker from inferring whether they are
at home or not. Let λhome and λout be the probability distributions of loca-
tions of the users at home and outside home, respectively. Then the privacy of
this attribute means that the attacker cannot learn from an obfuscated location
whether the actual location follows the distribution λhome or λout .

This can be formalized using differential privacy. For each t ∈ {home, out},
we denote by p(y |λt) the probability of observing an obfuscated location y when
an actual location is distributed over λt. Then the privacy of t is defined by:

p(y |λhome)
p(y |λout)

≤ eε,

which represents that the attacker cannot distinguish whether the users follow
the distribution λhome or λout with degree of ε.

To generalize this, we define a notion, called distribution privacy (DistP),
as the differential privacy for probability distributions. Roughly, we say that a
mechanism A provides DistP w.r.t. λhome and λout if no attacker can detect
whether the actual location (input to A) is sampled from λhome or λout after he
observed an obfuscated location y (output by A)1. Here we note that each user
applies the mechanism A locally by herself, hence can customize the amount of
noise added to y according to the attributes she wants to hide.

Although existing local differential privacy mechanisms are designed to pro-
tect point data, they also hide the distribution that the point data follow. How-
ever, we demonstrate that they need to add a large amount of noise to obfuscate
distributions, and thus deteriorate the utility of the mechanisms.
1 In our setting, the attacker observes only a sampled output of A, and not the exact

histogram of A’s output distribution. See Sect. 3.5 for more details.

130 Y. Kawamoto and T. Murakami

To achieve both high utility and strong privacy of attributes, we introduce
a mechanism, called the tupling mechanism, that not only perturbs an actual
input, but also adds random dummy data to the output. Then we prove that
this mechanism provides DistP. Since the random dummy data obfuscate the
shape of the distribution, users can instead reduce the amount of noise added to
the actual input, hence they get better utility (e.g., quality of a POI service).

This implies that DistP is a relaxation of differential privacy that guaran-
tees the privacy of attributes while achieving higher utility by weakening the
differentially private protection of point data. For example, suppose that users
do not mind revealing their actual locations outside home, but want to hide
(e.g., from robbers) the fact that they are outside home. When the users employ
the tupling mechanism, they output both their (slightly perturbed) actual loca-
tions and random dummy locations. Since their outputs include their (roughly)
actual locations, they obtain high utility (e.g., learning shops near their loca-
tions), while their actual location points are protected only weakly by differential
privacy. However, their attributes at home/outside home are hidden among the
dummy locations, hence protected by DistP. By experiments, we demonstrate
that the tupling mechanism is useful to protect the privacy of attributes, and out-
performs popular existing mechanisms (the randomized response [14], the planar
Laplace [3] and Gaussian mechanisms) in terms of DistP and service quality.

Our Contributions. The main contributions of this work are given as follows:

– We propose a formal model for the privacy of probability distributions in
terms of differential privacy. Specifically, we define the notion of distribution
privacy (DistP) to represent that the attacker cannot significantly gain infor-
mation on the distribution of a mechanism’s input by observing its output.

– We provide theoretical foundation of DistP, including its useful properties
(e.g., compositionality) and its interpretation (e.g., in terms of Bayes factor).

– We quantify the effect of distribution obfuscation by existing local mecha-
nisms. In particular, we show that (extended) differential privacy mechanisms
are able to make any two distributions less distinguishable, while deteriorating
the utility by adding too much noise to protect all point data.

– For instance, we prove that extended differential privacy mechanisms (e.g.,
the Laplace mechanism) need to add a large amount of noise proportionally
to the ∞-Wasserstein distance W∞,d(λ0, λ1) between the two distributions
λ0 and λ1 that we want to make indistinguishable.

– We show that DistP is a useful relaxation of differential privacy when users
want to hide their attributes, but not necessarily to protect all point data.

– To improve the tradeoff between DistP and utility, we introduce the tupling
mechanism, which locally adds random dummies to the output. Then we show
that this mechanism provides DistP and hight utility for users.

– We apply local mechanisms to the obfuscation of attributes in location based
services (LBSs). Then we show that the tupling mechanism outperforms pop-
ular existing mechanisms in terms of DistP and service quality.

All proofs of technical results can be found in [15].

Local Obfuscation Mechanisms for Hiding Probability Distributions 131

2 Preliminaries

In this section we recall some notions of privacy and metrics used in this paper.
Let N

>0 be the set of positive integers, and R
>0 (resp. R

≥0) be the set of
positive (resp. non-negative) real numbers. Let [0, 1] be the set of non-negative
real numbers not grater than 1. Let ε, ε0, ε1 ∈ R

≥0 and δ, δ0, δ1 ∈ [0, 1].

2.1 Notations for Probability Distributions

Fig. 1. Coupling γ.

We denote by DX the set of all probability distributions
over a set X , and by |X | the number of elements in a finite
set X .

Given a finite set X and a distribution λ ∈ DX , the
probability of drawing a value x from λ is denoted by λ[x].
For a finite subset X ′ ⊆ X we define λ[X ′] by: λ[X ′] =∑

x′∈X ′ λ[x′]. For a distribution λ over a finite set X , its
support supp(λ) is defined by supp(λ) = {x ∈ X : λ[x] > 0}.
Given a λ ∈ DX and a f : X → R, the expected value of
f over λ is: Ex∼λ[f(x)] def=

∑
x∈X λ[x]f(x).

For a randomized algorithm A : X → DY and a set R ⊆ Y we denote by
A(x)[R] the probability that given input x, A outputs one of the elements of
R. Given a randomized algorithm A : X → DY and a distribution λ over X ,
we define A#(λ) as the distribution of the output of A. Formally, for a finite
set X , the lifting of A w.r.t. X is the function A# : DX → DY such that
A#(λ)[R] def=

∑
x∈X λ[x]A(x)[R].

2.2 Differential Privacy (DP)

Differential privacy [1] captures the idea that given two “adjacent” inputs x and
x′ (from a set X of data with an adjacency relation Φ), a randomized algorithm
A cannot distinguish x from x′ (with degree of ε and up to exceptions δ).

Definition 1 (Differential privacy). Let e be the base of natural logarithm.
A randomized algorithm A : X → DY provides (ε, δ)-differential privacy (DP)
w.r.t. an adjacency relation Φ ⊆ X × X if for any (x, x′) ∈ Φ and any R ⊆ Y,

Pr[A(x) ∈ R] ≤ eε Pr[A(x′) ∈ R] + δ

where the probability is taken over the random choices in A.

2.3 Differential Privacy Mechanisms and Sensitivity

Differential privacy can be achieved by a privacy mechanism, namely a ran-
domized algorithm that adds probabilistic noise to a given input that we want
to protect. The amount of noise added by some popular mechanisms (e.g., the
exponential mechanism) depends on a utility function u : X ×Y → R that maps
a pair of input and output to a utility score. More precisely, the noise is added
according to the “sensitivity” of u, which we define as follows.

132 Y. Kawamoto and T. Murakami

Definition 2 (Utility distance). The utility distance w.r.t a utility function
u : (X×Y) → R is the function d given by: d(x, x′) def= maxy∈Y

∣
∣u(x, y)−u(x′, y)

∣
∣.

Note that d is a pseudometric. Hereafter we assume that for all x, y, u(x, y) = 0
is logically equivalent to x = y. Then the utility distance d is a metric.

Definition 3 (Sensitivity w.r.t. an adjacency relation). The sensitivity of
a utility function u w.r.t. an adjacency relation Φ ⊆ X × X is defined as:

ΔΦ,d
def= max

(x,x′)∈Φ
d(x, x′) = max

(x,x′)∈Φ
max
y∈Y

∣
∣u(x, y) − u(x′, y)

∣
∣.

2.4 Extended Differential Privacy (XDP)

We review the notion of extended differential privacy [16], which relaxes DP by
incorporating a metric d. Intuitively, this notion guarantees that when two inputs
x and x′ are closer in terms of d, the output distributions are less distinguishable.

Definition 4 (Extended differential privacy). For a metric d : X ×X → R,
we say that a randomized algorithm A : X → DY provides (ε, δ, d)-extended
differential privacy (XDP) if for all x, x′ ∈ X and for any R ⊆ Y,

Pr[A(x) ∈ R] ≤ eεd(x,x′) Pr[A(x′) ∈ R] + δ.

2.5 Wasserstein Metric

We recall the notion of probability coupling as follows.

Definition 5 (Coupling). Given λ0 ∈ DX0 and λ1 ∈ DX1, a coupling of λ0

and λ1 is a γ ∈ D(X0 × X1) such that λ0 and λ1 are γ’s marginal distributions,
i.e., for each x0 ∈ X0, λ0[x0] =

∑
x′
1∈X1

γ[x0, x
′
1] and for each x1 ∈ X1, λ1[x1] =

∑
x′
0∈X0

γ[x′
0, x1]. We denote by cp(λ0, λ1) the set of all couplings of λ0 and λ1.

Example 1 (Coupling as transformation of distributions). Let us consider two
distributions λ0 and λ1 shown in Fig. 1. A coupling γ of λ0 and λ1 shows a way
of transforming λ0 to λ1. For example, γ[2, 1] = 0.1 moves from λ0[2] to λ1[1].

We then recall the ∞-Wasserstein metric [17] between two distributions.

Definition 6 (∞-Wasserstein metric). Let d be a metric over X . The
∞-Wasserstein metric W∞,d w.r.t. d is defined by: for any λ0, λ1 ∈ DX ,

W∞,d(λ0, λ1) = min
γ∈cp(λ0,λ1)

max
(x0,x1)∈supp(γ)

d(x0, x1).

Local Obfuscation Mechanisms for Hiding Probability Distributions 133

The ∞-Wasserstein metric W∞,d(λ0, λ1) represents the minimum largest
move between points in a transportation from λ0 to λ1. Specifically, in a trans-
portation γ, max(x0,x1)∈supp(γ) d(x0, x1) represents the largest move from a point
in λ0 to another in λ1. For instance, in the coupling γ in Example 1, the largest
move is 1 (from λ0[2] to λ1[1], and from λ0[2] to λ1[3]). Such a largest move is
minimized by a coupling that achieves the ∞-Wasserstein metric. We denote by
Γ∞,d the set of all couplings that achieve the ∞-Wasserstein metric.

Finally, we recall the notion of the lifting of relations.

Definition 7 (Lifting of relations). Given a relation Φ ⊆ X × X , the lifting
of Φ is the maximum relation Φ# ⊆ DX × DX such that for any (λ0, λ1) ∈ Φ#,
there exists a coupling γ ∈ cp(λ0, λ1) satisfying supp(γ) ⊆ Φ.

Note that by Definition 5, the coupling γ is a probability distribution over Φ
whose marginal distributions are λ0 and λ1. If Φ = X ×X , then Φ# = DX ×DX .

3 Privacy Notions for Probability Distributions

In this section we introduce a formal model for the privacy of user attributes,
which is motivated in Sect. 1.

3.1 Modeling the Privacy of User Attributes in Terms of DP

As a running example, we consider an LBS (location based service) in which
each user queries an LBS provider for a list of shops nearby. To hide a user’s
exact location x from the provider, the user applies a randomized algorithm
A : X → DY, called a local obfuscation mechanism, to her location x, and
obtains an approximate information y with the probability A(x)[y].

To illustrate the privacy of attributes, let us consider an example in which
users try to prevent an attacker from inferring whether they are male or female
by obfuscating their own exact locations using a mechanism A. For each t ∈
{male, female}, let λt ∈ DX be the prior distribution of the location of the users
who have the attribute t. Intuitively, λmale (resp. λfemale) represents an attacker’s
belief on the location of the male (resp. female) users before the attacker observes
an output of the mechanism A. Then the privacy of t can be modeled as a
property that the attacker has no idea on whether the actual location x follows
the distribution λmale or λfemale after observing an output y of A.

This can be formalized in terms of ε-local DP. For each t ∈ {male, female},
we denote by p(y |λt) the probability of observing an obfuscated location y when
an actual location x is distributed over λt, i.e., p(y |λt) =

∑
x∈X λt[x]A(x)[y].

Then we can define the privacy of t by:

p(y | λmale)
p(y | λfemale)

≤ eε.

134 Y. Kawamoto and T. Murakami

3.2 Distribution Privacy and Extended Distribution Privacy

We generalize the privacy of attributes (in Sect. 3.1) and define the notion of
distribution privacy (DistP) as the differential privacy where the input is a prob-
ability distribution of data rather than a value of data. This notion models a
level of obfuscation that hides which distribution a data value is drawn from.
Intuitively, we say a randomized algorithm A provides DistP if, by observing an
output of A, we cannot detect from which distribution an input to A is generated.

Definition 8 (Distribution privacy). Let ε ∈ R
≥0 and δ ∈ [0, 1]. We say

that a randomized algorithm A : X → DY provides (ε, δ)-distribution privacy
(DistP) w.r.t. an adjacency relation Ψ ⊆ DX × DX if its lifting A# : DX → DY
provides (ε, δ)-DP w.r.t. Ψ , i.e., for all pairs (λ, λ′) ∈ Ψ and all R ⊆ Y, we have:

A#(λ)[R] ≤ eε · A#(λ′)[R] + δ.

We say A provides (ε, δ)-DistP w.r.t.Λ ⊆ DX if it provides (ε, δ)-DistP w.r.t. Λ2.

For example, the privacy of a user attribute t ∈ {male, female} described in
Sect. 3.1 can be formalized as (ε, 0)-DistP w.r.t. {λmale , λfemale}.

Mathematically, DistP is not a new notion but the DP for distributions. To
contrast with DistP, we refer to the DP for data values as point privacy.

Next we introduce an extended form of distribution privacy to a metric.
Intuitively, extended distribution privacy guarantees that when two input dis-
tributions are closer, then the output distributions must be less distinguishable.

Definition 9 (Extended distribution privacy). Let d : (DX ×DX) → R be
a utility distance, and Ψ ⊆ DX × DX . We say that a mechanism A : X → DY
provides (ε, d, δ)-extended distribution privacy (XDistP) w.r.t. Ψ if the lifting A#

provides (ε, d, δ)-XDP w.r.t. Ψ , i.e., for all (λ, λ′) ∈ Ψ and all R ⊆ Y, we have:

A#(λ)[R] ≤ eεd(λ,λ′) · A#(λ′)[R] + δ.

3.3 Interpretation by Bayes Factor

The interpretation of DP has been explored in previous work [16,18] using the
notion of Bayes factor. Similarly, the meaning of DistP can also be explained in
terms of Bayes factor, which compares the attacker’s prior and posterior beliefs.

Assume that an attacker has some belief on the input distribution before
observing the output values of an obfuscater A. We denote by p(λ) the prior
probability that a distribution λ is chosen as the input distribution. By observing
an output y of A, the attacker updates his belief on the input distribution. We
denote by p(λ|y) the posterior probability of λ being chosen, given an output y.

For two distributions λ0, λ1, the Bayes factor K(λ0, λ1, y) is defined as the
ratio of the two posteriors divided by that of the two priors: K(λ0, λ1, y) =
p(λ0|y)
p(λ1|y)

/p(λ0)
p(λ1)

. If the Bayes factor is far from 1 the attacker significantly updates
his belief on the distribution by observing a perturbed output y of A.

Local Obfuscation Mechanisms for Hiding Probability Distributions 135

Assume that A provides (ε, 0)-DistP. By Bayes’ theorem, we obtain:

K(λ0, λ1, y) = p(λ0|y)
p(λ1|y) · p(λ1)

p(λ0)
= p(y|λ0)

p(y|λ1)
= A#(λ0)[y]

A#(λ1)[y]
≤ eε.

Intuitively, if the attacker believes that λ0 is k times more likely than λ1 before
the observation, then he believes that λ0 is k · eε times more likely than λ1 after
the observation. This means that for a small value of ε, DistP guarantees that
the attacker does not gain information on the distribution by observing y.

In the case of XDistP, the Bayes factor K(λ0, λ1, y) is bounded above by
eεd(λ0,λ1). Hence the attacker gains more information for a larger distance
d(λ0, λ1).

Table 1. Summary of basic properties of DistP.

Sequential composition � Ab is (εb, δb)-DistP
⇒ A1 � A0 is (ε0 + ε1, (δ0 + δ1) · |Φ|)-DistP

Sequential composition • Ab is (εb, δb)-DistP
⇒ A1 • A0 is (ε0 + ε1, δ0 + δ1)-DistP

Post-processing A0 is (ε, δ)-DistP ⇒ A1 ◦ A0 is (ε, δ)-DistP

Pre-processing (by c-stable T) A is (ε, δ)-DistP ⇒ A ◦ T is (c ε, δ)-DistP

3.4 Privacy Guarantee for Attackers with Close Beliefs

In the previous sections, we assume that we know the distance between two
actual input distributions, and can determine the amount of noise required for
distribution obfuscation. However, an attacker may have different beliefs on the
distributions that are closer to the actual ones, e.g., more accurate distributions
obtained by more observations and specific situations (e.g., daytime/nighttime).

To see this, for each λ ∈ DX , let λ̃ be an attacker’s belief on λ. We say that
an attacker has (c, d)-close beliefs if each distribution λ satisfies d(λ, λ̃) ≤ c.
Then extended distribution privacy in the presence of an attacker is given by:

Proposition 1 (XDistP with close beliefs). Let A : X → DY provide
(ε, d , 0)-XDistP w.r.t. some Ψ ⊆ X × X . If an attacker has (c, d)-close beliefs,
then for all (λ0, λ1) ∈ Ψ and all R ⊆ Y, we have A#(λ̃0)[R] ≤ eε(d(λ0,λ1)+2c) ·
A#(λ̃1)[R].

When the attacker’s beliefs are closer to ours, then c is smaller, hence a
stronger distribution privacy is guaranteed. See [15] for a proposition with DistP.
Note that assuming some attacker’s beliefs are inevitable also in many previous
studies, e.g., when we want to protect the privacy of correlated data [19–21].

136 Y. Kawamoto and T. Murakami

3.5 Difference from the Histogram Privacy

Finally, we present a brief remark on the difference between DistP and the dif-
ferential privacy of histogram publication (e.g., [22]). Roughly, a histogram pub-
lication mechanism is a central mechanism that aims at hiding a single record
x ∈ X and outputs an obfuscated histogram, e.g., a distribution μ ∈ DY, whereas
a DistP mechanism is a local mechanism that aims at hiding an input distribution
λ ∈ DX and outputs a single perturbed value y ∈ Y.

Note that neither of these implies the other. The ε-DP of a histogram pub-
lication mechanism means that for any two adjacent inputs x, x′ ∈ X and any
histogram μ ∈ DY, p(μ|x)

p(μ|x′) ≤ eε. However, this does not derive ε-DistP, i.e., for

any adjacent input distributions λ, λ′ ∈ DX and any output y ∈ Y, p(y|λ)
p(y|λ′) ≤ eε.

4 Basic Properties of Distribution Privacy

In Table 1, we show basic properties of DistP. (See the arXiv version [15] for the
full table with XDistP and their detailed proofs.)

The composition A1�A0 means that an identical input x is given to two DistP
mechanisms A0 and A1, whereas the composition A1•A0 means that independent
inputs xb are provided to mechanisms Ab [23]. The compositionality can be
used to quantify the attribute privacy against an attacker who obtains multiple
released data each obfuscated for the purpose of protecting a different attribute.
For example, let Ψ = {(λmale , λfemale), (λhome , λout)}, and A0 (resp. A1) be
a mechanism providing ε0-DistP (resp. ε1-DistP) w.r.t. Ψ . When A0 (resp. A1)
obfuscates a location x0 for the sake of protecting male/female (resp. home/out),
then both male/female and home/out are protected with (ε0 + ε1)-DistP.

As for pre-processing, the stability notion is different from that for DP:

Definition 10 (Stability). Let c ∈ N
>0, Ψ ⊆ DX × DX , and W be a metric

over DX . A transformation T : DX → DX is (c, Ψ)-stable if for any (λ0, λ1) ∈ Ψ ,
T (λ0) can be reached from T (λ1) at most c-steps over Ψ . Analogously, T : DX →
DX is (c,W)-stable if for any λ0, λ1 ∈ DX , W (T (λ0), T (λ1)) ≤ cW (λ0, λ1).

We present relationships among privacy notions in [15]. An important prop-
erty is that when the relation Ψ ⊆ DX ×DX includes pairs of point distributions
(i.e., distributions having single points with probability 1), DistP (resp. XDistP)
implies DP (resp. XDP). In contrast, if Ψ does not include pairs of point distri-
butions, DistP (resp. XDistP) may not imply DP (resp. XDP), as in Sect. 6.

5 Distribution Obfuscation by Point Obfuscation

In this section we present how the point obfuscation mechanisms (including DP
and XDP mechanisms) contribute to the obfuscation of probability distributions.

Local Obfuscation Mechanisms for Hiding Probability Distributions 137

5.1 Distribution Obfuscation by DP Mechanisms

We first show every DP mechanism provides DistP. (See Definition 7 for Φ#.)

Theorem 1 ((ε, δ)-DP ⇒ (ε, δ · |Φ|)-DistP). Let Φ ⊆ X × X . If A : X → DY
provides (ε, δ)-DP w.r.t. Φ, then it provides (ε, δ · |Φ|)-DistP w.r.t. Φ#.

This means that the mechanism A makes any pair (λ0, λ1) ∈ Φ# indistin-
guishable up to the threshold ε and with exceptions δ · |Φ|. Intuitively, when λ0

and λ1 are adjacent w.r.t. the relation Φ#, we can construct λ1 from λ0 only by
moving mass from λ0[x0] to λ1[x1] where (x0, x1) ∈ Φ (i.e., x0 is adjacent to x1).

Example 2 (Randomized response). By Theorem 1, the (ε, 0)-DP randomized
response [14] and RAPPOR [4] provide (ε, 0)-DistP. When we use these mecha-
nisms, the estimation of the input distribution is harder for a smaller ε. However,
these DP mechanisms tend to have small utility, because they add much noise
to hide not only the input distributions, but everything about inputs.

5.2 Distribution Obfuscation by XDP Mechanisms

Compared to DP mechanisms, XDP mechanisms are known to provide better
utility. Alvim et al. [24] show the planar Laplace mechanism [3] adds less noise
than the randomized response, since XDP hides only closer locations. However,
we show XDP mechanisms still need to add much noise proportionally to the ∞-
Wasserstein distance between the distributions we want make indistinguishable.

The ∞-Wasserstein Distance W∞,d as Utility Distance. We first observe
how much ε′ is sufficient for an ε′-XDP mechanism (e.g., the Laplace mechanism)
to make two distribution λ0 and λ1 indistinguishable in terms of ε-DistP.

Suppose that λ0 and λ1 are point distributions such that λ0[x0] = λ1[x1] = 1
for some x0, x1 ∈ X . Then an ε′-XDP mechanism A satisfies:

D∞(A#(λ0)‖A#(λ1)) = D∞(A(x0)‖A(x1)) ≤ ε′d(x0, x1).

In order for A to provide ε-DistP, ε′ should be defined as ε
d(x0,x1)

. That is, the
noise added by A should be proportional to the distance between x0 and x1.

To extend this to arbitrary distributions, we need to define a utility metric
between distributions. A natural possible definition would be the largest distance
between values of λ0 and λ1, i.e., the diameter over the supports defined by:

diam(λ0, λ1) = max
x0∈supp(λ0),x1∈supp(λ1)

d(x0, x1).

However, when there is an outlier in λ0 or λ1 that is far from other values in the
supports, then the diameter diam(λ0, λ1) is large. Hence the mechanisms that
add noise proportionally to the diameter would lose utility too much.

To have better utility, we employ the ∞-Wasserstein metric W∞,d . The idea
is that given two distributions λ0 and λ1 over X , we consider the cost of a
transportation of weights from λ0 to λ1. The transportation is formalized as a

138 Y. Kawamoto and T. Murakami

coupling γ of λ0 and λ1 (see Definition 5), and the cost of the largest move is
Δsupp(γ),d = max

(x0,x1)∈supp(γ)
d(x0, x1), i.e., the sensitivity w.r.t. the adjacency rela-

tion supp(γ) ⊆ X × X (Definition 3). The minimum cost of the largest move is
given by the ∞-Wasserstein metric: W∞,d(λ0, λ1) = min

γ∈cp(λ0,λ1)
Δsupp(γ),d .

XDP implies XDistP. We show every XDP mechanism provides XDistP with
the metric W∞,d . To formalize this, we define a lifted relation Φ#

W∞ as the
maximum relation over DX s.t. for any (λ0, λ1) ∈ Φ#

W∞ , there is a coupling
γ ∈ cp(λ0, λ1) satisfying supp(γ) ⊆ Φ and γ ∈ Γ∞,d(λ0, λ1). Then Φ#

W∞ ⊆ Φ#

holds.

Theorem 2 ((ε, d , δ)-XDP⇒ (ε,W∞,d , δ · |Φ|)-XDistP). If A : X → DY
provides (ε, d , δ)-XDP w.r.t. Φ ⊆ X × X , it provides (ε,W∞,d , δ ·|Φ|)-XDistP
w.r.t. Φ#

W∞ .

Algorithm 1. Tupling mechanism Q tp
k,ν,A

Input: x: input, k: #dummies, ν: distribution of dummies, A: randomized algorithm
Output: y = (r1, . . . , ri, s, ri+1, . . . , rk): the output value of the tupling mechanism

s
$← A(x) ; // Draw an obfuscated value s of an input x

r1, r2, . . . , rk
$← ν ; // Draw k dummies from a given distribution ν

i
$← {1, 2, . . . , k + 1} ; // Draw i to decide the order of the outputs

return (r1, . . . , ri, s, ri+1, . . . , rk) ;

By Theorem 2, when δ > 0, the noise required for obfuscation is propor-
tional to |Φ|, which is at most the domain size squared |X |2. This implies that
for a larger domain X , the Gaussian mechanism is not suited for distribution
obfuscation. We will demonstrate this by experiments in Sect. 7.4.

In contrast, the Laplace/exponential mechanisms provide (ε,W∞,d , 0)-DistP.
Since W∞,d(λ0, λ1) ≤ diam(λ0, λ1), the noise added proportionally to W∞,d can
be smaller than diam. This implies that obfuscating a distribution requires less
noise than obfuscating a set of data. However, the required noise can still be
very large when we want to make two distant distributions indistinguishable.

6 Distribution Obfuscation by Random Dummies

In this section we introduce a local mechanism called a tupling mechanism to
improve the tradeoff between DistP and utility, as motivated in Sect. 1.

Local Obfuscation Mechanisms for Hiding Probability Distributions 139

6.1 Tupling Mechanism

We first define the tupling mechanism as a local mechanism that obfuscates a
given input x by using a point perturbation mechanism A (not necessarily in
terms of DP or XDP), and that also adds k random dummies r1, r2, . . . , rk to
the output to obfuscate the input distribution (Algorithm 1). The probability
that given an input x, the mechanism Q tp

k,ν,A outputs ȳ is given by Q tp
k,ν,A(x)[ȳ].

6.2 Privacy of the Tupling Mechanism

Next we show that the tupling mechanism provides DistP w.r.t. the following
class of distributions. Given β, η ∈ [0, 1] and A : X → DY, we define Λβ,η,A by:

Λβ,η,A =
{
λ ∈ DX | Pr

[
y

$← Y : A#(λ)[y] ≤ β
] ≥ 1 − η

}
.

For instance, a distribution λ satisfying maxx λ[x] ≤ β belongs to Λβ,0,A.

Theorem 3 (DistP of the tupling mechanism). Let k ∈ N
>0, ν be the

uniform distribution over Y, A : X → DY, and β, η ∈ [0, 1]. Given an 0 <

α < k
|Y| , let εα = ln k+(α+β)·|Y|

k−α·|Y| and δα = 2e
− 2α2

kβ2 + η. Then the (k, ν,A)-tupling
mechanism provides (εα, δα)-DistP w.r.t. Λ2

β,η,A.

This claim states that just adding random dummies achieves DistP without
any assumption on A (e.g., A does not have to provide DP). For a smaller range
size |Y| and a larger number k of dummies, we obtain a stronger DistP.

Note that the distributions protected by Q tp
k,ν,A belong to the set Λβ,η,A.

– When β = 1, Λβ,η,A is the set of all distributions (i.e., Λ1,η,A = DX) while
εα and δα tend to be large.

– For a smaller β, the set Λβ,η,A is smaller while εα and δα are smaller; that is,
the mechanism provides a stronger DistP for a smaller set of distributions.

– If A provides εA-DP, Λβ,η,A goes to DX for εA → 0. More generally, Λβ,η,A

is larger when the maximum output probability maxy A#(λ)[y] is smaller.

In practice, even when εA is relatively large, a small number of dummies enables
us to provide a strong DistP, as shown by experiments in Sect. 7.

We note that Theorem 3 may not imply DP of the tupling mechanism,
depending on A. For example, suppose that A is the identity function. For small
εα and δα, we have β � 1, hence no point distribution λ (where λ[x] = 1 for
some x) belongs to Λβ,η,A, namely, the tupling mechanism does not provide
(εα, δα)-DP.

6.3 Service Quality Loss and Cost of the Tupling Mechanism

When a mechanism outputs a value y closer to the original input x, she obtains a
larger utility, or equivalently, a smaller service quality loss d(x, y). For example,
in an LBS (location based service), if a user located at x submits an obfuscated

140 Y. Kawamoto and T. Murakami

location y, the LBS provider returns the shops near y, hence the service quality
loss can be expressed as the Euclidean distance d(x, y) def= ‖x − y‖.

Since each output of the tupling mechanism consists of k + 1 elements, the
quality loss of submitting a tuple ȳ = (y1, y2, . . . , yk+1) amounts to d(x, ȳ):=mini

d(x, yi). Then the expected quality loss of the mechanism is defined as follows.

Definition 11 (Expected quality loss of the tupling mechanism). For a
λ ∈ DX and a metric d : X × Y → R, the expected quality loss of Q tp

k,ν,A is:

L
(
Q tp

k,ν,A

)
=

∑
x∈X

∑
ȳ∈Yk+1 λ[x]Q tp

k,ν,A(x)[ȳ] mini d(x, yi).

For a larger number k of random dummies, mini d(x, yi) is smaller on aver-
age, hence L

(
Q tp

k,ν,A

)
is also smaller. Furthermore, thanks to the distribution

obfuscation by random dummies, we can instead reduce the perturbation noise
added to the actual input x to obtain the same level of DistP. Therefore, the
service quality is much higher than existing mechanisms, as shown in Sect. 7.

6.4 Improving the Worst-Case Quality Loss

As a point obfuscation mechanism A used in the tupling mechanism Q tp
k,ν,A,

we define the restricted Laplace (RL) mechanism below. Intuitively, (εA, r)-RL
mechanism adds εA-XDP Laplace noise only within a radius r of the original loca-
tion x. This ensures that the worst-case quality loss of the tupling mechanisms
is bounded above by the radius r, whereas the standard Laplace mechanism
reports a location y that is arbitrarily distant from x with a small probability.

Fig. 2. Empirical DistP and quality loss of Q tp
k,ν,A for the attribute male/female.

Definition 12 (RL mechanism). Let Yx,r = {y′ ∈ Y | d(x, y′) ≤ r}. We
define (εA, r)-restricted Laplace (RL) mechanism as the A : X → DY defined by:
A(x)[y] = e−εd(x,y)

∑
y′∈Yx,r

e−εd(x,y′) if y ∈ Yx,r, and A(x)[y] = 0 otherwise.

Local Obfuscation Mechanisms for Hiding Probability Distributions 141

Since the support of A is limited to Yx,r, A provides better service quality
but does not provide DP. Nevertheless, as shown in Theorem 3, Q tp

k,ν,A provides
DistP, due to dummies in Y \ Yx,r. This implies that DistP is a relaxation of
DP that guarantees the privacy of attributes while achieving higher utility by
weakening the DP protection of point data. In other words, DistP mechanisms
are useful when users want both to keep high utility and to protect the attribute
privacy more strongly than what a DP mechanism can guarantee (e.g., when
users do not mind revealing their actual locations outside home, but want to
hide from robbers the fact that they are outside home, as motivated in Sect. 1).

7 Application to Attribute Privacy in LBSs

In this section we apply local mechanisms to the protection of the attribute pri-
vacy in location based services (LBSs) where each user submits her own location
x to an LBS provider to obtain information relevant to x (e.g., shops near x).

7.1 Experimental Setup

We perform experiments on location privacy in Manhattan by using the
Foursquare dataset (Global-scale Check-in Dataset) [25]. We first divide Manhat-
tan into 11×10 regions with 1.0 km intervals. To provide more useful information
to users in crowded regions, we further re-divide these regions to 276 regions by
recursively partitioning each crowded region into four until each resulting region
has roughly similar population density.2 Let Y be the set of those 276 regions,
and X be the set of the 228 regions inside the central 10 km × 9 km area in Y.

As an obfuscation mechanism Q, we use the tupling mechanism Q tp
k,ν,A that

uses an (εA, r)-RL mechanism A and the uniform distribution ν over Y to gener-
ate dummy locations. Note that ν is close to the population density distribution
over Y, because each region in Y is constructed to have roughly similar popu-
lation density. In the definitions of the RL mechanism and the quality loss, we
use the Euclidean distance ‖ · ‖ between the central points of the regions.

In the experiments, we measure the privacy of user attributes, formalized
as DistP. For example, let us consider the attribute male/female. For each t ∈
{male, female}, let λt ∈ DX be the prior distribution of the location of the users
having the attribute t. Then, λmale (resp. λfemale) represents an attacker’s belief
on the location of the male (resp. female) users. We define these as the empirical
distributions that the attacker can calculate from the above Foursquare dataset.

7.2 Evaluation of the Tupling Mechanism

Distribution Privacy. We demonstrate by experiments that the male users
cannot be recognized as which of male or female in terms of DistP. In Fig. 2,

2 This partition may be useful to achieve smaller values (ε, δ) of DistP, because β tends
to be smaller when the population density is closer to the uniform distribution.

142 Y. Kawamoto and T. Murakami

we show the experimental results on the DistP of the tupling mechanism Q tp
k,ν,A.

For a larger number k of dummy locations, we have a stronger DistP (Fig. 2a).
For a larger εA, (εA, 0.020)-RL mechanism A adds less noise, hence the tupling
mechanism provides a weaker DistP (Fig. 2b)3. For a larger radius r, the RL
mechanism A spreads the original distribution λmale and thus provides a strong
DistP (Fig. 2c). We also show the relationship between k and DistP in the east-
ern/western Tokyo and London, which have different levels of privacy (Fig. 3).

These results imply that if we add more dummies, we can decrease the noise
level/radius of A to have better utility, while keeping the same level ε of DistP.
Conversely, if A adds more noise, we can decrease the number k of dummies.

Expected Quality Loss. In Fig. 2d, we show the experimental results on the
expected quality loss of the tupling mechanism. For a larger εA, A adds less noise,
hence the loss is smaller. We confirm that for more dummy data, the expected
quality loss is smaller. Unlike the planar Laplace mechanism (PL), A ensures
that the worst quality loss is bounded above by the radius r. Furthermore, for a
smaller radius r, the expected loss is also smaller as shown in Fig. 2d.

7.3 Appropriate Parameters

We define the attack success rate (ASR) as the ratio that the attacker succeeds
to infer a user has an attribute when she does actually. We use an inference
algorithm based on the Bayes decision rule [26] to minimize the identification
error probability when the estimated posterior probability is accurate [26].

In Fig. 4, we show the relationships between DistP and ASR in Manhattan
for the attribute home, meaning the users located at their home. In theory,
ASR = 0.5 represents the attacker learns nothing about the attribute, whereas

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 4 8 12

(ε
, 0

.0
01

)-
D

is
tP

Number of dummies

Manhattan
Tokyo (east)
Tokyo (west)

London

Fig. 3. k and DistP for
male/female in different
cities.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 1 1.5 2

A
tta

ck
 s

uc
ce

ss
 ra

te

ε-DistP

δ = 0.001
δ = 0.010
δ = 0.100

Fig. 4. DistP and ASR
of the tupling (k = 10,
r = 0.020).

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.06 0.08 0.1 0.12 0.14 0.16

E
xp

ec
te

d
lo

ss

ε-DistP

PG
RR
PL
TM

Fig. 5. (ε, 0.001)-DistP and
expected loss for male/female
and TM using k = 10,
r = 0.020.

3 In Fig. 2b, for εA → 0, ε does not converge to 0, since the radius r = 0.020 of RL
does not cover the whole Y. However, if r ≥ maxx,y ‖x − y‖, ε converges to 0.

Local Obfuscation Mechanisms for Hiding Probability Distributions 143

the empirical ASR in our experiments fluctuates around 0.5. This seems to be
caused by the fact that the dataset and the number of locations are finite. From
Fig. 4, we conclude that ε = 1 is an appropriate parameter for (ε, 0.001)-DistP
to achieve ASR = 0.5 in our setting, and we confirm this for other attributes.
However, we note that this is an empirical criterion possibly depending on our
setting, and the choice of ε for DistP can be as controversial as that for DP and
should also be investigated using approaches for DP (e.g., [27]) in future work.

7.4 Comparison of Obfuscation Mechanisms

We demonstrate that the tupling mechanism (TM) outperforms the popular
mechanisms: the randomized response (RR), the planar Laplace (PL), and the
planar Gaussian (PG). In Fig. 5 we compare these concerning the relationship
between ε-DistP and expected quality loss. Since PG always has some δ, it pro-
vides a weaker DistP than PL for the same quality loss. We also confirm that
PL has smaller loss than RR, since it adds noise proportionally to the distance.

Finally, we briefly discuss the computational cost of the tupling mechanism
Q tp

k,ν,A, compared to PL. In the implementation, for a larger domain X , PL
deals with a larger size |X | × |Y| of the mechanism’s matrix, since it outputs
each region with a non-zero probability. In contrast, since the RL mechanism A
used in Q tp

k,ν,A maps each location x to a region within a radius r of x, the size
of A’s matrix is |X | × |Yx,r|, requiring much smaller memory space than PL.

Furthermore, the users of TM can simply ignore the responses to dummy
queries, whereas the users of PL need to select relevant POIs (point of interests)
from a large radius of x, which could cost computationally for many POIs.
Therefore, TM is more suited to be used in mobile environments than PL.

8 Related Work

Differential Privacy. Since the seminal work of Dwork [1] on DP, a number
of its variants have been studied to provide different privacy guarantees; e.g., f -
divergence privacy [28], d-privacy [16], Pufferfish privacy [20], local DP [2], and
utility-optimized local DP [29]. All of these are intended to protect the input
data rather than the input distributions. Note that distributional privacy [30] is
different from DistP and does not aim at protecting the privacy of distributions.

To our knowledge, this is the first work that investigates the differential pri-
vacy of probability distributions lying behind the input. However, a few studies
have proposed related notions. Jelasity et al. [31] propose distributional dif-
ferential privacy w.r.t. parameters θ and θ′ of two distributions, which aims
at protecting the privacy of the distribution parameters but is defined in a
Bayesian style (unlike DP and DistP) to satisfy that for any output sequence y,
p(θ|y) ≤ eεp(θ′|y). After a preliminary version of this paper appeared in
arXiv [15], a notion generalizing DistP, called profile based privacy, is proposed
in [32].

144 Y. Kawamoto and T. Murakami

Some studies are technically related to our work. Song et al. [21] propose the
Wasserstein mechanism to provide Pufferfish privacy, which protects correlated
inputs. Fernandes et al. [33] introduce Earth mover’s privacy, which is technically
different from DistP in that their mechanism obfuscates a vector (a bag-of-words)
instead of a distribution, and perturbs each element of the vector. Sei et al. [34]
propose a variant of the randomized response to protect individual data and
provide high utility of database. However, we emphasize again that our work
differs from these studies in that we aim at protecting input distributions.

Location Privacy. Location privacy has been widely studied in the literature,
and its survey can be found in [35]. A number of location obfuscation methods
have been proposed so far, and they can be broadly divided into the following
four types: perturbation (adding noise) [3,5,36], location generalization (merg-
ing regions) [37,38], and location hiding (deleting) [37,39], and adding dummy
locations [40–42]. Location obfuscation based on DP (or its variant) have also
been widely studied, and they can be categorized into the ones in the centralized
model [43,44] and the ones in the local model [3,5]. However, these methods aim
at protecting locations, and neither at protecting users’ attributes (e.g., age,
gender) nor activities (e.g., working, shopping) in a DP manner. Despite the fact
that users’ attributes and activities can be inferred from their locations [6–8],
to our knowledge, no studies have proposed obfuscation mechanisms to provide
rigorous DP guarantee for such attributes and activities.

9 Conclusion

We have proposed a formal model for the privacy of probability distributions and
introduced the notion of distribution privacy (DistP). Then we have shown that
existing local mechanisms deteriorate the utility by adding too much noise to
provide DistP. To improve the tradeoff between DistP and utility, we have intro-
duced the tupling mechanism and applied it to the protection of user attributes
in LBSs. Then we have demonstrated that the tupling mechanism outperforms
popular local mechanisms in terms of attribute obfuscation and service quality.

Acknowledgment. We thank the reviewers, Catuscia Palamidessi, Gilles Barthe, and
Frank D. Valencia for their helpful comments on preliminary drafts.

A Experimental Results

In this section we present some of the experimental results on the following four
attributes. See [15] for further experimental results.

– social/less-social represent whether a user’s social status [45] (the number of
followers divided by the number of followings) is greater than 5 or not.

– workplace/non-workplace represent whether a user is at office or not. This
attribute can be thought as sensitive when it implies users are unemployed.

– home/out represent whether a user is at home or not.

Local Obfuscation Mechanisms for Hiding Probability Distributions 145

– north/south represent whether a user’s home is located in the northern or
southern Manhattan. This attribute needs to be protected from stalkers.

First, we compare different obfuscation mechanisms for various attributes in
Figs. 5, 6a, and b. We also compare different time periods: 00 h–05 h, 06 h–11 h,
12 h–17 h, 18 h–23 h in Manhattan in Fig. 7.

Next, we compare the experimental results on five cities: Manhattan, east-
ern Tokyo, western Tokyo, London, and Paris. In Table 2 we show examples of
parameters that achieve the same levels of DistP in different cities. More detailed
can be found in Fig. 8 (male/female).

Finally, we compare theoretical/empirical values of ε-DistP as follows. In
Table 3, we show the theoretical values of ε calculated by Theorem 3 for δ =
0.001, 0.01, 0.1. Compared to experiments, those values can only give loose upper
bounds on ε, because of the concentration inequality used to derive Theorem 3.

Table 2. The number k of dummies required for achieving DistP in different cities
(MH = Manhattan, TKE = Tokyo (east), TKW = Tokyo (west), LD = London, PR
= Paris) when εA = 100 and r = 0.020. Note that the data of Paris for male/female
are excluded because of the insufficient sample size.

MH TKE TKW LD PR

(0.25, 0.001)-DistP for male/female 2 >20 5 10 —

(0.50, 0.001)-DistP for social/less social 2 3 >20 2 3

(1.00, 0.001)-DistP for work/non-work 2 2 >20 1 2

(1.50, 0.001)-DistP for home/outside 3 5 >20 >20 4

Table 3. Theoretical/empirical ε-DistP of Q tp
k,ν,A (k = 10, εA = 10, r = 0.020).

δ = 0.001 δ = 0.01 δ = 0.1

Theoretical bounds 2.170 1.625 1.140

Empirical values 0.04450 0.03534 0.02295

Fig. 6. Comparison of the randomized response (RR), the planar Laplace mechanism
(PL), the planar Gaussian mechanism (PG), and the tupling mechanism (TM) Q tp

k,ν,A

with k = 10 dummies and a radius r = 0.020.

146 Y. Kawamoto and T. Murakami

Fig. 7. Empirical DistP and loss for male/female in different hours.

Fig. 8. Empirical DistP and loss for male/female in different cities.

References

1. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener,
I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006).
https://doi.org/10.1007/11787006 1

2. Duchi, J.C., Jordan, M.I., Wainwright, M.J.: Local privacy and statistical minimax
rates. In: Proceedings of FOCS, pp. 429–438 (2013)

3. Andrés, M.E., Bordenabe, N.E., Chatzikokolakis, K., Palamidessi, C.: Geo-
indistinguishability: differential privacy for location-based systems. In: Proceedings
of CCS, pp. 901–914. ACM (2013)

4. Erlingsson, Ú., Pihur, V., Korolova, A.: RAPPOR: randomized aggregatable
privacy-preserving ordinal response. In: Proceedings of CCS, pp. 1054–1067 (2014)

5. Bordenabe, N.E., Chatzikokolakis, K., Palamidessi, C.: Optimal geo-
indistinguishable mechanisms for location privacy. In: Proceedings of CCS,
pp. 251–262 (2014)

6. Liao, L., Fox, D., Kautz, H.: Extracting places and activities from GPS traces using
hierarchical conditional random fields. Int. J. Robot. Res. 1(26), 119–134 (2007)

7. Zheng, V.W., Zheng, Y., Yang, Q.: Joint learning user’s activities and profiles from
GPS data. In: Proceedings of LBSN, pp. 17–20 (2009)

https://doi.org/10.1007/11787006_1

Local Obfuscation Mechanisms for Hiding Probability Distributions 147

8. Matsuo, Y., Okazaki, N., Izumi, K., Nakamura, Y., Nishimura, T., Hasida, K.:
Inferring long-term user properties based on users’ location history. In: Proceedings
of IJCAI, pp. 2159–2165 (2007)

9. Yang, D., Qu, B., Cudré-Mauroux, P.: Privacy-preserving social media data pub-
lishing for personalized ranking-based recommendation. IEEE Trans. Knowl. Data
Eng. 31(3), 507–520 (2019)

10. Otterbacher, J.: Inferring gender of movie reviewers: exploiting writing style, con-
tent and metadata. In: Proceedings of CIKM, pp. 369–378 (2010)

11. Weinsberg, U., Bhagat, S., Ioannidis, S., Taft, N.: BlurMe: inferring and obfuscat-
ing user gender based on ratings. In: Proceedings of RecSys, pp. 195–202 (2012)

12. Gong, N.Z., Liu, B.: Attribute inference attacks in online social networks. ACM
Trans. Priv. Secur. 21(1), 3:1–3:30 (2018)

13. Mislove, A., Viswanath, B., Gummadi, P.K., Druschel, P.: You are who you know:
inferring user profiles in online social networks. In: Proceedings of WSDM, pp.
251–260 (2010)

14. Kairouz, P., Bonawitz, K., Ramage, D.: Discrete distribution estimation under
local privacy. In: Proceedings of ICML, pp. 2436–2444 (2016)

15. Kawamoto, Y., Murakami, T.: Local obfuscation mechanisms for hiding probability
distributions, CoRR, vol. abs/1812.00939 (2018). arXiv:1812.00939

16. Chatzikokolakis, K., Andrés, M.E., Bordenabe, N.E., Palamidessi, C.: Broaden-
ing the scope of differential privacy using metrics. In: De Cristofaro, E., Wright,
M. (eds.) PETS 2013. LNCS, vol. 7981, pp. 82–102. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-39077-7 5

17. Vaserstein, L.: Markovian processes on countable space product describing large
systems of automata. Probl. Peredachi Inf. 5(3), 64–72 (1969)

18. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in
private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 265–284. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878 14

19. Kifer, D., Machanavajjhala, A.: No free lunch in data privacy. In: Proceedings of
SIGMOD, pp. 193–204 (2011)

20. Kifer, D., Machanavajjhala, A.: A rigorous and customizable framework for privacy.
In: Proceedings of PODS, pp. 77–88 (2012)

21. Song, S., Wang, Y., Chaudhuri, K.: Pufferfish privacy mechanisms for correlated
data. In: Proceedings of SIGMOD, pp. 1291–1306 (2017)

22. Xu, J., Zhang, Z., Xiao, X., Yang, Y., Yu, G., Winslett, M.: Differentially private
histogram publication. VLDB J. 22(6), 797–822 (2013)

23. Kawamoto, Y., Chatzikokolakis, K., Palamidessi, C.: On the compositionality of
quantitative information flow. Log. Methods Comput. Sci. 13(3) (2017)

24. Alvim, M.S., Chatzikokolakis, K., Palamidessi, C., Pazii, A.: Invited paper: local
differential privacy on metric spaces: optimizing the trade-off with utility. In: Pro-
ceedings of CSF, pp. 262–267 (2018)

25. Yang, D., Zhang, D., Qu, B.: Participatory cultural mapping based on collective
behavior data in location based social networks. ACM Trans. Intell. Syst. Technol.
7(3), 30:1–30:23 (2015)

26. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley, Hoboken (2000)
27. Hsu, J., et al.: Differential privacy: an economic method for choosing epsilon. In:

Proceedings of CSF, pp. 398–410 (2014)

http://arxiv.org/abs/1812.00939
https://doi.org/10.1007/978-3-642-39077-7_5
https://doi.org/10.1007/11681878_14

148 Y. Kawamoto and T. Murakami

28. Barthe, G., Olmedo, F.: Beyond differential privacy: composition theorems and
relational logic for f -divergences between probabilistic programs. In: Fomin, F.V.,
Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013. LNCS, vol. 7966,
pp. 49–60. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39212-
2 8

29. Murakami, T., Kawamoto, Y.: Utility-optimized local differential privacy mecha-
nisms for distribution estimation. In: Proceedings of USENIX Security (2019, to
appear)

30. Blum, A., Ligett, K., Roth, A.: A learning theory approach to noninteractive
database privacy. J. ACM 60(2), 12:1–12:25 (2013)

31. Jelasity, M., Birman, K.P.: Distributional differential privacy for large-scale smart
metering. In: Proceedings of IH&MMSec, pp. 141–146 (2014)

32. Geumlek, J., Chaudhuri, K.: Profile-based privacy for locally private computations,
CoRR, vol. abs/1903.09084 (2019)

33. Fernandes, N., Dras, M., McIver, A.: Generalised differential privacy for text doc-
ument processing. In: Nielson, F., Sands, D. (eds.) POST 2019. LNCS, vol. 11426,
pp. 123–148. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17138-4 6

34. Sei, Y., Ohsuga, A.: Differential private data collection and analysis based on
randomized multiple dummies for untrusted mobile crowdsensing. IEEE Trans.
Inf. Forensics Secur. 12(4), 926–939 (2017)

35. Chatzikokolakis, K., ElSalamouny, E., Palamidessi, C., Anna, P.: Methods for loca-
tion privacy: a comparative overview. Found. Trends R© Priv. Secur. 1(4), 199–257
(2017)

36. Shokri, R., Theodorakopoulos, G., Troncoso, C., Hubaux, J.-P., Boudec, J.-Y.L.:
Protecting location privacy: optimal strategy against localization attacks. In: Pro-
ceedings of CCS, pp. 617–627. ACM (2012)

37. Shokri, R., Theodorakopoulos, G., Boudec, J.-Y.L., Hubaux, J.-P.: Quantifying
location privacy. In: Proceedings of S&P, pp. 247–262. IEEE (2011)

38. Xue, M., Kalnis, P., Pung, H.K.: Location diversity: enhanced privacy protection
in location based services. In: Choudhury, T., Quigley, A., Strang, T., Suginuma,
K. (eds.) LoCA 2009. LNCS, vol. 5561, pp. 70–87. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-01721-6 5

39. Hoh, B., Gruteser, M., Xiong, H., Alrabady, A.: Preserving privacy in GPS traces
via uncertainty-aware path cloaking. In: Proceedings of CCS, pp. 161–171. ACM
(2007)

40. Bindschaedler, V., Shokri, R.: Synthesizing plausible privacy-preserving location
traces. In: Proceedings of S&P, pp. 546–563 (2016)

41. Chow, R., Golle, P.: Faking contextual data for fun, profit, and privacy. In: Pro-
ceedings of PES, pp. 105–108. ACM (2009)

42. Kido, H., Yanagisawa, Y., Satoh, T.: Protection of location privacy using dummies
for location-based services. In: Proceedings of ICDE Workshops, p. 1248 (2005)

43. Machanavajjhala, A., Kifer, D., Abowd, J.M., Gehrke, J., Vilhuber, L.: Privacy:
theory meets practice on the map. In: Proceedings of ICDE, pp. 277–286. IEEE
(2008)

44. Ho, S.-S., Ruan, S.: Differential privacy for location pattern mining. In: Proceedings
of SPRINGL, pp. 17–24. ACM (2011)

45. Cheng, Z., Caverlee, J., Lee, K., Sui, D.Z.: Exploring millions of footprints in
location sharing services. In: Proceedings of ICWSM (2011)

https://doi.org/10.1007/978-3-642-39212-2_8
https://doi.org/10.1007/978-3-642-39212-2_8
https://doi.org/10.1007/978-3-030-17138-4_6
https://doi.org/10.1007/978-3-642-01721-6_5

A First Look into Privacy Leakage in 3D
Mixed Reality Data

Jaybie A. de Guzman1,2(B) , Kanchana Thilakarathna2,3 ,
and Aruna Seneviratne1,2

1 University of New South Wales, Sydney, NSW 2052, Australia
j.deguzman@student.unsw.edu.au, a.seneviratne@unsw.edu.au

2 Data61 | CSIRO, Sydney, NSW 2015, Australia
3 University of Sydney, Sydney, NSW 2006, Australia

kanchana.thilakarathna@sydney.edu.au

Abstract. We have seen a rise in mixed (MR) and augmented real-
ity (AR) applications and devices in recent years. Subsequently, we have
become familiar with the sensing power of these applications and devices,
and we are only starting to realize the nascent risks that these technology
puts over our privacy and security. Current privacy protection measures
are primarily aimed towards known and well-utilised data types (i.e.
location, on-line activity, biometric, and so on) while a few works have
focused on looking into the security and privacy risks of and provid-
ing protection on MR data, particularly on 3D MR data. In this work,
we primarily reveal the privacy leakage from released 3D MR data and
how the leakage persist even after implementing spatial generalizations
and abstractions. Firstly, we formalize the spatial privacy problem in 3D
mixed reality data as well as the adversary model. Then, we demonstrate
through an inference model how adversaries can identify 3D spaces and,
potentially, infer more spatial information. Moreover, we also demon-
strate how compact 3D MR Data can be in terms of memory usage
which allows adversaries to create lightweight 3D inference models of
user spaces.

Keywords: Mixed and augmented reality · 3D data ·
Point cloud data · Security and privacy

1 Introduction

Pokémon Go’s release in 2016 arguably marked the beginning of augmented
reality (AR) and mixed reality (MR) to be part of the mainstream mobile
market. Soon after, Apple launched the ARKit in 2017 and, halfway through
2018, Google followed with the ARCore.1 Microsoft, on the other hand, focused
on the head-mounted displays (or HMDs) with the HoloLens and other OEM
headsets running their Windows Mixed Reality platform.2 These developments
1 See https://developer.apple.com/documentation/arkit for Apple’s ARKit See

https://developers.google.com/ar/ for Google’s ARCore.
2 https://developer.microsoft.com/en-us/windows/mixed-reality.

c© Springer Nature Switzerland AG 2019
K. Sako et al. (Eds.): ESORICS 2019, LNCS 11735, pp. 149–169, 2019.
https://doi.org/10.1007/978-3-030-29959-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29959-0_8&domain=pdf
http://orcid.org/0000-0002-2816-7721
http://orcid.org/0000-0003-4332-0082
http://orcid.org/0000-0001-6894-7987
https://developer.apple.com/documentation/arkit
https://developers.google.com/ar/
https://developer.microsoft.com/en-us/windows/mixed-reality
https://doi.org/10.1007/978-3-030-29959-0_8

150 J. A. de Guzman et al.

undoubtedly signifies the very near future with AR and MR being ubiquitous.
(Henceforth, following Milgram’s definition [18], we will be collectively calling
both augmented and mixed reality as mixed reality or MR.)

Most mobile MR development platforms (i.e. ARCore, and ARKit) utilise
a form of visual odometry combined with motion or inertial information to
map the device’s position relative to the real-world, while dedicated HMDs
(i.e. HoloLens), leverage multiple cameras with depth sensors to understand
the environment and create a virtual 3D map. Once a good mapping has been
created, the virtual space (or a coordinate system) is shared with applications
to allow synthetic or augmented content to interact with the physical world such
as anchoring a virtual object on your desk.

However, this environment understanding capability required by MR poses
unforeseen privacy risks for users. Once these captured 3D maps have been
revealed to untrusted parties, potentially sensitive spatial information about the
users’ space are disclosed. Adversaries can vary from a background service that
delivers unsolicited ads based on the objects detected from the user’s surround-
ings to burglars who are able to map the user’s house, and, perhaps, the locations
and dimensions of specific objects in their house based on the released 3D data.
Furthermore, turning off GPS tracking for location privacy may no longer be suf-
ficient once the user starts using MR applications that can expose their locations
through the 3D and visual data that are exposed.3

The recent EU-GDPR ruling aims to address these issues from a policy app-
roach. It aims to empower the users and protect their data privacy. This high-
lights the importance of designing and developing privacy-enhancing technologies
(PETs). Currently, there are numerous PETs designed for structured data such
as k -anonymity [23], and differential privacy [4], as well as techniques for data
aggregation during information collection [9]. However, current techniques pro-
tecting media are mostly for conventional data types, and are primarily focusing
on facial de-identification for identity privacy [7,19,27] as well as protection
against visual capture recording mechanisms [1,28]. (See [8] for a survey of MR-
related security and privacy protection approaches.)

In this work, we focus on the nascent risks from captured and collected 3D
data used for MR processing. To demonstrate the privacy leakage, we utilize
actual 3D point cloud data, captured by a Microsoft HoloLens, to construct
an adversarial inferrer that can identify spaces from the revealed 3D data. The
inference performance is evaluated over both raw data and different 3D data
generalizations. And we show how such generalizations are ineffective even with
a simple matching-based inference attack. To the best of our knowledge, this

3 For example, Google has unveiled their Visual Positioning Service (or VPS) using
3D data to locate users in space – an offshoot of Project Tango – during their 2018
I/O keynote event.

A First Look into Privacy Leakage in 3D Mixed Reality Data 151

Fig. 1. Information flow (following the green solid arrows) for a desired MR functional-
ity G with an intermediate privacy-preserving mechanism M ; while an MR adversarial
process (represented by the red broken arrows) may be done off line: (1) adversar-
ial inference modeling or learning from, say, historical 3D data, and (2) adversarial
inference or matching over released 3D data (Color figure online)

is the first work that aims to expose these risks. Consequently, we make the
following specific contributions in this work:

1. We formalize the 3D spatial privacy problem and define the privacy and utility
metrics specific to 3D MR data.

2. We present a 3D adversarial inference model to reveal the spatial privacy
leakage and their effectiveness.

3. Using 3D point cloud data collected from Microsoft HoloLens, which is also
the same 3D data representation format for Google’s ARCore and Apple’s
ARKit, we demonstrate that 3D spatial inference attacks are possible on
these MR platforms.

4. Lastly, results show the insufficient protection provided by spatial generaliza-
tions even by only using simple descriptor-matching for adversarial inference.

The rest of the paper is organized follows. Section 2 elaborates on the 3D
MR data, i.e. point cloud data, and presents the theoretical framework of our
3D privacy problem. In Sect. 4, we describe the evaluation methodology used to
determine the privacy leakage in 3D data with and without spatial generaliza-
tions. The results are presented in Sect. 5 and the related work in Sect. 6. We
conclude the paper in Sect. 7.

2 3D Privacy Problem

2.1 Why 3D?

With images and video, what the machine sees is practically what the user sees
and a great deal of privacy work have been done on these data forms. Contrari-
wise, in MR, the experience is exported as visual data (e.g. objects augmented

152 J. A. de Guzman et al.

Fig. 2. A privacy preserving mechanism M transforms the raw point clouds X to a
potentially privacy-preserving version Z to hide location identity (i∗ = ?).

on the user’s view) while its 3D nature, especially of the underlying data, is
not exposed to the users: what the machine sees is different (arguably, even
more) than what the user sees. That is, the digital representation of the physical
world, the 3D point cloud data, is not exposed to the user. This inherent per-
ceptual difference creates a disconnect and, perhaps, affects (or the lack thereof)
how users perceive the sensitivity of 3D information. Furthermore, current MR
platforms (i.e. Windows MR, ARCore and ARKit) directly operates on these
3D spatial maps or point clouds and, so far, no privacy preservation is applied
before providing these data to third party applications.

3D Point Cloud Data. The 3D points comprising the 3D point cloud can
be described by their {x, y, z}-position in space with an accompanying normal
vector {nx, ny, nz}. Figure 2 shows the point clouds as a mesh of 3D points
with associated orientations represented by normal vectors. These are the min-
imum information necessary to capture the geometric properties of 3D spaces.
Where normal vectors are not readily available, it is estimated from the points
themselves. Sometimes, point clouds may also be accompanied by photometric
information such as RGB or light intensity extracted from associated images or
videos. For this work, we will only be focusing on the use of geometric informa-
tion and leverage them for 3D description for emulating adversarial inference.

2.2 Defining the 3D Privacy Problem

We define the elements shown in Fig. 1: the space represented by a point cloud
X identified by a label i; the privacy preserving mechanism M that transforms
X to a privacy-preserved point cloud Z, i.e. M : X �→ Z as shown in Fig. 2; an
intended functionality G that produces an intended output Y , and from which
we derive the utility function U ; and an adversarial inferrer J that produces a
hypothesis H to reveal the identity of a given unknown space. The adversarial
processes may be done off line and not necessarily during MR function runtime.
(See Appendix A for detailed definitions on X, M , Z, and G.)

Defining the Function Utility. For a given functionality G, an effective mech-
anism M aims to make the resulting outputs yi from the raw point cloud xi and
its privacy-preserving version z(i) similar, i.e. yxi

� yz(i) , or their difference is
small, DZ;X = |yxi

− yz(i) | → 0. Or in terms of a utility function U which we
intend to maximize (i.e. as close to 1 as possible if we assume that DZ;X ≤ 1),

A First Look into Privacy Leakage in 3D Mixed Reality Data 153

U(Z;X) = 1 − DZ;X , where Z = M(X). (1)

The most common functionality in MR is the anchoring of virtual 3D objects
on to real-world surfaces (e.g. the floor, walls, or tables) which requires near-truth
3D point cloud representations to provide consistent anchored augmentations.

Defining the Adversarial Inferrer. An inferrer J produces a hypothesis
h : i∗ = i about the true location i of a given set of point clouds, xi∗ or z(i∗),
for any query space i∗ (i.e. J : xi∗ or z(i∗) for any i∗ → h : i∗ = i) where the
following inequality holds

P (h : i∗ = i|xi∗ or z(i∗)) > P (h : i∗ = io, for any io �= i|xi∗ or z(i∗)). (2)

The Privacy-Utility Problem. Consequently, we can now pose the following
privacy function Π in terms of the error rate of the inferrer,

Π(Z;X) = mean
iterations

|h : iz �= ix|
|∀i| , (3)

which is simply the mean misclassification rate of an inferrer J about the query
space iz whose true identity is ix. A few works in the literature uses the same
error-based metric for privacy [22,26]. A desired M produces Z that maximizes
both the privacy Π and the utility function U .

Privacy and Utility Metrics. Now, we define the specific privacy and utility met-
rics for this work. For privacy, we use the same notion of a high error rate as
high privacy; thus, the same metric defined by Eq. 3 holds. For utility, we use the
same similarity definition defined by Eq. 1 but define the specific components of
the similarity function as,

U(Z;X) = mean(α · (1 − ||x − z||) + β · (nx · nz)) (4)

where the first component is the 3D point similarity of the true/raw point x from
the transformed point z, the second component are their normal vector similarity,
and α and β are contribution weights where α, β ∈ [0, 1] and α + β = 1. We set
α, β = 0.5. We also insert a subjective acceptability metric γ ∈ [0, 1] like so,

U(Z;X) = mean
[
α ·

(
1 − 	||x − z||
γ

γ

)
+ β ·

(
�nx · nz�1−γ − 1 − γ

γ

)]
. (5)

γ allows us to specify the level of error or deviation of the released (i.e. gener-
alized) spaces from the true space – any deviation beyond the set γ results to a
zero utility. The range of U(X,Z) ∈ [0, 1].

2.3 Adversary Model

Adversaries may desire to, at the very least, infer the location of the users using
released 3D data. They may further infer user poses, movement in space, or,

154 J. A. de Guzman et al.

even, detect changes in user environment. Furthermore, in contrast to video and
image capture, 3D data, when generalized, can provide a much more lightweight
and near-truth representation of user spaces which we will see later (Sect. 5.5).
For our evaluation, we will focus on the minimum attack where the adversary
infers the spatial location of the user given historical 3D raw data of user spaces.
We also assume that the adversary is not aware of the generalizations that an
MR platform can perform over 3D data before it is released.

(a) Complete captured raw point cloud: different
regions are differently colored

(b) Sample Region

(c) Photo of
sample region

Fig. 3. Render of the gathered point cloud (1 unit is roughly 1 m in the real-world)

Using the definitions in Sect. 2.2, we can formalize the adversary models as
previously shown in Fig. 1. We assume that the adversary has prior knowledge
about the spaces which they can use as reference for building their inference
model J . Prior knowledge can be made available through (1) historical or pub-
licly available 3D spatial data of the user spaces, (2) previously provided data by
the user themselves or other users, or (3) from a colluding application or service
that has access to raw or higher resolution 3D data.

Adversarial Inference. Our adversarial inference is a two-step process as
labelled in Fig. 1: (1) the creation of a reference description model or dictio-
nary using the 3D descriptor algorithms (Sect. 3.2) over the previously known
spaces as reference, (2) and the inference of unknown spaces by matching their
3D descriptors to that of the reference descriptors from step 1. The construction
of the inference model is detailed in the next section.

3 3D Description and Inference

3.1 3D MR Data

We gathered real 3D point cloud data using the Microsoft HoloLens in an office
environment to demonstrate the leakage from actual human-scale spaces in which

A First Look into Privacy Leakage in 3D Mixed Reality Data 155

an MR device is usually used.4 The render of the gathered 3D space is shown in
Fig. 3a. We sliced our gathered point cloud into roughly 2.5 × 2.5 squares about
the xz-plane (i.e. the floor plane) to create a synthetic set of multiple spaces.5

The resulting number of spaces after slicing is 38. Also, we treat the spaces to
be non-contiguous – specifically, spaces that are truly adjacent do not inform
adversarial inference.

3.2 Describing the 3D Space

The 3D point clouds can then be used by the adversary to train an inference
model. Features that describe and discriminate among 3D spaces are usually
used for inference modelling. There are considerable features in 3D point clouds
for it to be directly used as a 3D descriptor, albeit a crude one, and it won’t
be translation- and rotation-invariant by itself. Hence, invariant descriptors are
necessary for adversarial inference models to be resilient.

To provide invariance, we utilize existing 3D description algorithms.6 The
curvature-reliant self-similarity (SS) descriptors [10] are very sensitive to point
cloud variations, due to the curvature estimation. To counter this, we explored
the use of non-curvature reliant spin image (SI) descriptors [13,14]. SI descrip-
tors only use the normal vector unlike the SS approach which uses local curvature
maxima for key point selection. Thus, a vanilla SI computes the descriptor for
every point in the point cloud which produces a dense descriptor space. For our
SI implementation, we extract key points and descriptors from the subsampled
space by factor of 3 (Fig. 5 shows that significant errors only appear at resolutions
< 3) to create a lighter weight descriptor set. Also, the spinning effect reduces
the impact of variations within that spin which makes SI descriptors more robust
compared to SS descriptors. Furthermore, as we will describe in Sect. 4.1, plane
generalization removes curvatures which makes its use as a geometric descrip-
tion information impractical. Validation of the inference performance of these
descriptors are detailed in Sect. 3.3.

3.3 Inferring the 3D Space

For the adversarial inference model, we built two types of inferrers: (1) a baseline
3D Bayesian inference model using directly the 3D point cloud data, and (2) a
matching-based inference model using the rotation-invariant descriptors.

4 There are numerous 3D point cloud datasets such as those listed in http://cvgl.
stanford.edu/resources.html but most of these available 3D data sets are models of
objects or of city-scale models.

5 Note: the resulting surface are of the slice varies due to the walls, and objects within
a slice. It can also be less than 2.5 × 2.5 due to gaps on the space.

6 For a concise discussion and bench marking of different 3D description algorithms,
we direct the reader to [3].

http://cvgl.stanford.edu/resources.html
http://cvgl.stanford.edu/resources.html

156 J. A. de Guzman et al.

Inference Using the Rotation-Invariant Descriptors. It is challenging to
create a straightforward 3D inference model as we would have in a 3D Bayesian
model.7 As a work around, we utilize the standard matching-based approach that
is used over high-dimensional descriptors. This approach is rather deterministic
as opposed to the probabilistic Bayesian inference model.

This deterministic approach used for the rotation-invariant descriptors uti-
lizes a matching-based voting mechanism with a reference set of descriptors to
determine a match; then, nearest neighbor distance ratio (or NNDR) is used
to qualify a match. Thus, instead of the probabilistic maximization described
in Eq. 2, we utilize this NNDR-based approach for deterministic inference. See
Appendix B for more details on this descriptor matching process.

(a) Bayesian
(res = 100)

(b) Bayesian,
rotated queries

(c) Self Similarity (d) Spin Images

Fig. 4. Inference performance heatmaps of the different 3D description approaches

Fig. 5. Performance of the different 3D description/inference for different resolutions

Validating the Inference Models. We conducted a preliminary validation
to check the effectiveness of the chosen description and inference approaches. To
validate our inference models, we feed them the same data as queries.

7 For example, our spin image description implementation have 200 (i.e. 10 × 20)
dimensions; it’ll require 10200 bins for every key point to be described if we are to
approximate that each dimension will have 10 bins.

A First Look into Privacy Leakage in 3D Mixed Reality Data 157

Using the Bayesian Inference Model. When complete versions of the set of
points xi for each space i is given as a query data, the baseline Bayesian infer-
ence model performs very well as shown by the solid yellow diagonal in the
heatmap/confusion matrix in Fig. 4a. Figure 5 shows the results of varying the
resolution from 1 ≤ res < 20. For un-rotated query spaces, the Bayesian infer-
ence model only starts to have errors at resolutions ≤ 10, while its error rate for
rotated query spaces is ≥ 0.8 for all resolutions. As we have indicated earlier in
Sect. 3.2, the baseline inference model is not rotation-invariant and it is clearly
observed here. For example, Fig. 4b shows a heat-map for a lower resolution of
res = 10 with rotated query spaces; we can not see a distinguishable diagonal to
signify good inference performance.

Using the Rotation-Invariant Descriptors. With un-rotated query spaces, the
SS descriptors’ maximum error rate is only 0.4 as shown in Fig. 5, while the
SI descriptors stays 0 even at the smallest resolution of 1. With rotated query
spaces, errors increased for both but significant errors (i.e. ≥ 0.1) only appear at
res ≤ 3 for the SI descriptors, while errors for the SS descriptors already appear
even at higher resolutions of res ≤ 14.

The excellent performance of the spin image descriptors can be better visu-
alized with the heatmaps shown in Fig. 4 with res = 10. As can be observed,
the spin images discriminates well as demonstrated by the clearer diagonal in
Fig. 4d as compared to Fig. 4c. Thus, in the succeeding experiments described
in the next section (with results in Sect. 5), we will only be using spin image
descriptors.

Fig. 6. Surface generalization, i.e. plane fitting, example: (left) sample raw space, (cen-
ter) RANSAC generalization, and (right) locally-originated generalization.

4 Evaluation Setup

For evaluating the performance of an adversary as described in Sect. 2.3, we
check its inference performance over released modified point clouds. We use the
descriptor set extracted from the 3D raw point cloud data as the reference set
available to the adversary (labelled 1 in Fig. 1). We, then, implement various
information reduction techniques to investigate how well can the adversary infer
the identity, i.e. spatial location, of the released and modified point cloud.

158 J. A. de Guzman et al.

4.1 3D Information Reduction Strategies

To limit the amount of information released with the point clouds, (1) plane gen-
eralizations and (2) partial releasing can be utilised to provide MR applications
the least information necessary to deliver the desired functionality.

Plane Fitting Generalization. For the generalizations, as we do not intend
to determine an efficient 3D generalization algorithm for our data, we have
employed two simple techniques: the popular Random Sample Consensus (or
RANSAC) plane fitting method [6], and a simple locally-originated plane gener-
alization (we use label LOCAL henceforth). Figure 2 earlier shows what struc-
turally occurs during plane-fitting generalization which can potentially pre-
serve spatial privacy. Please see Appendix C for the generalization pseudo-code
(Algorithms 1 and 2).

RANSAC. For our implementation, we directly utilize the accompanying nor-
mal vector of each point to estimate the planes in the plane fitting process instead
of computing or estimating them from the neighbouring points. Algorithm 1 (in
Appendix C) shows the pseudo-code of our RANSAC implementation, while an
example RANSAC spatial generalization is shown in Fig. 6-center.

LOCAL. On the other hand, LOCAL generalization is an oversimplification of
RANSAC as can be seen in Algorithm 2. We removed the point and plane test
(i.e. Lines 12 and 14 in Algorithm 1) which ensures that a point is a valid member
of the candidate plane and that the candidate plane is the best, i.e. largest,
among all candidate planes. This results in more inaccurate generalizations as
we go further away from the initial test point from which the candidate plane
originated. Figure 6-right shows a sample LOCAL generalization.

Fig. 7. Average privacy (i.e. mean error rate ± margin of error with 95% confidence)
over one-time released partial spaces with varying radii and generalizations

Partial Spaces. In partial spaces, we only release segments of the space with
varying radius. This demonstrates the case when an MR application is provided
with limited 3D spatial information only once, such as a specific surface, a plane
or an anchor point. We apply this technique to both raw and generalized point
clouds. For every partial space level (i.e. radius), we get 10 sample random

A First Look into Privacy Leakage in 3D Mixed Reality Data 159

iterations per space as a user can initiate an MR application from any point
within a space; to demonstrate rotation-invariance, we further vary the spaces by
doing 5 random rotations which results to a total of 50 iterations per space. We,
then, get the mean error rate (with confidence intervals) over these iterations.

4.2 Successive Release of Partial Spaces

We use the information reduction techniques described in Sect. 4.1 as strategies
for privacy protection. First, we evaluated adversarial performance over one-
time released partial spaces as described in Sect. 4.1. Then, we introduced more
information by successively releasing partial spaces.

To demonstrate the case when users are moving around and their physical
space is gradually revealed, we included an experimental setup that successively
releases partial spaces. Following the described abstraction strategies in Sect. 4.1,
we have the following different 3D data setups for successively releasing of partial
spaces: (1) from collected raw points, (2) from RANSAC generalized planes,
and (3) from LOCAL generalized planes. Similar to the one-time partial release
case, we do 10 sample iterations, and 5 random rotations for each case in the
successive release setup. (For the extended LOCAL shown in Fig. 8d, we do 10
sample iterations but only did one random rotation for demonstration purposes.)

5 Results and Discussion

In the succeeding discussions, we would like to emphasize the trends and rela-
tive values rather than absolute empirical values themselves. We also presented
takeaways whose discussions on trends and relationships can be generalized.

5.1 Inference of Partial Spaces

Figure 7 shows the performance of our adversarial inference over partial spaces
with raw points and of the two generalized cases. For the raw-points case, at
radius r = 0.25, the average privacy ΠRaw is very high, but immediately drops
below ΠRaw < 0.8 at r ≥ 0.5. With RANSAC generalization applied, it can be
seen that the inference success is reduced, or essentially prevented, with radii
r ≤ 1.0, but average privacy ΠRANSAC starts to decrease for r > 1.0; thus,
RANSAC generalizations are not effective protection strategies. This should not
come as a surprise, since the RANSAC algorithm will try to fit planes as close
to the true/raw space.

On the other hand, locally-originated plane generalizations can prevent infer-
ence for this one-time partial release case. Regardless of the size of the revealed
space, the average privacy stays at ΠLOCAL > 0.9 as shown in Fig. 7. In fact,
contrary to RANSAC generalizations, locally-originated plane generalizations
will maintain a high ΠLOCAL with larger revealed spaces because the LOCAL
algorithm will only produce a generalized plane from a singular local reference
point which may not even be from a true plane or have a normal vector con-
sistent with its neighbours. This results in plane generalizations that are more
likely to be very different from the surfaces of the true spaces.

160 J. A. de Guzman et al.

5.2 Successive Release of Partial Spaces

Following the partial spaces performance, it is tempting to say that we can
maintain privacy by only releasing partial spaces of r ≤ 0.25 even with raw
captured data, but that is only for the single one-time release case. In this section,
as described in Sect. 4.2, we will now show the privacy or inference performance
when we successively release partial spaces.

Raw-Points Spaces. Figure 8a shows the inference performance of successively
released partial raw-points spaces. This is consistent with the results presented
in Fig. 7. After a good number of releases, the space is slowly revealed; thus,
the dropping average privacy. For r = 0.25, the ΠRaw drops below 0.8 after 4
or more releases, while for the larger radii, r ≥ 0.5, the average privacy quickly
drops and even starts at ΠRaw < 0.8 at the first release.

RANSAC Generalized Planes. For the successively released, RANSAC gen-
eralized partial spaces, as shown in Fig. 8b, after 4 releases, ΠRANSAC ≤ 0.8
for radius r = 0.75. Similar to the performance shown in Fig. 7, at higher radii,
ΠRANSAC for successive release eventually falls below ≤ 0.6 after a good number
of releases. Specifically, for r ≥ 0.5, ΠRANSAC ≤ 0.6 after about 14 releases.

Compared to the successively released partial spaces from raw points, the
RANSAC generalization already contributes some errors to the released spaces.
This reflects on the rather slow drop of ΠRANSAC . Nonetheless, if RANSAC
spaces are continuously released, regardless of its size, the space will be revealed.
However, keeping RANSAC spaces to a small size, i.e. r ≤ 0.5, and limiting
release, e.g. no more than 10 releases, RANSAC can be a potential inference
protection aside from being a generalization technique.

Local Generalized Planes. Similar to the results in Fig. 7, the inference per-
formance from successively released and locally generalized partial spaces, as
shown in Fig. 8c, presents error rates above 0.8 within 20 releases. To check
inference performance for more releases using LOCAL, we extend the number of
releases to 96 and checked the inference performance every multiple of 5 succes-
sive releases as shown in Fig. 8d. Now, the average ΠLOCAL do drop to ≤ 0.8 for
r = 0.25 (r = 0.75 approaches 0.8 at release 10) but eventually increases with
more releases. Due to the high inaccuracy provided by localized generalizations,
especially at larger partial spaces, more releases do not contribute to improved
inference and only misleads adversarial inference. Partially released planes with
nearby originating points with different normals will produce planes within the
same vicinity but of different orientations. This confuses the inferrer. Thus, if
spatial privacy is a priority, localized generalizations can be used.

Takeaway. Privacy can be arranged as ΠRaw < ΠRANSAC < ΠLOCAL, based
on the form of released data; for continuously released large spaces (r > 0.5),
RANSAC cannot provide adequate privacy, but for small enough spaces (r ≤
0.5), it can be a potential form of inference protection coupled with limited or
controlled releasing.

A First Look into Privacy Leakage in 3D Mixed Reality Data 161

(a) Raw Points (b) RANSAC generalized spaces

(c) LOCAL generalized spaces (d) LOCAL generalized extended

Fig. 8. Average privacy (mean error rate ± margin of error with 95% confidence) over
successively released partial spaces. For Fig. 8a–c, we perform up to 20 releases per
iteration. For Fig. 8c, we extend the LOCAL case to see long-term inference.

5.3 Inference Trends with Spatial Properties

Precision and Recall. We also checked the precision and recall as an inference
performance metric. These values were checked for every space as well as the
impacts of spatial properties on inference and/or privacy. Figure 9a shows the
average precision and recall of our adversarial inferrer as we vary the radius
of partial spaces. As expected, for raw-points and RANSAC-generalized spaces,
precision and recall increases as the radius increases. On the other hand, precision
and recall of LOCAL stays low, < 0.1, and only ever so slightly increases –

(a) Precision and recall vs radius

Fig. 9. Precision and recall over partial spaces

162 J. A. de Guzman et al.

from 0.032 to 0.048 for recall, and from 0.024 to 0.043 for precision – but not
consistently (as we can see with the dips in precision at r = 1.25 & 1.75).

Figure 9b shows the scatter plot of the precision and recall values for all
spaces and iterations (averaged in Fig. 9a) with the radius (relatively) depicted
by the size of the circle. We can see that the values for the raw-points spaces
crowd on the upper right quadrant, i.e. high precision and recall area, while that
of RANSAC generalized spaces is slightly more scattered but also crowds on
the upper right quadrant. For the locally-generalized spaces, most of the green
circles reside on the lower half which means that recall is spread from low to
mid-high but precision values are mostly very low.

Despite the bad performance of our adversarial inferrer, looking more closely
in to the spaces reveals some consistency. We looked into the top 10 spaces for
raw points, RANSAC generalized, and LOCAL generalized in terms of number
of false positives, precision, recall, and least errors/privacy. (In the interest of
space, we no longer show the list of top 10 spaces.) The list reveals that the
spaces with high recall and least errors are almost the same; thus, high recall
and least errors have a high correlation (i.e. ρrecall,least−errors ≈ 0.964).

Furthermore, for the raw and RANSAC cases, the average number of planes
of the top 10 spaces with high false positives are small, i.e. 4.21 and 4.38, respec-
tively, while those of the top 10 spaces in terms of precision have higher averages
at 14.44 and 13.77, respectively. Thus, raw or RANSAC spaces with more planes
have lower uncertainty in being inferred or identified, and, perhaps, if privacy
is desired, we may only release a lower number of planes, i.e. < 5. However, for
the LOCAL generalized case, there is no observable trend among the inference
performance and that of the number of planes.

Takeaway. Raw and RANSAC spaces with higher number of observable or gen-
eralized planes are more likely to be inferred with higher precision; thus, releasing
spatial generalizations with lower number of planes (i.e. < 5) can confuse adver-
sarial inference.

5.4 Computing Utility of Generalizations

Plane-fitting generalizations contribute variations to the released point clouds
from true spaces. Figure 10a shows the computed average utility based on Eq. 5
for the different generalizations with varying partial radius and acceptability
metric γ. A γ value of 1 means that we accept variations for up to 1 unit-
combined-difference (see Eq. 5) of the true point from the released point and the
true normal from the released normal.

For reference, we include the point-level (synonymous to r = 0) utility com-
putation from RANSAC points which produces the highest utility trend, while
other RANSAC generalizations of partial spaces with r > 0 comes close second.
The average utility provided by RANSAC generalizations are consistent regard-
less of the size of the released generalized spaces. It does decrease as we decrease
the acceptability value γ, but it does not go too low, i.e URANSAC ≥ 0.5 for
γ ≥ 0.1, such that the generalizations are rendered unacceptable. This is due to
how RANSAC generalizations tries to approach the true spaces.

A First Look into Privacy Leakage in 3D Mixed Reality Data 163

(a) (b)

Fig. 10. (a) Utility of the generalizations (Note: Utility of true points and planes are
always 1.); (b) Scatter plot of utility and error rate of different partial spaces (radius
is relatively indicated by marker size)

On the other hand, LOCAL generalizations have lower utility trends and go
much lower as the radius increases. This is due to the increased inaccuracies in
the localized generalizations as it disregards point locations and normals other
than the randomly chosen origin point. As a result, the utility trend further
decreases as we increase the radius, and this is true for any γ. In fact, at γ = 0.1,
ULOCAL ≤ 0.5 at r = 0.25. As expected, if we are to set the acceptable utility
at ≥ 0.8, only localized generalizations of radius r ≤ 0.5 can provide such utility
and r = 0.5 barely makes the cutoff at γ = 1.0. Any γ lower than that, only
generalizations with r ≤ 0.25 can provide an average utility ≥ 0.8.

In reality, these ULOCAL values are unacceptable. If we are to set an accept-
ability level of γ ≤ 0.2, there is only at most 0.6 chance of getting a locally
generalized point that is close to the true point including its orientation. Thus,
for the rest of the points from a locally generalized point cloud, augmentations
are translated by at most 0.2 m (in any direction) and/or rotated by at most
cos−1(0.2) or 78.5◦.

The difference in utility and error rate as we vary the radius of partial spaces
is better visualized by the scatter plot in Fig. 10b. URANSAC stays ≥ 0.8 and

Fig. 11. Used memory by inference models and descriptors extracted from different
point cloud resolutions.

164 J. A. de Guzman et al.

privacy drops as we increase the size, while ULOCAL is only ≥ 0.8 for smaller
partial size and the privacy is consistently ≥ 0.8. The relatively higher utility of
smaller LOCAL releases is further corroborated by the average privacy values
of the successive release case shown in Fig. 8c and d which shows smaller spaces
having lower privacy compared to larger spaces with more releases.

For LOCAL, points nearby the reference point will most likely have similar
normal vector directions, but as we go further away from the reference point on
the same locally generalized plane the variation increases, and thus the utility
drops. Conversely, RANSAC contributed variations are fairly consistent and low
regardless of a point’s distance from a reference point with which the generalized
plane was produced, since it tries to do a good representation of the true space.

Takeaway. Overall, LOCAL generalizations provides high average privacy but
can only provide adequate utility for smaller spaces; for example, utility of U >
0.5 for γ ≤ 0.2 can only be achieved with spaces of small radius r ≤ 0.25.

5.5 Memory Compactness of Descriptors and Inference Models

Another interesting aspect is how a very good inferrer can be constructed at
a low resolution res ≤ 10 with discriminative performance similar to that of
higher resolutions (see Fig. 5). As shown in Fig. 11, the memory size exponen-
tially increases as we increase the resolution. A baseline Bayesian inference model
with a low resolution of 15 requires a memory size of about 128 MB. This mem-
ory usage is undesirably huge due to the almost complete representation of the
point probabilities in 3D space. However, we can take advantage of the sparsity
of the data points to make it compact. The memory usage by the compact rep-
resentation is also shown in Fig. 11. At res = 15, the compact memory usage
is now just 1.30 MB from the original 128 MB – almost 2 orders of magnitude
smaller.

For the rotation-invariant descriptors, at res = 15, a corresponding set of
SS descriptors takes about 10.19 MB, but a corresponding set of SI descriptors –
which, anyway, performs better than SS descriptors – with a fixed descriptor size
is as compact as the baseline inference model (that is not rotation-invariant) at
only 1.58 MB. In fact, we used res = 3 (as previously stated in Sect. 3.2) for the
descriptors used in the inference evaluation discussed in the previous subsections.

Thus, any MR application (trusted or not) with access to 3D data produced
by the user’s MR device can efficiently create a lightweight inference model of
the user’s space. (For reference, the original point-cloud data is about 13 MB;
thus, our inferrer is a much more compact representation of the point-cloud data
at res = 15.)

Takeaway. A compact and efficient inferrer of 3D spaces can be created from
raw point cloud data released by any MR-capable device (which, now, can be any
device with a vision sensor and adequate processing power).

A First Look into Privacy Leakage in 3D Mixed Reality Data 165

6 Related Work

Most privacy work for MR were primarily focused on visual information or media
(i.e. image and video) sanitization [12,20,21]. Aside from that are abstraction
approaches to privacy protection. In the specific 3D use case, significant work
have been done on protecting physiological information using abstractions [5,11]
using the idea of least privilege [25]. The same approach has also been used for
providing visual privacy when using 3D MR browsers [24]. However, these works
did not specifically work on protecting 3D MR data against spatial inference.

Other recent works have focused on protecting MR outputs specifically in
ensuring user safety [15,16]. Furthermore, as MR devices allow for new modes
of collaboration, issues on power imbalance brought by the directionality of MR
interfaces [2] are now being studied as well [17]. Again, these works do not focus
on spatial inference using 3D MR data.

7 Conclusion

In this work, we demonstrated how we can infer and reveal spaces employing
descriptor-based inference over 3D point cloud data collected using the Microsoft
HoloLens. The same point cloud data representation is also used by Google’s
ARCore and Apple’s ARKit. Therefore, it is possible to easily extend this work
to these mobile MR platforms as well. Currently, these MR platforms do not
apply privacy preservation on released 3D MR data to third party applications
which can allow adversaries to easily perform spatial inference attacks similar to
what we have demonstrated. In addition, we have demonstrated how leakage can
persist even after implementing spatial generalizations: RANSAC generalizations
can’t provide adequate protection when continuous successive generalizations
are released, while LOCAL generalizations provide promise in protecting spa-
tial privacy but utility is currently undesirably low. If directly applied, LOCAL
generalizations cause augmentations to be shifted, translated, and/or rotated by
a great degree, i.e. a maximum combined error of 0.2 with maximum average
utility of only 0.6.8 Moreover, we show how compact in terms of memory usage
these 3D inference models can be, which allows adversaries to keep models for
every users’ set of 3D spaces.

In our future work, we aim to develop a hybrid generalization technique
as a potential privacy solution combining desirable properties from RANSAC
and LOCAL to; perhaps, in conjunction with controlled releasing, where we do
not release a new portion of the space if the requested 3D space overlaps with
those released earlier. Moreover, limiting released generalizations to no more
than 4 planes, and/or limiting the number of partial successive releases may also
provide inference protection. Furthermore, we intend to extend the proposed
geometric information based inference strategy to use additional photometric
information such as (RGB) color profile as well as employing advanced techniques
for adversarial inference.
8 Combined error in terms of rotation (cos Δθ) and translation (Δx); see Eq. 5.

166 J. A. de Guzman et al.

A 3D Spatial Definitions

Defining the Input Space. Let Xi be the raw representation of space i in the
physical world. A point-cloud extractor F takes pose information vector v ∈ R3

and releases a point cloud xi,v relative to that pose,
F : Xi, v → xi,v, for any 3D space with location i and a reference pose v.

Combining xi,v produces a complete point-cloud representation of space Xi,
which we label as X̂i =

⋃
v xi,v ∀v. An extension of this is that for any pose

v ∈ R3, we get a partial point-cloud representation Xi,v of the true space. And
that there exists a set of poses vs ⊂ V such that X̂i,vs

=
⋃

v∈vs
xi,v spans Xi or

X̂i,vs
= Xi.

Defining the Abstraction. A privacy-preserving mechanism M transforms
any released point cloud xi,v to a privacy-preserving version z(i),v,
M : xi,v → z(i),v, where we denote the privacy-preservation of i by (i) – that
is, the true i of a released z is not divulged or kept secret. Figure 2 shows a
simple visualization of the transformation that can occur. In this specific case,
the normal vectors of the adjacent points are aligned to create a flat surface.

Similar to the raw point-clouds xi,v, combining the privacy-preserving point-
cloud representations z(i),v produces Ẑ(i) =

⋃
v z(i),v for all v ∈ V ,

or Z(i) =
⋃

v z(i),v.

Defining the Intended Functionality. An intended deterministic output y
produced by an intended application or functionality G upon taking point clouds
as the input, expressed as G : xi, or z(i) → y(i).

B Defining the Feature Matching Process Using
Rotation-Invariant Descriptors

A matching function Υ maps two sets of features fa and fb, of spaces a and b,
like so: Υ : fa �→ fb.

To determine good matches, we use the descriptor Euclidean distance as a
measure of their similarity. To accept a match for a key point xa,1 with feature
fa,1 of an unknown query space a = i∗, we get the nearest neighbor distance
ratio (NNDR) of the features like so: ||fa,1−fb,1||

||fa,1−fb,2|| < threshold, where descriptor
fb,1 of xb,1 (i.e. key point x1 of known space b = i) is the nearest neighbor of
descriptor fa,1 of xa,1 (i.e. key point x1 of unknown query space a = i∗) and fb,2

is the second nearest neighbor, and see if the NNDR falls below a set threshold
(e.g. 0.75 for the self-similarity, or 0.9 for the spin-image descriptors). Then, we
maximum-normalize the distance of the accepted matches to make the maximum
distance be 1. The mean of the distances is multiplied with a Bayesian-inspired
weight,

|{fxi∗ �→fxi
}|

|{fxi∗ }| , where |{fxi∗ �→ fxi
}| is the number of matched descriptors

of an unknown query space xa=i∗ from one of the known reference spaces xb=i, i ∈
∀i, and |{fxi∗ }| is the number of key points or descriptors extracted from the

A First Look into Privacy Leakage in 3D Mixed Reality Data 167

query space xi∗ . This allows us to create a hypothesis, i.e. h : i∗ = i, also via
argument-maximization as follows,

arg max
i

(
1 − mean

{fxi∗ �→fxi
}
{||fxi∗ − fxi

||}
)

· |{fxi∗ �→ fxi
}|

|{fxi∗ }| , (6)

where the first product term is the mean similarity (i.e. 1 - mean difference)
while the second term is the Bayesian-inspired weight.

C Plane Generalization

Our RANSAC plane generalization, shown in Algorithm 1, mainly follows the
described algorithm in [6] except for the normal estimation which we skip and
instead use the estimated normal vectors directly provided by the spatial mesh
produced by the HoloLens. On the other hand, the algorithm for the locally-
originated plane generalization, shown in Algorithm 2, is a crude and simplified
generalization which removes the point (Line 12) and plane (Line 14) discrimi-
nation process from RANSAC.

Algorithm 1. RANSAC algorithm [6]
1 F the number of planes to find = 30
2 T the point-plane distance threshold = 0.05
3 R the number of RANSAC trials = 100

Data: X = {x1, x2, ..., xn}, a set of 3D points
Result: P = {pxm : {xp1 , xp2 , ...}}, a set of planes (a 3D point, and a normal) and their

associated co-planar points

4 for f ← 1 to F do
5 bestPlane = {0, 0}
6 bestPoints = {}
7 for r ← 1 to R do
8 S = s1 = a point at random from X
9 thisP lane = {s1, normals1}

10 thisPoints = {}
11 for xi ∈ X do
12 if (distance(thisP lane, xi) ≤ T) then
13 thisPoints ← thisPoints + xi

14 if |thisPoints| > |bestPoints| then
15 bestPlane ← thisPlane
16 bestPoints ← thisPoints

17 P ← P + {bestP lane, coP lanarTransformed(bestPoints)}
18 X ← X − bestPoints

168 J. A. de Guzman et al.

Algorithm 2. Locally-originated plane generalization
1 F the number of planes to find = 30
2 r the radius of the local region (e.g. 0.5)

Data: X = {x1, x2, ..., xn}, a set of 3D points
Result: P = {pxm : {xp1 , xp2 , ...}}, a set of planes (a 3D point, and a normal) and their

associated co-planar points

3 for f ← 1 to F do
4 S = s1 = a point at random from X
5 thisP lane = {s1, normals1}
6 thisPoints = {xi ∈ X : |xi − s1| ≤ r}
7 P ← P + {thisP lane, coP lanarTransformed(thisPoints)}
8 X ← X − thisPoints

References

1. Acquisti, A.: Privacy in the age of augmented reality (2011)
2. Benford, S., Greenhalgh, C., Reynard, G., Brown, C., Koleva, B.: Understand-

ing and constructing shared spaces with mixed-reality boundaries. ACM Trans.
Comput. Hum. Interact. (TOCHI) 5(3), 185–223 (1998)

3. Bronstein, A.M., et al.: SHREC 2010: robust feature detection and descrip-
tion benchmark. In: Proceedings of EUROGRAPHICS Workshop on 3D Object
Retrieval (3DOR) (2010)

4. Dwork, C., Roth, A., et al.: The algorithmic foundations of differential privacy.
Found. Trends R© Theor. Comput. Sci. 9(3–4), 211–407 (2014)

5. Figueiredo, L.S., Livshits, B., Molnar, D., Veanes, M.: Prepose: privacy, security,
and reliability for gesture-based programming. In: 2016 IEEE Symposium on Secu-
rity and Privacy (SP), pp. 122–137. IEEE (2016)

6. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography. Commun.
ACM 24(6), 381–395 (1981)

7. Gross, R., Sweeney, L., de la Torre, F., Baker, S.: Semi-supervised learning of
multi-factor models for face de-identification. In: 2008 IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 1–8, June 2008. https://doi.org/10.
1109/CVPR.2008.4587369

8. de Guzman, J.A., Thilakarathna, K., Seneviratne, A.: Security and privacy
approaches in mixed reality: a literature survey. arXiv preprint arXiv:1802.05797
(2018)

9. He, W., Liu, X., Nguyen, H.V., Nahrstedt, K., Abdelzaher, T.: PDA: privacy-
preserving data aggregation for information collection. ACM Trans. Sens. Netw.
(TOSN) 8(1), 6 (2011)

10. Huang, J., You, S.: Point cloud matching based on 3d self-similarity. In: 2012
IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), pp. 41–48. IEEE (2012)

11. Jana, S., et al.: Enabling fine-grained permissions for augmented reality applica-
tions with recognizers. In: USENIX Security (2013)

12. Jana, S., Narayanan, A., Shmatikov, V.: A scanner darkly: protecting user privacy
from perceptual applications. In: 2013 IEEE Symposium on Security and Privacy
(SP), pp. 349–363. IEEE (2013)

13. Johnson, A.E., Hebert, M.: Using spin images for efficient object recognition in
cluttered 3d scenes. IEEE Trans. Pattern Anal. Mach. Intell. 5, 433–449 (1999)

https://doi.org/10.1109/CVPR.2008.4587369
https://doi.org/10.1109/CVPR.2008.4587369
http://arxiv.org/abs/1802.05797

A First Look into Privacy Leakage in 3D Mixed Reality Data 169

14. Johnson, A.E., Hebert, M.: Surface matching for object recognition in complex
three-dimensional scenes. Image Vis. Comput. 16(9–10), 635–651 (1998)

15. Lebeck, K., Kohno, T., Roesner, F.: How to safely augment reality: challenges
and directions. In: Proceedings of the 17th International Workshop on Mobile
Computing Systems and Applications, pp. 45–50. ACM (2016)

16. Lebeck, K., Ruth, K., Kohno, T., Roesner, F.: Securing augmented reality output.
In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 320–337. IEEE (2017)

17. Lebeck, K., Ruth, K., Kohno, T., Roesner, F.: Towards security and privacy for
multi-user augmented reality: foundations with end users. In: Towards Security
and Privacy for Multi-User Augmented Reality: Foundations with End Users,
p. 0. IEEE (2018)

18. Milgram, P., Kishino, F.: A taxonomy of mixed reality visual displays. IEICE
Trans. Inf. Syst. 77(12), 1321–1329 (1994)

19. Newton, E.M., Sweeney, L., Malin, B.: Preserving privacy by de-identifying face
images. IEEE Trans. Knowl. Data Eng. 17(2), 232–243 (2005)

20. Raval, N., Srivastava, A., Razeen, A., Lebeck, K., Machanavajjhala, A., Cox, L.P.:
What you mark is what apps see. In: Proceedings of the 14th Annual International
Conference on Mobile Systems, Applications, and Services, pp. 249–261. ACM
(2016)

21. Roesner, F., Molnar, D., Moshchuk, A., Kohno, T., Wang, H.J.: World-driven
access control for continuous sensing. In: Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security, pp. 1169–1181. ACM
(2014)

22. Shokri, R., Theodorakopoulos, G., Le Boudec, J.Y., Hubaux, J.P.: Quantifying
location privacy. In: 2011 IEEE Symposium on Security and Privacy, pp. 247–262.
IEEE (2011)

23. Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertain.
Fuzziness Knowl. Based Syst. 10(05), 557–570 (2002)

24. Vilk, J., et al.: SurroundWeb: mitigating privacy concerns in a 3d web browser. In:
2015 IEEE Symposium on Security and Privacy (SP), pp. 431–446. IEEE (2015)

25. Vilk, J., et al.: Least privilege rendering in a 3d web browser. Technical report
(2014)

26. Wagner, I., Eckhoff, D.: Technical privacy metrics: a systematic survey. ACM Com-
put. Surv. 51(3), 57:1–57:38 (2018). https://doi.org/10.1145/3168389, http://doi.
acm.org/10.1145/3168389

27. Wu, Y., Yang, F., Ling, H.: Privacy-protective-gan for face de-identification. arXiv
preprint arXiv:1806.08906 (2018)

28. Zarepour, E., Hosseini, M., Kanhere, S.S., Sowmya, A.: A context-based privacy
preserving framework for wearable visual lifeloggers. In: 2016 IEEE International
Conference on Pervasive Computing and Communication Workshops (PerCom
Workshops), pp. 1–4. IEEE (2016)

https://doi.org/10.1145/3168389
http://doi.acm.org/10.1145/3168389
http://doi.acm.org/10.1145/3168389
http://arxiv.org/abs/1806.08906

Signatures and Re-encryption

Flexible Signatures: Making
Authentication Suitable for Real-Time

Environments

Duc V. Le1(B), Mahimna Kelkar2, and Aniket Kate1

1 Purdue University, West Lafayette, USA
{le52,aniket}@purdue.edu

2 Cornell University, Ithaca, USA
mahimna@cs.cornell.edu

Abstract. This work introduces the concept of flexible signatures. In a
flexible signature scheme, the verification algorithm quantifies the valid-
ity of a signature based on the number of computations performed, such
that the signature’s validation (or confidence) level in [0, 1] improves
as the algorithm performs more computations. Importantly, the defini-
tion of flexible signatures does not assume the resource restriction to be
known in advance, a significant advantage when the verification process
is hard stopped by a system interrupt. Prominent traditional signature
schemes such as RSA, (EC)DSA seem unsuitable towards building flexi-
ble signatures because rigid all-or-nothing guarantees offered by the tra-
ditional cryptographic primitives have been particularly unattractive in
these unpredictably resource-constrained environments.

In this work, we find the use of the Lamport-Diffie one-time signa-
ture and Merkle authentication tree to be suitable for building flexible
signatures. We present a flexible signature construction based on these
hash-based primitives and prove its security with concrete security anal-
ysis. We also perform a thorough validity-level analysis demonstrating
an attractive computation-vs-validity trade-off offered by our construc-
tion: a security level of 80 bits can be ensured by performing only around
2
3
rd of the total hash computations for our flexible signature construc-

tion with a Merkle tree of height 20. Finally, we have implemented our
constructions in a resource-constrained environment on a Raspberry Pi.
Our analysis demonstrates that the proposed flexible signature design
is comparable to other standard signature schemes in terms of running
time while offering a quantified level of security at each step of the veri-
fication algorithm.

We see this work as the first step towards realizing the flexible-security
cryptographic primitives. Beyond flexible signatures, our flexible-security
conceptualization offers an interesting opportunity to build similar prim-
itives in the asymmetric as well as symmetric cryptographic domains.

Mahimna Kelkar—This research was completed at Purdue University.

c© Springer Nature Switzerland AG 2019
K. Sako et al. (Eds.): ESORICS 2019, LNCS 11735, pp. 173–193, 2019.
https://doi.org/10.1007/978-3-030-29959-0_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29959-0_9&domain=pdf
https://doi.org/10.1007/978-3-030-29959-0_9

174 D. V. Le et al.

1 Introduction

Security for embedded and real-time systems has become a greater concern with
manufacturers increasing connectivity of these traditionally isolated control net-
works to the outside world. The computerization of hitherto purely mechani-
cal elements in vehicular networks, such as connections to the brakes, throttle,
and steering wheel, has led to a life-threatening increase of exploitation power.
In the event that an attacker gains access to an embedded control network,
safety-critical message traffic can be manipulated inducing catastrophic system
failures. In recent years, numerous attacks have impressively demonstrated that
the software running on embedded controllers could be successfully exploited,
often even remotely [17,24,27]. With the rise of the Internet of Things (IoT),
more non-traditional embedded devices have started to get integrated into per-
sonal and commercial computing infrastructures, and security will soon become
a paramount issue for the new-age embedded systems [10,29].

Well-established authentication and integrity protection mechanisms such as
digital signatures or MACs can effectively solve many of the security issues with
embedded systems. However, the industry is hesitant to adopt those as most
embedded devices pose severe resource constraints on the security architecture
regarding memory, computational capacity, energy and time. Given the real-time
deadlines, the embedded devices might not be able complete verifications by the
deadline rendering all verification efforts useless.

Indeed, traditional cryptographic primitives are not designed for such uncer-
tain settings with unpredictable resource constraints. Consider prominent digital
signature schemes (such as RSA and ECDSA) that allow a signer who has cre-
ated a pair of private and public keys to sign messages so that any verifier can
later verify the signature with the signer’s public key. The verification algorithms
of those signature schemes are deterministic and only return a binary answer for
the validity of the signature (i.e., 0 or 1). Such verification mechanisms may be
unsatisfactory for an embedded module with unpredictable computing resources
or time to perform the verification: if the module can only partially complete
the verification process due to resource constraints or some unplanned real-time
system interrupt, there are no partial validity guarantees available.

This calls for a signature scheme that can quantify the validity of the signa-
ture based on the number of computations performed during the verification. In
particular, for a signature scheme instantiation with 128-bit security, we expect
the verification process to be flexible enough to offer a validity (or confidence)
level in [0, 1] based on the resources available during the verification process. We
observe that none of the existing signature schemes offer such a trade-off between
the computation time/resource and the security level in a flexible manner.

Contribution. This paper initiates the study of cryptographic primitives with
flexible security guarantees that can be of tremendous interest to real-time sys-
tems. In particular, we investigate the notion of a flexible signature scheme that
offers partial security for an unpredictably partial verification.

Flexible Signatures 175

As the first step, based on the standard definition of digital signatures, we
propose a new definition of a signature scheme with a flexible verification algo-
rithm. Here, instead of returning a binary answer, the verification algorithm
returns a value, α ∈ [0, 1] ∪ ⊥ that quantifies the validity of the signature based
on a number of computations performed.

Next, we provide a provably secure construction of the flexible signature
scheme based on the Lamport-Diffie one-time signature construction [19] and
the Merkle authentication tree [22]. The security of our signature relies on the
difficulty of finding a �-near-collision pair for a collision-resistant hash function.
Through our analysis, we demonstrate that our construction still offers a high-
security level against adaptive chosen message attacks despite performing fewer
computations during verification. For example, a security level of 80 bits requires
performing only around 2

3 rd of the total required hash computations for a Merkle
tree of height 20.

Finally, we prototype our constructions in a resource-constrained environ-
ment by implementing those on a Raspberry Pi. We find that the performance of
the proposed constructions is comparable to other prominent signature schemes
in terms of running time while offering a flexible trade-off between the security
level and the number of computations. Importantly, neither the security level
nor the number of computations has to be pre-determined during verification.

Related Work. Fischlin [13] proposed a similar framework for progressively
verifiable message authentication codes (MACs). In particular, the author pre-
sented two concrete constructions for progressively verifiable MACs that allow
the verifier to spot errors or invalid tags after a reasonable number of computa-
tions. Also, the paper introduced the concept of detection probability to denote
the probability that the verifier detects errors after verifying a certain number
of blocks. In this work, we address the open problem of a progressively verifiable
digital signature scheme, and we incorporate the detection probability concept
into the security analysis of our schemes.

Bellare, Goldreich, and Goldwasser [3] introduced incremental signatures.
Here, given a signature on a document, a signer can obtain a (new) signature on a
similar document by partially updating the available signature. The incremental
signature computation is more efficient than computing a signature from scratch
and thus can offer some advantage to a resource-constrained signer. However, it
provides no benefit for a resource-constrained verifier; the verifier still needs to
perform a complete verification of the signature.

Signature scheme with batch verification [2,8] is a cryptographic primitive
that offers an efficient verifying property. Namely, after receiving multiple sig-
natures from different sources, a verifier can efficiently verify the entire set of
signatures at once. Batch verification signature scheme and flexible signature
scheme are similar in that they offer an efficient and flexible verification mecha-
nism. However, while the batch verification signature merely seeks to reduce the
load on a busy server, the flexible signature focuses on a resource-constrained
verifier who can tolerate a partial security guarantee from a signature.

176 D. V. Le et al.

Freitag et al. [14] proposed the concept of signatures with randomized veri-
fication. Here, the verifying algorithm takes as input the public key along with
some random coin to determine the validity of the signature. In those schemes,
the attacker’s advantage of forging a valid message-signature pair, (m∗, σ∗), is
determined by the fraction of coins that accept (m∗, σ∗). Freitag et al. con-
structed a signature scheme with randomized identity-based encryption (IBE)
schemes using Naor’s transformation and show that the security level of their
signature scheme is fixed to the size of the underlying IBE scheme’s identity
space. While our work can be formally defined as a signature scheme with ran-
domized verification, our scheme offers a more flexible verification in which the
security level of the scheme can be efficiently computed based on the output of
the verifying algorithm.

Finally, Fan, Garay, and Mohassel [11] proposed the concept of short and
adjustable signatures. They offered three variants, namely setup adjustable, sign-
ing adjustable, and verification adjustable signatures offering different trade-offs
between the length and the security of the signature. The first two variants allow
the signer to adjust the length of the signature, while the last variant allows the
verifier to shorten the signature during the verification phase. They presented
three constructions for each variant based on indistinguishably obfuscation (iO),
and one concrete construction only for the setup-adjustable variant based on the
BLS Signature Scheme [5]. Unfortunately, none of those constructions is suitable
for constructing flexible signatures tolerating unpredictable interrupts.

2 Preliminaries

Figure 1 presents prominent notational conventions that we use throughout this
work. Our constructions employ the following standard properties of crypto-
graphic hash functions. We use H : K ×M → {0, 1}n to denote a family of hash
functions that is parameterized by a key k ∈ K and message m ∈ M and outputs
a binary string of length n. For this work, we consider two security properties
for hash functions from [26], preimage resistance, collision resistance, and one
weaker security notion from [18,21], �-near collision resistance.

Preimage Resistance: We call a family H of hash functions (tow, εow)-
preimage resistant, if for any A that runs for at most tow, the adversary’s advan-
tage is:

Advow
H (A) = Pr

[
k

$← K, x
$← M

y ← H(k, x), x′ ← A(k, y)
: H(k, x′) = y

]
≤ εow

Collision Resistance: We call a family H of hash functions (tcr, εcr)-collision
resistant, if for any A that runs for at most tcr, the adversary’s advantage is:

Advcr
H (A) = Pr

[
k

$← K
(x, x′) ← A(k)

: (x �= x′) ∧ (H(k, x) = H(k, x′))

]
≤ εcr

Flexible Signatures 177

Fig. 1. Notations

�-near-collision Resistance: We call a family H of hash functions
(t�-ncr, ε�-ncr)-�-near-collision resistant, if for any A that runs for at most t�-ncr

and 0 ≤ � ≤ n, the adversary’s advantage is:

Advncr
H,�(A) = Pr

[
k

$← K;

(x, x′) ← A(k, �)
: (x �= x′) ∧ (Δ(H(k, x), H(k, x′)) ≤ �)

]
≤ ε�-ncr

Generic Attacks. To find the preimage tow = 2q is required to achieve εow =
1/2n−q using exhaustive search. Due to the birthday paradox, however, only
tcr = 2n/2 is required to find a collision with a success probability of εcr ≈ 1/2.

Finally, Lamberger et al. showed in [18] that at least t�-ncr = 2n/2/
√∑�

i=0

(
n
i

)
is required to find a �-near-collision with a success probability of ε�-ncr ≈ 1/2.

Unkeyed Hash Functions. In practice, the key for standard hash functions
is public; therefore, from this point, we refer to the cryptographic hash function
H as a fixed function H : M → {0, 1}n.

3 Security Definition

In this section, we define our flexible signature scheme. We adopt the stan-
dard definition of a signature scheme [16] to the flexible security setting. An
instance of an interrupted flexible signature verification is expected to return a
validity value, α, in the range [0, 1]. To model the notion of runtime interrup-
tions in the signature definition, we introduce the concept of an interruption
oracle iOracleΣ(1n) for signature scheme Σ and give the verification algorithm
access to it. The interruption oracle outputs an interruption position r in the
sequence of computation steps involved the verification algorithm. For simplic-
ity, if we denote max to be the maximum number of computations needed (e.g.
clock cycles, number of hash computations, or modular exponentiations) for a
signature verification, then iOracleΣ(1n) outputs a value r ∈ {0, . . . ,max}. The
specification of the interruption position may vary depending on the choice of
the signature scheme; e.g., in this work, we define the interruption position as
the number of hash computations performed in the verification algorithm.

178 D. V. Le et al.

Definition 1. A flexible signature scheme, Σ = (Gen,Sign,Ver), consists of
three algorithms:

– Gen(1n) is a probabilistic algorithm that takes a security parameter 1n as
input and outputs a pair (pk, sk) of public key and secret key.

– Sign(sk,m) is a probabilistic algorithm that takes a private key sk and a
message m from a message space M as inputs and outputs a signature σ
from signature space S.

– Ver(pk,m, σ, �r�) is a probabilistic algorithm that takes a public key pk, a
message m, a signature σ, an optional interruption position r ∈ {0, . . . ,max}
as inputs. If r is not provided, then the algorithm will query an interruption
oracle, iOracleΣ(1n) to determine r ∈ {0, . . . ,max}. The algorithm outputs a
real value α ∈ [0, 1] ∪ {⊥}1. The signature is invalid if α = ⊥.

The following correctness condition must hold: For ∀(pk, sk) ← Gen(1n),∀m ∈
M,∀r∈ {0, ...,max} : Pr[Ver(pk,m,Sign(sk,m), r) = ⊥] = 0.

Remark 1. The interruption oracle only serves as a virtual party for definitional
reasons. In practice, the verification algorithm does not receive the interruption
position r as an input, and the algorithm continues to perform computations
until it receives an interruption. To model runtime interruptions using the inter-
ruption oracle iOracleΣ(1n), in this work, we expect the flow of the verification
algorithm to not be affected/biased by the r value offered by iOracleΣ(1n) at the
beginning of the verification. Also, we note that depending on signature schemes,
there can be more than one way to define the interruption position, r (e.g. clock
cycles, number of hash computations, or modular exponentiations).

Extracting Function. We assume that for a flexible signature scheme, there
exists an efficient function, iExtractΣ(·), that takes as input the validity of the
signature α and outputs the interruption position r. Intuitively, for the case of
an unexpected interruption, the verifier need not know when the verification
algorithm is interrupted. However, based on the validity output α, the verifier
should be able to use iExtractΣ(·) to learn the interruption position, r. The
definition of extracting function depends on the specification of the interruption
position and signature scheme. We will define our iExtractΣ(·) for each of our
proposed constructions in Sects. 4 and 5.

Security of Flexible Signature Scheme. We present a corresponding def-
inition to the existential unforgeability under adaptive chosen message attack
(EUF-CMA) experiment in order to prove the security of our scheme. For a
given flexible signature scheme Σ = (Gen,Sign,Ver) and α ∈ [0, 1], the attack
experiment is defined as follows:
Experiment FlexExpA,Σ(1n, α) :

1. The challenger C runs Gen(1n) to obtain (pk, sk) and iExtractΣ(α) to obtain
position r. C sends (pk, r) to A.

1 α = 0 means that no operations are performed in the verification algorithm.

Flexible Signatures 179

2. Attacker A queries C for signatures of its adaptively chosen messages. Let
Q

Sign(sk,·)
A = {mi}i∈[q] be the set of all messages that A queries C where

the ith query is a message mi ∈ M. After receiving mi, C computes σi ←
Sign(sk,mi), and sends σi to A.

3. Eventually, A outputs a pair (m∗, σ∗) ∈ M × S2, where message m∗ /∈
Q

Sign(sk,·)
A and sends the pair to C.

4. C computes α∗ ← Ver(pk,m∗, σ∗, r). If (α∗ �= ⊥) and (α∗ ≥ α), the experi-
ment returns 1; else, it returns 0.

Definition 2. For the security parameter n and α ∈ [0, 1], a flexible signa-
ture scheme Σ is

(
t, ε, q

)
existential unforgeable under adaptive chosen-message

attack if for all efficient adversaries A that run for at most time t and query
Sign(sk, ·) at most q times, the success probability is:

AdvflexA,Σ(n) = Pr[FlexExpA,Σ(1n, α) = 1] ≤ ε

Here, t and ε are functions of α and n, and q = poly(n).

4 Flexible Lamport-Diffie One-Time Signature

In this section, we present our concrete construction of the flexible one-time
signature scheme. This construction is based on the Lamport-Diffie one time
signature construction introduced in [19].

4.1 Construction

We show the concrete construction of the flexible Lamport-Diffie one-time sig-
nature in Fig. 2. Here, we use the same key generation and signing algorithms
from the Lamport-Diffie signature and modify the verification algorithm.

Key Generation Algorithm. The key generation algorithm takes a parameter
1n as input, and generates a private key by choosing 2n bit strings each of length
n uniformly at random from {0, 1}n, namely, SK =(ski[b])i∈[n],b∈{0,1} ∈ {0, 1}2n2

.
The public key is obtained by evaluating the preimage-resistant hash function on
each of the private key’s n bit string, such that PK = (pki[b])i∈[n],b∈{0,1} where
pki[b] = F (ski[b]) and F (·) is the preimage-resistant hash function.

Signing Algorithm. The signing algorithm takes as input the message m and
the private key SK. First, it computes the digest of the message d = G(m) =
(di)i∈[n] where di ∈ {0, 1} and G(·) is a collision-resistant hash function that
outputs digests of length n. The signature is generated based on the digest d as
σ = (ski[di])i∈[n].

2 The higher validity implies a higher interruption position. Hence, the best strategy
for the adversary is to use the initial position defined by the challenger.

180 D. V. Le et al.

Flexible Verification Algorithm. This algorithm takes as input a message
m, a public key PK, a signature σ, and an optional interruption position �r�
and outputs the validity of the signature α. In this construction, we model the
interruption condition r ∈ {0, 1, . . . , n}, as the number of hash F (·) computa-
tions performed during verification. As mentioned earlier in Sect. 3, to faithfully
model the interruption process, the flow of the verification algorithm should not
be biased by the r value in any intelligent manner. First, the verification algo-
rithm will query the interruption oracle to determine the interruption position r.
The algorithm then computes the digest of the message, d = G(m) = (di)i∈[n].
Now, instead of sequentially verifying the signature bits like the verification in
the standard scheme, the flexible verification algorithm randomly selects a posi-
tion i of the signature and checks whether F (σi[di]) = pki[di]. If there is one
invalid preimage, the verification aborts and returns α = ⊥. Otherwise, once the
interruption condition is met or all positions are verified, the algorithm returns
the validity as the fraction of the number of bits that passed the verification check
over the length of the signature. In this Lamport-Diffie construction, given the
validity α value output by the verification algorithm, the verifier simply com-
putes the interruption position as follows: iExtractΣfots

(α) =
α · n�

Fig. 2. Construction of the flexible Lamport-Diffie one-time signature

Flexible Signatures 181

4.2 Security Analysis

In the flexible Lamport-Diffie one-time signature setting, as the verification algo-
rithm does not perform verification at every position of the signature, the adver-
sary can increase the probability of winning by outputting two messages whose
hash digests are close. This is equivalent to finding an �-near-collision pair where
� is determined by the adversary. Theorem 1 offers the trade-off between com-
putation time and success probability for the adversary.

Theorem 1. Let F be (tow, εow) preimage-resistant hash function, G be (t�-ncr,
ε�-ncr) �-near-collision-resistant hash function, kF , kG be the number of times
F (·), G(·) evaluated in the verification respectively, d be the Hamming distance
between two message digests output by A, and tgen, tsign, tver be the time it takes
to generate keys, sign the message, and verify the signature respectively. With
1 ≤ kF ≤ n, kG = 1, the flexible Lamport-Diffie one-time signature Σfots is
(tfots, εfots, 1) EUF-CMA where:

α = kF /n

tfots = min{tow, t�-ncr} − tsign − tver − tgen where 0 ≤ � ≤ n − kF

εfots ≤ min
{

1, 2 · max
{ kF −1∏

i=0

(
1 − d

n − i

)
, 4n · εow

}}
where 0 ≤ d ≤ �

The proof of Theorem 1 is shifted to Appendix A.

Security Level. Towards making the security of flexible Lamport-Diffie one-
time signatures more comprehensible, we adapt the security level computation
from [7]. For any (t, ε) signature scheme, we define the security of the scheme to
be log2 (t/ε). As, in the flexible setting, the value of the pair (t, ε) may vary as the
adversary decides the Hamming distance �, for each value of kF ∈ {0, . . . , n}, we
compute the adversarial advantage for all values 0 ≤ � ≤ n − kF and output the
minimum value of log2

(
tfots/εfots

)
as the security level of our scheme. A detailed

security level analysis for the Lamport-Diffie one-time signature is available in
Sect. 6.1.

5 Flexible Merkle Tree Signature

We use the Merkle authentication tree [22] to convert the flexible Lamport-Diffie
one-time signature scheme into a flexible many-time signature scheme.

5.1 Construction

In the Merkle tree signature scheme, in addition to verifying the validity of the
signature, the verifier uses the authentication nodes provided by the signer to
check the authenticity of the one-time public key. We are interested in quantify-
ing such values under an interruption. To achieve such a requirement, we require
the signer to provide additional nodes in the authentication path.

182 D. V. Le et al.

Key Generation Algorithm. Our key generation remains the same as the
one proposed in the original Merkle tree signature scheme [22]. For a tree of
height h, the generation algorithm generates 2h Lamport-Diffie one-time key
pairs, (PKi,SKi)i∈[2h]. The leaves of the tree are digests of one-time public keys,
H(PKi), where H(·) is a collision-resistant hash function. An inner node of the
Merkle tree is the hash digest of the concatenation of its left and right children.
Finally, the public key of the scheme is the root of the tree, and the secret key
is the set of 2h one-time secret keys.

root

a′
3

a2

PK1 PK2

a′
2

a′
1

PK3

a1

PK4

a3

PK5 PK6 PK7 PK8

Fig. 3. An example of new authentication nodes for PK3 where Auth3 = (a1, a2, a3) is
the set of authentication nodes in the original scheme and Authc

3 = (a′
1, a

′
2, a

′
3) is the

set of additional authentication nodes

Modified Signing Algorithm. In the original Merkle signature scheme, a
signature consists of four parts: the signature state s, a one-time signature σs, a
one-time public key PKs and a set of authentication nodes Auths = (ai)i∈[h]. The
verifier can use PKs to verify the validity of the σs and use nodes in Auths and
state s to efficiently verify the authenticity of PKs. For our signing algorithm,
along with authentication nodes in the old construction, we require the signer
to send the nodes that complete the direct authentication path from the one-
time public key to the root. We call this set of nodes complement authentication
nodes, Authc

s = (a′
i)i∈[h]. The reason for including additional authentication

nodes is to allow the verifier to randomly verify any level of the tree. Moreover,
with additional authentication nodes, verifier can verify different levels of the
tree in parallel. Figure 3 describes an example of the new requirement for a
tree of height three. The modified signature now consists of five parts: a state
s, a Lamport-Diffie one-time signature σs, a one-time public key PKs, a set
of authentication nodes Auths, and a set of complement authentication nodes
Authc

s.

Flexible Verification Algorithm. With additional authentication nodes, the
verification algorithm can verify the authenticity of the public key at arbitrary
levels of the authentication tree as well as use the flexible verification described
in Sect. 4 to partially verify the validity of the one-time signature. In the end,

Flexible Signatures 183

Fig. 4. The flexible merkle signature construction

184 D. V. Le et al.

the verification returns α = (αv, αa) that contains both the validity of the sig-
nature and the authenticity of the public key. In this construction, we define the
interruption r ∈ {0, 1, . . . , n + h + 1}, as the number of computations performed
during the verification step.

In contrast to the verification performed in the one-time signature scheme,
the security guarantee the verifier gains from the authenticity verification of
the one-time public key only increases linearly as the number of computations
performed on the authentication path increase: The adversary can always gen-
erate a new one-time key pair to sign the message that is not a part of one-time
key pairs created by the generation algorithm. In the original Merkle scheme,
such a key-pair will fail the authenticity check with overwhelming probability
because the verifier can use the authentication nodes to compute and verify the
root. However, in the flexible setting, the verifier may not be able to complete
the authenticity verification, and there is a non-negligible probability that an
invalid one-time public key will be used to verify the validity of the signature.
Therefore, the verifier gains an exponential security guarantee about the validity
of the one-time signature but only a linear guarantee about the authenticity of
the public key as the number of computations increases.

To address this issue, the verification algorithm needs to balance the compu-
tations performed on the authentication path and the computations performed
on the one-time signature. We define the confidence for the validity of the one-
time signature as 1−1/2kF /2 and the confidence for authenticity of the one-time
public key as kH/(h + 1), where kF is the number of computations performed
on the one-time signature, kH is the number of computations performed on the
one-time public key, and h is the height of the Merkle tree. To balance the num-
ber of computations, the verifier needs to maintain 1 − 1/2kF /2 ≈ kH/(h + 1).
With the new signing and verifying algorithms described above, we present a
detailed construction of the flexible Merkle signature scheme in Fig. 4. In this
Merkle signature construction, given the validity α = (αv, αa) value output by
the verification algorithm, the verifier can compute the interruption position as
follow: iExtractΣfms

(α) =
αvn� +
αa(h + 1)�.

5.2 Security Analysis

Theorem 2 presents the trade-off between computation time and success proba-
bility for the adversary A.

Theorem 2. Let F be (tow, εow) preimage-resistant hash function, G be (t�-ncr,
ε�-ncr) �-near-collision-resistant hash function, H be (tcr, εcr) collision-resistant
hash function, kF , kG, kH be the number of times F (·), G(·),H(·) performed
respectively, d be the smallest Hamming distance between the forged message
digest and other queried message digests, and tgen, tsign, tver be the time it takes
to generate keys, sign the message, and verify the signature respectively. With
1 ≤ kF ≤ n, 0 ≤ kH ≤ h + 1, and kG = 1, the flexible Merkle signature
construction (Σfms) from flexible Lamport-Diffie one-time signature scheme is
(tfms, εfms, 2h) EU-CMA, where

Flexible Signatures 185

α = (kF /n, kH/(h + 1))

tfms =

{
O(1) when kH < h + 1,

min
{
tow, t�-ncr, tcr

} − 2h · tsign − tver − tgen where 0 ≤ � ≤ n − kF

εfms ≤ min
{

1, 4 · max
{

1 − kH

(h + 1)
, 2h

kF −1∏
i=0

(
1 − d

n − i

)
, 2h+log2 4n · εow, εcr

}}

where 0 ≤ d ≤ �

The proof of Theorem 2 is shifted to Appendix A. A more detailed version
of the proof will be included in the extended version [20].

5.3 Other Signature Schemes

Over the last few years, several optimized versions of Merkle tree signature and
one-time signature schemes have been proposed. This includes XMSS [6] and
SPHINCS [4] for the tree signatures, and HORS [23], BIBA [25], HORST [4]
and Winternitz [22] for one-time signatures. While the security analysis for each
scheme may vary, we can use the same technique described above to transform
those schemes into signature schemes with a flexible verification. In this work,
we choose to use Lamport-Diffie One-time signatures in our construction for
two reasons. First, the number of hash evaluations in Lamport-Diffie Signature
verification is fixed for constant size messages, and this gives better and more
precise security proofs. Second, Lamport-Diffie one-time signature has better
performance in terms of the running time. Thus, according to our experiment and
analysis, the Lamport-Diffie One-time signature scheme combined with Merkle
Tree provides a better speed performance and more concrete security proofs.

We also investigate number-theoretic signature schemes and observe that
the similar verification technique can be applied to the Fiat-Shamir Signature
Scheme [12] as its signature is partitioned into different verifiable sets. However,
compared to hash function evaluations, the computation of modular exponenti-
ation is significantly more expensive and thus may not be suitable for flexible
security application environments. On the other hand, lattice-based signature
schemes such as GPV signatures [15] can be an interesting candidate for a flexi-
ble signature construction. For GPV signatures, a public key is a matrix output
by a trapdoor sampling algorithm, and a signature is output by a pre-image
sampling algorithm. The signature verification is performed using a matrix and
vector multiplication. The same randomized verification technique seems to be
applicable here on different rows of the matrix. In the future, we plan to explore
a flexible version of GPV signatures.

6 Evaluation, Performance Analysis, and Discussion

In this section, we evaluate the performance and the security level of the flex-
ible Lamport-Diffie one-time signature and flexible Merkle signature schemes.

186 D. V. Le et al.

For both schemes, the validity value α suggests the number of computations
performed (i.e., kH , kF) during verification. Based on the value α, the verifier
determines the security level achieved by the (interrupted) verification instance.

6.1 Security Level of Flexible Lamport-Diffie One-Time Signature

The security level of a flexible Lamport-Diffie signature depends on the actual
Hamming distance between two message digests output by the adversary and
it can increase its advantage by spending more time to find a near-collision
pair. However, it is unclear how to precisely measure the exact Hamming dis-
tance between those two digests. Therefore, we outline some possible assump-
tions in order to estimate precisely the value of Δ(G(m), G(m∗)). Using the
generic attack on finding near collision pair [18], we can assume that an adver-
sary A who uses a generic birthday attack can always output a pair (m,m∗)

such that Δ(G(m), G(m∗)) ≤ � after spending t�-ncr = 2n/2/
√∑�

i=0

(
n
i

)
.

Second, for a fixed value �, if the adversary finds a pair (m,m∗) such that
Δ(G(m), G(m∗)) ≤ �, we let d = Δ(G(m), G(m∗)) is equal to the expected value
of Δ(G(m), G(m∗)). The intuition behind the second assumption is that as we let
the Hamming distance d decrease by 1, the probability that Δ(G(m), G(m∗)) = d
decreases by factor of n; therefore, the actual value of d should be closer to �
than to 0.

We define the set B�(G(m)) = {x | x ∈ {0, 1}n ∧ Δ(x,G(m)) ≤ �}. If
G(m) and G(m∗) is a �-near-collision pair, then G(m∗) ∈ B�(G(m)). If G(·)
behaves as an uniformly random function, then given �, the expected value of
Δ(G(m), G(m∗)) is:

E(Δ(G(m), G(m∗))) =
�∑

j=0

j ·
(
n
j

)
|B�(G(m))| =

�∑
j=0

j ·
(
n
j

)
∑�

i=0

(
n
i

) (1)

For the case of Lamport-Diffie one-time signature, we have tgen = 2n, tsign =
tver = n. Combining Theorem 1 and Eq. 1, we have:

tfots = max

{
1,

2n/2√∑�
i=0

(
n
i

) − 4 · n

}
for � ≤ n − kF

εfots ≤ min

{
1, 2 ·

kF −1∏
i=0

(
1 − d

n − i

)}
where d = E(Δ(G(m), G(m∗)),

given Δ(G(m), G(m∗)) ≤ �

Finally, the adversary’s advantage varies depending on the value of �. Therefore,
for a fixed value kF , we compute the adversarial advantage all values � ≤ n−kF

and output the minimum value of log2

(
tfots/εfots

)
as the security level of the

scheme.
Figure 5 gives the trade-off between the number of computations and the

security level of the flexible Lamport-Diffie scheme. Compared to the original

Flexible Signatures 187

Lamport-Diffie scheme, our construction offers a reasonable security level despite
a smaller number of computations. For example, while a complete verification
requires 256 evaluations of F (·) to achieve the 128-bit security level, with only
128 evaluations of F (·), the scheme still offers around the 92-bit security level.

6.2 Security Level of Flexible Merkle Tree Signature

For the Merkle tree signature scheme, using the results from [9,28], we have
tgen = 2h · 2n+2h+1 − 1, tver = n+h+1, tsign = (h+1) ·n. There are two cases
for the Merkle tree signature: (1) The authenticity check is complete, kH = h+1
and (2) The authenticity check is not complete, kH < h + 1.

When kH < h + 1, the adversary’s probability of winning is non-negligible,
and the time it needs to spend on the attack is constant; therefore, when the
authenticity check is not complete, we simply let: tfms = 1, εfms = 1−kH/(h+1).
When the authenticity verification is complete, kH = h + 1, using the equation
described in Theorem 2, we obtain the following parameters for the flexible
Merkle tree scheme:

tfms = max
{
1, t�-ncr − 2h+log2(h+1)n − 2h·log2 2n − 2log2(n−h−1)

}
for � ≤ n − kF

εfms ≤ min
{

1, 2h ·
kF −1∏
i=0

(
1 − d

n − i

)}
where d = E(Δ(G(m), G(m∗)))

Using those formulas, we compute the security level of the flexible Merkle
signature as log2(tfms/εfms). Figure 6 shows the trade-off between the security
level of the scheme and the number of computations of the flexible Merkle tree
signature with h = 20. Notice that, for small number of computations, the
security level of Merkle tree construction does not increase. The reason is that
if the authenticity of the public key is not completely checked, the probability
that the adversary wins the forgery experiment is always the fraction of the
number of computations on the authentication path over the height of the tree,

Fig. 5. Security level of flexible Lamport-
Diffie one-time signature

Fig. 6. Security level of flexible merkle
tree signature

188 D. V. Le et al.

and the forging time remains constant. Moreover, for a tree of height h, there
are 2h instances of flexible Lamport-Diffie one-time signature. Therefore, if F (·)
evaluated only for a small number of times, the cost of finding an �-near-collision
pair (for � ≤ n − kF) is cheap. The probability that such a pair passes the one-
time verification step in one instance of 2h instances of flexible Lamport-Diffie
one-time signature is high. This leads to an undesirable security level during the
first few computations.

6.3 Implementation and Performance

We have implemented prototypes of our proposed constructions in C, using the
SHA-256 implementation of OpenSSL. We evaluated the performance of our
proposed constructions on a Raspberry Pi 3, Model B equipped with 1 GB RAM.

Table 1 gives the performance and security levels of the flexible verification
algorithm of both schemes compared to other standard signature schemes (i.e.,
RSA, DSA, ECDSA, and EdDSA) based on the percentage of computations
p = 20%, 40%, 60%, 80%, and 100% for messages of size 2563. For other signa-
ture schemes, we obtain the performance of those schemes using the OpenSSL
library. More specifically, for ECDSA, we used two standard curves: Ed25519
and nistp256. For the RSA signature scheme, we used the smallest recommended
public key 216 + 1 for the verification algorithm. For the security levels of other
signature schemes, we use the information from [1,6]. As shown in Table 1, the
performance of both flexible signature schemes is comparable to other standard
schemes in terms of the verification running time. More importantly, both con-
structions offer an increasing security level at each step of the algorithm while

Table 1. Comparing flexible signature schemes performance for different levels of sig-
nature verification with other signature schemes.

Signature Verification; Output Format: (Timings, Security Level)

Percentage of

computations

20% 40% 60% 80% 100%

RSA 3072,

pk = 216 + 1

- - - - (1.43 ms, 128)

DSA 2048 - - - - (4.93 ms, 87)

EdDSA (Ed25519

curve)

- - - - (3.21 ms, 128)

ECDSA (nistp256

curve)

- - - - (3.39 ms, 128)

Lamport-Diffie

OTS verification,

n = 256

(0.16 ms, 35) (0.31 ms, 79) (0.43 ms, 105) (0.47 ms, 121) (0.54 ms, 127)

Merkle signature

verification,

n = 256, h = 20

(0.85 ms, 1) (0.93 ms, 19) (1.00 ms, 61) (1.06 ms, 99) (1.23 ms, 127)

3 We focus on the verification algorithm in this work. For the performance of signing,
generation algorithms, and the size of the signature we refer readers to [6,7].

Flexible Signatures 189

other signature schemes can only provide such information at the end of the
verification algorithm, and Table 1 demonstrates that in the form of (Timings,
Security Level) pairs. Also, notice that as the number of verification computa-
tions increases, the Lamport-Diffie OTS gives a higher security level than the
signing shorter hash digest approach which offers the security level that is equal
to half of the length of the hash digest. The main reason is that the verification
algorithm verifies the signature at random locations, and while the adversary
may learn about the number of computations performed, the adversary does
not know which indices of the signature get verified. Thus, the adversary has to
decide how close the two digests should be to maximize his adversarial advantage.
For the case of Merkle tree signatures, we do not see a huge improvement in the
performance of the verification despite a smaller number of computations. This
is because the computation of H(PKfots) and G(m) can be expensive, because
of the use the Merkle-Damg̊ard transformation in SHA2 hash family, as those
computations requires more calls to the compression function depending on the
input size. Nevertheless, for real-time environments, we expect messages to be
smaller in size.

7 Conclusion

In this paper, we defined the concept of a signature scheme with a flexible
verification algorithm. We presented two concrete constructions based on the
Lamport-Diffie one-time signature scheme and the Merkle signature scheme and
formally proved their security. We also implemented prototypes of our proposed
constructions and showed that the running time performance of our proposed
designs is comparable to other signature schemes in a resource-constrained envi-
ronment. More importantly, compared to standard signature schemes with deter-
ministic verification, our schemes allow the verifier to put different constraints
on the verification algorithm in a spontaneous manner and still guarantee a
reasonable security level. Our proposed signature scheme is one of the few cryp-
tographic primitives that offers a trade-off between security and resources. It
can be highly useful for cryptographic mechanisms in unpredictably resource
constrained environments such as real-time systems.

In the long run, significant research will be required in this challenging flexible
security area. We plan to explore similar ideas for confidentiality in (symmetric or
asymmetric) encryptions, integrity with MACs, and possibly beyond. We believe
these cryptographic protocols will make security mechanisms more prevalent in
the real-time systems.

Acknowledgment. We thank Mikhail Atallah, Dominique Schröder, and the anony-
mous reviewers for encouraging discussions and suggestions.

A Proofs

In this section, we provided the formal proofs of two stated theorems.

190 D. V. Le et al.

Proof of Theorem 1. Let m be the message asked by A during the experiment
FlexExpΣ,A(1n, α), and (m∗, σ∗) be the forgery pair. We define the distance,
d = Δ(G(m), G(m∗)). We notice that for a pair (m,m∗) output by the adversary
during the forgery experiment, if Δ(G(m), G(m∗)) > n−kF , then by pigeonhole
principle, at least one of different positions will be checked. Therefore, in order
to maximize the success probability, the adversary has to choose � and find a �-
near-collision pair where the Hamming distance of G(m) and G(m∗) is less than �
where � ≤ (n−kF). In order to output such near-collision pair, A requires at least

t = t�-ncr = 2n/2/
√∑�

i=0

(
n
i

)
. Also, on the other hand, A may win the forgery

experiment by spending tow to break the underlying preimage resistant hash
function. Thus, subtracting the running time of generating, signing, and verifying
algorithms, we have: tfots = min{tow, t�-ncr} − tsign − tgen − tver where 0 ≤ � ≤
n − kF . For the success probability, we let Miss be the event that no different
bit gets verified. Since d is the Hamming distance between 2 message digests,
either none of those different positions were checked, or some of those positions
passed the check (i.e. the preimage was found). Thus, we rewrite A’s advantage
for the forging experiment as follows: Pr[FlexExpA,Σ(1n, α) = 1] ≤ Pr[Miss] +
Pr[FlexExpA,Σ(1n, α) = 1 ∧ Miss].

The event (FlexExpA,Σ(1n, α) = 1 ∧ Miss) implies that A wins the forgery
experiment by providing a preimage of F (·). Therefore, we can use A to construct
a preimage finder B. The reduction is presented in [7]. One can show:

Pr[FlexExpA,Σ(1n, α) = 1 ∧ Miss] ≤ 4n · AdvpreB,F(n) = 4n · εow (2)

Finally, Pr[Miss] implies the adversary can win the forging experiment if the
challenger does not perform verification on the different bits. Since d is the
number of different bits between two digests, the probability that the challenger
does not perform verification on those positions is:

Pr[Miss] =
kF −1∏
i=0

n − d − i

n − i
=

kF −1∏
i=0

(
1 − d

n − i

)
(3)

From Eqs. (2) and (3), we have:

Pr[FlexExpA,Σ(1n, α) = 1] ≤ min
{

1, 2 · max
{ kF −1∏

i=0

(
1 − d

n − i

)
, 4n · εow

}}

which completes the proof. �

Proof of Theorem 2. Intuitively, if adversary A provides an invalid one-time
public key, the verification must fail for at least one level of tree. Otherwise,
A successfully finds a collision of H. However, in our scheme, since every level
of the tree may not be verified, there is a possibility that the forged level is
not checked. We formalize the intuition as following; we let InvalidOPK be the
event that A provides an invalid one-time public key. Consider the Merkle tree
construction based on the one-time signature construction.

Flexible Signatures 191

Pr[FlexExpA,Σ(1n, α) = 1] = Pr[FlexExpA,Σ(1n, α) = 1 ∧ InvalidPK]

+ Pr[FlexExpA,Σ(1n, α) = 1 ∧ InvalidPK]
(4)

The FlexExpA,Σ(1n, α) = 1 ∧ InvalidPK implies that A provided an invalid one-
time public key but won the forgery experiment. Thus, either the verifier failed
to check a “bad” level of the tree or A found a collision of H(·). For a tree
of height h, there are h + 1 levels that one needs to verify for the complete
authentication. Since kH is the number of times H(·) is evaluated, using a union
bound, we have:

Pr[FlexExpA,Σ(1n, α) = 1 ∧ InvalidPK] ≤ 2 · max
{

1 − kH

h + 1
, εcr

}
(5)

If A found a collision of H(·), then we can construct a collision finder [7].
The event FlexExpA,Σ(1n, α) = 1 ∧ InvalidPK implies that A won the flexi-

ble forgery experiment for one-time signature scheme. Since we defined kF to
be the number of F (·) evaluated, the underlying flexible one-time signature is
(tfots, εfots, 1). Therefore, using Theorem 1, we get:

εfots ≤ 2 · max
{ kF −1∏

i=0

(
1 − d

n − i

)
, 4n · εow

}
where 0 ≤ d ≤ � ≤ n − kF

Since there are 2h instances of the flexible Lamport-Diffie one-time signature, it
means that for 0 ≤ d ≤ � ≤ n − kF ,A wins the forgery game with probability:

Pr[FlexExpA,Σ(1n, α) = 1 ∧ InvalidPK]

≤ 2 · max
{

2h ·
kF −1∏
i=0

(
1 − d

n − i

)
, 2h+log2 4n · εow

}
(6)

From Eqs. (4), (5) and (6), for 0 ≤ d ≤ � ≤ n − kF , we have:

εfms ≤ 4 · max
{

1 − kH/(h + 1), 2h·
kF −1∏
i=0

(
1 − d

n − i

)
, 2h+log2 4n · εow, εcr

}

When kH < h + 1, we simply let tfms = O(1) because A will win the forgery
experiment with probability 1 − kH/(h + 1). When kH = h + 1, we have:

εfms ≤ 4 · max

{
2h ·

kF −1∏
i=0

(1 − d

n − i
), 2h+log2 4n · εow, εcr

}
where 0 ≤ d ≤ � ≤ n − kF

and using [7, Theorem 5], we have tfms = min{tcr, tfots}−2h · tsign − tver − tgen.
Now, using Theorem 1, we get: tfms = min{tow, t�-ncr, tcr} − 2h · tsign − tver −
tgen where 0 ≤ � ≤ n − k. This completes the proof. �

192 D. V. Le et al.

References

1. Barker, E.: Recommended for key management-part 1: General. https://nvlpubs.
nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf

2. Bellare, M., Garay, J.A., Rabin, T.: Fast batch verification for modular exponen-
tiation and digital signatures. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS,
vol. 1403, pp. 236–250. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0054130

3. Bellare, M., Goldreich, O., Goldwasser, S.: Incremental cryptography: the case of
hashing and signing. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp.
216–233. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48658-5 22

4. Bernstein, D.J., et al.: SPHINCS: practical stateless hash-based signatures. In:
Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 368–
397. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5 15

5. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. J. Cryp-
tol. 17(4), 297–319 (2004)

6. Buchmann, J., Dahmen, E., Hülsing, A.: XMSS - a practical forward secure sig-
nature scheme based on minimal security assumptions. In: Yang, B.-Y. (ed.)
PQCrypto 2011. LNCS, vol. 7071, pp. 117–129. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-25405-5 8

7. Buchmann, J., Dahmen, E., Szydlo, M.: Hash-based digital signature schemes. In:
Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.) Post-Quantum Cryptography.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-88702-7 3

8. Camenisch, J., Hohenberger, S., Pedersen, M.Ø.: Batch verification of short sig-
natures. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 246–263.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72540-4 14

9. Dahmen, E., Okeya, K., Takagi, T., Vuillaume, C.: Digital signatures out of second-
preimage resistant hash functions. In: Buchmann, J., Ding, J. (eds.) PQCrypto
2008. LNCS, vol. 5299, pp. 109–123. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-88403-3 8

10. Denning, T., Kohno, T., Levy, H.M.: Computer security and the modern home.
Commun. ACM 1, 94–103 (2013)

11. Fan, X., Garay, J., Mohassel, P.: Short and adjustable signatures. Cryptology
ePrint Archive, Report 2016/549 (2016)

12. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

13. Fischlin, M.: Progressive verification: the case of message authentication. In:
Johansson, T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 416–429.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-24582-7 31

14. Freitag, C., et al.: Signature schemes with randomized verification. In: Gollmann,
D., Miyaji, A., Kikuchi, H. (eds.) ACNS 2017. LNCS, vol. 10355, pp. 373–389.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61204-1 19

15. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: STOC 2008, pp. 197–206 (2008)

16. Katz, J., Lindell, Y.: Introduction to Modern Cryptography, chap. 12, pp. 442–443
(2007)

17. Koscher, K., et al.: Experimental security analysis of a modern automobile. In:
IEEE S&P 2010, pp. 447–462 (2010)

18. Lamberger, M., Teufl, E.: Memoryless near-collisions, revisited. CoRR (2012)

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf
https://doi.org/10.1007/BFb0054130
https://doi.org/10.1007/BFb0054130
https://doi.org/10.1007/3-540-48658-5_22
https://doi.org/10.1007/978-3-662-46800-5_15
https://doi.org/10.1007/978-3-642-25405-5_8
https://doi.org/10.1007/978-3-540-88702-7_3
https://doi.org/10.1007/978-3-540-72540-4_14
https://doi.org/10.1007/978-3-540-88403-3_8
https://doi.org/10.1007/978-3-540-88403-3_8
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-540-24582-7_31
https://doi.org/10.1007/978-3-319-61204-1_19

Flexible Signatures 193

19. Lamport, L.: Constructing digital signatures from a one way function. SRI intl.
CSL-98 (1979)

20. Le, D.V., Kelkar, M., Kate, A.: Flexible signatures: towards making authentication
suitable for real-time environments. Cryptology ePrint Archive, Report 2018/343
(2018)

21. Menezes, A.J., Vanstone, S.A., Oorschot, P.C.V.: Handbook of Applied Cryptog-
raphy, 1st edn. CRC Press, Inc., Boca Raton (1996)

22. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, New York (1990). https://doi.org/10.1007/
0-387-34805-0 21

23. Perrig, A.: The BiBa one-time signature and broadcast authentication protocol.
In: CCS 2001, pp. 28–37 (2001)

24. Petit, J., Stottelaar, B., Feiri, M., Kargl, F.: Remote attacks on automated vehicles
sensors: experiments on camera and liDAR. In: Black Hat Europe, November 2015

25. Reyzin, L., Reyzin, N.: Better than BiBa: short one-time signatures with fast sign-
ing and verifying. In: Batten, L., Seberry, J. (eds.) ACISP 2002. LNCS, vol. 2384,
pp. 144–153. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45450-
0 11

26. Rogaway, P., Shrimpton, T.: Cryptographic hash-function basics: definitions, impli-
cations, and separations for preimage resistance, second-preimage resistance, and
collision resistance. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp.
371–388. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-25937-
4 24

27. Sadeghi, A.R., Wachsmann, C., Waidner, M.: Security and privacy challenges in
industrial internet of things. In: DAC 2015, pp. 1–6 (2015)

28. Szydlo, M.: Merkle tree traversal in log space and time. In: Cachin, C., Camenisch,
J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 541–554. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-24676-3 32

29. Yu, T., Sekar, V., Seshan, S., Agarwal, Y., Xu, C.: Handling a trillion (unfixable)
flaws on a billion devices: rethinking network security for the internet-of-things.
In: HotNets XIV, pp. 5:1–5:7 (2015)

https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/3-540-45450-0_11
https://doi.org/10.1007/3-540-45450-0_11
https://doi.org/10.1007/978-3-540-25937-4_24
https://doi.org/10.1007/978-3-540-25937-4_24
https://doi.org/10.1007/978-3-540-24676-3_32

DGM: A Dynamic and Revocable Group
Merkle Signature

Maxime Buser1(B), Joseph K. Liu1, Ron Steinfeld1, Amin Sakzad1,
and Shi-Feng Sun1,2

1 Faculty of Information Technology, Monash University, Melbourne, Australia
{maxime.buser,joseph.liu,ron.steinfeld,amin.sakzad,

shifeng.sun}@monash.edu
2 Data61, CSIRO, Melbourne/Sydney, Australia

Abstract. Group signatures are considered as one of the most promi-
nent cryptographic primitives to ensure privacy. In essence, group signa-
tures ensure the authenticity of messages while the author of the message
remains anonymous. In this study, we propose a dynamic post-quantum
group signature (GS) extending the static G-Merkle group signature
(PQCRYPTO 2018). In particular, our dynamic G-Merkle (DGM) allows
new users to join the group at any time. Similar to G-Merkle scheme,
our DGM only involves symmetric primitives and makes use of a One-
Time Signature scheme (OTS). Each member of the group receives a
certain amount of OTS key pairs and can ask the Manager M for more
if needed. Our DGM also provides an innovative way of signing revo-
cation by employing Symmetric Puncturable Encryption (SPE) recently
appeared in (ACM CCS 2018). DGM provides a significantly smaller
signature size than other GSs based on symmetric primitives and also
reduces the influence of the number of group members on the signature
size and on the limitations of the application of G-Merkle.

Keywords: Group signature · Symmetric cryptography ·
Post-quantum cryptography · Hash-based signature

1 Introduction

Group signature (GS) schemes firstly introduced in 1991 by Chaum and van
Heyst [10], have attracted a considerable research attention due their promise
to allow members of a group to anonymously sign a digital message on behalf of
the whole group. A manager is responsible for the good functioning of the group.
The literature defines two main different types of GS: static and dynamic. By
a statics GS, we mean that the members are fixed after the setup phase, while
the dynamic configuration allows new members to join the group even after the
setup phase is completed. Moreover, GS can provide revocation, which basically
means that the manager could revoke the ability of signing a message by a group
member.
c© Springer Nature Switzerland AG 2019
K. Sako et al. (Eds.): ESORICS 2019, LNCS 11735, pp. 194–214, 2019.
https://doi.org/10.1007/978-3-030-29959-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29959-0_10&domain=pdf
https://doi.org/10.1007/978-3-030-29959-0_10

DGM: A Dynamic and Revocable Group Merkle Signature 195

Another area which is currently receiving a great research attention is the
post-quantum security given, among others, the launch of the NIST project [1].
By definition, a scheme offers post-quantum security if it is secured against an
adversary who has access to a quantum computer.

Thanks to the relevance of both above-mentioned areas, the research inter-
est for designing GS schemes achieving post-quantum security is increasing.
However, in their goal of creating post-quantum GS, researchers face several
challenges. This includes achieving (practical and) acceptable post-quantum sig-
nature sizes and providing dynamicity. When it comes to post-quantum secu-
rity, lattice-based cryptography is commonly used. However, there exists other
approaches like the code-based cryptography, or the use supersingular isogenies.
In this work, we achieve post-quantum security by using symmetric primitives
as in [6,9]. Our construction contributes to complete the actual lack of research,
that is providing dynamicity and revocation to efficient post-quantum group
signatures based on symmetric primitives only. One of the main issues of the
previous post-quantum symmetric solutions is in fact the size of the generated
signatures. Since the standard symmetric cryptographic algorithms like AES or
SHA are efficient and short, our DGM design and algorithms will also be simple
and efficient and signature sizes will be short compared to other GS based on
symmetric primitives.

1.1 Contributions

In this paper, we introduce a dynamic post-quantum group signature using only
symmetric primitives like hash functions and block ciphers. Our starting point
is the static GS G-Merkle, designed by El Bansarkhani and Misoczki [11]. Our
specific contributions are listed below:

– Introducing DGM: We propose a dynamic G-Merkle (DGM) GS and solve
the problem of G-Merkle to deal with large group by using multiple parallel
Merkle trees (Sects. 4 and 5) (See Fig. 3). Moreover, our extension assures that
each correctly generated signature will go through the verification process.
This is in contrast to dynamic GS of [6], in which a signature will be rejected
if a new member has joined the group after the last update of parameters
with the manager (Sect. 5).

– Competitive signature size: Our DGM signatures are significantly shorter
(in term of size) than other dynamic GSs based on symmetric primitives.
Moreover, the influence of the number of group members on the size (length)
of the signature is diminished comparing to G-Merkle. All these have also
been verified by numerical results derived from GS application (See Tables 1
and 3).

– Innovative revocation process: We also propose an innovative way of
revoking the ability to sign of a misbehaved group member with the use of
symmetric puncturable encryption (See Sect. 4.2).

Table 1 compares DGM with other Post-Quantum GS schemes and their func-
tionalities. It shows that more than providing dynamicity and revocation, DGM’s

196 M. Buser et al.

Table 1. Comparison of different GSs and their functionalities for N = 2l being the
number of group members, B be the number of OTS keys per member, λ be the security
parameters, and rvk be the number of revoked OTS keys.

GS Sig. size Group PK size Dynamicity Revocation

Laguillaumie et al. [20] O(λ2 · log N) O(λ2 · log N) Yes No

Gordon et al. [15] O(λ2 · N) O(λ2 · N) No No

Katz et al. [19] O(λ · log N) O(λ) No No

Boneh et al. [6] O(λ · log N) O(λ) Yes Yes

G-Merkle [11] O(log(N · B)) O(λ) No No

Ling et al. [26] O(λ) O(λ) Yes No

DGM O(λ) O(λ · rvk) Yes Yes

main advantage is to remove the dependency of the signature size on number
of group members N . Indeed, the size of the group signature is set during the
setup phase and will remain unchanged afterwards.

1.2 Related Works

Chaum et al. [10] were the firsts to theorize the concept of anonymously signing
on behalf of a group. However, the most commonly used definition for dynamic
GS is the one presented by Bellare et al. in [5]. In the field of post-quantum
security, the first hash-based signature scheme designed are one-time signature
schemes (OTS) presented in [21], or more recently in [17]. The work of [28]
transformed OTS to a multi-signature scheme thanks to a Merkle tree. However,
the weakness with the Merkle signature is that the number of possible signatures
is fixed after setup phase. Therefore, Chalkias et al. [8] proposed to add a fall
back mechanism along with the Merkle tree to add more flexibility. Even if
there exist hash-based signatures, when it comes to design post-quantum GS,
most researchers choose lattice-based cryptography rather than using symmetric
primitives. The works of Libert et al. [22,23], Gordon et al. [15], and Ling et al.
[24,25] demonstrate this trend.

Nevertheless, the construction of the Zero-Knowledge proof [14] ZKBoo [13],
constructed only with symmetric primitives, shows that symmetric primitive can
also be used to design post-quantum signature and group signature. ZKBoo uses
the concept presented by Ishai et al, namely the “MPC in the head” [18]. From
this, one can achieve new optimized Zero-Knowledge proofs such as [2,9] or [19].
The state-of-the-art post-quantum signatures based on symmetric primitives are
constructed by Chase et al., who built digital signature schemes by designing
ZKB++ [9], an optimization of ZKBoo. Alongside ZKB++, either Fiat-Shamir
Transform [12] or Unruh Transform [30] were employed to construct an Non-
Interactive Zero-Knowledge proof (NIZK) [3].

A dynamic GS constructed with symmetric primitives is proposed first by
Boneh et al. [6]. Recently, a new draft of post-quantum GS has been proposed by

DGM: A Dynamic and Revocable Group Merkle Signature 197

Katz et al. [19], with an optimized NIZK based on symmetric primitives and
“MPC in the head”. El Bansarkhani and Misoczki [11] presented G-Merkle a
static GS, which is basically a modification of the Merkle signature.

2 Preliminaries

This section aims to introduce all of the theoretical concepts on which our GS is
constructed. We also formally define a GS in this Section. Our scheme relies on
Merkle tree [28] and is based on two main symmetric primitives: hash function
H and symmetric encryption SE composed by a tuple of polynomial-time algo-
rithms SE = (SE.KeyGen,SE.Enc,SE.Dec) (See Appendix B for more details). We
also use a One-Time Signature scheme OTS, that can be easily constructed by
symmetric primitives, only is defined by a tuple of polynomial-time algorithms
OTS = (OTS.KeyGen,OTS.Sign,OTS.Verify) (See Appendix B for details).

2.1 Puncturable Pseudorandom Function

We first introduce the syntax of a keyed puncturable Pseudorandom function
(PRF) [16,29] F : K × X ← Y , where K is the key space, X is the input space,
and Y is to the output space. This function takes an input x ∈ X and a key
k ∈ K and outputs y = F (k, x). Furthermore, it has the following two functions

– F.Punc(k, x) = kx: takes as input a PRF key k ∈ K and an element x ∈ X,
and outputs a punctured secret key kx ∈ Kp and

– F.Eval(kx, x) = y: takes as input a punctured key kx ∈ Kp and an element
x ∈ X, and outputs an element y, where

F.Eval(kx′ , x) =

{
F (k, x) if x �= x′

⊥ else.
(1)

2.2 Puncturable Encryption

In this work, we use another symmetric primitive called symmetric puncturable
encryption (SPE) [29]. This was used in the context of searchable encryption.
The term “puncture” is used because the secret key has been revoked the ability
to decrypt some ciphertext. A d-puncturable SPE with message space PM and
tag space T , is defined by the following four polynomial time algorithms:

– SPE.KeyGen(1λ, d) = SPE.msk: take as inputs a security parameter λ and a
positive integer d, which indicates the maximum number of allowed punctured
tags. It outputs a random secret key SPE.sk0 and sets SPE.msk = (SPE.sk0, d),

– SPE.Enc(m,SPE.msk, t) = SPE.ct: the encryption algorithm taking SPE.msk,
a message m, and a tag t as inputs and outputs a ciphertext SPE.ct,

– Punc(SPE.ski−1, t
′) = SPE.ski: the puncture algorithm, which takes as inputs

SPE.ski−1 and a new tag t′ and outputs a new key SPE.ski. The new SPE.ski

can decrypt every ciphertext that SPE.ski−1 can except the one encrypted
with t′, and

198 M. Buser et al.

– SPE.Enc(SPE.ct,SPE.ski, t) = m/ ⊥: a deterministic decryption algorithm,
which takes as inputs a punctured key SPE.ski, a ciphertext SPE.ct, and a
tag t, and finally outputs a plaintext m.

A security model for SPE is formalized in [29], however, we only use the correct-
ness of SPE in our setting with a security parameters λ, which is defined as:

Pr[SPE.Dec(SPE.Enc(SPE.msk,m, t),SPE.ski, t) = m] = 1. (2)

where t ∈ T \ Ti , where Ti = {t1, t2, . . . , tn} is an arbitrary set of distinct tags
punctured at SPE.ski.

2.3 Group Signature (GS)

A GS is composed of three different identities/parties:

– Manager M: the central authority of group responsible for the perfect func-
tioning of the group, allows new members to join the group, can reveal the
identity of a signer, and can revoke the ability to sign to a misbehaved
member.

– Member: one of the identities/users of the group, who can anonymously gen-
erate a signature, and

– Verifier: is an outsider (which can be a member or manager of the group
as well), who can only verify the validity of a group signature using public
parameters.

Our definition of a dynamic GS (DGS) is based on, [5–7]. A DGS is specified by
the following polynomial time algorithms:

– DGS.Setup(1λ,DGS.set) = (DGS.param,DGS.msk): The manager M on input
of the security parameter λ and setup parameters DGS.set executes this algo-
rithm and outputs the public parameters DGS.param and the manager’s secret
key DGS.msk.

– DGS.Join: This is an interactive process that takes place between M and an
individual user idU , who desires to join the group. Similar to [7], we assume
that all interactions between parties take place over a secure channel.

– DGS.Sign(m, paramidU) = DGS.σ: This algorithm is run by the member idU
with its private parameters paramidU and outputs a valid anonymous signature
DGS.σ.

– DGS.Verify(m,DGS.σ,DGS.param) = 0/1: is a deterministic algorithm that
checks the validity of the signature. It outputs 1 if the signature is a valid
signing of m and 0 otherwise.

– DGS.Open(DGS.σ,DGS.msk) = idU : is an algorithm ran by M to reveal the
identity of the signer of DGS.σ.

– DGS.Revoke(idU) = DGS.param: is an algorithm that updates the pub-
lic parameters DGS.param based on the misbehaved group member idU . It
revokes the ability of user idU to generate valid signature.

DGM: A Dynamic and Revocable Group Merkle Signature 199

A DGS achieves the following security requirements:

Definition 1 (Correctness). Let DGS.σ be a signature produced by an honest
member idU of DGS and message m. This DGS achieves correctness if and only
if

Pr[DGS.Verify(m,DGS.σ,DGS.param) = 0] < negl(λ). (3)

Definition 2 (Unforgeability) [6]. A DGS achieves unforgeability if an adver-
sary cannot construct a valid signature DGS.σ′ which can be linked to an honest
member idU . A DGS achieves unforgeability if and only if for a security parameter
λ the advantage AdvForge

A of an adversary A is

AdvForge
A = Pr[ExpForge

A,DGS(λ) = 1] < negl(λ), (4)

where ExpForge
A,DGS(λ) is defined in Appendix A.

Definition 3 (Anonymity [7]). A DGS achieves anonymity if and only if the
signature does not reveal the identity of the signer. A DGS achieves anonymity if
and only if for a security parameter λ the advantage AdvAnon

A of an adversary
A is

AdvAnon
A = |Pr[ExpAnon−0

A,DGS (λ) = 1] − Pr[ExpAnon−1
A,DGS (λ) = 1]| < negl(λ), (5)

where ExpAnon−b
A,DGS (λ) is defined in Appendix A.

Definition 4 (Traceability [4]). A DGS achieves traceability if and only if no
adversary can generate a valid signature DGS.σ which cannot be associated with
an active member of the group, so DGS.Open(DGS.σ,DGS.msk) = 0. A DGS
achieves traceability if and only if for a security parameter λ the advantage
AdvTrace

A of an adversary A is

AdvTrace
A = Pr[ExpTrace

A,DGS(λ) = 1] < negl(λ), (6)

where ExpTrace
A,DGS(λ) is defined in Appendix A.

3 G-Merkle (GM) [11]

G-Merkel (GM) is a post-quantum GS constructed from symmetric primitives
and based on the idea of the Merkle signature [28]. GM uses a hash function H,
an OTS scheme, and a symmetric encryption scheme SE. In the following, we
give an overview of such a scheme.

200 M. Buser et al.

GM Overview: The manager M has the responsibility for a group of N users,
and each user will be allowed to sign B messages. This means that each user
possesses B OTS key pairs. Therefore, the group public key GM.gpk will be the
Merkle root of the tree generated over B · N leaves where each leaf is an OTS
public key. Each leaf is labelled from 1 to B ·N and the i-th member will receive
the OTS keys corresponding to leaves {B · (i − 1) + 1, . . . , B · i}. Similar to
traditional Merkle signature, a signature is composed of an OTS signature and
the path from OTS.pk to GM.gpk. However, in order to ensure user anonymity, M
“Shuffles” the set of leaves L. During the “Shuffle” process, the set L is composed
of tuples {(OTS.pk1,GM.pos1), . . . , (OTS.pkB·N ,GM.posB·N)}, where GM.posi =
SE.Enc(i,GM.msk) and GM.msk is the M’s secret key. The “Shuffle” procedure
ends by ordering the set L according to GM.pos. Another modification of the first
layer of nodes is then built by not only including the leaves in the hashes, but
also the encrypted values of the respective leaves, e.g. H(OTS.pki||GM.posi) (see
Fig. 1). Finally, M generates the Merkle tree which gives GM.gpk. The “Shuffle”
process prevents an adversary from identifying sub-tree and hence guessing the
identity of the signer. Figure 1 shows the GM tree structure for N = 2 and
B = 2, where GM.pos3 ≤ GM.pos2 ≤ GM.pos4 ≤ GM.pos1.

Fig. 1. G-Merkle: tree structure

GM Limitations: The lack of flexibility of GM appears to be its main limita-
tion. Undeniably, GM is reserved for static groups because the maximum number
of available OTS key pairs will be fixed, and so will the number of members after
the setup phase. We address this issue by introducing DGM as follows. Another
issue of GM, already mentioned in [6], is the lack of efficiency in the setup process
for large groups, which limits its application in practical scenarios. We further
demonstrate that our DGM solves this lack of efficiency in GM with respect to
time taken to perform the setup phase (see Fig. 3).

DGM: A Dynamic and Revocable Group Merkle Signature 201

4 DGM

This section aims to present our GS and starts with an overview of DGM by
highlighting the differences with GM. Then, we will present the construction of
DGM explicitly. DGM is constructed with a hash-based OTS scheme OTS, a
symmetric encryption SE, a symmetric puncturable encryption SPE, and a hash
function H. It follows the definition of dynamic GS presented in Sect. 2.3.

4.1 DGM Overview

DGM is a dynamic extension of GM by allowing new members to join the group
after the setup phase. Contrary to GM, DGM members are not limited to have
only B OTS key pairs and therefore to generate B signatures. Indeed, when
a member is running out of OTS key pairs he can request new ones from the
manager M.

Two Types of Merkle Tree: To achieve dynamicity, we change the tree struc-
ture (See Fig. 2). Indeed, DGM distinguishes two types of Merkle trees. There is
a unique Merkle tree named Initial Merkle tree (IMT), which is generated dur-
ing the setup phase. The IMT is generated on randomly choosing leaves and its
Merkle root is the group public key DGM.gpk. An example of an IMT is shown
in Fig. 2, where the elements l1 to l8 are randomly chosen strings. The second
type of Merkle trees are the Signing Merkle Tree (SMT). Those trees are parallel
trees to IMT and linked with an internal node of IMT called “fallback node”
and denoted with Fn. The link between a SMT and the IMT is created with
Fn and a “fallback key” Fk. After the generation of a SMT, Fk is computed

Fig. 2. DGM Merkle trees example

202 M. Buser et al.

as SE.Dec(Fn, rSMT) = Fk, where rSMT is the root of the SMT. Therefore, for
the path verification from an OTS key to DGM.gpk, SE.Enc(Fk, rSMT) = Fn
should be computed. SMTs are generated when a group member requests new
OTS key pairs and constructed in a similar manner to GM tree. Their leaves
are kept secret to hide the time of the generation. Each of its leaves have an
index DGM.i = (t, l), where t is the SMT number and l is the leaf number. DGM
“Shuffles” the leaves with a symmetric encryption scheme. All leaves of the SMT
are sorted by DGM.pos, where DGM.pos = SE.Enc(DGM.i,DGM.msk). In Fig. 2,
we have DGM.pos2 < DGM.pos1.

Join and Request OTS Keys: DGM separates the join process from the
request of OTS keys. A prospective user needs to first join the group and then it
will have the possibility to request OTS keys. The request for new OTS keys is a
subroutine (See Algorithms 1 and 2) of the signing algorithms which is executed
when the signer does not have an available an OTS key pair. When M receives a
request for a new OTS keys, she selects randomly an internal IMT node ni. If ni

is a fallback node, then it takes the next available key pair of the corresponding
SMT. Otherwise, she needs to generate a new SMT. All trees are generated by
M, who owns the manager secret key DGM.msk owns and her private parameters
DGM.param composed of all private lists. When the SMT associated with ni has
used all its leafs, ni is not considered as a fallback node. A new SMT will be
generated when ni will be selected.

The DGM Signature DGM.σ: The format of DGM.σ is identical to GM.
Therefore, DGM.σ = (m,OTS.σ,OTS.pk,DGM.pos,DGM.p), where OTS.σ is the
OTS signature of the message m, which can be verified with OTS.pk. DGM.pos
is the corresponding position of OTS.pk in the tree and DGM.p is the path from
the OTS.pk to DGM.gpk. The only difference between DGM.σ and GM.σ is the
fallback key Fk, which is an element of the path. In order to verify the path,
the verifier needs to use SE.Enc instead of H and also verify the validity of Fk
with M, because SE does not provide collision resistance. An example of path
verification is illustrated in the Fig. 2.

Revocation Using SPE: DGM provides an innovative way of revoking the
ability to a group member to sign. The DGM.pos is an element of the sig-
nature specific to a member allowing M to perform such a task. To revoke
a member idU , M will first generate a new DGM.rvk0 = SPE.msk, then she
will puncture the key with every DGM.pos of all revoked members producing
the punctured key DGM.rvk1 = SPE.sk. During the verification, the verifier
runs SPE.Dec(SPE.Enc(m,DGM.rvk0,DGM.pos),DGM.rvk1,DGM.pos) (line 1 of
DGM.Verify in Algorithm 1) and if it outputs something rather than m, then it
means that by the correctness of SPE (See Sect. 2.2), that DGM.pos has been
punctured so the signer has been revoked. SPE offers a revocation alternative
compared to the traditional use of lists. Previously, the only way to revoke mem-
bers for GS constructed with symmetric primitives was the use of lists. For exam-
ple, Boneh et al. [6] used two lists, one of revoked signature and another with

DGM: A Dynamic and Revocable Group Merkle Signature 203

the secret key of revoked members, which leads to their identities. In contrary to
their work, DGM preserves anonymity of revoked members (See Sect. 4.3). Fur-
thermore, it allows the verifier to work with only the signature and M’s public
parameter to perform and check the revocation.

4.2 Detailed DGM Construction

Our GS follows the definition presented in Sect. 2.2. The main parameters are
summarized in the Table 2. All algorithms are presented in Algorithm 1. The
parts in Algorithm 1 highlighted in red are the ones which differ from GM [11].
In the following, we describe each algorithm in more details:

DGM.Setup(1λ,DGM.set) = (DGM.param,DGM.msk): For the DGM setup algo-
rithm the setup parameters are DGM.set = hIMT. It outputs the public parame-
ters DGM.param meaning the group public key DGM.gpk and the manager secret
key DGM.msk. It also initializes all M’s private list M.param =(OTS, FN, FK,
members). The algorithm generates 2hIMT random leaves and then constructs
IMT. Figure 2 shows an example with the parameter hIMT = 3.

DGM.Join: This interactive protocol is taking place between M and a prospec-
tive member idU . M will add idU to members and idU stores the challenges

Table 2. DGM parameters summary

IMT Initial Merkle tree

SMTt t-th Signing Merkle tree

DGM.msk Manager’s secret key

DGM.rvk The public revocation key, which is equal to
(DGM.rvk0 = SPE.msk,DGM.rvk1 = SPE.skrvks)

DGM.param Group public parameters composed of DGM.gpk and DGM.rvk

DGM.posi SE.Enc(DGM.i,DGM.msk)

DGM.i Tuple (t, i) denoting the i-th OTS key of the t-th SMT

members List of members composed of all identities with their associated
DGM.i

OTS List of non-assigned OTS keys

FK List of fallback keys

FN List of fallback nodes

M.param The M’s private lists, (OTS,FN, FK,members)

hIMT The height of IMT

paramidU The private parameters of idU including its OTS keys and a
variable state

rvks Total number of revoked OTS keys

ni.level Level of the fallback node ni in IMT, for example the node FN in
Fig. 2 is Fn.level = 1 and DGM.gpk is at level 0

204 M. Buser et al.

sent by M. The user uses these to prove its own identity when requesting OTS
keys. During this process, idU will receive a challenge c which will be used for
the request of new OTS key pairs.

DGM.Sign(m, paramidU) = DGM.σ: The signing algorithm is similar as in
GM [11], it takes as input the message m and the private parameters paramidU
of the user SE.Enc composed of a private list of OTS key pairs and an integer
state which protects idU to use twice the same OTS key pair. The difference
with GM [11] is the subroutine named DGM.OTSRequest (See Algorithm2) and
that is executed if idU needs new OTS keys.

Algorithm 1 DGM algorithms

DGM.Setup

Input: λ,DGM.set
Output: DGM.param,DGM.msk
1: DGM.msk = SE.KeyGen(1λ)
2: Initialize FK, FN, members, OTS.
3: Generate of a set 2hIMT (element l1 to

l8 in Fig. 2) of random leaves of size λ.
Generate IMT where the Merkle root
is the group public key DGM.gpk

4: return DGM.param, DGM.msk

DGM.Join

1: idU sends a request to join the group
2: M generates a challenge c ∈ {0, 1}λ

sends it to idU
3: idU stores c
4: M adds idU to the list members
DGM.Sign

Input: m, paramidU
Output: DGM.σ
1: if idU has no OTS key available then
2: DGM.OTSRequest (Algorithm 2)
3: end if
4: OTS.σ = OTS.Sign(m,OTS.privstate).
5: Construct the signature DGM.σ =

(m,OTS.σ,OTS.pkstate,
DGM.pos,DGM.p)

6: state = state + 1
7: return DGM.σ

DGM.Verify

Input: m,DGM.σ,DGM.param
Output: 0/1
1: if SPE.Dec(

SPE.Enc(m,DGM.rvk0,DGM.pos),

DGM.rvk1,DGM.pos) =⊥ then
2: return 0
3: end if
4: if OTS.Verify(m,OTS.σ,OTS.pk) = 0

then
5: return 0
6: end if
7: Verify the path DGM.p starting with

H(OTS.pk||DGM.pos). (See Fig. 2)
8: if gpk′ �= DGM.gpk then
9: return 0

10: end if
11: verification of validity of Fk with M
12: return 1
DGM.Open

Input: DGM.σ,DGM.msk
Output: idU
1: DGM.i = SE.Dec(DGM.pos,DGM.msk)
2: return idU from members

corresponding to DGM.i

DGM.Revoke

Require: idU
Ensure: DGM.param
1: rvks = rvks+ number of DGM.pos as-

sociated with idU
2: DGM.rvk0 = SPE.KeyGen(1λ, rvks)
3: for 1 to rvks do
4: rvki = SPE.Punc(rvki−1,DGM.posi)

// Puncture of all DGM.poss be-
longing to revoked members

5: end for
6: DGM.rvk1 = rvki

7: return DGM.param

DGM: A Dynamic and Revocable Group Merkle Signature 205

DGM.OTSRequest is interactive protocol takes place over a secure channel
between a group member idU who desires B new OTS key pairs and M. When
receiving request for new OTS key pairs, M will call the procedure DGM.Update
which will assign B new OTS key to idU . From already generated SMT or from
newly generated SMT ones. The detail of DGM.Update procedure is presented
in Algorithm 2, where the part written in blue is the “Shuffle” process similar
to GM [11] (See Sect. 3). As an example, in Fig. 2, if the node Fn is selected at
step 2 and the first OTS key pair have already been assigned, the second OTS
key pair will be assigned to the members, if she is not the second leaf of the tree
because of the “Shuffle” process. If another node is selected, we need to generate
a new SMT.

DGM.Verify(m,DGM.σ,M.param) = 0/1: This deterministic verification algo-
rithm is very similar to the one from GM. The first difference is the path verifi-
cation (See Fig. 2). The second is the interaction between M and the verifier, to
assure the validity of Fk in the path and the last one is the execution of SPE.Enc
and SPE.Dec procedures to verify that the signer was not revoked. The DGM.pos
of all revoked signatures have been used to generate a new punctured key such
that DGM.Enc will not output a valid plaintext if DGM.pos has been punctured.

Algorithm 2 DGM subroutines

DGM.OTSRequest

1: idU generates n = H(B||c).
2: idU sends (B, n) to M
3: M verifies the validity of n
4: If the verification succeeds, then

M runs the Update(B, idU) subrou-
tine resolving new assigned OTS
keys OTS.Keys to idU and updated
M.param.

5: M sends the OTS.Keys to idU and
stores all indexes of the OTS.Keys in
the list members at the entry idU .

DGM.Update

Input: B, idU
Output: Updated M.param
1: Select B random internal Nodes ni of

IMT
2: for i = 1 to B do
3: if ni ∈ FN then
4: Assign the next available leaf to

idU of the corresponding SMT as-
sociated with ni

5: if ni has no leaf left then

6: Remove ni from FN
7: end if
8: else
9: Create a new SMT t for ni

10: newOTS = 2hIMT−ni.level−1

11: for i = 1 to newOTS do
12: (OTS.pki,OTS.privi)

= OTS.KeyGen(1λ)
13: DGM.i = (t, i)
14: li = (OTS.pki,DGM.i)
15: end for
16: Generate Merkle tree on the

shuffled leaves l1, . . . , lnewOTS

which give the Merkle root rSMT

(See Fig. 2)
17: Fk = SE.Dec(ni, rSMT)
18: assign the first of OTS key pair

to idU
19: add all other OTS keys to OTS
20: add Fk to FK
21: add ni to FN
22: end if
23: end for

206 M. Buser et al.

DGM.Open(DGM.σ,DGM.msk) = idU : This algorithm executed by M returns the
identity of a group member, who provides DGM.σ.

DGM.Revoke(idU) = DGM.param: This algorithm, executed by M, revokes the
ability of a malicious member to sign a message by puncturing (See Sect. 2.2 on
SPE) all DGM.poss associated with idU and all previous revoked members.

4.3 Correctness and Security Analysis

DGM assumes that the manager M is trusted. Therefore, M is available, gen-
erates trees and OTS keys correctly and will not collide with the adversary. We
also assume than the communications for DGM.Join and DGM.OTSRequest take
place over secure channels. The adversary A follows the security games presented
in Appendix A in the Fig. 4. She has access to private information of corrupted
members and to the private list members. DGM achieves correctness, unforge-
ability, anonymity and traceability (Sect. 2.3).

Theorem 1 (Correctness). Let DGM be the construction provided in Algo-
rithm 1 with a secure hash function H, an IND − CPA secure symmetric encryp-
tion SE, a secure OTS scheme, and a secure symmetric puncturable encryption
SPE. DGM achieves correctness in Definition 1.

Proof. The correctness of DGM is ensued from the correctness of its underlying
primitives H, SE and SPE. ��

Theorem 2 (Unforgeability). Let DGM be the construction provided in Algo-
rithm 1 with a secure hash function H, a IND − CPA secure symmetric encryp-
tion SE, a secure OTS scheme, and a secure symmetric puncturable encryption
SPE. DGM achieves unforgeability based on Definition 2.

Proof. To forge a signature, A (Fig. 4) needs to have a valid path from OTS.pk
to DGM.gpk by the properties of a collision-resistant hash function, it is compu-
tationally not feasible instead knowing every single element of DGM.p and the
DGM.pos of OTS.pk in the tree. The first possibility consists of A taking a valid
path of a corrupted member and trying to find DGM.pos′ associated with a non-
corrupted member such that H(OTS.pk′||DGM.pos′) = H(OTS.pk||DGM.pos).
By the collision resistance property of H, it is not computationally feasible
(See Appendix B). If A has access to a valid OTS.pk, she needs to recover
OTS.priv to generate a valid OTS.σ and thanks to the security property of OTS,
it not feasible. Therefore the probability of forging a signature is negligible as
Pr[DGM.Verify(m,DGM.σ′,DGM.param) = 1] < negl(λ). Another possibility for
A is to create her own path to DGM.gpk by generating her own Fk. However,
because of the assumption that M is trusted, the Fk verification will not pass.
Moreover, if she uses the parameters of corrupted members, DGM.Verify would
still reject DGM.σ′ because we assumed that M is trusted and works correctly.
Therefore, all DGM.poss of corrupted member has been punctured. Thanks to
the correctness of SPE (See Sect. 2.2), the execution of DGM.Verify outputs 0
(see line 1 of Algorithm 1). ��

DGM: A Dynamic and Revocable Group Merkle Signature 207

Theorem 3 (Anonymity). Let DGM be the construction provided in Algo-
rithm 1 with a secure hash function H, an IND − CPA secure symmetric encryp-
tion SE, a secure OTS scheme, and a secure symmetric puncturable encryption
SPE. DGM achieves anonymity based on Definition 3.

Proof. A (see Fig. 4) has access to all OTS key pairs and paths except for two
pairs of two different non-corrupted members and the private lists of M. There-
fore, when calling the challenge, she knows the index associated with the non-
corrupted members. The only element of the signature DGM.σ, which reveals
information about the identity of the signer is DGM.pos, which corresponds to
SE.Enc(DGM.i,DGM.msk). Thanks to the IND − CPA security (See Appendix B)
of SE, A can only guess the identity if she breaks the scheme SE. Therefore,
if we assume that SE is secure and that M does not reveal DGM.msk, then A
can not distinguish between associated DGM.pos′ with the ones from the mem-
ber. Moreover, to insure anonymity the trusted M has to keep secret the list of
FN and FK to not give precisely the apparition time of new Fks which could
lead to leak some information on the call DGM.OTSRequest of a member idU .
This secrecy added with the “Shuffle” process hide the creation of a new SMT.
Moreover, revoked members preserved their anonymity because the revocation
process works on the DGM.pos elements of revoked members. In this frame-
work, A cannot find the identity of the revoked users due to the security of SE
scheme. ��

Theorem 4. (Traceability). Let DGM be the construction provided in Algo-
rithm 1 with a secure hash function H, an IND − CPA secure symmetric encryp-
tion SE, a secure OTS scheme, and a secure symmetric puncturable encryption
SPE. DGM achieves traceability based on Definition 4.

Proof. A (see Fig. 4) needs to construct a valid signature which cannot be
attributed to any members. Therefore, she needs to change DGM.pos in DGM.σ.
As A can corrupt members, she has access to private parameters of corrupted
members, hence she knows the valid path to DGM.gpk. The needs to gener-
ate a valid OTS signature first, which can be successfully done by using an
OTS key pair of corrupted members. Secondly, she needs to change the vari-
able DGM.pos associated with the OTS key pair that she used to sign the
message m by a random element DGM.pos′, such that H(OTS.pk||DGM.pos) =
H(OTS.pk||DGM.pos′) However, because of the collision resistance property of
H (see Appendix B) it is not computationally feasible. Therefore, the probabil-
ity that Pr[DGM.Verify(m,DGM.σ,DGM.param) = 1] < negl(λ) with DGM.σ,=
(OTS.σ,OTS.pk,DGM.p,DGM.pos′). ��

5 Evaluation

In this section, we compare the performance of different phases of our DGM algo-
rithm. We also evaluate the numerical performance of our DGM setup algorithm
DGM.Setup and show its advantage compared to GM.Setup.

208 M. Buser et al.

Table 3. Signature size comparison.

GS Signature size (KB) Max message size (KB)

Boneh et al. [6] 1331 -

Katz et al. [19] 315 -

DGMa 2.72 5.03

DGMb 9.54 2.51
aSHA-256, AES-256, W-OTS, message size = 256 bits
bSHA3-512, AES-512, W-OTS, message size = 512 bits

DGM.σ’s size: The main advantage of DGM is its constant signature size (with
respect to the number of group members N) compared to the current state of art.
Table 1 demonstrates this trend. Although, Ling et al. [26] proposed a lattice-
based GS with a signature size independent of the number of group members,
they have not explored the applicability of their results. A weakness of our
scheme is the size of the public parameters, which are increasing when members
are revoked, because the size of DGM.rvk increases after each revocation if we use
the SPE proposed in [29]. Moreover, in terms of practical application, we also
compare our scheme with the GS provided in [19], which has the current dynamic
GS benchmark with symmetric primitives. Although the GS given by Katz et
al. [19] does not explicitly provide a dynamic GS, their construction is similar to
the Boneh et al. [6] GS, so it could be considered as a dynamic GS. The smallest
signature size provided by Katz et al. is 315KB for a group of 27 members. The
size |DGM.σ| of DGM.σ is |OTS.σ| + |OTS.pk| + |H| · hIMT + |DGM.pos|. Using
all symmetric standard and we set hIMT = 20, which is the maximum applicable
hIMT size. Table 3 compares signature sizes of two different instances of DGM,
achieving different levels of security, with those GS from [6,19]. It shows that our
instance approximately achieves a signature size 115 times smaller than Katz et
al. GS [19]. The third column presents the maximum message size for which our
DGM.σ can achieve a smaller signature size compared to those in [19].

DGM Signature Verification: Another advantage of our scheme is that a
valid signature will remain valid during the whole life of the group. In DGM,
DGM.gpk and the element DGM.p of a signature allow a member to prove its
membership, although other schemes work with accumulators to prove member-
ship in a group [6]. To sign, a member has to be updated about the state of
accumulators in order to generate a valid membership proof in the signature.
Nevertheless, when a new member joins the group, the membership proof will
be updated. This update has as consequence that all of the other members of
the group need to update to prove their membership in their next signature.
Although a member keeps updating regularly, the risk of generating a signa-
ture with a non-valid proof of membership still exists because if a new member
joins between the last update and the signing time then it will have an invalid
signature. This interactive process DGM.OTSRequest can be seen as an update

DGM: A Dynamic and Revocable Group Merkle Signature 209

Table 4. Verification: DGM vs GM

Dynamicity Revocation

DGM overhead Path verification (Fig. 2) Execution of SPE.Enc

Interaction with M and SPE.Dec

Fig. 3. Setup performance comparison: GM.Setup vs DGM.Setup

process and hence the risk of generating a signature with a non-valid DGM.p does
not exist in our scheme. The reason why this risk is lifted is that the joining of
new members in the group has no influence on the older members. However,
the DGM verification has a major cost due to the extension (see Table 4). The
dynamicity brings an interaction between M and the verifier, which could be
an important limitation for possible application. Our futures objectives will be
to suppress the interaction without jeopardizing the security of DGM. Further-
more, the use of SPE to provide revocation generates another additional cost,
which we will evaluate in our futures works.

DGM Setup Phase Time: Figure 3 shows the difference in numerical per-
formances of both setup phases of GM and DGM implemented in Java. The
implementation relies on the SHA-256 as hash functions. For OTS purpose, we
decided to implement W-OTS [17]. The “Shuffle” of the leaves was done with
the block cipher AES and the Java Interface Comparator with the Timsort algo-
rithm inspired from [27]. The results of our implementation are shown in Fig. 3,
comparing the time (ms) needed for setup processes with different size of Merkle
trees. A difference between GM and DGM is the time of OTS key pairs genera-
tion. During the setup, GM needs to generates all N · B OTS keys for a group
of N members with B possible signature for each of the members. While DGM
delays and divides the generation of the OTS keys over the time and needs only
to generate IMT. Our results presented in Fig. 3 shows that this delay improves
the applicability of the GS.

210 M. Buser et al.

6 Conclusion

In this paper, we presented a dynamic post-quantum GS (called DGM), extend-
ing the static GM approach to allow new users to join the group at any time.
Similar to GM, our scheme relies only on symmetric primitives. While other
dynamic post-quantum groups are often criticized for generating signatures of
large signature sizes, our proposal suggests that the size of a signature can be
reduced by using only symmetric primitives. Moreover, our competitive signa-
ture sizes do not rely on the number of group members outperforming other
state-of-the-art GSs like [19]. This can be considered as the current benchmark
for application of post-quantum dynamic GS constructed with symmetric prim-
itives. DGM also provides a new approach for signature revocation with the use
of symmetric puncturable encryption (SPE). Practical analysis were conducted
to show and evaluate the applicability of our constructed DGM.

A Security Games

To prove the security of a DGS, we defined games (see Fig. 4, where unrestricted
queries means that the oracle can be called multiple time). An adversary A can
call the following oracles:

Oracles:

– Setup(λ,DGS.set): runs the set up algorithm according to the parameters λ
and DGS.set.

– Chalb(id1U , id2U ,m,DGS.param): returns the signature of idb
U for b ∈ {0, 1}

– AddMember(idU): adds a new honest member idU to the group.
– addCorruptMember(idU): creates a new corrupted member. A will have

access to all private information of corrupted members.
– Corrupt(idU): returns one OTS key pair of the non-corrupted member idU .
– Open(m,DGS.σ): returns the identity of the author of DGS.σ.
– Sign(m, idU): returns a valid signature from the user idU for the message m.

B Symmetric Primitives

The second part of the Appendix provides the definition of symmetric primitives
used.

Hash Function: A hash function H : {0, 1}∗ → {0, 1}λ is a function which
takes as input a message x of any length and outputs the hash value h with the
length n of x. A hash function is characterized by three properties:

– One-wayness: A function is one way if and only if knowing a hash value h is
unfeasible in polynomial time to find x such that h = H(x).

DGM: A Dynamic and Revocable Group Merkle Signature 211

Fig. 4. Security games

– Collision Resistance: A function achieves collision resistance if and only if
a polynomial time algorithm which finds x0 and x1 such that x0 �= x1 and
H(x0) = H(x1) do not exist.

– Second Pre-image Resistance: A function achieves second pre-image resistance
if and only if knowing a pair (x0,H(x0)) it is unfeasible for a polynomial time
algorithm to find another input x1 such that H(x1) = H(x0).

Symmetric Encryption: [29] is composed of the following algorithms:

– SE.KeyGen(1λ) = SE.sk: This algorithm takes as input the security parameter
and outputs a secret key ∈ {0, 1}λ

– SE.Enc(p,SE.sk) = c: the encryption takes as input the secret key SE.sk ∈
{0, 1}λ and a plaintext p ∈ {0, 1}λ, outputs the ciphertext c ∈ {0, 1}λ.

– SE.Dec(c,SE.sk) = p: the decryption takes as input the secret key sk ∈ {0, 1}λ

and a ciphertext c ∈ {0, 1}λ, outputs the plaintext p ∈ {0, 1}λ.

Semantical Security: Let be SE = (SE.KeyGen,SE.Enc,SE.Dec) be symmet-
ric cryptosystem. We say that SE is IND − CPA secure if the advantage of an
adversary

AdvIND−CPA
SE.sk = |Pr[A(SE.Enc(p0,SE.sk) = 1] − Pr[A(SE.Enc(p1,SE.sk) = 0]|

< negl(λ),
(7)

when A can choose p0 and p1 and for a security parameters λ.

212 M. Buser et al.

One-Time Signature (OTS): One-Time Signature schemes (OTS) can sign
a message once. An OTS scheme is a digital signature scheme constructed with
the help of three algorithms: OTS.KeyGen, OTS.Sign and OTS.Verify.

– OTS.KeyGen(1λ) = (OTS.pk,OTS.priv) generates one key pair, one public key
OTS.pk, and one private key OTS.priv, depending on the security wanted λ.

– OTS.Sign(m,OTS.priv) = OTS.σ signs a digital message m with the private
key OTS.priv. It outputs a valid digital signature OTS.σ.

– OTS.Verify(m,OTS.σ,OTS.pk) = 0/1 is a deterministic algorithm which ver-
ifies the validity of a signature OTS.σ for a message m with the public key
OTS.pk.

OTS security: We assume that a secure OTS scheme achieves unforgeability
and key one-wayness.

Unforgeability means that for a security parameter λ

Pr[OTS.Verify(m,OTS.σ′,OTS.pk)] = 1 < negl(λ)

if an adversary generates a signature OTS.σ′ from OTS.pk.

Key one-wayness means that knowing OTS.pk it is unfeasible in polynomial
time to recover the corresponding OTS.priv.

References

1. PQC. https://csrc.nist.gov/projects/post-quantum-cryptography
2. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: lightweight sub-

linear arguments without a trusted setup. In: ACM CCS, pp. 2087–2104. ACM
(2017)

3. Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: Brickell, E.F. (ed.)
CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidelberg (1993). https://
doi.org/10.1007/3-540-48071-4 28

4. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: formal
definitions, simplified requirements, and a construction based on general assump-
tions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 38

5. Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: the case of
dynamic groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–
153. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30574-3 11

6. Boneh, D., Eskandarian, S., Fisch, B.: Post-quantum EPID group signatures
from symmetric primitives. Technical report, Cryptology ePrint Archive, report
2018/261 (2018). https://eprint.iacr.org/2018/261

7. Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J.: Foundations of fully
dynamic group signatures. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.)
ACNS 2016. LNCS, vol. 9696, pp. 117–136. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-39555-5 7

8. Chalkias, K., Brown, J., Hearn, M., Lillehagen, T., Nitto, I., Schroeter, T.:
Blockchained post-quantum signatures (2018)

https://csrc.nist.gov/projects/post-quantum-cryptography
https://doi.org/10.1007/3-540-48071-4_28
https://doi.org/10.1007/3-540-48071-4_28
https://doi.org/10.1007/3-540-39200-9_38
https://doi.org/10.1007/978-3-540-30574-3_11
https://eprint.iacr.org/2018/261
https://doi.org/10.1007/978-3-319-39555-5_7
https://doi.org/10.1007/978-3-319-39555-5_7

DGM: A Dynamic and Revocable Group Merkle Signature 213

9. Chase, M., et al.: Post-quantum zero-knowledge and signatures from symmetric-
key primitives. In: ACM CCS, pp. 1825–1842. ACM (2017)

10. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991). https://doi.org/
10.1007/3-540-46416-6 22

11. El Bansarkhani, R., Misoczki, R.: G-Merkle: a hash-based group signature scheme
from standard assumptions. In: Lange, T., Steinwandt, R. (eds.) PQCrypto 2018.
LNCS, vol. 10786, pp. 441–463. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-79063-3 21

12. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

13. Giacomelli, I., Madsen, J., Orlandi, C.: ZKBoo: faster zero-knowledge for Boolean
circuits. In: USENIX Security, pp. 1069–1083 (2016)

14. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity
or all languages in NP have zero-knowledge proof systems. J. ACM (JACM) 38(3),
690–728 (1991)

15. Gordon, S.D., Katz, J., Vaikuntanathan, V.: A group signature scheme from lattice
assumptions. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 395–412.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8 23

16. Hohenberger, S., Koppula, V., Waters, B.: Adaptively secure puncturable pseudo-
random functions in the standard model. In: Iwata, T., Cheon, J.H. (eds.) ASI-
ACRYPT 2015. LNCS, vol. 9452, pp. 79–102. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-48797-6 4

17. Hülsing, A.: W-OTS+ – shorter signatures for hash-based signature schemes. In:
Youssef, A., Nitaj, A., Hassanien, A.E. (eds.) AFRICACRYPT 2013. LNCS, vol.
7918, pp. 173–188. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-38553-7 10

18. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge proofs from
secure multiparty computation. SIAM J. Comput. 39(3), 1121–1152 (2009)

19. Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowledge
with applications to post-quantum signatures. Technical report, Cryptology ePrint
Archive, report 2018/475 (2018)

20. Laguillaumie, F., Langlois, A., Libert, B., Stehlé, D.: Lattice-based group signa-
tures with logarithmic signature size. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT
2013. LNCS, vol. 8270, pp. 41–61. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-42045-0 3

21. Lamport, L.: Constructing digital signatures from a one-way function. Technical
report CSL-98, SRI International Palo Alto (1979)

22. Libert, B., Ling, S., Mouhartem, F., Nguyen, K., Wang, H.: Signature schemes
with efficient protocols and dynamic group signatures from lattice assumptions.
In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 373–
403. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6 13

23. Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments for lattice-
based accumulators: logarithmic-size ring signatures and group signatures without
trapdoors. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol.
9666, pp. 1–31. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
49896-5 1

24. Ling, S., Nguyen, K., Wang, H.: Group signatures from lattices: simpler, tighter,
shorter, ring-based. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 427–449.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 19

https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/978-3-319-79063-3_21
https://doi.org/10.1007/978-3-319-79063-3_21
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-642-17373-8_23
https://doi.org/10.1007/978-3-662-48797-6_4
https://doi.org/10.1007/978-3-662-48797-6_4
https://doi.org/10.1007/978-3-642-38553-7_10
https://doi.org/10.1007/978-3-642-38553-7_10
https://doi.org/10.1007/978-3-642-42045-0_3
https://doi.org/10.1007/978-3-642-42045-0_3
https://doi.org/10.1007/978-3-662-53890-6_13
https://doi.org/10.1007/978-3-662-49896-5_1
https://doi.org/10.1007/978-3-662-49896-5_1
https://doi.org/10.1007/978-3-662-46447-2_19

214 M. Buser et al.

25. Ling, S., Nguyen, K., Wang, H., Xu, Y.: Lattice-based group signatures: achieving
full dynamicity with ease. In: Gollmann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS
2017. LNCS, vol. 10355, pp. 293–312. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-61204-1 15

26. Ling, S., Nguyen, K., Wang, H., Xu, Y.: Constant-size group signatures from lat-
tices. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10770, pp. 58–88.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76581-5 3

27. McIlroy, P.: Optimistic sorting and information theoretic complexity. In: Proceed-
ings of the Fourth Annual ACM-SIAM Symposium on Discrete algorithms, pp.
467–474. Society for Industrial and Applied Mathematics (1993)

28. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, New York (1990). https://doi.org/10.1007/
0-387-34805-0 21

29. Sun, S.-F., et al.: Practical backward-secure searchable encryption from symmetric
puncturable encryption. In: ACM CCS 2018, pp. 763–780. ACM (2018)

30. Unruh, D.: Non-interactive zero-knowledge proofs in the quantum random Oracle
model. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp.
755–784. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-
6 25

https://doi.org/10.1007/978-3-319-61204-1_15
https://doi.org/10.1007/978-3-319-61204-1_15
https://doi.org/10.1007/978-3-319-76581-5_3
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/978-3-662-46803-6_25
https://doi.org/10.1007/978-3-662-46803-6_25

Puncturable Proxy Re-Encryption
Supporting to Group Messaging Service

Tran Viet Xuan Phuong1,2(B), Willy Susilo1, Jongkil Kim1, Guomin Yang1,
and Dongxi Liu2

1 Institute of Cybersecurity and Cryptology School of Computing and Information
Technology, University of Wollongong, Wollongong, Australia

{txuan,wsusilo,jongkil,gyang}@uow.edu.au
2 Data61, CSIRO, Syndey, Australia

Dongxi.Liu@data61.csiro.au

Abstract. This work envisions a new encryption primitive for many-
to-many paradigms such as group messaging systems. Previously, punc-
turable encryption (PE) was introduced to provide forward security for
asynchronous messaging services. However, existing PE schemes were
proposed only for one-to-one communication, and causes a significant
overhead for a group messaging system. In fact, the group communi-
cation over PE can only be achieved by encrypting a message multiple
times for each receiver by the sender’s device, which is usually suit-
able to restricted resources such as mobile phones or sensor devices. Our
new suggested scheme enables to re-encrypt ciphertexts of puncturable
encryption by a message server (i.e., a proxy) so that computationally
heavy operations are delegated to the server who has more powerful
processors and a constant power source. We then proposed a new Punc-
turable Proxy Re-Encryption (PPRE) scheme. The scheme is inspired
by unidirectional proxy re-encryption (UPRE), which achieves forward
secrecy through fine-grained revocation of decryption capability by inte-
grating the PE scheme. This paper first presents a forward secure PPRE
in the group messaging service. Our scheme is IND-CCA secure under
3-weak Decision Bilinear Diffie-Hellman Inversion assumption.

Keywords: Puncturable encryption · Proxy Re-Encryption ·
Group messaging service · CCA security

1 Introduction

Green and Miers introduced Puncturable Encryption (PE) [15] to produce effi-
cient forward-secure encryption for asynchronous communication with low over-
head. Forward secrecy is a crucial trend on secure communication. For example,
a new version of TLS v1.3 mandates forward secrecy for its key exchange. The
protocols that do not support forward secrecy will be gradually deprecated in
the near future. PE enables users to utilize forward secure asynchronous com-
munication such as a messaging service.
c© Springer Nature Switzerland AG 2019
K. Sako et al. (Eds.): ESORICS 2019, LNCS 11735, pp. 215–233, 2019.
https://doi.org/10.1007/978-3-030-29959-0_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29959-0_11&domain=pdf
https://doi.org/10.1007/978-3-030-29959-0_11

216 T. V. X. Phuong et al.

A group messaging service in real-world applications such as Snapchat and
Whatsapp is essential since the communication between users is not always one-
to-one. Many-to-many communication (e.g., a group messaging service) has a
capability to boost customer convenience in the business/private conversation
for a group of users. Therefore, supporting group messaging service makes a con-
versation more specific and focused. Forward secrecy and asynchronous proper-
ties that PE offers are still important in a group messaging service. However,
messages in group communication are not always synchronized. Participants who
are traveling or on-the-go will receive the messages with a significant delay. Fur-
thermore, in the event that a user key in group communication is compromised;
the confidentiality of past messages will fail.

In the existing work, the proposed PE schemes are constructed only for one-
to-one communication between a sender and a receiver. How to use those PE
schemes for many-to-many communication such as a group messaging service
remains daunting. One of the most trivial ways is a participant of a group com-
munication encrypts a message for all other participants in the communication
one-by-one using PE, but this requires significant computation overhead to the
sender. Particularly, if a message is sent from resource-constraint devices such
as mobiles and sensor devices, this causes a substantial amount of battery con-
sumption and delay as the number of participants grows.

To mitigate the delay time or support messaging for individuals who are
away, we revisit the Proxy Re-Encryption (PRE) [2,3,17]. Suppose that Alice
makes a group chatting room and invites multiple users, every time a new user
joins in the group chatting, Alice computes the re-encryption key for this user
by his public key and uploads to a messaging server, which is considered as a
proxy. If anyone sends a message in this room, the message is encrypted only
for Alice and send to the message server. The message server re-encrypts the
encrypted message for all participants one-by-one using the re-encryption keys
that Alice uploaded, then delivers it to the participants. Because the message
server has more powerful processors and constant power source, it will reduce the
delay caused by multiple encryptions. Moreover, each participant will encrypt
the message only once as a general PE scheme; it prolongs the battery life of
participant devices, significantly.

Contribution: Motivated by the aforementioned scenario, we investigate the
fine-grained revocation of decryption capability only for specific messages while
all other messages are decryptable in [15], then incorporate the unidirec-
tional proxy re-encryption (UPRE) to firstly propose Puncturable Proxy Re-
Encryption (PPRE). In a nutshell, PPRE scheme has both PE and UPRE
scheme; however, it is not straightforward to deploy both schemes into the
typical proxy re-encryption. At a high-level idea, each message is attached to
a tag t ∈ {t1, . . . , td}, which can be time stamps or message identifiers. The
ciphertext also includes the set of tags corresponding to the stamped messages.
The delegator applies the puncture algorithm to puncture her secret key by
tag t ∈ {t1, . . . , td} if she wants to revoke the capability of decryption tag t.
This addressing issue is achieved the forward secrecy in the messaging system.

Puncturable Proxy Re-Encryption Supporting to Group Messaging Service 217

Next to delegate the decryption right, the delegator sends the template of punc-
ture key TK and the re-encryption key RB←A to the proxy server, then the
proxy uses the RB←A to re-encrypt the ciphertext. The proxy will delegate TK
and ciphertext to the delegatee. From the template key TK, the delegatee can
derive his/her own puncture keys. The decryption of delegatee is input of the
puncture key and his secret key. The proposed scheme first achieve IND-CCA
security, which is a considerable security assumption to provide a more realis-
tic adversarial model. We are inspired by the papers of [7,9,17] which present
scheme to apply a strongly unforgeable one-time signature to bind ciphertext
components altogether and offer a secure against chosen ciphertext attacks in
the manner of [8].

Table 1. Performance comparison between our proposed scheme and [17] scheme.

Scheme Level 1 - ciphertext Level 2 - ciphertext Level 1 dec Level 2 dec Attack

[17] 2 Sig + 4|G| + 1|GT | 2 Sig + 2|G| + 1|GT | 1p 1p IND-CCA

PPRE 2 Sig + (7 + d)|G| + 1|GT | 2 Sig + (2 + d)|G| + 1|GT | tp tp IND-CCA

We highlight a detailed computation of our Puncturable Proxy Re-
Encryption and typical Unidirectional PRE of [17]. The schemes are compared in
terms of the order of the underlying group, ciphertext size, decryption cost, and
security assumption. We use d to denote the number of tags, and t the number
of puncture tags.

Related Work. In the early concept presented in [18], the original recipient
must be available for re-encrypting ciphertexts when needed, which is not always
feasible. Later, [4] first proposed a proxy re-encryption, which establishes an
actual notion with the elegance of the construction. This scheme is based on
Elgamal, and it is constructed upon a group G of prime order p. [2,3] proposed
the first unidirectional PRE scheme, based on bilinear pairings. These schemes
are also the first to present the idea of multiple ciphertext space. Apart from
[2,3,9] presents the first CCA-secure bidirectional scheme in the standard model,
while the unidirectional case, [16,17] achieve the chosen ciphertext security in
the standard model. [24] then proposed bidirectional schemes without pairings
under CCA-secure in the random oracle model. [14] proposed a new fashion of
PRE scheme as the first identity-based encryption proxy encryption (IBPRE)
scheme. Using the identity-based, this scheme uses the identities of the delegator
and delegatee as their public keys. Another interesting proposal proposed by [1]
defines the notion of key privacy in the context of PRE, which prevents the proxy
to derive the identities of both sender and receiver from a re-encryption key.
As the new variances of IBPRE, [10] presented IB-PRE scheme built upon the
reductions to the security of IBE [22]. [19] proposed Hybrid proxy re-encryption,
which ciphertext encrypted by public key encryption scheme can be re-encrypted
to ciphertexts under an identity-based encryption scheme. Recently, [20] intro-
duces proxy re-encryption with the scenario of key rotation of data stored on the

218 T. V. X. Phuong et al.

cloud to reduce the rotating cost. Several works proposed as condition [23], type-
based proxy re-encryption [21] to produce the diversity for PRE. In addition,
PRE is appropriate to deploy in the cloud services. [13] proposed the variant
of proxy re-encryption schemes in the dropbox, and [5] produced efficient and
secure shared storage.

2 Preliminaries

2.1 Bilinear Map

Let G and GT be two multiplicative cyclic groups of same prime order p, and g a
generator of G. We define e : G×G → GT be a bilinear map with the following
properties: (1) Bilinearity : e(ua, vb) = e(ub, va) = e(u, v)ab for all u,v ∈ G and
a,b ∈ Zp. (2) Non-degeneracy : e(g, g) �= 1. Notice that the map e is symmetric
since e(ga, gb) = e(g, g)ab = e(gb, ga).

2.2 The 3-Weak Decision Bilinear Diffie-Hellman Inversion
(3-WDBDHI)

The Decision 3-wDBDHI problem is the intractability of a variant of Decisional
Bilinear Diffie-Hellman [6] assumption, which consider the indistinguishable
computational of e(g, g)b/a from tuple of random elements (g, ga, ga2

, gaq

, gb).
There is a distinguisher At, ε- breaks the assumption if it runs in poly-
nomial t time and |Pr[A(g, ga, ga2

, ga3
, gb, e(g, g)b/a) = 1|a, b ∈R Z

∗
p] −

Pr[A(g, ga, ga2
, ga3

, gb, e(g, g)z) = 1|a, b, z ∈R Z
∗
p| ≤ ε(k). In the works of

[12,17], the 3-wDBDHI problem is shown obviously that it is not easier than
the (q-DBDHI) problem [6] for q ≤ 3, which is to recognize e(g, g)1/a given
(g, ga, . . . , gaq

) ∈ G
q+1.

2.3 One-Time Signatures

We apply the CHK method [8] to use one-time signatures, which consist of a
triple of algorithms Sig = (G,S,V). The algorithm inputs of a security param-
eter λ, G generates a one-time key pair (ssk, svk) while, for any message M ,
V(σ, svk,M) outputs 1 whenever σ = S(ssk,M) and 0 otherwise. The strongly
unforgetable one-time signatures are presented [8], which means that no PPT
adversary can create a new signature for a previously signed message.

Definition 1. Sig= (G,S,V) is a strong one time signature if the probability is
negligible for any PPT forger F

AdvOTS = Pr[(ssk, svk) ← G(λ); (M,St) ← F(svk);σ ← S(ssk,M); (M ′, σ′)
← F(M,σ, svk, St) : V(σ′, svk,M ′) = 1 ∧ (M ′, σ′) �= (M,σ)],

where St denotes F ’s state information across stages.

Puncturable Proxy Re-Encryption Supporting to Group Messaging Service 219

2.4 Lagrange Polynomial and Interpolation

Suppose that a polynomial of degree d is uniquely defined by a set of points
(x0, y0), (x1, y1), . . . , (xd+1, yd+1). The Lagrange form of the polynomial allows
the computation of a point x on the polynomial using only d+1 points as follows:

q(x) = L(x, xc, yc) =
d∑

j=0

(yc[j] · �(x, j, xc)),

where, xc = [x0, . . . , xd+1] and yc = [y0, . . . , yd+1] and the Lagrange basis poly-
nomial �(. . .) is:

�(x, j, xc) =
∏

0≤m,m �=j≤d

x − xc[m]
xc[j] − xc[m]

.

Applying the Lagrange polynomial form, a random degree d polynomial q(x)
is selected, which consists of sampling d random values r1. . . . , rd from Zp,
setting points (1, r1), (2, r2), . . . , (d, rd) and setting the final point to (0, β) to
guarantee q(0) = β. Lagrange interpolation can compute V (x) without knowl-
edge of the polynomial coefficients by only the public values gq(0), . . . , gq(d) as:

V (x) = gq(x) = g
∑d

j=0 yj�(x,j,xc) =
d∏

j=0

(gq(j))�(x,j,xc), where �(x, j, xc) is already

defined.

3 Model and Security Notions

3.1 Puncturable Proxy Re-Encryption

Puncturable Proxy Re-Encryption scheme has Global-setup, KeyGeneration,
Re-KeyGen, Puncture, Encryption1 (is not re-encrypt-able), Encryption2, Re-
Encryption, and Decryption1, Decryption2 algorithms defined in the following.

� Global-setup(1k, d). On input a security parameter k, a maximum number of
tags per ciphertext d, the algorithm outputs the public parameter param, and
initial puncture key PSK0.

� Key-Generation(param,PSK0). On input the public parameter param and an
initial puncture key PSK0, the algorithms generates the public/secret key
pair for a user A, then combines the secret key A and PSK0 to produce new
puncture key PSK′

0.
� Puncture(param,TK,PSKi−1, t). On input an existing key PSKi−1 as

{PSK′
0,PSK1, . . . ,PSKi−1}, and a tag t, the algorithm outputs PSKi.

� Re-KeyGen(param, skA, pkB). On input the public parameter param, secret key
A, and public key B. A first generates a template puncture key TK by the
param and skA. Then A then publicly delegates to user B a re-encryption key
RB←A, and encrypted form EncpkB(TK).

220 T. V. X. Phuong et al.

� Encryption1(param, pkA,M, t1, . . . , td). On input the param, public key of the
user A, a message M , and a set of tags (t1, . . . , td), the algorithm outputs the
first level ciphertext CT1 along with the tags (t1, . . . , td).

� Encryption2(param, pkA,M, t1, . . . , td). On input the param, public key of user
A, a message M , and a set of tags (t1, . . . , td), the algorithm outputs the
second level ciphertext CT2 along with the tags t1, . . . , td.

� Re-Encryption(CT2,RB←A). On input the second level ciphertext CT2 along
with the tags t1, . . . , td, a re-key RA←B . The algorithm first checks the validity
of CT2. If CT2 is well-formed, the algorithm computes from CT2 by the re-
encryption key RB←A, and produce the ciphertext CT1, along with the tags
t1, . . . , td. Otherwise, CT2 is declared ‘invalid.’

� Decryption1(param, skB,CT1, t1, . . . , td). On the input param, the secret key
of user B, punctured key PSKi ,ciphertext CT1 along with (t1, . . . , td), the
algorithm outputs message M or ‘invalid.’

� Decryption2(param, skA,PSKi,CT2, t1, . . . , td). On the input param, the secret
key of user A, punctured key PSKi, second ciphertext CT2 along with
(t1, . . . , td), the decryption outputs message as M or ‘invalid.’

Correctness. For any common public parameters param, for any message m ∈
{0, 1}∗ and any couple of public/secret key pair (pkA, skA), (pkB, skB) these algo-
rithms should satisfy the following conditions:

Decryption1(param, skA,PSKi,CT1) = M ;
Decryption2(param, skA,PSKi,CT2) = M ;

Decryption1(param, skB,Re-Encryption(CT2,RB←A),
Re-KeyGen(param, skA, pkB),PSKi) = M.

We use the standard security notions of proxy re-encryption schemes
[2,3,11,17], which initializes empty lists of corrupted users CU and honest users
HU. In addition, we define two empty sets P,C, a counter n, a targeted user x∗,
and a set of tags t∗1, . . . , t

∗
d. Then, A Puncturable Proxy Re-Encryption scheme

is replayable chosen-ciphertext attack (RCCA) secure at level 2 ciphertexts for
any PPT adversary A if the probability

Pr[param ← Global-setup(1k, d); (pkx∗ , skx∗) ← Key-Generationx∗ (param);

{(pkx, skx) ← Key-GenerationHU(param)}; {(pky , sky) ← Key-GenerationCU(param)};
{Rx←x∗ ← Re-KeyGen(skx∗ , pkx)}, {Rx∗←x ← Re-KeyGen(skx, pkx∗)};

{Rx′←x ← Re-KeyGen(skx, pk′
x)}, {Rx←y ← Re-KeyGen(sky , pkx)};

{n ++,PSKn = Puncturex∗ (param,TK,PSK′
n−1, t), P ← t};

{n ++,PSKn = PunctureHU(param,TK,PSK′
n−1, t), P ← t};

{n ++,PSKn = PunctureCU(param,TK,PSK′
n−1, t), P ← t};Corrupt();

(m1, m0, St) ← AO1−dec,Oreenc (pkx∗ , {(pkx, skx)},

{Rx←x∗}, {Rx←x∗}, {Rx′←x}, {Rx←y}, (t1, . . . , td), (t
∗
1, . . . , t∗d));

μ
R← {0, 1},CT∗

2 = Encryption2(mμ∗ , pkx∗ , (t∗1, . . . , t∗d));

μ′ ← AO1−dec,Oreenc (CT∗
2, St)) : μ′ = μ] − 1

2
< ε(k),

with St is the state information, {x′} are honest users.

Puncturable Proxy Re-Encryption Supporting to Group Messaging Service 221

– Corrupt()is invoked in the first time; the adversary issues this query. Then,
the challenger returns the most recent punctured key PSKn to the adversary,
and sets C ← P . All subsequent queries return ⊥.

– O(reenc): Responding a re-encryption query from user pkx to user pky, PSK,
and tags (t1, . . . , td) for a second level ciphertext CT2, this oracle returns
‘invalid’ if CT2 is not encrypted by pkx, (t1, . . . , td). It returns ⊥ if pky ∈
CU and (pkx∗ ,CT∗

2, (t
∗
1, . . . , t

∗
d)) = (pkx,CT2, (t1, . . . , td)). Otherwise, CT1 =

Re-Encryption(CT2, skx, pky) is returned to A.
– O(1-dec): Given pkx′ ,CT1, (t1, . . . , td), this oracle returns ‘invalid’ if CT1

is not belongs to pkx′ and (t1, . . . , td). If the condition in ‘guess’ stage
occurs similarly in the ‘queries’ stage, B outputs ⊥. If (pkx′ ,CT1, (t1, . . . , td))
is Derivative of challenge pair (pkx∗ ,CT∗

1, (t
∗
1, . . . , t

∗
d)) as CT1 is the first

level ciphertext and pkx′ = pkx∗ or x′ ∈ HU, it returns ⊥. If Decryp-
tion1(param, skx′ ,CT1,PSKi, t1, . . . , td) ∈ {m0,m1}, it returns ⊥. Otherwise,
m = Decryption1(param, skx′ ,PSKi,CT1,.

A Puncturable Proxy Re-Encryption scheme is also replayable chosen-ciphertext
attack (RCCA) secure at level 1 ciphertexts. In fact, the adversary is guaran-
teed to access to re-encryption keys. Since first level ciphertexts cannot be re-
encrypted, the attackers is not equipped to obtain the honest-to-corrupt re-
encryption keys. The Oreenc oracle is unusable since all re-encryption keys are
available to A, O2−dec is also unnecessary. Finally, Derivative of the challenge
ciphertext is simply defined as encryptions of either m0 or m1 with the target
public key pkx∗ .

4 Puncturable Proxy Re-Encryption Under Chosen
Ciphertext Attack

The main construction of Puncturable Proxy Re-Encryption (PPRE) applies
the inherent Unidirectional Proxy Re-Encryption (UPRE) [3], where the second
ciphertext is ((ga)s,M · e(g, g)s); ga is public key of Alice. Then the proxy re-
encrypts the second ciphertext into the first ciphertext as (e((ga)s, gb/a),M ·
e(g, g)s) = (e(g, g)bs,M · e(g, g)s), which gb/a is the re-encryption key between
Alice and Bob.

Hence, [16,17] employs the CHK transform [8] to product the re-encrypted
ciphertext by the following fashion. The proxy replaces gas by a randomized pair
(gb/ar, gars), for a blinding random r ∈R Zp. All components in second ciphertext
remain in G. Bob can eventually decrypt the message M · e(g, g)s/(e(g, g)bs)1/b.
Firstly, we are inspired [17]’s method incorporating the Puncturable Encryption
(PE) and URPE schemes. The global setup algorithm initially shares a master
secret key α as α1, α2, which are used as the master secret keys of PE, UPRE
schemes respectively. In order to recover α1, α2 in decryption process, we produce
a delegation key DK = gα2+r2 and puncture key PSK = gα1+r1−r2 as the mode of
[15]. The second ciphertext is generated to ((DKa)s,M ·e(g, g)(α1+α2)s, F (t)s), in
which F (t) is the arbitrary formula to compute the tags in Puncturable Encryp-
tion. Secondly, the component of ciphertext includes the F (t)s, then the first

222 T. V. X. Phuong et al.

ciphertext should have F (t)rs. Consequently, the proxy should replace DKas by
a randomized pair (DKb/ak, garsk) for “double blinding randoms” r, k ∈R Zp. By
this way, e(DKb/ak, garsk) = e(DK, g)brs can be cancel out with the exponent’s
components including rs. In this manner, Bob can recover the e(g, g)(α1+α2)s to
read message M by computing the α1, α2 in term of puncture key, re-encryption
form, respectively. In addition, we produce (ct12, ct′12, ct

′′
12) = (gr, gark, gak) in

order to check whether the safety of ciphertext is, meanwhile the verifying step
is required to achieve the IND-CCA security. We will elaborate PPRE scheme
in the next description.

4.1 Description

We elaborate the Global-setup, Key-Generation, Puncture, Re-KeyGen, Encryption1
(is not re-encryptable), Encryption2, Re-Encryption, Decryption1, and Decryption2
algorithms defined in the following.

� Global-setup(1k, d). On input a security parameter k, a maximum number
of tags per ciphertext d, the algorithm firstly chooses a group G of prime
order p, a bilinear map e : G × G → GT , a generator g, w, v, a hash
function H : {0, 1}∗ → Zp, and a strongly unforgeable one-time signature
scheme Sig = (G,S,V). Then the algorithm randomly selects exponents
r1, r2, α1, α2 ∈ Zp. It samples polynomial q(x) of degree d. From i = 1 to
d, it computes q(i), subjects to the constraint that q(0) = 1.
Secondly, the algorithms defines V (x) = gq(x), and let t0 be a distin-
guished tag not used during normal operation. Next, it computes the initial
puncture key using the master key α1, and distinguished tag t0: PSK0 =
(PSK01,PSK02,PSK03,PSK04) = (gα1+r1−r2 , V (H(t0))r1 , gr1 , t0). Using the
master key α2, the algorithm generates the global key for user key genera-
tion: DK = gα2+r2 . Finally, it outputs the public parameter: param = (g, Y =
e(g, gα1+α2),Sig,DK, gq(1), . . . , gq(d), t0), and initial puncture key PSK0.

� Key-Generation(param,PSK0). To generate the public/secret key pair for
a user A, the algorithm randomly picks a ∈R Zp. Then, it sets the
public key, the secret key, and new initial puncture key from SK0 to
be: pkA = DKa, skA = a,PSK′

0 = (PSK′
01,PSK

′
02,PSK

′
03,PSK

′
04) =

((gα1+r1−r2)1/a, (V (H(t0))r1)1/a, gr1 , t0).
� Re-KeyGen(param,DK,PSKi). A user A delegates to B as follows:

• B chooses and stores a random value u ∈ Zp, then publishes (gu,DKu).
• A creates (RB←A = DKu/a).
• A create TK = {g1/a, gq(1)/a, . . . , gq(d)/a}.
• A uses public key B to encrypt A’s puncture keys as EncpkB(PSKi).
• A then delegates (RB←A,EncpkB

(TK)) to B.

Puncturable Proxy Re-Encryption Supporting to Group Messaging Service 223

� Puncture(param,TK,PSK′
i, t). On input an existing key PSKi−1 as

{PSK0,PSK1, . . . ,PSKi−1}, the algorithm chooses λ′, r′, rt randomly from Zp,
and computes:

PSK′
0 = (PSK′

01 · (g1/a)r′−λ′
,PSK′

02 · (V (H(t0))1/a)r′
,PSK′

03 · gr′
, t0)

PSKi = ((g1/a)λ′+rt , (V (H(t))1/a)rt , grt , t).

Then it outputs: PSKi = (PSK′
0,PSK1, . . . ,PSKi−1,PSKi).

� Encryption1(param, pkA,M, t1, . . . , td). On input the param, public key of user
A, a message M , and a set of tags t1, . . . , td ∈ {0, 1}∗\{t0}, the algorithm
first randomly chooses s, r, k in Zp. Secondly, the algorithm selects a one-
time signature key pair (ssk, svk) randomly from G(λ). It outputs:

CT1 = (ct10, ct11, ct12, ct′12, ct
′′
12, ct

′′′
12, ct13, ct14, ct15i

, ct16, σ)

= (svk,M · Y rs, gars, gr, gark, gak,DK1/k, gakrs, {V (H(ti))rs}i∈{1,...,d},

(usvk · v)rs,S(ssk, (ct11, ct15i
, ct16)))

along with the tags t1, . . . , td. In such a way, the ciphertext can be decrypted
by only the user A.

� Encryption2(param, pkA,M, t1, . . . , td). On input the param, public key of user
A, a message M , and a set of tags t1, . . . , td ∈ {0, 1}∗\{t0}, the algorithm
first randomly chooses s in Zp. Secondly, the algorithm selects a one-time
signature key pair (ssk, svk) randomly from G(λ). It outputs:

CT2 = (ct20, ct21, ct22, ct23i , ct24, σ)

= (svk, M · Y s, gas, {V (H(ti))
s}i∈{1,...,d}, (usvk · v)s, S(ssk, (ct21, ct23i , ct24i))),

along with the tags t1, . . . , td. In such a way, the ciphertext can be decrypted
by user A and her delegatees.

� Re-Encryption(CT2,RB←A). On input the second level ciphertext CT2, a re-key
RA←B , and a set of tags t1, . . . , td ∈ {0, 1}∗\{t0}. The algorithm first checks
the validity of CT2 by verifying the following conditions:

e(ct22, uct20 · w) ?= e(ga, ct24), (1)

V(ct20, σ, (ct21, ct23i
, ct24))

?= 1. (2)

If CT2 is well-formed, the algorithm chooses r, k randomly from Zp, then
computes from CT2 :

CT1 = (ct10, ct11, ct12, ct
′
12, ct

′′
12, ct

′′′
12, ct13, ct14, ct15i , ct16, σ)

= (svk, M · Y rs, gars, gr, gark, gak, (DKu/a)1/k, gakrs, {V (H(ti))
rs}i∈{1,...,d},

(usvk · v)rs,S(ssk, (ct11, ct15i , ct16))),

along with the tags t1, . . . , td. Otherwise, CT2 is declared ‘invalid’.
� Decryption1(param, skB,EncpkB(PSKi),CT1, t1, . . . , td). On the input param, the

secret key of user B, encrypted form EncpkB(PSKi) , re-encrypted ciphertext

224 T. V. X. Phuong et al.

CT1 along with {t1, . . . , td}, the algorithm first checks the validity of CT1 by
verifying the following conditions:

e(ct′′12, ct14)
?= e(DKu, ct′12), (3)

e(ct13, uct10 · w) ?= e(ct′′12, ct16), (4)

V(ct10, σ, (ct11, ct15i
, ct16))

?= 1. (5)

If (3)-(5) hold, then for j = 0, . . . , i, the punctured key PSKi is parsed
as (PSKi1,PSKi2,PSKi3,PSKi4). Next, it computes a set of coefficients

w1, . . . , wd, w
∗ such that: w∗ · q(H(PSKi4)) +

d∑
k=1

(wk · q(H(tk))) = q(0) = 1

Finally, it computes:

A =
i∏

j=0

e(PSKj1, ct12)

e(PSKj3,
d∏

k=1

ctwk

15,k) · e(PSKj2, ct12)w∗

=
e((gα1+r1−r2+r′−λ′

)1/a, gars)

e(gr1+r′ ,
d∏

k=1

V (H(tk))rswk) · e((V (H(t0))r′+r0)1/a, gars)w∗

· · · e(gλ′+rt , grs)

e(grt ,
d∏

k=1

V (H(tk))wk) · e(V (H(t))rt , grs)w∗

=
e(g, g)(α1+r1−r2+r′−λ′)rs

e(g, g)rs(r1+r′) · · · e(g, g)(rt+λ′)rs

e(g, g)rtsr
= e(g, g)(α1−r2)rs.

B = e(ct13, ct14) = e(g(α2+r2)u/ak, garks) = e(g, g)(α2+r2)rus,

and outputs message as: M = ct11
A·B1/u .

� Decryption2(param, skA,PSKi,CT2, t1, . . . , td). On the input param, the secret
key of user A, puncture key PSKi, ciphertext CT2 along with {t1, . . . , td}, t,
the decryption algorithm first computes: for j = 0, . . . , i, the punctured key
PSKi is parsed as (PSKi1,PSKi2,PSKi3,PSKi4). Next, it computes a set of

coefficients w1, . . . , wd, w
∗ such that w∗ · q(H(PSKi4)) +

d∑
k=1

(wk · q(H(tk))) =

q(0) = 1. Finally, it computes:

Puncturable Proxy Re-Encryption Supporting to Group Messaging Service 225

A =
i∏

j=0

e(PSKj1, ct22)

e(PSKj3,
d∏

k=1

ctwk

23,k) · e(PSKj2, ct22)w∗

=
e((gα1+r1−r2+r′−λ′

)1/a, gas)

e(gr1+r′ ,
d∏

k=1

V (H(tk))swk) · e((V (H(t0))r′+r0)1/a, gas)w∗

· · · e(gλ′+rt , gs)

e(grt ,
d∏

k=1

V (H(tk))wk) · e(V (H(t))rt , gs)w∗

=
e(g, g)(α1+r1−r2+r′−λ′)s

e(g, g)s(r1+r′) · · · e(g, g)(rt+λ′)rs

e(g, g)rts
= e(g, g)α1se(g, g)−r2s.

B = e(ct22,DK) = e(gas, gα2+r2),

and outputs message as: M = ct11
A·B1/a .

4.2 Security

Theorem 1. Assuming the strong unforgebility of the one-time signature, our
Puncturable Proxy Re-Encryption scheme is RCCA−secure at level 2 under the
3 − wDBDHI assumption.

Proof. Let (g,A−1 = g1/a, A1 = ga, A2 = ga2
, B = gb, T) be modified 3 −

wDBDHI instance. We build an algorithm B deciding if T = (g, g)b/a2
out of a

successful RCCA adversary A.
We define an event FOTS and bound its probability to occur. Let CT∗

2 =
(ct∗20, ct

∗
21, ct

∗
22, ct

∗
23i

, ct∗24, σ
∗) be the challenge ciphertext received by A, and

the set (t∗1, . . . , t
∗
d) be the target set initially output by A. At some points

in the process, FOTS is the even that A issues a decryption query for a first
level ciphertext CT1 = (svk∗, ct11, ct12, ct′12, ct

′′
12, ct

′′′
12, ct13, ct14, ct15i

, ct16, σ)
or a re-encryption query RC∗ = (svk∗, rc1, rc2, rc3i

, rc4, σ) where (ct11, ct15i
,

ct16, σ) �= (ct∗21, ct
∗
23i

, ct∗24, σ
∗) but V(σ, svk, (ct11, ct15i

, ct16)) = 1 (resp.
V(σ, svk, (ct11, ct15i

, ct16)) = 1). In the queries stage, A has simply no infor-
mation on svk∗. Therefore, the probability of a pre-challenge occurrence of FOTS

does not exceed q0 · δ if q0 is the overall number of oracle queries and δ denotes
the maximal probability. In the guess stage, FOTS is enhanced to an algorithm
breaking the strong unforgeability of the one-time signatures. Therefore, the
probability Pr[FOTS] ≤ q0/p + AdvOTS, where q0/p + AdvOTS must be negligible
by assumption.

Global Setup Phase. B generates a one-time signature key pair (ssk∗, svk∗) ←
G(λ) and provides A with public parameters including w = A

β1(α1+α2)
1 and

v = A
(−β1svk∗)((α1+α2))
1 · A

β2(α1+α2)
2 for random β1, β2, α1, α2 in Zp. Observe

that w and v define a hash function F (svk) = wsvk · v = A
α1(svk−svk∗)
1 · Aα2

2 ,

226 T. V. X. Phuong et al.

and computes gα1 , gα2 . B chooses d+1 points θ0, θ1, . . . , θd uniformly at random
from Zp, in which θ0 is a distinguished value not used normal simulation. Then
it implicitly sets q(0) = 1, while q(ti) = θi, then V (H(ti)) = A

q(ti)
2 = ga2θi . B

continuously initializes two empty sets P,C and a counter τ = 0.

B generates the initial puncture key as PSK0 = (PSK01,PSK02,PSK03,PSK04) =
(Aα1+r1+r2

1 , V (H(t0))r1 , gr1 , t0), and the global key for user key generation DK =
gα2+r2 , with r1, r2,∈R Zp.

Phase 1. A can repeatedly issue any of the following queries: Hereafter, we
call HU the set of honest parties, including user x∗ that is assigned the target
public key pkx∗ , and CU the set of corrupt parties. Throughout the game, A’s
environment is simulated as follows:

– Key-Generation: public keys of honest users x ∈ HU\x∗ are defined as pkx =
Ax

1 = gax for a randomly chosen x in Zp, also implicitly sets skx = x. In
addition, user x will generate the PSK′

0:

PSK′
0 = (PSK′

01,PSK
′
02,PSK

′
03,PSK

′
04) = (A(α1+r1−r2)1/x

1 , A
θ0r11/x
1 , gr1 , t0).

The target user’s public key is set as Ax∗
2 = gx∗a2

, also implicitly sets skx∗ =
ax∗ with x∗ ∈R Zp. User x∗ generates the key PSK′

0

PSK′
0 = (PSK′

01,PSK
′
02,PSK

′
03,PSK

′
04) = (A(α1+r1−r2)1/x∗

1 , A
θ0r11/x∗

1 , gr1 , t0).

The key pair of a corrupted user x ∈ CU is set as (gx, x), for a random
x ∈R Zp. The key PSK′

0 of corrupted user is generated

PSK′
0 = (PSK′

01,PSK
′
02,PSK

′
03,PSK

′
04) = (A(α1+r1−r2)1/x

1 , A
θ0r11/x
1 , gr1 , t0).

So that all pairs of keys can be given to A.
To generate re-encryption keys from player x to player y, B has to distinguish
several situations:

• If x ∈ HU\{x∗} and y = x∗, B returns Rx←x∗ = (gα2+r2)x∗·a2/(ax) =
A

(α2+r2)x
∗/x

1 , and TK = {g1/x, ga2θi/x}, which is a valid re-encryption
key.

• If x = x∗ and y ∈ HU\{x∗}, B responds with Rx∗←y = (gα2+r2)ax/x∗a2
=

A
(α2+r2)x/x∗

−1 . and TK = {g1/x∗
, ga2θi/x∗}, that also has the correct distri-

bution.
• If x, y ∈ HU\{x∗}, B returns Rx←y = (gα2+r2)(ay)/(ax) = g(α2+r2)y/x, and

TK = {g1/x, ga2θi/x},.
• If x ∈ HU\{x∗} and y ∈ CU, B outputs Rx←y = (gα2+r2)y/(ax) =

A
(α2+r2)y/x
−1 , and TK = {g1/x, ga2θi/x}, which is also computable.

• Finally, B uses public key y to encrypt Encpky
(TK) x’s puncture key.

– Puncture: B increments n, and computes: PSKn = Puncture(param,
PSK′

n−1,TK, t), and adds t to set P , we consider:

Puncturable Proxy Re-Encryption Supporting to Group Messaging Service 227

Corrupt() query and {t∗1, . . . , t
∗
d}∩C = ∅. B now chooses randomly r′, rt, λ ∈

Zp. Thus, it outputs the following:

PSK′′
0 = ((PSK′

01 · Ar′−λ′
1)1/x,PSK′

02 · (Aθ0r′
1)1/x,PSK′

03 · gr′
, t0),

PSKi = ((Aλ′+rt
1)1/x, (V (H(t))rt)1/x, grt , t) = ((A1)(λ

′+rt)1/x, A
θtrt1/x
1 , grt , t)

Corrupt() is invoked at the first time; the adversary issues this query. Then,
the challenger returns the most recent punctured key PSKn to the adversary
and sets C ← P . All subsequent queries return ⊥.

– Re-Encryption queries: Responding to a re-encryption query from user x to
user y for a second level ciphertext CT2 = (ct20, ct21, ct22, ct23i

, ct24, σ), B
returns ‘invalid’ if the following testing is not bypassed (1)–(2)

• If x �= x∗ or if x = x∗ and y ∈ HU\{x∗},B simply re-encrypts using the
re-encryption key which is available in either case.

• If x = x∗, and y ∈ CU,
∗ If ct20 = svk∗, B encounters an occurrence of FOTS and halts. Indeed,

re-encryptions of the challenge ciphertext towards corrupt users
are disallowed in the ‘guess’ stage. Therefore, (ct21, ct23i

, ct24, σ) �=
(ct∗21, ct

∗
23i

, ct∗24, σ
∗) since we would have CT2 �= CT∗

2 and x �= x∗ if
(ct21, ct23i

, ct24, σ) �= (ct∗21, ct
∗
23i

, ct∗24, σ
∗).

∗ With the case ct20 �= svk∗, x = x∗ and y ∈ CU. Given ct
1/x∗

22 = As
2,

from ct16 = ct24 = F (svk)s = (Aβ(svk−svk∗).Aβ2
2

1)s, B can compute:
As

1 = gas = (ct24

ct
β2/x∗
22

)
1

β1(svk−svk∗) .

∗ Knowing gas and user y’s private key, B picks r, k ∈R Zp to com-
pute: ct12 = Ars

1 = gars, ct′12 = gr, ct′′12 = gark, ct′′′12 = gak, ct13 =
(A−1)(α2+r2)y/x∗k = (gy/x∗

)(α2+r2)/kct14 = Arsk
1 = gars, ct15i

=
Aθisr

2 , and return CT1 = (ct10, ct11, ct12, ct′12, ct
′′
12, ct

′′′
12, ct13, ct14,

ct15i
, ct16, σ) which has the proper distribution.

– First level decryption queries: A may ask the decryption of a first level cipher-
text CT1 = (ct10, ct11, ct12, ct′12, ct

′′
12, ct

′′′
12, ct13, ct14, ct15i

, ct16, σ) under the
public key gx. For such a request, B returns ‘invalid’ if (3)–(5) do not hold.
We assume y ∈ HU since B can decrypt using the known private key,
then B can decrypt Decsky

(Encpky
(PSKi)) to receive the PSKi. In the next

step, let us first assume that ct10 = ct∗10 = svk∗. If (ct11, ct15i
, ct16, σ) �=

(ct∗11, ct
∗
15i

, ct∗16, σ), B is presented with occurrence of FOTS and halts. If
(ct11, ct15i

, ct16, σ) = (ct∗11, ct
∗
15i

, ct∗16, σ), B outputs ⊥ which deem CT1 as
a derivative of the challenge pair of CT∗, x∗. Additionally, we reduce the
computation of e(ct13, ct14) = e(DKy, g)rs to simulate conveniently in the
next step. Lets ct10 �= svk∗, we assume that y = x∗, then we pky = ga2x∗

since B can decrypt using the known private key y. The validity of the
ciphertext guarantees : e(ct13, ct14) = e(DK, g)a2yrs, ct16 = F (svk)rs =
gβ1ars(svk−svk∗)(α1+α2) · ga2rβ2(α1+α2).

228 T. V. X. Phuong et al.

A =
i∏

j=0

e(PSKj1, ct12)x∗

e(PSKj3,
d∏

k=1

ctwk

15,k) · e(PSKj2, ct12)x∗w∗

=
e((Aα1+r1−r2+r′−λ′

1)1/x∗
, gars)x∗

e(gr1+r′ ,
d∏

k=1

(Aθ0
2)rswk) · e(Aθ0r11/x

1 , gars)x∗w∗

· · · e(gλ′+rt , gars)x∗

e(grt ,
d∏

k=1

V (H(tk))wk) · e(Aθtr11/x
1 , gars)x∗w∗

= e(g, g)a2(α1−r2)rs.

Next, B computes:

γ = e(g, g)ars(α1+α2) =
(

e(ct16, g)
Aβ2 · (ct13, ct14)β2/y(α2+r2)

) 1
β1(svk−svk∗)

.

B continually computes: e(ct16, A−1) = e(ct16, g1/a) = e(g, g)β1rs(svk−svk∗)(α1+α2) ·

e(g, g)arsβ2(α1+α2). γ uncovers: e(g, g)rs(α1+α2) =
(

e(ct16,A−1)

γβ2/x∗

) 1
β1(svk−svk∗)

,

and the plaintext m = ct11/e(g, g)rs(α1+α2).

In the next phases, B must check that m differs from messages m0,m1

involved in the challenge query. If m ∈ {m0,m1}. B returns ⊥ according to
the RCCA-security rules.

Challenge. A chooses messages m0,m1. At this stage, B flips a coin μ∗ ∈R

{0, 1}, and generates the challenge ciphertext ct∗2 as:

ct∗20 = svk∗, ct∗21 = mμ∗ · Tα1+α2 , ct∗22 = Bx∗
, ct∗23i

= Bθi , ct∗24 = Bβ2 ,

and σ∗ = S(ssk∗, (ct∗21, ct
∗
23, ct

∗
24i

)). With pkx = gx∗a2
, B = gb, and the random

exponent s = b/a2.

Phase 2. It is identical to Phase 1 with the following restrictions: (1) Cor-
rupt() returns ⊥ if {t∗1, . . . , t

∗
d} ∩ P = ∅; (2) Re-Encryption queries if (1)–(2) is

bypassed and CT2 �= CT∗
2∧x �= x∗. (3) Decrypt1(param, skx,PSKi,CT1, t1, . . . , td)

is queried.

Guess. CT∗
2 is a valid encryption of mμ∗ if T = e(g, g)b/a2

. In contrast, if T
is random in GT , CT∗

2 perfectly hides mμ∗ and A cannot guess μ∗ with better
probability than 1/2. When A eventually outputs her result μ′ ∈ {0, 1}, B decides
T = e(g, g)b/a2

if μ′ = μ and that T is randomly chosen. �

Theorem 2. Assuming the strong unforgebility of the one-time signature, Punc-
turable Proxy Re-Encryption scheme is RCCA−secure at level 1 under the
3 − wDBDHI assumption.

Proof. The proof of Theorem 2 will be provided in Appendix A. �

Puncturable Proxy Re-Encryption Supporting to Group Messaging Service 229

5 Conclusion

We present a Puncturable Proxy Re-Encryption Scheme supporting forward
secrecy for asynchronous communication. Particularly, the proposed scheme is
well-suited to many-to-many communication such as a group messaging service
since a participant securely delegates computational demand operations to com-
municate with multiple parties to a proxy (i.e. a message server). Therefore, it
allows many participants to exchange messages efficiently in group communi-
cation. One opening problem is the transformation of these schemes to obtain
adaptive security. We leave it as our future work.

A Proof of Theorem 2

Let (g,A−1 = g1/a, A1 = ga, A2 = ga2
, B = gb, T) be modified 3 − wDBDHI

instance. We build an algorithm B deciding if T = (g, g)b/a2
out of a successful

RCCA adversary A.
In this proof, our simulator B simply halts and outputs a random bit if

FOTS ever occurs. Let CT∗
1 = (svk∗, ct∗11, ct

∗
12, ct

∗
13, ct

∗
14, ct

∗
15i

, ct∗16, σ
∗) denotes

the challenge ciphertext at the first level received by A, and the set (t∗1, . . . , t
∗
d)

be the target set initially output by A.

Global setup phase. B generates a one-time signature key pair (ssk∗, svk∗) ←
G(λ) and provides A with public parameters including w = Aβ1

1 and v =
A−β1svk∗

1 · Aβ2
2 for random β1, β2 in Zp. Observe that w and v define a hash

function F (svk) = wsvk · v = A
α1(svk−svk∗)
1 · Aα2

2 .
B also selects randomly α1, α2 ∈ Zp, and computes gα1 , gα2 . B chooses d + 1
points θ0, θ1, . . . , θd uniformly at random from Zp, in which θ0 be a distinguished
value not used normal simulation. Then, B implicitly sets q(0) = 1, while q(ti) =
θti

, then V (H(ti)) = gA
q(ti)
1 = gaθti . B continuously initializes two empty sets

P,C and a counter τ = 0.
B generates the initial puncture key as PSK0 = (PSK01,PSK02,PSK03,PSK04) =
(Aα1+r1+r2

1 , V (H(t0))r1 , gr1 , t0), and the global key for user key generation DK =
gα2+r2 , with r1, r2,∈R Zp.

Phase 1. A can repeatedly issue any of the following queries: we call HU the
set of honest parties, including user x∗ that is assigned the target public key
pkx∗ , and CU the set of corrupt parties. Throughout the game, A’s environment
is simulated as follows:

– Key-Generation: public keys of honest users x ∈ HU\x∗ and corrupt users
x ∈ CU are defined as pkx = gx for a randomly chosen x in Zp. In addition,
user x will generate the PSK′

0:

PSK′
0 = (PSK′

01,PSK
′
02,PSK

′
03,PSK

′
04) = (A(α1+r1−r2)1/x

1 , A
θ0r11/x
1 , gr1 , t0).

The target user’s public key is set as Ax∗
1 = ga.

PSK′
0 = (PSK′

01,PSK
′
02,PSK

′
03,PSK

′
04) = (g(α1+r1−r2), gθ0r1 , gr1 , t0).

230 T. V. X. Phuong et al.

For corrupt users i ∈ CU, public key and secret key are both disclosed To
generate re-encryption keys from player x to player y, all re-encryption keys
are computed:

• If x, y �= x∗,Rx←y = g(α2+r2)y/x

• If y �= x∗,Rx∗←y = A
(α2+r2)y
−1 and Ry←x∗ = A

(α2+r2)1/y
1 .

– Puncture: . B increments n, and computes: PSKn = Puncture(param,
PSK′

n−1,TK, t), and adds t to set P , we consider: Corrupt() is queried and
{t∗1, . . . , t

∗
d} ∩ C = ∅. B now chooses randomly r′, rt, λ ∈ Zp. Thus it outputs

the following:

PSK′′
0 = (PSK′

01 · (Ar′−λ′
1)1/x,PSK′

02 · (V (H(t0))r′
)1/x,PSK′

03 · gr′
, t0)

= (PSK′
01 · (Ar′−λ′

1)1/x,PSK′
02 · (Aθ0r′

1)1/x,PSK′
03 · gr′

, t0),

PSKi = ((Aλ′+rt
1)1/x, (Aθtrt

1)1/x, grt , t).

Corrupt() is called at the first time; the adversary issues this query. Then
the challenger returns the most recent punctured key PSKn to the adversary
and sets C ← P . All subsequent queries return ⊥.

– First level decryption queries: A may ask the decryption of a first level cipher-
text CT1 = (ct10, ct11, ct12, ct′12, ct

′′
12, ct

′′′
12, , ct13, ct14, ct15i

, ct16, σ) under the
public key gx. For such a request, B returns ‘invalid’ if (3)−(5) do not hold. We
assume y ∈ HU since B can decrypt using the known private key, then B can
decrypt Decsky

(Encpky
(PSKi)) to receive the PSKi. In the next step, let us first

assume that ct10 = ct∗10 = svk∗. If (ct11, ct15i
, ct16, σ) �= (ct∗11, ct

∗
15i

, ct∗16, σ),
B is presented with occurence of FOTS and halts. If (ct11, ct15i

, ct16, σ) =
(ct∗11, ct

∗
15i

, ct∗16, σ), B outputs ⊥ which deem CT1 as a derivative of the chal-
lenge pair of CT∗, x∗. We have to compute:

ct12 = Ars
1 = gars, ct′12 = gr, ct′′12 = gark, ct′′′12 = gak, ct13 = (A−1)(α2+r2)y/k

= (g1/y)(α2+r2)/k, ct14 = A1rsk = gars, ct15i
= Aθisr

2 ,

for unknown exponents r, k ∈R Zp. We reduce the computation of e(ct13, ct14)
equals to e(DKy, g)rs to simulate conveniently in the next step. Lets ct10 �=
svk∗, we assume that y = x∗, then we pky = ga since B can decrypt using
the known private key y. The validity of the ciphertext guarantees

e(ct13, ct14) = e(DK, g)ars,

ct16 = F (svk)rs = gβ1ars(svk−svk∗)(α1+α2) · ga2rβ2(α1+α2).

Puncturable Proxy Re-Encryption Supporting to Group Messaging Service 231

Then,

A =
i∏

j=0

e(PSKj1, ct12)x∗

e(PSKj3,
d∏

k=1

ctwk

15,k) · e(PSKj2, ct12)x∗w∗

=
e((gα1+r1−r2+r′−λ′

)1/x∗
, gars)x∗

e(gr1+r′ ,
d∏

k=1

(Aθ0
1)rswk) · e(gθ0r11/x, gars)x∗w∗

· · · e(gλ′+rt , gars)x∗

e(grt ,
d∏

k=1

V (H(tk))wk) · e(gθtr11/x, gars)x∗w∗
= e(g, g)a(α1−r2)rs.

B computes: e(g, g)rs(α1+α2) =
(

e(ct16,A−1)

Aβ2 ·(ct13,ct14)β2/y(α2+r2)

) 1
β1(svk−svk∗)

, and

recovers the plaintext m = ct11/e(g, g)rs(α1+α2).
• If e(ct13,ct14) = e(ct∗13,ct∗14

), B returns ⊥ meaning that CT1 is simply a
re-randomization of the challenge ciphertext.

• We require (ct11, ct15i
, ct16, σ) �= (ct∗11, ct

∗
15i

, ct∗16, σ), which is an
occurence of FOTS and implies B’s termination.

In the next phases, B must check that m differs from messages m0,m1 involved
in the challenge query. If m ∈ {m0,m1}. B returns ⊥ according to the RCCA-
security rules.

Challenge. A chooses messages m0,m1. At this stage, B flips a coin μ∗ ∈R

{0, 1}, and generates the challenge ciphertext ct∗1 as:

ct∗10 = svk∗, ct∗11 = mμ∗ · T α1+α2 , ct∗12 = Bγx∗
, ct′∗12 = Aγ

1 , ct′′∗12 = Aγk
2 , ct′′′∗12 = Ak

1 ,

ct∗13 = A
k(α2+r2)
−1 , ct∗14 = Bkγ , ct∗15i

= Bθiγ , ct∗16 = Bβ2 ,

and σ∗ = S(ssk, (ct∗11, ct
∗
14i

, ct∗15, ct
∗
16)). With pkx = gx∗a, B = gb, and r =

aγ, k, s = b/a2 with the random numbers γ, k ∈ Zp.

Phase 2. This phase is identical to Phase 1 with following restrictions:
(1) Corrupt() returns ⊥ if {t∗1, . . . , t

∗
d} ∩ P = ∅. (2) Decrypt1(param, skA,

PSKi,CT1, t1, . . . , td) returns ⊥ if (CT1, t1, . . . , td) �= (CT∗
1, t

∗
1, . . . , t

∗
d).

Guess. CT∗
1 is a valid encryption of mμ∗ if T = e(g, g)b/a2

. In contrast, if T
is random in GT , CT∗

1 perfectly hides mμ∗ and A cannot guess μ∗ with better
probability than 1/2. When A eventually outputs her result μ′ ∈ {0, 1}, B decides
T = e(g, g)b/a2

if μ′ = μ and that T is randomly chosen.

232 T. V. X. Phuong et al.

References

1. Ateniese, G., Benson, K., Hohenberger, S.: Key-private proxy re-encryption.
In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 279–294. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-00862-7 19

2. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption
schemes with applications to secure distributed storage. ACM Trans. Inf. Syst.
Secur. 9, 1–30 (2006)

3. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption
schemes with applications to secure distributed storage. In: NDSS (2015)

4. Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryp-
tography. Adv. Cryptol. - EUROCRYPT 1403, 127–144 (1998)

5. Blazy, O., Bultel, X., Lafourcade, P.: Two secure anonymous proxy-based data
storages. In: Proceedings of the 13th ICETE. pp. 251–258 (2016)

6. Boneh, D., Boyen, X.: Efficient selective identity-based encryption without random
oracles. J. Cryptol. 24, 659–693 (2011)

7. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 16

8. Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based
encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 207–222. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-24676-3 13

9. Canetti, R., Hohenberger, S.: Chosen-ciphertext secure proxy re-encryption. In:
Proceedings of the 14th ACM CCS (2007)

10. Chu, C.-K., Tzeng, W.-G.: Identity-based proxy re-encryption without random
oracles. In: Garay, J.A., Lenstra, A.K., Mambo, M., Peralta, R. (eds.) ISC 2007.
LNCS, vol. 4779, pp. 189–202. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-75496-1 13

11. Derler, D., Krenn, S., Lorünser, T., Ramacher, S., Slamanig, D., Striecks, C.: Revis-
iting proxy re-encryption: forward secrecy, improved security, and applications. In:
Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10769, pp. 219–250. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-76578-5 8

12. Dodis, Y., Yampolskiy, A.: A verifiable random function with short proofs and
keys. In: Proceedings of the 8th PKC. pp. 416–431 (2005)

13. Ge, C., Susilo, W., Fang, L., Wang, J., Shi, Y.: A cca-secure key-policy attribute-
based proxy re-encryption in the adaptive corruption model for dropbox data shar-
ing system. Des. Codes Crypt. 86(11), 2587–2603 (2018)

14. Green, M., Ateniese, G.: Identity-based proxy re-encryption. In: Katz, J., Yung,
M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 288–306. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-72738-5 19

15. Green, M.D., Miers, I.: Forward secure asynchronous messaging from puncturable
encryption. In: Proceedings of the 2015 IEEE S and P, pp. 305–320. IEEE Com-
puter Society (2015)

16. Libert, B., Vergnaud, D.: Unidirectional chosen-ciphertext secure proxy re-
encryption. IEEE Trans. Inf. Theor. 57(3), 1786–1802 (2011)

17. Libert, B., Vergnaud, D.: Unidirectional chosen-ciphertext secure proxy re-
encryption. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 360–379.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78440-1 21

https://doi.org/10.1007/978-3-642-00862-7_19
https://doi.org/10.1007/3-540-39200-9_16
https://doi.org/10.1007/978-3-540-24676-3_13
https://doi.org/10.1007/978-3-540-24676-3_13
https://doi.org/10.1007/978-3-540-75496-1_13
https://doi.org/10.1007/978-3-540-75496-1_13
https://doi.org/10.1007/978-3-319-76578-5_8
https://doi.org/10.1007/978-3-540-72738-5_19
https://doi.org/10.1007/978-3-540-78440-1_21

Puncturable Proxy Re-Encryption Supporting to Group Messaging Service 233

18. Mambo, M., Okamoto, E.: Proxy cryptosystems: delegation of the power to decrypt
ciphertexts. IEICE Trans. Fundam. 80–A, 54–63 (1997)

19. Matsuo, T.: Proxy re-encryption systems for identity-based encryption. In:
Takagi, T., Okamoto, T., Okamoto, E., Okamoto, T. (eds.) Pairing 2007. LNCS,
vol. 4575, pp. 247–267. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-73489-5 13

20. Myers, S., Shull, A.: Efficient hybrid proxy re-encryption for practical revocation
and key rotation. Cryptology ePrint Archive, Report 2017/833 (2017). https://
eprint.iacr.org/2017/833

21. Tang, Q.: Type-based proxy re-encryption and its construction. In: Proceedings of
the 9th INDOCRYPT. pp. 130–144. Berlin, Heidelberg (2008)

22. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005). https://doi.org/10.1007/11426639 7

23. Weng, J., Deng, R.H., Ding, X., Chu, C.K., Lai, J.: Conditional proxy re-encryption
secure against chosen-ciphertext attack. In: Proceedings of the 4th ASIACCS. pp.
322–332 (2009)

24. Weng, J., Deng, R.H., Liu, S., Chen, K.: Chosen-ciphertext secure bidirectional
proxy re-encryption schemes without pairings. Inf. Sci. 180(24), 5077–5089 (2010)

https://doi.org/10.1007/978-3-540-73489-5_13
https://doi.org/10.1007/978-3-540-73489-5_13
https://eprint.iacr.org/2017/833
https://eprint.iacr.org/2017/833
https://doi.org/10.1007/11426639_7

Generic Traceable Proxy Re-encryption
and Accountable Extension

in Consensus Network

Hui Guo1,2, Zhenfeng Zhang3, Jing Xu3(B), and Mingyuan Xia4

1 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China
guohtech@foxmail.com

2 Guangdong Provincial Key Laboratory of Data Security and Privacy Protection,
Guangzhou 510632, People’s Republic of China

3 Institute of Software, Chinese Academy of Sciences, Beijing, China
{zfzhang,xujing}@tca.iscas.ac.cn

4 Statistics Department, Tianjin University of Finance and Economics,
Tianjin City, China

xiamingyuan1213@163.com

Abstract. Proxy re-encryption provides a promising solution to share
encrypted data in consensus network. When the data owner is going
to share her encrypted data with some receiver, he will generate re-
encryption key for this receiver and distribute the key among the consen-
sus network nodes following some rules. By using the re-encryption key,
the nodes can transform the ciphertexts for the receiver without learning
anything about the underlying plaintexts. However, if malicious nodes
and receivers collude, they can obtain the capability to decrypt all trans-
formable ciphertexts of the data owner, especially for multi-nodes setting
of consensus network. In order to address this problem, some “tracing
mechanisms” are naturally required to identify misbehaving nodes and
foster accountability when the re-encryption key is abused for distribut-
ing the decryption capability.

In this paper, we propose a generic traceable proxy re-encryption
construction from any proxy re-encryption scheme, with the twice size
ciphertext as the underlying proxy re-encryption scheme. Then our con-
struction can be instantiated properly to yield the first traceable proxy
re-encryption with constant size ciphertext, which greatly reduces both
the communication and storage costs in consensus network. Furthermore,
we show how to generate an undeniable proof for node’s misbehavior and
support accountability to any proxy re-encryption scheme. Our construc-
tion is the first traceable proxy re-encryption scheme with accountability,
which is desirable in consensus network so that malicious node can be
traced and cannot deny his leakage of re-encryption capabilities.

Keywords: Proxy re-encryption · Traceability · Accountability ·
Consensus network

c© Springer Nature Switzerland AG 2019
K. Sako et al. (Eds.): ESORICS 2019, LNCS 11735, pp. 234–256, 2019.
https://doi.org/10.1007/978-3-030-29959-0_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29959-0_12&domain=pdf
https://doi.org/10.1007/978-3-030-29959-0_12

Generic Traceable PRE and Extension in Consensus Network 235

1 Introduction

Proxy re-encryption (PRE) [4], proposed by Blaze, Bleumer and Strauss in Euro-
crypt 1998, provides a compelling solution to the encrypted data sharing prob-
lem. In a PRE scheme, a proxy is given a re-encryption key and has the ability to
translate a data owner’s ciphertext into a receiver’s, without learning anything
about the plaintext data. Due to its ciphertext transformation property, PRE
has got lots of attention and applications, including email forwarding [7], dis-
tributed files systems [3,37], digital rights management [32], publish-subscribe
systems [6], cloud data sharing [27,35,39].

One of the most important applications of PRE is NuCypher [1], a decentral-
ized key management system (KMS), which addresses the limitations of using
consensus network to store and manipulate encrypted data. Using PRE and
consensus networks as major building blocks, NuCypher KMS supports various
products such as medical & biotech data platform, key management and decen-
tralized database. In NuCypher KMS, each node of the consensus network acts
as a proxy to accomplish the task of re-encryption. If the data owner is going
to share his data with some receiver, he will generate re-encryption keys for this
receiver and distribute the keys among the nodes following some rules. When the
receiver needs some specific data, he applies to the data owner for permission
on these data. After receiving the permission, the nodes re-encrypt these data’s
ciphertext to the receiver. The receiver applies to the data owner for permissions
every time upon his need of different data.

However, like all other consensus networks, nodes in NuCypher KMS may
cheat. One of the cheating behaviors is revealing re-encryption keys to the data
receiver. With the re-encryption key, the receiver can decrypt all the data owner’s
ciphertext and he needn’t apply to the data owner for permissions any more.
What’s worse, the data receiver could generate decryption device of the data
owner and sell it online or offline, which may cause the data owner’s economic
loss. This weakness is also known as re-encryption key abuse problem.

To mitigate the above security concern in multi-proxies setting, Libert
and Vergnaud [23] proposed traceable PRE, where there is a tracing algo-
rithm for tracing malicious proxies leaking re-encryption keys. Specifically, every
re-encryption key is linked to a particular proxy, and by observing the leaked
re-encryption key or partial of it, the tracing algorithm can identify the proxy
who is cheating. NuCypher KMS adopts traceable PRE scheme [23], which dis-
courages nodes from leaking re-encryption keys by forfeiting the cheating node’s
collateral. However, in traceable PRE scheme [23], the computational overhead
and the size of ciphertexts are linear with the length of the underlying code, and
thus both the communication and storage costs of the consensus network are
significantly increased.

In many cases, only identifying revealed re-encryption key is not enough for
applications, as the data owner itself may already leak it. In the above NuCypher
KMS example, even though there exists tracing algorithm identifying which re-
encryption key is revealed, the malicious node still does not have any risk of
being caught as the traitor (even in a court) and he can confidently deny his

236 H. Guo et al.

misbehavior and claim that the tracing result is not an non-repudiable proof
thus cannot be considered as an evidence. This is due to the fact that there is no
conclusive proof about who is guilty between malicious node and data owner. In
order to address the above problem, Guo et al. [16] introduced accountable PRE
where there exists a judge algorithm establishing an un-deniable proof once a
misbehaving proxy is caught, and they also proposed a concrete scheme with
constant ciphertext. However, their construction does not consider traceability
and cannot be accountable with more than one node/proxy, which is unsuitable
for the consensus network.

In this paper, we are trying to answer the following open and fundamental
questions:

– Is it possible to construct traceable PRE scheme with constant ciphertext?
It will significantly decrease the computation and storage costs in consensus
network.

– Is it possible to construct PRE schemes supporting both traceability and
accountability?
It will trace malicious node/proxy and generate undeniable proof for a court
of law to carry out punishment.

– Is it possible to enable any PRE scheme to support traceability/accountability?
It may potentially stimulate the adoption of PRE schemes in practice.

1.1 Our Contribution

In this work, we aim to provide a systematic study of re-encryption key abuse
problems in proxy re-encryption schemes. First, motivated by the traitor tracing
scheme, we propose a generic construction that converts any existing ordinary
PRE scheme into a traceable PRE scheme. Our construction utilizes collusion
resistant fingerprinting codes and embeds them in re-encryption keys. A trac-
ing algorithm can recover a pirate codeword from a suspected decryption device
and further identify a source codeword from such a pirate codeword based on the
security of fingerprinting codes. By this way, the re-encryption key embedded
in such a source codeword would be traced to create the suspected decryption
device. The traceability is done in a standard black-box way that the tracing
algorithm only need oracle access to the unauthorized (or pirate) decoder. In
addition, our generic construction only doubles the ciphertext size of the under-
lying PRE scheme and can be instantiated efficiently. The instantiation is the
first traceable PRE scheme with constant size ciphertext.

Second, we further transform our generic traceable PRE to be account-
able. Specifically, the data owner/delegator cannot be aware of the proxy’s re-
encryption key completely, and thus an un-deniable proof can be formed if a
traitor is caught from a pirate decoder, which is performed by a new Judge proto-
col. Our primary challenge in this construction is to ensure consistency between
the Trace and the Judge protocol, i.e., an identified traitor cannot evade the
confirmation from the judge, which heavily relies on the security of the asym-
metric fingerprinting scheme. Our construction is not only generic but also the

Generic Traceable PRE and Extension in Consensus Network 237

Table 1. Comparison of PRE schemes related to defend against re-encryption key
abuse attack, where we instantiate our generic construction with the AFGH PRE
scheme [3]. N denotes the maximum number of delegatees for each delegator in [23].
poly(λ) denotes the computational cost is polynomial with respect to the security
parameter λ.

Schemes [23] [17] [15] [16] Our instantiation

Traceability
√ × × × √

Accountability × × × √ √

Constant ciphertext size × √ × √ √

Computational cost (ms) Enc1 1.24 3.64 poly(λ) 3.64 1.24

Enc2 O(logN) 10.22 poly(λ) 6.04 9.6

ReEnc 12.1 14.5 poly(λ) 6.67 6.05

Dec1 0.62 6.67 poly(λ) 6.67 0.62

Dec2 6.67 6.67 poly(λ) 6.67 6.67

first traceable PRE with accountability in multi-proxies setting. Moreover, black-
box traceability is also supported and the instantiated scheme has constant size
ciphertext.

We use an implementation [36] of MIRACL CryptoSDK at 80-bit security
level as a benchmark to estimate the overhead of our construction instantiated
with AFGH PRE scheme [3] and existing PRE schemes related to defend against
re-encryption key abuse attack. Table 1 illustrates the comparison and the results
show that the resulting scheme performs substantially better on re-encryption
and first level encryption/decryption efficiency, significantly on ciphertext size,
which reduces both communication and computation complexity. More compar-
ison details can be seen in Sect. 6.

1.2 Related Work

In 1998, Blaze et al. [4] first proposed the concept of PRE. Afterwards, a lot
of works followed up to enhance its security and functionalities, including CPA
secure PREs [8,9,19], CCA secure PREs [7,12,24,36] and secure PRE under
honest re-encryption attacks (HRA) [10], type-based (conditional) PREs [33,34,
37], forward secure PRE [11] and PRE for revocation and key rotation [26], etc.

Re-Encryption Key Abuse of PRE. Addressing re-encryption key abuse
problem of PRE scheme was started with the work of Ateniese et al. [3].
They proposed the concept of non-transferability but left it as an open
problem to give a concrete construction. Since then, there has been sev-
eral works towards addressing this problem. Libert and Vergnaud [23] pro-
posed a traceable proxy re-encryption scheme, where the delegator can iden-
tify the malicious proxy leaking re-encryption keys. To achieve this prop-
erty, they borrowed ideas from an identity-based traitor tracing scheme based

238 H. Guo et al.

on wildcard identity-based encryption (IBE) [2] and inherited its disadvan-
tages: the computational overhead and the size of ciphertexts are linear
with the length of the underlying code. Later, Hayashi et al. [18] and Guo
et al. [17] tried to construct secure PRE schemes against re-encryption key forg-
ing attacks. Unfortunately, neither of the two schemes is able to capture all re-
encryption key abusing attacks. Recently, Guo et al. [15] formalized the notion
of non-transferability, and proposed a concrete construction using an indistin-
guishability obfuscator for circuits and a k-unforgeable authentication scheme
as main tools. However, due to inefficiency of the current indistinguishability
obfuscator, their scheme is impractical till now. Later, Guo et al. [16] proposed
the notion of accountable PRE and gave an efficient construction under standard
model. In accountable PRE, if the proxy is accused to abuse the re-encryption key
for distributing the decryption capability, a judge algorithm can decide whether
it is innocent or not. However, their scheme only allows one proxy to re-encrypt
ciphertext, and thus cannot be applied to the consensus network.

Accountable Authority IBE/ABE. In order to mitigate the key escrow
problem in IBE and attribute based encryption (ABE), accountable author-
ity IBE/ABE has been studied in various works [13,14,20–22,25,28,31,38].
Our work has similarities with accountable IBE/ABE. Informally, accountable
IBE/ABE aims at solving the key abuse problem of the PKG, while we try to
address the key abuse issue of the proxy in this paper. However, different from
the PKG considered to be a trusted party unconditionally in most IBE/ABE,
the proxy is only a semi-honest party in PRE, and thus it is of great practical
significance to restrict misbehavior of the proxy.

2 Preliminary

2.1 Fingerprinting Codes

We are only interested in binary codes, i.e. codes defined over {0, 1}. Let the
symbol of ‘?’ denotes an unknown bit, either 0 or 1. For a word w̄ ∈ {0, 1}l, we
write w̄ = w1, · · · , wl, where wi ∈ {0, 1} is the ith letter of w̄ for i = 1, · · · , l. Let
n be an integer, λ be the security parameter and negl(·) be a negligible function.

Fingerprinting codes are defined by two algorithms [5]:

– CodeGen(n, λ) : This algorithm is called a code generator. It outputs a pair
(Γ, tk), where Γ denote a code containing n words in {0, 1}l for some l > 0
and tk is called a tracing key.

– Identify(tk, w̄∗) : This algorithm takes as input a pair (w̄∗, tk) where w̄∗ ∈
{0, 1}l. The algorithm outputs a subset U of {1, · · · , n}. Informally, an ele-
ment in U is “accused” of being an index of a traitor for creating the
word w̄∗.

Generic Traceable PRE and Extension in Consensus Network 239

Before formalizing the security definition for fingerprinting codes, recall the
definition of feasible set [5]:

– Let W = {w̄(1), · · · , w̄(t)} be a set of words in {0, 1}l. We say that a word
w̄ ∈ {0, 1}l is feasible for W if there is a j ∈ [t] such that w̄i = w̄

(j)
i , ∀i ∈ [l].

– For a set of words W ⊂ {0, 1}l, we say that the feasible set of W , denoted
F (W), is the set of all words that are feasible for W .

– We say that the extended feasible set for W, denoted F?(W), is the set of all
feasible words for W ⊂ {0, 1, ?}l.

The security of fingerprinting codes is defined using a game between a challenger
and an adversary as follows.

Definition 1. [5] Fingerprinting code (CodeGen, Identify) is said to be fully col-
lusion resistant if for any adversary A, any n > 0 and any subset C ⊂ {1, · · · , n},
the following holds:

Pr

⎡
⎢⎣

(Γ, tk) ← CodeGen(n, λ) where Γ = {w̄(1), · · · , w̄(n)};

w̄∗ ∈ F ({w̄(i)}i∈C) ← A(n, λ, {w̄(i)}i∈C) :
Identify(w̄∗, tk) = ∅ or Identify(w̄∗, tk) �⊂ C

⎤
⎥⎦ < negl(λ)

Definition 2. [5] Fingerprinting code is δ-robust if the pirate code w̄∗ in the
above definition is allowed to contain no more than δl symbols of ‘?’, where l is
the code length.

Note that Definition 2 is an extension of collusion resistant fingerprinting
codes from Definition 1. It allows tracing noisy codewords that we fail to deter-
mine which bits are in the adversary’s possession on several coordinates.

3 Definition and Security Model

3.1 Basic PRE

In this paper, we use λ to denote the security parameter. First, recall
the definition of a basic PRE scheme [23], which is a tuple of algorithms
(Setup,KeyGen,ReKeyGen,Enc1,Enc2,ReEnc,Dec1,Dec2):

– Setup(λ): Taking a security parameter λ as input, this algorithm outputs
public parameter param which specifies plaintext space M, ciphertext space
C and randomness space R.

– KeyGen(param): Taking the security parameter λ as input, this algorithm
outputs the user’s public key and secret key pair (pki, ski). We omit param in
the following algorithms’ inputs.

– ReKeyGen(ski, pkj): Taking a delegator’s secret key ski and a delegatee’s
public key pkj as input, this algorithm outputs a re-encryption key rki→j .

– Enc1(pkj ,m): Taking a user’s public key pkj and a message m ∈ M as input,
this algorithm outputs a ciphertext C ′

j . It is a first level ciphertext and cannot
be re-encrypted for another user.

240 H. Guo et al.

– Enc2(pki,m): Taking a user’s public key pki and a message m ∈ M as input,
this algorithm outputs a ciphertext Ci. It is a second level ciphertext and can
be re-encrypted for another user.

– ReEnc(rki→j , Ci): Taking the re-encryption key rki→j and a second level
ciphertext Ci as input, this algorithm outputs a re-encrypted ciphertext C ′

j .
– Dec1(skj , C

′
j): Taking the secret key skj and a first level ciphertext or a re-

encrypted ciphertext C ′
j as input, this algorithm outputs a message m ∈ M.

– Dec2(ski, Ci): Taking the secret key ski and a second level ciphertext Ci as
input, this algorithm outputs a message m ∈ M.

Correctness. For any message m ∈ M, any users’ key pairs (pki, ski), (pkj , skj) ←
KeyGen(param) and any re-encryption key rki→j ← ReKeyGen(ski, pkj), the
following conditions hold:

Dec1(skj ,Enc1(pkj ,m)) = m; Dec2(ski,Enc2(pki,m)) = m;
Dec1(skj ,ReEnc(rki→j ,Enc2(pki,m))) = m.

3.2 CPA Security

An adversary has access to the following oracles:

– Uncorrupted key generation oracle Ohkg(i): Compute (pki, ski) ← KeyGen(i),
return pki.

– Corrupted key generation oracle Ockg(i): Compute (pki, ski) ← KeyGen(i),
return (ski, pki).

– Re-encryption key generation oracle Orkg(pki, pkj): On input of (pki, pkj),
where pki, pkj were generated before by KeyGen, return a re-encryption key
rki→j ← ReKeyGen(ski, pkj).

To capture the CPA security notion for PRE schemes, we associate a CPA
adversary A with the following template security experiment:

Experiment Expcpa-γ
Π,A (λ)

param ← Setup(λ);
(pk∗,m0,m1) ← AO′

(param);
d∗ ← {0, 1};
C∗ = Encγ(pk∗,md∗);
d′ ← AO′

(param, C∗);
If d′ = d∗ return 1;
else return 0.

In the above experiment, γ ∈ {1, 2} specifies which level ciphertext that A
attacks and O′ = {Ohkg,Ockg,Orkg}. The advantage of A is defined as

Advcpa-γ
Π,A (λ) = |Pr[Expcpa-γ

Π,A (λ) = 1] − 1
2
|.

Formally, we present the CPA security as follows.

Generic Traceable PRE and Extension in Consensus Network 241

Definition 3 (CPA Security at the Second Level [17].) For any PRE scheme
Πs, we instantiate the experiment with a CPA adversary A and γ = 2. It is
required that pk∗ is uncorrupted and |m0| = |m1|. If C∗ denotes the challenge
ciphertext, A can never make re-encryption key generation query Orkg(pk∗, pkj),
where pkj is corrupted.

Πs is said to be secure against chosen plaintext attacks at the second level
ciphertext if for any polynomial time adversary A, the advantage function
Advcpa-2

Πs,A(λ) is negligible in λ.

Definition 4 (CPA Security at the First Level [17].) For any PRE scheme Πs,
we instantiate the experiment with a CPA adversary A and γ = 1. It is required
that pk∗ is uncorrupted and |m0| = |m1|.

Πs is said to be secure against chosen plaintext attacks at the first level
ciphertext if for any polynomial time adversary A, the advantage function
Advcpa-1

Πs,A (λ) is negligible in λ.

Remark 1. Recently, [10] shows CPA security is not an appropriate security
definition for PRE when the delegatee is not trusted. But since CPA security
is simple and it is the basis for CCA security and HRA security, we use it to
demonstrate how to give a generic construction. Note that, CPA security can
be replaced by CCA security or HRA security without changing our generic
construction.

3.3 Traceable PRE

Compared to the basic PRE scheme, traceable PRE [23] has one more algorithm,
Trace algorithm, for identifying malicious proxy. Moreover, in order to trace the
malicious proxy, ReKeyGen algorithm would output a tracing key as well as a
re-encryption key. Specifically,

– ReKeyGen(ski, pkj): Taking a delegator’s secret key ski and a delegatee’s
public key pkj as input, this algorithm outputs a re-encryption key rki→j and
a tracing key tki.

– TraceDi,µ(pki, tki): This algorithm is run by delegator. With black-box access
to a μ-useful decryption device Di,μ

1 and taking the tracing key tki as input,
this algorithm outputs at least one tag of the re-encryption keys.

3.4 Black Box Traceability

Consider the case that a delegator has multiple proxies and multiple delegatees.
Informally speaking, a PRE scheme is called traceable if at least one of the
colluded proxies creating a pirate decryption device can be identified.
1 For non-negligible probability value μ, a PPT algorithm Di,μ is a μ-useful decryption

device for user i, if Pr[m ← M, Ci ← Enc2(pki, m), m′ ← Di,μ(Ci) : m = m′] ≥ μ,
where M is the plaintext space.

242 H. Guo et al.

In traceable PRE, ReKeyGen algorithm additionally generates a tracing key,
and the re-encryption key generation oracle is accordingly adapted as follows.

– Re-encryption key generation oracle O(t)
rkg(pki, pkj): On input of (pki, pkj),

run (rki→j , tki) ← ReKeyGen(ski, pkj) and return re-encryption key rki→j .

In the oracle O(t)
rkg, the challenger also generates a tracing key, but does not

output it to the adversary.
With oracles Ohkg,Ockg,O(t)

rkg, the security experiment is defined as follows:

Experiment ExpTrace
Π,A (λ)

param ← Setup(λ);

pk∗,D∗,μ ← AOhkg,Ockg,O(t)
rkg(param)

where pk∗ is generated by Ohkg

and μ is a non-negligible probability value;
If TraceD∗,µ(pk∗, tk∗) = ∅ or TraceD∗,µ(pk∗, tk∗) �⊂ C
where tk∗ is generated by Orkg and C is the tag set
of re-encryption keys queried by A.
return 1;
else return 0.

The advantage of A is defined as

AdvTrace
Π,A (λ) = |Pr[ExpTrace

Π,A (λ) = 1]|.
Definition 5 (Traceability.) A PRE scheme Πs is said to be μ-traceable if for
any polynomial time adversary A, the advantage function AdvTrace

Π,A (λ) is negli-
gible in λ.

4 Generic Traceable Construction

Intuition. The existing traceable PRE scheme [23] might be seen as using a
multi-receiver encryption scheme derived from the single level Wa-WIBE of [2].
The re-encryption keys are generated by selecting a unique identifier and binding
decryption keys of the multi-receiver scheme to delegatees’ public keys. [23] shows
how to construct traceable PRE based on concrete algebraic structure. However,
it is not clear whether it is possible to give a generic construction based on any
basic PRE scheme.

We observe that several properties should be satisfied to gain traceability:

– Each re-encryption key should be bound to a unique identifier that can be
traced back to.

– For a suspected decryption device, the tracing algorithm could recover partial
information about the identifier of the re-encryption key involved in creating
the device.

– The re-encryption key involved in creating the device could be identified from
the partial information.

Generic Traceable PRE and Extension in Consensus Network 243

– In addition, to obtain black-box tracing property, the ciphertext should have
two forms, one is for usual decryption and the other is for tracing. In more
detail, for normal encryption, all delegatees should obtain the re-encrypted
ciphertext of the same message. However, for traitor-tracing purpose, it is not
the case since the tracing algorithm need to distinguish which re-encryption
key being involved in a given pirate decryption device.

Motivated by the traitor tracing scheme [5], we observe that such properties
can be achieved by using fingerprinting codes. At high level, we embed collusion
resistant fingerprinting codeword in each re-encryption key. A tracing algorithm
is designed to first recover a pirate codeword from a suspected decryption device,
and then identify a source codeword from such a pirate codeword based on the
security of fingerprinting codes. As a result, the re-encryption key embedded in
such a source codeword would be involved in creating the suspected decryption
device. Therefore, the crux here is how to design the tracing algorithm, as well
as the ciphertexts and the re-encryption keys to support the tracing algorithm.
We use basic PRE and fingerprinting codes as building blocks.

– For generating the re-encryption key, we embed fingerprinting codes as fol-
lows. Assume the fingerprinting code’s length is l, and every user’s pub-
lic/secret pair includes l pairs of the original PRE scheme. Delegator prepares
l pairs of re-encryption key elements, denoted as {rkk,b}k=1,··· ,l,b=0,1, which
are generated by l secret keys. When generating a new re-encryption key, he
chooses an unemployed codeword at random, denoted as {bk}k=1,··· ,l where
bk ∈ {0, 1}. For each pair of the re-encryption key elements, he picks one
element according to the corresponding bit of codeword. At last, he collects
l re-encryption key element {rkk,bk}k=1,··· ,l,bk∈{0,1} and sends them to the
proxy. Note that, for a single bit of the codeword, the proxy holds either of
rkk,0 and rkk,1.

– For the ciphertext, it can be designed into two parts. Each part can be re-
encrypted by either rkk,0 or rkk,1. In normal encryption algorithm, both parts
encrypt the same plaintext, while in tracing algorithm, the two parts encrypt
different plaintext for distinguishing one bit of the suspected codeword.

– For tracing algorithm, as mentioned above, it can be implemented by feeding
the pirate decryption device with training ciphertext. Based on the responses,
the tracer can recover a pirate codeword. The fingerprinting code then can be
used to find one corrupted codeword, and finally the traitor. See more details
in the following construction.

Construction. Let (CodeGen, Identify) be a fingerprinting code, which con-
tains n words in {0, 1}l. For a given PRE schemeΠ = (Setup,KeyGen,ReKeyGen,
Enc1,Enc2,ReEnc,Dec1,Dec2), the generic traceable PRE construction is as
follows:

– Setup(λ): Taking the security parameter λ as input, run Setup algorithm of
Π and output the system parameters param.

244 H. Guo et al.

– KeyGen(param): For user i, run 2l times KeyGen algorithm of Π to gener-
ate {(ski,k,b, pki,k,b)}k=1,··· ,l,b=0,1. Set ski = {ski,k,b}k=1,··· ,l,b=0,1 and pki =
{pki,k,b}k=1,··· ,l,b=0,1.

– ReKeyGen(ski,pkj): Given user i’s secret key ski = {ski,k,b}k=1,··· ,l,b=0,1

and user j’s public key pkj = {pkj,k,b}k=1,··· ,l,b=0,1 as input,, user i proceeds
as follows:

• First, check whether it is the first time for user i to generate re-encryption
keys. If it is, generate fingerprinting code by running (Γi, tki) ←
CodeGen(n, λ), where Γ = {w̄(1), · · · , w̄(n)} ⊂ {0, 1}l, tki is the tracing
key and n denotes the maximum number of the delegatees. Set tki = tki.

• Then, choose a previously unemployed bit string w̄(u) = w1, · · · , wl ∈ Γi

and generate the re-encryption key rk = (w̄(u), {rk
(i→j)
k,wk

}k=1,··· ,l), where

u denotes the tag of the re-encryption key and rk
(i→j)
k,wk

is the output by
running algorithm ReKeyGen(ski,k,wk

, pkj,1,0) of Π.
– Enc1(pkj,m): Given pkj = {pkj,k,b}k=1,··· ,l,b=0,1 and a message m, run the
Enc1 algorithm of Π and return C′

j = Enc1(pkj,1,0,m).
– Enc2(pki,m): Given pki = {pki,k,b}k=1,··· ,l,b=0,1, randomly choose r ←

{1, · · · , l}. Run the Enc2 algorithm of Π, and set cr,0 = Enc2(pki,r,0,m) and
cr,1 = Enc2(pki,r,1,m). Return the second level ciphertext Ci = (cr,0, cr,1, r).

– ReEnc(rki→j,Ci) : On input re-encryption key rk = (w̄, {rk
(i→j)
k,wk

}k=1,··· ,l)
and ciphertext Ci, parse the ciphertext Ci = (cr,0, cr,1, r) and run the
ReEnc algorithm of Π with rk

(i→j)
r,wr , it outputs a re-encrypted ciphertext

C′
j = ReEnc(rk(i→j)

r,wr , cr,wr
).

– Dec1(skj,C′
j): On input secret key skj = {skj,k,b}k=1,··· ,l,b=0,1 and a cipher-

text C′
j = c′

j as input, run the Dec1 algorithm of the underlying PRE and
return m = Dec1(skj,1,0, c

′
j).

– Dec2(ski,Ci): On input secret key ski = {ski,k,b}k=1,··· ,l,b=0,1 and a second
level ciphertext Ci = (cr,0, cr,1, r), run Dec2(ski,r,wr

, cr,wr
) and output the

result.
– TraceDi,µ(pki, tki): With black-box access to a μ-useful decryption device

Di,μ and taking the pubic key pki = {pki,k,b}k=1,··· ,l,b=0,1 and tki = tki as
input, proceed as following steps.
1. For each k ∈ {1, · · · , l},

(a) Repeat the following steps λ2 times, and let pk be the fraction of
times such that m = m̂:

m ← M
c0 ← Enc2(pki,k,0,m), c1 ← Enc2(pki,k,1, 0)
c∗ ← (c0, c1, k)
m̂ ← Di,μ(c∗).

Generic Traceable PRE and Extension in Consensus Network 245

(b) Repeat the following steps λ2 times, and let qk be the fraction of times
such that m = m̂:

m ← M
c0 ← Enc2(pki,k,0,m), c1 ← Enc2(pki,k,1,m)
c∗ ← (c0, c1, k)
m̂ ← Di,μ(c∗).

2. After the repetitions for each k, let wk ∈ {0, 1} be

wk =

⎧
⎨
⎩

0 if pk > 0
1 if pk = 0 and qk > 1√

λ

? otherwise

3. Set w̄∗ = w1 · · · wl. Run Identify(tki, w̄
∗) and output the traitor set.

Correctness. For a given ciphertext, the re-encryption and decryption algo-
rithms of the above generic construction actually runs re-encryption and decryp-
tion algorithms of an underlying PRE scheme Π, and thus the correctness is
implied.

Theorem 1. The above generic construction is a μ-traceable PRE under
the assumption that the underlying PRE scheme Π is CPA secure and
(CodeGen, Identify) is a δ-robust fully collusion resistant fingerprinting code,
where δ = μ/(1 − 2/

√
λ) and λ denotes the security parameter.

Proof Sketch. Since the encryption algorithm of generic construction simply runs
that of the underlying PRE scheme twice, CPA security is implied2. Then we
give some intuitions on traceability. Note that traceability here does not allow
adversary to obtain the delegator’s secret keys. To prove the traceability, we
observe the quantities pk and qk computed in the Trace algorithm. First, if
pk > 0 then the adversary must possess (rk(i→j)

k,0 , skj,1,0) for some j with high
probability, since otherwise the underlying PRE is not CPA secure. Second, if
there is a gap between pk and qk, the adversary must possess (rk(i→j)

k,1 , skj,1,0)
for some j with high probability, since otherwise the underlying PRE is not
CPA secure. In summary, w̄∗ = w1 · · · wl computed in the Trace algorithm
is contained in F?({w̄(i)}i∈C) with high probability, where C denotes the set
of codewords of re-encryption keys queried by A. Therefore, Identify(tki, w̄

∗)
outputs a member of C with overwhelming probability. The equation δ = μ/(1−
2/

√
λ) can be proved via a standard probabilistic argument, see more details

in [5].

2 Similarly, if the underlying PRE scheme is HRA/CCA secure, then the generic con-
struction is also HRA/CCA secure.

246 H. Guo et al.

5 Enforcing Accountability

In traceable PRE, though a proxy is identified from a pirate decryption device,
there is still possibility that it is generated by the delegator. Therefore, it is
necessary to distinguish whether the proxy is involved in generating the device
or not. Accountability can provide such functionality.

This property would be supported only if the delegator does not know the
whole re-encryption key, since otherwise he is able to incriminate an honest
proxy. In order to achieve this goal, it is a possible way that the proxy chooses an
additional private input in re-encryption key generation algorithm. Specifically,

– ReKeyGen(ski, pkj , u, su): It is a secure 2-party protocol between the dele-
gator and a proxy, where u denotes the tag of re-encryption key and su is a
private input chosen by the proxy. At the end of this algorithm, the proxy
obtains a re-encryption key rk

(u)
i→j and the delegator obtains a tracing key tki.

A delegator can generate at most n re-encryption keys.

To support accountability, Trace algorithm outputs a proof in addition to
the suspected re-encryption key’s tag, as the evidence of the malicious proxy’s
misbehavior. Specifically,

– TraceDi,µ(pki, tki): This algorithm is run by delegator. With black-box access
to a μ-useful decryption device Di,μ, and taking the tracing key tki as input,
it outputs a re-encryption key tag u ∈ [n] along with a proof Ω.

Compared to traceable PRE, accountable PRE has an extra Judge algorithm,
which is run after the Trace algorithm for deciding whether the suspected re-
encryption key has been involved in creating the pirate decryption device. It
takes both the proxy’s private input and the proof as input. Specifically,

– Judge(pki, tki, u,Ω, su): Taking the pubic key pki, tracing key tki, a suspected
re-encryption key tag u, a proof Ω and the private input su chosen by the
corresponding proxy as input, this algorithm outputs Proxy or Delegator,
indicating the one who is responsible for the decryption device.

5.1 Security of Accountable PRE in Multi-proxies Setting

Because of the change of inputs in ReKeyGen algorithm, the re-encryption key
generation oracle is accordingly modified as follows.

– Re-encryption key generation oracle O(a)
rkg(pki, pkj , u, su): On input of

(pki, pkj , u, su), where pki, pkj are generated by KeyGen, u denotes the tag
of re-encryption key and su is selected by A as the proxy’s secret input, this
oracle generates a re-encryption key rk

(u)
i→j and a tracing key tki. Return the

re-encryption key rk
(u)
i→j .

Notice that CPA security can be easily adapted from standard definitions,
and thus we focus more on the security regarding traceability and accountability.

Generic Traceable PRE and Extension in Consensus Network 247

Strong Traceability. With the oracles Ohkg,Ockg described in Sect. 3.2 and
Orkg defined above, the security experiment is as follows:

Experiment ExpsTrace
Π,A (λ)

param ← Setup(λ);

pk∗,D∗,μ ← AOhkg,Ockg,O(a)
rkg(param, {su}u∈C)

where pk∗ is generated by Ohkg, μ is a non-negligible probability value
and C denotes the tag set of re-encryption keys queried by A;
(u∗, Ω) ← TraceD∗,µ(pk∗, tk∗)
where tk∗ is the tracing key generated by O(a)

rkg;
If u∗ = ⊥ or u∗ /∈ C
return 1;
else return 0.

Definition 6 (Strong Traceability.) A PRE scheme Πs is said to support strong
traceability if for any polynomial time adversary A, the advantage function
AdvsTrace

Π,A (λ) is negligible in λ.

We call it Strong Traceability since the tracing algorithm outputs a proof Ω
as well as a suspected tag u.

Accountability. Informally speaking, accountability has two folds. (i) Non-
repudiation: a proxy involved in creating a pirate decryption device cannot deny
its responsibility. (ii) Non-framing: an honest proxy cannot be framed by a mali-
cious delegator by generating a pirate decryption device, even though the dele-
gator may collude with other proxies and delegatees.

First, let’s consider the non-repudiation security. In the security experiment,
the adversary can query and obtain a polynomial number of users’ secret keys
and re-encryption keys. He can also choose the proxies’ secret inputs. We say
that the adversary is successful if, it outputs a decryption device which misleads
a judge to believe an honest delegator is guilty. The experiment is defined as
follows:

Experiment ExpNR
Π,A(λ)

param ← Setup(λ);

pk∗,D∗,μ ← AOhkg,Ockg,O(a)
rkg(param, {su}u∈C)

where pk∗ is generated by Ohkg, μ is a non-negligible probability value
and C denotes the tag set of re-encryption keys queried by A;
(u∗, Ω) ← TraceD∗,µ(pk∗, tk∗)
where tk∗ is the tracing key generated by O(a)

rkg;
If Judge(pk∗, tk∗, u∗, Ω, su∗) = Delegator
return 1;
else return 0.

248 H. Guo et al.

The advantage of A is defined as

AdvNR
Π,A(λ) = |Pr[ExpNR

Π,A(λ) = 1]|.

Definition 7 (Non-Repudiation Security.) A PRE scheme Πs is said to be non-
repudiation secure if for any polynomial time adversary A, the advantage func-
tion AdvNR

Πs,A(λ) is negligible in λ.

Similarly, we consider the non-framing security. In the security experiment,
the adversary can query and obtain a polynomial number of users’ secret keys and
re-encryption keys. He also can choose some re-encryption keys’ secret inputs of
proxies. We say that the adversary is successful if, it outputs a decryption device
which misleads a judge to believe the honest proxy is guilty. To formulate this
security definition, we define the experiment as follows:

Experiment ExpNF
Π,A(λ)

param, u′, su′ ← Setup(λ);

pk∗,D∗,μ ← AOhkg,Ockg,O(a)
rkg(param, {u, su}u�=u′)

where pk∗ is generated by Ockg

and μ is a non-negligible probability value;
If JudgeD∗,µ(pk∗, tk∗, u′, su′) = Proxy
where tk∗ is generated by O(a)

rkg

return 1;
else return 0.

The advantage of A is defined as

AdvNF
Π,A(λ) = |Pr[ExpNF

Π,A(λ) = 1]|.

Definition 8 (Non-Framing Security.) A PRE scheme Πs is said to be non-
framing secure if for any polynomial time adversary A, the advantage function
AdvNF

Πs,A(λ) is negligible in λ.

A PRE scheme is said to be accountable, if it is both non-repudiation secure
and non-framing secure.

5.2 Construction

The main challenge in constructing accountable PRE is to ensure consistency
between the Trace and the Judge protocol, i.e., an identified traitor cannot evade
the confirmation from the judge. Inspired by the concept of asymmetric finger-
printing codes [29,30], we upgrade the above generic traceable PRE to achieve
accountability.

Generic Traceable PRE and Extension in Consensus Network 249

For a given PRE scheme Π = (Setup,KeyGen,ReKeyGen,Enc1,Enc2,ReEnc,
Dec1,Dec2), we use an asymmetric fingerprinting code (AsymCodeGen,
AsymIdentify,ArbiterPredicate) and an oblivious transfer (OT) protocol as
major building blocks. Let l be the code length of the asymmetric fingerprinting
code. Our generic accountable PRE construction works as follows:

– Setup(λ),KeyGen(param): These algorithms are the same as those of the
above generic traceable PRE.

– ReKeyGen(ski,pkj,u, su). It is a protocol between the delegator and the
proxy:
1. Given user i’s secret key ski = ({ski,k,b}k=1,··· ,l,b=0,1) and user j’s public

key pkj = {pkj,k,b}k=1,··· ,l,b=0,1 as input, if it is the first time for user i to
generate re-encryption keys for user j, he prepares the re-encryption key
elements {rk

(i→j)
k,b }k=1,··· ,l,b=0,1 where rk

(i→j)
k,b is the output by running

algorithm ReKeyGen(ski,k,b, pkj,1,0) of Π.
2. Proxy chooses su as his private input for running AsymCodeGen with

the delegator to generate the u-th word of the code Γi. At the end of
this protocol, the proxy gets a word w̄(u) = w1, · · · , wl and the delegator
obtains a tracing key tki if it is the first time for user i to generate re-
encryption keys. Set tki = tki.

3. Delegator uses {rk
(i→j)
k,b }k=1,··· ,l,b=0,1 as input and proxy uses w̄(u) =

w1, · · · , wl as input to run l times OT protocol. At the end of the protocol,
the proxy obtains rk

(i→j)
k,wk

for k = 1, · · · , l. The re-encryption key is set

as rk = (w̄(u), {rk
(i→j)
k,wk

}k=1,··· ,l).
– Enc1(pkj,m), Enc2(pki,m), ReEnc(rki→j,Ci), Dec1(skj,C′

j), Dec2(ski,
Ci):These algorithms are the same as those of the above generic traceable
PRE.

– TraceDi,µ(pki, tki): This algorithms is the same as that of the above
generic traceable PRE construction except for replacing Identify(tki, w̄

∗) with
AsymIdentify(tki, w̄

∗) in Step 3. The output is (u,Ω), where u is the tag of
the re-encryption key and Ω is a proof.

– Judge(pki, tki, u,Ω, su). This is a protocol among the judge, the delega-
tor, and a suspected proxy who owns the re-encryption key with tag u. The
delegator is with input (pki, tki, u,Ω), and the proxy is with input su.
1. The proxy reveals its private input su to the judge, and proves its cor-

rectness according to ReKeyGen(ski,pkj,u, su).
2. The delegator sends the judge the tracing key tki and proves its validity

to ReKeyGen(ski,pkj,u, su).
3. The judge runs ArbiterPredicate(tki, u,Ω, su). If ArbiterPredicate(tki, u,

Ω, su) = 1 he outputs “Proxy” and otherwise outputs “Delegator”.

Similar to the traceable PRE case, CPA security is straightforward assuming
the underlying scheme Π is CPA secure. Thus, we only focus on the traceability
and accountability properties here. Intuitively, these two properties inherit from
the asymmetric fingerprinting codes, which was formally demonstrated in [29].

250 H. Guo et al.

In order to establish the security reduction to the underlying codes, we first
use OT protocol to generate the re-encryption key. The security of OT protocol
ensures that the proxy can only obtain the re-encryption key fragments related to
its codeword, while the delegator does not know the codeword held by the proxy.
Another possibility of reduction failure could be inconsistent inputs during the
Judge protocol. That is, either the delegator or the proxy may cheat the judge
about his input in the ReKeyGen protocol. Fortunately, it can be avoided by
letting both the delegator and the proxy prove their inputs consistent with the
ReKeyGen algorithm.

With the above security intuition and due to space limit, we defer detailed
security proof to the full version, and we summarize the security as follows.

Theorem 2 (Informal). The above construction has strong traceability and
accountability based on CPA secure PRE scheme Π, secure asymmetric finger-
printing code (AsymCodeGen,AsymIdentify, ArbiterPredicate), and secure OT
protocol.

6 Instantiation and Discussion

We instantiate the generic constructions with the well-known AFGH PRE
scheme [3]. The scheme is unidirectional and CPA secure under the extended
Decisional Bilinear Diffie-Hellman (eDBDH) assumption. When the AFGH
scheme is made traceable, the comparison is as in Tables 2 and 3.

Table 2 compares our instantiation with those in [15–17,23] in terms of secu-
rity and performance, all of which are related to defend against re-encryption
key abuse attack. From Table 2, it is clear that only our scheme achieves trace-
ability and accountability with constant computational cost and ciphertext/key
size.

Next, we look into the efficiency comparison in more detail in Table 3. tp, t′e
and te denote the time for computing a bilinear pairing, an exponentiation in
group GT and an exponentiation in group G, respectively. |G|, |GT | and |Zp|
denote the bit-length of an element in G, an element in GT and an integer in
Zp, respectively. l denotes the length of the underlying code. N denotes the
maximum number of delegatees for each delegator in [23]. poly(λ) denotes the
computational cost or ciphertext/key size is polynomial with respect to the secu-
rity parameter λ.

For all the compared schemes, we take similar optimizations by pre-
computing some bilinear pairings offline. To make it more clearly, we use an
implementation [36] of MIRACL CryptoSDK at 80-bit security level as a bench-
mark to estimate efficiency of pairings and exponentiations, where tp = 6.05ms,
tm = 3.04ms, t′e = 0.62ms and te = 2.4ms.

Generic Traceable PRE and Extension in Consensus Network 251

T
a
b
le

2
.
G

en
er

a
l
co

m
p
a
ri

so
n

[2
3
]

[1
7
]

[1
5
]

[1
6
]

O
u
r

in
st

a
n
ti

a
ti

o
n

S
ec

u
ri

ty
o
f
ci

p
h
er

te
x
t

C
P
A

C
P
A

C
P
A

C
P
A

C
P
A

A
ss

u
m

p
ti

o
n

a
u
g
m

en
te

d
D

B
D

H
D

B
D

H
iO

,
k
-a

u
th

en
ti

ca
ti

o
n
,
P

R
G

D
B

D
H

eD
B

D
H

T
ra

ce
a
b
il
it
y

√
×

×
×

√

A
cc

o
u
n
ta

b
il
it
y

×
×

×
√

√

M
u
lt

i-
p
ro

x
ie

s
se

tt
in

g
√

×
×

×
√

C
o
n
st

a
n
t

ci
p
h
er

te
x
t

si
ze

×
√

×
√

√

C
o
n
st

a
n
t

co
m

p
u
ta

ti
o
n
a
l
co

st
×

√
×

√
√

T
a
b
le

3
.
E

ffi
ci

en
cy

co
m

p
a
ri

so
n

S
c
h
e
m

e
s

K
e
y

a
n
d

c
ip

h
e
rt
e
x
t
si
z
e

C
o
m

p
u
ta

ti
o
n
a
l
c
o
st

P
K

R
K

F
ir
st

le
v
e
l

S
e
c
o
n
d

le
v
e
l

E
n
c

R
e
E
n
c
(m

s)
D
e
c

F
ir
st

le
v
e
l
(m

s)
S
e
c
o
n
d

le
v
e
l
(m

s)
F
ir
st

le
v
e
l
(m

s)
S
e
c
o
n
d

le
v
e
l
(m

s)

[2
3
]

O
(l
o
g

N
)

2
|G

2
|

2
|G

T
|

O
(l
o
g

N
)

2
t′ e

1
.2
4

–
O
(l
o
g

N
)

2
t p

1
2
.1
0

t′ e
0
.6
2

t p
+

t′ e
6
.6
7

[1
7
]

3
|G

|
|G

|+
2
|Z

p
|

2
|G

T
|+

|G
|

|G
T

|+
4
|G

|
2
t′ e

+
t e

3
.6
4

t′ e
+

4
t e

1
0
.2
2

2
t p

+
t e

1
4
.5

t p
+

t′ e
6
.6
7

t p
+

t′ e
6
.6
7

[1
5
]

p
o
ly
(λ

)
p
o
ly
(λ

)
p
o
ly
(λ

)
p
o
ly
(λ

)
–

p
o
ly
(λ

)
–

p
o
ly
(λ

)
–

p
o
ly
(λ

)
–

p
o
ly
(λ

)
–

p
o
ly
(λ

)

[1
6
]

2
|G

|
|G

|
2
|G

T
|+

|G
|

2
|G

T
|+

2
|G

|
2
t′ e

+
t e

3
.6
4

2
t′ e

+
2
t e

6
.0
4

t p
+

t′ e
6
.6
7

t p
+

t′ e
6
.6
7

t p
+

t′ e
6
.6
7

O
u
r
in

st
a
n
ti
a
ti
o
n

2
l|G

|
l|G

|
2
|G

T
|

2
|G

|
2
t′ e

1
.2
4

4
t e

9
.6

t p
6
.0
5

t′ e
0
.6
2

t p
+

t′ e
6
.6
7

252 H. Guo et al.

The results show that our scheme has competing computation and communi-
cation efficiency, performing substantially better on re-encryption and first level
encryption/decryption efficiency, significantly on ciphertext size, meanwhile it
also provides both traceability and accountability under the standard security
assumption.

7 Conclusion

Due to the nature of PRE schemes, proxy can collude with the data receiver to
derive and distribute the data owner’s decryption capability, which has been the
major concerns for users sharing encrypted data in consensus network. In this
paper, we proposed the generic construction for traceable PRE and accountable
PRE. With proper instantiation, it yields the first traceable PRE scheme with
constant ciphertext and the first accountable PRE construction in multi-proxies
setting, so that malicious node can be traced and moreover cannot deny his leak-
age of re-encryption capabilities, which may potentially stimulate the adoption
of PRE schemes in practice.

Acknowledgement. This work is supported by the National Key R&D Program of
China (Grant Nos 2018YFB0804105, 2017YFB0802500), the National Natural Science
Foundation of China (Grant Nos 61802021, U1536205, 61572485) and the Opening
Project of Guangdong Provincial Key Laboratory of Data Security and Privacy Pro-
tection (Grant No. 2017B030301004).

A Asymmetric Fingerprinting Codes

In fingerprinting schemes, since both the provider and the receiver know the fin-
gerprinted copy, it cannot be proved that a found copy was leaked by the receiver
instead of the provider. While in asymmetric fingerprinting schemes, introduced
by [30] and further studied by [29], only the receiver knows the fingerprinted
copy, and a found copy can be proved to third parties whose copy it was.

Asymmetric fingerprinting is defined by the following algorithms [29]:

– AsymCodeGen(n, λ, su) : This is a two party protocol between the provider
and the receiver. λ is the security parameter. The receiver chooses a private
input su to generate the u-th word of the code Γ , containing up to n code-
words. At the end of this algorithm, the provider obtains a tracing key tk and
the receiver gets a word w̄(u).

– AsymIdentify(tk, w̄∗) : On input of a pirate word w̄∗ ∈ {0, 1}l, this algorithm
either fails to identify and outputs ⊥, or outputs a codeword index u ∈
{1, · · · , n} along with a proof Ω. Informally, the u-th user is “accused” of
being a traitor for creating the word w̄∗.

– ArbiterPredicate(tk, u,Ω, su) This is a 3-party protocol between the arbiter,
the provider and the receiver. The provider inputs (tk, u,Ω), where u denotes

Generic Traceable PRE and Extension in Consensus Network 253

an index of a traitor being “accused” for creating the word w̄∗. The receiver
inputs su, which is his private input for creating the u-th word of the code
Γ . This predicate returns 1 if proof Ω contains some non-trivial information
on su and returns 0 otherwise.

For simplifying, we consider AsymCodeGen is a secure 2-party protocol as
[29]. That is, the provider obtains no more than the tracing key tk and the
receiver obtains no more than the word w̄(u).

In addition to the tracing capability, an asymmetric fingerprinting code sup-
ports two additional features, non-repudiation and non-framing. We recall the
security properties of asymmetric fingerprinting codes as follows [29]:

– Traceability: For any adversary A, any n > 0 and any subset C ⊂ {1, · · · , n},
the following holds

Pr

⎡
⎢⎢⎢⎢⎣

{(w̄(i), tk) ← AsymCodeGen(n, λ, si)}i=1,··· ,n;

w̄∗ ∈ F ({w̄(i)}i∈C) ← A(n, λ, {si, w̄
(i)}i∈C) :

(u,Ω) ← AsymIdentify(tk, w̄∗) :
u = ⊥ or u /∈ C

⎤
⎥⎥⎥⎥⎦

< negl(λ)

– Non-repudiation: It further holds that

Pr [0 ← ArbiterPredicate(tk, u,Ω, su)] < negl(λ)

– Non-framing: For any adversary A, any n > 0 and any u′ ∈ [n], the following
holds

Pr

⎡
⎢⎣

{(w̄(i), tk) ← AsymCodeGen(n, λ, si)}i=1,··· ,n;
Ω′ ← A(n, λ, tk, {si}i∈[n]\{u′}) :

1 ← ArbiterPredicate(tk, u′, Ω′, su′)

⎤
⎥⎦ < negl(λ)

Remark 2. Pehlivanoglu [29] introduced an asymmetric binary fingerprinting
code based on Boneh-Shaw code and proved it satisfying the above properties.
Despite that the above definition seems slightly different from [29] in expression,
the functionality and security remain unchanged.

References

1. Nucypher. https://www.nucypher.com/
2. Abdalla, M., Catalano, D., Dent, A.W., Malone-Lee, J., Neven, G., Smart, N.P.:

Identity-based encryption gone wild. In: Bugliesi, M., Preneel, B., Sassone, V.,
Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 300–311. Springer, Heidelberg
(2006). https://doi.org/10.1007/11787006 26

3. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption
schemes with applications to secure distributed storage. In: NDSS (2005)

4. Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryp-
tography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054122

https://www.nucypher.com/
https://doi.org/10.1007/11787006_26
https://doi.org/10.1007/BFb0054122

254 H. Guo et al.

5. Boneh, D., Naor, M.: Traitor tracing with constant size ciphertext. In: Proceedings
of the 15th ACM conference on Computer and communications security, pp. 501–
510. ACM (2008)

6. Borcea, C., Polyakov, Y., Rohloff, K., Ryan, G., et al.: Picador: end-to-end
encrypted publish-subscribe information distribution with proxy re-encryption.
Future Gener. Comput. Syst. 71, 177–191 (2017)

7. Canetti, R., Hohenberger, S.: Chosen-ciphertext secure proxy re-encryption. In:
Proceedings of the 14th ACM conference on Computer and communications secu-
rity, pp. 185–194. ACM (2007)

8. Chandran, N., Chase, M., Liu, F.-H., Nishimaki, R., Xagawa, K.: Re-encryption,
functional re-encryption, and multi-hop re-encryption: a framework for achieving
obfuscation-based security and instantiations from lattices. In: Krawczyk, H. (ed.)
PKC 2014. LNCS, vol. 8383, pp. 95–112. Springer, Heidelberg (2014). https://doi.
org/10.1007/978-3-642-54631-0 6

9. Chandran, N., Chase, M., Vaikuntanathan, V.: Functional re-encryption and
collusion-resistant obfuscation. In: Cramer, R. (ed.) TCC 2012. LNCS, vol.
7194, pp. 404–421. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-28914-9 23

10. Cohen, A.: What about Bob? the inadequacy of CPA security for proxy reen-
cryption. In: Lin, D., Sako, K. (eds.) PKC 2019. LNCS, vol. 11443, pp. 287–316.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17259-6 10

11. Derler, D., Krenn, S., Lorünser, T., Ramacher, S., Slamanig, D., Striecks, C.: Revis-
iting proxy re-encryption: forward secrecy, improved security, and applications. In:
Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10769, pp. 219–250. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-76578-5 8

12. Fuchsbauer, G., Kamath, C., Klein, K., Pietrzak, K.: Adaptively secure proxy re-
encryption. In: Lin, D., Sako, K. (eds.) PKC 2019. LNCS, vol. 11443, pp. 317–346.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17259-6 11

13. Goyal, V.: Reducing trust in the PKG in identity based cryptosystems. In: Menezes,
A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 430–447. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-74143-5 24

14. Goyal, V., Lu, S., Sahai, A., Waters, B.: Black-box accountable authority identity-
based encryption. In: Proceedings of the 15th ACM conference on Computer and
communications security, pp. 427–436. ACM (2008)

15. Guo, H., Zhang, Z., Xu, J., An, N.: Non-transferable proxy re-encryption. Comput.
J. 62(4), 490–506 (2019). https://doi.org/10.1093/comjnl/bxy096

16. Guo, H., Zhang, Z., Xu, J., An, N., Lan, X.: Accountable proxy re-encryption for
secure data sharing. IEEE Trans. Dependable Secure Comput. (2018)

17. Guo, H., Zhang, Z., Zhang, J.: Proxy re-encryption with unforgeable re-encryption
keys. In: Gritzalis, D., Kiayias, A., Askoxylakis, I. (eds.) CANS 2014. LNCS,
vol. 8813, pp. 20–33. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
12280-9 2

18. Hayashi, R., Matsushita, T., Yoshida, T., Fujii, Y., Okada, K.: Unforgeability of
re-encryption keys against collusion attack in proxy re-encryption. In: Iwata, T.,
Nishigaki, M. (eds.) IWSEC 2011. LNCS, vol. 7038, pp. 210–229. Springer, Hei-
delberg (2011). https://doi.org/10.1007/978-3-642-25141-2 14

19. Hohenberger, S., Rothblum, G.N., Shelat, A., Vaikuntanathan, V.: Securely obfus-
cating re-encryption. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 233–
252. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7 13

https://doi.org/10.1007/978-3-642-54631-0_6
https://doi.org/10.1007/978-3-642-54631-0_6
https://doi.org/10.1007/978-3-642-28914-9_23
https://doi.org/10.1007/978-3-642-28914-9_23
https://doi.org/10.1007/978-3-030-17259-6_10
https://doi.org/10.1007/978-3-319-76578-5_8
https://doi.org/10.1007/978-3-030-17259-6_11
https://doi.org/10.1007/978-3-540-74143-5_24
https://doi.org/10.1093/comjnl/bxy096
https://doi.org/10.1007/978-3-319-12280-9_2
https://doi.org/10.1007/978-3-319-12280-9_2
https://doi.org/10.1007/978-3-642-25141-2_14
https://doi.org/10.1007/978-3-540-70936-7_13

Generic Traceable PRE and Extension in Consensus Network 255

20. Kiayias, A., Tang, Q.: Making any identity-based encryption accountable, effi-
ciently. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS 2015. LNCS,
vol. 9326, pp. 326–346. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
24174-6 17

21. Lai, J., Deng, R.H., Zhao, Y., Weng, J.: Accountable authority identity-based
encryption with public traceability. In: Dawson, E. (ed.) CT-RSA 2013. LNCS,
vol. 7779, pp. 326–342. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-36095-4 21

22. Lai, J., Tang, Q.: Making any attribute-based encryption accountable, efficiently.
In: Lopez, J., Zhou, J., Soriano, M. (eds.) ESORICS 2018. LNCS, vol. 11099, pp.
527–547. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98989-1 26

23. Libert, B., Vergnaud, D.: Tracing malicious proxies in proxy re-encryption. In:
Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 332–
353. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85538-5 22

24. Libert, B., Vergnaud, D.: Unidirectional chosen-ciphertext secure proxy re-
encryption. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 360–379.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78440-1 21

25. Libert, B., Vergnaud, D.: Towards black-box accountable authority IBE with short
ciphertexts and private keys. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS,
vol. 5443, pp. 235–255. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-00468-1 14

26. Myers, S., Shull, A.: Efficient hybrid proxy re-encryption for practical revocation
and key rotation. Technical report, Cryptology ePrint Archive, Report 2017/833
(2017)

27. Myers, S., Shull, A.: Practical revocation and key rotation. In: Smart, N.P. (ed.)
CT-RSA 2018. LNCS, vol. 10808, pp. 157–178. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-76953-0 9

28. Ning, J., Dong, X., Cao, Z., Wei, L.: Accountable authority ciphertext-policy
attribute-based encryption with white-box traceability and public auditing in the
cloud. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS 2015. LNCS,
vol. 9327, pp. 270–289. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
24177-7 14

29. Pehlivanoglu, S.: An asymmetric fingerprinting code for collusion-resistant buyer-
seller watermarking. In: Proceedings of the first ACM workshop on Information
hiding and multimedia security, pp. 35–44. ACM (2013)

30. Pfitzmann, B., Schunter, M.: Asymmetric fingerprinting. In: Maurer, U. (ed.)
EUROCRYPT 1996. LNCS, vol. 1070, pp. 84–95. Springer, Heidelberg (1996).
https://doi.org/10.1007/3-540-68339-9 8

31. Sahai, A., Seyalioglu, H.: Fully Secure accountable-authority identity-based encryp-
tion. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS,
vol. 6571, pp. 296–316. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-19379-8 19

32. Taban, G., Cárdenas, A.A., Gligor, V.D.: Towards a secure and interoperable drm
architecture. In: Proceedings of the ACM workshop on Digital rights management,
pp. 69–78. ACM (2006)

33. Tang, Q.: Type-based proxy re-encryption and its construction. In: Chowdhury,
D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 130–
144. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89754-5 11

34. Weng, J., Chen, M., Yang, Y., Deng, R., Chen, K., Bao, F.: CCA-secure unidi-
rectional proxy re-encryption in the adaptive corruption model without random
oracles. Sci. China Inf. Sci. 53(3), 593–606 (2010)

https://doi.org/10.1007/978-3-319-24174-6_17
https://doi.org/10.1007/978-3-319-24174-6_17
https://doi.org/10.1007/978-3-642-36095-4_21
https://doi.org/10.1007/978-3-642-36095-4_21
https://doi.org/10.1007/978-3-319-98989-1_26
https://doi.org/10.1007/978-3-540-85538-5_22
https://doi.org/10.1007/978-3-540-78440-1_21
https://doi.org/10.1007/978-3-642-00468-1_14
https://doi.org/10.1007/978-3-642-00468-1_14
https://doi.org/10.1007/978-3-319-76953-0_9
https://doi.org/10.1007/978-3-319-76953-0_9
https://doi.org/10.1007/978-3-319-24177-7_14
https://doi.org/10.1007/978-3-319-24177-7_14
https://doi.org/10.1007/3-540-68339-9_8
https://doi.org/10.1007/978-3-642-19379-8_19
https://doi.org/10.1007/978-3-642-19379-8_19
https://doi.org/10.1007/978-3-540-89754-5_11

256 H. Guo et al.

35. Xu, P., Xu, J., Wang, W., Jin, H., Susilo, W., Zou, D.: Generally hybrid proxy
re-encryption: a secure data sharing among cryptographic clouds. In: Proceedings
of the 11th ACM on Asia Conference on Computer and Communications Security,
pp. 913–918. ACM (2016)

36. Zhang, J., Zhang, Z., Chen, Y.: PRE: Stronger security notions and efficient con-
struction with non-interactive opening. In: Theoretical Computer Science (2014)

37. Zhang, J., Zhang, Z., Guo, H.: Towards secure data distribution systems in mobile
cloud computing. IEEE Trans. Mob. Comput. 16(11), 3222–3235 (2017)

38. Zhang, Y., Li, J., Zheng, D., Chen, X., Li, H.: Accountable large-universe attribute-
based encryption supporting any monotone access structures. In: Liu, J.K.K., Ste-
infeld, R. (eds.) ACISP 2016. LNCS, vol. 9722, pp. 509–524. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-40253-6 31

39. Zuo, C., Shao, J., Liu, J.K., Wei, G., Ling, Y.: Fine-grained two-factor protection
mechanism for data sharing in cloud storage. IEEE Trans. Inf. Forensics Secur.
13(1), 186–196 (2018)

https://doi.org/10.1007/978-3-319-40253-6_31

Side Channels

Side-Channel Aware Fuzzing

Philip Sperl(B) and Konstantin Böttinger

Fraunhofer Institute for Applied and Integrated Security,
Garching bei München, Germany

{philip.sperl,konstantin.boettinger}@aisec.fraunhofer.de

Abstract. Software testing is becoming a critical part of the devel-
opment cycle of embedded devices, enabling vulnerability detection. A
well-studied approach of software testing is fuzz-testing (fuzzing), dur-
ing which mutated input is sent to an input-processing software while
its behavior is monitored. The goal is to identify faulty states in the
program, triggered by malformed inputs. Even though this technique is
widely performed, fuzzing cannot be applied to embedded devices to its
full extent. Due to the lack of adequately powerful I/O capabilities or an
operating system the feedback needed for fuzzing cannot be acquired. In
this paper we present and evaluate a new approach to extract feedback
for fuzzing on embedded devices using information the power consump-
tion leaks. Side-channel aware fuzzing is a threefold process that is ini-
tiated by sending an input to a target device and measuring its power
consumption. First, we extract features from the power traces of the tar-
get device using machine learning algorithms. Subsequently, we use the
features to reconstruct the code structure of the analyzed firmware. In
the final step we calculate a score for the input, which is proportional to
the code coverage.

We carry out our proof of concept by fuzzing synthetic software and a
light-weight AES implementation running on an ARM Cortex-M4 micro-
controller. Our results show that the power side-channel carries informa-
tion relevant for fuzzing.

Keywords: Embedded systems security · Side-channel analysis ·
Fuzzing

1 Introduction

Embedded systems are nowadays used in a wide range of domains and appli-
cations. The employed devices are often connected to information exchanging
networks like the Internet of Thisngs (IoT). As the number of connected devices
is continuously growing, the security of the employed software is gaining impact
on our daily life.

Vulnerabilities in embedded devices can be classified by their cause of occur-
rence, e.g., programming errors, web-based vulnerabilities, weak access control
or authentication, and improper use of cryptography [20]. In the following we
c© Springer Nature Switzerland AG 2019
K. Sako et al. (Eds.): ESORICS 2019, LNCS 11735, pp. 259–278, 2019.
https://doi.org/10.1007/978-3-030-29959-0_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29959-0_13&domain=pdf
http://orcid.org/0000-0002-7901-7168
http://orcid.org/0000-0002-9337-7506
https://doi.org/10.1007/978-3-030-29959-0_13

260 P. Sperl and K. Böttinger

will focus on the security threats emerging from programming errors. Such errors
often lead to memory corruptions like buffer overflows, which attackers make use
of in targeted exploits. To prevent or find errors leading to such vulnerabilities,
several measures exist. For instance, source code analysis during the development
of the system, or subsequent reverse engineering. Both techniques require either
the source code or at least deep understanding of the system. Furthermore, both
approaches cannot be automated or executed large-scale, which increases cost,
either during the development or security evaluation phase.

From the realm of general purpose computers and software testing, the app-
roach of fuzz-testing (fuzzing) is widely accepted and even executed during
commercial software development [11]. During fuzzing, automatically generated
input is sent to the input-processing software under test (SUT) while its behav-
ior is examined. Different instrumentation techniques and mechanisms provided
by the operating system (OS) allow evaluation of the impact of the input, lead-
ing to an effective and automated vulnerability detection tool. Because of the
I/O-limitations, restricted computing power, and missing OS, embedded systems
lack the possibility of returning enough information required during fuzzing [18].
This restrains fuzzing on embedded devices to a black-box manner.

To circumvent this problem, we present a novel and unexplored technique
using the power side-channel of embedded devices as source of feedback for
fuzzing. We show that the process of sending an input vector to the device, mea-
suring the power consumption, and extracting information from the power traces
enables us to deduce the control flow graph (CFG) of the software. Subsequently,
we present a method of using this representation of the control flow to evaluate
the impact of the input on the behavior of the device in terms of code coverage.
We show that this approach is a significant step towards white-box fuzzing on
embedded devices.

In summary, we make the following contributions:

– We present the novel idea of extracting feedback from the power side-channel
to enhance fuzzing of embedded devices.

– In the proof of concept we successfully fuzz synthetic software and a light-
weight advanced encryption standard (AES) [19] implementation and evalu-
ate our results.

– Finally, we provide a base line for future work on side-channel-based feature
extraction.

The rest of this paper is organized as follows. In Sect. 2 we review related
work and summarize latest findings in embedded device fuzzing. We present our
concept of extracting feedback from the power side-channel to enable white-box
fuzzing of embedded devices in Sect. 3. In Sect. 4 we present our proof-of-concept
and evaluation results. We conclude the paper in Sect. 5.

2 Related Work

We divide this section into four parts. First we show challenges in embedded
device fuzzing before we introduce state-of-the-art techniques. Subsequently we

Side-Channel Aware Fuzzing 261

present latest findings in side-channel based reverse engineering. Finally, we
present the first contributions using side-channel information to assess the pro-
gram flow of embedded devices.

Muench et al. [18] split the challenges encountered when fuzzing embedded
devices into three categories. We adopt this categorization for devices without
an OS and explain it in the following.

Fault Detection: Faults during program execution often lead to program
crashes, which need to be detected during fuzzing. For fuzzing on a PC, the
OS offers mechanisms for detecting crashes, e.g., a segmentation fault commu-
nicated to the fuzzing tool by console output. Even though some embedded
processors contain Memory Management Units (MMU), the lack of an OS hin-
ders the possibility to communicate faults to the outer world. Hence, possible
program crashes or subsequent reboot sequences may remain undetected.

Performance, Throughput, and Scalability: Profiting from the multitasking
capabilities of OS-based systems, multiple instances of the SUT can run simul-
taneously, increasing the fuzzing throughput. Transferring this knowledge to
embedded systems suffers limitations, because of the missing OS or single-core
architecture of the devices. A solution is the application of multiple devices exe-
cuting the same firmware, which may be limited due to financial restrictions.

Instrumentation: Both, compile-time and run-time approaches suffer in feasi-
bility due to the restrictions in embedded systems. Recompiling binaries, like on
PCs, is not possible if the source code is not available. Besides the difficult task of
binary rewriting, run-time instrumentation techniques as well as virtualization
are not applicable due to the missing OS.

Because of the difficulties presented above, research concerning fuzzing of
OS-free embedded devices exclusively deals with a black-box approach. Even
though we present a white-box solution, some findings in black-box fuzzing are
worth mentioning. Koscher et al. [13] and Lee et al. [14] carry out fuzzing of
CAN packets. Alimi et al. [1] made use of black-box fuzzing when looking for
vulnerabilities in applets on smart cards. Muench et al. [18] try to improve
fuzzing by partial and full emulation of embedded devices. Zaddach et al. [26]
propose a related approach and improve the emulation-based testing process by
forwarding memory accesses on the emulated target to the physical device.

Symbolic execution poses an alternative approach. Davidson et al. [6] show
the possibility to find bugs in firmware using a specification of the memory
layout of the target device, the source code, and their KLEE-based [3] symbolic
execution engine. With this setup the authors are able to perform fuzzing of the
target device. Further improvements to this approach were shown by Corteggiani
et al. [5], in which access to the source code is required as well.

Ever since the introduction of the Differential Power Analysis by Kocher et al.
[12] numerous publications picked up the concept of analyzing information leaked
over the power or electromagnetic (EM) side-channel of embedded devices. As we
link the concepts of side-channel analysis and fuzzing, we profit from research
in the field of side-channel based reverse engineering. Strobel et al. [24] show
an effective way to reconstruct the assembly code executed by CPUs using EM

262 P. Sperl and K. Böttinger

emanations. By decapsulating the attacked chip and using eight measurement
probes, the authors achieve an instruction recognition rate of 87,69% targeting
real code. Msgna et al. [17] use a k-nearest neighbors (kNN) classification for
reverse engineering. The authors exploit the fact that the power consumption
of digital circuits depends on the processed data and executed instructions [15].
Targeting test code the authors achieve an instruction recognition rate of 100%.

The first method using side-channel information to gain insights into the
executed code paths of an embedded device is presented by Callan et al. [4]. In the
training phase the authors measure the EM emanations of a target device while it
executes instrumented code. During the profiling phase EM traces are measured
while the device executes the original source code. The authors compare both
sets of EM traces to identify the currently executed program path. If further
refined, this approach poses a possible source of information to fuzz firmware
for which the source code is available. Nonetheless, the authors do not evaluate
the scenario in which the source code is not available. Similarly, Han et al. [9]
use the EM emanations of embedded controllers to identify the current control
flow. The authors are able to detect malicious executions with high confidence.
Van Aubel et al. [25] use EM traces and methods from the classical side-channel
analysis to build an intrusion detection tool for industrial control systems.

3 Elements of Side-Channel Aware Fuzzing

In this section we present our main contribution, a novel technique for extracting
feedback from an embedded device using the power side-channel to make white-
box fuzzing possible. In particular, we calculate scores for the inputs proportional
to the provoked code coverage. The calculation of the scores is inspired by the
procedure implemented in the widely used and accepted American Fuzzy Lop
(AFL) fuzzing tool. By instrumenting the code, AFL counts the basic block
transitions during the processing of each input. The number of newly executed
basic block transitions is then directly used as score for the inputs, see [27]. In
subsequent fuzzing runs, AFL mutates inputs with the highest scores and feeds
them back to the SUT. The goal is to accumulate a series of inputs for which
a code coverage of 100% is reached. In this paper we neglect the prioritization
and mutation of the inputs and solely provide code coverage scores. The scores
can then be fed to a tool like AFL, to perform the remaining actions required
for a closed fuzzing loop.

We carry out the illustration of our concept in a bottom-up manner. First, we
explain all underlying building blocks, before we present the complete concept
as well as the overall schematic of the side-channel aware fuzzing loop. In Fig. 1
we show the setup and required equipment. During the feedback-driven loop, we
use an oscilloscope to measure the power consumption of the target device and
send the power traces to the evaluation computer. Using this PC we process the
traces and conduct the side-channel analysis (SCA) consisting of three steps.
First, we identify the individual basic blocks of the software. In the second step
we characterize the found basic blocks and the transition sequence. Finally, we
calculate code coverage scores for each input.

Side-Channel Aware Fuzzing 263

Fig. 1. Side-channel driven fuzzing feedback loop.

Throughout the discussion of the SCA building blocks we assume that for
each input sent to the device, its power consumption is measured. The lengths
of the power traces cover the exact time the device requires to process the cur-
rently evaluated input. For the sake of simplicity, we examine one input and
its corresponding trace in the following. In a real world application and during
our proof of concept, we perform the analysis for each input sent to the target
device.

3.1 Feature Extraction Using the Power Side-Channel

A power trace is an array of n quantized measurement points of the physical
power consumption of the target device. The number of points depends on the
measurement period and the sampling rate of the used oscilloscope. Even though
side-channel aware fuzzing is based on power traces, we convey our concept
without illustration of actual power measurements. We decided to do so in order
to provide a general introduction of our approach, which can be transferred
to a wide range of devices. The central goal of our concept is to estimate the
code coverage triggered during the processing of the current input. A widely
used metric to express code coverage is the number of basic block transitions.
In this paper we make use of this idea, therefore we define basic blocks and the
separation of such in the following.

Basic blocks are lines of code which are executed without interruption of a
branch instruction [10]. Hence, if the execution of a basic block begins, it will be
executed completely before another basic block is triggered. Branch instructions
at the end of each basic block coordinate the transitions.

This observation builds the core of our concept. If we detect the moment in
which a target device executes a branch instruction, we find the borders between
the basic blocks. As a consequence, we focus on this class of instructions and
present a method to detect branch instructions using the collected power traces.

264 P. Sperl and K. Böttinger

Subsequently we provide methods to characterize the basic blocks, so that we
can estimate the number of individual basic block transitions per input.

Branch Detection. The power consumption of digital circuits consists of four
components. Each sample of a power trace is determined by the executed instruc-
tion, processed data, electronic noise characteristics of the device, and a constant
component. To detect branches we exploit the operation-dependent component
of the power consumption.

We interpret the branch detection as a binary classification problem, since
all remaining instructions executed by the device are not of interest. During
initialization we split the examined power trace into k windows. Note that the
beginning of each window matches the beginning of a potential branch instruc-
tion. Moreover, the windows and the branch instructions share the same length.
After this initialization, we carry out the binary classification, which we execute
k times per trace. In this classification procedure a predictor decides which win-
dow shows a branch instruction. Machine learning algorithms with a previous
training phase can build the basis for the predictor. If the prediction indicates
that the currently analyzed window shows a branch, we add the location to the
result list Blocations.

To create train data on which the machine learning algorithm can be trained,
we need an identical and programmable target device. We let this training device
execute branch instructions with various offsets and distances, while we measure
its power consumption. During the supervised training, we use the labeled power
traces to create the branch detection model.

Branch Distance Classification. A feature providing evidence whether a
transition was already executed before is the distance between a found basic
block and its predecessor. Here, we define this distance as the number of instruc-
tions which the device under test (DUT) skips due to the branch instruction.

In order to estimate the number of skipped instructions we exploit the data-
dependent component of power traces and the following insight. Branch instruc-
tions contain labels to which they should jump. The CPU calculates the distance
between the current location and the label and adds it to the program counter.
Since this process is data-dependent, the power side-channel leaks information
about this distance.

We again use a supervised machine learning algorithm to estimate the dis-
tances of the found branches. In the training phase our train device performs
branches with known distances while we measure its power consumption. We use
the resulting labeled data to train the algorithm and create the branch distance
model.

In the branch distance classification we first cut the traces, such that we
only evaluate samples measured during the execution of branch instructions. We
apply our previously created model and store the classification output in the
result list Bdistances.

Side-Channel Aware Fuzzing 265

As an alternative to the branch distance classification which might not be
successful for every branch or device, we present an additional approach to dis-
tinguish the basic blocks in the following.

Basic Block Fingerprinting. To distinguish basic blocks we assign side-
channel based fingerprints to each. For this purpose we use the slices of the
power traces between the previously found branch instructions. These parts rep-
resent the power consumption during the execution of basic blocks. Hence, we
conduct an initialization phase in which we cut the traces accordingly. In the
first step of our algorithm we extract four features from each analyzed power
trace window. Subsequently we use the features to fingerprint the basic blocks.
We present the extracted features and illustrate the purpose of each in terms of
contributed information.

Basic blocks often differ in their required execution time. Evaluating this
feature allows an easy-to-implement distinction. Therefore, the first metric we
consider is the length Plength of the individual slices.

For the calculation of the second feature Ppeaks, the algorithm evaluates
the number of peaks for each trace segment. For the majority of embedded
devices, the power traces consist of periodically occurring peaks. Internal clocks
which may have the frequency of the system clock or other clocks like the flash
clock have the major impact on the number of peaks. Additional peaks can
occur in the power traces due to complex instructions. The additionally required
computational power increases the power consumption resulting in spikes in the
traces. Thus, the number of peaks in the trace windows shows the approximate
duration and indicate the complexity of the executed instructions.

The third metric is the mean Pmean, of the windows, which is the mean power
consumption during the basic block execution.

The last metric we calculate is the skewness, Pskewness. Translated to the
power consumption, this metric enables the following distinction of cases.
Assume two basic blocks A and B sharing the same number of instructions,
with identical mean power consumption. Basic block A consists of instructions
with evenly distributed computational cost and resulting power consumption. In
contrast to that, basic block B contains one significantly more complex instruc-
tion than the instructions found in A. Furthermore, the remaining instructions
in B are less complex than the ones found in A, resulting in a the same mean
power consumption. By analyzing the skewness of the power traces, we are able
to distinguish basic blocks A and B.

In the final step of the basic block fingerprinting, we superpose the four
extracted features to create the fingerprints. We present two approaches to
achieve this superposition.

In our first approach we take all four values of the currently analyzed basic
block and store them in a four-dimensional vector. We call this method separated.
This approach is easy to implement, however, in subsequent calculations the
dimension of the feature vector can lead to increased execution times compared
to a scalar value representing the fingerprint.

266 P. Sperl and K. Böttinger

Therefore, in the second approach, which we call summed, we adopt this idea
and sum up the four previously calculated values. Alternatively, a hash function
can be applied to generate a fingerprint. This approach is very effective if the
underlying values already lead to a strong distinction between the basic blocks.
For both approaches we store the fingerprints of the basic blocks in the result
table Bprints.

3.2 Control Flow Reconstruction

In this section we use our knowledge of the basic block transitions to reconstruct
the program flow of the analyzed firmware. We present two algorithms for this
purpose. Both use the previously found branch locations. The first algorithm uses
the branch distances, while the second one uses the basic block fingerprints to
further characterize the transitions. For both approaches we give an exemplary
control flow in Fig. 2 to visualize the concepts of the reconstruction. Each control
flow represents the processing of one input by the target device.

(a) CFG-RI. (b) CFG-RII.

Fig. 2. Illustration of the two control flow reconstruction algorithms and the required
information.

Furthermore, we introduce the following notation. Bx indicates the branch
location with the index x. The corresponding distance of the branch to its succes-
sor is dx. The length of the executed basic block with index i is li. The fingerprint
for the basic block A is FA.

We store the results of the control flow reconstruction in the table TCFG.
Table 1 shows the results according to the examples from Fig. 2. The left column

Side-Channel Aware Fuzzing 267

holds the branch IDs for all inputs, while the columns to the right hold the results
of the control flow reconstruction. In the following we convey both algorithms
and explain the results from Table 1.

CFG Reconstruction I (CFG-RI). In this CFG reconstruction algorithm
we use our knowledge of the branch locations Blocations and their correspond-
ing distances Bdistances. For each branch we calculate a two-dimensional vector
which characterizes the subsequent basic block and store it in TCFG. Thereby we
sufficiently describe the control flow of the tested software in order to evaluate
the sequence of performed basic block transitions. In the following we describe
the creation of the vectors using Fig. 2(a).

We build the vector [Boffset, Clength] by stacking two characteristic values
for each basic block. Boffset indicates the offset of the branch location in the
code, expressed in number of instructions executed or skipped until the branch
itself is executed. In Fig. 2(a), for branch B0 this value is l0. For branch B1 this
value depends on the following intermediate results. Until B1 is executed, the
two basic blocks with the lengths l0 and l1 are executed. In addition to that,
we estimate the distance of branch B0 to be d0. Hence, with the sum of the
discovered distances (l0 + l1 + d0) we express the offset for branch B1. The
second result value Clength is the length of the code after each branch, li. For
the branches B0 and B1 these values are l1 and l2, respectively.

With the location of a specific branch with respect to the previously executed
code and the length of the following basic block, we sufficiently describe the
control flow of the code to evaluate if we triggered a new basic block transition.

CFG Reconstruction II (CFG-RII). In this approach we use the unique
fingerprints Bprints. Each fingerprint describes one basic block, which enables us
to distinguish them. Hence, we directly store the fingerprints in the result table
next to the according branch ID. Note that we assume the code started without
an initial branch. Therefore the first fingerprint is stored without an associated
branch ID. With this result table we provide the sequence of transitions and
fully reconstruct the program flow on the basic block level.

Theoretical Comparison. Both algorithms reconstruct the analyzed software
to such an extent, that we are able to calculate scores for each input representing
the number of newly triggered basic block transitions. The two approaches dif-
fer in the used side-channel information. Hence, each algorithm has advantages
depending on the attacked device and measurement quality. In the following we
give a recommendation on when to use either of the algorithms.

CFG-RI can lead to an accurate reconstruction of the examined code. The
drawback of this approach is the additional training phase we need to perform
prior to the branch distance classification. This leads to a more time and memory
consuming process before the actual fuzzing. In order to classify the branch dis-
tances, the corresponding machine learning model has to be loaded in the evalua-
tion computer in addition to the model for the branch detection and the analyzed

268 P. Sperl and K. Böttinger

Table 1. Result table TCFG showing the results for both control flow reconstruction
algorithms.

Branch ID Results CFG-RI Results CFG-RII

- [Boffset,start, Clength,start] Bprints,start

0 [Boffset,0, Clength,0] Bprints,0

1 [Boffset,1, Clength,1] Bprints,1

...
...

...

...
. . .

. . .

power traces. Moreover, the measurement quality and target device properties
highly influence the accuracy during the estimation of the branch distances.
Different test devices and measurement equipment may lead to poor results
preventing a correct estimation. Additionally, we emphasize the fault propaga-
tion concerning this algorithm. If one branch distance is classified wrongly, the
remaining code reconstruction process results in a flawed CFG.

In CFG-RII the results during the fingerprint calculations do not depend on
the quality of the measurement setup and the attacked device as it is the case
during the branch distance classification. Furthermore, a potential error does not
corrupt all following results. As drawback, regardless of the complexity of the
fingerprints, the probability of collisions is not fully ruled out. A collision occurs
if for two or more different basic blocks the same fingerprint is generated. The
consequence of such an error would be in the worst case, that one yet unknown
basic block transition would not be detected as such. The resulting score of the
analyzed input would be smaller than the actual score.

We sum up the findings of the comparison as follows. With algorithm CFG-
RI we can precisely reconstruct the structure of the tested firmware. Because of
the error propagation property, we exclusively recommend using it if a strong
recognition rate during the branch distance classification is reached. In contrast
to that, we present CFG-RII as an easy to implement and intuitive backup
strategy. We will present a quantitative comparison of both algorithms in Sect. 4.

3.3 Score Calculation

In the final step of our approach we calculate the score which is the number
of newly triggered basic block transitions per input. The list Ω, that is empty
at the beginning of the fuzzing process, holds all known basic block transitions.
For the score calculation we use the result table we gained during the control
flow reconstruction. We analyze the neighboring pairs of basic blocks and their
corresponding representation, realized either with the fingerprints or the branch
distances. If the currently analyzed pair is already stored in Ω, we will not
increase the score. In contrast to that, if the pair is not in Ω, we add it to the
list and increase the score for the corresponding input by 1. With this procedure

Side-Channel Aware Fuzzing 269

we adopt the concept of estimating the code coverage in terms of basic block
transitions, similar to the AFL fuzzing tool.

3.4 Error Prevention and Trace Preprocessing

To prevent errors, we aim to increase the signal-to-noise-ratio (SNR) of the mea-
sured power consumption. Since the electronic noise follows a normal distribution
[15], a widely performed approach is to increase the number of measurements
showing the same operations and form superposed traces. We adopt this con-
cept and present three different approaches to achieve this. For all approaches,
we send the same input to the device multiple times and capture the power
traces. Note that the traces need to be aligned correctly in order to allow valid
calculations. For this purpose we use a precise trigger, which depends on the
system clock of the DUT to start the measurement.

In the first approach, for every sample point in the power traces, we calculate
the average to form a mean trace. Alternatively, we continuously average over
the measured samples and assign higher weights to later recorded traces. We
call this approach sweep. Using either of the superposed traces we carry out all
calculations as explained in Sect. 3 resulting in one score per input.

Alternatively, in the second approach we execute the feature extraction and
score calculation for every trace showing the same operations separately. After
a following majority vote we accept the most probable results.

In addition, a hybrid version poses a third alternative. Here we calculate
multiple scores for the same input using either mean or sweep traces.

3.5 Overall Side-Channel Driven Fuzzing Algorithm

Above we described all building blocks of our approach. In this section we link
them and present an overview. Assume we sent multiple inputs to the DUT while
we recorded the power consumption during the processing of each input.

In the first step, we load a batch of power traces and calculate the pair-
wise mean-squared-error (MSE) among them. With this measure we perform a
first refinement prior to the actual SCA calculations to exclude multiple traces
showing the same sequence of instructions. If for a pair of traces, the MSE is
below a certain threshold, we can assume the same sequence of operations and
hence basic blocks were triggered. We exclude such traces and increase the over-
all fuzzing throughput. Note that we need to analyze the noise properties of the
tested DUT to define the MSE threshold.

For the remaining traces, we calculate the scores using our previously intro-
duced algorithms. To complete the fuzzing loop, we suggest using a state-of-the-
art fuzzing tool like AFL or SAGE [8]. The analyst can feed the calculated scores
to a tool, which prioritizes the inputs and further mutates promising examples.
Figure 3 shows the overall setup. The different loops indicate operations which
we execute in parallel to further increase the throughput of the framework.

270 P. Sperl and K. Böttinger

Fig. 3. Overview of the building blocks of side-channel aware fuzzing.

4 Experiments and Evaluation

The lack of a base line to which different fuzzing techniques can be compared to
is a known problem in software testing picked up by Dolan-Gavitt et al. [7]. The
authors present a system, which injects bugs into C code. This modified code
enables the comparison of various testing tools.

Regarding embedded device fuzzing, we face a similar but more fundamen-
tal challenge. Prior to evaluating the actual fuzzing success, we need to assess
the underlying feedback itself. Therefore, we present a test environment, which
allows the calculation of theoretical scores. Furthermore, we introduce three
evaluation metrics to assess the quality of the calculated scores. This framework
forms a possible base line for future work on feedback extraction, aiming to
enhance embedded device fuzzing.

Additionally we show implementation details essential for our proof of con-
cept and information about the achieved results, gained during fuzzing of syn-
thetic software and a light-weight AES implementation. Finally we discuss the
transferability of side-channel aware fuzzing to a broader range of embedded
devices.

Side-Channel Aware Fuzzing 271

(a) No preprocessing. (b) Mean calculation with 10 traces.

(c) Continuous averaging with 10
traces.

(d) Mean calculation and
continuous averaging, both with 10

traces.

Fig. 4. Four power traces measured during the execution of the same instructions,
showing the impact of different preprocessing techniques.

4.1 Evaluation Code

During the proof of concept the analyzed target device executes a test software,
which allows the calculation of theoretical code coverage scores for the inputs.
The test software takes 16 bytes as input so that 16 binary decision stages are
passed throughout the processing. We test five versions of the software, which
differ in the decision probability at the binary decision stages. Each version covers
48 basic blocks and 60 possible basic block transitions. The evaluation code
hence provides 300 different basic block transitions, our implementation of side-
channel aware fuzzing needs to detect. The distances of the branches between the
basic blocks range from 10 to 150 skipped instructions. For the individual basic
blocks we chose a randomized implementation such that they differ in length,
instruction types, used operands, and complexity. Since embedded devices often
operate in sensing-actuating loops, some basic blocks in real-world code may
only contain a small and simple sequence of instructions. Therefore, to emulate
this case the shortest basic blocks contain 10 instructions, whereas we use 110
instructions to form the longest blocks. A further motivation to include short
basic blocks is to show the sufficient detail among the power traces which we are

272 P. Sperl and K. Böttinger

able to exploit. If we are able to separate even small basic blocks, our concept
does not lack applicability regarding real software.

4.2 Benchmark Metrics

We consider three metrics as measures for the performance of our concept. To
allow the following evaluation we interpret multiple scores as arrays or result-
traces, respectively. This holds true for the calculated as well as for the the-
oretical scores. We evaluate the MSE and correlation coefficient between the
result-traces. In addition we calculate the number of crucial errors. Such errors
occur if for a certain input which triggers the execution of at least one new basic
block transition, a score of 0 is returned. In this case the according input would
be discarded and not be considered for further mutations. This error type leads
to a major decrease in the fuzzing success.

4.3 Implementation Decisions - Classification Approach

The main decision during the implementation is the choice of a machine learning-
based classifier for the branch detection and branch distance classification. To
perform a comparison of different classification algorithms we record 50 000
traces for the two classes (branch vs. no branch) and use them to train the
machine learning models. We compare eight different machine learning algo-
rithms to detect branches. To view the performance of each algorithm, we cal-
culate Matthew’s correlation coefficient (MCC) [16], which is well suited for the
evaluation of binary classifications of imbalanced data sets [21].

We achieve best results using a kNN classification with k = 3 and an MCC
of 0.93. This result corresponds to the latest findings in related work, see Sect. 2.
Therefore, we apply this approach during the proof of concept in which we were
able to reach an MCC of 0.78 for the branch detection.

4.4 Test Scenario and Power Traces

In this section we outline important facts about our proof of concept. We show
power traces to illustrate the actual application of the algorithms from Sect. 3.
We particularly focus on the branch detection and branch distance classification.

During the evaluation phase, our test software (see Sect. 4.1) runs on an
STM32F417 [23] microcontroller. This reduced instruction set computer (RISC)
based controller uses the ARM Cortex-M4 [2] processor. We set the clock fre-
quency of the DUT to 84 MHz. The DUT processes a batch of 100 random inputs
while we measure its power consumption using a shunt resistor of 47Ω. From the
Nyquist-Shannon sampling theorem [22] we know that the sampling rate needs
to be at least twice as high as the frequency of the measured signal to prevent
a loss of information. Hence, we set the sampling rate of our LeCroy Wave-
Pro 760Zi-A oscilloscope to 5 GS/s. After all steps of side-channel aware fuzzing
our implementation returns a result-trace containing 100 scores. Each score cor-
responds to one input sent to the DUT. Figure 4 shows four power traces we

Side-Channel Aware Fuzzing 273

measured with a differential probe. The individual traces differ in the applied
preprocessing technique and give the reader an intuition about the form of the
analyzed data.

Figure 5 shows a power trace during the branch detection. For a simple illus-
tration, we chose to implement one branch instruction in the code executed
by the DUT. In the first step we slice the power trace into equally sized win-
dows, using a peak detection. Each peak, marked with a red cross is a potential
beginning of a branch instruction. The windows have the length of one branch
instruction, which we characterized in the training phase. After the binary classi-
fication on each window, only one peak is detected as the beginning of a branch,
marked with a black circle.

Fig. 5. Power trace during the branch detection, consisting of a peak detection and
binary classifications.

Figure 6 shows two power traces during the branch distance classification.
The traces show the power consumption of the target device during the execution
of two branches with different distances. We can clearly distinguish the power
traces and hence the distances of the branches. Note that both traces still show
a large similarity, such that we are able to detect both branches.

Fig. 6. Two power traces during the execution of two branches with different distances.

274 P. Sperl and K. Böttinger

4.5 Results

We sum up the results of our proof of concept in Table 2. The result values show
the effects of the different preprocessing techniques, the two CFG reconstruc-
tion approaches, and impacts of a majority vote in the feature extraction. We
emphasize that preprocessing is a necessary step as we achieved better results
compared to an analysis using unprocessed traces. The various CFG reconstruc-
tion algorithms perform comparably, this allows a selection depending on the
analyzed device and measurement quality. Regarding our test environment, no
majority vote in the feature extraction reaches superior results compared to a
majority vote-based approach.

With our results we can report that the power side-channel of embedded
devices carries information relevant for fuzzing. We are able to calculate result
traces, which strongly correlate with the actual result values. The maximum
correlation coefficient is 0.95. Furthermore, our framework makes on average
0.69 crucial errors per 100 inputs.

4.6 Fuzzing an AES Implementation

In order to provide first test results on real-world code we implemented AES
on our DUT for data encryption. The AES algorithm does not perform input-
dependent branches. Hence, we can easily compare our calculated scores to the
actual number of basic block transitions in our AES implementation. Further-
more, AES is commonly performed by embedded devices, resulting in realistic
power traces. For our tests we encrypted randomly chosen plaintexts using one

Table 2. Results during the proof of concept. The target devices executes synthetic
code and handles 100 random inputs.

Side-Channel Aware Fuzzing 275

random key. During each encryption run, we let our implementation of side-
channel aware fuzzing estimate the number of basic block transitions, which have
been triggered at least once. Hence, we calculate the scores for each encryption
and plaintext. Our AES implementation triggers 41 unique basic block tran-
sitions during its ten rounds of encryption. We identified this number during
a static code analysis of the compiled binary. Over 100 encryption runs, our
framework detects 38 transitions on average. This shows the applicability of our
concept, regarding code commonly found on embedded devices. In future work
we will extend our tests to a broader range of software including more complex
examples containing input-dependent branches.

4.7 Transferability and Generalization

We carried out the description of the concept in a generic way. The motivation to
do so is to give software engineers and testers the opportunity to adopt the con-
cept, but implement it in a way fitting to their needs, attacked device, and mea-
surement environment. These factors influence the quality of the power traces
and hence the quality of the results. During the evaluation of different aspects
of the concept and its implementation we payed attention to the transferability
of side-channel aware fuzzing. Even though we fuzzed solely one specific DUT,
a broader range of embedded devices can be analyzed with our concept. As can
be seen in Sect. 2, considerable success has been achieved in side-channel based
reverse engineering. In related work a significant part of the instruction sequence
executed by different RISC-based target devices was successfully reconstructed.
With this state-of-the art research and the fact, that our concept is based on a
successful branch detection we suffer no limitations regarding transferability to
other RISC-based target devices. In future work we will further investigate this
assumption.

Furthermore we plan to target the challenge of detecting faults in embedded
devices during fuzzing. Such faults often trigger a reboot of the device which
is a known sequence of actions resulting in characteristic power traces. In an
additional preprocessing step prior to the SCA calculations a machine learning
based classifier could detect reboot sequences. This information could then be
sent to the fuzzing tool.

5 Conclusion

In this paper we combine the two yet unlinked but well studied research fields
of fuzzing and side-channel analysis to enable white-box fuzzing of software on
embedded devices. With the results we gained from our proof of concept we show
that the power side-channel provides sufficient information for a feedback-driven
fuzzing loop.

Side-channel aware fuzzing is a threefold concept in which we ultimately
assign scores to fuzzing inputs. The scores are proportional to the code coverage
during the processing of the individual inputs. We use the number of basic block

276 P. Sperl and K. Böttinger

transitions to assess the code coverage and calculate the scores. In the machine
learning based feature extraction approach we analyze the power consumption
of the targeted embedded device. With the extracted features we discover the
time when the device executes branch instructions which are the borders between
basic blocks. Furthermore, we reconstruct the jump distances of the branches. In
addition to that, we calculate fingerprints of the trace segments showing the basic
blocks. We secondly conduct a control flow reconstruction using the extracted
features. By evaluating either the branch distances or fingerprints of the trace
parts between the branches, we are able to determine if we triggered a new basic
block transition. In the final score calculation, we use the control flow of the
software to calculate the score of the inputs sent to the target device.

We carried out the proof of concept on a state-of-the-art ARM Cortex-M4
microcontroller. The structure of our synthetic test code allows calculation of the
code coverage triggered by an input so that future work may employ it as a base
line. Using this test code and an implementation of our concept, we are able
to see a strong correlation between our calculated scores and the theoretical
scores. The maximal correlation coefficient we achieved is 0.95. Additionally
we correctly estimated the number of basic block transitions in a light-weight
AES implementation using our framework. This states a significant step towards
white-box fuzzing for vulnerability detection on embedded devices.

References

1. Alimi, V., Vernois, S., Rosenberger, C.: Analysis of embedded applications by evo-
lutionary fuzzing. In: 2014 International Conference on High Performance Com-
puting Simulation (HPCS), pp. 551–557, July 2014

2. Arm Holdings: Cortex-M4 Technical Reference Manual. http://infocenter.arm.
com/help/topic/com.arm.doc.ddi0439b/DDI0439B cortex m4 r0p0 trm.pdf

3. Cadar, C., Dunbar, D., Engler, D.: KLEE: unassisted and automatic genera-
tion of high-coverage tests for complex systems programs. In: Proceedings of
the 8th USENIX Conference on Operating Systems Design and Implementation,
OSDI 2008, pp. 209–224. USENIX Association, Berkeley (2008). http://dl.acm.
org/citation.cfm?id=1855741.1855756

4. Callan, R., Behrang, F., Zajic, A., Prvulovic, M., Orso, A.: Zero-overhead
profiling via EM emanations. In: Proceedings of the 25th International Sym-
posium on Software Testing and Analysis, SSTA 2016, pp. 401–412. ACM,
New York (2016). https://doi.org/10.1145/2931037.2931065, http://doi.acm.org/
10.1145/2931037.2931065

5. Corteggiani, N., Camurati, G., Francillon, A.: Inception: system-wide security
testing of real-world embedded systems software. In: 27th USENIX Security
Symposium (USENIX Security 2018), pp. 309–326. USENIX Association, Balti-
more (2018). https://www.usenix.org/conference/usenixsecurity18/presentation/
corteggiani

6. Davidson, D., Moench, B., Ristenpart, T., Jha, S.: FIE on firmware: finding
vulnerabilities in embedded systems using symbolic execution. In: Presented as
part of the 22nd USENIX Security Symposium (USENIX Security 2013), pp.
463–478. USENIX, Washington, D.C. (2013). https://www.usenix.org/conference/
usenixsecurity13/technical-sessions/paper/davidson

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0439b/DDI0439B_cortex_m4_r0p0_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0439b/DDI0439B_cortex_m4_r0p0_trm.pdf
http://dl.acm.org/citation.cfm?id=1855741.1855756
http://dl.acm.org/citation.cfm?id=1855741.1855756
https://doi.org/10.1145/2931037.2931065
http://doi.acm.org/10.1145/2931037.2931065
http://doi.acm.org/10.1145/2931037.2931065
https://www.usenix.org/conference/usenixsecurity18/presentation/corteggiani
https://www.usenix.org/conference/usenixsecurity18/presentation/corteggiani
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/davidson
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/davidson

Side-Channel Aware Fuzzing 277

7. Dolan-Gavitt, B., et al.: LAVA: large-scale automated vulnerability addition. In:
IEEE Symposium on Security and Privacy, pp. 110–121. IEEE Computer Society
(2016)

8. Godefroid, P., Levin, M.Y., Molnar, D.: Automated whitebox fuzz testing. In:
Network and Distributed System Security (NDSS) Symposium, NDSS 2008 (2008)

9. Han, Y., Etigowni, S., Liu, H., Zonouz, S., Petropulu, A.: Watch me, but don’t
touch me! contactless control flow monitoring via electromagnetic emanations. In:
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communi-
cations Security, pp. 1095–1108. ACM (2017)

10. Hennessy, J.L., Patterson, D.A.: Computer Architecture: A Quantitative App-
roach, 5th edn. Morgan Kaufmann Publishers Inc., San Francisco (2011)

11. Howard, M., Lipner, S.: The Security Development Lifecycle. Microsoft Press, Red-
mond (2006)

12. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

13. Koscher, K., et al.: Experimental security analysis of a modern automobile. In:
Proceedings of the 2010 IEEE Symposium on Security and Privacy, SP 2010, pp.
447–462. IEEE Computer Society, Washington, DC (2010). https://doi.org/10.
1109/SP.2010.34

14. Lee, H., Choi, K., Chung, K., Kim, J., Yim, K.: Fuzzing CAN packets into auto-
mobiles. In: 2015 IEEE 29th International Conference on Advanced Information
Networking and Applications, pp. 817–821, March 2015

15. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards (Advances in Information Security). Springer, Heidelberg (2007).
https://doi.org/10.1007/978-0-387-38162-6

16. Matthews, B.: Comparison of the predicted and observed secondary structure of T4
phage lysozyme. Biochim. Biophys. Acta (BBA) Protein Struct. 405(2), 442–451
(1975)

17. Msgna, M., Markantonakis, K., Mayes, K.: Precise instruction-level side channel
profiling of embedded processors. In: Huang, X., Zhou, J. (eds.) ISPEC 2014.
LNCS, vol. 8434, pp. 129–143. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-06320-1 11

18. Muench, M., Stijohann, J., Kargl, F., Francillon, A., Balzarotti, D.: What you
corrupt is not what you crash: challenges in fuzzing embedded devices. In: Network
and Distributed System Security (NDSS) Symposium, NDSS 2018, February 2018

19. National Institute of Standards and Technology: Advanced encryption standard.
NIST FIPS PUB 197 (2001)

20. Papp, D., Ma, Z., Buttyan, L.: Embedded systems security: threats, vulnerabilities,
and attack taxonomy. In: 2015 13th Annual Conference on Privacy, Security and
Trust (PST), pp. 145–152, July 2015

21. Powers, D.: Evaluation: From Precision, Recall and F-Factor to ROC, Informed-
ness, Markedness & Correlation (2011)

22. Shannon, C.E.: Communication in the presence of noise. Proc. IRE 37(1), 10–21
(1949)

23. STMicroelectronics: STM32F417xx Datasheet. https://www.st.com/resource/en/
datasheet/dm00035129.pdf

24. Strobel, D., Bache, F., Oswald, D., Schellenberg, F., Paar, C.: SCANDALee: a side-
ChANnel-based DisAssembLer using local electromagnetic emanations. In: 2015
Design, Automation Test in Europe Conference Exhibition (DATE), pp. 139–144,
March 2015

https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1109/SP.2010.34
https://doi.org/10.1109/SP.2010.34
https://doi.org/10.1007/978-0-387-38162-6
https://doi.org/10.1007/978-3-319-06320-1_11
https://doi.org/10.1007/978-3-319-06320-1_11
https://www.st.com/resource/en/datasheet/dm00035129.pdf
https://www.st.com/resource/en/datasheet/dm00035129.pdf

278 P. Sperl and K. Böttinger

25. Van Aubel, P., Papagiannopoulos, K., Chmielewski, �L., Doerr, C.: Side-channel
based intrusion detection for industrial control systems. In: D’Agostino, G., Scala,
A. (eds.) Critical Information Infrastructures Security, pp. 207–224. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-99843-5 19

26. Zaddach, J., Bruno, L., Francillon, A., Balzarotti, D.: AVATAR: a framework
to support dynamic security analysis of embedded systems’ firmwares. In: Net-
work and Distributed System Security Symposium, San Diego, USA, 23–26 Febru-
ary 2014, NDSS 2014, February 2014. https://doi.org/10.14722/ndss.2014.23229,
http://www.eurecom.fr/publication/4158

27. Zalewski, M.: American Fuzzy Lop. http://lcamtuf.coredump.cx/afl/

https://doi.org/10.1007/978-3-319-99843-5_19
https://doi.org/10.14722/ndss.2014.23229
http://www.eurecom.fr/publication/4158
http://lcamtuf.coredump.cx/afl/

NetSpectre: Read Arbitrary Memory
over Network

Michael Schwarz1(B), Martin Schwarzl1, Moritz Lipp1, Jon Masters2,
and Daniel Gruss1

1 Graz University of Technology, Graz, Austria
michael.schwarz@iaik.tugraz.at
2 Red Hat, Cambridge, MA, USA

Abstract. All Spectre attacks so far required local code execution. We
present the first fully remote Spectre attack. For this purpose, we demon-
strate the first access-driven remote Evict+Reload cache attack over the
network, leaking 15 bits per hour. We present a novel high-performance
AVX-based covert channel that we use in our cache-free Spectre attack.
We show that in particular remote Spectre attacks perform significantly
better with the AVX-based covert channel, leaking 60 bits per hour from
the target system. We demonstrate practical NetSpectre attacks on the
Google cloud, remotely leaking data and remotely breaking ASLR.

1 Introduction

Over the past 20 years, software-based microarchitectural attacks have
evolved from theoretical attacks [36] on implementations of cryptographic
algorithms [49], to more generic practical attacks [25,60], and recently to high
potential threats [35,38,47,55,58] breaking the fundamental memory and process
isolation. Spectre [35] is a microarchitectural attack, tricking another program
into speculatively executing an instruction sequence which leaves microarchitec-
tural side effects. Except for SMoTherSpectre [10], all Spectre attacks demon-
strated so far [12] exploit timing differences caused by the pollution of data
caches.

By manipulating the branch prediction, Spectre tricks a process into per-
forming a sequence of memory accesses which leak secrets from chosen virtual
memory locations to the attacker. Spectre attacks have so far been demonstrated
in JavaScript [35] and native code [14,27,35,37,41,59], but it is likely that any
environment allowing sufficiently accurate timing measurements and some form
of code execution enables these attacks. Attacks on Intel SGX enclaves showed
that enclaves are also vulnerable to Spectre attacks [14]. However, there are
many devices which never run any attacker-controlled code, i.e., no JavaScript,
no native code, and no other form of code execution on the target system. Until
now, these systems were believed to be safe against such attacks. In fact, while
some vendors discuss remote targets [8,43] others are convinced that these sys-
tems are still safe and recommend to not take any action on these devices [32].
c© Springer Nature Switzerland AG 2019
K. Sako et al. (Eds.): ESORICS 2019, LNCS 11735, pp. 279–299, 2019.
https://doi.org/10.1007/978-3-030-29959-0_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29959-0_14&domain=pdf
https://doi.org/10.1007/978-3-030-29959-0_14

280 M. Schwarz et al.

In this paper, we present NetSpectre, a new attack based on Spectre, requir-
ing no attacker-controlled code on the target device, thus affecting billions of
devices. Similar to a local Spectre attack, our remote attack requires the pres-
ence of a Spectre gadget in the code of the target. We show that systems con-
taining the required Spectre gadgets in an exposed network interface or API
can be attacked with our generic remote Spectre attack, allowing to read arbi-
trary memory over the network. The attacker only sends a series of requests and
measures the response time to leak a secret from the victim.

We show that memory access latency, in general, is reflected in the latency
of network requests. Hence, we demonstrate that it is possible for an attacker to
distinguish cache hits and misses on specific cache lines remotely, by measuring
and averaging over a larger number of measurements (law of large numbers).
Based on this, we implemented the first access-driven remote cache attack, a
remote variant of Evict+Reload called Thrash+Reload. We facilitate this tech-
nique to retrofit existing Spectre attacks to a network-based scenario and leak
15 bits per hour from a vulnerable target system.

By using a novel side channel based on the execution time of AVX2 instruc-
tions, we demonstrate the first Spectre attack which does not rely on a cache covert
channel. Our AVX-based covert channel achieves a native code performance of 125
bytes per second at an error rate of 0.58%. This covert channel achieves a higher
performance in our NetSpectre attack than the cache covert channel. As cache
eviction is not necessary anymore, we increase the speed to leaking 60 bits per
hour from the target system in a local area network. In the Google cloud, we leak
around 3 bits per hour from another virtual machine (VM).

We demonstrate that using previously ignored gadgets allows breaking
address-space layout randomization in a remote attack. Address-space layout
randomization (ASLR) is a defense mechanism deployed on most systems today,
randomizing virtually all addresses. An attacker with local code execution can
easily bypass ASLR since ASLR mostly aims at defending against remote attacks
but not local attacks. Hence, many weaker gadgets for Spectre attacks were
ignored so far, since they do not allow leaking actual data, but only address
information. However, in the remote attack scenario weaker gadgets are still
very powerful.

Spectre gadgets can be more versatile than anticipated in previous work.
This not only becomes apparent with the weaker gadgets we use in our remote
ASLR break but even more so with the value-thresholding technique we propose.
Value-thresholding leaks bit-by-bit by through comparisons, by using a divide-
and-conquer approach similar to a binary search.

Contributions. The contributions of this work are:

1. We present the first access-driven remote cache attack (Evict+Reload) and
the first remote Spectre attack.

2. We demonstrate the first Spectre attack which does not use the cache but a
new and fast AVX-based covert channel.

3. We use simpler Spectre gadgets in remote ASLR breaks.

NetSpectre: Read Arbitrary Memory over Network 281

Outline. Section 2 provides background. Section 3 overviews NetSpectre.
Section 4 presents new remote covert channels. Section 5 details our attack.
Section 6 evaluates the performance of NetSpectre. We conclude in Sect. 7.

2 Background

Modern CPUs have multiple execution units operating in parallel and precom-
puting results. To retain the architecturally defined execution order, a reorder
buffer stores results until they are ready to be retired (made visible on the
architectural level) in the order defined by the instruction stream. To keep pre-
computing, predictions are often necessary using e.g., on branch prediction. To
optimize the prediction quality, modern CPUs incorporate several branch pre-
diction mechanisms. If an interrupt occurs or a misprediction is unrolled, any
precomputed results are architecturally discarded, however, the microarchitec-
tural state is not reverted. Executed instructions that are not retired are called
transient instructions [12,35,38].

Microarchitectural side-channel attacks exploit different microarchitectural
elements. They were first explored for attacks on cryptographic algorithms
[36,49,60] but today are generic attack techniques for a wide range of attack
targets. Cache attacks exploit timing differences introduced by small in-CPU
memory buffers. Different cache attack techniques have been proposed in the
past, including Prime+Probe [49,52], and Flush+Reload [60]. In a covert chan-
nel, the attacker controls both, the part that induces the side effect, and the
part that measures the side effect. Both Prime+Probe and Flush+Reload have
been used in high-performance covert channels [24,39,45].

Meltdown [38] and Spectre [35] use covert channels to transmit data from the
transient execution to a persistent state. Meltdown exploits vulnerable deferred
permission checks. Spectre [35] exploits speculative execution in general. Hence,
they do not rely on any vulnerability, but solely on optimizations. Through
manipulation of the branch prediction mechanisms, an attacker lures a victim
process into executing attacker-chosen code gadgets. This enables the attacker
to establish a covert channel from the speculative execution in the victim process
to a receiver process under attacker control.

SIMD (single instruction multiple data) instructions enable parallel operation
on multiple data values. They are available as instruction set extensions on
modern CPUs, e.g., Intel MMX [28–30,51], AMD 3DNow! [4,48], and ARM VFP
and NEON [3,6,7]. On Intel, some of the SIMD instructions are processed by a
dedicated SIMD unit within the CPU core. However, to save energy, the SIMD
unit is turned off when not used. Consequently, to execute such instructions,
the SIMD unit is first powered up, introducing a small latency on the first
few instructions [18]. Liu [40] noted that some SIMD instructions can be used
to improve bus-contention covert channels. However, so far, SIMD instructions
have not yet been used for pure SIMD covert channels or side-channel attacks.

One security mechanism present in modern operating systems is address-
space layout randomization (ASLR) [50]. It randomizes the locations of objects

282 M. Schwarz et al.

or regions in memory, e.g., heap objects and stacks, so that an attacker can-
not predict correct addresses. Naturally, this is a probabilistic approach, but
it provides a significant gain in security in practice. ASLR especially aims at
mitigating control-flow-hijacking attacks, but it also makes other remote attacks
difficult where the attacker has to provide a specific address.

3 Attack Overview

The building blocks of a NetSpectre attack are two NetSpectre gadgets : a leak
gadget , and a transmit gadget . We discuss the roles of these gadgets, which
allow an attacker to perform a Spectre attack without any local code execution
or access, based on their type (leak or transmit) and the microarchitectural
element they use (e.g., cache).

Spectre attacks induce a victim to speculatively perform operations that do
not occur in strict in-order processing of the program’s instructions, and which
leak a victim’s confidential information via a covert channel to an attacker. Mul-
tiple Spectre variants are exploiting different prediction mechanisms. Spectre-
PHT (also known as Variant 1) [34,35] mistrains a conditional branch, e.g.,
a bounds check. Spectre-BTB (also known as Variant 2) [35] exploits mispre-
dictions of indirect calls, Spectre-STL (also known as Variant 4) speculatively
bypasses stores [27], and Spectre-RSB misuses the return stack buffer [37,41].
While attack works with any Spectre variant, we focus on Spectre-PHT as it is
widespread, illustrative, and difficult to fix in hardware [12,31].

Before the value of a branch condition is known (resolved), the CPU predicts
the most likely outcome and then continues with the corresponding code path.
There are several reasons why the result of the condition is not known at the time
of evaluation, e.g., a cache miss on parts of the condition, complex dependencies
which are not yet satisfied, or a bottleneck in a required execution unit. By
hiding these latencies, speculative execution leads to faster overall execution if
the branch condition was predicted correctly. Intermediate results of a wrongly
predicted condition are simply not committed to the architectural state, and the
effective performance is similar to that which would have occurred had the CPU
never performed any speculative execution. However, any modifications of the
microarchitectural state that occurred during speculative execution, such as the
cache state, are not reverted.

As our NetSpectre attack is mounted over the network, the victim device
requires a network interface an attacker can reach. While this need not necessar-
ily be Ethernet, a wireless or cellular link are also possible. Moreover, the target
of the attack could also be baseband firmware running within a phone [5,8]. The
attacker must be able to send a large number of network packets to the victim
but not necessarily within a short time frame. Furthermore, the content of the
packets in our attack is not required to be attacker-controlled.

In contrast to local Spectre attacks, our NetSpectre attack is not split into
two phases. Instead, the attacker constantly performs operations to mistrain
the CPU, which will make it constantly run into exploitably erroneous specu-
lative execution. NetSpectre does not mistrain across process boundaries, but

NetSpectre: Read Arbitrary Memory over Network 283

if (x < length)

if(array[x] > y)

flag &= true

Listing 1.1. Excerpt of a function executed when a network packet is processed.

instead trains in-place by passing in-bounds and out-of-bounds values alternat-
ingly to the exposed interface. For our NetSpectre attack, the attacker requires
two Spectre gadgets, which are executed if a network packet is received: a leak
gadget , and a transmit gadget . The leak gadget accesses an array offset at an
attacker-controlled index, compares it with a user provided value, and changes
some microarchitectural state depending on the result of the comparison. The
transmit gadget performs an arbitrary operation where the runtime depends on
the microarchitectural state modified by the leak gadget . Hidden in a significant
amount of noise, this timing difference can be observed in the network packet
response time. Spectre gadgets can be found in modern network drivers, network
stacks, and network service implementations.

To illustrate the working principle of our NetSpectre attack, we consider a
basic example similar to the original Spectre-PHT example [35] in an adapted
scenario: the code in Listing 1.1 is part of a function that is executed when
a network packet is received. Note that this just one variant to enable bit-wise
leakage, there is an abundance of other gadgets that leak a single bit. We assume
that x is attacker-controlled, e.g., a field in a packet header or an index for some
API. This code forms our leak gadget .

The code fragment begins with a bound check on x, a best practice for secure
software. The attacker can remotely exploit speculative execution as follows:

1. The attacker sends multiple network packets with the value of x always in
bounds. This trains the branch predictor, increasing the chance that the out-
come of the comparison is predicted as true.

2. A packet where x is out of bounds is sent, such that array[x] is a secret
value in the target’s memory. However, the branch predictor still assumes the
bounds check to be true, and the memory access is speculatively executed.

3. If the attacker-controlled value y is less than the secret value array[x], the
flag variable is accessed.

While changes are not committed architecturally after the condition is
resolved, microarchitectural state changes are not reverted. Thus, in Listing 1.1,
the cache state of flag changes although the value of flag does not change.
Only if the attacker guessed y such that it is less than array[x], flag is cached.
Note that the operation on flag is not relevant as long as flag is accessed.

The transmit gadget is much simpler, as it only has to use flag in an arbitrary
operation. Consequently, the execution time of the gadget will depend on the
cache state of flag. In the most simple case, the transmit gadget simply returns
the value of flag, which is set by the leak gadget . As the architectural state
of flag (i.e., its value) does not change for out-of-bounds x, it does not leak
secret information. However, the response time of the transmit gadget depends

284 M. Schwarz et al.

on the microarchitectural state of flag (i.e., whether it is cached), which leaks
one secret bit of information.

To complete the attack, the attacker performs a binary search over the value
range. Each tested value leaks one secret bit. As the difference in the response
time is in the range of nanoseconds, the attacker needs to average over a large
number of measurements to obtain the secret value with acceptable confidence.
Indeed, our experiments show that the difference in the microarchitectural state
becomes visible when performing a large number of measurements. Hence, an
attacker can first measure the two corner cases (i.e., cached and uncached) and
afterward, to extract a real secret bit, perform as many measurements as neces-
sary to distinguish which case it is with confidence, e.g., using a threshold or a
Bayes classifier.

0 1 0 1 0 0 0
bitstream (out of bounds)

Leak Gadget

μ-arch. Ele-
ment

Transmit Gadget

lea
k encode

in
de
x

Victim

Network interface
Δ = leaked bitbit index

Fig. 1. The interaction of the NetSpectre gadget types.

We refer to the two gadgets, the leak gadget and the transmit gadget , as Net-
Spectre gadgets . Running a NetSpectre gadget may require sending more than one
packet. Furthermore, the leak gadget and transmit gadget may be reachable via
different independent interfaces, i.e., both interfaces must be attacker-accessible.
Figure 1 illustrates the two gadgets types that are detailed in Sect. 3.2.

From the listings illustrating gadgets, it is clear that such code snippets
exist in real-world code (cf. Listing 1.3). However, as they can potentially be
spread across many instructions and might not be visible in the source code,
identifying such gadgets is currently an open problem which is also discussed in
other Spectre papers [34,35,37,41]. Moreover, the reachability of a gadget with
specific constraints is an orthogonal problem and out of scope for this paper.
As a consequence, we follow best practices by introducing Spectre gadgets into
software run by the victim to evaluate the attack in the same manner as other
Spectre papers [34,37,41]. Suitable gadgets can be located in real-world software
applications through static analysis of source code or through binary inspection.

3.1 Gadget Location

The set of attack targets depends on the location of the NetSpectre gadgets . As
illustrated in Fig. 2, on a high level, there are two different gadget locations: in
the user space or in the kernel space. However, they can also be found in software
running below, e.g., hypervisor, baseband or firmware.

NetSpectre: Read Arbitrary Memory over Network 285

Kernel
Space

User
Space

Memory (physical)

Kernel Gadget
Network interface

User Gadget

A
pp

leak application memory leak (all) system memory

Fig. 2. Depending on the gadget location, the attacker can access memory of the
application or the entire kernel, typically including all system memory.

Attacks on the Kernel. The network driver is usually implemented in the
kernel of the operating system, either as a fixed component or as a kernel mod-
ule. In either case, kernel code is executed when a network packet is received.
If any kernel code processed during the handling of the network packet con-
tains a NetSpectre gadget , i.e., an attacker-controlled part of the packet is used
as an index, comparing the array value with a second user-controlled value, a
NetSpectre attack is possible.

An attack on the kernel code is particularly powerful, as the kernel does
not only have the kernel memory mapped but typically also the entire physi-
cal memory. On Linux and macOS, the physical memory can be accessed via
the direct-physical map, i.e., every physical memory location is accessible via
a predefined virtual address in the kernel address space. Windows does not use
a direct-physical map but maintains memory pools, which typically also map a
large fraction of the physical memory. Thus, a NetSpectre attack using a Net-
Spectre gadget in the kernel can in general leak arbitrary values from memory.

Attacks on the User Space. Usually, network packets are not only handled
by the kernel but are passed on to a user-space application which processes the
content of the packet. Hence, not only the kernel but also user-space applications
can contain NetSpectre gadgets . In fact, all code paths that are executed when a
network packet arrives are candidates to look for NetSpectre gadgets . This does
include code both on the server side and the client side.

An advantage in attacking user-space applications is the significantly larger
attack surface, as many applications process network packets. Especially on
servers, there are an abundance of services processing user-controlled network
packets, e.g., web servers, FTP servers, or SSH daemons. Moreover, a remote
server can also attack a client machine, e.g., via web sockets, or SSH connections.
In contrast to attacks on the kernel space, which in general can leak any data
stored in the system memory, attacks on a user-space application can only leak
secrets of the attacked application.

Such application-specific secrets include secrets of the application itself, e.g.,
credentials and keys. Thus, a NetSpectre attack using a NetSpectre gadget in an
application can access arbitrary data processed by the application. Furthermore,
if the victim is a multi-user application, e.g., a web server, it also contains the

286 M. Schwarz et al.

secrets of multiple users. This is especially interesting for popular websites with
many users.

3.2 Gadget Type

We now discuss the different NetSpectre gadgets ; the leak gadget to encode a
secret bit into a microarchitectural state, and the transmit gadget to transfer
the microarchitectural state to a remote attacker.

Leak Gadget. A leak gadget leaks secret data by changing a microarchitec-
tural state depending on the value of a memory location that is not directly
accessible to the attacker. The state changes on the victim device, not directly
observable over the network. A NetSpectre leak gadget only leaks a single bit.
Single-bit gadgets are the most versatile, as storing a one-bit (binary) state can
be accomplished with many microarchitectural states, as only two cases have to
be distinguished (cf. Sect. 4). Thus, we focus on single-bit leak gadgets in this
paper as they can be as simple as shown in Listing 1.1. In this example, a value
(flag) is cached if the value at the attacker-chosen location is larger than the
attacker-chosen value y. The attacker can use this gadget to leak secret bits into
the microarchitectural state.

Transmit Gadget. In contrast to Spectre, NetSpectre requires an additional
gadget to transmit the leaked information to the attacker. As the attacker does
not control any code on the victim device, the recovery process, i.e., observing the
microarchitectural state, cannot be implemented by the attacker. Furthermore,
the architectural state can usually not be accessed via the network and, thus, it
would not even help if the gadget converts the state.

From the attacker’s perspective, the microarchitectural state must become
visible over the network. This may not only happen directly via the content of a
network packet but also via side effects. Indeed, the microarchitectural state will
in some cases become visible, e.g., in the form of the response time. We refer to
a code fragment which exposes the microarchitectural state to a network-based
attacker and which can be triggered by an attacker, as a transmit gadget . Natu-
rally, the transmit gadget has to be located on the victim device. With a transmit
gadget , the microarchitectural state measurement happens on a remote machine
but exposes the microarchitectural state over a network-reachable interface.

In the original Spectre attack, Flush+Reload is used to transfer the microar-
chitectural state to an architectural state, which is then read by the attacker to
leak the secret. The ideal case would be if such a Flush+Reload gadget is avail-
able on the victim, and the architectural state can be observed over the network.
However, as it is unlikely to locate an exploitable Flush+Reload gadget on the
victim and access the architectural state, regular Spectre gadgets cannot simply
be retrofitted to mount a NetSpectre attack.

In the most direct case, the microarchitectural state becomes visible for a
remote attacker, through the latency of a network packet. A simple transmit

NetSpectre: Read Arbitrary Memory over Network 287

gadget for the leak gadget shown in Listing 1.1 just accesses the variable flag.
The response time of the network packet depends on the cache state of the
variable, i.e., if the variable was accessed, the response takes less time. Generally,
an attacker can observe changes in the microarchitectural state if such differences
are measurable via the network.

4 Remote Microarchitectural Covert Channels

A cornerstone of our NetSpectre attack is building a microarchitectural covert
channel that exposes information to a remote attacker (cf. Sect. 3). Since in our
scenario the attacker cannot run any code on the target system, we use a trans-
mit gadget whose execution can be triggered by the attacker. In this section, we
present the first remote access-driven cache attack, Thrash+Reload, a variant
of Evict+Reload. We show that with Thrash+Reload, an attacker can build a
covert channel from the speculative execution on the target device to a remote
receiving end on the attacker’s machine. Furthermore, we also present a previ-
ously unknown microarchitectural covert channel based on AVX2 instructions.
We show that this covert channel can be used in NetSpectre attacks, yielding
even higher transmission rates than the remote cache covert channel.

16,000 17,000 18,000 19,000 20,000 21,000
0

5,000

10,000

Latency [cycles]

C
as
es Cached

Uncached

Fig. 3. Measuring the response time of a transmit gadget accessing a certain variable.
Only by performing a large number of measurements, the difference in the response
timings depending on the cache state becomes visible. The distribution’s average values
are shown as dashed lines.

4.1 Remote Cache Covert Channel

Kocher et al. [35] use the cache as the microarchitectural element to encode
the leaked data. This allows using well-known cache side-channel attacks, such
as Flush+Reload [60] or Prime+Probe [49,52] to deduce the microarchitectural
state and thus the encoded data. However, not only caches keep microarchitec-
tural states which can be used for covert channels [11,16,19,53,56].

Mounting a Spectre attack by using the cache has three main advantages:
there are powerful methods to make the cache state visible, many operations
modify the cache state and are thus visible in the cache, and the timing difference
between a cache hit and cache miss is comparably large. Flush+Reload is usually
considered the most fine-grained and accurate cache attack, with almost zero

288 M. Schwarz et al.

noise [19,24,60]. If shared memory is not available, Prime+Probe is considered
the next best choice [45,57]. Consequently, all Spectre attacks published so far
use either Flush+Reload [14,35] or Prime+Probe [59].

For the first NetSpectre attack, we need to adapt local cache covert channel
techniques. Instead of measuring the memory access time directly, we measure
the response time of a network request which uses the corresponding memory
location. Hence, the response time is influenced by the cache state of the variable
used for the attack. The difference in the response time due to the cache state
is in the range of nanoseconds since memory accesses are comparably fast.

The network latency is subject to many factors, leading to noisy results.
However, the law of large numbers applies: no matter how much statistically
independent noise is included, averaging over a large number reveals the signal
[1,2,9,33,61]. Hence, an attacker can still obtain the secret value with confidence.

Figure 3 shows that the difference in the microarchitectural state is indeed
visible when performing a large number of measurements. The average values
of the two distributions are illustrated as dashed vertical lines. An attacker can
either use a classifier on the measured values, or first measure the two corner
cases (cached and uncached) to get a threshold for the real measurements.

100 200 300 400 500 600 700 800 900 1,000

2
4
6

File size [KB]

P
ro
b.

C
ac
he

d
[%

]

Fig. 4. The probability that a specific variable is evicted from the victim’s last-level
cache by downloading a file from the victim (Intel i5-6200U). The larger the downloaded
file, the higher the probability that the variable is evicted.

Still, as the measurement destroys the cache state, i.e., the variable is always
cached after the first measurement, the attacker requires a method to evict (or
flush) the variable from the cache. As it is unlikely that the victim provides
an interface to flush or evict a variable directly, the attacker cannot use well-
known cache attacks but has to resort to more crude methods. Instead of the
targeted eviction in Evict+Reload, we simply evict the entire last-level cache
by thrashing the cache, similar to Maurice et al. [44]. Hence, we call this tech-
nique Thrash+Reload. To thrash the entire cache without code execution, we use
a network-accessible interface. In the simplest form, any packet sent from the
victim to the attacker, e.g., a file download, can evict a variable from the cache.

Figure 4 shows the probability of evicting a specific variable (i.e., the flag
variable) from the last-level cache by requesting a file from the victim. The victim
is running on an Intel i5-6200U with 3 MB last-level cache. Downloading a 590
kilobytes file evicts our variable with a probability of ≥99%.

NetSpectre: Read Arbitrary Memory over Network 289

With a mechanism to distinguish hits and misses, and a mechanism to evict
the cache, we have all building blocks required for a cache side-channel attack or a
cache covert channel. Thrash+Reload combines both mechanisms over a network
interface, forming the first remote cache covert channel. In our experiments on a
local area network, we achieve a transmission rate of up to 4 bit per minute, with
an error rate of <0.1%. This is significantly slower than cache covert channels in
a local native environment, e.g., the most similar attack (Evict+Reload) achieves
a performance of 13.6 kb/s with an error rate of 3.79%.

We use our remote cache covert channel for remote Spectre attacks. However,
remote cache covert channels and especially remote cache side-channel attacks
are an interesting object of study. Many attacks that were presented previously
would be devastating if mounted over a network interface [22,25,60].

4.2 Remote AVX-Based Covert Channel

To demonstrate the first Spectre variant which does not rely on the cache as the
microarchitectural element, we require a covert channel which allows transmit-
ting information from speculative execution to an architectural state. Thus, we
build a novel covert channel based on timing differences in AVX2 instructions.
This covert channel has a low error rate and high performance, and it allows for
a significant performance improvement in our NetSpectre attack as compared to
the remote cache covert channel.

150 200 250 300 350 400 450 500 550 600 650
0

10,000
20,000
30,000

Latency [cycles]

C
as
es Powered down

Warmed up

Fig. 5. If the AVX2 unit is inactive (powered down), executing an AVX2 instruction
takes on average 366 cycles longer than on an active AVX2 unit (Intel i5-6200U).
Average values shown as dashed lines.

To save power, the CPU can power down the upper half of the AVX2 unit
which is used to perform operations on 256-bit registers. The upper half of the
unit is powered up as soon as an instruction is executed which uses 256-bit
values [46]. If it is not used for more than 1 ms, it is powered down [17].

Performing a 256-bit operation when the upper half is powered down incurs
a significant performance penalty. For example, we measured the execution
(including measurement overhead) of a simple bit-wise AND of two 256-bit reg-
isters (VPAND) on an Intel i5-6200U (cf. Fig. 5). If the upper half is active, the
operation takes on average 210 cycles, whereas if the upper half is powered down
(i.e., it is inactive), the operation takes on average 576 cycles. The difference of
366 cycles is even larger than the difference between cache hits and misses,

290 M. Schwarz et al.

which is only 160 cycles on the same system. Hence, the timing difference in
AVX2 instructions is better for remote microarchitectural attacks.

Similarly to the cache, reading the latency of an AVX2 instruction also
destroys the encoded information. Therefore, an attacker requires a method to
reset the AVX2 unit, i.e., power down the upper half. In contrast to the cache,
this is easier, as the upper half of the AVX2 unit is automatically powered down
after 1 ms of inactivity. Thus, an attacker only has to wait at least 1 ms.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
100

200

300

Wait time [ms]

L
at
en

cy

Fig. 6. The number of cycles it takes to execute the VPAND instruction (with measure-
ment overhead) after not using the AVX2 unit. After 0.5 ms, the upper half of the AVX2
unit powers down, which increases the latency for subsequent AVX2 instructions. After
1 ms, it is fully powered down, and we see the maximum latency for subsequent AVX2
instructions.

if (x < length)

if(array[x] > y)

_mm256_instruction();

Listing 1.2. AVX2 NetSpectre gadget which encodes one bit of information.

Figure 6 shows the execution time of an AVX2 instruction (specifically VPAND)
after inactivity of the AVX2 unit. If the inactivity is shorter than 0.5 ms, i.e., the
last AVX2 instruction was executed not more than 0.5 ms ago, there is no perfor-
mance penalty when executing an AVX2 instruction which uses the upper half
of the AVX2 unit. After that, the AVX2 unit begins powering down, increasing
the execution time for any subsequent AVX2 instruction, as the unit has to be
powered up again while emulating AVX2 in the meantime [17]. It is fully pow-
ered down after approximately 1 ms, leading to the highest performance penalty
if any AVX2 instruction is executed in this state.

A leak gadget using AVX2 is similar to a leak gadget using the cache. List-
ing 1.2 shows (pseudo-)code of an AVX2 leak gadget . The mm256 instruction
represents an arbitrary 256-bit AVX2 instruction, e.g., mm256 and si256. If the
referenced element x is larger than the user-controlled value y, the instruction
is executed, and as a consequence, the upper half of the AVX2 unit is powered
on. The power up also happens if the branch-prediction outcome of the bounds
check was incorrect and the AVX2 instruction is accessed speculatively. Note
that there is no data dependency between the AVX2 instruction and the array
lookup. Only the information whether an AVX2 instruction was executed is used
to transmit the secret bit of information through the covert channel.

NetSpectre: Read Arbitrary Memory over Network 291

The transmit gadget is again similar to the transmit gadget for the cache.
Any function that uses an AVX2 instruction, and has thus a measurable runtime
difference observable over the network, can be used as a transmit gadget . Even
the leak gadget shown in Listing 1.2 can act as a transmit gadget . By providing
an in-bounds value for x, the runtime of the function depends on the state of
the upper half of the AVX2 unit. If the upper half of the unit was used before,
i.e., a ‘1’-bit (array[x] > y) was leaked, the function executes faster than if
the upper half was not used before, i.e., a ‘0’-bit (array[x] <= y) was leaked.

With these building blocks, we build the first pure-AVX covert channel and
the first AVX-based remote covert channel. In our experiments in a native local
environment, we achieve a transmission rate of 125 B/s with an error rate of
0.58%. In a local area network, we achieve a transmission rate of 8 B/min, with
an error rate of <0.1%. Since the true capacity of this remote covert channel is
higher than the true capacity of our remote cache covert channel, it yields higher
performance in our NetSpectre attack.

5 Attack Variants

In this section, we first describe an attack to extract secret data via value-
thresholding bit-by-bit from the memory of the target system. We then describe
how to defeat ASLR on the remote machine, paving the way for remote exploita-
tion. We use gadgets based on Spectre-PHT for illustrative purposes, but this
can naturally be done with any Spectre gadget that lies in a code path reached
from handling a remote packet.

5.1 Extracting Data from the Target

With typical NetSpectre gadgets (cf. Sect. 3), the attack consists of 4 steps.
Depending on the gadgets, the leak gadget and transmit gadget can be the same.

1. Mistrain the branch predictor.
2. Reset the state of the microarchitectural element.
3. Leak a bit via value-thresholding to the microarchitectural element.
4. Expose the element state to the network.

In step 1, the attacker mistrains the branch predictor of the victim to run
a Spectre attack by using the leak gadget with valid indices. The valid indices
ensure that the branch predictor learns always to take the branch, i.e., specu-
lating that the condition is true. With no feedback to the attacker, the microar-
chitectural state does not have to be reset or transmitted.

In step 2, the attacker resets the microarchitectural state to enable encoding
leaked bits using a microarchitectural element. This step depends on the used
microarchitectural element, e.g., when using the cache, the attacker downloads
a large file from the victim; for AVX2, the attacker waits for about 1 ms.

In step 3, the attacker exploits Spectre to leak a single bit from the victim. As
the branch predictor is mistrained in step 1, providing an out-of-bounds index to

292 M. Schwarz et al.

the leak gadget will run the in-bounds path and modify the microarchitectural
element, i.e., the bit is encoded in the microarchitectural element.

In step 4, the attacker has to transmit the encoded information via the net-
work. This step corresponds to the second phase of the original Spectre attack.
In contrast to the original Spectre attack, which uses a cache attack, the attacker
uses the transmit gadget for this step as described in Sect. 4. The attacker sends
a network packet which is handled by the transmit gadget and measures the
time from sending the packet until the response arrives. As described in Sect. 4,
this round-trip time depends on the state of the microarchitectural element, and
thus on the leaked bit.

As the network latency varies, the four steps have to be repeated to eliminate
the noise caused by these fluctuations. Typically, the variance in latency follows
a certain distribution depending on multiple factors, e.g., distance, number of
hops, network congestion [13,21,26]. The number of repetitions depends mainly
on the variance in network connection latency. Thus, depending on the latency
distribution, the number of repetitions can be deduced using statistical methods.
In Sect. 6.1, we evaluate this variant and provide empirically determined numbers
for our attack setup.

if (x < array_length)

access(array[x])

Listing 1.3. A NetSpectre gadget which can be used to break ASLR.

5.2 Remotely Breaking ASLR on the Target

If the attacker has no access to bit-leaking NetSpectre gadgets , it is possible to
use a weaker NetSpectre gadget which does not leak the actual data but only
information about the corresponding address. Such gadgets were not considered
harmful for Spectre attacks, which already have local code execution, as ASLR
does not protect against local attacks. However, in a remote scenario, it is very
valuable to break ASLR. If such a NetSpectre gadget is found in a user-space
program, it breaks ASLR for this process.

Listing 1.3 shows a leak gadget which we use to break ASLR in 3 steps:

1. Mistrain the branch predictor.
2. Out-of-bounds access to cache a known memory location.
3. Measure the execution time of a function via network to deduce whether the

out-of-bounds access cached it.

The mistraining step is the same as for any Spectre attack, leading to spec-
ulative out-of-bounds accesses relative to the array. If the attacker provides an
out-of-bounds value for x after mistraining, the array element indexed is spec-
ulatively accessed. Assuming a byte array and an (unsigned) 64-bit index, an
attacker can (speculatively) access any memory location, as the index wraps
around if the base address plus the index is larger than the virtual memory.

NetSpectre: Read Arbitrary Memory over Network 293

If the byte at this memory location is valid and cacheable, the speculative exe-
cution will fetch the corresponding memory location into the cache. Thus, this
gadget allows caching arbitrary memory locations which are valid in the current
virtual memory, i.e., every mapped memory location of the current application.

The attacker uses this gadget to cache a memory location at a known location,
e.g., the vsyscall page which is mapped into every application at the same virtual
address [15]. The attacker measures the execution time of a function accessing
the now cached memory location. If it is faster, the out-of-bounds index actually
cached an address used by this function. From the known address and the index
value, i.e., the relative offset to the known address, the address of the leak gadget
can be calculated.

With an ASLR entropy of 30 b on Linux [42], there are 230 possible offsets
the attacker has to check. Due to the KPTI (formerly KAISER [23]) patches, no
other page close to the vsyscall page is mapped in the user space. Consequently,
in the 230 possible offsets, there is only a single valid, and thus cacheable, offset.
Hence, we can perform a binary search to find the correct offset, i.e., specula-
tively try to load half of the possible offsets into the cache and check a single
time. If the single valid offset was cached, the attacker chose the correct half.
Otherwise, the attacker continues with the other half. This reduces the number
of checks to defeat ASLR to only 30.

Although vsyscall is a legacy feature, we found it to be still enabled on
Ubuntu 17.10 and Debian 9.4, the default operating system for VMs on the
Google Cloud. Moreover, any other function or data can be used instead of
vsyscall if the address is known. If the address of the leak gadget is known, it can
be repeated to de-randomize any other function where its execution time of can
be measured via the network. If the attacker knows a memory page at a fixed
offset in the kernel, the same attack can be run on a NetSpectre gadget in the
kernel to break KASLR.

6 Evaluation

In this section, we evaluate NetSpectre and the performance of our proof-
of-concept implementation. Section 6.1 provides a qualitative evaluation and
Sect. 6.2 a quantitative evaluation of our NetSpectre attacks. For the evalua-
tion, we used laptops (Intel i5-4200M, i5-6200U, i7-8550U), as well as desktop
PCs (Intel i7-6700K, i7-8700K), an unspecified Intel Xeon Skylake in the Google
Cloud Platform, and an ARM A75.

6.1 Leakage

To evaluate NetSpectre on the different devices, we constructed a victim pro-
gram which contains the same leak gadget and transmit gadget on all test plat-
forms (cf. Sect. 3). We leaked known values from the victim to verify that our
attack was successful and to determine how many measurements are necessary.
Except for the cloud setup, all evaluations were done in a local lab environment.

294 M. Schwarz et al.

We used Spectre-PHT for all evaluations. However, other Spectre variants can
be used in the same manner.

Desktop and Laptop Computers. Like other microarchitectural attacks,
NetSpectre requires a large number of measurements to distinguish bits with a
certain confidence (law of large numbers). On a local network, around 100 000
measurements are required to observe a difference clearly.

For our local attack, we had a gigabit connection between victim and
attacker, a typical scenario in local networks and for network connections of
dedicated and virtual servers. We measured a standard deviation of the network
latency of 15.6µs. Applying the three-sigma rule [54], in at least 88.8% cases,
the latency deviates ±46.8µs from the average. This is nearly 3 orders of mag-
nitude larger than the actual timing difference the attacker wants to measure,
explaining the large number of measurements required.

Our proof-of-concept NetSpectre implementation leaks arbitrary bits from
the victim by specifying an out-of-bounds index and comparing it with a user-
provided value. Figure 7 shows the leakage of one byte using our proof-of-concept
implementation. For every bit, we repeated the measurements 1 000 000 times.
Although we only use a näıve threshold on the maximum of the histograms, we
can clearly distinguish ‘0’-bits from ‘1’-bits (array[x] <= y and array[x] > y).
More sophisticated methods, e.g., machine learning approaches, might be able
to reduce the number of measurements further.

ARM Devices. Also in our evaluation on ARM devices, we used a wired
network, as the network-latency varies too much in today’s wireless connections.
The ARM core we tested turned out to have a significantly higher variance in
the network latency. We measured a standard deviation of the network latency
of 128.5µs. Again, with the three-sigma rule, we estimate that at least 88.8% of
the measurements are within ±385.5µs.

Figure 8 shows two leaked bits, a ‘0’- and a ‘1’-bit (array[x] <= y and
array[x] > y), of an ARM Cortex-A75 victim. Even with the higher variance
in latency, thresholding allows separating the maxima of the histograms, i.e.,
the attack works on ARM devices.

array[x] <= 127 array[x] > 63

array[x] > 95 array[x] <= 111

array[x] <= 103 array[x] > 99

array[x] <= 101 array[x] <= 100

Fig. 7. Leaking the byte 100 (01100100 in binary) bit by bit using a NetSpectre attack.
The maximum of the histograms (green circle) can be separated using a simple thresh-
old (red line). If the maximum is left of the threshold, the bit is interpreted as ‘1’,
otherwise as ‘0’. (Color figure online)

NetSpectre: Read Arbitrary Memory over Network 295

2.15 2.2 2.25 2.3 2.35 2.4 2.45

·104

0
1,000
2,000
3,000

Latency [cycles]
C
as
es ‘1’

‘0’

Fig. 8. Histogram of the measurements for a ‘0’-bit and a ‘1’-bit (array[x] <= y and
array[x] > y) on an ARM Cortex A75. Although the times for both cases overlap,
they are clearly distinguishable.

Cloud Instances. For the cloud instance, we tested our proof-of-concept imple-
mentation on the Google Cloud Platform. We created two VMs in the same
region, one as the attacker, one as the victim. For both VMs, we used a default
Ubuntu 16.04.4 LTS as the operating system. The measured standard deviation
of the network latency was 52.3µs. Thus, we estimate that at least 88.8% of the
measurements are in a range of ±156.9µs.

To adapt for the higher variance in network latency, we increased the number
of measurements to 20 000 000 per comparison. Figure 9 shows a (smoothed)
histogram for both a ‘0’-bit and a ‘1’-bit (array[x] <= y and array[x] > y)
on the Google Cloud VMs. Although there is still noise visible, it is possible to
distinguish the two cases and thus perform a binary search to leak bit-by-bit of
the value from the victim cloud VM.

1.5 1.55 1.6 1.65 1.7 1.75

·105

200
400
600
800

Latency [cycles]

C
as
es ‘1’

‘0’

Fig. 9. Histogram of the measurements for the cases array[x] <= y and array[x] > y

on two Google Cloud VMs with 20 000 000 measurements.

6.2 NetSpectre Performance

We evaluate the throughput and error rate of NetSpectre in this section.

Local Network. Attacks on the local network perform best, as the variance
in network latency is significantly smaller than over the internet (cf. Sect. 6.1).
In our setup, we repeat the measurement 1 000 000 times per bit to reliably
leak bytes from the victim. On average, leaking one byte takes 30 min, which
amounts to approximately 4 min per bit. Using the AVX covert channel instead
of the cache reduces the required time to leak an entire byte to only 8 min. On
average, we can break ASLR remotely within 2 h using the cache covert channel.

296 M. Schwarz et al.

We used stress -i 1 -d 1 for the experiments, to simulate a realistic envi-
ronment. Although we expected our attack to work best on a completely idle
server, we did not see any negative effects from the moderate server loads. In
fact, they even slightly improved the performance. One reason for this is that a
higher server load incurs a higher number of memory and cache accesses [1] and
thus facilitates the cache thrashing (cf. Sect. 4), which is the performance bot-
tleneck of our attack. Another reason is that a higher server load might exhaust
execution ports required to calculate the bounds check in the leak gadget, thus
increasing the chance that the CPU has to execute the condition speculatively.

Our NetSpectre attack in local networks is comparably slow. However, in
particular, specialized malware attacks are often active over several months in
local networks. Over such a time frame, the attacker can indeed leak all data of
interest from a target system on the same network.

Cloud Network. We evaluated the performance in the Google cloud using
two VMs. The two VMs have 2 virtual CPUs each, which enabled a 4 Gbit/s
connection [20]. In this setup, we repeat the measurement 20 000 000 times per
bit to get an error-free leakage of bytes. On average, leaking one byte takes 8 h
for the cache covert channel, and 3 h for the AVX covert channel.

Despite the low performance, it shows that remote Spectre attacks are feasible
between independent VMs in the public cloud. As specialized malware attacks
often run for several weeks or months, such an extended time frame is sufficient
to leak sensitive data, e.g., encryption keys or passwords.

Performance Improvements. For all measurements, we used commodity
hardware in off-the-shelf laptops to measure the network-packet response time.
Thus, there is additional latency (i.e., noise) due to the latency of the operat-
ing system and network hardware of the attacker. Measuring the response time
directly on the ethernet (or fiber) connection using dedicated hardware can dras-
tically improve the attack performance. We expect that such a setup can easily
reduce the time by a factor of 2 to 10.

7 Conclusion

In this paper, we presented NetSpectre, the first remote Spectre attack and the
first Spectre attack which does not use a cache covert channel. With a remote
Evict+Reload cache attack over network we can leak 15 bits per hour, with
our new AVX-based covert channel even 60 bits per hour. We demonstrated
NetSpectre on the Google cloud and in local networks, remotely leaking data
and remotely breaking ASLR.

Acknowledgments. We would like to thank our anonymous reviewers for their feed-
back and Anders Fogh, Halvar Flake, Jann Horn, Stefan Mangard, Jo Van Bulck, and
Matt Miller for feedback on an early draft.

NetSpectre: Read Arbitrary Memory over Network 297

This work has been supported by the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement
No 681402).

References

1. Acıiçmez, O., Schindler, W., Koç, Ç.K.: Cache based remote timing attack on the
AES. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 271–286. Springer,
Heidelberg (2006). https://doi.org/10.1007/11967668 18

2. Aly, H., ElGayyar, M.: Attacking AES using Bernstein’s attack on modern pro-
cessors. In: Youssef, A., Nitaj, A., Hassanien, A.E. (eds.) AFRICACRYPT 2013.
LNCS, vol. 7918, pp. 127–139. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-38553-7 7

3. AMD Inc: Realview R© Compilation Tools (2002)
4. AMD Inc: AMD64 Architecture Programmer’s Manual (2017)
5. ARM Limited: CPU CORTEX-R8 (2009). https://www.arm.com/products/

silicon-ip-cpu/cortex-r/cortex-r8
6. ARM Limited: ARM Architecture Reference Manual. ARMv7-A and ARMv7-R

edition. ARM Limited (2012)
7. ARM Limited: ARM Architecture Reference Manual ARMv8. ARM Limited

(2013)
8. ARM Limited: Vulnerability of Speculative Processors to Cache Timing Side-

Channel Mechanism (2018)
9. Bernstein, D.J.: Cache-Timing Attacks on AES (2005). http://cr.yp.to/

antiforgery/cachetiming-20050414.pdf
10. Bhattacharyya, A., et al.: SMoTherSpectre: exploiting speculative execution

through port contention. arXiv:1903.01843 (2019)
11. Bulygin, Y.: CPU side-channels vs. virtualization malware: The good, the bad, or

the ugly. ToorCon (2008)
12. Canella, C., et al.: A systematic evaluation of transient execution attacks and

defenses. In: USENIX Security Symposium (2019)
13. Charneski, A.: Modeling network latency (2015). https://blog.simiacryptus.com/

2015/10/modeling-network-latency.html
14. Chen, G., Chen, S., Xiao, Y., Zhang, Y., Lin, Z., Lai, T.H.: SGXPECTRE Attacks:

Leaking Enclave Secrets via Speculative Execution. arXiv:1802.09085 (2018)
15. Corbet, J.: On vsyscalls and the vDSO (2011). https://lwn.net/Articles/446528/
16. Evtyushkin, D., Ponomarev, D., Abu-Ghazaleh, N.: Jump over ASLR: attacking

branch predictors to bypass ASLR. In: MICRO (2016)
17. Fog, A.: Test results for broadwell and skylake (2015). http://www.agner.org/

optimize/blog/read.php?i=415#415
18. Fog, A.: The microarchitecture of Intel, AMD and VIA CPUs: An optimization

guide for assembly programmers and compiler makers (2016)
19. Ge, Q., Yarom, Y., Cock, D., Heiser, G.: A survey of microarchitectural timing

attacks and countermeasures on contemporary hardware. J. Cryptogr. Eng. 8, 1–
27 (2016)

20. Google: Egress throughput caps (2018). https://cloud.google.com/compute/docs/
networks-and-firewalls#egress throughput caps

21. Goonatilake, R., Bachnak, R.A.: Modeling latency in a network distribution. Netw.
Commun. Technol. 1(2), 1 (2012)

https://doi.org/10.1007/11967668_18
https://doi.org/10.1007/978-3-642-38553-7_7
https://doi.org/10.1007/978-3-642-38553-7_7
https://www.arm.com/products/silicon-ip-cpu/cortex-r/cortex-r8
https://www.arm.com/products/silicon-ip-cpu/cortex-r/cortex-r8
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://arxiv.org/abs/1903.01843
https://blog.simiacryptus.com/2015/10/modeling-network-latency.html
https://blog.simiacryptus.com/2015/10/modeling-network-latency.html
http://arxiv.org/abs/1802.09085
https://lwn.net/Articles/446528/
http://www.agner.org/optimize/blog/read.php?i=415#415
http://www.agner.org/optimize/blog/read.php?i=415#415
https://cloud.google.com/compute/docs/networks-and-firewalls#egress_throughput_caps
https://cloud.google.com/compute/docs/networks-and-firewalls#egress_throughput_caps

298 M. Schwarz et al.

22. Gras, B., Razavi, K., Bosman, E., Bos, H., Giuffrida, C.: ASLR on the line: practical
cache attacks on the MMU. In: NDSS (2017)

23. Gruss, D., Lipp, M., Schwarz, M., Fellner, R., Maurice, C., Mangard, S.: KASLR
is dead: long live KASLR. In: Bodden, E., Payer, M., Athanasopoulos, E. (eds.)
ESSoS 2017. LNCS, vol. 10379, pp. 161–176. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-62105-0 11

24. Gruss, D., Maurice, C., Wagner, K., Mangard, S.: Flush+Flush: a fast and stealthy
cache attack. In: Caballero, J., Zurutuza, U., Rodŕıguez, R.J. (eds.) DIMVA 2016.
LNCS, vol. 9721, pp. 279–299. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-40667-1 14

25. Gruss, D., Spreitzer, R., Mangard, S.: Cache template attacks: automating attacks
on inclusive last-level caches. In: USENIX Security Symposium (2015)

26. Hopper, N., Vasserman, E.Y., Chan-Tin, E.: How much anonymity does network
latency leak? TISSEC (2010)

27. Horn, J.: Speculative execution, variant 4: speculative store bypass (2018)
28. Intel: Intel R© 64 and IA-32 Architectures Software Developer’s Manual Volume 2

(2A, 2B & 2C): Instruction Set Reference, A-Z 253665 (2014)
29. Intel: Intel R© 64 and IA-32 Architectures Software Developer’s Manual, Volume 1:

Basic Architecture 253665 (2016)
30. Intel: Intel R© 64 and IA-32 Architectures Software Developer’s Manual, Volume 3

(3A, 3B & 3C): System Programming Guide (325384) (2016)
31. Intel Newsroom: Advancing security at the silicon level, March 2018. https://

newsroom.intel.com/editorials/advancing-security-silicon-level/
32. Intel Newsroom: Microcode revision guidance, April 2018. https://newsroom.intel.

com/wp-content/uploads/sites/11/2018/04/microcode-update-guidance.pdf
33. Jayasinghe, D., Fernando, J., Herath, R., Ragel, R.: Remote cache timing attack

on advanced encryption standard and countermeasures. In: ICIAFs (2010)
34. Kiriansky, V., Waldspurger, C.: Speculative Buffer Overflows: Attacks and

Defenses. arXiv:1807.03757 (2018)
35. Kocher, P., et al.: Spectre attacks: exploiting speculative execution. In: S&P (2019)
36. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,

and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 9

37. Koruyeh, E.M., Khasawneh, K., Song, C., Abu-Ghazaleh, N.: Spectre returns! spec-
ulation attacks using the return stack buffer. In: WOOT (2018)

38. Lipp, M., et al.: Meltdown: reading Kernel memory from user space. In: USENIX
Security Symposium (2018)

39. Liu, F., Yarom, Y., Ge, Q., Heiser, G., Lee, R.B.: Last-level cache side-channel
attacks are practical. In: S&P (2015)

40. Liu, W., Gao, D., Reiter, M.K.: On-demand time blurring to support side-channel
defense. In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017. LNCS,
vol. 10493, pp. 210–228. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-66399-9 12

41. Maisuradze, G., Rossow, C.: ret2spec: speculative execution using return stack
buffers. In: CCS (2018)

42. Marco-Gisbert, H., Ripoll-Ripoll, I.: Exploiting Linux and PaX ASLR’s weaknesses
on 32-and 64-bit systems. BlackHat Asia (2016)

43. Masters, J.: Thoughts on NetSpectre (2018). https://www.redhat.com/en/blog/
thoughts-netspectre

https://doi.org/10.1007/978-3-319-62105-0_11
https://doi.org/10.1007/978-3-319-62105-0_11
https://doi.org/10.1007/978-3-319-40667-1_14
https://doi.org/10.1007/978-3-319-40667-1_14
https://newsroom.intel.com/editorials/advancing-security-silicon-level/
https://newsroom.intel.com/editorials/advancing-security-silicon-level/
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/04/microcode-update-guidance.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/04/microcode-update-guidance.pdf
http://arxiv.org/abs/1807.03757
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/978-3-319-66399-9_12
https://doi.org/10.1007/978-3-319-66399-9_12
https://www.redhat.com/en/blog/thoughts-netspectre
https://www.redhat.com/en/blog/thoughts-netspectre

NetSpectre: Read Arbitrary Memory over Network 299

44. Maurice, C., Neumann, C., Heen, O., Francillon, A.: C5: cross-cores cache covert
channel. In: Almgren, M., Gulisano, V., Maggi, F. (eds.) DIMVA 2015. LNCS,
vol. 9148, pp. 46–64. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
20550-2 3

45. Maurice, C., et al.: Hello from the other side: SSH over robust cache covert channels
in the cloud. In: NDSS (2017)

46. McCalpin, J.D.: Test results for Intel’s Sandy Bridge processor (2015). http://
agner.org/optimize/blog/read.php?i=378#378

47. Minkin, M., et al.: Fallout: Reading Kernel Writes From User Space.
arXiv:1905.12701 (2019)

48. Oberman, S., Favor, G., Weber, F.: AMD 3DNow! technology: architecture and
implementations. IEEE Micro 19(2), 37–48 (1999)

49. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: the
case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20.
Springer, Heidelberg (2006). https://doi.org/10.1007/11605805 1

50. PaX Team: Address space layout randomization (ASLR) (2003)
51. Peleg, A., Weiser, U.: MMX technology extension to the Intel architecture. IEEE

Micro 16(4), 42–50 (1996)
52. Percival, C.: Cache missing for fun and profit. In: BSDCan (2005)
53. Pessl, P., Gruss, D., Maurice, C., Schwarz, M., Mangard, S.: DRAMA: exploiting

DRAM addressing for cross-CPU attacks. In: USENIX Security Symposium (2016)
54. Pukelsheim, F.: The three sigma rule. The American Statistician (1994)
55. van Schaik, S., et al.: RIDL: rogue in-flight data load. In: S&P (2019)
56. Schwarz, M., Canella, C., Giner, L., Gruss, D.: Store-to-Leak Forwarding: Leaking

Data on Meltdown-resistant CPUs. arXiv:1905.05725 (2019)
57. Schwarz, M., Weiser, S., Gruss, D., Maurice, C., Mangard, S.: Malware guard

extension: using SGX to conceal cache attacks. In: Polychronakis, M., Meier, M.
(eds.) DIMVA 2017. LNCS, vol. 10327, pp. 3–24. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-60876-1 1

58. Schwarz, M., et al.: ZombieLoad: cross-privilege-boundary data sampling.
arXiv:1905.05726 (2019)

59. Trippel, C., Lustig, D., Martonosi, M.: MeltdownPrime and SpectrePrime:
Automatically-Synthesized Attacks Exploiting Invalidation-Based Coherence Pro-
tocols. arXiv:1802.03802 (2018)

60. Yarom, Y., Falkner, K.: Flush+Reload: a high resolution, low noise, L3 cache side-
channel attack. In: USENIX Security Symposium (2014)

61. Zhao, X.j., Wang, T., Zheng, Y.: Cache Timing Attacks on Camellia Block Cipher
(2009)

https://doi.org/10.1007/978-3-319-20550-2_3
https://doi.org/10.1007/978-3-319-20550-2_3
http://agner.org/optimize/blog/read.php?i=378#378
http://agner.org/optimize/blog/read.php?i=378#378
http://arxiv.org/abs/1905.12701
https://doi.org/10.1007/11605805_1
http://arxiv.org/abs/1905.05725
https://doi.org/10.1007/978-3-319-60876-1_1
https://doi.org/10.1007/978-3-319-60876-1_1
http://arxiv.org/abs/1905.05726
http://arxiv.org/abs/1802.03802

maskVerif: Automated Verification
of Higher-Order Masking in Presence

of Physical Defaults

Gilles Barthe1, Sonia Beläıd2(B), Gaëtan Cassiers3, Pierre-Alain Fouque4,
Benjamin Grégoire5, and Francois-Xavier Standaert3

1 MPI-SP and IMDEA Software Institute, Madrid, Spain
gjbarthe@gmail.com

2 CryptoExperts, Paris, France
sonia.belaid@cryptoexperts.com

3 Université Catholique de Louvain, Ottignies-Louvain-la-Neuve, Belgium
{gaetan.cassiers,francois-xavier.standaert}@uclouvain.be

4 Université de Rennes, Rennes, France
pierre-alain.fouque@univ-rennes1.fr

5 Inria Sophia-Antipolis Méditerranée, Valbonne, France
benjamin.gregoire@sophia.inria.fr

Abstract. Power and electromagnetic based side-channel attacks are
serious threats against the security of cryptographic embedded devices.
In order to mitigate these attacks, implementations use countermeasures,
among which masking is currently the most investigated and deployed
choice. Unfortunately, commonly studied forms of masking rely on under-
lying assumptions that are difficult to satisfy in practice. This is due to
physical defaults, such as glitches or transitions, which can recombine
the masked data in a way that concretely reduces an implementation’s
security.

We develop and implement an automated approach for verifying secu-
rity of masked implementations in presence of physical defaults (glitches
or transitions). Our approach helps to recover the main strengths of
masking: rigorous foundations, composability guarantees, automated ver-
ification under more realistic assumptions. Our work follows the approach
of (Barthe et al. EUROCRYPT 2015) and thus contributes to demon-
strate the benefits of language-based approaches (specifically probabilis-
tic information flow) for masking.

Keywords: Side-channel attacks · Masking countermeasure ·
Physical defaults · Glitches · Automated verification · Composability ·
maskVerif

1 Introduction

While the design of cryptographic algorithms such as block ciphers is a relatively
well-understood problem [26], the secure implementation of such algorithms is
c© Springer Nature Switzerland AG 2019
K. Sako et al. (Eds.): ESORICS 2019, LNCS 11735, pp. 300–318, 2019.
https://doi.org/10.1007/978-3-030-29959-0_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29959-0_15&domain=pdf
https://doi.org/10.1007/978-3-030-29959-0_15

maskVerif: Automated Verification of Higher-Order Masking 301

still a quite open topic. For example, the last two decades have shown that a wide
range of side-channel attacks can be performed against cryptographic imple-
mentations, exploiting physical sources of leakage such as timing [27], power
consumption [28] or electromagnetic radiation [20]. If no attention is paid, mea-
suring such physical information enables retrieving cryptographic keys extremely
efficiently. As a result, various types of countermeasures have been introduced
to mitigate side-channel leakages, ranging from heuristic to more formal.

In general, checking that an implementation is protected against side-channel
attacks is a complex and error-prone process (see [29] for an overview). As a
result, countermeasures relying on a more established theory have gained in
relevance over the last years, in order to simplify both the design and the eval-
uation of protected implementations. The masking countermeasure (which con-
sists in performing the sensitive computations on secret-shared data) has been
shown to be a particularly interesting candidate in this landscape [11]. The
main reason is that practical security against physical leakages via masking can
be reduced (under some noise and independence assumptions) to a much simpler
(and abstract) security model, where the adversary just observes intermediate
values during execution of the implementation [14]. We will next refer to this
simpler abstract model as ISW model, after its inventors [25].

One advantage of the ISW model is that its conceptual simplicity makes it
amenable to formal verification. This has been demonstrated in a series of works,
including [2,3,6,9,10,12,17,31,34]. The most immediate benefit of formal veri-
fication is its automation, allowing to deal with the combinatorial complexity of
proving masked implementations secure. This complexity is specially significant
for implementations where secrets are split into a large number of shares; we call
such implementations higher-order. Perhaps more importantly, formal verifica-
tion has also been instrumental for advancing the state-of-the-art in masking.
First, formal verification tools have been used to reduce the randomness cost of
existing schemes. Second, strong non-interference, which solves a long-standing
problem of compositional reasoning for masking, has first emerged in the context
of formal verification, before being adopted in the literature on masking.

However, and to the exception of [9,10], the abstractions in these tools still
do not prevent the risks due to specific physical defaults that may happen when
trying to implement masking in hardware or software devices. In fact, many
masking schemes that are secure in the abstract ISW model become insecure (or
at least less secure) when concretely implemented.

This is usually due to physical defaults which contradict the independence
assumption required for secure masking. For instance, glitches are a form of
physical default occurring when the information does not propagate simultane-
ously throughout execution. They introduce dependencies between the leakage of
an instruction and of its predecessors (in the sense of dataflow analysis). These
dependencies may cause hardware implementations proved secure in the ISW
model to be practically vulnerable against side-channel attacks [30]. Transitions
are another example of physical default which more typically happen in software
implementations, where the value in a register is overwritten by another value
and leads the leakages to depend on both [1,13].

302 G. Barthe et al.

As a consequence, it is necessary to develop models and verification methods
for proving security in presence of physical defaults. Bloem et al. [9] and Faust
et al. [19] independently extend the ISW model in order to capture physical
defaults such as glitches—we will next denote this model as the ISW model with
glitches. In addition, Bloem et al. propose an automated method based on an
estimation of Fourier coefficients for proving that an implementation is secure
in their model. They also use their verification method on a set of examples,
including the S-Boxes of the AES and Keccak. Due to the computational cost
of their approach, the tool primarily applies to the first-order setting, where
secrets are split into two shares. Moreover, their method does not consider strong
non-interference, which is key to verify complete implementations. By contrast,
Faust et al. provide a hand-made analysis of some masking gadgets and prove
their strong non-interference with glitches for arbitrary number of shares (at the
cost of higher randomness requirements), and discuss simple conditions under
which the composability rules from [3] apply to implementations with glitches.
As for [10], it is built on top of this submission (from on an earlier version of the
current paper) and is still restricted to the verification of probing security only.

Contributions. We implement an efficient method for reasoning about security
of higher-order masked implementations in presence of physical defaults. Our
method follows a language-based approach based on probabilistic information
flow for proving security of masked implementations [2], and so provides further
evidence of the benefits of language-based approaches.

As in [2], our method follows a divide-and-conquer approach, embodied in two
algorithms. Our first algorithm checks if leakages are independent of secrets for a
fixed admissible set of observations. The algorithm repeatedly applies semantic-
preserving simplifications to the symbolic representation of the leakages, until
it does not depend on secrets or it fails. One significant improvement over [2]
is that our algorithm (i) is sound and complete (no attack missed and no false
negative) for linear systems of equations; (ii) it minimizes false negatives for
non-linear cases. Our second algorithm explores all admissible observation sets,
calling the first algorithm on each of them. This algorithm is carefully designed
to minimize the number of sets to explore, using the idea of large sets from [2].
One significant improvement over [2] is that our algorithm (i) minimizes the
number of large sets (ii) uses more sophisticated data structures that improve
overall efficiency.

In addition, both algorithms are specifically tailored to a rich programming
model, which we introduce to maximize applicability. The critical feature of
our new programming model is that all instructions are annotated with a sym-
bolic representation of leakage. Our programming model neatly subsumes several
models from the literature, including the ISW model, the recently proposed ISW
model with glitches, and a version of the ISW model with transitions. Moreover,
our tool applies to three main security notions: probing security, threshold non-
interference, and strong non-interference (which is essential for compositional
reasoning). Our coverage of models and properties is displayed in Table 1.

maskVerif: Automated Verification of Higher-Order Masking 303

Table 1. Verification of higher-order masked implementations in the ISW model (1),
the ISW model with glitches (2), and a version of the ISW model with transitions (3)

We implement our method on top of maskVerif and evaluate our tool on
existing benchmarks. Our tool is able to verify programs efficiently for security
notions that bring stronger compositional guarantees than [9] and faster than
state-of-the-art tools. For instance, checking probing security for the ISW mul-
tiplication at order 4 (resp. order 5) takes 1 (resp. 45) second using [2], while it
takes only 0.1 (resp. 2.6) second with our tool. And checking probing security
with glitches for DOM Keccak S-box at order 3 takes only 0.49 s when it takes
more than 25 min in [9].

2 Motivating Examples

Consider the logical and, which takes as input bits a and b and produces as
output a bit c such that c = a × b (we use arithmetic notation). A (first-order)
masked implementation of this algorithm takes as input bits a[0], a[1], b[0] and
b[1], called input shares, and outputs bits c[0] and c[1], called output shares.
Couples of shares are initially built from a uniform value r generated at random
and the sum of this random value with the secret one. Doing so, any single
share remains completely independent from the secret. We consider two families
of masked implementations and outline their verification. The first family is
intended to provide protection against glitches. The second family is intended
to provide protection against transitions.

2.1 Glitches

Figure 1 introduces a first-order masked implementation of logical and from [22]
in an idealized hardware language. The program is given as a sequence of assign-
ments. The instruction r ←$ {0, 1} is a random assignment, i.e. r is sampled
uniformly from {0, 1}. The assignments t2 ←ff t1 and t6 ←ff t5 are flip-flop
assignments; they are used to store stable computations (so have no computa-
tional content), and stop the propagation of leakage. The remaining instructions
are standard arithmetic assignments. The masked implementation must satisfy:

correctness: the masked implementation coincides with the original algorithm,
i.e. c = a × b, with a = a[0] + a[1], b = b[0] + b[1], c = c[0] + c[1];

security: leakage does not reveal information about secrets. We make the defi-
nition of leakage precise below and sketch a proof of security.

304 G. Barthe et al.

We first consider correctness. We symbolically execute the program to compute
for each program point an expression over input shares a[0], a[1], b[0], b[1] and
probabilistic variable r, see the second column of Fig. 1. We use b[i] × a as
shorthand for b[i] × a[0] + b[i] × a[1].

We now turn to security. We first define a symbolic representation of leakage,
shown in the third column of Fig. 1. The representation assigns to each program
point a tuple of expressions over input shares a[0], a[1], b[0], b[1] and probabilistic
variable r. Random assignment r ←$ {0, 1} leaks singleton {r}. Flip-flop assign-
ments t2 ←ff t1 and t6 ←ff t5 leak singletons {b[1]×a[0]+r} and {b[0]×a[1]+r},
i.e. the expressions they compute. Arithmetic assignments propagate transient
leakages (due to glitches). For instance, assignment t1 ← t0 + r leaks the union
of the leakage of the first two assignments. More generally, the leakage of an
arithmetic assignment is defined as the leakage of its two operands (with the
convention that an input share a[i] leaks {a[i]}).

The symbolic representation of leakage can be simplified by applying rules
that preserve their semantics (defined formally in later sections). One commonly
used rule is optimistic sampling, which replaces an expression of the form e + r,
where r only occurs once in the tuple, by r. We show the simplified leakage on
the last column of Fig. 1. Note that (simplified) leakage at each program point
depends on at most one share of a (either a[0] or a[1]) and one share of b (either
b[0] or b[1]). This suffices to conclude that the implementation is thus secure. We
will make this claim precise in the next sections. For now, it suffices to get the
following intuition: assume that a and b are the secrets, and (a[0], a[1]) is a secret
sharing of a, i.e. a[0] and a[1] taken individually are uniformly distributed, and
a[0] + a[1] = a. Then knowledge of a[0] or a[1] does not reveal any information
about a. The situation is similar for b. Thus, knowledge of a single share of a
and a single share of b does not reveal anything about them.

Instruction Symbolic value Symbolic leakage Simplified
t0 ← b[1] × a[0] b[1] × a[0] {b[1], a[0]} {b[1], a[0]}
r ←$ {0, 1} r {r} {r}

t1 ← t0 + r b[1] × a[0] + r {b[1],a[0], r} {b[1],a[0], r}
t2 ←ff t1 b[1] × a[0] + r {b[1] × a[0] + r} {r}
t3 ← b[1] × a[1] b[1] × a[1] {b[1], a[1]} {b[1], a[1]}

c[1] ← t3 + t2 b[1] × a + r {b[1],a[1],b[1] × a[0] + r} {b[1],a[1], r}
t4 ← b[0] × a[1] b[0] × a[1] {b[0], a[1]} {b[0], a[1]}
t5 ← t4 + r b[0] × a[1] + r {b[0],a[1], r} {b[0],a[1], r}
t6 ←ff t5 b[0] × a[1] + r {b[0] × a[1] + r} {r}
t7 ← b[0] × a[0] b[0] × a[0] {b[0], a[0]} {b[0], a[0]}

c[0] ← t7 + t6 b[0] × a + r {b[0],a[0],b[0] × a[1] + r} {b[0],a[0], r}

Fig. 1. Masked implementation of logical bit and against glitches. The second column
contains the symbolic expression computed for each program point. The third and
fourth columns are symbolic representations of leakage, before and after simplification.
Maximal sets are written in bold. It is easy to check that c[0] + c[1] = a × b.

maskVerif: Automated Verification of Higher-Order Masking 305

Now consider the variant of the algorithm that omits the second flip-flop
assignment in Fig. 2. The leakage at the last program point is no longer indepen-
dent of a, since both a[0] and a[1] appear in the tuple. Concretely, an attacker
with access to the joint distribution {b[0], a[0], a[1], r} can retrieve the second
and third components and add them to obtain a.

Instruction Symbolic value Symbolic leakage Simplified
t0 ← b[1] × a[0] b[1] × a[0] {b[1], a[0]} {b[1], a[0]}
r ←$ {0, 1} r {r} {r}

t1 ← t0 + r b[1] × a[0] + r {b[1],a[0], r} {b[1],a[0], r}
t2 ←ff t1 b[1] × a[0] + r {b[1] × a[0] + r} {r}
t3 ← b[1] × a[1] b[1] × a[1] {b[1], a[1]} {b[1], a[1]}

c[1] ← t3 + t2 b[1] × a + r {b[1],a[1],b[1] × a[0] + r} {b[1],a[1], r}
t4 ← b[0] × a[1] b[0] × a[1] {b[0], a[1]} {b[0], a[1]}
t5 ← t4 + r b[0] × a[1] + r {b[0],a[1], r} {b[0],a[1], r}
t6 ← b[0] × a[0] b[0] × a[0] {b[0], a[0]} {b[0], a[0]}

c[0] ← t5 + t6 b[0] × a + r {b[0],a[0],a[1], r} {b[0],a[0],a[1], r}

Fig. 2. Insecure masked implementation of logical bit and against glitches. The second
column contains the symbolic expression computed for each program point. The third
and fourth columns are symbolic representations of leakage, before and after simplifi-
cation. Maximal sets are written in bold. It is easy to check that c[0] + c[1] = a × b.

We next describe how these examples are handled in our tool. The user
provides a masked Verilog implementation of these algorithms and sets various
parameters, including a security property (explained later). We first use an off-
the-shelf tool (yosis) which generates an implementation in the ilang intermedi-
ate format (.ilang). The .ilang implementation is manually annotated to specify
the public variables, the secret input variables, the secret output variables, and
the random variables. Next, our tool generates from the annotated .ilang imple-
mentation an internal representation with a symbolic representation of leakage
at each program point. At this point, verification starts. Our implementation
exploits the fact that tuples of expressions are naturally ordered w.r.t the subset
relation, e.g. the tuple {b[1], a[0], r} leaks more than the singleton {b[1], a[0]}.
Thus, it suffices to consider maximal leakage sets, which appear in bold in Fig. 1.
Whenever verification fails, i.e. a potentially flawed tuple is detected, our tool
computes the joint distribution of this tuple, so as to verify exactly whether
this tuple is an attack for the weakest security notion considered. This step is
exact, therefore all false negatives are removed. Our tool successfully concludes
for the secure examples, and outputs and checks the flawed tuple of intermediate
computations for the insecure examples.

2.2 Transitions

For simplicity of exposition, we consider a model with transitions but no glitches
(and thus do not use flip-flop gates). Figure 3 introduces another first-order

306 G. Barthe et al.

masked implementation of logical and. The difference with the previous imple-
mentation is that variable t0 is reused in the last but one instruction. As a
consequence, observing the last but one instruction reveals both values of t0,
and depend on b. This is easily fixed by using a fresh variable t5 in place of t0.
Interestingly, replacing t0 with t5 places us in a model in which every instruc-
tion leaks its symbolic expression, i.e. the abstract ISW model. In both cases,
verification with our tool then proceeds as described in the previous subsection.

Instruction Symbolic value Leakage
t0 ← b[1] × a[0] b[1] × a[0] {b[1] × a[0]}
r ←$ {0, 1} r {r}

t1 ← t0 + r b[1] × a[0] + r {b[1] × a[0] + r}
t2 ← b[1] × a[1] b[1] × a[1] {b[1] × a[1]}

c[1] ← t1 + t2 b[1] × a + r {b[1] × a + r}
t3 ← b[0] × a[1] b[0] × a[1] {b[0] × a[1]}
t4 ← t3 + r b[0] × a[1] + r {b[0] × a[1] + r}
t0 ← b[0] × a[0] b[0] × a[0] {b[1] × a[0], b[0] × a[0]}

c[0] ← t4 + t0 b[0] × a + r {b[0] × a + r}

Fig. 3. Masked implementation of logical bit and against transitions. The second col-
umn contains the symbolic expression computed for each program point. The third
column contains leakage. It is easy to check that c[0] + c[1] = a × b.

3 Programming Model and Security Definitions

This section introduces an intermediate representation which captures different
security models and notions, and presents algorithmic tools for checking that
programs are secure. For the clarity of exposition, we focus on a simple setting
without public variables. Adding public variables poses no technical difficulty,
but clutters presentation.

3.1 Syntax and Semantics of Programs

Our intermediate representation abstracts away from the specifics of a particular
security model, by requiring that all leakage is made explicit through program
annotations. This eliminates the need to consider flip-flop assignments.

We assume throughout this paper that programs operate over Booleans.
Figure 4 presents the syntax of programs as sequences of annotated instructions.
An annotated instruction is an instruction annotated with a unique program
point p ∈ P, and a tuple � of expressions which model its leakage. Instructions
are probabilistic or deterministic assignments. We assume code to be written in
3-address form, i.e. the right-hand side of a deterministic assignment is of the
form v1 + v2 or v1 × v2, where vi is either a share a[i], a deterministic variable x,
or a probabilistic variable r. The left-hand side of an deterministic assignment

maskVerif: Automated Verification of Higher-Order Masking 307

v ::= r | x | a[i]
e ::= r | a[i] | e + e | e × e
� ::= {e1, . . . , en}

I ::= x ← v1 ◦ v2 deterministic assignment
| a[i] ← v1 ◦ v2 output assignment
| r ←$ K probabilistic assignment

C ::= p : I | � instruction
| C;C sequential composition

Fig. 4. Syntax of expressions, instructions and commands. ◦ ranges over {+,×}. x
ranges over a set of deterministic variables V, r ranges over a set of probabilistic
variables R. a[i] is called a share; a is drawn from a set A and i ∈ {0, . . . , t} for some
fixed value t, generally called order.

is either a share a[i] or a deterministic variable x. A probabilistic assignment is
of the form r ←$ K, where r is drawn from a set R of probabilistic variables.

We now define the leakage. Let L =
⋃

i Ki. For every discrete set X, Distr(X)
denotes the set of distributions over X. A memory is a map that assigns to every
share a[i] a value in K. We let M denote the set of memories. Now consider an
observation set O, i.e. a subset of P such that |O| ≤ t. We define the function:

[[s]]O : M → Distr(O → L)

which computes the joint leakage of s on observation set O on input memory
m ∈ M. The definition of [[s]]O is obtained by pushing forward the instrumented
semantics [[s]] : M → Distr(P → (K × L)) along the obvious projection function.
The definition is standard, and omitted. The function [[s]]O is naturally extended
to distributions over memories; we abuse notation and still write [[s]]O.

3.2 Security Notions

We recall three increasingly strong notions of security from the literature: prob-
ing security, threshold non-interference, and threshold strong non-interference.
All notions capture some form of probabilistic non-interference.

Probing security is a notion of non-interference under uniform inputs. Formally,
we define a set of universally uniform distributions and say that a command s is
t-probing secure iff for every observation set O such that |O| ≤ t and universally
uniform distributions μ and μ′, we have [[s]]O(μ) = [[s]]O(μ′). Probing security
considers a scenario where secret sharing is used to encode secret inputs, and the
masked program is executed on encoded inputs. Since encodings are universally
uniform, probing security entails that leakage does not depend on secrets.

For a concrete definition of universal uniformity, we consider the case of
memories over inputs a[0], a[1], b[0], and b[1]. In this setting, a distribution over
memories is universally uniform iff it is the image of the function mapping pairs
(a, b) to the distribution

a0←$K; b0←$K; return 〈a[0] �→ a0, a[1] �→ a + a0, b[0] �→ b0, b1 �→ b + b0〉

308 G. Barthe et al.

Probing security guarantees that leakage does not depend on secrets. Indeed,
it is always possible to simulate leakage by generating an encoding of arbitrary
values a′ and b′, and then executing the command on this encoding. This will
result in an identical leakage.

(Threshold) non-interference can be understood as a notion of non-interference
under cardinality constraints. A command s is t-non-interfering (t-NI) if and
only if any set of at most t intermediate variables can be perfectly simulated
from at most t shares of each input. Concretely, a command s is (threshold)
non-interfering at order t iff for every observation set O such that |O| ≤ t, there
exists an indexed family of sets (Ia)a∈A ⊆ {0, . . . , t} such that |Ia| ≤ t and for
every initial memories m and m′,

m
(Ia)a∈A m′ =⇒ [[s]]O(m) = [[s]]O(m′)

where m
(Ia)a∈A m′ iff for every a ∈ A and i ∈ Ia, we have m(a[i]) =
m′(a[i]). The intuition behind threshold non-interference is similar to the one
behind probing security. In particular, threshold non-interference entails probing
security.

For a realization of threshold non-interference, consider a masked implemen-
tation that takes as inputs a[0], a[1], b[0], and b[1]. Threshold non-interference
ensures that leakage only depends on one of the sets ({a[i], b[j]})i,j∈{0,1}2 . Given
that the secret a is independent from a[i] and similarly for b, it follows that
leakage does not give any information about the secrets.

(Threshold) strong non-interference [3] is a very technical strengthening of
(threshold) non-interference. It brings very strong composability guarantees that
do not hold for (threshold) non-interference. Technically, strong non-interference
imposes more stringent cardinality constraints. For every observation set O, we
distinguish between internal observations Oin (program points where the lhs
of the assignment is a variable) and output observations Oout (program points
where the left-hand side of the assignment is a share a[i]). We say that a com-
mand s is t-strong non-interfering (t-SNI) iff for every observation set O such
that |O| ≤ t, there exists an indexed family of sets (Ia)a∈A ⊆ {0, . . . , t}, such
that |Ia| ≤ |Oin| and for every initial memories m and m′,

m
(Ia)a∈A m′ =⇒ [[s]]O(m) = [[s]]O(m′).

It is put forward in [19] that if a gadget is strongly non-interfering with glitches
(which requires storing its outputs in flip flops so that they are stable and cannot
propagate glitches), then the general composition rules introduced in [3] apply
to hardware implementations with glitches. Being able to verify such stronger
security notions is therefore helpful to analyze full ciphers and high number
of shares, since it allows analyzing smaller (computationally tractable) parts of
them independently, with global security guarantees thanks to composition.

maskVerif: Automated Verification of Higher-Order Masking 309

4 Algorithmic Verification

Checking probing or (S)NI security requires to verify a probabilistic non-
interference property for all observation sets of size t. We define a generic verifi-
cation parameterized by a test specific to each security property. The algorithm
follows the same overall structure as maskVerif and relies on two functions.
The first function Check is a verification algorithm for proving the probabilistic
non-interference property of a fixed observation set. The function CheckAll is
an exploration algorithm which (adaptively) scans all the possible sets of obser-
vations. Verification succeeds if the algorithm proves absence of leakage for all
observation sets.

To verify that an observation set O (a tuple of expressions) is independent
from some secret, the key idea is to apply successive transformation on O into
O′, preserving its distribution, until a termination condition Test is able to syn-
tactically decide the independence. The Test function depends on the property:

– For probing security, we check if the tuple is independent from the initial
mapping by checking syntactically if the secret inputs do not appear in O′.

– For non-interference, we check if for each input parameter a, at most t shares
a[i] occur in the tuple O′.

– For strong non-interference, the condition is similar: for each parameter a, at
most |Oin| shares a[i] should occur in O′.

The transformation of O is based on optimistic sampling rule: if r �∈ e then r
and e + r follow the same distribution, as well as O and O′ where r is replaced
by e+ r (O{r ← e+ r}). The condition r �∈ e (i.e r is not a variable of e) ensures
that the distributions of r and e are independent. The critical step is to select a
substitution that will guarantee that the method terminates. Take for example
O = (r, x + r). If we replace r by x + r, we obtain after simplification (x + r, r)
on which we could apply the same transformation again and again.

Verification of Single Observation Set. The Check verification algorithm
is summarized in Fig. 5: it takes as input an observation set represented as a
tuple O of expressions. If Test is satisfied then Check succeeds. Otherwise, it
uses the Select procedure to perform a transformation of O into O′. To guarantee
termination, the algorithm first attempts to check if O can be rewritten (modulo
associativity and commutativity of +) as C[e + r] where C[·] is a context, and
r �∈ e ∪ C, i.e. r does not occur in e and C). If it is the case, we apply the
optimistic sampling rule and get C[e + r]{r ← e + r} = C[e + (e + r)] = C[r].
Notice that in that case the size of C[r] is less than the size of O (i.e the size of
the resulting O′ decreases).

If the algorithm cannot exhibit such a context, it tries to apply the general
optimistic sampling rule (removing the condition r �∈ C). The resulting expres-
sion is the simplification of O{r ← e+r}. For the simplification, we basically use
the ring laws but the distributivity makes harder the detection of new simplifica-
tions. Notice that this time the size of the resulting O′ = O{r ← e+ r} does not

310 G. Barthe et al.

Verification algorithm
proc Select(R, O) = proc Check(R, B, O) =

if ∃r, e, C | O = C[e + r] ∧ r �∈ e ∪ C then if Test(O) then return B;
return (R, (e, r), C[r]); (R′, b, O′) = Select(R, O);

if ∃r, e, C | O = C[e + r] ∧ r �∈ e ∪ R then Check(R′, B :: b, O′);
O′ = Simplify(O{r ← e + r});
return (R ∪ {r}, (e, r), O′);

else fail ;

Exploration algorithm
proc Replay(B, O) = proc Extend(B, X) =

if B = [] then return Test(Simplify(O)) {O ∈ X |
if B = (e, r) :: B′ then Replay(B, O)}

Replay(B′, O{r ← e + r})

proc OptSampling(X) = proc CheckAll(X) =
if ∃r, e, CX | X = CX [e + r] ∧ r �∈ e ∪ CX then if X = ∅ return true;

OptSampling(CX [r]); X = OptSampling(X);
else return X; O = Choose(X);

B = Check(∅, [], O);
X0 = Extend(B, X);
CheckAll(X \ X0);

Fig. 5. Verification algorithm for probing security

necessarily decrease. To ensure termination, we add a set R of random variables
on which the general rule has already been used. The application of the rule is
conditioned by the fact that r �∈ R. The termination of the Check algorithm is
ensured since either R increases or the size of O decreases (lexicographic order).

When more than one r allow to apply the rules (i.e for the selection of
the context), we define the multiplicative depth of a random variable and we
rewrite in increasing order of multiplicative depth. For instance, in the expression
r + (r′ + e) × e′ we assign multiplicative depth 0 to r and 1 to r′.

We can prove that our new algorithm always terminates and is sound, i.e. it
can detect all the attacks in our models. Note that considering only the first rule
(first if statement of Select) makes our algorithm equivalent to the one of [2].
When we apply both rules (the two if statements of Select), our algorithm
is equivalent to the one of [4], inspired from Gaussian elimination: contrary
to this last one, we do not require the expressions to be linear. An additional
advantage is the absence of false negatives when all the expressions are linear
(completeness), it is no more the case if we remove the second if in Select.

Both algorithms return the list B of optimistic sampling rules that have been
applied: successive transformations in the exploration algorithm can be replayed.

Exploration. The exploration algorithm ensures that the verification algorithm
analyzes all the possible sets of at most t intermediate variables. However, rather

maskVerif: Automated Verification of Higher-Order Masking 311

than verifying each set separately, the exploration algorithm recursively checks
larger sets, as in [2]. The idea behind the exploration algorithm is that if a tuple
O is probabilistic non-interfering then all sub-tuples of O are. We present a very
high level description of the algorithm to highlight the main differences with [2].

The algorithm CheckAll is presented in Fig. 5. Let X be the set of all tuples
that need to be checked. If X is empty all tuples are trivially checked and the
algorithm returns true. Else, it first tries to simplify as much as possible the set
X by applying the simple optimistic sampling rule, as in the first if of Select.
This point is really crucial because it allows to share simplifications between all
tuples in X and was not done in [2]. Then, the algorithm chooses an element O
in X and tries to check it. If O is successfully verified, the result B is a list of
optimistic sampling transformations that can be applied to prove independence
of O. Next, the algorithm selects all the elements of X that can be checked
using the transformation B using Extend1. At this point all elements in X0 are
known to satisfy the desired properties. Finally the algorithm needs to check the
remaining tuples X \ X0.

Initially, X represents the set of all tuples of t elements that can be generated
within the set of m possible observations. Its size is

(
m
t

)
. A naive implementation

would thus be exponential in t and it is crucial to have efficient data structures
to represent X and to implement the functions OptSampling, Extend, and X \X0.
We use the data structures presented in [2] (worklist base space splitting).

Moreover, we use a representation of expressions as imperative graphs. This
allows to detect easily if the simplest version of optimistic sampling rule can be
applied (used in the first conditional of Select and OptSampling), and to compute
efficiently the resulting expression.

5 Experiments

This section reports on experimental evaluation of our approach.

Examples. Our examples are mainly extracted from the available database pro-
vided by the authors of [9]. It gathers four different Verilog implementations of a
masked multiplication. Three of them are implemented at the first masking order
only, while DOM AND, designed in [22], is available up to order t = 4, i.e. when
sensitive data is split into t+1 = 5 shares. For the latter, we also consider mod-
ified versions that achieve non-interference and strong non-interference. Larger
implementations are also provided, namely three S-boxes. AES S-box as designed
in [22] and both versions of FIDES S-box as designed in [8] are implemented at
the first order. We also consider a second-order and third-order AES S-box [21],
and a Keccak S-box as designed in [23] and implemented from the first to the
third order. In addition to this existing set of examples, Keccak S-box is ana-
lyzed at two extra orders, namely t = 4 and t = 5, and two versions of a different
multiplication PARA AND [5] are verified from the first to the fourth order.

1 Missing tuples with Extend does not impact the correctness of the algorithm.

312 G. Barthe et al.

Benchmarks. First of all, we compare our tool with [2] which can only check
probing security without glitches. While our tool is a variant, the resulting imple-
mentation is much more efficient. For example, checking probing security for the
ISW multiplication at order 4 (resp. order 5) takes 1 (resp. 45) second using [2],
while it takes only 0.1 (resp. 2.6) second with our tool.

Table 2 summarizes the verification outcome of the examples2. We use a
2.6 GHz Intel Core i7 with 16 GB of RAM running on macOS High Sierra, while
Bloem et al. [9] use a Intel Xeon E5-2699v4 CPU with a clock frequency of
3.6 GHz and 512 GB of RAM running in a 64-bit Linux OS environment. The
table reports on verification for the three main security properties, namely SNI,
NI, and probing security, and for two scenarios: a hardware scenario (HW) with
glitches, and a software scenario (SW) without physical defaults. While the tool
can also take into account transitions, we omit such examples as most of our
implementations come from hardware where each wire is assigned only once
(and so do not have transition).

The first column of the table (# obs) indicates the number of possible obser-
vations in the targeted implementation. In the software scenario, it corresponds
to the number of intermediate variables. In the hardware scenario with glitches, it
corresponds to the number of optimal observations. Note the latter is much lower
than in the software scenario since non-maximal observation sets are ignored.
Also note that while this first column displays the number of observations n
that will be further treated, verification at order t requires the analysis of

(
n
t

)

tuples. For instance, the verification of Keccak S-box in the software scenario at
order 4 requires the analysis of

(
450
4

) ≈ 231 tuples. The second, third, and fourth
columns report on the verification times in the 6 modes. We report 0.01 s when
the result is instantaneous and ∞ when the computations take more than 10 h.
When an implementation is insecure in a weaker model, then its verification time
is equal for the stronger model. To report the outcome, a cross is displayed when
a concrete attack is exhibited. Otherwise, the verification ends up successfully,
indicating that the implementation is secure.

Comparison with Bloem et al. (EUROCRYPT 2018). Bloem et al. [9] present
a formal technique for proving security of implementations in the ISW model
with glitches. Their method is based on Xiao-Massey lemma, which provides
a necessary and sufficient condition for a boolean function to be statistically
independent from a subset of its variables. Informally, the lemma states that a
boolean function f is statistically independent of a set of variables X iff the so-
called Fourier coefficients of every non-empty subset of X is null. However, since
the computation of Fourier coefficients is computationally expensive, they use
instead an approximation method whose correctness is established in their paper.
By encoding their approximation in logical form, they are able to instantiate
their approach using SAT-based solvers. Their tool can verify implementations
of AES, Keccak and FIDES S-Boxes, but the verification cost is significant.

2 Programs/logs are available at https://gitlab.com/benjgregoire/maskverif/.

https://gitlab.com/benjgregoire/maskverif/

maskVerif: Automated Verification of Higher-Order Masking 313

The last column indicates the timings from [9] which are only available for
probing security with and without glitches3. A dash is displayed when the exam-
ple is not tested in [9]. The results show that our tool performs significantly
better than the algorithm provided in [9]. For instance, the verification of the
hardware first-order masked implementation of AES S-box is at the very least
7826 times much faster with our tool. In particular, note that some of the bench-
marks provided for the tool of Bloem et al. only concern the verification of one
secret (the ranking corresponds to the fastest and the lowest verification of the
secrets). They are highlighted with a symbol ∗. As a consequence, without par-
allelization, these timings would probably be significantly higher. Our algorithm
can also be parallelized (it is an option of our tool), but we only use this option
for Keccak at order 5 since it makes the timing measurement less accurate.

6 Related Work

This section reviews the state-of-the-art verification tools for software (without
physical defaults but transitions) and hardware masked implementations.

Software Implementations. Moss et al. [31] were the first to consider the use
of automated methods to build or verify masked implementations. Specifically,
they implement a type-based masking compiler that tracks which variables are
masked by random values and iteratively modifies an unprotected program until
all secrets are masked. This strategy ensures security against first-order DPA.

While type-based verification is generally efficient and scalable, it is also often
overly conservative, i.e. it rejects secure programs. Logic-based verification often
strikes interesting trade-offs between efficiency and expressiveness. This possi-
bility was first explored in the context of masked implementations by Bayrak
et al. [6]. Concretely, they propose a SMT-based method for analyzing the secu-
rity of masked implementations against first-order DPA. Contrary to [31] which
targets proving a stronger property of programs, their method directly targets
proving statistical independence between secrets and leakage. While it is lim-
ited to first-order masking, it was extended to higher orders by Eldib, Wang and
Schaumont [17]. Their approach is based on a logical characterization of security,
akin to non-interference, and is based on model counting. While model counting
incurs an exponential blow-up in the security order, and becomes infeasible even
for relatively small orders, Eldib et al. circumvent the issue using incremental
verification. Although such methods help, the scope of application of their meth-
ods remains limited. Recently, Zhang et al. [34] show how abstraction-refinement
techniques provide significant improvement in terms of precision and scalabil-
ity. Their tool, called SCInfer, alternates between fast and moderately precise
approaches (partly inspired from [2] below) and computationally expensive but
precise approaches.

3 Note that the timings of [9] are obtained with a more powerful machine than ours.

314 G. Barthe et al.

Table 2. Overview of verification of masked hardware circuits

Independently, Barthe et al. [2] propose a different approach for proving
probing security. They establish and leverage a tight connection between the
security of masked implementations and probabilistic non-interference, for which
they propose efficient verification methods. Specifically, they show how a rela-
tional program logic previously used for mechanizing proofs of provable secu-
rity can be specialized into an efficient procedure for proving probabilistic non-
interference, and develop techniques that overcome the combinatorial explosion
of observation sets for high orders. The concrete outcome of their work is the
maskVerif framework, which achieves practicality at reasonably high orders,
and prove security in all introduced non-interference security notions. A tweaked
version additionally handles verification in presence of transitions, but hardware
physical defaults (e.g., glitches) are not supported. This work remains also per-
missive to false negatives. In the same line of work, Coron [12] presents an
alternative tool, called checkMasks, which achieves similar functionalities as
maskVerif, but exploits a more extensive set of transformations for operating
on tuples of expressions. This is useful to achieve better verification times on
selected examples.

maskVerif: Automated Verification of Higher-Order Masking 315

A follow-up work by Barthe et al. [3] addresses the problem of compositional
reasoning by introducing the notion of strong non-interference (SNI), and adapts
maskVerif to check SNI. The adaptation achieves similar coverage as the orig-
inal tool, i.e. it achieves practicality at reasonably high-orders. In addition, [3]
proposes an information flow type system with cardinality constraints, which
forms the basis of a compiler, called maskComp. This compiler transforms an
unprotected implementation into an implementation that is protected at any
desired order. Somewhat similar to the masking compiler of [31], maskComp uses
typing information to control and to minimize the insertion of mask refresh-
ing gadgets. In the same line of work, Beläıd, Goudarzi, and Rivain recently
propose tightPROVE [7] which exactly and directly verifies the software probing
security of a circuit based on standard gadgets at any order.

Hardware Implementations. As recalled in the previous section, Bloem
et al. [9] provide a tool for proving probing security of masked implementa-
tions in the ISW model with glitches. While this tool benefits from the new
treatment of physical defaults, it faces efficiency issues and cannot handle classi-
cal higher-order examples. Recently Bloem, Iusupov, Krenn, and Mangard [10]
provide some technical optimizations based on an earlier version of this paper
(using our same tool), but that are still restricted to proofs on probing security.
Namely, proven implementations thus cannot be safely composed to achieve
larger secure ones. The work of Faust et al. follows the alternative approach of
proving the strong non-interference of some basic gadgets with glitches, which
allows composing circuits at arbitrary orders (but less efficiently) [19].

7 Conclusions

We have developed and implemented an automated method for verifying masked
implementations in presence of physical defaults. Our tool is based on novel and
efficient algorithms for proving probabilistic non-interference for all admissible
observation sets by an attacker. Our tool conveniently supports the three main
notions of security (probing security, threshold non-interference and strong non-
interference) and is able to verify efficiently implementations at high orders.

In the future, it would be interesting to extend our work beyond purely
qualitative security definitions, and to consider quantitative definitions that
upper bound how much leakage reveals about secrets—using total variation dis-
tance [18] or more recent metrics that directly or indirectly relate to noisy leakage
security [15,16]. More speculatively, it would also be interesting to extend our
framework and verification methodologies to active adversaries, who can tam-
per with computations [24]. A first step would be to extend the correspondence
between information flow and simulation-based security to the case of active
adversaries. An appealing possibility would be to exploit the well-known dual
view of information flow security for confidentiality and integrity. It would also
be interesting to build tools based on our algorithms to synthesize masked imple-
mentations.

316 G. Barthe et al.

Acknowledgements. This work is partially supported by the French FUI-AAP25
VeriSiCC project and ONR project N00014-19-1-2292. Gaëtan Cassiers and François-
Xavier Standaert are resp. Research Fellow and and Senior Associate Researcher of the
Belgian Fund for Scientific Research (FNRS-F.R.S.).

References

1. Balasch, J., Gierlichs, B., Grosso, V., Reparaz, O., Standaert, F.-X.: On the cost
of lazy engineering for masked software implementations. In: Joye, M., Moradi, A.
(eds.) CARDIS 2014. LNCS, vol. 8968, pp. 64–81. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-16763-3 5

2. Barthe, G., Beläıd, S., Dupressoir, F., Fouque, P.-A., Grégoire, B., Strub, P.-Y.:
Verified proofs of higher-order masking. In: Oswald, E., Fischlin, M. (eds.) EURO-
CRYPT 2015, Part I. LNCS, vol. 9056, pp. 457–485. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46800-5 18

3. Barthe, G., et al.: Strong non-interference and type-directed higher-order masking.
In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.)
ACM CCS 2016, pp. 116–129. ACM Press, October 2016

4. Barthe, G., Daubignard, M., Kapron, B., Lakhnech, Y., Laporte, V.: On the equal-
ity of probabilistic terms. In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS
(LNAI), vol. 6355, pp. 46–63. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-17511-4 4

5. Barthe, G., Dupressoir, F., Faust, S., Grégoire, B., Standaert, F.-X., Strub, P.-Y.:
Parallel implementations of masking schemes and the bounded moment leakage
model. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part I. LNCS,
vol. 10210, pp. 535–566. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-56620-7 19

6. Bayrak, A.G., Regazzoni, F., Novo, D., Ienne, P.: Sleuth: automated verification
of software power analysis countermeasures. In: Bertoni, G., Coron, J.-S. (eds.)
CHES 2013. LNCS, vol. 8086, pp. 293–310. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-40349-1 17

7. Beläıd, S., Goudarzi, D., Rivain, M.: Tight private circuits: achieving probing secu-
rity with the least refreshing. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018,
Part II. LNCS, vol. 11273, pp. 343–372. Springer, Cham (2018). https://doi.org/
10.1007/978-3-030-03329-3 12

8. Bilgin, B., Bogdanov, A., Knežević, M., Mendel, F., Wang, Q.: Fides: lightweight
authenticated cipher with side-channel resistance for constrained hardware. In:
Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 142–158.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40349-1 9

9. Bloem, R., Gross, H., Iusupov, R., Könighofer, B., Mangard, S., Winter, J.: Formal
verification of masked hardware implementations in the presence of glitches. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part II. LNCS, vol. 10821, pp.
321–353. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8 11

10. Bloem, R., Iusupov, R., Krenn, M., Mangard, S.: Sharing independence & rela-
beling: efficient formal verification of higher-order masking. Cryptology ePrint
Archive, Report 2018/1031 (2018). https://eprint.iacr.org/2018/1031

11. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counter-
act power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666,
pp. 398–412. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-
1 26

https://doi.org/10.1007/978-3-319-16763-3_5
https://doi.org/10.1007/978-3-319-16763-3_5
https://doi.org/10.1007/978-3-662-46800-5_18
https://doi.org/10.1007/978-3-642-17511-4_4
https://doi.org/10.1007/978-3-642-17511-4_4
https://doi.org/10.1007/978-3-319-56620-7_19
https://doi.org/10.1007/978-3-319-56620-7_19
https://doi.org/10.1007/978-3-642-40349-1_17
https://doi.org/10.1007/978-3-642-40349-1_17
https://doi.org/10.1007/978-3-030-03329-3_12
https://doi.org/10.1007/978-3-030-03329-3_12
https://doi.org/10.1007/978-3-642-40349-1_9
https://doi.org/10.1007/978-3-319-78375-8_11
https://eprint.iacr.org/2018/1031
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-48405-1_26

maskVerif: Automated Verification of Higher-Order Masking 317

12. Coron, J.-S.: Formal verification of side-channel countermeasures via elementary
circuit transformations. In: Preneel, B., Vercauteren, F. (eds.) ACNS 2018. LNCS,
vol. 10892, pp. 65–82. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
93387-0 4

13. Coron, J.-S., Giraud, C., Prouff, E., Renner, S., Rivain, M., Vadnala, P.K.: Conver-
sion of security proofs from one leakage model to another: a new issue. In: Schindler,
W., Huss, S.A. (eds.) COSADE 2012. LNCS, vol. 7275, pp. 69–81. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29912-4 6

14. Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: from probing attacks
to noisy leakage. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS,
vol. 8441, pp. 423–440. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-55220-5 24

15. Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: from probing attacks
to noisy leakage. J. Cryptol. 32(1), 151–177 (2019)

16. Duc, A., Faust, S., Standaert, F.-X.: Making masking security proofs concrete. In:
Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp.
401–429. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-
5 16

17. Eldib, H., Wang, C., Schaumont, P.: Formal verification of software countermea-
sures against side-channel attacks. ACM Trans. Softw. Eng. Methodol. 24(2), 11:1–
11:24 (2014)

18. Eldib, H., Wang, C., Taha, M.M.I., Schaumont, P.: Quantitative masking strength:
quantifying the power side-channel resistance of software code. IEEE Trans. CAD
Integr. Circuits Syst. 34(10), 1558–1568 (2015)

19. Faust, S., Grosso, V., Pozo, S.M.D., Paglialonga, C., Standaert, F.-X.:
Composable masking schemes in the presence of physical defaults &
the robust probing model. IACR TCHES 2018(3), 89–120 (2018).
https://tches.iacr.org/index.php/TCHES/article/view/7270

20. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: concrete results.
In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp.
251–261. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44709-1 21

21. Groß, H., Krenn, M., Mangard, S.: Second and third order verilog implementations
of AES s-box (2018)

22. Gross, H., Mangard, S., Korak, T.: An efficient side-channel protected AES imple-
mentation with arbitrary protection order. In: Handschuh, H. (ed.) CT-RSA 2017.
LNCS, vol. 10159, pp. 95–112. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-52153-4 6

23. Gross, H., Schaffenrath, D., Mangard, S.: Higher-order side-channel protected
implementations of keccak. Cryptology ePrint Archive, Report 2017/395 (2017).
http://eprint.iacr.org/2017/395

24. Ishai, Y., Prabhakaran, M., Sahai, A., Wagner, D.: Private circuits II: keep-
ing secrets in tamperable circuits. In: Vaudenay, S. (ed.) EUROCRYPT 2006.
LNCS, vol. 4004, pp. 308–327. Springer, Heidelberg (2006). https://doi.org/10.
1007/11761679 19

25. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 27

26. Knudsen, L.R., Robshaw, M.: The Block Cipher Companion. Information Secu-
rity and Cryptography. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-17342-4

https://doi.org/10.1007/978-3-319-93387-0_4
https://doi.org/10.1007/978-3-319-93387-0_4
https://doi.org/10.1007/978-3-642-29912-4_6
https://doi.org/10.1007/978-3-642-55220-5_24
https://doi.org/10.1007/978-3-642-55220-5_24
https://doi.org/10.1007/978-3-662-46800-5_16
https://doi.org/10.1007/978-3-662-46800-5_16
https://tches.iacr.org/index.php/TCHES/article/view/7270
https://doi.org/10.1007/3-540-44709-1_21
https://doi.org/10.1007/978-3-319-52153-4_6
https://doi.org/10.1007/978-3-319-52153-4_6
http://eprint.iacr.org/2017/395
https://doi.org/10.1007/11761679_19
https://doi.org/10.1007/11761679_19
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-642-17342-4
https://doi.org/10.1007/978-3-642-17342-4

318 G. Barthe et al.

27. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 9

28. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

29. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks - Revealing The Secrets
of Smart Cards. Springer, New York (2007). https://doi.org/10.1007/978-0-387-
38162-6

30. Mangard, S., Popp, T., Gammel, B.M.: Side-channel leakage of masked CMOS
gates. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 351–365. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30574-3 24

31. Moss, A., Oswald, E., Page, D., Tunstall, M.: Compiler assisted masking. In:
Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 58–75. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-33027-8 4

32. Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-
channel attacks and glitches. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006.
LNCS, vol. 4307, pp. 529–545. Springer, Heidelberg (2006). https://doi.org/10.
1007/11935308 38

33. Trichina, E.: Combinational logic design for AES subbyte transformation on
masked data. Cryptology ePrint Archive, Report 2003/236 (2003). http://eprint.
iacr.org/2003/236

34. Zhang, J., Gao, P., Song, F., Wang, C.: SCInfer: refinement-based verifica-
tion of software countermeasures against side-channel attacks. In: Chockler, H.,
Weissenbacher, G. (eds.) CAV 2018, Part II. LNCS, vol. 10982, pp. 157–177.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96142-2 12

https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-0-387-38162-6
https://doi.org/10.1007/978-0-387-38162-6
https://doi.org/10.1007/978-3-540-30574-3_24
https://doi.org/10.1007/978-3-642-33027-8_4
https://doi.org/10.1007/11935308_38
https://doi.org/10.1007/11935308_38
http://eprint.iacr.org/2003/236
http://eprint.iacr.org/2003/236
https://doi.org/10.1007/978-3-319-96142-2_12

Automated Formal Analysis
of Side-Channel Attacks on Probabilistic

Systems

Chris Novakovic(B) and David Parker

School of Computer Science, University of Birmingham, Birmingham, UK
{c.novakovic,d.a.parker}@cs.bham.ac.uk

Abstract. The security guarantees of even theoretically-secure systems
can be undermined by the presence of side channels in their implementa-
tions. We present Sch-imp, a probabilistic imperative language for side
channel analysis containing primitives for identifying secret and publicly-
observable data, and in which resource consumption is modelled at the
function level. We provide a semantics for Sch-imp programs in terms
of discrete-time Markov chains. Building on this, we propose automated
techniques to detect worst-case attack strategies for correctly deducing a
program’s secret information from its outputs and resource consumption,
based on verification of partially-observable Markov decision processes.
We implement this in a tool and show how it can be used to quantify
the severity of worst-case side-channel attacks against a selection of sys-
tems, including anonymity networks, covert communication channels and
modular arithmetic implementations used for public-key cryptography.

1 Introduction

Side channels are covert channels that convey information about the behaviour
of a hardware or software system implementation beyond what was intended by
its design. Information from a system’s side channels—most commonly via their
use of resources such as time or power, or their production of emissions such as
electromagnetic radiation or sound—may be combined with information gained
via the system’s regular output channels in such a way that an observer may be
able to correlate the system’s overt behaviour with information they are unable
to directly observe, such as data stored in a program’s memory.

Side channels are most impactful in systems that attempt to ensure the
confidentiality of some secret data being processed, even in systems that are
theoretically secure. Software-level attacks often leverage authorised access or
exposure to the system that the attacker already has, making them particularly
potent: for instance, a timing side channel may be exploitable by an attacker with
a user account on the same system, or with a virtual machine running on the same
hypervisor (e.g. [19,22]). Hardware-level attacks—such as power analysis—were
once prohibitively expensive to mount, but thanks to the ever-increasing quality
of consumer-level gadgets and falling cost of specialist hardware, even they are
c© Springer Nature Switzerland AG 2019
K. Sako et al. (Eds.): ESORICS 2019, LNCS 11735, pp. 319–337, 2019.
https://doi.org/10.1007/978-3-030-29959-0_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29959-0_16&domain=pdf
http://orcid.org/0000-0001-5077-0626
http://orcid.org/0000-0003-4137-8862
https://doi.org/10.1007/978-3-030-29959-0_16

320 C. Novakovic and D. Parker

now within reach of attackers with modest resources; e.g., it is now possible to
use $50 software-defined radios to break widely-used cryptosystems [8,9].

Given the potential severity and relative ease of performing successful side-
channel attacks, there is a need to be able to verify that implementations of
theoretically-secure systems are free of such vulnerabilities—or, in cases where
side channels are an unavoidable consequence of the system’s intended behaviour,
that they do not leak more than a maximum permitted amount of information
about the secret data being processed. When an undesirable side-channel does
exist, we also want to know the execution path through the system that causes
the side channel to arise, so that it can be eliminated or mitigated.

This paper presents a framework for automatically analysing systems for the
presence of side channels in the face of an adversary with knowledge of the sys-
tem’s behaviour (although not necessarily the secret information it is processing)
and the capability to observe its outputs; this is analagous to a physical attacker
with (e.g.) a hardware schematic or program source code and the ability to time
certain operations or empirically measure their power consumption. Since prob-
ability is an important factor in the design and implementation of many security
protocols and systems, we focus on the analysis of probabilistic systems.

We have developed Sch-imp, a probabilistic language featuring control flow
structures (functions, conditionals and loops), scoped variable declaration and
assignment, and the ability to indicate that certain values are output publicly.
The language is expressive enough that non-trivial models can be encoded suc-
cinctly. The program’s secret information is stored in variables defined with the
keyword initial. As with regular variables in Sch-imp, the values of initial vari-
ables are assigned according to a probability mass function (p.m.f.); however,
the attacker does not necessarily know which concrete value was drawn from
each p.m.f. and assigned to each initial variable, and the attacker’s goal is there-
fore to maximise what they learn about these concrete values by observing the
program’s externally-visible behaviour.

A novelty of this framework is the ability to reason about the resource usage
of Sch-imp programs. A resource function is declared alongside a Sch-imp pro-
gram, which defines how (a subset of) functions declared in the program make
use of resources when invoked. While our focus in this paper is on how functions
consume time and power, the framework is flexible enough that any other con-
sumable resource could be considered. We assume that the attacker is capable
of monitoring the program’s resource usage as it executes, and may exploit it in
an effort to compromise the secrecy of its initial variables.

We provide a semantics for the execution of Sch-imp programs that is param-
eterised by the resource function and defined in terms of a discrete-time Markov
chain (DTMC). The states of the DTMC capture two constructs of relevance
to side-channel analysis: the set of concrete mappings for each initial variable
declared in the program, and an observation function encoding all of the infor-
mation about the program’s behaviour that is exposed to the attacker.

First, we systematically explore and construct this DTMC representing the
(probabilistic) behaviour of the system. We then use this to construct a partially-
observable Markov decision process (POMDP) in which the initial variable

Automated Analysis of Side-Channel Attacks on Probabilistic Systems 321

information from each terminating state is hidden. The partial observability
property of a POMDP is ideal for modelling the uncertain knowledge of the
Sch-imp program’s internal state (specifically, the concrete value of each initial
variable for a particular execution trace) from the attacker’s perspective. We
then solve the POMDP to identify the attacker’s optimal strategies for learning
the hidden initial variable information by observing the outputs and resource
usage. In doing so, we compute the (worst-case) probability of such an attack
succeeding, thus meaningfully quantifying the worst-case exposure of the pro-
gram’s secrets.

Our approach is fully automated and we have implemented it in a tool [1]. An
analyst need only encode their system in Sch-imp, along with the resource usage
of its functions (which could be empirically measured). The tool then explores
the DTMC representing the system’s state space and constructs and solves the
POMDP modelling the attacker’s uncertain knowledge of this state space using
an extension [17] of the Prism [13] model checker. The two phase construction of
the POMDP (via a DTMC) provides opportunities to aggressively minimise the
state space of the models. This is an important consideration for any technique
based on exhaustive state space exploration. We illustrate the practicality and
applicability of our techniques and tool by applying them to a selection of case
studies: an anonymity network, a covert communication channel, and a modular
arithmetic implementation used for public-key cryptography.

1.1 Related Work

The leakage of information from a secret channel to a public channel in insecure
systems is a well-known problem, and has been studied extensively. Many exist-
ing approaches use concepts from information theory to quantify the leakage;
common measures include Shannon entropy, min-entropy, and mutual informa-
tion. (Smith [20] performs a brief survey.) There is no single measure that is
appropriate for use in all scenarios [2], and it is often difficult to interpret their
concrete effect on the system’s security. In contrast, our framework provides
an easily-understood metric: the probability that the attacker’s best possible
strategy successfully manages to compromise the system’s secret information.

We consider the effect of side channels on probabilistic systems in which
the secret information is present at initialisation and outputs (including the use
of resources) occur as the system executes and eventually terminates. Informa-
tion flow and side-channel analysis frameworks for several other types of system
exist, including non-terminating [3,23] and interactive [12] systems. Although
our framework does not currently consider the case where the attacker is able to
interact with and observe the system simultaneously, it is intended to be extend-
able to this case by modelling the entire execution of the system as a POMDP
and the attacker’s inputs as nondeterministic choices.

There are many examples of probabilistic languages in the literature, e.g. in
artificial intelligence, where reasoning under uncertainty in probabilistic envi-
ronments is common. These languages are inappropriate for use in our work, as
either they are too low-level to succintly encode the systems (and their resource

322 C. Novakovic and D. Parker

usage) described in Sect. 4 (e.g. [7]), or because uncertainty of and belief about
the program’s state are an inherent aspect of the language (e.g. [18]); our work
infers the attacker’s uncertainty as the POMDP is constructed, and does not
require that complexity to be part of the language encoding the system itself.
Sch-imp is most closely related to Ch-imp, a probabilistic language for infor-
mation flow analysis that features in our earlier work [6]. As in Sch-imp, the
execution of Ch-imp programs is defined as a semantics that induces a DTMC;
however, Ch-imp has no notion of subroutines or functions that define their
resource usage, which are needed for side-channel analysis.

While POMDPs are widely used in other areas of research, their application
to quantitative information flow analysis is less well-studied. Marecki et al. [15]
analyse unauthorised information leaks in one-to-many broadcast systems, using
POMDPs to model the sender’s uncertainty about the recipient’s subsequent
handling of the secret information; Tschantz et al. [21] have a similar concern.
The covert channel example that we use as an example in Sect. 4 was analysed
as a POMDP in [17], but that does not explicitly consider side channels or
attack strategies. To the best of our knowledge, our framework is the first to use
POMDPs for the formal analysis of side-channel attacks.

2 A Language for Formal Side-Channel Analysis

We now present Sch-imp, the probabilistic language used by our framework. In
this section, we give the syntax of the language, explain how resource usage is
modelled in Sch-imp programs, and give a formal definition of the semantics.

2.1 The Sch-imp Language

The grammar for Sch-imp is shown in Fig. 1 and we give an illustrative example
program in Fig. 2 (a larger example for one of our case studies can also be found
in Appendix A). Values of variables are rational numbers, assigned according to
a p.m.f. over Q. There are two types of variables: initial variables (declared with
the initial command at the start of the program, whose initial values are con-
sidered “secret” and therefore of interest to an attacker), and regular variables
(declared with the new command, and which have no secrecy connotations). Ini-
tial variables, and regular variables declared immediately afterward, are visible
to all functions, while variables declared inside function bodies and if and while
blocks are in scope only within those constructs. We consider programs that
declare a variable with the same name twice in the same scope or that refer to
undefined variables to be badly-formed.

Following the declaration of top-level variables, a program consists of at least
one function definition followed by the invocation of one of these functions.
Function bodies may invoke other functions, subject to the limitations described
in Sect. 2.2. Before a function returns control to its caller, it may output the result
of evaluating one or more arithmetic expressions with the output command; these
values are considered “public” and visible to the attacker.

Automated Analysis of Side-Channel Attacks on Probabilistic Systems 323

Fig. 1. The Sch-imp grammar. V is a variable name, A is an arithmetic expression, B
is a Boolean expression, and ρ is a p.m.f. over arithmetic expressions.

Fig. 2. A Sch-imp program and resource function containing a side channel when i = 0.
_ represents any arithmetic constant permitted by Sch-imp (i.e., a rational number).

2.2 Resource Usage in Sch-imp Programs

While the overt behaviour of Sch-imp programs is expressed by the syntax in
Fig. 1, we are primarily interested in the covert information about the program’s
behaviour that is revealed during its execution. In reality, this covert information
is most often revealed through a system’s use of available resources, typically
time and power. Since functions represent the broadest level of control flow
within Sch-imp programs, and because the behaviour of a function typically
varies depending on the arguments passed to it, it is natural to reason about
the resource usage of a program’s functions based on how they are called. We
therefore employ a resource function that defines how functions in the Sch-imp
program consume time and power based on the arguments passed to them.

Definition 1 (resource function). A resource function R for a Sch-imp pro-
gram P ranges over a subset of the functions declared in P and, for each such
function F , partially maps sequences of arguments (q1, . . . , qn) to probability dis-
tributions over tuples (N×N) that define the number of units of time that elapse
and of power that are consumed when F (q1, . . . , qn) is executed.

Similarly to how a Sch-imp program can be seen as a formal encoding of
a system, a resource function can be seen as a formal encoding of a system’s

324 C. Novakovic and D. Parker

resource usage; as such, the information in a resource function could (e.g.) be
determined empirically from the resource usage of a system’s implementation.

An example Sch-imp program and its resource function are given in Fig. 2.
While the program theoretically does not overtly leak information about the
secret value of the initial variable i—it ultimately has no effect on the value of o
that is output and visible to the attacker—the resource function indicates that
the function f() on average executes slightly faster when its parameter x is 0,
perhaps because of the extra operation that is performed when x > 0. Because
the value of x is directly related to that of i when it was declared, this in fact
presents a timing side channel that leaks information about i to the attacker.

Although function bodies consist of one or more commands, we take a high-
level view of their resource consumption: their commands consume resources
as a single unit, rather than discretely. From the perspective of the attacker, a
function that consumes a non-zero amount of time or power when it executes
does so atomically, regardless of the size or complexity of its body. In order
to provide a clean definition of resource usage, we introduce the notion of an
instantaneous function, whose execution takes no time and consumes no power
from the perspective of the attacker; this is defined formally below. Any other
function is referred to as non-instantaneous.

Definition 2 (instantaneous function). A Sch-imp function F with n
parameters is instantaneous with respect to a resource function R iff F /∈
dom (R) or R (F) (q1, . . . , qn) = {(0, 0) → 1} for any argument sequence
(q1, . . . , qn).

Because function bodies may themselves invoke functions, it is unclear what
information an attacker would learn about a program if a non-instantaneous
function A were to invoke another non-instantaneous function B given the above
definitions: because the commands in a non-instantaneous function body con-
sume resources as a single unit, the resources consumed by B would also appear
to be consumed during its invocation in A, at which point A would no longer
necessarily consume the resources dictated by the resource function, thus cre-
ating a contradiction. To simplify matters, we consider programs in which non-
instantaneous functions invoke non-instantaneous functions to be badly-formed.
All other forms of invocation, including (bounded) recursive invocation of instan-
taneous functions, are permitted.

Information Leakage Model. The presence of side channels in a system can be
characterised as a special case of information leakage in which the “public infor-
mation” in the system consists not only of the overt outputs that the system
produces on the public channel, but also information on other visible channels
that can be correlated with the information from the public channel to form a
new multiplex channel with a greater capacity. This creates a best-case scenario
in which an attacker observing the multiplex channel learns nothing more about
the system’s secret information than they do by observing only the public chan-
nel; this indicates that the system is free from side channels. Alternatively, the
worst-case scenario is the one in which the attacker learns nothing about the

Automated Analysis of Side-Channel Attacks on Probabilistic Systems 325

system’s secret information by observing the public channel, but learns all of
the secret information when observing the multiplex channel.

2.3 Semantics for the Sch-imp Language

The execution of a Sch-imp program is defined in terms of a discrete-time
Markov chain (DTMC):

Definition 3 (discrete-time Markov chain). A DTMC D is a tuple
(S, s̄,P), where S is a finite set of states, s̄ ∈ S is an initial state, and
P : S × S → [0, 1] is a transition probability matrix such that

∑
s′∈S P(s, s′) = 1

for all s ∈ S.

In the context of Sch-imp, the states in S define the execution status of
the program at any given moment, providing a notion of a program counter,
storage for bindings for in-scope variables, and information about the secret
data, observable data and resource usage that has occurred up to that point
during the program’s execution. More formally:

Definition 4 (state). A Sch-imp state is a tuple (F , I, t, p,Δ), where:

• F : C ×seq (Var → Q) is a stack of commands (with their associated variable
scope frames) that remain to be executed;

• I : Var → Q is a mapping consisting of the initial variables defined during
the program’s execution along with their values;

• t : N is the total time that has elapsed so far during the program’s execution;
• p : N is the cumulative amount of power that has been consumed so far during

the program’s execution;
• Δ : N → N × seq (Q) is an observation function defining the cumulative

amount of power consumed by and values that were output from the program
at a given time.

F behaves like a call stack: each element in F represents the commands to be
executed during invocation of a single function, along with a sequence of bindings
for variables that are visible to that function, which we denote with σ. The first
element in F represents the function currently being executed. Within σ, the
last element represents the program’s global scope (i.e., it contains bindings for
the top-level variables declared at the start of the program); the penultimate
element contains bindings for the function’s parameters based on the arguments
present when the function was invoked, and the remaining elements represent
block-level scope frames within the function, becoming narrower toward the start
of the sequence. I maintains the secret values of the initial variables at the point
at which they were declared, while the observation function Δ represents the
attacker’s knowledge of the program’s execution status; they are respectively
formalisations of the program’s secret and multiplex channels described earlier.

The semantic rules for the Sch-imp commands relevant to side-channel anal-
ysis are shown in Fig. 3; the remaining rules are intuitive or result in deterministic

326 C. Novakovic and D. Parker

transitions between states that are not relevant to side-channel analysis, and are
omitted for brevity. We write s

p−→ s′ to denote the existence of a DTMC transi-
tion from state s to state s′ with probability p (i.e. P(s, s′) = p). Formally, there-
fore, the semantics of a Sch-imp program is a DTMC (per Definition 3), where
S is a finite set of Sch-imp states (per Definition 4), s̄ = ((P, ({})), {}, 0, 0, {}),
and P is defined by the rules in Fig. 3 (amongst others).

There are two sources of probabilistic behaviour in Sch-imp. The first is the
initial, new and assignment commands, which bind a value to a variable according
to a p.m.f. ρ. Variable scope is maintained as functions and command blocks (i.e.,
branches of if commands and bodies of while loops) execute via the creation and
destruction of scope frames. We note that the value of a variable declared with
the initial command is only considered secret at the point at which it is declared ;
thus, secrecy is a property of the specific value of an initial variable, rather than
of the variable itself.

The second source of probabilistic behaviour is the resource function R:
when a function is invoked, the cumulative elapsed time and power consump-
tion of the program are incremented probabilistically according to the p.m.f.
R (F, (q1, . . . , qn)) (where (q1, . . . , qn) are the arguments passed to F after eval-
uation) and are stored in s′. The new time and power information is also stored
in the observation function Δ, indicating that the attacker is able to observe
how the program is consuming resources as it executes.

The output command indicates that the given sequence of values (following
evaluation of the expressions) is revealed on the program’s public channel. This
sequence is associated with the current amount of elapsed time in the observation
function; if values have already been output by the program at this time point,
the new outputs are appended to the existing sequence. This means that the

Fig. 3. The side-channel semantic rules of Sch-imp. σG is the global variable scope
frame, V(F) and C(F) are the parameter names and body of function F respectively,
Δp(t) and Δo(t) are the power consumption and the list of values output at time t.

Automated Analysis of Side-Channel Attacks on Probabilistic Systems 327

invocation of multiple instantaneous functions, all producing outputs, will appear
to the attacker as an instantaneous stream of outputs on the public channel.

In this work, we assume that Sch-imp programs always eventually terminate
(with probability 1) and that their semantics yields a finite state space. We define
terminating states as those in which an end command is executed, and denote
the set of all such states S.

3 Automated Detection of Side-Channel Attacks

Using the semantics defined above, we can construct a DTMC representing all
possible executions of a Sch-imp program. From this, we describe how to build
and analyse a partially-observable Markov decision process to detect and quan-
tify side-channel attacks that compromise the program’s secret information.

3.1 POMDPs

We model the attacker’s capabilities using partially-observable Markov decision
processes (POMDPs), which are an extension of a Markov decision processes
(MDPs). POMDPs model decision-making in the context of a probabilistic sys-
tem where decisions can only be made based on observable parts of the system.
We summarise the key concepts below, adopting the notation of [17].

Definition 5 (POMDP). A POMDP is a tuple P = (S, s̄, A, T ,O,O), where:
S is a finite set of states; s̄ ∈ S is an initial state; A is a set of actions; T :
S × A → (S → [0, 1]) is a (partial) transition probability function; O is a finite
set of observations; and O : S → O is a labelling of states with observations.

In each state s ∈ S of a POMDP, there is a choice between the set of available
actions A(s) def= {a ∈ A | T (s, a) is defined}. States with the same observation
must have the same available actions, i.e., for states s, s′ ∈ S with O(s) = O(s′),
we have A(s) = A(s′). Once an action a ∈ A(s) is chosen in state s, the next
state of the POMDP is determined by the probability distribution T (s, a), i.e.
it transitions to state s′ with probability T (s, a)(s′).

A strategy (also known as a policy) of a POMDP P resolves the choice of
action taken in each state, based on the history of its execution so far. Formally, it
is defined as a function from any finite path of P to one of the actions available in
the final state of the path. We are only interested in observation-based strategies
which make decisions based purely on the observation O(s) for each state s of the
POMDP’s history. In this work, we only need finite-memory strategies, whose
choices depend not on the full history of the POMDP, but on one of a finite
set of modes, which are switched between over time. Under a given strategy σ
for P, we can define a probability measure Prσ

P over the set of possible paths
(executions) through the POMDP [11] and use this to quantify various measures
of interest. In this paper, we concern ourselves with the probability Prσ

P(♦T) of
reaching a set T ⊆ S of target states. We then wish to compute the maximum
probability, over all possible strategies, of reaching T , and an optimal strategy
σ∗ which achieves this. While this problem is known to be undecidable [14], a
variety of practical techniques exist to approximate the optimal probability.

328 C. Novakovic and D. Parker

3.2 Detecting Side Channels Using POMDPs

We represent the interaction of a Sch-imp program and an attacker as a
POMDP. Probabilities in the POMDP are used to model the initial assignment
of values to initial variables. We use partial observation to accurately model the
capabilities of an attacker, who can observe the program’s multiplex channel and
must make decisions about how to proceed based only on this information.

The partial observability property restricts the knowledge of the POMDP’s
current state s to its observations O(s) ∈ O. This is useful for the purpose of
modelling an attacker in Sch-imp, as it allows privileged parts of the program’s
status (e.g., the concrete value of each initial variable) to be hidden while expos-
ing information available on the program’s multiplex channel via O.

For a Sch-imp program P, we will denote by PP the POMDP constructed to
analyse it. The starting point for this is the DTMC representing the semantics
of P, which we denote DP. Intuitively, DP represents the execution of P, parts
of which are observable by the attacker; we then allow the attacker to guess the
value of the program’s initial variables based on these observations.

The DTMC has a set of terminating states S in which an end command is
executed; we assume that these states are reached with probability 1. Each state
in S contains two constructs relevant to side-channel analysis of the program:
I, which contains the original (secret) value of each of its initial variables, and
Δ, which contains all of its publicly-observable information—a record of when
it produced its outputs, and when it consumed power.

States of PP consist of references to the representations of I and Δ found in
the DTMC’s state, along with Boolean values indicating whether the attacker’s
guess for the value of each initial variable in I is correct. The observation function
O is used to hide I.

The POMDP is constructed in two phases. In the first phase, each unique
representation of both I and Δ is extracted from S and a new state for PP is
constructed from each of them, with the Boolean correctness values remaining
undefined. A transition from the POMDP’s initial state to each of these “phase-
1” states is then added, and assigned a probability equal to the probability in
DP of reaching states in S containing each particular representation of I and Δ.
The probability for all possible such values can be determined simultaneously
by computing the steady-state probability distribution of DP.

In the second phase, another set of states is generated in which the repre-
sentations of I and Δ are undefined, and each of the Boolean correctness values
is set to either true or false; the number of “phase-2” states is therefore 2n,
where n is the number of initial variables declared in the Sch-imp program.
The actions between the “phase-1” and “phase-2” states represent the attacker
guessing a concrete value for each of the initial variables; the set of available
actions between the first and second phases is therefore the Cartesian product of
the sets of possible values for each initial variable. Each action results in a single
deterministic transition to a “phase-2” state in which the correctness variables
are assigned depending on whether each guess is correct.

Automated Analysis of Side-Channel Attacks on Probabilistic Systems 329

Finally, we compute (or approximate) the maximum probability, in PP, of
reaching “phase-2” states where the guesses for all (or, if preferred, a subset) of
the initial variables are correct. A corresponding POMDP strategy that achieves
these values represents the attacker strategy for optimally guessing the program’s
secret information based on its observations.

4 Experimental Results

We have implemented the Sch-imp language and our side channel detection
techniques in a software tool. Here, we describe its implementation and demon-
strate the applicability of our approach by using it to detect and quantify side
channels in three case studies. The tool, as well as the Sch-imp code for these
examples, is available online [1].

4.1 Implementation

Our tool is primarily implemented in Java. Parsers for the Sch-imp language
and resource function definitions are developed in Antlr. Construction and
analysis of DTMCs and POMDPs is achieved by building upon the Prism model
checker [13], in particular the POMDP extension presented in [17].

Construction of the DTMC for a Sch-imp program is achieved by imple-
menting the semantic rules shown in Fig. 3 as well as the ones omitted from this
paper for brevity. These are used in conjunction with PRISM’s model generator
interface, used to systematically construct probabilistic models in its “explicit”
model checking engine. A number of optimisations are employed here to reduce
the amount of time and memory required to fully explore the DTMC’s state
space. The most effective optimisation drastically reduces the total number of
states in the model altogether: since many commands in Sch-imp result in deter-
ministic transitions between states, paths of deterministic transitions between
more than two states are collapsed into a single deterministic transition between
the states at the start and end of the path. This allows our tool to be a faithful
representation of the formal model presented in this paper, while still being able
to analyse systems that it otherwise could not.

The construction of the POMDP representing the attack model of a Sch-imp
is achieved using a second phase of the model generator interface. Transition
probabilities are computed using a steady-state analysis of the DTMC. The
resulting POMDP is then (approximately) solved to determine an optimal attack
strategy. This is done using the approach of [17], which is based on the construc-
tion and solution of a grid-based discretisation of the belief space of the POMDP.
For our experiments, we fixed a grid resolution of 8 (see [17] for details), which
sufficed to give accurate approximations (see Sect. 4.5).

4.2 Traceability in Anonymous Communication Networks

Our first case study is the DC-net [4] communication network protocol, which
provides for the anonymous transmission of a single bit of information per round

330 C. Novakovic and D. Parker

amongst its constituent nodes. Assuming the nodes are arranged in a ring, each
round proceeds as follows. Each pair of adjacent nodes randomly generates a
single bit that is known only to them; this is achieved by each of the nodes
randomly generating a single bit and transmitting it to the other node over a
private secure channel, allowing each node to independently compute the shared
bit by XORing the bit they generated with the bit they received from the other
node. After this process is complete, each node has knowledge of two shared bits
(one shared with each node adjacent to them). Each node then XORs these two
known shared bits and publicly broadcasts the output of this operation to the
other nodes, with the exception of the node that wants to transmit one extra
bit anonymously during this round; this node instead broadcasts the inversion
of their XOR output. When all nodes have broadcasted, each node can indepen-
dently verify whether one of the nodes transmitted an extra bit in this round by
XORing together all of the broadcasted bits: a result of 1 indicates the trans-
mission of an extra bit; 0 indicates the absence of an extra bit.

While the DC-net is theoretically secure—the identity of the node transmit-
ting the extra bit of information is concealed both to other nodes in the DC-net
and to external observers—a faulty implementation may nevertheless leak infor-
mation about the transmitting node’s identity. Many different implementation
errors could cause this situation. For example, since the node attempting to
communicate anonymously must perform an additional computation compared
to the other nodes, an implementation that fails to account for the additional
processing time this computation incurs may cause a noticeable delay before
the transmitting node broadcasts. This would therefore introduce a timing side-
channel into the protocol that reveals the identity of the transmitting node.

A Sch-imp encoding of one round of a four-node DC-net is shown in
Appendix A. One of the nodes is chosen uniformly to become the transmit-
ting node in this round; its identity is stored in the initial variable transmitter,
indicating that the transmitting node’s identity should be concealed from the
attacker. Since we assume that the model itself is known to the attacker, we are
also implicitly stating that the attacker knows that each node is equally likely
to be the transmitter. The broadcast() function executes the protocol from the
perspective of one node (whose identity is given by the index parameter), and is
invoked four times by the main() function; whether or not this node is the trans-
mitter is given by the is_transmitter parameter. The single-bit value stored in b,
which is revealed publicly at the end of the function, is computed by XORing
the values of my_bit and their_bit; if this node is the transmitter, the value of
b is then XORed with 1 to invert its value. The extra time taken to perform
the additional computation in the case of the transmitting node is reflected in
the resource function definition for broadcast(), in which broadcast()’s execution
consumes a constant amount of power, but which takes differing amounts of time
to execute depending on whether the node is the transmitter. The question of
interest, therefore, is how much information about the identity of the transmit-
ting node is revealed to the attacker as a result of the attacker observing the
timing of the four executions of the broadcast() function, and how the attacker

Automated Analysis of Side-Channel Attacks on Probabilistic Systems 331

can improve upon their a priori random guess (a strategy that succeeds with
probability 0.25, as each node is equally likely to be the transmitter).

We consider the scenario in which the elapsed time is drawn from an approx-
imately binomial distribution centred on 4 units of time when the broadcasting
node is the transmitter and 3 units of time otherwise, modelling a situation in
which the transmitter will on average take longer to broadcast but with enough of
an intersection between the two distributions that the attacker cannot be sure of
their identity based solely on the timing side channel. In this scenario, Sch-imp
identifies an attacker strategy that successfully deanonymises the transmitter
with probability ≈ 0.527, a significant improvement over the probability of 0.25
expected of the ideal implementation.

4.3 Covert Information Flows over a Unidirectional Network

The purpose of a unidirectional network is to provide a means for, and enforce-
ment of, one-way communication between hosts. An example is the National
Research Laboratory’s Network Pump [10], intended for use in classified net-
works: it divides the network into “low-security” and “high-security” partitions
and, while hosts in the low-security partition may send messages to hosts in the
high-security partition, it forbids information from being communicated in the
opposite direction. However, the Network Pump also provides confirmation of
receipt of messages, which introduces the possibility of a covert channel being
created between the partitions via collusive timing delays in message receipt con-
firmations: if hosts in each partition can mutually agree on a scheme for encoding
bits of information in the time taken between the low-security node sending its
message and the high-security node confirming receipt of that message, a for-
bidden side channel from the high-security node to the low-security node can
be created. Although a well-designed unidirectional network will introduce noise
into this side channel by probabilistically inserting its own delay between receiv-
ing the confirmation from the high-security node and forwarding it on to the
low-security node, the nodes will always be able to defeat the network by agree-
ing on a sufficiently long delay; there is therefore a trade-off to be made between
limiting the capacity of the side channel (i.e., by maximising the delay) and
maintaining network performance.

In the Sch-imp model of this scenario, a high-security node attempts to
covertly communicate a secret value in an initial variable h (which is equally
likely to be 0 or 1) to a low-security node via a unidirectional network. The
acknowledgement delay introduced by the high-security node lasts for h0 units
of time when h is 0 and h1 units of time when h is 1. The network introduces
its own probabilistic delay of 1/2hn units of time, where n is the value of h. If
the low-security node does not receive an acknowledgement after 10 units of
time, it assumes the message has been lost. The nodes may exchange up to m
messages in an attempt to communicate the value of h. By fixing the value of
h0 and varying the values of h1 and m, we can identify the artificial delays that
the high-security node can choose to insert to maximise the probability that the

332 C. Novakovic and D. Parker

value of h is leaked successfully within the permitted number of messages while
maintaining network performance.

Fig. 4. The vulnerability of the unidirectional network to side-channel attacks for a
fixed value of h0 (2) and varying values of h1 and m.

Figure 4 shows the probability of h successfully being communicated for a
fixed value of 2 for h0, values of h1 from 3–10, and values of m from 5–15.
The colluding nodes quickly benefit from diminishing returns as h1 and m both
increase: when h1 = 4, the nodes can already leak h with probability ≈ 0.997
within 4 messages, and the success rate does not improve significantly either by
increasing the artificial delay or by exchanging more messages.

4.4 Power Consumption of Square-and-Multiply Algorithms

Modular exponentiation—a modular arithmetic variant of the exponentiation
operation—is a fundamental operation in public-key cryptography. Operations
are of the form bn mod m. While it is cheap to compute directly for small values
of n, more efficient algorithms are required when computing modular exponen-
tiations for larger values of n, such as those used as private or public keys in
public-key cryptography. Square-and-multiply is one such algorithm: starting
with r = 1, for each bit ni in n, r is squared modulo m and then multiplied
by b modulo m if bit ni is 1; the result of the modular exponentiation is the
final value of r. While this algorithm is able to compute modular exponentia-
tions with lower space and time complexities than the direct method due to the
efficiency with which the squaring operation can be performed in hardware, the
multiplication operation is still comparatively expensive. Crucially, because this
expense only occurs for certain bits of n, naive implementations of the algorithm
leak information about n. This has been the basis of power analysis side-channel
attacks against cryptosystems that rely on the impracticality of inverting the
modular exponentiation by computing the discrete logarithm (e.g., [16]).

In the Sch-imp modelling of this scenario, we assume a naive implementation
of square-and-multiply is being used to compute a ciphertext for a public-key
cryptosystem, so the exponent n is in fact a private key e whose value is secret;

Automated Analysis of Side-Channel Attacks on Probabilistic Systems 333

we select values of n from a uniform distribution over 0–7. The values of b and
m are unimportant in this scenario, so we arbitrarily fix them at b = 42 and
m = 13. The core of the algorithm is implemented in the sq_mult() function,
which in turn calls the functions sq_mod() and mult_mod() depending on the
values of the individual bits of e. Since modular multiplication is a more expen-
sive operation than modular squaring, the resource function assigns a greater
consumption of power to mult_mod() than to sq_mod(). The function outputs
the result of the exponentiation.

Even in an implementation free of side channels, the sq_mult() function
necessarily leaks information, as our attacker model assumes that the attacker
knows the value of m and the range of values for b (because of their knowledge of
the system’s behaviour) as well as the result of the exponentiation (by observing
the outputs). The question is therefore how much more likely it is that the system
leaks information about n due to the presence of side channels. In the ideal
case—i.e., in which there is no time or power cost to invoking either sq_mod()
or mult_mod(), and therefore no side channel to exploit—the attacker finds
a strategy that successfully recovers e with probability ≈ 0.406. On the other
hand, when sq_mod() draws power from an approximately binomial distribution
centred on 3 units and mult_mod() from another centred on 5 units—simulating
not only the additional power draw of the more complex function, but also
the imprecise nature of power consumption and power analysis—the probability
of finding an attack strategy that successfully recovers e increases to ≈ 0.964,
almost certainly compromising the secrecy of the key.

There are various alternative modular exponentiation algorithms that mit-
igate this side channel, usually at the expense of efficiency. One example is
square-and-multiply-always, in which the modular multiplication is performed
for every bit of n and the result discarded if it is not needed. While Sch-imp
verifies that this algorithm is free of side channels—a successful attack is found
with probability ≈ 0.406, indicating that it is an ideal implementation—it is
clearly wasteful. Chevallier-Mames et al. [5] propose a number of more efficient
side-channel-resistant alternatives that rely on modular multiplication alongside
standard arithmetic operations such as addition and bitwise XOR; they assume
that these standard operations are side-channel-equivalent, assumptions that
we also make for Sch-imp’s model (i.e., that they consume the same resources
when executing regardless of their operands). Sch-imp is able to verify that the
algorithms in Figs. 2(b) and 4(b) of [5] are also equivalent to the ideal square-
and-multiply implementation.

4.5 Evaluation

Table 1 summarises the performance of our tool with these case studies. The
“Result” columns show the approximate probability p of the attacker’s best
possible strategy succeeding. The “error” values refer to the absolute difference
between the lower and upper bounds returned by the approximate POMDP
solution technique of [17] used in our tool. The largest error we encountered was
0.03 (in the unidirectional network examples where h1 ≥ 8). Tighter bounds can

334 C. Novakovic and D. Parker

be obtained if required using a finer grid resolution, at a cost of additional time
and memory. The table also shows the size of both the DTMC and POMDP
constructed, and the time required for the full process (we ran our experiments
on a 2.1GHz machine with the Java virtual machine allocated 8GB of memory).

Table 1. The DTMC and POMDP sizes for a selection of examples, along with the
result of (and total time taken for) the analysis.

Example States Result Time (min)
DTMC POMDP p Error

DC-net 93333 20003 0.527 0.017 63

Uni. network: h1 = 3, m ≤ 15 142547 36009 0.991 0.000 13

Uni. network: h1 = 10, m ≤ 5 43461 12403 0.997 0.003 1

Square-and-multiply: naive 60749 27003 0.964 0.000 16

The framework and tool both rely on the ability to identify the Sch-imp
program’s terminating states and the probability of reaching each of them; this
requires the exploration of the program’s entire state space, which is infeasible
in practice for large systems due to the excessive time and space complexities.
However, our tool makes a number of aggressive optimisations to reduce the
complexity of the DTMC model of a program’s execution; most significantly,
paths consisting of multiple deterministic transitions are collapsed into a single
transition, reducing both the number of states and transitions without affecting
the accuracy of the analysis. This explains the much larger analysis time for the
DC-net example in Table 1 compared to the other examples, even though the
number of states is similar: the DC-net program induces several orders of magni-
tude more deterministic transitions than the others, and while these transitions
must be explored (hence the higher execution time), the tool only stores states
and transitions that affect the side-channel analysis. Without such optimisations,
the DC-net example would otherwise be infeasible to analyse.

5 Conclusion

We have presented a framework for formally analysing probabilistic systems for
the presence of side channels; systems are specified in Sch-imp, an imperative
probabilistic language, and are then systematically analysed through the con-
struction and solution of a POMDP. This identifies possible side-channel attacks
in the face of an adversary with knowledge of the system’s behaviour, outputs
and resource usage, and culminates in an easily-understood metric: the prob-
ability that the adversary’s most effective attack successfully compromises the
system’s secret information, plus the strategy it employs to do so. We imple-
mented our approach in a tool and applied it to several case studies. Future
work will analyse extended attack models, for example where we also consider
the most efficient way in which an attacker can observe the system.

Automated Analysis of Side-Channel Attacks on Probabilistic Systems 335

Acknowledgements. This work was supported by the PRINCESS project (contract
FA8750-16-C-0045) funded by the DARPA BRASS programme.

A Appendix Sch-imp Model for Sect. 4.2

Sch-imp program:

initial transmitter := { 1 → 1/4, 2 → 1/4, 3 → 1/4, 4 → 1/4 };
new nodes := 4;
new last_my_bit := { 0 → 1/2, 1 → 1/2 };
new last_their_bit := 0;
function broadcast(index, is_transmitter, their_bit) {

new my_bit := 0;
if (index == nodes - 1) {
my_bit := last_my_bit

} else {
my_bit := { 0 → 1/2, 1 → 1/2 }

};
new b := my_bit xor their_bit;
if (is_transmitter == 1) { b := b xor 1 };
last_their_bit := my_bit;
output b;
return

};
function main() {

new i := 0;
while (i < nodes) {
new is_transmitter := 0;
if (i + 1 == transmitter) { is_transmitter := 1 };
if (i == 0) {
broadcast(i, is_transmitter, last_my_bit)

} else {
broadcast(i, is_transmitter, last_their_bit)

};
i := i + 1

};
return

};
main();
end

336 C. Novakovic and D. Parker

Resource function:
{

broadcast → {
(_, 0, _) → {(1, 1) → 1/10, (2, 1) → 1/5, (3, 1) → 2/5, (4, 1) → 1/5, (5, 1) → 1/10},
(_, 1, _) → {(2, 1) → 1/10, (3, 1) → 1/5, (4, 1) → 2/5, (5, 1) → 1/5, (6, 1) → 1/10}

}
}

References

1. The Sch-imp Tool (2019). https://www.cs.bham.ac.uk/research/projects/schimp/
2. Alvim, M.S., Chatzikokolakis, K., McIver, A., Morgan, C., Palamidessi, C., Smith,

G.: Axioms for Information Leakage. In: Proceedings of the 29th IEEE Computer
Security Foundations Symposium (CSF 2016), pp. 77–92 (2016)

3. Biondi, F., Legay, A., Nielsen, B.F., Malacaria, P., Wasowski, A.: Information leak-
age of non-terminating processes. In: Proceedings of the 34th International Con-
ference on Foundation of Software Technology and Theoretical Computer Science
(FSTTCS 2014), pp. 517–529 (2014)

4. Chaum, D.: The dining cryptographers problem: unconditional sender and recipient
untraceability. J. Cryptol. 1, 65–75 (1988)

5. Chevallier-Mames, B., Ciet, M., Joye, M.: Low-cost solutions for preventing simple
side-channel analysis: side-channel atomicity. IEEE Trans. Comput. 53(6), 760–768
(2004)

6. Chothia, T., Kawamoto, Y., Novakovic, C., Parker, D.: Probabilistic point-to-point
information leakage. In: Proceedings of the IEEE 26th Computer Security Foun-
dations Symposium (CSF 2013), pp. 193–205 (2013)

7. Dekhtyar, M.I., Dekhtyar, A., Subrahmanian, V.S.: Hybrid probabilistic programs:
algorithms and complexity. In: Proceedings of the 15th Conference on Uncertainty
in Artificial Intelligence (UAI 1999), pp. 160–169 (1999)

8. Genkin, D., Pachmanov, L., Pipman, I., Tromer, E.: Stealing keys from PCs using
a radio: cheap electromagnetic attacks on windowed exponentiation. In: Güneysu,
T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 207–228. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-48324-4_11

9. Genkin, D., Shamir, A., Tromer, E.: RSA key extraction via low-bandwidth acous-
tic cryptanalysis. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol.
8616, pp. 444–461. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-44371-2_25

10. Kang, M.H., Moore, A.P., Moskowitz, I.S.: Design and assurance strategy for the
NRL pump. IEEE Comput. 31(4), 56–64 (1998)

11. Kemeny, J., Snell, J., Knapp, A.: Denumerable Markov Chains, 2nd edn. Springer,
New York (1976). https://doi.org/10.1007/978-1-4684-9455-6

12. Köpf, B., Basin, D.: An information-theoretic model for adaptive side-channel
attacks. In: Proceedings of the 2007 ACM Conference on Computer and Com-
munications Security (CCS 2007), pp. 286–296 (2007)

13. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1_47

14. Madani, O., Hanks, S., Condon, A.: On the undecidability of probabilistic planning
and related stochastic optimization problems. Artif. Intell. 147(1–2), 5–34 (2003)

https://www.cs.bham.ac.uk/research/projects/schimp/
https://doi.org/10.1007/978-3-662-48324-4_11
https://doi.org/10.1007/978-3-662-44371-2_25
https://doi.org/10.1007/978-3-662-44371-2_25
https://doi.org/10.1007/978-1-4684-9455-6
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47

Automated Analysis of Side-Channel Attacks on Probabilistic Systems 337

15. Marecki, J., Srivatsa, M., Varakantham, P.: A decision theoretic approach to data
leakage prevention. In: Proceedings of the 2010 IEEE Second International Con-
ference on Social Computing (PASSAT 2010), pp. 776–784 (2010)

16. Messerges, T.S., Dabbish, E.A., Sloan, R.H.: Power analysis attacks of modular
exponentiation in smartcards. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS,
vol. 1717, pp. 144–157. Springer, Heidelberg (1999). https://doi.org/10.1007/3-
540-48059-5_14

17. Norman, G., Parker, D., Zou, X.: Verification and control of partially observable
probabilistic systems. R. Time Syst. 53(3), 354–402 (2017)

18. Pfeffer, A.: IBAL: a probabilistic rational programming language. In: Proceedings
of the 17th International Joint Conference on Artificial Intelligence (IJCAI 2001),
pp. 733–740 (2001)

19. Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, you, get off of my cloud:
exploring information leakage in third-party compute clouds. In: Proceedings of the
2009 ACM Conference on Computer and Communications Security (CCS 2009),
pp. 199–212 (2009)

20. Smith, G.: On the foundations of quantitative information flow. In: de Alfaro, L.
(ed.) FoSSaCS 2009. LNCS, vol. 5504, pp. 288–302. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-00596-1_21

21. Tschantz, M.C., Datta, A., Wing, J.M.: Purpose restrictions on information use. In:
Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp.
610–627. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40203-
6_34

22. Yarom, Y., Falkner, K.: FLUSH+RELOAD: a high resolution, low noise, L3 cache
side-channel attack. In: Proceedings of the 23rd USENIX Security Symposium, pp.
719–732 (2014)

23. Zhang, D., Askarov, A., Myers, A.C.: Predictive mitigation of timing channels in
interactive systems. In: Proceedings of the 18th ACM Conference on Computer
and Communications Security (CCS 2011), pp. 563–574 (2011)

https://doi.org/10.1007/3-540-48059-5_14
https://doi.org/10.1007/3-540-48059-5_14
https://doi.org/10.1007/978-3-642-00596-1_21
https://doi.org/10.1007/978-3-642-40203-6_34
https://doi.org/10.1007/978-3-642-40203-6_34

Formal Modelling and Verification

A Formal Model for Checking
Cryptographic API Usage in JavaScript

Duncan Mitchell1(B) and Johannes Kinder2

1 Department of Computer Science, Royal Holloway, University of London,
Egham, UK

duncan.mitchell.2015@rhul.ac.uk
2 Research Institute CODE, Bundeswehr University Munich, Neubiberg, Germany

johannes.kinder@unibw.de

Abstract. Modern JavaScript implementations include APIs offering
strong cryptography, but it is easy for non-expert developers to misuse
them and introduce potentially critical security bugs. In this paper, we
formalize a mechanism to rule out such bugs through runtime enforce-
ment of cryptographic API specifications. In particular, we construct a
dynamic variant of Security Annotations, which represent security prop-
erties of values via type-like information. We formalize Security Annota-
tions within an existing JavaScript semantics and mechanize it to obtain
a reference interpreter for JavaScript with embedded Security Annota-
tions. We provide a specification for a fragment of the W3C WebCrypto
standard and demonstrate how this specification can reveal security vul-
nerabilities in JavaScript code with the help of a case study. We define
a notion of safety with respect to Security Annotations and extend this
to security guarantees for individual programs.

1 Introduction

The standardization of cryptographic APIs in JavaScript through the W3C Web
Cryptography API, WebCrypto [31], has made strong cryptography available to
web developers. In theory, this allows non-experts to implement true end-to-end
encryption of confidential data. However, mistakes are easily made when devel-
opers use cryptographic APIs. For example, the JavaScript snippet in Listing 1
generates secure keys and then encrypts and signs a message before sending it.
Here, the developer made the mistake of appending a signature of the plaintext
to the message, allowing an observer to identify retransmissions of the same
message. Mistakes like this undermine the security of the overall system, even
when the implementation of the cryptographic API itself is correct.

Such mistakes are not exclusive to JavaScript, but in fact common across lan-
guages [8,16,20]. Alas, JavaScript exacerbates the problem, due to its dynamic
nature and unconventional semantics [22], which thwart traditional analysis tech-
niques and offer plenty of opportunities to violate API specifications. Exist-
ing work on JavaScript focuses on the verification of protocol implementations
through restriction to small subsets of the language [2,14]. There is currently
c© Springer Nature Switzerland AG 2019
K. Sako et al. (Eds.): ESORICS 2019, LNCS 11735, pp. 341–360, 2019.
https://doi.org/10.1007/978-3-030-29959-0_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29959-0_17&domain=pdf
http://orcid.org/0000-0002-6517-1690
https://doi.org/10.1007/978-3-030-29959-0_17

342 D. Mitchell and J. Kinder

little support to help non-expert developers avoid introducing critical security
bugs into applications built on full JavaScript.

In this work, we introduce a mechanism which rules out misuse of trusted
APIs in JavaScript code through runtime enforcement. We extend the concept
of Security Annotations [19], type-like tags which represent security properties,
such as whether a value is ciphertext or a cryptographic key. Security Annota-
tions are orthogonal to the existing type system and composable to allow for the
expression of multiple distinct security properties.

In particular, we make the following contributions:

– We formalize a runtime semantics for Security Annotations in JavaScript
by extending an existing formal semantics for a core of JavaScript, S5 [22]
(Sect. 4).

– We mechanize Security Annotations, building upon an existing implementa-
tion of S5. We extend this to a reference interpreter for JavaScript programs
through extending the JavaScript-to-S5 desugaring relation (Sect. 5).

– We provide an annotated fragment of the WebCrypto API which defines safe
usage of the API through Security Annotations. Developers can replace the
WebCrypto API with this annotated copy, which allows our mechanism to
report violations of the otherwise implicit API specifications. We demonstrate
how this approach can be used to avoid common cryptographic pitfalls by
detecting violations of security properties in a case study (Sect. 5.3).

– We provide safety guarantees for this Security Annotation mechanism, and
extend these to describe resulting security guarantees for programs using the
annotated WebCrypto fragment (Sect. 6).

A Formal Model for Checking Cryptographic API Usage in JavaScript 343

Fig. 1. Hierarchical Security Annotation judgments [19].

2 Background

We begin by introducing necessary background on Security Annotations
(Sect. 2.1) and our underlying JavaScript semantics (Sect. 2.2).

2.1 Security Annotations

Security Annotations represent security properties valid on objects or values
within a program [19]. For example, the return value of a trusted key generation
API is a valid cryptographic key, so could carry an annotation CryptKey. Annota-
tions are composable: if the value has also been generated as a cryptographically
secure random value (CSRV), then it can be annotated through composition
CSRV ∗ CryptKey, via the commutative operator ∗. Security properties are hierar-
chical: for example, PrivKey is more specific than CryptKey. Security Annotations
therefore have a notion of subannotation judgments, e.g.,PrivKey ≺: CryptKey.
Combined with the composition operator, this yields a lattice of security anno-
tations. We include the rules defining this lattice in Fig. 1. These judgments
follow those given in Mitchell et al. [19]; additional rules governing reflexivity,
transitivity and permutations are included for completeness. In these rules, Si

are arbitrary Security Annotations and Top is the least specific Security Anno-
tation, representing a lack of security properties.

Mitchell et al. [19] enforce Security Annotations statically within a small
lambda calculus. The expression v asS adds S as an annotation to v, representing
newly valid security properties. Similarly, v dropS discards S from v, using a cut

operator to remove an annotation whilst ensuring super-properties remain valid.
We cut the annotation S2 from S1 via the following definition: cut(S1, S2) is the
annotation R with (i) S1 ≺: R and (ii) R ⊀: S2 such that whenever R′ also
satisfies (i) and (ii) in place of R, then R ≺: R′ and R′ ⊀: R [19].

2.2 S5: A Semantics for JavaScript

S5 [22] is a lambda calculus-like language which reflects the semantics of the
strict mode of EcmaScript 5.1 (ES5). S5 is accompanied by a desugaring func-
tion, which takes native JavaScript source programs and translates them to

344 D. Mitchell and J. Kinder

Fig. 2. The reduction relations for S5 [22].

S5 programs. S5 itself is described via small-step semantics, incorporating ES5
features such as getters, setters and eval. The language is not a complete ref-
erence implementation for the entire standard but is tested against the official
ES5 test suite.

Terms in S5 are 3-tuples comprised of an expression, e, a store σ (mapping
locations to values) and an object store Θ (mapping references to object literals);
the evaluation context is denoted E. The reduction relation → is split into four
parts dependent on which portions of the term are manipulated; their definitions
are given in Fig. 2. For ease of reference, S5’s syntax is given in Appendix A; full
details of S5 are contained in the work of Politz et al. [22].

3 Overview

We present an overview of our approach. First, we discuss how Security Annota-
tions express properties of cryptography APIs (Sect. 3.1). We describe, through
example, how such properties are enforced without changes to client code
(Sect. 3.2).

3.1 Annotating APIs with Security Annotations

We provide a thin layer of JavaScript code (a shim) which adds pre- and post-
conditions to WebCrypto APIs. Listing 2 gives an example of such a shim for the
encrypt API, which encodes the runtime specification for the API. This shim is
included directly into application code via require; line 15 redefines WebCrypto’s
encrypt. This is the only addition an application developer need make to their
codebase; the propagation of these annotations is governed by the mechanisms
formalized in Sect. 4. Security Annotations on arguments are checked against the
API’s preconditions, made explicit through annotation guards. Security Anno-
tations are then attached to return values of functions when these API calls
contain specific postconditions.

Lines 1–3 define the annotation lattice for this API; this implicitly contains
Top, which represents a lack of security properties. The syntax SecAnnS1∗. . .∗Sn

defines orthogonal annotations S1, . . . , Sn. Lines 2–3 use the syntax SecAnn S1∗
. . .∗Sn Extends S, to define new annotations S1, . . . , Sn with Si ≺: S for each i.

A Formal Model for Checking Cryptographic API Usage in JavaScript 345

Security Annotations are enforced at function boundaries via arg :S, which
ensures arg meets the annotation guard S. For example, on line 8, we enforce that
if the symmetric encryption algorithm AES is selected, then the key argument
to the function is annotated with SymKey. On line 6, :E checks that the specified
object property meets its guard. In this case, we check that the initialization
vector supplied as part of the alg object is a properly generated random value.

Postconditions are attached as annotations to return values. Encryption is
performed by the original API (line 12); annotations representing newly valid
security properties are then attached (line 13). First, cpAnn attaches all anno-
tations from the data argument to res: security properties of the data are not
invalidated as a result of encryption. The advantage of cpAnn is that we do not
need to know the precise annotations of data. The exception is that if data was
annotated with Plaintext (e.g., if it had been previously decrypted), we discard
this annotation via the drop operator. Finally, we attach Ciphertext to the return
value via the as operator.

3.2 Transparent Property Enforcement

The application in Listing 1 sends an encrypted, signed message across a network
via the send method (line 15). The application developer uses WebCrypto in
order to encrypt and sign this message; without our drop-in WebCrypto shim
this application will execute and the developer will be unaware of a security flaw.
Although individual wrapper functions for signing and encryption are correct,
there is a logical error that causes a security bug. In particular, a signature is
generated of the plaintext and sent alongside the corresponding ciphertext. This
undermines the security of the application: attacks against this signature can
reveal details about the underlying plaintext.

At runtime, the application builds the object to send: the ct property is
constructed by calling the developer’s enc function. This function is correct: the
array stored in iv is annotated with CSRV, the postcondition of WebCrypto’s

346 D. Mitchell and J. Kinder

Fig. 3. Syntax modifications to add Security Annotations to S5.

getRandomValues. The generateKey API, when the algorithm is symmetric (i.e., in
the case of both HMAC and AES), returns a valid symmetric key (annotated with
SymKey). The call to WebCrypto’s encrypt succeeds since each argument satisfies
the specification (Listing 2). Next, the developer calls hmac with argument the
unencrypted msg. Similarly, the key is correctly generated via the API. However,
there is an implicit precondition of sign—data to be signed must be ciphertext
to avoid common attacks against the signature revealing information about it.
By using our drop-in shim for WebCrypto, this bug is detected: since msg is
not annotated with Ciphertext an error is thrown on entry to sign, reporting the
violation to the developer.

4 Security Annotations for S5

We formalize Security Annotations within S5 [22], starting with modifications
to the syntax (Sect. 4.1). We describe mechanisms for manipulating annotations
(Sect. 4.2), runtime enforcement (Sect. 4.3), and their effect on the rest of S5
(Sect. 4.4).

4.1 Syntax

The additions and modifications to the syntax of S5 (given in Appendix A)
to incorporate Security Annotations are contained in Fig. 3. We introduce
atomic annotations a, which represent a single security property, and general

A Formal Model for Checking Cryptographic API Usage in JavaScript 347

annotations S, which are either Top, the least specific annotation, an atomic
annotation, or the composition of two annotations, given by ∗. Annotations are
only attached to certain prevalues w. Prevalues which should not be annotated
are given by w′, values are then either references r,w <S> or w′, where w <S> is
syntactic sugar for the pair of an annotatable value w along with its correspond-
ing Security Annotation S. An additional modification to the syntax reflects
the addition of annotations to objects: we consider pre-objects, θ′, which form
objects when annotated with a Security Annotation S. We annotate objects
directly as opposed to their references; properties within objects are annotated
in the same manner as values. When an object is modified, previously valid secu-
rity properties on the object are no longer guaranteed: modifying an object field
should alter the annotations associated to the field, and also the annotations of
the overall object.

Additional expressions, e, based on manipulating security annotations, cover
the as, drop and cpAnn constructs. We add evaluation contexts, E′, to cover
these cases, where these are built in the same manner as in S5 (see Appendix A).
Finally, enforcement of Security Annotations is added to functions via the form
func(x : S, . . .); this does not require modification of the evaluation contexts.

4.2 Coercing Security Annotations

The evaluation judgments for coercion of annotations on values and objects are
given in Fig. 4, distinguished by case analysis on values. The expressionv asS
upcasts v to a more specific annotation, achieved by composing the previously
valid annotation with S. Dependent on whether we treat w <S> (in [E-AsW]),
or a reference r ([E-AsR]), we make use of distinct reduction relations (Fig. 2).
In the former case, [E-Compat] is used to govern the evaluation. In the latter,
[E-Objects] is used to modify the object’s annotation in the object store.
Finally, we throw an error whenever a function, null or undefined is passed to
one of these expressions treating coercion of annotations (e.g., [E-AsW’]). The
case analysis for drop are similar; v dropS downcasts v to a less specific annota-
tion. This is accomplished via the cut operator (Sect. 2.1) to prune the S from
the annotation of v. Listing 2 illustrates the use of cpAnn to ensure properties of
data are still valid after encryption by copying annotations from one value (or
object) to another. As with as, the addition of newly valid annotations does not
render previous annotations invalid, so composition unifies them; the evaluation
rules are therefore similar in structure.

4.3 Checking Security Annotations

Figure 5 codifies the enforcement of Security Annotations at function bound-
aries. [E-App] governs the case when arguments meet their annotation-guards
and the function is evaluated. This rule inspects the object store (to look up
object annotations when arguments are references) and modifies the variable
store (to bind arguments to the corresponding variables); we therefore use
the standard reduction relation rather than the split components (Fig. 2). To

348 D. Mitchell and J. Kinder

Fig. 4. Judgments for coercing annotations: as, drop and cpAnn.

reflect the hierarchy of the annotation lattice, this rule bakes in subsumption,
e.g., enforcement of CryptKey would accept the more specific PrivKey. A com-
mon JavaScript paradigm is for non-annotatable values, e.g., functions, to be
passed as arguments; we insist the guard for such arguments is Top, i.e., no
security precondition. For any annotatable values, w <S>, we insist S satisfies
the guard S′. For references r, we look up the corresponding object and insist
the annotation meets the guard. Direct checking of object properties and the
this argument is achieved via source-to-source rewritings, described in Sect. 5.2.
[E-AppFail] describes what happens when annotation-checking fails, i.e.,
whenever an argument carries a less precise annotation than its guard.
FailedSecurityCheck is thrown to report the potential security vulnerability to the
user, rather than simply halting evaluation.

A Formal Model for Checking Cryptographic API Usage in JavaScript 349

Fig. 5. Function application with Security Annotation enforcement.

4.4 Completing S5 with Security Annotations

The rest of S5 remains largely unchanged. After object fields are manipulated,
there is no guarantee the object annotation remains valid. For example, mod-
ifying the keyUsages field of a key object returned from the generateKey API
may undermine the security of any future operation involving the key. Any pre-
viously valid security properties on the object can no longer be guaranteed;
Top is therefore associated as the object’s annotation. Figure 6 includes judg-
ments for field manipulation, including adding fields which do not exist and
writable ‘shadow’ fields. These semantics are transparent to annotations to allow
prevalues to govern control flow, e.g., the configurable property must be true in
[E-DeleteField].

5 Security Annotations for JavaScript

We describe the mechanization of this model (Sect. 5.1) and a desugaring rela-
tion which allows the execution of JavaScript with Security Annotations1. We
discuss the annotation checking of object internals (Sect. 5.2) and demonstrate
its operation on a case study (Sect. 5.3).

5.1 Implementing Security Annotations in S5

We mechanize Security Annotations on top of the existing reference implemen-
tation of S5 [22]. Alongside object and variable stores, we maintain a third
annotation store, the lattice of valid annotations in the program. Security Anno-
tations are declared via the SecAnn and Extends expressions described in Sect. 3.1.
These expressions modify the annotation store to reflect additions to the lattice
and evaluate to undefined. Using an annotation prior to declaration results in

1 An accompanying implementation is available at: https://github.com/duncan-
mitchell/SecAnnRefInterpreter.

https://github.com/duncan-mitchell/SecAnnRefInterpreter
https://github.com/duncan-mitchell/SecAnnRefInterpreter

350 D. Mitchell and J. Kinder

Fig. 6. Judgments for setting, deleting and adding fields.

an exception. The lattice is also inspected in function application (Fig. 5) to
compare annotations with respect to subsumption. Section 4 describes functions
in which each argument is checked against some annotation guard. In implemen-
tation, we retain enforcement-free functions and do not insist every argument
has an annotation-guard. This allows reuse of existing ES5 environment imple-
mentations described in the work of Politz et al. [22].

5.2 A Reference Interpreter for Security Annotations in JavaScript

We execute JavaScript code with Security Annotations by extending the
JavaScript-to-S5 desugaring relation. We extend the syntax of JavaScript by
adding Security Annotations and function guards, as well as the expressions
as, drop, cpAnn, SecAnn and SecAnn Extends. Our desugaring rewrites these
expressions into their S5 equivalents, which are then executed in the reference
interpreter.

Checking Object Properties. Listing 2 demonstrates the need for checking proper-
ties of objects. We achieve this via source-to-source rewritings at the JavaScript
level; these are simplified by an assert function

There are three possible cases; first, checks obj[prop] meets S.
We check the specified property exists, and insist it satisfies the guard S:

A Formal Model for Checking Cryptographic API Usage in JavaScript 351

Second, checks all properties meet the guard S; to achieve this we iter-
ate over all object properties:

Finally, checks at least N properties satisfy S. As before, we
iterate over object properties, counting the number that meet the guard:

Checking this. Functions have an implicit this argument, the context object in
which the current code is executing. In the manner of checking object properties,
we check this via the syntax which is rewritten
to .

5.3 Using the Reference Interpreter

We provide a reference implementation of Security Annotations for the correct-
ness of future implementations in native JavaScript. Our interpreter translates
a subset of Node.js programs into S5 programs; we demonstrate the scope of
this reference interpreter by describing the modifications to programs neces-
sary for execution. We outline how we envisage Security Annotations being used
by developers to detect security vulnerabilities through case study within our
interpreter.

A Client-Server Application. We implement a small chat application which takes
as argument a confidential message a client wishes to transmit to a server2. The
server and client negotiate a key exchange, and an encrypted copy of this message
is sent to the server, which decrypts it. We omit authentication from this case
study for simplicity of presentation. WebCrypto is not implemented in Node.js,
so we construct a synchronous mock using the Node.js crypto module.
2 The source code for this application is available alongside the reference interpreter.

352 D. Mitchell and J. Kinder

Execution in S5. Library mocks are necessary to execute the case study in S5.
S5 does not support asynchronous code, so we construct a synchronous mock
of the networking API, net. An extension to asynchronous code is possible in
principle based on an existing formalization of JavaScript promises [18]. Second,
cryptographic operations are mocked as stub functions returning objects of the
same underlying structure. Finally, S5 programs do not take input, so we declare
process.argv to simulate this.

Completing the WebCrypto Shim. Listing 3 contains an annotated shim of a
fragment of WebCrypto for use by developers. These method specifications follow
the same structure as Listing 2. getRandomValues fills the supplied array with
random values, so this array is annotated with CSRV. Despite the lack of a return,
the annotation on this array persists because the annotation is attached directly
to the object. generateKey constructs a key (or key pair) object for the supplied
algorithm; postconditions of this method are differentiated by case analysis.
deriveKey is used to compute a shared secret key from the other party’s public
key and the private key. The contract for decrypt is similar to encrypt; we do not
enforce Ciphertext against data—or that the IV is randomly generated—to allow
decryption of messages received across a network. importKey allows public keys
received across a network to be formatted for use with other WebCrypto APIs.
This API allows the upcasting of arbitrary data; however, without importKey, it
would be impossible to use WebCrypto across a network.

A Security Property Violation. When constructing the IV, the developer ensures
that it can be encoded directly as an ASCII string. Despite correctly generating
an IV of the same size as the cipher block size (calling getRandomValues on a
Uint8Array of size 16), they reduce entropy of the IV by zeroing the top bit of
each element of this array. This causes the IV to contain only 112 bits of entropy,
less than the block size: a potential security flaw which does not visibly affect
runtime behavior. To detect such bugs, a developer includes our WebCrypto
shim. The IV is initially generated by a WebCrypto API call and annotated
with CSRV; however, the manipulation of the array drops the annotation (per
[E-SetField] in Fig. 6). Since the iv property of the alg object is not annotated
with CSRV, the call to encrypt fails, FailedSecurityCheck is thrown and this security
flaw is reported to the developer. When the loss of entropy is removed, no error is
thrown; the security pre- and postconditions enforced in the shim are respected.

6 Properties of Security Annotations

We discuss safety guarantees for S5 programs with Security Annotations
(Sect. 6.1) and extend this to security guarantees (Sect. 6.2). Finally, we apply
this to prove security of our case study (Sect. 6.3). Throughout this section, we
assume all programs discussed terminate.

6.1 Safety Guarantees

We adopt a relatively modest notion of safety: first, a program is safe if it does
not evaluate to an exception as a result of a function argument failing to meet

A Formal Model for Checking Cryptographic API Usage in JavaScript 353

the annotation guard. Second, the program should not coerce the annotation of
a non-annotatable value, e.g., null as <CSRV>. This gives us the definition:

354 D. Mitchell and J. Kinder

Definition 1 (Annotation Safety). An S5 program is safe with respect to Secu-
rity Annotations (or, annotation safe) if the execution of the program does not
result in either a FailedSecurityCheck or NotAnnotatable exception.

Although programs in S5 are deterministic, programs in JavaScript (or any
meaningful language) are not: their execution depends on the DOM or user
input. Suppose P is a program expecting input, we extend Definition 1 as fol-
lows:

Definition 2 (Annotation Safety for Programs with Input). P, is annotation
safe if no execution of the program results in either a FailedSecurityCheck or
NotAnnotatable exception.

Consider a family of S5 programs, Π, which are deterministic and simulate
input by declaring a global variable process.argv assigned to an object containing
N fields. For each field, fi suppose there is an accompanying value vi. For each
vi, we fix a base type and range over all possible prevalues (and undefined, which
simulates a lack of input). If vi is a reference to an object, we range over all
possible objects θ. The resulting family of programs represents the space of
possible executions for P. We can therefore reformulate Definition 2:

Lemma 3. Let P be an S5 program with input and Π the family of deterministic
programs p describing all possible inputs for P. Then P is annotation safe if and
only if every program p ∈ Π is annotation safe.

Proof. By construction, each execution of P is considered as a separate deter-
ministic program P so the result is immediate. ��
Since this family Π is very large, we formalize safety in terms of a subset of these
programs. Let π be the set of all p ∈ Π following exactly the same sequence of
evaluation judgments. This set of S5 programs corresponds to a single control-
flow path of P: so if any p is annotation safe, so are all programs in π. Since the
union of all (clearly disjoint) possible paths π is equal to the overall family of
programs Π, we can obtain a simpler notion of safety for P:

Theorem 4. Let Π be the family of deterministic programs describing all possi-
ble inputs for P. Consider all disjoint subsets π ⊆ Π representing single control
flow paths of P, and for each, choose a single p ∈ π. Then P is annotation safe
if and only if each p is annotation safe.

Proof. Suppose first that P is annotation safe. Then by Lemma 3, we know every
P ∈ Π is annotation safe. Since each π ⊆ Π, each p must be annotation safe as
required. For the other direction, suppose each p is annotation safe. Pick one such
p, and the subset of Π to which it belongs, π. Let p′ be some other program in π,
and suppose that p′ is not annotation safe. Then the execution of p′ results in either
a FailedSecurityCheck or NotAnnotable exception. This means that the final evalua-
tion judgment applied in the evaluation of p′ is either [E-AppFail], [E-AsW’],
[E-DropW’], [E-CpW’V] or [E-CpVW’]. Since p and p′ both belong to π, they

A Formal Model for Checking Cryptographic API Usage in JavaScript 355

follow the same sequence of evaluation judgments. But then p is not annotation
safe, which is a contradiction. Thus each p in π is annotation safe, and extending
this across all disjoint subsets π of Π, each program in Π must be annotation safe.
Applying Lemma 3 again, we are done. ��
This result says that if any set π is not safe, then some control-flow path in P vio-
lates the Security Annotation specification of the program, indicating a possible
security vulnerability. This description of safety requires us to find these subsets
π to obtain a guarantee. In practice, this is equivalent to enumerating all control
flow paths of a program over all types of input values and objects, which makes
our mechanism ideally suited for combination with feedback-directed fuzzing or
dynamic symbolic execution [17].

6.2 Security Guarantees

Let L be a library and L′ an annotated shim of this library; any security guar-
antees are conditional on the correctness of L, e.g., that WebCrypto itself is a
correct implementation of cryptographic primitives. Let P be an S5 program
which calls L, and suppose the developer of P in-lines this annotated shim in a
program P ′ = L′;P . We assume that P does not contain any expressions which
manipulate Security Annotations. We can make the following (overapproximate)
claim, which states that the whenever P ′ is annotation safe, it respects the secu-
rity properties enforced by the Security Annotation specifications of the methods
in L′.

Lemma 5. Suppose P ′ is annotation safe. Then the Security Annotation spec-
ifications described in L′ are respected.

Proof. Suppose a Security Annotation specification in L′ is not respected. Then
some function precondition fails, so the judgment [E-AppFail] is evaluated, con-
tradicting our assumption that P ′ is annotation safe. Since P does not involve
the manipulation of Security Annotations, any annotations must be the post-
conditions of an API call in L′; hence these specifications are respected. ��
Analogously to Sect. 6.1, we extend this result to programs with input:

Theorem 6. Let P be a program with input and suppose P ′ = L′;P is anno-
tation safe. Then the Security Annotation specifications described in L′ are
respected.

Proof. This is immediate from the combination of Theorem 4 and Lemma 5. ��

6.3 Security Guarantees in Practice

We use Theorem 6 to describe concrete security guarantees for the case study
outlined in Sect. 5.3, which are conditional on the correctness of WebCrypto.
Recall that after fixing the security vulnerability involving the ASCII-encoded
IV, when a message supplied as argument, the program executes without error;

356 D. Mitchell and J. Kinder

if no message is provided the application simply reports this to the user and
exits. Both control-flow paths of this program are annotation safe. Referring
to the specifications described in our WebCrypto shim (Listing 3), there are
two caveats to our claim; the first assumes the developer does not leak keying
material and the second relates to the omission of authentication from the case
study.

Theorem 7. Suppose that: (i) neither the symmetric key nor either party’s
secret keys are leaked across the network, and (ii), an attacker impersonates
neither party. Then encrypted messages sent by the client can only be read by
the server.

Proof. The application does not manipulate annotations; when executed with a
non-annotated copy of the library the program is annotation safe. As described
above, both control-flow paths of the program are annotation safe with our anno-
tated library in-lined, we can directly apply Theorem 6. It remains to demon-
strate the specification enforced by the annotation library. The encryption—
via AES-CBC with a 128-bit key—is secure only when the symmetric key has
been securely derived, and the IV is a block-sized CSRV (Listing 2). Our Web-
Crypto specification enforces the CSRV portion of the contract directly: calling
getRandomValues annotates the IV with CSRV (lines 7–9 of Listing 3), and this
array is not subsequently modified, the annotation check on entry to encrypt

passes.
Second, the symmetric key used for AES must be shared between the two

parties secretly. The key is derived through an ECDH key exchange; both the
server and client use generateKey (lines 11–20 of Listing 3) to compute a key pair.
Public keys are exchanged, and validated it through importKey (lines 36–39). The
client supplies their private key and the server’s public key to deriveKey (lines 21–
26). Neither key has been tampered with, so the client’s key is annotated with
PrivKey and the server’s with PubKey. This satisfies the guard of deriveKey, and
so the key for AES is computed, and annotated SymKey. The provenance of the
secret key as derived from safe API calls can be confirmed, so the guard against
the key in encrypt succeeds (line 10 of Listing 2). Therefore, only someone in
possession of the private key corresponding to the server’s public key can read
the message supplied as data to this API. ��

7 Related Work

Checking Cryptographic API Usage. Mitchell et al. [19] introduce Security Anno-
tations within a lambda calculus (discussed in Sect. 2.1); this paper extends this
work to JavaScript. Recent work on cryptographic API use in Android appli-
cations shows that the majority of cryptographic bugs are due to misuse of
APIs [16]; Egele et al. [8] show that such errors are common. Nadi et al. [20]
survey usage of Java cryptographic APIs, and argue that the APIs are too low-
level and require implicit understanding of the underlying cryptographic pro-
tocols. Krüger et al. [15] present CrySL, a domain specific language for the
specification of correct usage of cryptographic APIs, focusing on the Java

A Formal Model for Checking Cryptographic API Usage in JavaScript 357

Cryptography Architecture. Our approach of encoding pre- and postconditions
via security annotations on values and objects embraces the dynamicity of
JavaScript which is notoriously difficult to statically analyze.

JavaScript Analysis. While our approach is purely dynamic, various dialects
allow for the static checking of JavaScript code [6,7,23,30]. The effective use of
such static typing approaches would require modification of APIs and seman-
tics, e.g., prohibiting byte array indexing of Key types. Design-by-contract sys-
tems for JavaScript [13] enforce program properties directly expressible within
the language. Our work focuses on security properties which cannot be directly
expressed in this manner. Previous work on cryptographic testing for JavaScript
focuses on implementations of the underlying cryptographic protocols. This work
runs parallel to our own: we assume the correctness of these implementations and
check existing usage of these APIs. Taly et al. [29] describe an automatic analysis
to ensure security-critical APIs correctly protect resources from untrusted code.
Domain-specific languages [2,3,14] have been proposed to enable verification of
bespoke implementations by cryptographic experts. Existing programs are not
amenable to this approach, since these languages are small subsets of JavaScript
without many of the common idioms and advantages of the language.

Type-Based Approaches for Security. Type systems for F#, such as F7 [1,4,5]
and F* [28], allow for the description of security properties of terms via depen-
dent types which are checked statically. Static security type systems [24] to
enforce secure information flow offer strong guarantees but have proved imprac-
tical in the JavaScript setting. Work on JavaScript monitors for information
flow [10,26] provide mechanisms for dynamic enforcement of this in JavaScript;
work on information flow monitoring in the presence of libraries [11] extends
the applicability of monitor-based approaches. We follow a similar dynamic tag-
based approach as such approaches [10], however we adopt a fine-grained system
allowing for declassification coupled with precondition checking through anno-
tation guards on functions. COWL [12,27] is an information flow control system
for web browsers preventing third-party library code from leaking sensitive infor-
mation, achieved via the labeling of browser contexts.

Formalizing JavaScript. Various formalizations of JavaScript exist [9,21,22,25].
λJS [9] and its successor S5 [22] provide a small language modeling the key features
of JavaScript and have been extended to provide models for static and dynamic
analyses. S5 remains close to the minimal lambda calculus described by Mitchell
et al. [19], which allowed for a natural translation of Security Annotations.

8 Conclusions and Future Work

In this paper we described a formal model for Security Annotations in JavaScript,
a mechanism to help non-expert developers avoid introducing security-critical
bugs. We introduced a runtime semantics for Security Annotations in a core of
JavaScript and presented a reference implementation of this system. We specified

358 D. Mitchell and J. Kinder

a partial fragment of the WebCrypto API in terms of Security Annotations, and
demonstrated how to use it to detect a potential security vulnerability. Finally,
we described the security guarantees offered by Security Annotations.

In future work, we plan to further develop Security Annotations as a runtime
analysis for JavaScript by implementing them as an extension for the full lan-
guage via source code instrumentation. The semantics described in this paper
and accompanying implementation serve as a reference to guide the correctness
of Security Annotations in full JavaScript.

A Syntax of S5

For convenience we provide the complete syntax of S5 from the work of Politz
et al. [22] in Fig. 7.

Fig. 7. The syntax of S5 [22].

A Formal Model for Checking Cryptographic API Usage in JavaScript 359

References

1. Bengtson, J., Bhargavan, K., Fournet, C., Gordon, A.D., Maffeis, S.: Refinement
types for secure implementations. ACM Trans. Prog. Lang. Syst. 33(2), 8:1–8:45
(2011)

2. Bhargavan, K., Blanchet, B., Kobeissi, N.: Verified models and reference imple-
mentations for the TLS 1.3 standard candidate. In: IEEE Symposium on Security
and Privacy (S&P) (2017)

3. Bhargavan, K., Delignat-Lavaud, A., Maffeis, S.: Defensive JavaScript – building
and verifying secure web components. In: Aldini, A., Lopez, J., Martinelli, F. (eds.)
FOSAD 2012-2013. LNCS, vol. 8604, pp. 88–123. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-10082-1 4

4. Bhargavan, K., Fournet, C., Guts, N.: Typechecking higher-order security libraries.
In: Ueda, K. (ed.) APLAS 2010. LNCS, vol. 6461, pp. 47–62. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17164-2 5

5. Bhargavan, K., Fournet, C., Kohlweiss, M., Pironti, A., Strub, P.: Implementing
TLS with verified cryptographic security. In: IEEE Symposium on Security and
Privacy (S&P) (2013)

6. Chaudhuri, A., Vekris, P., Goldman, S., Roch, M., Levi, G.: Fast and precise type
checking for JavaScript. Proc. ACM Prog. Lang. 1(OOPSLA), 48:1–48:30 (2017)

7. Chugh, R., Herman, D., Jhala, R.: Dependent types for JavaScript. In: ACM SIG-
PLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA) (2012)

8. Egele, M., Brumley, D., Fratantonio, Y., Kruegel, C.: An empirical study of crypto-
graphic misuse in android applications. In: ACM SIGSAC Conference on Computer
and Communications Security (CCS) (2013)

9. Guha, A., Saftoiu, C., Krishnamurthi, S.: The essence of JavaScript. In: D’Hondt,
T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 126–150. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14107-2 7

10. Hedin, D., Birgisson, A., Bello, L., Sabelfeld, A.: JSFlow: tracking information flow
in JavaScript and its APIs. In: ACM Symposium on Applied Computing (2014)

11. Hedin, D., Sjösten, A., Piessens, F., Sabelfeld, A.: A principled approach to tracking
information flow in the presence of libraries. In: Maffei, M., Ryan, M. (eds.) POST
2017. LNCS, vol. 10204, pp. 49–70. Springer, Heidelberg (2017). https://doi.org/
10.1007/978-3-662-54455-6 3

12. Heule, S., Stefan, D., Yang, E.Z., Mitchell, J.C., Russo, A.: IFC inside: retrofitting
languages with dynamic information flow control. In: Focardi, R., Myers, A. (eds.)
POST 2015. LNCS, vol. 9036, pp. 11–31. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-46666-7 2

13. Keil, M., Thiemann, P.: TreatJS: higher-order contracts for JavaScripts. In: Euro-
pean Conference on Object-Oriented Programming (ECOOP) (2015)

14. Kobeissi, N., Bhargavan, K., Blanchet, B.: Automated verification for secure mes-
saging protocols and their implementations: a symbolic and computational app-
roach. In: IEEE European Symposium on Security and Privacy (EuroS&P) (2017)

15. Krüger, S., Späth, J., Ali, K., Bodden, E., Mezini, M.: CrySL: validating correct
usage of cryptographic APIs. In: European Conference on Object-Oriented Pro-
gramming (ECOOP) (2018)

16. Lazar, D., Chen, H., Wang, X., Zeldovich, N.: Why does cryptographic software
fail?: a case study and open problems. In: Asia-Pacific Workshop on Systems (2014)

https://doi.org/10.1007/978-3-319-10082-1_4
https://doi.org/10.1007/978-3-319-10082-1_4
https://doi.org/10.1007/978-3-642-17164-2_5
https://doi.org/10.1007/978-3-642-14107-2_7
https://doi.org/10.1007/978-3-662-54455-6_3
https://doi.org/10.1007/978-3-662-54455-6_3
https://doi.org/10.1007/978-3-662-46666-7_2
https://doi.org/10.1007/978-3-662-46666-7_2

360 D. Mitchell and J. Kinder

17. Loring, B., Mitchell, D., Kinder, J.: Sound regular expression semantics for dynamic
symbolic execution of JavaScript. In: Proceedings of the ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation (PLDI). ACM (2019)

18. Madsen, M., Lhoták, O., Tip, F.: A model for reasoning about JavaScript promises.
Proc. ACM Prog. Lang. 1(OOPSLA), 861–8624 (2017)

19. Mitchell, D., van Binsbergen, L.T., Loring, B., Kinder, J.: Checking cryptographic
API usage with composable annotations. In: ACM SIGPLAN Workshop on Partial
Evaluation and Program Manipulation (PEPM) (2018)

20. Nadi, S., Krüger, S., Mezini, M., Bodden, E.: Jumping through hoops: why do
Java developers struggle with cryptography APIs? In: International Conference on
Software Engineering (ICSE) (2016)

21. Park, D., Stefănescu, A., Roşu, G.: KJS: a complete formal semantics of JavaScript.
In: ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI) (2015)

22. Politz, J.G., Carroll, M.J., Lerner, B.S., Pombrio, J., Krishnamurthi, S.: A tested
semantics for getters, setters, and eval in JavaScript. In: Symposium on Dynamic
Languages (DLS) (2012)

23. Rastogi, A., Swamy, N., Fournet, C., Bierman, G.M., Vekris, P.: Safe & efficient
gradual typing for TypeScript. In: ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages (POPL) (2015)

24. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. Sel.
Areas Commun. 21(1), 5–19 (2003)

25. Santos, J.F., Maksimovic, P., Naudziuniene, D., Wood, T., Gardner, P.: JaVerT:
JavaScript verification toolchain. Proc. ACM Program. Lang. 2(POPL), 501–5033
(2018)

26. Santos, J.F., Rezk, T.: An information flow monitor-inlining compiler for securing
a core of JavaScript. In: Cuppens-Boulahia, N., Cuppens, F., Jajodia, S., Abou
El Kalam, A., Sans, T. (eds.) SEC 2014. IAICT, vol. 428, pp. 278–292. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-55415-5 23

27. Stefan, D., et al.: Protecting users by confining JavaScript with COWL. In:
USENIX Symposium on Operating Systems Design and Implementation (OSDI)
(2014)

28. Swamy, N., Chen, J., Fournet, C., Strub, P., Bhargavan, K., Yang, J.: Secure
distributed programming with value-dependent types. In: ACM SIGPLAN Inter-
national Conference on Functional Programming (ICFP) (2011)

29. Taly, A., Erlingsson, Ú., Mitchell, J.C., Miller, M.S., Nagra, J.: Automated analysis
of security-critical JavaScript APIs. In: IEEE Symposium on Security and Privacy
(S&P) (2011)

30. Vekris, P., Cosman, B., Jhala, R.: Refinement types for TypeScript. In: ACM SIG-
PLAN Conference on Programming Language Design and Implementation (PLDI)
(2016)

31. Watson, M.: Web cryptography API. W3C recommendation, W3C, January 2017

https://doi.org/10.1007/978-3-642-55415-5_23

Contingent Payments on a Public Ledger:
Models and Reductions for Automated

Verification

Sergiu Bursuc(B) and Steve Kremer

Inria Nancy-Grand’Est & LORIA, Villers-lès-Nancy, France
sergiu.bursuc@inria.fr

Abstract. We study protocols that rely on a public ledger infrastruc-
ture, concentrating on protocols for zero-knowledge contingent payment,
whose security properties combine diverse notions of fairness and pri-
vacy. We argue that rigorous models are required for capturing the ledger
semantics, the protocol-ledger interaction, the cryptographic primitives
and, ultimately, the security properties one would like to achieve.

Our focus is on a particular level of abstraction, where network mes-
sages are represented by a term algebra, protocol execution by state
transition systems (e.g. multiset rewrite rules) and where the properties
of interest can be analyzed with automated verification tools.We pro-
pose models for: (1) the rules guiding the ledger execution, taking the
coin functionality of public ledgers such as Bitcoin as an example; (2)
the security properties expected from ledger-based zero-knowledge con-
tingent payment protocols; (3) two different security protocols that aim
at achieving these properties relying on different ledger infrastructures;
(4) reductions that allow simpler term algebras for homomorphic cryp-
tographic schemes.

Altogether, these models allow us to derive a first automated veri-
fication for ledger-based zero-knowledge contingent payment using the
Tamarin prover. Furthermore, our models help in clarifying certain
underlying assumptions, security and efficiency tradeoffs that should be
taken into account when deploying protocols on the blockchain.

1 Introduction

The blockchain and its associated public ledger promise a practical solution to
a basic need for security protocols: a system that operates as stated, providing
reliable outcome to all agents. Both deployed [1–4] and abstract [5,6] ledgers
are ordered sequences of states - state transition systems respecting operational
constraints. The goal of the underlying distributed protocols is to ensure that
the ledger is indeed public, unique, alive and consistent. Protocols can then be
based on transaction and smart contract semantics - i.e. rules that guide the
state transition system - to implement functionality that would otherwise be
inefficient or require trusted parties. Take fair exchange: two parties want to
swap assets according to a contract that ensures fairness: any information or
c© Springer Nature Switzerland AG 2019
K. Sako et al. (Eds.): ESORICS 2019, LNCS 11735, pp. 361–382, 2019.
https://doi.org/10.1007/978-3-030-29959-0_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29959-0_18&domain=pdf
https://doi.org/10.1007/978-3-030-29959-0_18

362 S. Bursuc and S. Kremer

value transfer is reciprocated as planned [7]. The problem can be solved with
optimistic assumptions, calling a trusted third party only when needed [8–10], or
with digital (counter)cheques and transactions inside multi-party computations
[11–13].

A public ledger provides an alternative solution to the problem, specified as
a zero-knowledge contingent payment (ZKCP) for a seller and buyer. We suppose
that the information of interest can be expressed as data (a witness) satisfying
functional constraints (a desired result), e.g. a sudoku solution respects additive
constraints, a prime factor decomposition satisfies multiplicative constraints, etc.
ZKCP goals are: for theSeller - a delivered witness will be paid for; for theBuyer
- a paid for witness will be delivered. Classically, these properties require trust and
coordination with third parties. On public ledgers, reliable semantics and dedi-
cated cryptographic protocols can minimize trust and interaction [14–18].

Challenges. Protocol actions occur at distinct levels: from local cryptographic
objects, to network transactions, to ledger confirmation. Their respective seman-
tics is useful in protocol design, where parties can agree on desired ledger actions
beforehand, yet the concurrent environment opens up new challenges:

• Multiple sessions, concurrent ledger access. Asynchronicity leads to ambigu-
ity about what it means to be paid. For example, a seller should ensure it
will not be paid the same coin for two witnesses. If multiple sessions run in
parallel, some with colluding parties, protocol messages may be mixed up and
exploited. Valid transaction requests do not necessarily result in confirmed
ledger transactions: if the adversary obtains private keys by exploiting the
protocol, a race ensues between honest and adversarial messages claiming a
coin. Protocols should ensure this does not happen - this is not usually an
explicit goal.

• Transaction finality. In fact, it is commonly advised to wait for transactions
to be finalized on the ledger to ensure payment. Yet, we show that ZKCP pro-
tocols (have to) provide a stronger property: as early as a transaction request
is being sent over the network, one should ensure that the corresponding coin
cannot be spent in any other way, because specific fields from the transac-
tion may help the adversary in revealing secrets - so we cannot afford the
transaction to fail.

• Cryptographic interaction. Ledger-based protocols produce complex crypto-
graphic objects that engage ledger transitions at the same time as private data
transfer, e.g. [15] relies on homomorphic encryption to produce a (secret)
ECDSA signature that will perform a ledger transaction; this signature is
committed in a zero-knowledge proof ensuring the corresponding ledger tran-
sition will furthermore reveal the witness. Such interaction between cryptog-
raphy and the ledger extends the scope of crypto primitives to new protocols
- dedicated, fine-grained security models are needed to evaluate them.

• Security foundations. Compounding all of above: ledger-based protocols are
network cryptographic protocols executed in an adversarial environment.
There is history of attacks and foundations for such protocols - see e.g.
[19–23] for recent examples - showing the importance of rigorous security

Contingent Payments on a Public Ledger 363

specification and automated verification. Furthermore, we need generic mod-
els that allow a clear separation between security properties, ledger infras-
tructure and cryptographic protocols.

Our contributions address these challenges by formal models connecting
the ledger, the ledger-based protocols, the cryptographic primitives and the
desired security properties in a specification that can be used as input for auto-
mated verification tools. We use the Tamarin prover [24] for verification: it pro-
vides an expressive language to specify (cryptographic) state transition systems
and to restrict their traces by logical formulas.

• Public ledger. We show that the model of the blockchain as a structured com-
putational resource has a natural formal (or symbolic) counterpart combining
multiset rewriting, term algebras and first order logic [24–26]. We identify
minimal restrictions on multiset rewriting rules that make them function as
a blockchain transition system, i.e. a smart contract. We also show how pro-
tocol rules can operate in order to exploit the ledger semantics. We specify
the electronic coin functionality provided in e.g. Bitcoin [1] as an example
(Sect. 3).

• ZKCP on public ledgers. We consider two ZKCP protocols [14,15] and per-
form their formal verification in a unified, generic model that captures their
different features (Sects. 4 and 5). The specification tackles a strong attacker
that can run multiple sessions, corrupt parties, control the network (in par-
ticular drop, reorder, replace the messages to the ledger) and exploit the
cryptographic properties of messages. The formal security properties clearly
circumscribe the expected ZKCP guarantees, both in their positive and in
their negative aspects: e.g. a buyer will learn the witness or otherwise it can
obtain a refund; a seller will obtain payment, unless there is a delivery delay to
the ledger; etc. The security properties are parametric, so that different pro-
tocols can accordingly instantiate the notions of payment, time delay, witness
extraction, etc.

• Advanced cryptography. The protocol we consider in Sect. 5 aims at a basic
version of Bitcoin, with a minimal scripting language for signature verifica-
tion; this calls for complex cryptography, intertwining homomorphic encryp-
tion, randomized signatures, Diffie-Hellman exponentiation and specialized
zero-knowledge proofs. The corresponding formal specification as a message
theory is out of the scope for any current automated verification tools. We pro-
vide a theoretical framework and a reduction result showing that it is sound
to consider a simplified theory as input (Sect. 6). We start from a general
theory where some of the function symbols are homomorphic: from f(u,w)
and v, one can derive f(u ∗ v, w), where ∗ is the product in an abelian group.
In the reduced theory: (1) the homomorphic properties are restricted as fol-
lows: the adversary can derive f(u ∗ v, w) from f(u,w) only if u is a product
of messages created by honest parties; (2) the abelian group is degenerated:
the adversary can derive the factors u1, . . . , uk of any product u1 ∗ . . . ∗ uk,
without being required to know any inverse.

364 S. Bursuc and S. Kremer

2 Preliminaries: Computation Model

Term Algebra [27]. F denotes the set of function symbols and F (n) those of
arity n. The set of terms built from F , a set of names and a set of variables is
T . Tuples of terms are denoted by an overline, e.g. u = (u1, . . . , un). We let st(t)
be the subterms of a term t, and top(t) be its top symbol. F is endowed with a
rewrite system: a set of rewrite rules R, that we denote by l → r, modulo a set
of equations E , that we denote by l ≈ r. R or E can be empty. For a term t, t↓R
is its normal form, obtained after applying all possible rewrite steps (modulo E)
from R. Implicitly, terms are normalized and term equalities interpreted modulo
(R, E).

Example 1. For the theory of randomized signatures, as instantiated e.g. by
(EC)DSA [28], we let Fsig = {sign, ver, ok, g} and Rsig be the signature verifi-
cation rule: ver(sign(x, y, z), x, g(y)) → ok. Here g(y) represents the public key
corresponding to a secret key y, i.e. the group element that corresponds to raising
a group generator g to a scalar power y. The third argument of sign takes the role
of the randomness: sign(m, k, r1) and sign(m, k, r2) are two distinct signatures of
m with key k.

The theory of an abelian group (AG), e.g. Zq, is modeled by the signature
F∗ = {∗, i} and the set of equations AG = {x ∗ i(x) ≈ 1, x ∗ 1 ≈ x} ∪ AC where
AC = {x∗y ≈ y∗x, (x∗y)∗z ≈ x∗(y∗z)} models associativity and commutativity.

Multiset Rewriting and State Transitions [24,26]. The signature is
extended with fact symbols to represent adversarial knowledge, protocol state,
freshness information, etc. A fact is represented by F (t1, . . . , tk), where F is a
fact symbol and t1, . . . , tk are terms. There are the following special fact symbols:
K - for attacker knowledge; Fr - for fresh data; In and Out - for protocol inputs
and outputs. Other symbols may be added as required by the protocol, e.g. for
representing the state. These symbols can be persistent (the corresponding facts
cannot disappear), or linear (the corresponding facts are consumed by rules and
protocol rules can update them). Persistent fact symbols are prefixed by !, e.g.
!F. A multiset can contain multiple copies of the same linear fact.

A multiset rewriting (msr) rule is defined by [L]−−[M]→[N], where L,M,N
are multisets of facts called respectively premisses, actions and conclusions. We
denote such a rule by [L] ⇒ [N] when M is empty. To ease protocol specification,
we extend the syntax of multiset rules with variable assignments and equality
constraints, i.e. we can write rules of the form [L]−−[Φ,M]→[N] where L may
contain expressions x = t to define local variables and Φ is a set of equations of
the form u ≈ v. Equations are not directly supported in Tamarin, but can be
easily encoded with restrictions as we show in Example 3. For two multisets of
facts M0,M1 and rule P = [L]−−[Φ,M]→[N] we say that M1 can be obtained
from M0 by applying the rule P , instantiated with θ if: (1) every equality in Φθ
is true; (2) every fact in Lθ is included in M0 (counting multiplicities for linear
facts); (3) M1 is obtained from M0 by removing linear facts included in Lθ and
adding all facts from Nθ.

Contingent Payments on a Public Ledger 365

A special set of message deduction rules defines how the attacker can derive
new knowledge and make use of existing knowledge to interact with the protocol.
Within this set, we distinguish network deduction rules and intruder deduction
rules. Network deduction rules are fixed: they define outputs, inputs, public and
fresh data.

[Out(x)] ⇒ [K(x)]; [K(x)] ⇒ [In(x)]; ⇒ [K(y)]; ⇒ [Fr(z)]; [Fr(x)] ⇒ [K(x)]

The semantics ensures that y and z above are instantiated to public, resp. fresh
names.

Intruder deduction rules are of the form [K(u1), . . . ,K(uk)] ⇒ [K(v)] -
defining operations on messages. These are typically [K(x1), . . . ,K(xk)] ⇒
[K(f(x1, . . . , xk))] for all f ∈ F (k). We also allow more general deduction
rules, as in Example 2 and Fig. 4. Such rules can wlog replace rewrite rules
f(l1, . . . , lk) → r for symbols f with no other occurrence in the rewrite system
and whose occurrence in protocol rules is not under a term context. An intruder
theory, that we denote by I, is thus given by a set of intruder deduction rules
plus (R, E). For a set of terms {t1, . . . , tn, t} we let {t1, . . . , tn} 	 t if K(t) can
be obtained from K(t1), . . . ,K(tn) using intruder deduction rules. Protocol rules
model the execution of the protocol by honest parties. There are basic restric-
tions ensuring that protocol rules are a sound model of protocol executions [26];
we will follow them implicitly in our models and examples.

Example 2. Exponentiation in a Diffie-Hellman group can be represented
by the rewrite rule exp(g(x), y) → g(x ∗ y) together with the deduc-
tion rule [K(x1),K(x2)] ⇒ [K(exp(x1, x2))]. Alternatively, the deduction rule
[K(g(x)),K(y)] ⇒ [K(g(x∗y))] allows to model the corresponding operation per-
formed by the attacker (without requiring explicit application of exp). Similarly,
a protocol rule can directly perform exponentiation without explicit use of the
symbol exp, e.g. [In(g(x)),Fr(y)] ⇒ [Out(g(x ∗ y))].

For a rule P , we let facts(P), in(P), out(P), lhs(P), rhs(P), act(P) be
respectively the set of all facts, of input facts (e.g. In(u)), of output facts (e.g.
Out(u)), of left-hand side facts (i.e. premisses), of right-hand side facts (i.e. con-
clusions) and of action facts. For a set of facts F, we let msg(F) be the set of
messages that are arguments of facts in F. We let io(P) = msg(in(P)∪out(P)).

Traces and Properties. A trace τ is a sequence of applications of n ≥ 1 msr
rules, interleaving applications of protocol, intruder and network deduction rules.
For every i ∈ {1, . . . , n}, we let Pi be the rule applied at step i and θi be the
corresponding substitution. We define:

– facts(τ, i) = act(Pi)θi↓ if Pi is a protocol or network deduction rule;
– facts(τ, i) = {K(vθi↓)} if Pi is an intruder deduction rule with rhs(Pi) =

{K(v)}

For a set of rules Q, we denote by traces(Q) the set of all valid traces that can
be derived from elements in Q. Consider a set of timepoint variables, denoted by

366 S. Bursuc and S. Kremer

i, j, l, . . ., which will be interpreted over rational numbers. A trace atom is either
⊥, or a term equality t1 ≈ t2, or a timepoint ordering i < j, or a timepoint
equality i = j, or an action fact F@i for a fact F and timepoint i. A trace
formula is a first-order logic formula obtained from trace atoms by applying the
usual quantification and logical connectives. Given a trace τ and trace formula
φ, whose variables are all bound, the satisfaction relation τ |= φ, is defined
recursively as expected, in particular τ |= F @ i iff F ∈ facts(τ, i).

For a set of rules Q and trace formulas Ψ,Φ, we let Q |= Φ iff ∀τ ∈
traces(Q). τ |= Φ and Q;Ψ |= Φ iff ∀τ ∈ traces(Q). τ |= Ψ ⇒ Φ. For
verification, (Q;Ψ) will be a system specification and Φ a property to verify; Q
defines local transition rules, while Ψ defines additional, global restrictions on
the set of traces for the specified system.

Example 3. Consider the binary fact symbol Eq and the formula

Ψeq : ∀x, y, i. Eq(x, y) @ i ⇒ x ≈ y.

An Eq(u, v) action in a rule allows then to test that u ≈E v
before proceeding. Take P = [In(u), In(v),Fr(s)]−−[Eq(u, v)]→[Out(s)].
Then K(a),K(a),Eq(a, a),K(s) is a trace of P satisfying Ψeq, while
K(a),K(f(a)),Eq(a, f(a)),K(s) does not.

Consider the unary symbol Fresh and the restriction

Ψfresh : ∀x, i, j. Fresh(x) @ i ∧ Fresh(x) @ j ⇒ i = j.

It ensures that every occurrence of Fresh(t) is with a different t. Assume we add
Fresh(〈u, v〉) as an action in P . Then, among traces(P), . . . Eq(a, a), . . . ,Eq(a, a)
does not satisfy Ψfresh, while . . . Eq(a, a), . . . ,Eq(b, b) does.

Example 4. Consider the set of rules Qkeys:

– [Fr(k)]−−[!Key(k)]→[!Pk(g(k)), !Key(k),Out(g(k))]
– [!Key(x)]−−[Corrupt(g(x))]→[Out(x)]

It models a basic key infrastructure. The formula Φ : !Key(x) @ i ⇒ ¬∃j.K(x) @ j
says that keys are secret. Then Qkeys �|= ∀x, i.Φ, since the second rule in Qkeys allows
the attacker to corrupt keys. Now consider the protocol rule

Qsign : [Fr(a), !Key(x)]−−[Honest(g(x)),Sign(x)]→[Out(sign(a, k, ρr))]

the formula Φ′ : Sign(x) @ j ⇒ ¬∃j.K(x) @ j - saying that keys used in Qsign are
secret - and the restriction: Ψhon : ∀x, i. Honest(x) @ i ⇒ ¬∃j. Corrupt(x) @ j.
Then we have Qkeys, Qsign;Ψhon |= ∀x, i.Φ′ because we have added the restrictions
that keys in Qsign are honest and that honest keys cannot be corrupted.

Public Data. Tamarin allows the use of variables that can be instantiated only
with messages of a public sort. They are denoted by $x, and can occur anywhere
in a protocol msr rule. As in Example 4, we will use annotations of ρ for such
data, e.g. ρr for a public nonce, ρsn for a serial number, etc.

Contingent Payments on a Public Ledger 367

Protocol State. Specifications rely on sequences of protocols rules (P0, . . . , Pk),
where each rule Pi should be executed before Pi+1 and can pass on, via facts,
state data to Pi+1. To avoid clutter, we use a symbol statei to represent this
transmission, and we allow Pi+1 to reference any variables from Pi that should
be formally passed via state facts. We denote by statei�x = u� the pattern
matching of state variable x by a term u.

3 Public Ledgers: Facts, Rules, Coins

Coin Ledger. The protocols we consider are based on coin contracts of e.g.
Bitcoin [1]: a coin is represented by an object (sn, g(k)) on the ledger, where sn
is a serial number, and g(k) is the public key of the coin owner. Serial numbers
are computed as the hash of the transaction that created the coin; for simplicity,
we assume they are fresh public numbers. To spend a coin, i.e. transfer it to
a new owner, the ledger expects a transaction request, attested by a signature
from the current owner, containing the sn of the coin to be spent, the public key
g(k′) of the new owner and (implicitly) the serial number sn′ of the new coin.
If the signature is valid, the coin (sn, g(k)) is marked as spent, and a new coin
(sn′, g(k′)) is created for the new owner. We call basecoins these coins.

We will also make use of hashcoins: hashed timelock contracts [29] used to
establish trust relationships outside the ledger [30,31]. They perform a transac-
tion by which one of the two parties, say A, obtains the preimage of a hash -
which can e.g. be a key encrypting some data of interest - while the other party,
say B, provides the hash preimage and obtains a basecoin in return. A performs
a ledger transaction pledging one of A’s coins into a hashcoin, providing the
desired hash image and the public key of B. B can then claim the coin using
a (signed) inverse of the image. A timeout mechanism ensures the coin can be
returned to A if there was no action from B in due time. A hashcoin can be rep-
resented by a tuple (sn, g(k), h(x), g(k′)) here g(k) represents the coin creator,
who can obtain it after timeout, h(x) is the desired hash image, and g(k′) is the
party that can claim sn by supplying x.

Formal Model. We consider two special sets of disjoint fact symbols: one for
ledger facts, denoted by FL, and one for check facts, denoted by FC . Ledger facts
will be used to represent the state of the ledger. For example, they can record who
is the owner of an asset, what are the elements of a given transaction, etc. Ledger
facts are assumed persistent because the ledger history cannot change. Check
facts, on the other hand, will be used by protocols to restrict their executions
with respect to the (current or past) states of the ledger. For example, they can
be used to ensure that a coin, whose existence is recorded by a ledger fact, has
not yet been spent.

Example 5. Let F coin
L = {!Coin, !HCoin, !Spend, !Time} and F coin

C = {Unspent}.
The corresponding facts represent: !Coin(sn, g(k)) @ i - a coin sn created at
timepoint i belonging to the public key g(k); !HCoin(sn, 〈g(k1), g(k2), h(t)〉) @ i
- a hashcoin sn that can be claimed for g(k2) by supplying t and a signature,

368 S. Bursuc and S. Kremer

or for g(k1) after timeout by supplying a signature; !Spend(sn, u, w, v) @ i - the
transfer of a coin (sn, u) to a new owner v at timepoint i, relying on supporting
data w: w is a signature when sn is a basecoin, plus possibly a hash preimage
when sn is a hashcoin; !Time(sn) @ i marks the fact that the hashcoin sn was
reclaimed after a timeout at timepoint i; Unspent(sn) @ i checks the ledger to
ensure the coin sn is unspent at i.

The semantics of the ledger is defined by msr rules that can only be triggered
by ledger facts and public inputs, and can only produce ledger facts and public
outputs. Ledger restrictions ensure additional constraints for the states produced
by the ledger. These rules and constraints define the ledger state transition
system and make it available for external protocols, which may be executed by
honest or adversarial parties.

Definition 1. A msr rule P is a ledger rule if: (1) facts(P) ⊆ in(P)∪out(P)∪
FL; (2) rhs(P) ⊆ act(P). P is ledger-respecting if (act(P) ∪ rhs(P)) ∩ FL =
∅. A ledger restriction is a trace formula with facts in FL ∪ FC.

Properties of ledger rules in Definition 1 ensure that: (1) the ledger transition
system depends only on ledger facts and public inputs; (2) all produced ledger
facts are recorded as actions in the trace. In this paper we consider public ledgers,
e.g. [1–4], so the ledger rules will also satisfy (3) msg(rhs(P)) ⊆ msg(out(P)).
This is not an inherent restriction of the model, and partially public ledgers,
e.g. [32], may be considered in the scope of Definition 1. Bearing in mind the
properties (2) and (3) of our considered ledger rules, in order to simplify the
presentation of our examples in the paper, we will avoid duplication, writing
[F0]−−[Φ]→[F1] instead of [F0]−−[Φ,F1]→[F1,Out(msg(F1))] as expected. All
protocol rules will be ledger-respecting as in Definition 1, so the only way to
produce ledger facts is by passing through ledger rules; on the other hand, pro-
tocol rules can freely access ledger facts to check the state of the ledger, so we
can have lhs(P) ∩ FL �= ∅.

In Fig. 1, the rule Rnew abstracts the coin mining process; the other rules
model formally the coin transactions as described above: spending coins to coins,
to hashcoins, and back to coins. The rule Rh2cr produces a ledger fact !Time(xsn)
to record that the corresponding coin was reclaimed after a timeout. The rules
Sc2h,Sh2c assume Hash and Inv to be defined by their context as a hash image of
interest and a hash preimage.

Ledger restrictions define additional constraints that should be satisfied by
the public ledger. If facts(Φ) ⊆ FL then the restriction Φ is inherent to the
semantics of the ledger, i.e. it is a check performed by the (distributed) trusted
party that builds the ledger. On the other hand, if ∃F ∈ facts(Φ) ∩ FC , then
Φ restricts the execution of the protocols with respect to the public ledger: a
protocol rule P with a substitution θ such that Fθ ∈ act(Pθ) can perform a
transition at timepoint i, only if Fθ @ i is consistent with Φθ and the previous
ledger facts.

Contingent Payments on a Public Ledger 369

Fig. 1. Ledger coin rules: Lbase = {Rnew,Rc2c}; Lhash = Lbase � {Rc2h,Rh2c,Rh2cr}

Example 6. The following formulas define ledger restrictions for coins on
Lbase,Lhash

Ψ0 : ∀x, y, z, i, j. !Spend(x, y) @ i ∧ !Spend(x, z) @ j ⇒ i = j ∧ y = z
Ψ1 : ∀x, y, z, i, j. !F1(x, y) @ i ∧ !F2(x, z) @ j ⇒ i = j ∧ y = z

(∀F1, F2 ∈ {Coin,HCoin})
Ψ2 : ∀x, y, i, j. Unspent(x) @ i ∧ !Spend(x, y) @ j ⇒ i < j

They ensure that - no coin can be spent twice (Ψ0); - every fresh coin has
a fresh serial number (Ψ1); - Unspent can hold at timepoint i only if the corre-
sponding coin has not already been spent on the ledger (Ψ2). Note that Ψ0, Ψ1

are inherent ledger restrictions, while Ψ2 is a protocol ledger restriction. We let
Ψcoin = Ψ0 ∧ Ψ1 ∧ Ψ2.

4 Zero Knowledge Contingent Payments

We specify in a general framework the security guarantees that parties can expect
from ZKCP protocols. We allow several parameters in definitions, that can be
instantiated differently by specific protocols and ledgers - we illustrate it on Lbase

and Lhash. We are interested in generic ZKCP protocols, where any functionality
can be obtained by instantiating the protocol with a specific function f . Secu-
rity is independent of the actual function f , so we consider a generic f in the
following.

For intuition, consider first a protocol on Lhash [14,16]. It assumes a zero-
knowledge proof system showing that a ciphertext provided by a party contains

370 S. Bursuc and S. Kremer

a witness for a desired result, where the symmetric encryption key is the preimage
of a given hash value. We represent such a proof by zk(w, v, u) where w is the
witness, v is the hash preimage used as symmetric key, and u is the secret key of
the party constructing the proof (for brevity, we omit public data that may be
part of the proof). The following rewrite rules represent symmetric encryption
and zk proof verification:
sdec(senc(x, y), y) → x verzk(zk(x, y, z), senc(x, y), f(x), h(y), g(z)) → ok.
These define Ihash, where also ∀f ∈ F (k). [K(x1), . . . ,K(xk)] ⇒ [K(f(x1, . . . , xk))].
Assume a seller with private key ks wants to sell w to a buyer with public key
g(kb).
Seller 1: generate a fresh key k; output senc(w, k), h(k), g(ks), zk(w, k, ks);
Buyer 1: receive above data from seller and, if the zk proof verifies, invoke Rc2h on
Lhash to create a hashcoin for the given h(k) and g(ks) :!HCoin(sn, 〈g(kb),
g(ks), h(k)〉);
Seller 2: inspect Lhash to see if the above coin was created; invoke Rh2c with k
and ks to claim the coin; this reveals k and thus reveals the witness;
Buyer 2: inspect Lhash to see if Rh2c was invoked for the created hashcoin; if yes,
the ledger will also contain the key k that allows the decryption of the ciphertext
received at step 1; if not, the rule Rh2cr can be invoked after a time delay so that
the coin is returned to the original owner.

Timeout. The fairness properties for the ZKCP protocols will be relative to the
timely execution of certain operations. More precisely, if a certain action is not
performed by a party in due time, then there is another action - grounded on
the semantics of the ledger as in Example 7 or on cryptographic primitives as
in Example 8 - that can be performed in order to compensate for the missing
action.

Example 7 (Ledger timeout). Consider the rule Rh2cr from Fig. 1 modeling the
refund of a hashcoin after a timeout. The execution of this rule at timepoint
i is accompanied on the ledger by the fact !Time(xsn) @ i to record that this
coin was spent due to a timeout. This allows to specify the possible effects of
invoking Rh2c on Lhash: either the transaction completes as expected, or there
was a timeout, i.e. Rh2cr was invoked. Consider the rule Sh2c from Fig. 1; note
the Claim action. Then Lhash ensures the following property:

∀x, y, z, z1, z2, i, j.
Claim(x, y) @ i ∧

!Spend(x, z1, z2, z) @ j
⇒ z = y ∨

!Time(x) @ j

where z = y happens in a normal execution, and !Time(x) @ j if the timeout
occurs.

Example 8 (Cryptographic timeout [33,34]). Time commitment schemes allow
to produce a commitment to a message that keeps it secret for a period of
time. We represent a time commitment to u by tcom(u) and consider the fol-
lowing rule Qtcom : [In(tcom(x))]−−[!Time(x)]→[Out(x)]. We express that fresh
committed data is either secret, or it was released after a timeout. Let P :

Contingent Payments on a Public Ledger 371

[Fr(s)]−−[Tcom(s)]→[Out(tcom(s))]. Then Qtcom, P |= ∀x, i, j. Tcom(x) @ i ∧
K(x) @ j ⇒ ∃k. k < j ∧ !Time(x) @ k

Fig. 2. Formal ZKCP on Lhash; Seller = (S0, S1, S2);Buyer = (B0, B1, B
go
2 , Bab

2)

Definition 2. Let Q be a set of (protocol and ledger) rules and Ψ be a set of
restrictions. We say that (Q,Ψ) is a

– coin infrastructure if Q produces !Spend(ucoin, u, upk) ledger facts and Ψcoin ⊆
Ψ (see Fig. 1 and Example 6);

– time infrastructure if Q produces !Time(u) actions (see Examples 7 and 8);
– key infrastructure if Qkeys ⊆ Q (see Example 4)
– function model if Q contains the rules Qfunc:

[Fr(xw)] ⇒ [!Witn(xw),Out(f(xw))] ; [Fr(xw)] ⇒ [!Res(f(xw)),Out(xw)]

If all of these are satisfied we say that (Q,Ψ) is a ZKCP-context.

The fact !Witn(xw) from a function model is used by an honest seller to determine
a witness, and the adversary (playing the role of the buyer) obtains a desired
result f(xw). The fact !Res(f(xw)) is used by an honest buyer to determine
a desired result, and the adversary (playing the role of the seller) obtains the
corresponding witness xw.

Definition 3. A ZKCP Seller specification is given by a set of protocol rules
that contains two special rules:

sell: [. . .]−−[Sell(tpk, twtn)]→[. . .]
claim: [. . .]−−[Claim(tpk, twtn, ttime, tsn)]→[. . .]

The sell rule models the start of a seller session, recording in Sell(tpk, twtn) the
seller public key and the witness. The claim rule models the seller claiming a coin
as payment, producing an action fact Claim(tpk, twtn, ttime, tsn) where tpk, twtn are
as above, ttime is timeout constrained data, and tsn the claimed coin. In our case
studies, ttime is either a sn as in Example 7 or a secret key share, cryptographically
committed as in Example 8. See in Fig. 2 the formal Seller specification for the
protocol above.

372 S. Bursuc and S. Kremer

Definition 4. Let (Q,Ψ) be a ZKCP-context and S be a ZKCP Seller specifi-
cation. We say that these ensure seller security if Q,S;Ψ |= ΦS, where ΦS is
defined in Fig. 3.

Fig. 3. Security properties for ZKCP on a ledger

Intuitively, the formula ΦS = Φ0 ∧ Φ1 ∧ Φ2 from Definition 4 ensures that:

• Φ0: if the other party learns the witness, then (one of) the seller(s) for the
corresponding witness is able to claim the payment of a coin into seller’s
account;

• Φ1: the other party cannot lead the seller into accepting the same payment
twice, e.g. for two different witnesses;

• Φ2: the payment claimed by the seller will succeed as such on the ledger,
unless the corresponding timeout event happened.

Note that, in Φ0, the key ypk into which payment is claimed is not necessarily
equal to the key xpk that engaged in selling the witness: the two keys can differ
when there are two sellers for the same witness; then the adversary can learn
the witness in one session without paying in the second one. Φ1 requires care
to ensure session specific payments; simply checking unspent conditions on the
ledger is not sufficient in case of concurrent sessions. Φ2 is important because
the coin claimed by the seller is jointly constructed with the adversary, so we
need to ensure that there is no other way to spend it. The following is proved
automatically with Tamarin [35]:

Proposition 1. For Seller of Fig. 2, Qkeys,Lhash, Ihash,Qfunc,Seller;Ψcoins |= ΦS.

ZKCP Buyer. As we can see in the Lhash-based protocol presented above, in
order to ensure the witness delivery from a ZKCP protocol, the buyer should per-
form some verification actions on the data (e.g. zero-knowledge proofs) received
during the protocol execution. We model these checks by a formula Ψ1(x, xstate),
where x represents the desired result for the function of interest, and xstate repre-
sents protocol data that is relevant for buyer’s verification actions. Ψ1 and xstate

are protocol specific and they are parameters of our definition.
In addition to data received during the protocol execution, the buyer can also

rely on data that is published on the ledger, and on the associated constraints

Contingent Payments on a Public Ledger 373

that are ensured by the ledger semantics. We model these by Ψ0(y, xstate) where
y represents the relevant ledger data. For example, in the Lhash-based protocol,
the semantics of the ledger ensures that the data y associated to the transaction
that spends the hashcoin must contain the preimage of a hash recorded in xstate,
if the coin was spent by any party other than the buyer. A part of our security
definition will require that Ψ0 in conjunction with Ψ1 does indeed reveal the
witness. A second part of the definition will require that, if the buyer performed
a payment transaction, then the buyer and the ledger will reach a state where
Ψ0 and Ψ1 hold, or otherwise the buyer can obtain a refund.

Definition 5. A ZKCP Buyer specification is given by a set of protocol rules
that contains the special rule pay: [. . .]−−[Pay(tpk, tres, tcoin, ustate)]→[. . .].

The pay rule models the invocation of a payment transaction for a witness,
where tpk is the public key of the buyer, tres is the desired result, tcoin is the
target coin where the buyer makes the payment, and ustate is state information
that is relevant for obtaining the witness. See Fig. 2 for the Buyer specification
in the protocol described above.

Definition 6. Let (Q,Ψ) be a ZKCP-context and B be a ZKCP Buyer specifi-
cation. We say that these ensure buyer security if Q,B;Ψ |= ΦB, where ΦB is
defined in Fig. 3.

Intuitively, the formulas Φ0, Φ1, Φ2 from Definition 6 ensures that:

• Φ0: if the buyer has paid for a witness into a coin, then spending that coin
on the ledger will either lead to a refund, i.e. zpk = xpk, or else the data y
associated to the spending transaction together with buyer state data satisfy
the constraint Ψ0;

• Φ1: before paying, the buyer performs checks entailing the constraint Ψ1 for
the desired result and the buyer state;

• Φ2: Ψ0 and Ψ1 allow to derive a witness for the desired result, by combining
transaction data y with data xstate gathered from the protocol execution.

Proposition 2. For Buyer from Fig. 2 and Q = (Qkeys,Lhash, Ihash,Qfunc), we
have

Q,Buyer;Ψcoins |= ΦB

⎧
⎨

⎩

xstate : (xπ, xew, xh, xpks)
Ψ0(y, xstate) : ∃ys, yh. y ≈ 〈ys, yh〉 ∧ xh ≈ h(yh)

Ψ1(xres, xstate) : verzk(xπ, xew, xres, xh, xpks) ≈ ok

We prove Φ0 from ΦB with Tamarin [35]. The properties Φ1 and Φ2 are simple
local deduction properties that can be checked by hand (if the state of the buyer
would be more complex, automated tools can also be used for that).

Observations: • the seller (S) and buyer (B) public keys are linked on the ledger,
while this is not a necessary consequence of the security properties. S does not need
to know the public key of B in advance, while B does need the public key of S.
• private ledger keys of S and B do not have to be secret for security to hold:

374 S. Bursuc and S. Kremer

our models allow corruption of any key by the adversary (A). For S, secu-
rity follows from the fresh symmetric key created for each session and, for
B, from the trusted ledger. Note, however, that these keys allow A to spend
the coins of their owner, but this is independent from the ZKCP protocol. In
fact, a basic property of any ledger-based protocol should be that it does not
reveal secret keys, i.e. ∀x, i, j. !Key(x) @ i ∧ K(x) @ j ⇒ ∃�. � < j ∧
Corrupt(g(x)) @ �. We also prove this property in Tamarin for our models.
• S cannot reuse the same symmetric key and zero-knowledge proof in two
different sessions, even if those sessions are for selling the same witness; • our
intruder deduction rules assume a perfect zero-knowledge construction, in par-
ticular A cannot tweak the proof parameters in order to reveal the witness, as
exploited by attacks of [16]. In the next section we show that intruder deduction
rules can also model finer-grained properties of cryptographic constructions if
required, in particular conditions when the witness may be revealed; • security
for S depends on the timely delivery of transactions to the ledger, while this is
not the case for B, who could obtain both the witness and the money back if
there was a time delay; • the proof xπ is not necessary for extracting the witness
so it can be discarded after verification by B; • our models consider a strong A
and, as such, do not cover the case of weaker, multiple A’s, e.g. for two differ-
ent buyers that do not collude or do not control the network, but they can be
extended to.

5 ZKCP Protocol on the Basecoin Ledger

Managing hashcoins - e.g. applying the hashing algorithm - sets tradeoffs for
the agents that maintain the ledger; they may give priority to standard coins,
i.e. preferring Lbase over Lhash. Another constraint that needs to be taken into
account - by parties engaging in ZKCP - is the complexity of constructing and
verifying the zero-knowledge proofs. In this section, we formalize and analyze
the protocol of [15], which aims to implement the ZKCP functionality on Lbase.
Other works, e.g. [18], aim to minimize the zk burden by appealing to special
contracts that will be executed only in case of dispute.

Cryptographic Primitives. For ZKCP on Lbase, [15] adopts timed crypto-
graphic commitments [33,34], as presented in Example 8, in order to emulate
the ledger timeout. To link ledger transitions and data release, [15] exploits alge-
braic properties of the ECDSA signature used in Bitcoin: relying on homomor-
phic encryption, e.g. Paillier, an encrypted signature can be constructed from an
encryption of the signing key, which can be constructed by adding shares of the
signing key on top of an initial encrypted share [36–39]. A Diffie-Hellman group
is used to establish a shared key. A special type of zk proof is also needed: a
prover can encode the witness and convince the verifier that it can be extracted
as soon as some committed structured data - for ZKCP: an ECDSA signature -
is revealed. We rely on Ibase from Fig. 4 to model these crypto primitives. A term
esign(m, k, r1, g(r1∗r2), pk(z)) represents an encrypted partial signature of a mes-
sage m, with signing key k, randomness share r1, public randomness g(r1 ∗ r2),

Contingent Payments on a Public Ledger 375

and encryption public key pk(z). Combining it with the decryption key z and
the complementary randomness share r2, one can compute sign(m, k, r1 ∗ r2).
The rules for extract and verzk model the connection between a valid signature
and witness extraction. Time commitments can be checked wrt the public part
g(x) of private data x.

Fig. 4. Intruder theory Ibase; and ∀f ∈ F (k).[K(x1), . . . ,K(xk)] ⇒ [K(f(x1, . . . , xk))]

Jointly Signing a Message. Assume two parties A1 (holding k1, r1) and A2

(holding k2, r2) want to create sign(t, k1 ∗ k2, r1 ∗ r2) for some agreed upon t.
Then, say, A1 can generate a fresh key pair k, pk(k) and send enc(k1, pk(k)) to
A2. Relying on Homenc, A2 can obtain enc(k1∗k2, pk(k)), which with t, r2, g(r1∗r2)
as arguments to homs gives esign(t, k1 ∗k2, r2, g(r1 ∗ r2), pk(k)). Sent back to A1,
the joint signature is derived by applying decs to this term and r1, k. Note that
A1 gets the signature and can decide when to show it to A2. On the other hand,
both parties contribute to randomness in the signature; no party can force a
particular value for the randomness. Both of these features will be needed to
ensure the security properties for the ZKCP protocol:

(1) Based on DH key-exchange and commitments, compute a public key pk12 =
g(k1 ∗ k2) such that the private key k1 ∗ k2 is secret-shared between the
seller (S), who holds k1, g(k2), and the buyer (B), who holds k2, g(k1). Sim-
ilarly, secret-shared randomness r1 ∗ r2 is computed: #Public : pk12, g(r1 ∗
r2) Seller : k1, r1 Buyer : k2, r2#

(2) The key pk12 is used for an intermediate transfer from B to S. The two
agree on the transaction that transfers a coin from pk12 to S: #Public : t =
〈c2c, ρ1sn, ρ

2
sn, g(ks)〉#, where ρ1sn, ρ

2
sn are fresh public serial numbers and g(ks)

is the public key of S. This transaction is not signed, so cannot yet lead to
a transfer. Also, B has not yet transferred coins into pk12.

(3) Based on crypto as shown above, S (with B’s help) obtains s =
sign(t, k1 ∗ k2, r1 ∗ r2). S checks that s is valid by applying the sig-
nature verification algorithm. It then outputs the zero-knowledge proof
π = zk(w, f(w), s) and a time commitment to S’s share of the joint secret
key: #Seller : s Public : π, tcom(k1)#

(4) B verifies the proof and the time commitment, and transfers a coin to pk12,
leading to an update of the ledger: #Ledger : !Coin(ρ1sn, pk12)#

376 S. Bursuc and S. Kremer

(5) The seller claims ρ1sn by invoking Rc2c on the ledger, relying on
the signature s obtained previously. The ledger will record a !Spend
fact with the corresponding transaction data, including the signature:
#Ledger : !Spend(ρ1sn, pk12, s, g(ks))#

(6) The buyer obtains s from the ledger and extracts the witness from the
zk proof: w = extract(π, s). If the seller aborted, no one can redeem the
coin ρ1sn, until the time commitment reveals k1, so the buyer can reconstruct
k1∗k2 and redeem the coin. The formal specification is in Fig. 5, with details
of joint signing omitted.

Proposition 3. For Seller and Buyer from Fig. 5 and Qtcom from Example 8,

Q,Seller;Ψcoins |= ΦS Q,Buyer;Ψcoins |= ΦB Q = (Qkeys,Qtcom, Lbase, Ibase,Qfunc)
where xstate : 〈xπ, xtcom, x12

pk〉, Ψ0(y, xstate) : ∃z, x. xπ ≈ zk(z, x, xs) ∧ y ≈ xs;

Ψ1(xres, xstate) : verzk(xπ, xres, xtcom, x12
pk) ≈ ok

Tamarin Verification: we prove ΦS and Φ0 for ΦB automatically with
Tamarin relying on the reduction that we present in the next section for ter-
mination within 1 min. We prove two helper lemmas along the way: (1) if the
adversary knows a time commitment, then it either knows the committed mes-
sage at an earlier time, or the commitment is constructed by an honest party;
(2) fresh randoms and keys stay secret - unless opened by a time commitment.
The Tamarin code is available online [35].

Observations: • as for Lhash, the S and B are linked on the ledger; the
secret keys of any party can be corrupted, we prove however that the proto-
col does not itself reveal these keys; • the cryptographic constructions from
[15] are a particular instance of Ibase; it may admit more efficient instances,
and our proofs could still be relied on for the security guarantees; • Ibase

does not cover the full algebra of homomorphic encryption, where we have

Fig. 5. ZKCP on Lbase; Seller = (S0, . . . , S4);Buyer = (B0, . . . , B3, B
go
4 , Bab

4)

Contingent Payments on a Public Ledger 377

[K(enc(x, z)),K(enc(y, z))] ⇒ [K(enc(x ∗ y, z))]. It is however sound when every
ciphertext constructed by honest parties uses a fresh key, as in our case study;
covering the full theory is a long-standing, still open, problem for protocol verifi-
cation • the same shared key could be used for the exchange of several witnesses
within the timeframe chosen for the time commitment; • contrary to Lhash, the
zero-knowledge proof cannot be discarded by B after verification, since it is nec-
essary for extracting the witness; • on Lhash, B sets the ledger timeout and S
can accept to proceed; on Lbase it is the other way around with respect to crypto
timeout.

6 Homomorphism and Abelian Group Reduction

We take a class of intruder theories that covers the one of Fig. 4; F contains a
set of homomorphic functions Fhom. We reduce any I from this class to IΔ such
that: IΔ is simpler than I; IΔ is sound wrt I. First, given any trace τ wrt I, we
show that there is IΔ generating τ and where: (i) the homomorphic properties
are restricted by arguments from honest parties in τ ; (ii) the abelian group is
degenerated, allowing to obtain any factors from products. Second, we augment
any set of rules S to SΔ, which records as facts the homomorphic arguments of
S, and IΔ is generalized to cover any trace of SΔ.

Definition 7. A base for F is a function Δ with dom(Δ) = Fhom and ∀f ∈
F (n)

hom. Δ(f) ⊆ T n. We assume that Δ is closed modulo AC, i.e. Δf (u ∗ v, w) ⇒
Δf (v∗u,w) and similarly for associativity, and closed by:Δf (u∗v, w) ⇒ Δf (u,w).

We extend intruder deduction to rules of the form [Δf (x),M] ⇒ [N], which
have the same semantics as [M] ⇒ [N] with the additional constraint that
xθ ∈ Δ(f) holds for the substitution θ that instantiates the rule.

Definition 8. We consider the class of intruder theories as defined below (left):
Initial theory I (with Hom for all f ∈ Fhom)

Hom : [K(f(x, z)),K(y)] ⇒ [K(f(x ∗ y, z))]

AG : x ∗ i(x) = 1 , x ∗ 1 = x

x ∗ y = y ∗ x , (x ∗ y) ∗ z = x ∗ (y ∗ z)

R0 : {l1 → r1, . . . , lk → rk}

Reduced theory IΔ for base Δ

HomΔ : [Δf (x, z),K(y))] ⇒ [K(f(x ∗ y, z))]

AP : [K(x ∗ y)] ⇒ [K(x)]
x ∗ y = y ∗ x , (x ∗ y) ∗ z = x ∗ (y ∗ z)

R0 : {l1 → r1, . . . , lk → rk}

We assume that every l → r ∈ R0 satisfies
H1: top(l), top(r) /∈ Fhom∪{∗, i} H2: ∀t ∈ st(r)�st(l). top(t)∩(Fhom∪{∗, i}) = ∅
Given such I and a base Δ, we define the reduced theory IΔ as above (right). I,
IΔ also contain the deduction rules ∀f.[K(x1), . . . ,K(xk)] ⇒ [K(f(x1, . . . , xk))].

H1 and H2 help in proofs [40]; R0 from Fig. 4 respects them. Intuitively, we
split the homomorphic argument of f in two parts, e.g. f(u ∗ v, w), where the
factors of v are known by the adversary, while the factors of u are provided by
honest parties (in S). When the adversary applies Hom to such a term, to get
e.g. f(u ∗ v ∗ t, w), there is a smaller term f(u,w) that can be used to obtain
the same result, since the adversary knows v ∗ t. The term u will be added by
SΔ to Δ(f) so HomΔ can be applied on it.

378 S. Bursuc and S. Kremer

Proposition 4. For any S, M0,M1 s.t. M1 can be derived from M0 using rules
in S ∪ I, there is Δ s.t. M1 can be derived from M0 using S ∪ IΔ; Δ can be
iteratively constructed by a set SΔ - augmenting each rule in S with a constant
number of facts.

Corollary 1. For any S and formulas Ψ,Φ, we have SΔ, IΔ;Ψ |= Φ ⇒
S, I;Ψ |= Φ

Scope. The reduction is sound for any set of protocol rules. However, since IΔ

allows to freely decompose products, it gives too much power to the adversary
(leading to false attacks) for certain classes of protocols, e.g. when a nonce r pro-
tects a secret s in s ∗ r. The reduction is useful for proofs only when secret data
is protected by (homomorphic) cryptographic constructions, e.g. exponentiation,
encryption, etc.

7 Related and Future Work

Several works extend the scope of Tamarin to new cryptographic primitives [41–
43] or infrastructure features [44,45]. Our models contribute to both of these
directions. On the crypto side, an open question is to cover deductions like
enc(u, k), enc(v, k) ⇒ enc(u∗v, k), which would allow to model e.g. homomorphic
tallying for voting [46]. Protocol verification modulo this theory is studied in [47],
where abstractions different from ours are used for reducing the theory, but the
case studies are limited to unification problems and relatively simple protocols.

Works complementary to ours aim to provide formal guarantees for code exe-
cuted on the blockchain [48–50]. Our ledger models are, on one hand, grounded
on such guarantees and, on the other hand, they allow to reason about the prop-
erties of higher-level protocols and applications. In future work, we can extend
our models to cover more general smart contracts, hybrid ledgers and applica-
tions [18,32,51]. Current ZKCP protocols don’t allow seller/buyer unlinkability,
while the security properties leave scope for it. An open problem is ZKCP on
ledgers with more privacy [52–54] and appropriate unlinkability notions.

Acknowledgment. The research leading to these results has received funding from
the European Research Council (ERC) under the European Union’s Horizon 2020
research and innovation program (grant agreements No. 645865-SPOOC).

References

1. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). https://
bitcoin.org/bitcoin.pdf

2. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger (2014).
https://gavwood.com/paper.pdf

3. Goodman, L.M.: Tezos - a self-amending crypto-ledger (2014). https://tezos.com/
static/white paper-2dc8c02267a8fb86bd67a108199441bf.pdf

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://gavwood.com/paper.pdf
https://tezos.com/static/white_paper-2dc8c02267a8fb86bd67a108199441bf.pdf
https://tezos.com/static/white_paper-2dc8c02267a8fb86bd67a108199441bf.pdf

Contingent Payments on a Public Ledger 379

4. Hanke, T., Movahedi, M., Williams, D.: DFINITY technology overview series, con-
sensus system. CoRR, abs/1805.04548 (2018)

5. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis
and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6 10

6. Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asyn-
chronous networks. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10211, pp. 643–673. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56614-6 22

7. Dashti, M.T., Mauw, S.: Fair exchange. In: Rosenberg, B. (ed.) Handbook of
Financial Cryptography and Security, pp. 109–132. Chapman and Hall/CRC, Boca
Raton (2010)

8. Asokan, N., Shoup, V., Waidner, M.: Optimistic fair exchange of digital signatures.
In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 591–606. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0054156

9. Cachin, C., Camenisch, J.: Optimistic fair secure computation. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 93–111. Springer, Heidelberg (2000). https://
doi.org/10.1007/3-540-44598-6 6

10. Micali, S.: Simple and fast optimistic protocols for fair electronic exchange. In:
22nd ACM Symposium on Principles of Distributed Computing (PODC 2003),
pp. 12–19. ACM (2003)

11. Lindell, A.Y.: Legally-enforceable fairness in secure two-party computation. In:
Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 121–137. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-79263-5 8

12. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Fair two-party
computations via bitcoin deposits. In: Böhme, R., Brenner, M., Moore, T., Smith,
M. (eds.) FC 2014. LNCS, vol. 8438, pp. 105–121. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44774-1 8

13. Bentov, I., Kumaresan, R.: How to use bitcoin to design fair protocols. In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 421–439. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1 24

14. Bitcoin Wiki: Zero Knowledge Contingent Payment. https://en.bitcoin.it/wiki/
Zero Knowledge Contingent Payment

15. Banasik, W., Dziembowski, S., Malinowski, D.: Efficient zero-knowledge contingent
payments in cryptocurrencies without scripts. In: Askoxylakis, I., Ioannidis, S.,
Katsikas, S., Meadows, C. (eds.) ESORICS 2016. LNCS, vol. 9879, pp. 261–280.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45741-3 14

16. Campanelli, M., Gennaro, R., Goldfeder, S., Nizzardo, L.: Zero-knowledge con-
tingent payments revisited: attacks and payments for services. In: ACM SIGSAC
Conference on Computer and Communications Security (CCS 2017), pp. 229–243.
ACM (2017)

17. Goldfeder, S., Bonneau, J., Gennaro, R., Narayanan, A.: Escrow protocols for
cryptocurrencies: how to buy physical goods using bitcoin. In: Kiayias, A. (ed.)
FC 2017. LNCS, vol. 10322, pp. 321–339. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-70972-7 18

18. Dziembowski, S., Eckey, L., Faust, S.: FairSwap: how to fairly exchange digital
goods. In: ACM SIGSAC Conference on Computer and Communications Security
(CCS 2018), pp. 967–984. ACM (2018)

https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/BFb0054156
https://doi.org/10.1007/3-540-44598-6_6
https://doi.org/10.1007/3-540-44598-6_6
https://doi.org/10.1007/978-3-540-79263-5_8
https://doi.org/10.1007/978-3-662-44774-1_8
https://doi.org/10.1007/978-3-662-44381-1_24
https://en.bitcoin.it/wiki/Zero_Knowledge_Contingent_Payment
https://en.bitcoin.it/wiki/Zero_Knowledge_Contingent_Payment
https://doi.org/10.1007/978-3-319-45741-3_14
https://doi.org/10.1007/978-3-319-70972-7_18
https://doi.org/10.1007/978-3-319-70972-7_18

380 S. Bursuc and S. Kremer

19. Cohn-Gordon, K., Cremers, C.J.F., Garratt, L.: On post-compromise security. In:
IEEE 29th Computer Security Foundations Symposium (CSF 2016), pp. 164–178.
IEEE Computer Society (2016)

20. Cohn-Gordon, K., Cremers, C.J.F., Dowling, B., Garratt, L., Stebila, D.: A formal
security analysis of the signal messaging protocol. In: IEEE European Symposium
on Security and Privacy (EuroS&P 2017), pp. 451–466. IEEE Computer Society
(2017)

21. Bhargavan, K., Blanchet, B., Kobeissi, N.: Verified models and reference imple-
mentations for the TLS 1.3 standard candidate. In: IEEE Symposium on Security
and Privacy (SP 2017), pp. 483–502. IEEE Computer Society (2017)

22. Cremers, C., Horvat, M., Hoyland, J., Scott, S., van der Merwe, T.: A comprehen-
sive symbolic analysis of TLS 1.3. In: ACM SIGSAC Conference on Computer and
Communications Security (CCS 2017), pp. 1773–1788. ACM (2017)

23. Jacomme, C., Kremer, S.: An extensive formal analysis of multi-factor authenti-
cation protocols. In: 31st IEEE Computer Security Foundations Symposium (CSF
2018), pp. 1–15. IEEE Computer Society (2018)

24. Meier, S., Schmidt, B., Cremers, C., Basin, D.: The TAMARIN prover for the
symbolic analysis of security protocols. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 696–701. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39799-8 48

25. Cervesato, I., Durgin, N.A., Mitchell, J.C., Lincoln, P., Scedrov, A.: Relating
strands and multiset rewriting for security protocol analysis. In: 13th IEEE Com-
puter Security Foundations Workshop, CSFW 2000, Cambridge, England, UK, 3–5
July 2000, pp. 35–51. IEEE Computer Society (2000)

26. Schmidt, B., Meier, S., Cremers, C.J.F., Basin, D.A.: Automated analysis of Diffie-
Hellman protocols and advanced security properties. In: 25th IEEE Computer
Security Foundations Symposium (CSF 2012), pp. 78–94. IEEE Computer Society
(2012)

27. Dershowitz, N., Jouannaud, J.-P.: Rewrite systems. In: van Leeuwen, J. (ed.) Hand-
book of Theoretical Computer Science, Volume B: Formal Models and Sematics
(B), pp. 243–320. MIT Press, Cambridge (1990)

28. Vaudenay, S.: The security of DSA and ECDSA. In: Desmedt, Y.G. (ed.) PKC
2003. LNCS, vol. 2567, pp. 309–323. Springer, Heidelberg (2003). https://doi.org/
10.1007/3-540-36288-6 23

29. Bitcoin Wiki: Hashed Timelock Contracts. https://en.bitcoin.it/wiki/Hashed
Timelock Contracts

30. Bitcoin Wiki: Payment channels. https://en.bitcoin.it/wiki/Payment channels
31. Bitcoin Wiki: Lightning Network. https://en.bitcoin.it/wiki/Lightning Network
32. Hearn, M.: Corda: a distributed ledger (2016)
33. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release

crypto. Technical report, MIT, Cambridge, MA, USA (1996)
34. Boneh, D., Naor, M.: Timed commitments. In: Bellare, M. (ed.) CRYPTO 2000.

LNCS, vol. 1880, pp. 236–254. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-44598-6 15

35. Tamarin code for ZKCP protocol verification. https://www.dropbox.com/sh/
ahzbbojm5z0e6a9/AAB6-Pz-RK3xwVznlaqaitfca?dl=0

36. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 16

https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1007/3-540-36288-6_23
https://doi.org/10.1007/3-540-36288-6_23
https://en.bitcoin.it/wiki/Hashed_Timelock_Contracts
https://en.bitcoin.it/wiki/Hashed_Timelock_Contracts
https://en.bitcoin.it/wiki/Payment_channels
https://en.bitcoin.it/wiki/Lightning_Network
https://doi.org/10.1007/3-540-44598-6_15
https://doi.org/10.1007/3-540-44598-6_15
https://www.dropbox.com/sh/ahzbbojm5z0e6a9/AAB6-Pz-RK3xwVznlaqaitfca?dl=0
https://www.dropbox.com/sh/ahzbbojm5z0e6a9/AAB6-Pz-RK3xwVznlaqaitfca?dl=0
https://doi.org/10.1007/3-540-48910-X_16

Contingent Payments on a Public Ledger 381

37. Lindell, Y.: Fast secure two-party ECDSA signing. In: Katz, J., Shacham, H. (eds.)
CRYPTO 2017. LNCS, vol. 10402, pp. 613–644. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63715-0 21

38. Lindell, Y., Nof, A.: Fast secure multiparty ECDSA with practical distributed key
generation and applications to cryptocurrency custody. In: ACM SIGSAC Con-
ference on Computer and Communications Security (CCS 2018), pp. 1837–1854.
ACM (2018)

39. Gennaro, R., Goldfeder, S.: Fast multiparty threshold ECDSA with fast trustless
setup. In: ACM SIGSAC Conference on Computer and Communications Security
(CCS 2018), pp. 1179–1194. ACM (2018)

40. Additional material: Tamarin code and long paper version. https://www.dropbox.
com/sh/t74k3q4gxrmo0pw/AADvx0e8WDaZgyf0OQFlElICa?dl=0

41. Schmidt, B., Sasse, R., Cremers, C., Basin, D.A.: Automated verification of group
key agreement protocols. In: IEEE Symposium on Security and Privacy (SP 2014),
pp. 179–194 (2014)

42. Dreier, J., Hirschi, L., Radomirovic, S., Sasse, R.: Automated unbounded verifica-
tion of stateful cryptographic protocols with exclusive OR. In: 31st IEEE Computer
Security Foundations Symposium, CSF 2018, pp. 359–373. IEEE Computer Society
(2018)

43. Dreier, J., Duménil, C., Kremer, S., Sasse, R.: Beyond subterm-convergent equa-
tional theories in automated verification of stateful protocols. In: Maffei, M., Ryan,
M. (eds.) POST 2017. LNCS, vol. 10204, pp. 117–140. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-54455-6 6

44. Kremer, S., Künnemann, R.: Automated analysis of security protocols with global
state. J. Comput. Secur. 24(5), 583–616 (2016)

45. Backes, M., Dreier, J., Kremer, S., Künnemann, R.: A novel approach for reasoning
about liveness in cryptographic protocols and its application to fair exchange. In:
IEEE European Symposium on Security and Privacy (EuroS&P 2017), pp. 76–91.
IEEE Computer Society (2017)

46. Baudron, O., Fouque, P.-A., Pointcheval, D., Stern, J., Poupard, G.: Practical
multi-candidate election system. In: 20th Annual (ACM) Symposium on Principles
of Distributed Computing (PODC 2001), pp. 274–283. ACM (2001)

47. Yang, F., Escobar, S., Meadows, C.A., Meseguer, J., Narendran, P.: Theories of
homomorphic encryption, unification, and the finite variant property. In: Proceed-
ings of the 16th International Symposium on Principles and Practice of Declarative
Programming, Kent, Canterbury, United Kingdom, 8–10 September 2014, pp. 123–
133 (2014)

48. Bartoletti, M., Zunino, R.: BitML: a calculus for bitcoin smart contracts. In: ACM
SIGSAC Conference on Computer and Communications Security (CCS 2018), pp.
83–100 (2018)

49. Bhargavan, K., et al.: Formal verification of smart contracts. In: ACM Workshop
on Programming Languages and Analysis for Security (PLAS@CCS 2016), pp.
91–96. ACM (2016)

50. Hildenbrandt, E., et al.: KEVM: a complete formal semantics of the ethereum
virtual machine. In: 31st IEEE Computer Security Foundations Symposium (CSF
2018), pp. 204–217. IEEE Computer Society (2018)

51. Dziembowski, S., Faust, S., Hostáková, K.: General state channel networks. In:
ACM SIGSAC Conference on Computer and Communications Security (CCS
2018), pp. 949–966. ACM (2018)

https://doi.org/10.1007/978-3-319-63715-0_21
https://doi.org/10.1007/978-3-319-63715-0_21
https://www.dropbox.com/sh/t74k3q4gxrmo0pw/AADvx0e8WDaZgyf0OQFlElICa?dl=0
https://www.dropbox.com/sh/t74k3q4gxrmo0pw/AADvx0e8WDaZgyf0OQFlElICa?dl=0
https://doi.org/10.1007/978-3-662-54455-6_6

382 S. Bursuc and S. Kremer

52. Ben-Sasson, E., et al.: Zerocash: decentralized anonymous payments from bitcoin.
In: IEEE Symposium on Security and Privacy, SP 2014, pp. 459–474. IEEE Com-
puter Society (2014)

53. Zyskind, G., Nathan, O., Pentland, A.: Enigma: decentralized computation plat-
form with guaranteed privacy. CoRR, abs/1506.03471 (2015)

54. Malavolta, G., Moreno-Sanchez, P., Kate, A., Maffei, M., Ravi, S.: Concurrency
and privacy with payment-channel networks. In: ACM SIGSAC Conference on
Computer and Communications Security (CCS 2017), pp. 455–471. ACM (2017)

Symbolic Analysis of Terrorist Fraud
Resistance

Alexandre Debant1(B), Stéphanie Delaune1, and Cyrille Wiedling2

1 Univ Rennes, CNRS, IRISA, Rennes, France
{alexandre.debant,stephanie.delaune}@irisa.fr

2 DGA MI, Bruz, France
cwiedling@gmail.com

Abstract. Distance-bounding protocols aim at preventing several kinds
of attacks, amongst which terrorist fraud, where a far away malicious
prover colludes with an attacker to authenticate once, without giving
him any advantage for future authentication. In this paper, we consider a
symbolic setting and propose a formal definition of terrorist fraud, as well
as two reduction results. When looking for an attack, we can first restrict
ourselves to consider a particular (and quite simple) topology. Moreover,
under some mild hypotheses, the far away malicious prover has a best
strategy on which we can focus on when looking for an attack. These
two reduction results make possible the analysis of terrorist fraud resis-
tance using an existing verification tool. As an application, we analyse
several distance-bounding protocols, as well as some contactless payment
protocols using the ProVerif tool.

1 Introduction

Contactless devices deployed today in ticketing and building access-control appli-
cations are supposed to make our life easier but they also make possible new kinds
of attacks, e.g. relay attacks. An attacker can use two transponders (two mobile
phones could be sufficient) in order to relay over a large distance the informa-
tion between e.g. a card and an access card reader. As a result, an unauthorised
person will be able to enter a building using an access card located far away and
possibly still in the pocket of his holder. With the deployment of contactless sys-
tems, ensuring “proximity authentication”, through the use of secure protocols,
is an important goal.

Relay attacks cannot be prevented by traditional cryptographic protocols.
One possible defence is distance bounding protocols. The main goal of a distance
bounding protocol consists of ensuring that a prover is within a close distance to
a verifier by timing the round-trip delay of a cryptographic challenge-response
exchange. Therefore the security of these protocols is based on the physical limits

This work has been partially supported by the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation program (grant
agreement No 714955-POPSTAR).

c© Springer Nature Switzerland AG 2019
K. Sako et al. (Eds.): ESORICS 2019, LNCS 11735, pp. 383–403, 2019.
https://doi.org/10.1007/978-3-030-29959-0_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29959-0_19&domain=pdf
https://doi.org/10.1007/978-3-030-29959-0_19

384 A. Debant et al.

of communication: transmission can not go faster than the speed of light. Since
they have been introduced by Brands and Chaum in 1993 [8], many protocols
have been designed and analysed against various threats. In general, distance
bounding protocols shall resist to distance fraud : a malicious prover should not
be able to successfully complete a session with an honest verifier who is far away
(even with the help of some honest provers in the neighbourhood - so called
distance hijacking). They should also resist to mafia fraud where typically an
attacker abuses a far away prover to pass the protocol. In most cases, this is
achieved by relaying messages between the prover and the verifier (the so-called
relay attack). A more subtle notion is the notion of terrorist fraud. Here, a far
away malicious prover colludes with an attacker who is close to the verifier to
pass the protocol on his behalf. Such a scenario may occur if a legitimate worker
want to enable a third party to access his office, located in a restricted area, when
he is away. To prevent such behaviours, the protocol is said resistant to a terrorist
fraud if this help is actually reusable meaning that the third party can use this
extra information to impersonate the prover later on. The rationale is that a
malicious prover will not accept to give such an advantage to his accomplice,
and thus will not accept to collude with the attacker. This type of attack is
very tricky and rather difficult to model and analyse since it requires to consider
“terrorist” provers that are not fully dishonest in the sense that they are not
willing for instance to reveal their credentials.

Formal symbolic modelling and analysing techniques have proved their use-
fulness for verifying security protocols, and nowadays several verification tools
exist, e.g. ProVerif [5,6], Tamarin [26]. Since the seminal paper by Dolev-Yao in
[16], a lot of progress has been done in the area of formal symbolic verification
and it is now a common good practice to formally analyse a protocol using these
techniques before their deployment. In this so-called Dolev-Yao model, messages
are transmitted without introducing any delay preventing us to use this model to
analyse protocols for which transmission delay plays an important role. To over-
come this limitation, getting some inspiration from earlier works (e.g. [4,25,28]),
some recent works have proposed to incorporate new features in existing sym-
bolic models [11,13,14,23], making the analysis of distance bounding protocols
possible relying on existing verification tools (e.g. ProVerif, Tamarin).

Our Contributions. In this paper, distance bounding protocols are modelled using
the calculus we introduced in [14]. This calculus shares some similarities with
the applied pi calculus [1,6], a well-established process algebra for modelling
cryptographic protocols. Within this framework, we propose a formal definition
of terrorist fraud. We will see that this notion is tricky and complex and require
a quantification over all the topologies, but also another one to consider all the
possible terrorist provers. Due to this, such a security property can not be anal-
ysed using techniques deployed in e.g. [13,14,23]. Our main contribution is to
provide reduction results to reduce the number of topologies we have to consider
during our analysis, and more importantly to reduce the possible behaviours of
our terrorist prover. We will see that under some reasonable conditions, we are
able to reduce the number of topologies to be considered to one (involving at

Symbolic Analysis of Terrorist Fraud Resistance 385

most 4 participants), and the best strategy for the terrorist prover can also be
fixed without missing any attack. Then, an interesting consequence of our results
is that, following the approach used e.g. in [11,14], it becomes possible to rely on
the automatic verification tool ProVerif (originally developed to analyse tradi-
tional security protocols) to analyse terrorist fraud in various distance bounding
protocols. All the omitted proofs are available in the full version [15].

Related Works. Several attempts have been made in the computational model to
formalise terrorist fraud, e.g. [2,17,18,30]. Avoine et al. [2] introduce a unified
framework for clarifying the situation and make possible comparison between
protocols. Since then, several formal definitions of terrorist fraud have been pro-
posed [18,30], as well as protocols supposed to achieve this level of security, e.g.
[3,9,22]. In contrast, the only definition we are aware of in the symbolic model is
the one proposed by Chothia et al. in [11]. However, such a definition falls short
when modelling behaviours of terrorist provers (see Sect. 3). Independently of
our work, Mauw et al. proposed a definition more in line with the one we consid-
ered here [24]. However, their work falls short when it comes to the automation
of security analysis (see Sect. 4.3).

2 Model for Distance Bounding Protocols

In this section, we introduce the process calculus we rely on to describe distance
bounding protocols [14]. It shares some similarities with the applied pi calculus
used e.g. by the ProVerif verification tool [6].

2.1 Messages

As usual in the symbolic setting, we model messages through a term algebra.
We consider both equational theories and reduction relations to represent the
properties of the cryptographic primitives.

Term Algebra. We consider two infinite and disjoint sets of names: N is the
set of basic names, which are used to represent keys, nonces, whereas A is the set
of agent names, i.e. names which represent the agents identities. We consider an
infinite set Σ0 of constant symbols that are used to represent values known by the
attacker, as well as two infinite and disjoint sets of variables, denoted X and W.
Variables in X refer to unknown parts of messages expected by participants
while variables in W are used to store messages learnt by the attacker.

We assume a signature Σ, i.e. a set of function symbols together with their
arity. The elements of Σ are split into constructor and destructor symbols, i.e.
Σ = Σc �Σd. We denote Σ+ = Σ∪Σ0, and Σ+

c = Σc ∪Σ0. Given a signature F ,
and a set of atomic data A, we denote by T (F ,A) the set of terms built from
atomic data A by applying function symbols in F . A constructor term is a term in
T (Σ+

c ,N ∪A∪X). We denote vars(u) the set of variables that occur in a term u.
A message is a constructor term u that is ground, i.e. such that vars(u) = ∅.
The application of a substitution σ to a term u is written uσ. We denote dom(σ)
its domain, and img(σ) its image. The positions of a term are defined as usual.

386 A. Debant et al.

Example 1. We consider the signature Σex = {kdf/3, shk/2, ok/0, eq/2, ans/3}.
The symbol kdf models a key derivation function, shk is used to model a key
shared between 2 agents. The symbols ok and eq are used to model equality
tests, and ans is a function symbol that is used to model the answer provided
by the prover. Another signature useful to model the exclusive-or operator is
Σxor = {⊕, 0}. Among all the symbols in Σex ∪ Σxor only eq is a destructor.

Equational Theory. Following the approach developed in [6], constructor terms
are subject to an equational theory allowing us to model the algebraic properties
of the primitives. It consists of a finite set of equations of the form u = v where
u, v ∈ T (Σc,X), and induces an equivalence relation =E over constructor terms.1

Example 2. To reflect the algebraic properties of the exclusive-or operator, we
may consider the equational theory Exor generated by the following equations:
(x ⊕ y) ⊕ z = x ⊕ (y ⊕ z) x ⊕ y = y ⊕ x x ⊕ 0 = x x ⊕ x = 0.

Rewriting Rules. As in [6], we also give a meaning to destructor symbols. This
is done through a set of rewrite rules of the form g(t1, . . . , tn) → t where g ∈ Σd,
and t, t1, . . . , tn ∈ T (Σc,X). A term u can be rewritten in v if there is a position p
in u, and a rewrite rule g(t1, . . . , tn) → t such that u|p =E g(t1, . . . , tn)θ for
some substitution θ, and v = u[tθ]p i.e. u in which the term at position p has
been replaced by tθ. Moreover, we assume that t1θ, . . . , tnθ as well as tθ are
constructor terms. We only consider sets of rewrite rules that yield a convergent
rewriting system (modulo E), and we denote u↓ the normal form of a term u.

For modelling purposes, we split the signature Σ into two parts, Σpub

and Σpriv, and we denote Σ+
pub = Σpub ∪ Σ0. An attacker builds messages by

applying public symbols to terms he knows and that are available through vari-
ables in W. Formally, a computation done by the attacker is a recipe, i.e. a term
in T (Σ+

pub,W).

Example 3. Among symbols in Σex ∪ Σxor, only shk is in Σpriv. The property of
the symbol eq is reflected by the rule eq(x, x) → ok. Note that eq(u, v) reduces
to a message if, and only if, u =E v. A typical signature used to model security
protocols is Σenc = {senc, sdec}. Depending on whether we want to model a
decryption algorithm that may fail or not, we can either consider sdec as a
destructor together with the rewrite rule sdec(senc(x, y), y) → x, or consider
both symbols as constructors, together with equation sdec(senc(x, y), y) = x. In
the latter case, sdec(c, k) will be considered as a “valid” message.

Given a set U of equations between terms, σ is a unifier for U if u1σ↓ =E u2σ↓
and both u1σ↓ and u2σ↓ are constructor terms for any u1 = u2 ∈ U . We denote
by csu(U) a set of unifiers for U which is also complete, i.e. such that for any σ
unifier of U , there exists θ ∈ csu(U) such that σ =E τ ◦ θ for some τ .

Example 4. Let U = {x0 = m0, x1 = k ⊕ x0;xok = eq(xrep, ans(c, x0, x1))} with
k = shk(p0, v0), and m0 = kdf(k, nV , xN). We have that csu(U) = {θ} where θ
is the substitution: x0
→ m0;x1
→ k ⊕ m0;xrep
→ ans(c,m0, k ⊕ m0); xok
→ ok.
1 We only consider non-trivial theories, i.e. there exist u and v such that u �=E v.

Symbolic Analysis of Terrorist Fraud Resistance 387

2.2 Protocols

Protocols are modelled through processes that may receive and send messages.

Syntax. We consider the following grammar:

P,Q = 0 | in(x).P | in<t(x).P | let x = v in P | new n.P | out(u).P | reset.P

where x ∈ X , n ∈ N , u ∈ T (Σ+
c ,X �N �A), v ∈ T (Σ+,X �N �A) and t ∈ R+.

We write fv(P) (resp. fn(P)) for the set of free variables (resp. names) occur-
ring in P , i.e. the set of variables (resp. names) that are not in the scope of an
input or a let (resp. a new). In this work, we only consider 2-party protocols, and
thus we consider parameterised processes, denoted P (z0, z1), where z0 and z1 are
variables from a special set Z (disjoint from X and W). Intuitively, z0 and z1
will be instantiated by agent names: z0 corresponds to the name of the agent
that executes the process, and z1 will be his interlocutor. A role R = P (z0, z1)
is a parameterised process such that fn(R) = ∅ and fv(R) ⊆ {z0, z1}. A protocol
is given by two roles, denoted V(z0, z1) and P(z0, z1), and named respectively the
verifier role and the prover role. Moreover, we will assume that the verifier role
ends with a special construct end(z0, z1) allowing us to see when he has com-
pleted his role and with whom. Formally, it simply means that, in the verifier
role V(z0, z1), the process 0 has been replaced by end(z0, z1).

Example 5. As a running example and for illustrative purposes, we consider a
strengthened version of the Hancke and Kuhn distance bounding protocol [20]
(as briefly described in [29]). It relies on the use of a keyed public pseudo-random
function (modelled as a free function symbol here) and the exclusive-or operator.

1. V → P : NV

2. P → V : NP

3. V → P : ci

4. P → V :
{

ith bit of kdf(k,NV , NP) if ci = 0
ith bit of k ⊕ kdf(k,NV , NP) if ci = 1

The protocol starts with both parties transmitting to each other their own nonce.
Then, the verifier initiates the rapid phase during which the time measurement is
performed. The verifier generates and sends a random bit ci, and the prover has
to reply immediately with the ith bit of kdf(k,NV , NP) if ci = 0 and the ith bit
of k⊕kdf(k,NV , NP) otherwise. This rapid exchange is repeated a fixed number
of times, and if enough correct answers are received within a sufficiently short
time after the corresponding challenge ci has been sent out, then the verifier is
convinced that the prover is located in its vicinity. In our setting, this gives us:

V(z0, z1) :=
new nV .out(nV).in(xN).
reset.new c.out(c).in<2×t0(xrep).
let x0 = kdf(shk(z1, z0), nV , xN) in
let x1 = shk(z1, z0) ⊕ x0 in
let xok = eq(xrep, ans(c, x0, x1)) in
end(z0, z1)

P(z0, z1) :=
new nP .in(yN).out(nP).
let y0 = kdf(shk(z0, z1), yN , nP) in
let y1 = shk(z0, z1) ⊕ y0 in
in(yc).
out(ans(yc, y0, y1)).0

388 A. Debant et al.

Symbolic analysis does not allow one to reason at the bit level, and thus, as
done in e.g. [11,13,14,23], all the challenge bits ci are collapsed into a single
challenge/response exchange using a nonce. Furthermore, operations performed
at the bit level are abstracted too. The response is therefore abstracted by an
uninterpreted symbol of a function ans depending on both the challenge c and
the two precomputed values y0 and y1.

Topology. The semantics of our processes depends on their location. This is
formally defined through the notion of topology.

Definition 1. A topology is a tuple T0 = (A0,M0, Loc0, v0, p0) where:

– A0 ⊆ A is the finite set of agents composing the system;
– M0 ⊆ A0 is the subset of agents that are malicious;
– Loc0 : A0 → R

3 is a mapping defining the position of each agent in space.
– p0 and v0 are two agents in A0 that represent respectively the prover and the

verifier w.r.t. which the analyse is performed.

In our model, the distance between two agents is expressed by the time
it takes for a message to travel from one to another. Therefore, we consider
DistT0 : A0 × A0 → R, based on Loc0 that will provide the time a message takes
to travel between two agents. It is defined as follows:

DistT0(a, b) =
‖Loc0(a) − Loc0(b)‖

c0
for any a, b ∈ A0

with ‖·‖ : R
3 → R the Euclidean norm and c0 the transmission speed. We

suppose, from now on, that c0 is a constant for all agents, and thus an agent a can
recover, at time t, any message emitted by any other agent b before t−DistT0(a, b).

Example 6. When analysing a distance bounding protocol, we have to con-
sider a class of topologies. Typically, a mafia fraud is an attack in which at
least three agents are involved: an honest verifier, an honest prover, and an
attacker. Of course, in general more agents may be involved, and the set CMF

of all the mafia fraud topologies is simply defined as follows: any topology
T = (A0,M0, Loc0, v0, p0) such that v0, p0 ∈ A0 � M0.

Configuration. The semantics of our processes is given through a transition
system defined over configurations. Given a topology T0 = (A0,M0, Loc0, v0, p0),
a configuration K over T0 is a tuple (P;Φ; t), where:

– P is a multiset of extended process
P � ta

a with a ∈ A0 and ta ∈ R+;

– Φ = {w1
a1,t1−−−→ u1, . . . ,wn

an,tn−−−→ un} is an extended frame, i.e. a substitution
such that wi ∈ W, ui ∈ T (Σ+

c ,N � A), ai ∈ A0 and ti ∈ R+ for 1 ≤ i ≤ n;
– t ∈ R+ is the global time of the system.

Symbolic Analysis of Terrorist Fraud Resistance 389

A initial frame is a frame such that ti = 0 (1 ≤ i ≤ n), and an initial
configuration is a configuration such that t = 0. We write
Φ� t

a for the restriction
of Φ to the agent a at time t, i.e.:

Φ� t
a =

{
wi

ai,ti−−−→ ui | (wi
ai,ti−−−→ ui) ∈ Φ and ai = a and ti ≤ t

}
.

Example 7. Continuing Example 5, we consider T0 = (A0,M0, Loc0, v0, p0)
depicted below where A0 = {p0, v0, p}, and M0 = {p}.

The precise location of each agent is
not relevant, only the distance between
them matters. Here DistT0(p, v0) < t0 whereas
DistT0(p0, v0) ≥ t0.

v0

p

p0
t0

A possible initial configuration K0 is given below:

(
P(p0, v0)� 0
p0

�
V(v0, p0)� 0
v0

; {w1
p,0−−→ shk(p, v0),w2

p,0−−→ m0,w3
p,0−−→ m1}; 0)

Here, p0 and v0 are honest agents playing respectively the prover’s role and the
verifier’s role. The agent p is a malicious prover whose shared key with v0 is given
to the attacker through w1. Here, we also assume that the attacker p also knows
m0 = kdf(shk(p0, v0), n0

V , n0
P) and m1 = shk(p0, v0) ⊕ kdf(shk(p0, v0), n0

V , n0
P).

These messages coming from an older session may have been given to him by p0
to let the attacker exceptionally authenticate on his behalf. A more realistic
configuration will include other instances of these two roles and will probably
give more knowledge to the attacker.

Semantics. We now recall the semantics of our calculus as defined in [14].

Tim (P;Φ; t) −→T0 (Shift(P, δ);Φ; t + δ) with δ ≥ 0
Rst (
reset.P � ta

a � P;Φ; t)
a,τ−−→T0 (
P � 0

a � P;Φ; t)

Out (
out(u).P � ta

a) � P;Φ; t)
a,out(u)−−−−−→T0 (
P � ta

a � P;Φ � {w a,t−−→ u}; t)
with w ∈ W fresh

Let (
let x = u in P � ta

a � P;Φ; t)
a,τ−−→T0 (
P{x
→ u↓}� ta

a � P;Φ; t)
when u↓ ∈ T (Σ+

c ,N � A)
New (
new n.P � ta

a � P;Φ; t)
a,τ−−→T0 (
P{n
→ n′}� ta

a � P;Φ; t)
with n′ ∈ N fresh

In (
in�(x).P � ta

a � P;Φ; t)
a,in�(u)−−−−−→T0 (
P{x
→ u}� ta

a � P;Φ; t)

when there exist b ∈ A0 and tb ∈ R+ such that tb ≤ t − DistT0(b, a) and:

– if b ∈ A0 � M0 then u ∈ img(
Φ� tb

b);
– if b ∈ M0 then u = RΦ↓ for some recipe R such that for all w ∈ vars(R)

there exists c ∈ A0 such that w ∈ dom(
Φ� tb−DistT0 (c,b)
c).

Moreover, in case � is < tg for some tg, we assume in addition that ta < tg.

390 A. Debant et al.

The two first rules are specific to our timed model. The Rst rule allows
a process to reset its local clock, whereas the Tim rule allows time to elapse,
meaning that all the clocks will be shifted by δ:

Shift(P, δ) =
⊎

�P� ta
a ∈P

Shift(
P � ta

a , δ) and Shift(
P � ta

a , δ) =
P � ta+δ
a .

The remaining rules are quite standard. The Out rule is used to output a
message which is immediately added into the frame. The rule Let can be used
to apply function symbols, e.g. let x = dec(y, k) in P applies decryption on
top of y with the key k and store the resulting result in x (if this operation
succeeds). Otherwise, the process is blocked. This construction is also useful
to perform equality tests through the symbol eq as defined in Example 1 and
used e.g. in Example 5. The New rule allows one to pick a fresh (i.e. previously
unused) name. Finally, the In rule is used to receive a message. One can note
the additional side conditions which allows one to model timing constraints: all
the messages needed to construct u have to be available to b (who sends u) at
time tb ≤ t − DistT0(b, a) to ensure that the message forged and sent by b will
have enough time to travel and reach a.

Example 8. To illustrate our semantics, we give below a possible execution trace
starting from the configuration K0 given in Example 7. We have that:

K0
(v0,τ).(v0,out(nV))−−−−−−−−−−−−→T0 −→T0

(v0,in(nI)).(v0,reset).(v0,τ).(v0,out(c))−−−−−−−−−−−−−−−−−−−−−−−−−→T0 (P ′;Φ′; t′)

−→T0

(v0,in(mrep)).(v0,τ).(v0,τ).(v0,τ)−−−−−−−−−−−−−−−−−−−−−→T0 (
P(p0, v0)� t′′

p0
�
end(v0, p0)� t′′−t′

v0
;Φ′′; t′′)

with mrep = ans(c, kdf(shk(p0, v0), nV , nI), shk(p0, v0) ⊕ kdf(shk(p0, v0), nV , nI)),

t′ ≥ DistT0(v0, p), t′′ ≥ 3DistT0(v0, p), Φ′′ = Φ′ = Φ0 � {w4
v0,0−−→ nV , w5

v0,t′
−−−→ c}.

Here, nI is a name known to the attacker. Formally, we have that nI ∈ Σ0.
During the first part of the execution (1st line), one instance of the Tim rule
has been used. It is necessary to let the verifier receive nI . Therefore, we have
that t′ ≥ DistT0(v0, p). The attacker has learnt two messages that have been
added into his initial frame Φ0. Then, letting some time to elapse, the process
located in v0 is able to perform his input action. Indeed, the term mrep can be
forged by p using recipe ans(w5, R0, R1) where R0 = kdf(w2 ⊕ w3,w4, nI) and
R1 = w2 ⊕ w3 ⊕ R0. We may note that mrep passes successfully all the tests,
and v0 ends his session thinking he is talking to p0 (who is actually far away).

3 Modelling Mafia and Terrorist Frauds

Here, we aim at proposing a general definition of terrorist fraud in the symbolic
setting. Due to its close relationship with the notion of mafia fraud, we first
recall how mafia fraud is modelled following the definitions given in [14] before
defining the more subtle notion of terrorist fraud.

We start by defining the notion of valid initial configurations which corre-
sponds to the configurations that need to be studied when analysing a given
protocol P. Typically, such a configuration will contain instances of the roles of
the protocol P under study.

Symbolic Analysis of Terrorist Fraud Resistance 391

Definition 2. Let Pprox be a protocol, T0 = (A0,M0, Loc0, v0, p0) be a topology,
and Φ0 be an initial frame. K = (P;Φ; t) is a valid initial configuration for Pprox

w.r.t. T0 and Φ0 if t = 0, Φ = Φ0, and for each
P ′� t′

a′ ∈ P, we have that t′ = 0,
a′ ∈ A0, and either P ′ = V(a′, b′) or P ′ = P(a′, b′) for some b′ ∈ A0.

Now, depending on the type of frauds we consider, the set of topologies under
study and the initial knowledge given to the attacker may vary.

3.1 Mafia Fraud

A mafia fraud is an attack in which generally three agents are involved: a veri-
fier, an honest prover located outside the neighbourhood of the verifier, and an
attacker. We consider here its general version which may involve an arbitrary
number of participants and we reuse the definition given in [14]. The aim of the
attacker is to convince the verifier that the honest prover is actually close to it.
The set CMF representing all the mafia fraud topologies is given in Example 6.

Example 9. The topology depicted in Example 7 is a mafia fraud topology. Some
other mafia fraud topologies that will be considered later on are depicted below:

v0 p0
e1 e2

t0

T 0
MF

v0 p0
e

t0

T 0
simple

v0
p0

T 0
basic

The initial knowledge Φ0 we use for defining our initial configuration depends
on the topology but it is reasonable to assume that this knowledge is uniform.
Therefore, we assume that the initial knowledge of all the participants is given
through a template I0, i.e. a set of terms in T (Σ+

c , {z0, z1}). Relying on I0,
and considering a set A0 of agents, the initial knowledge of agent a ∈ A0 is
given by:

KnowsI0(a,A0) = {u0{z0
→ a, z1
→ b} | u0 ∈ I0 and b ∈ A0}

Given T = (A0,M0, Loc0, v0, p0), we denote ΦT
I0

the initial frame such that

img(ΦT

I0
)� 0

a
= KnowsI0(a,A0) when a ∈ M0, and
img(ΦT

I0
)� 0

a
= ∅ otherwise.

Up to a renaming of the handles and some duplicates, ΦT
I0

is uniquely defined.

Example 10. Continuing our running example, and considering the topology
T 0
MF = (A0

MF,M0
MF, Loc

0
MF, v0, p0) (see Example 9), a typical template to derive

the initial knowledge of the malicious agents is I0 = {shk(z0, z1), shk(z1, z0)}.
Thus, considering the malicious agent ei, the set KnowsI0(ei,A0

MF) will contain
all the symmetric keys this malicious agent shares with other agents.

When analysing the protocol considering T 0
MF, we will consider an initial

frame Φ0 containing shk(a, b) for (a, b) ∈ (A0
MF × A0

MF) � {(v0, p0), (p0, v0)}.

392 A. Debant et al.

Definition 3. Let Pprox be a protocol and I0 be a template. We say that Pprox

admits a mafia fraud w.r.t. t0-proximity if there exist T ∈ CMF, and a valid initial
configuration K for Pprox w.r.t. T and ΦT

I0
such that:

K →∗
T (
end(v0, p0)� ta

a � P;Φ; t) with DistT (v0, p0) ≥ t0

where T = (A0,M0, Loc0, v0, p0).

3.2 Terrorist Fraud

Modelling terrorist fraud is tricky. We have to look for a semi-dishonest prover
who colludes with the attacker with the aim of letting him authenticate exactly
once. We will model this in two steps. First, we will consider all the possible
behaviours for this semi-dishonest prover that will allow the attacker to authen-
ticate at least once. Then, to be terrorist fraud resistant, we have to check that
any of these behaviours will allow the attacker to re-authenticate later on.

In order to collude with the attacker, one possibility for the prover is to leak
his credentials but it is in general not the only option. To define this notion,
we consider a simple scenario where p0 wants to authenticate to the far away
verifier v0 through the help of the attacker a located in the neighbourhood of v0.
This corresponds to the topology T 0

simple given in Example 9.

Definition 4. Let Pprox be a protocol and t0 ∈ R+. A semi-dishonest prover for
Pprox w.r.t. t0 is a process Psd together with an initial frame Φsd such that:

({
V(v0, p0)� 0
v0

;
Psd� 0
p0

}; ∅; 0) tr−→T 0
simple

({
end(v0, p0)� tv

v0
;
0� tp

p0
};Φ; t)

for some t, tv, tp, and Φ such that Φ and Φsd coincide up to their timestamps.

Note that a semi-dishonest prover can be completely dishonest in the sense
that he may leak all his credentials. However, such a semi-dishonest prover can
not be honest, i.e. equal to the role of the prover as indicated by the protocol.
Indeed, p0 is located far away and has to authenticate. Thus, unless the protocol
is very bad, the help of the attacker who is close to the verifier will be essential.

Example 11. Going back to our running example, some semi-dishonest provers
with their frame are (k = shk(v0, p0), m0 = kdf(k, n0

V , n0
P), and m1 = k ⊕ m0):

1. P 1
sd := out(k) with Φ1

sd = {w1
v0,0−−→ nV ,w2

p0,0−−→ k,w3
v0,0−−→ c};

2. P 2
sd := new nP .in(yN).out(nP).let y0 = kdf(k, yN , nP) in

let y1 = k ⊕ y0 in out(y0).out(y1).
in(yc).out(ans(yc, y0, y1))

with Φ2
sd = {w1

v0,0−−→ nV ,w2
p0,0−−→ nP ,w3

p0,0−−→ m0,w4
p0,0−−→ m1,w5

v0,0−−→ c,

w6
p0,0−−→ ans(c,m0,m1)}.

The first one actually reveals all his credential to the attacker, and thus the
attacker will be able to authenticate later on. The second one reveals less infor-
mation to the attacker. This is still enough to authenticate once and we will see
that this is actually also enough to authenticate later on (see Example 12).

Symbolic Analysis of Terrorist Fraud Resistance 393

We are now able to define our notion of terrorist fraud resistance. Intu-
itively, if the dishonest prover gives to his accomplice enough information to
pass authentication once, then he will be able to authenticate again without his
help.

Definition 5. Let Pprox be a protocol and I0 be a template. We say that Pprox is
terrorist fraud resistant w.r.t. t0-proximity if for all semi-dishonest prover Psd

with frame Φsd, there exist T ∈ CMF, a valid initial configuration K for Pprox

w.r.t. T and ΦT
I0

∪ Φsd such that:

K
tr−→T (
end(v0, p0)� t′

v0
� P;Φ; t) with DistT (v0, p0) ≥ t0

where T = (A0,M0, Loc0, v0, p0).

Example 12. Going back to our running example, we have seen (see Example 8):

K0
tr−→T 0 (
end(v0, p0)� t′

v0
� P;Φ; t).

This execution witnesses the fact that the dishonest prover P 2
sd together with

frame Φ2
sd gives enough information to the attacker to allow him to authenticate

later on. This does not mean that the protocol is terrorist fraud resistant since
we only consider one particular semi-dishonest prover. To be terrorist fraud
resistant, the property has to hold for any semi-dishonest prover.

In our setting, we have the following relationship between mafia fraud and
terrorist fraud resistance

Proposition 1. Let Pprox be a protocol and I0 be a template. If Pprox admits a
mafia fraud then Pprox is terrorist fraud resistant (w.r.t. t0-proximity).

Indeed, whatever the distant semi-dishonest prover discloses (even no infor-
mation at all), an attacker can still carry out the existing mafia fraud and re-
authenticate, therefore impersonating the semi-dishonest prover again. In com-
putational definitions, probability plays a role. In such a setting, a terrorist fraud
exists when the semi-dishonest prover can help the attacker to maximise his
attack success probability without giving him any advantage for future attacks.
The fact that a mafia fraud already exists (with probability 1 in our setting)
means that no help can improve the success probability for future attacks,
and thus the protocol is terrorist fraud resistant. We may note that distance-
bounding protocols designed to achieve terrorist fraud resistance aim also to
resist against mafia fraud, thus in general achieving terrorist fraud resistance
making the protocol vulnerable to a mafia fraud is not an interesting option.

3.3 Related Works

Up to our knowledge, the only existing definitions of terrorist fraud resistance
in the symbolic setting are the one proposed by Chothia et al. in [11] and the
recent one proposed by Mauw et al. in [24].

394 A. Debant et al.

Chothia et al. Their notion of terrorist fraud is not modelled in two steps as we
proposed. Instead, they consider a notion of terrorist prover. Such a process will
perform operations on behalf of the attacker, e.g. encrypting and decrypting any
values the attacker wishes, but it will never (at least directly) reveal his secrets.
Their notion of terrorist prover is appealing but they do not explain how to write
such a process. We think that writing such a process is not that easy.

Example 13. Consider a protocol relying on a hash function h and we assume
that the terrorist prover holds a secret key k. A legitimate help that the terrorist
prover may give to the attacker without leaking his secret key would consist
in computing the hash value of a public data together with his secret key k.
Therefore, the terrorist prover should contain the oracle: in(x).out(h(〈k, x〉)).
In the same spirit, we could argue that in(x).out(h(〈x, k〉)) is also useful, and
perhaps also in(x1).in(x2).out(h(〈x1, 〈k, x2〉〉)), etc. Iterating such a reasoning,
we do not see how to write a finite terrorist prover that will provide all the
valuable help his accomplice may need.

Moreover, when considering a protocol involving an operator with some alge-
braic properties, e.g. exclusive-or, it seems difficult (perhaps even impossible) to
ensure that the terrorist prover will not reveal secrets indirectly).

Example 14. To illustrate this issue, we consider a specific primitive modelled
using the equation g(f1(x, y), f2(x, y)) = y. The functions f1 and f2 are two
constructor symbols whereas g is a destructor symbol. Following the idea devel-
oped in [11], the terrorist prover should contain in(x).out(f1(x, k)) as well as
in(x).out(f2(〈x, k〉)). However, whereas it is legitimate to provide such an help
to the attacker, it seems too strong to give him access to these oracles as soon
as he will get f1(m, k) and f2(m2, k) for some message m. This example clearly
shows that, combining two legitimate helps, the attacker may retrieve some
secrets. It is therefore not obvious to describe in a syntactic way the help the
terrorist prover is willing to provide.

The main advantage of the definition of terrorist fraud proposed by [11] is
probably the fact that it is more amenable to automation using existing verifica-
tion tools. Indeed, even if the choice of terrorist prover mentioned in [11] is quite
debatable, it is fixed, and can therefore be given in input to the verification tool.

Mauw et al. They consider a model based on multiset rewriting rules, and their
definition of terrorist fraud is more in line with the one we proposed. In partic-
ular, their notion of “valid extensions” of a protocol seems to correspond to our
notion of semi-dishonest prover. Then, their definition of terrorist fraud quan-
tifies over all the possible “valid extensions” and this renders the automation
of the security analysis difficult. Indeed, no existing verification tool is able to
handle this quantification. In [24], they simply illustrate their technique on a toy
distance bounding protocol. They provide a manual proof explaining how to get
rid of this quantification for this particular toy protocol. Our work explains in
a more systematic way how to get rid of this quantification, as well as the one
regarding the topology. This is explained in Sect. 4.

Symbolic Analysis of Terrorist Fraud Resistance 395

4 Reduction Results

We first establish a result allowing us to focus on a particular topology. Then,
we explain how we get rid of the quantification over semi-dishonest provers.

4.1 One Topology Is Enough

This reduction result regarding the topology is a direct consequence of the proof
of the reduction result stated in [14] regarding mafia and distance hijacking
frauds. The only new issue here is to take care of the initial frame which con-
tains information from the semi-dishonest prover. This reduction results holds
in a rather general setting. We simply assume that the protocol under study is
executable.

Definition 6. Given a template I0 = {u1, . . . , uk}, a protocol P is I0-executable
if for any term u (resp. v) occurring in an out or a let construction in P, there
exists a recipe R ∈ T (Σ+

pub, {w1, . . . ,wk} � N � X) such that u = Rσ↓ (resp.
v↓ = Rσ↓) where σ = {w1
→ u1, . . . ,wk
→ uk}.

Example 15. Going back to our running example described in Example 5, we
have that both roles are I0-executable considering I0 = {shk(z0, z1), shk(z1, z0)}.

We are now able to state our reduction result regarding terrorist fraud.

Theorem 1. Let Pprox be an I0-executable protocol w.r.t. some template I0.
We have that Pprox is terrorist fraud resistant w.r.t. t0-proximity, if and only
if, for all semi-dishonest prover Psd with frame Φsd, there exists a valid initial
configuration K for Pprox w.r.t. T 0

MF and Φ
T 0
MF

I0
∪ Φsd such that:

K
tr−→T 0

MF
(
end(v0, p0)� t′

v0
� P;Φ; t).

In other words, when analysing terrorist fraud, it is sufficient to consider one
particular topology, namely T 0

MF (see Example 9). The key idea to establish the
direct part of the theorem consists in showing that behaviours of agents other
than p0 and v0 can be performed by processes executed by malicious agents, and
can even be discarded relying on the fact that Pprox is I0-executable. Then, it
remains to map any agent names different from p0 and v0 to e1, and to show
that the resulting trace remains executable.

4.2 One Semi-dishonest Prover Behaviour Is Enough

Our second reduction result allows us to focus on a particular semi-dishonest
prover when performing our analysis. This results only holds under some
hypotheses that are gathered below. We have to rely on the notion of being
quasi-free for a symbol: f ∈ Σc is quasi-free if it occurs neither in the equations
used to generate the relation =E nor in the right-hand side of a rewriting rule.

396 A. Debant et al.

Definition 7. A distance bounding (DB) protocol is a protocol such that:

(i) We have that V(z0, z1) = blockV .reset.new c.out(c).in<2×t0(x).block′
V ,

and P(z0, z1) = blockP .in(yc).out(u).block′
P where blockX and block′

X

with X ∈ {V, P} is a sequence of actions without reset and guarded input
instructions. Moreover, we assume that out(c) (resp. in(yc)) corresponds
to the ith0 communication action of P(z0, z1) (resp. V(z0, z1)) for some i0.

(ii) (
V(v0, p0)� 0
v0

�
P(p0, v0)� 0
p0

; ∅; 0) tr−→T 0
basic

(
0� 0
v0

�
0� 0
p0

;Φ; 0) with

tr =

⎧⎨
⎩

(a1, out(m1)).(b1, in(m1)) . . . (ai0−1, out(mi0−1)).(bi0−1, in(mi0−1))
(v0, out(mi0)).(p0, in(mi0)).(p0, out(mi0+1)).(v0, in<t(mi0+1))
(an−1, out(mn−1).(bn−1, in(mn−1)) . . . (an, out(mn).(bn, in(mn))

up to τ actions, and {ai, bi} = {v0, p0} for any i ∈ {1, . . . , n} � {i0, i0 + 1}.
(iii) Let U = {x = u | “let x = u in” occurs in V(v0, p0)}. We assume that

csu(U) exists and is reduced to a singleton {θP}. Moreover, we assume that
(x1, . . . , xk)θP↓σ = mi1 , . . . ,mik

where x1, . . . , xk are the variables occur-
ring in input in the role V(v0, p0), i1, . . . , ik are the indices among 1, . . . , n
corresponding to input performed by v0, and σ is a bijective renaming from
variables to names freshly generated by P(p0, v0) when executing tr.

(iv) We assume the existence of a context C made of quasi-free public function
symbols such that u = C[yc, u1, . . . , up], and yc does not occur in u1, . . . , up.

The two first conditions put some restrictions on the shape of the roles. In
particular, we assume that if no attacker interferes, these two roles together will
execute until the end. The third condition gives us the existence of a unique
most general unifier (modulo E) and is actually satisfied by many term algebra
of interest for protocol verification, e.g. the one described in Sect. 2.1. Actu-
ally, any rewriting system with only one rule per destructor will satisfy such an
hypothesis. It may seem restrictive that in a normal execution messages that
are exchanged have the shape indicated by θP but this requirement is in general
always satisfied. Note that otherwise, it would mean that some terms sent by
the prover are never entirely checked during the protocol execution, and thus are
useless. Condition (iv) allows us to ensure that there exists a strategy for the
semi-dishonest prover. This strategy will consist of sending the terms u1, . . . , un

in advance to his accomplice, and let him to compute (as indicated by C) the
answer to the challenge from u1, . . . , un and the challenge c′ he will receive from
the verifier. Actually, the best strategy will consist in considering CP the smallest
context (in terms of number of symbols) satisfying the requirements.

Example 16. Going back to our running example, all the conditions stated in
Definition 7, are indeed satisfied. Assuming that names are not renamed when
executing New, we obtain the following trace:

tr =
{

(v0, out(nV)).(p0, in(nV)).(p0, out(nP)).(v0, in(nP))
(v0, out(c)).(p0, in(c)).(p0, out(ans(c,m0,m1))).(v0, in(ans(c,m0,m1)))

where m0 = kdf(shk(p0, v0), nV , nP) and m1 = shk(p0, v0) ⊕ m0.

Symbolic Analysis of Terrorist Fraud Resistance 397

Regarding condition (iii), we have that θP as defined in Example 4 and
σ = {xN
→ nP } satisfy our requirement. Regarding condition (iv), we have that
u1 = y0, and u2 = y1, and thus CP only contains the quasi-free symbol ans.

According to our definition, when analysing a protocol Pprox w.r.t. terrorist
frauds you should consider all the possible semi-dishonest provers. However, for
the class of distance bounding protocol we consider, we will show that we can
restrict our attention to a particular dishonest prover that we define now.

Definition 8. Let Pprox be a DB protocol as given in Definition 7. The most
general semi-dishonest prover for Pprox, denoted P∗, is the process:(

blockP .out(u1) . . . out(uk).in(yc).out(u).block′
P

)
{z0
→ p0, z1
→ v0}

where u1, . . . , up are the terms such that u = CP [yc, u1, . . . , up].
Its associated frame, denoted Φ∗, is the one obtained considering the normal

execution and letting the attacker answer to the challenge relying on CP .

The most general semi-dishonest prover will help his accomplice by sending
him (before the rapid phase starts) the material he needs to perform this phase
alone. For this, the most general semi-dishonest prover will send messages corre-
sponding to the maximal subterms of u that do not contain the challenge. This
will be sufficient to answer to the challenge sent by the verifier, and we will see
that this is actually the strategy that leaks the least information.

Example 17. Going back to our running example, P 1
sd together with frame Φ1

sd as
described in Example 11 corresponds to the most general semi-dishonest prover.

Note that the most general semi-dishonest prover P∗ (as given in Definition 8)
is a dishonest prover. This simply means that such a process when put together
with
V(v0, p0)� 0

v0
can be fully executed considering the topology T 0

simple. This
is actually an easy consequence of our definition of DB protocol exploiting the
fact that P∗ and P(p0, v0) are rather similar. More interestingly, we can establish
a strong relationship between the frame Φ∗ (the one associated to P∗) and a
frame Φsd associated to an arbitrary semi-dishonest prover Psd.

Proposition 2. Let Pprox be a DB protocol, and P∗ be its most general semi-
dishonest prover with Φ∗ its associated frame. Let exec∗ be the execution wit-
nessing the fact that P∗ together with Φ∗ is a semi-dishonest prover, i.e.:

exec∗ : ({
V(v0, p0)� 0
v0

,
P∗� 0
p0

}; ∅; 0) tr∗−−→T 0
simple

({
end(v0, p0)� t∗
v

v0
,
0� t∗

p
p0

};Φ∗; t∗).

Let Psd be a semi-dishonest prover for Pprox together with its frame Φsd, and exec
be the execution witnessing this fact, i.e.

exec : ({
V(v0, p0)� 0
v0

,
Psd� 0
p0

}; ∅; 0) tr−→T 0
simple

({
end(v0, p0)� tv

v0
,
0� tp

p0
};Φsd; t).

We have that there exists a substitution σ : N → T (Σ+
c ,N ∪ A) from names

freshly generated by P∗ to constructor terms such that for any out(u) occurring
in tr∗, there exists a recipe R such that RΦsd↓=Euσ.

398 A. Debant et al.

Roughly, up to some substitution σ, we know that an arbitrary dishonest
prover will disclose more information than the general one. Thus, to analyse ter-
rorist fraud resistance, it is sufficient to consider the most general semi-dishonest
prover. This actually corresponds to the best strategy for the terrorist prover.

Theorem 2. Let Pprox be a DB protocol and I0 be a template. Let Φ∗ be the
frame associated to the most general semi-dishonest prover of Pprox. We have that
Pprox is terrorist fraud resistant w.r.t. t0-proximity if, and only if, there exists a
topology T = (A0,M0, Loc0, v0, p0) ∈ CMF and a valid initial configuration K0

for Pprox w.r.t. T and Φ∗ ∪ ΦT
I0

such that:

K0
tr−→T (
end(v0, p0)� t′

v0
� P;Φ; t) with DistT (v0, p0) ≥ t0.

We establish this result by showing that an execution trace tr starting with
Φ∗ ∪ ΦT

I0
as an initial frame can be mimicked by an execution trace trσ starting

with the initial frame Φsd ∪ ΦT
I0

. In other words, Psd is not better than P∗: the
information leaked by Φsd will also allow the accomplice to authenticate again.

4.3 Main Result

Applying Theorem 1 to reduce the topology, and then Theorem 2 to narrow down
the number of semi-dishonest provers to consider, we get rid of the quantifications
over semi-dishonest provers as well as the one regarding the topology. We now
state our main reduction result.

Corollary 1. Let Pprox be a DB protocol and I0 be a template such that P is
I0-executable. Let P∗ be the most general semi-dishonest prover for P together
with its associated frame Φ∗. We have that Pprox is terrorist fraud resistant w.r.t.
t0-proximity if, and only if, there exists a valid initial configuration K0 for Pprox

w.r.t. T 0
MF and Φ∗ ∪ Φ

T 0
MF

I0
such that:

K0
tr−→T t0

MF
(
end(v0, p0)� t′

v0
� P;Φ; t).

We will see in the next section that our definition of DB protocol is quite
general and covers most existing distance bounding protocols. However, some
existing protocols, like Brands & Chaum [8] and MAD [10], do not qualify for
our approach. The former does not satisfy our hypothesis (iv) whereas the latter
starts with a commit on the challenge value, preventing it to be fresh (hypothesis
(i) is not satisfied). Despite this, since these two protocols are subject to a
terrorist fraud, we could simply exhibit the corresponding semi-dishonest prover
and use our methodology to establish the existence a terrorist fraud.

A reduction result allowing one to get rid of the quantification over semi-
dishonest provers is also suggested in [24]. The reduction result is not formally
stated. Instead, the authors provide a manual proof of resistance to terrorist
fraud for a specific DBToy protocol relying on the idea of least-disclosing mes-
sage. Then, the authors claim that similar proofs can be done on all the case

Symbolic Analysis of Terrorist Fraud Resistance 399

studies they have looked at. We would like to emphasise that even if our con-
ditions (expressed in Definition 7) are not necessarily tight, the freshness of the
challenge just as the rapid phase starts is necessary to ensure the completeness
of our approach. Otherwise, a best strategy for the semi-dishonest prover could
be to send out a message which contains the challenge. This condition is missing
in [24] and therefore their approach is not complete even for protocols satisfying
their least-disclosing message assumption.

Table 1. Results on our case studies (×: attack found, �: proved secure)

Protocols MFR TFR Protocols MFR TFR

Basin’s Toy Example [4] � � Swiss-Knife [22] � �
Hancke and Kuhn [20] � × Modified Swiss-Knife [18] � ×
Modified Hancke and Kuhn [29] � � Munilla et al. [27] � ×
TREAD-PKey V1 [3] × � SPADE [9] × �
TREAD-PKey V1 Fixed [19] � � SPADE Fixed [19] � �
TREAD-PKey V2 [3] × � SKI [7] � �
TREAD-PKey V2 Fixed [19] � � PaySafe [12] � ×
TREAD-SKey [3] � � NXP [21] � ×

5 Case Studies

Getting rid of the quantifications, we apply techniques already used in e.g.
[12,14], to leverage the verification tool ProVerif to analyse terrorist fraud on
distance bounding protocols.

5.1 Analysing Terrorist-Fraud Resistance Using Proverif

Based on the technique described in [14], we reuse the syntax of phases included
in Proverif to model the guarded input of a Verifier. We will consider the same
transformation, while adding an extra phase at the beginning (phase 0) to enrich
the knowledge of the attacker with the frame provided together with the most-
general semi-dishonest prover. Then, we consider a Verifier-Test modelled using
three phases (1, 2 and 3) to see whether the adversary can re-authenticate itself
by impersonating the Prover or not. As in [14], we also give to the adversary the
possibility to play with all the agents present in the topology if they are close
enough, since they can provide useful information.

Depending on Proverif outputs, we conclude on the terrorist-fraud security of
the distance-bounding protocol. Either it is not possible to reach the end event
of the Verifier-Test, or the tool returns a trace in which the event is reachable.
In the first case, the attacker can not authenticate itself to the Verifier, even
with the help provided by the Prover in phase 0, meaning that the protocol
is vulnerable to a terrorist-fraud attack. In the second case, we first need to

400 A. Debant et al.

ensure that the trace provided by ProVerif is a valid trace in our model. If
this is the case, then the adversary can authenticate itself to the Verifier again,
without further help from the Prover, meaning that the protocol is terrorist-
fraud resistant. Note that, even if in theory, our approach may not allow one
to conclude (in case e.g. ProVerif does not terminate or simply say cannot be
proved), we never encountered this situation when performing our case studies.

5.2 Our Results

We applied this methodology to different well-known distance-bounding proto-
cols as long as they met the hypotheses needed by our approach, as mentioned
in Sect. 4. As expected, numerous existing protocols qualify and the results are
shown in Table 1. All our implementation files can be found in [15]. The tool
concludes in less than a minute for most of the examples, except for two proto-
cols: SPADE and SKI, where the extensive use of the xor operator may explain
this noteworthy difference. To comply with the use of the symbolic approach,
we needed to replace the actual bit-sized rapid exchanges by a single round of
challenge-response using one fresh nonce, as presented in the examples through-
out this paper. Moreover, due to Proverif limitations, we only considered, when
needed, a weak version of the xor operator.

Fig. 1. Description of the SPADE (fixed) protocol

Our results confirm existing mafia frauds against the SPADE and the
TREAD (PKey version) protocols [14,23]. Therefore we considered the fixed
versions of these protocols mentioned in [19] and proved them mafia-fraud and
terrorist-fraud resistant using our methodology. The fix, which consists in adding
the Verifier identity in the first message sent by the Prover, is illustrated for the
SPADE protocol in the Fig. 1 above.

We also extended our analysis to contactless payment protocols, e.g. Paysafe
and NXP. While it was not surprising that they do not offer terrorist-fraud
resistance, we consider that those protocols should claim if they want to support
such a security property or not. Indeed, allowing terrorist fraud could be a feature
of the card, permitting its user to agree for a one-time payment to a third-party
while not being physically next to it, without risking any non-expected following
payment, similarly to the current virtual credit card system.

Symbolic Analysis of Terrorist Fraud Resistance 401

5.3 Limitations

Even if our methodology is general enough to deal with a number of examples,
we had to cope with some limitations. First, coming from the tool, Proverif, as
mentioned earlier, we needed to weaken the xor operator. While our methodology
could consider a different tool which deals better with such an operator, like
Tamarin [26], it appears that Tamarin also behaves poorly depending on the
considered protocols. Indeed, we faced up with non-termination issues when
we tried to apply our methodology to the Brands and Chaum protocol within
Tamarin. These termination issues are also visible in the case studies performed
by Mauw et al. in [23] (using Tamarin) in which they often had to weaken the
xor operator.

Second, as already discussed in Sect. 4.3, some limitations are due to the
hypotheses we need on a distance-bounding protocols to conduct our formal
development. We believe that we could relax our hypothesis regarding the fresh-
ness of the challenge up to a non-deductibility hypothesis to be able to apply
our methodology to a protocol like MAD, but this is left to future work.

References

1. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication.
In: Proceedings of the 28th Symposium on Principles of Programming Languages
(POPL’01), pp. 104–115. ACM Press (2001)

2. Avoine, G., Bingöl, M.A., Kardas, S., Lauradoux, C., Martin, B.: A framework for
analyzing RFID distance bounding protocols. J. Comput. Secur. 19(2), 289–317
(2011)

3. Avoine, G., et al.: A terrorist-fraud resistant and extractor-free anonymous
distance-bounding protocol. In: Proceedings of the 12th ACM Asia Conference
on Computer and Communications Security. ACM Press (2017)

4. Basin, D., Capkun, S., Schaller, P., Schmidt, B.: Formal reasoning about physical
properties of security protocols. ACM Trans. Inf. Syst. Secur. (TISSEC) 14(2), 16
(2011)

5. Blanchet, B.: An efficient cryptographic protocol verifier based on prolog rules. In:
Proceedings of the 14th Computer Security Foundations Workshop (CSFW’01),
pp. 82–96. IEEE Computer Society Press (2001)

6. Blanchet, B.: Modeling and verifying security protocols with the applied pi calculus
and proverif. Found. Trends Priv. Secur. 1(1–2), 1–135 (2016)

7. Boureanu, I., Mitrokotsa, A., Vaudenay, S.: Secure and lightweight distance-
bounding. In: Avoine, G., Kara, O. (eds.) LightSec 2013. LNCS, vol. 8162, pp.
97–113. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40392-7 8

8. Brands, S., Chaum, D.: Distance-bounding protocols. In: Helleseth, T. (ed.) EURO-
CRYPT 1993. LNCS, vol. 765, pp. 344–359. Springer, Heidelberg (1994). https://
doi.org/10.1007/3-540-48285-7 30

9. Bultel, X., Gambs, S., Gerault, D., Lafourcade, P., Onete, C., Robert, J.: A prover-
anonymous and terrorist-fraud resistant distance-bounding protocol. In: Proceed-
ings of the 9th ACM Conference on Security & Privacy in Wireless and Mobile
Networks, (WISEC’16), pp. 121–133. ACM Press (2016)

https://doi.org/10.1007/978-3-642-40392-7_8
https://doi.org/10.1007/3-540-48285-7_30
https://doi.org/10.1007/3-540-48285-7_30

402 A. Debant et al.

10. Čapkun, S., Buttyán, L., Hubaux, J.-P.: Sector: secure tracking of node encounters
in multi-hop wireless networks. In: Proceedings of the 1st ACM Workshop on
Security of Ad Hoc and Sensor Networks, pp. 21–32. ACM (2003)

11. Chothia, T., de Ruiter, J., Smyth, B.: Modelling and analysis of a hierarchy of dis-
tance bounding attacks. In: Proceedings of the 27th USENIX Security Symposium,
USENIX Security 2018 (2018)

12. Chothia, T., Garcia, F.D., de Ruiter, J., van den Breekel, J., Thompson, M.: Relay
cost bounding for contactless EMV payments. In: Böhme, R., Okamoto, T. (eds.)
FC 2015. LNCS, vol. 8975, pp. 189–206. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-47854-7 11

13. Debant, A., Delaune, S.: Symbolic verification of distance bounding protocols. In:
Nielson, F., Sands, D. (eds.) POST 2019. LNCS, vol. 11426, pp. 149–174. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-17138-4 7

14. Debant, A., Delaune, S., Wiedling, C.: A symbolic framework to analyse physical
proximity in security protocols. In: Proceedings of the 38th IARCS Annual Confer-
ence on Foundations of Software Technology and Theoretical Computer Science,
(FSTTCS’18), LIPIcs, vol. 122. Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik (2018)

15. Debant, A., Delaune, S., Wiedling, C.: Symbolic Analysis of Terrorist Fraud Resis-
tance. Research report, Univ Rennes, CNRS, IRISA, France, July 2019

16. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Trans. Inf. Theory
29(2), 198–208 (1983)

17. Dürholz, U., Fischlin, M., Kasper, M., Onete, C.: A formal approach to distance-
bounding RFID protocols. In: Lai, X., Zhou, J., Li, H. (eds.) ISC 2011. LNCS, vol.
7001, pp. 47–62. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
24861-0 4

18. Fischlin, M., Onete, C.: Terrorism in distance bounding: modeling terrorist-fraud
resistance. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.)
ACNS 2013. LNCS, vol. 7954, pp. 414–431. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38980-1 26

19. Gerault, D.: Security Analysis of Contactless Communication Protocols. Ph.D.
thesis, Université Clermont Auvergne (2018)

20. Hancke, G.P., Kuhn, M.G.: An RFID distance bounding protocol. In Proceedings
of the 1st International Conference on Security and Privacy for Emerging Areas in
Communications Networks (SECURECOMM’05), pp. 67–73. IEEE (2005)

21. Janssens, P.: Proximity check for communication devices, 31 October 2017. US
Patent 9,805,228

22. Kim, C.H., Avoine, G., Koeune, F., Standaert, F.-X., Pereira, O.: The swiss-knife
RFID distance bounding protocol. In: Lee, P.J., Cheon, J.H. (eds.) ICISC 2008.
LNCS, vol. 5461, pp. 98–115. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-00730-9 7

23. Mauw, S., Smith, Z., Toro-Pozo, J., Trujillo-Rasua, R.: Distance-bounding pro-
tocols: verification without time and location. In: Proceedings of the 39th IEEE
Symposium on Security and Privacy (S&P’18), pp. 152–169 (2018)

24. Mauw, S., Smith, Z., Toro-Pozo, J., Trujillo-Rasua, R.: Post-collusion security and
distance bounding. In: Proceedings of the 2019 ACM SIGSAC Conference on Com-
puter and Communications Security. ACM (2019, to appear)

https://doi.org/10.1007/978-3-662-47854-7_11
https://doi.org/10.1007/978-3-662-47854-7_11
https://doi.org/10.1007/978-3-030-17138-4_7
https://doi.org/10.1007/978-3-642-24861-0_4
https://doi.org/10.1007/978-3-642-24861-0_4
https://doi.org/10.1007/978-3-642-38980-1_26
https://doi.org/10.1007/978-3-642-38980-1_26
https://doi.org/10.1007/978-3-642-00730-9_7
https://doi.org/10.1007/978-3-642-00730-9_7

Symbolic Analysis of Terrorist Fraud Resistance 403

25. Meadows, C., Poovendran, R., Pavlovic, D., Chang, L., Syverson, P.: Distance
bounding protocols: authentication logic analysis and collusion attacks. In: Pooven-
dran, R., Roy, S., Wang, C. (eds.) Secure Localization and Time Synchronization
for Wireless Sensor and Ad Hoc Networks, vol. 30, pp. 279–298. Springer, Boston
(2007). https://doi.org/10.1007/978-0-387-46276-9 12

26. Meier, S., Schmidt, B., Cremers, C., Basin, D.: The TAMARIN prover for the
symbolic analysis of security protocols. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 696–701. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39799-8 48

27. Munilla, J., Peinado, A.: Distance bounding protocols for rfid enhanced by using
void-challenges and analysis in noisy channels. Wirel. Commun. Mobile Comput.
8(9), 1227–1232 (2008)

28. Nigam, V., Talcott, C., Aires Urquiza, A.: Towards the automated verification
of cyber-physical security protocols: bounding the number of timed intruders. In:
Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.) ESORICS 2016.
LNCS, vol. 9879, pp. 450–470. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-45741-3 23

29. Vaudenay, S.: On modeling terrorist frauds. In: Susilo, W., Reyhanitabar, R. (eds.)
ProvSec 2013. LNCS, vol. 8209, pp. 1–20. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-41227-1 1

30. Vaudenay, S., Boureanu, I., Mitrokotsa, A. et al.: Practical & provably secure
distance-bounding. In: Proceedings of the 16th Information Security Conference
(ISC’13) (2013)

https://doi.org/10.1007/978-0-387-46276-9_12
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1007/978-3-319-45741-3_23
https://doi.org/10.1007/978-3-319-45741-3_23
https://doi.org/10.1007/978-3-642-41227-1_1
https://doi.org/10.1007/978-3-642-41227-1_1

Secure Communication Channel
Establishment: TLS 1.3

(over TCP Fast Open) vs. QUIC

Shan Chen1(B), Samuel Jero2, Matthew Jagielski3, Alexandra Boldyreva1,
and Cristina Nita-Rotaru3

1 Georgia Institute of Technology, Atlanta, Georgia
{shanchen,sasha}@gatech.edu

2 Purdue University, West Lafayette, USA
sjero@sjero.net

3 Northeastern University, Boston, USA
jagielski.m@husky.neu.edu, c.nitarotaru@neu.edu

Abstract. Secure channel establishment protocols such as TLS are
some of the most important cryptographic protocols, enabling the
encryption of Internet traffic. Reducing the latency (the number of inter-
actions between parties) in such protocols has become an important
design goal to improve user experience. The most important protocols
addressing this goal are TLS 1.3 over TCP Fast Open (TFO), Google’s
QUIC over UDP, and QUIC[TLS] (a new design for QUIC that uses
TLS 1.3 key exchange) over UDP. There have been a number of for-
mal security analyses for TLS 1.3 and QUIC, but their security, when
layered with their underlying transport protocols, cannot be easily com-
pared. Our work is the first to thoroughly compare the security and
availability properties of these protocols. Towards this goal, we develop
novel security models that permit “layered” security analysis. In addi-
tion to the standard goals of server authentication and data privacy and
integrity, we consider the goals of IP spoofing prevention, key exchange
packet integrity, secure channel header integrity, and reset authentica-
tion, which capture a range of practical threats not usually taken into
account by existing security models that focus mainly on the crypto cores
of the protocols. Equipped with our new models we provide a detailed
comparison of the above three protocols. We hope that our results will
help protocol designers in their future protocol analyses and practition-
ers to better understand the advantages and limitations of novel secure
channel establishment protocols.

Keywords: Applied cryptography · Provable security · TLS · QUIC ·
Secure channel · Availability · Network protocols

1 Introduction

Motivation. Nowadays, more than half of all Internet traffic is encrypted
according to a 2017 EFF report [20], with Google reporting that 93% of its traffic
c© Springer Nature Switzerland AG 2019
K. Sako et al. (Eds.): ESORICS 2019, LNCS 11735, pp. 404–426, 2019.
https://doi.org/10.1007/978-3-030-29959-0_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29959-0_20&domain=pdf
https://doi.org/10.1007/978-3-030-29959-0_20

TLS 1.3 (over TCP Fast Open) vs. QUIC 405

is encrypted as of January 2019 [1]. This widespread Internet traffic encryption
is enabled by protocols that allow two parties (where one or both parties have a
public key certificate) to establish a secure communication channel over the inse-
cure Internet. Typically, the parties first authenticate all parties holding a public
key certificate and agree on a session key—the key exchange phase. Then, this
session key is used to encrypt the communication during the session—the secure
channel phase. We will refer to such protocols as secure channel establishment
protocols.

The main secure channel establishment protocol in use today is TLS. The
session key establishment with TLS today involves 3 round-trip times (RTTs) of
end-to-end communication, including the cost of establishing a TCP connection
before the TLS connection. Further, this TCP cost is paid every time the two
parties communicate with each other, even if the connection is interrupted and
then immediately resumed. Given that most encrypted traffic is web traffic, this
cost represents a significant performance bottleneck, a nuisance to users, and
financial loss to companies. For instance, back in 2006 Amazon found that every
100 ms of latency cost them 1% in sales [34], while a typical RTT on a connection
from New York to London is 70 ms [22].

Not surprisingly, many efforts in recent years have focused on reducing
latency in secure channel establishment protocols. The focus has been on reduc-
ing the number of interactions (or RTTs) during session establishment and
resumption without sacrificing much security. The most important protocols
addressing this goal are TLS 1.3 [43] (the just-released successor to the current
TLS 1.2 standard) and Google’s QUIC [45].

With TLS 1.3, it is possible to reduce the number of RTTs (prior to send-
ing encrypted data) during session resumption to 1, by utilizing a session ticket
that was saved during a previous communication. The remaining 1-RTT dur-
ing session resumption is due to the aforementioned TCP connection. However,
one recent optimization for TCP, called TCP Fast Open (TFO) [10,42] extends
TCP to allow for 0-RTT resumption connections, so that the client may begin
data transmission immediately. The mechanism underlying this optimization is a
cookie saved from previous communication, similar to the ticket used by TLS 1.3.

Like TLS 1.3, Google’s QUIC uses weaker initial keys, under which data
can be encrypted earlier, and a token saved from previous communication
between the parties. But unlike TLS, QUIC operates over UDP rather than
TCP. Instead of relying on TCP for reliability, flow control, and congestion
control, QUIC implements its own data transmission functionality, integrating
connection establishment with key exchange. These features allow QUIC to have
1-RTT full connections and 0-RTT resumption connections.

In addition to TLS 1.3 over TFO and QUIC over UDP, there is a new design
for QUIC [23] (which we refer to as QUIC[TLS] [47] to indicate that it borrows
the key exchange from TLS 1.3) over UDP. These 3 protocols win in terms of
the number of interactions, but how does their security compare?

406 S. Chen et al.

At first glance, the question is easy to answer. Recent works have done formal
security analyses of TLS 1.3 [4–6,11–15,18,28,29,33] and Google’s QUIC [17,35].
Most works confirm that (the cryptographic cores of) both protocols are prov-
ably secure under reasonable computational assumptions. Moreover, as shown
in [18,35], their 0-RTT data transmission designs cannot achieve the same strong
security guaranteed by classical key exchange protocols with at least one RTT.
In particular, the 0-RTT keys do not provide forward secrecy and the 0-RTT
data suffers from replay attacks. Overall, it might seem that all three layered
protocols mentioned above are equally secure.

However, a closer look reveals that the answer is not that simple. First,
all aforementioned formal security analyses, except for [35] analyzing the IP
spoofing (source validation) of QUIC, did not consider packet-level availability
attacks. Therefore, it is not clear at the packet level what security can be achieved
and what attacks can be prevented by these protocols. In other words, we have no
formal understanding of what security can be obtained when layering protocols.
We note that for protocols targeting low latency availability is essential, and
since it can be assured to some degree by cryptographic means, a cryptographic
analysis is very important. Also, TFO uses some cryptographic primitives, such
as a cookie, to prevent IP spoofing, but, to the best of our knowledge, no formal
analysis has been done. Furthermore, the security of QUIC[TLS] has not been
formally analyzed (although some security aspects can be reduced to those of
Google’s QUIC and TLS 1.3).

Our contributions. The goal of our work is to help public understanding of
how security compares for the most latency-efficient secure channel establishment
protocols on the market today. By including packet-level attacks in our analysis,
our results also shed light on how the reliability, flow control, and congestion
control of both approaches compare, in adversarial settings.

To compare security, we first need to define a general protocol syntax for
secure channel establishment and fix a security model for it. We take Quick
Connections (QC) protocol definition [35] as our starting point. To accommodate
protocol syntaxes of TLS 1.3 and QUIC[TLS], we extend the QC protocol to a
more general Multi-Stage Authenticated and Confidential Channel Establishment
(msACCE) protocol, which allows more keys to be set during each session. The
details are in Sect. 4.1.

Then, we extend the Quick Authenticated and Confidential Channel Estab-
lishment (QACCE) security model [35] to two msACCE security models—
msACCE-std and msACCE-pauth—that are general enough for all layered
secure channel establishment protocols mentioned above. The former model,
msACCE-std, is fairly standard and is for core cryptographic security. The lat-
ter model, msACCE-pauth, is novel and is for packet-level security. For this
packet-authentication model we extend the definition of IP-Spoofing Prevention
from [35], and also define Key Exchange (KE) Header Integrity, KE Payload
Integrity, Secure Channel (SC) Header Integrity, and Reset Authentication.

Equipped with our new models (see [9] and Sect. 4.2 for details), we
study the security and availability functionalities provided by TFO+TLS 1.3,

TLS 1.3 (over TCP Fast Open) vs. QUIC 407

UDP+QUIC, and UDP+QUIC[TLS]. We first confirm that all protocols prov-
ably satisfy the standard security notions of Server Authentication and Channel
Security given that their building blocks are secure. The results mostly follow
from prior works and we just have to argue that they still hold for our msACCE-
std security model (which is an extension to previous models). Due to lack of
space, we treat the above standard security notions and corresponding proto-
col security analyses in the full version [9], and here we focus on the novel
packet-level security. We analyze the first 2 low latency protocols under our
new model in Sect. 5 and refer to the full version [9] for the security analysis of
UDP+QUIC[TLS]. Some of our theoretical findings capture practical availability
attacks that the networking community has been slowly uncovering via manual
investigation over the last 30 years [2,7,8,21,25–27,30,31,36,40,41,46,48], such
as TCP flow control manipulation, TCP acknowledgment injection, etc. Our
findings also discover new weaknesses (e.g., those that allow manipulating the
early key exchange packets without being detected by the communicating par-
ties). Furthermore, our results prove security guarantees for certain goals (such
as showing that TFO’s cookie mechanism provably achieves the security goal
of IP Spoofing Prevention and QUIC[TLS]’s stateless reset mechanism provably
achieves the security goal of Reset Authentication). Table 1 in Sect. 5 summarizes
our results.

2 Background

Network protocols are designed following a layered network stack model where
each layer has its own functionality, defines an interface for use by higher layers,
and relies only on the properties of lower layers. In this work, we are concerned
with three layers: network, represented by the IP protocol; transport, represented
by UDP and TCP with the Fast Open optimization (TFO); and application,
represented by TLS or QUIC.

TCP Fast Open. TCP Fast Open (TFO) is an optimization which introduces
a simple modification to the TCP connection establishment handshake to reduce
the 1-RTT connection establishment latency of TCP and allow for 0-RTT hand-
shakes. The mechanism through which 0-RTT is achieved is a cookie that is
obtained by the client first time it communicates with a server and cached for
later uses. This cookie is intended to prevent replay attacks while avoiding the
need for servers to keep expensive state. It is generated by the server, authenti-
cates client IP address, and has a limited lifetime. Generation and verification
have low overhead. Cookies are sent in the TFO option field in SYN packets (see
Fig. 1 for details).

TLS 1.3. The recently standardized TLS 1.3 [43] improves TLS 1.2. Most rel-
evant, it enables 0-RTT handshakes at the TLS level. In a TLS 1.3 full connec-
tion (see Fig. 1, fourth message), the client begins by sending a ClientHello
message containing a list of ciphersuites to use with key shares for each. The
server responds with a ServerHello message containing the ciphersuite to use

408 S. Chen et al.

Fig. 1. TFO+TLS 1.3 (EC) DHE 2-RTT full handshake (a) and TFO+TLS 1.3 PSK-
(EC) DHE 0-RTT resumption handshake(b). * indicates optional messages. () indicates
messages protected using the 0-RTT keys derived from a pre-shared key. {} and []
indicate messages protected with initial and final keys.

and its key share. At this point, an initial encryption key is derived and all
future messages are encrypted. The server also sends an EncryptedExtensions
message containing any extension data, a CertificateRequest message if doing
client authentication, a ServerCertificate message containing the server’s cer-
tificate, a ServerCertificateVerify message containing a signature over the
handshake with the private key corresponding to the server’s certificate, and a
ServerFinished message containing an HMAC of all messages in the handshake.
The client receives these messages, verifies their contents, and responds with
ClientCertificate and ClientCertificateVerify messages if doing client
authentication before finishing with a ClientFinished message containing an
HMAC of all messages in the handshake. At this point, a final encryption key is
derived and used for encrypting all future messages. If the server supports 0-RTT
connections, one final handshake message, the NewSessionTicket message, will
be sent by the server to provide the client with an opaque session ticket to be
used in a resumption session.

In later TLS 1.3 resumption connections to this server, the client uses the
session ticket established in the prior full connection to do a 0-RTT connection.
In this case, the client sends a ClientHello message indicating a pre-shared-key
ciphersuite, a ciphersuite to use for the final key, and the cached session ticket.
The client can then derive an encryption key and begin sending 0-RTT data.
The server will verify the session ticket, use it to establish the same encryption

TLS 1.3 (over TCP Fast Open) vs. QUIC 409

key, and send a ServerHello message containing the ciphersuite to use and its
final key share. At this point, an initial encryption key is derived and all future
messages are encrypted. The server also sends an EncryptedExtensions message
containing any extension data and a ServerFinished message containing an
HMAC of all messages in the handshake. The client receives these messages,
verifies their contents, and responds with an EndOfEarlyData message and a
ClientFinished message containing an HMAC of all messages in the handshake.
At this point, a final encryption key is derived and used for encrypting all future
messages.

TLS 1.3 over TFO. Layering TLS 1.3 over TCP Fast Open enables true 0-RTT
connections. In a full connection to a TFO+TLS 1.3 server, the client requests
a TFO cookie in the TCP SYN and then does a full TLS 1.3 handshake once
the TCP connection completes. This takes 3-RTTs (see Fig. 1), but provides a
cached TFO cookie and cached TLS session ticket. In subsequent resumption
connections to this server, the client can use the TFO cookie to establish a 0-
RTT TCP connection and include the TLS 1.3 ClientHello message in the
SYN packet. The TLS ClientHello message can use the cached TLS session
ticket to perform a 0-RTT resumption handshake. Thus, the TCP and TLS 1.3
connections are established at the same time, as shown in Fig. 1.

QUIC over UDP. Quick UDP Internet Connections (QUIC) is a transport
protocol developed by Google and implemented by Chrome and Google servers
since 2013 [45]. QUIC provides a very similar set of services to TFO+TLS 1.3,
however instead of modifying TCP to enable 0-RTT connection establishment,
QUIC replaces TCP entirely, using UDP.

Fig. 2. QUIC 1-RTT full handshake (a) and UDP+QUIC 0-RTT resumption hand-
shake (b). * indicates optional messages. {} and [] indicate messages protected with
initial and final keys.

QUIC packets contain a public header and a set of frames that are encrypted
and authenticated after initial connection setup. The header contains a set of
public flags, a unique 64bit connection identifier referred to as cid, and a variable
length packet number. All other protocol information is carried in control and
stream (data) frames that are encrypted and authenticated.

410 S. Chen et al.

To provide 0-RTT, QUIC caches information about the server that will enable
the client to determine the encryption key to be used for each new connection. As
shown in Fig. 2, the first time a client contacts a given server it sends an empty
(Inchoate) ClientHello message. The server responds with a ServerReject
message containing the server’s certificate, an object called an scfg, (contains a
variety of information about the server, including a Diffie-Hellman share from the
server), supported encryption and signing algorithms, and flow control parame-
ters. Along with the scfg, the server sends the client a source-address token or
stk. The stk is used to prevent IP spoofing. It contains an encrypted version of
the client’s IP address and a timestamp.

With this cached information, a client can establish an encrypted connection
with the server. It first ensures that the scfg is correctly signed by the server’s
certificate which is valid and then sends a ClientHello indicating the scfg its
using, the stk value it has cached, a Diffie-Hellman share for the client, and
a client nonce. After sending the ClientHello, the client can create an initial
encryption key and send additional encrypted Application Data packets. In
fact, to take advantage of the 0-RTT connection establishment it must do so.
When the server receives the ClientHello message, it validates the stk and
client nonce parameters and creates the same encryption key using the server
share from the scfg and the client’s share from the ClientHello message.

At this point, while both client and server have established the connection,
setup encryption keys and all further communication between the parties is
encrypted, the connection is not forward secure yet, meaning that compromising
the server would compromise all previous communication because the server’s
Diffie-Hellman share is the same for all connections using the same scfg. To
provide forward secrecy for all data after the first RTT, the server sends a
ServerHello message after receiving the client’s ClientHello which contains
a newly generated Diffie-Hellman share. Once the client receives this message,
client and server derive and begin using the new forward secure encryption key.

For the client that has connected to a server before, it can instead initi-
ate a resumption connection. This consists of only the last two steps of a full
connection, sending the ClientHello and ServerHello messages as shown in
Fig. 2.

QUIC with TLS 1.3 Key Exchange over UDP. A new version of QUIC [23],
which also supports 0-RTT, describes several improvements of the previous
design. The most important change is replacing QUIC’s key exchange with the
one from TLS 1.3, as specified in the latest Internet draft [47]. We provide more
details (e.g., about its new stateless reset feature) in the full version [9].

3 Preliminaries

Public Key Infrastructure. For simplicity, we assume the public keys used
in our analysis are supported by a public key infrastructure (PKI) and do not
consider certificates or certificate checks explicitly. In other words, we assume
each public key is certified and bound to the corresponding party’s identity.

TLS 1.3 (over TCP Fast Open) vs. QUIC 411

PRF and AEAD. In the full version [9] we recall the security definitions of a
pseudorandom function (PRF) F and a stateful authenticated encryption with
associated data (AEAD) scheme sAEAD. Accordingly, there we provide the def-
initions for the corresponding advantages: Advprf

F (A),Advaead
sAEAD(A). We also

refer to [44] for the syntax and security definitions of a nonce-based AEAD
scheme.

4 msACCE Protocol and Its Security

In this section, we define the syntax and two security models for Multi-Stage
Authenticated and Confidential Channel Establishment (msACCE) protocols.

4.1 Protocol Syntax

Our msACCE protocol is an extension to the Quick Connection (QC) pro-
tocol proposed by Lychev et al. [35] and the Multi-Stage Key Exchange
(MSKE) protocol proposed by Fischlin and Günther [17] (and further developed
by [14,15,18,33]). Even though the authors of [35] claimed their QC protocol
syntax to be general, TLS 1.3 does not fit it well because TLS 1.3 has two initial
keys and one final key in 0-RTT resumption while QC captures only one initial
key. On the other hand, the MSKE protocol and its extensions focus only on the
key exchange phases.

Our msACCE protocol syntax inherits many parts of the QC protocol syntax
but extends it to a multi-stage structure and additionally covers session resump-
tions (explicitly, unlike QC), session resets, and header-only packets exchanged
in secure channel phases. The detailed protocol syntax is defined below.

A msACCE protocol is an interactive protocol between a client and a server.
They establish keys in one or more stages and exchange messages encrypted
and decrypted with these keys. Messages are exchanged via packets. A packet
consists of source and destination IP addresses1 IPs, IPd ∈ {0, 1}32 ∪ {0, 1}64, a
header, and a payload. Each party P has a unique IP address IPP .

The protocol is associated with the security parameter λ ∈ N+, a key gen-
eration algorithm Kg that takes as input 1λ and outputs a public and secret
key pair, a header space2 (for transport and application layers) H ⊆ {0, 1}∗, a
payload space PD ⊆ {0, 1}∗, header and payload spaces Hrst ⊆ H,PDrst ⊆ PD
for reset packets (described later), a resumption state space RS ⊆ {0, 1}∗, a
stateful AEAD scheme3 sAEAD = (sG, sE, sD) (with a key space K = {0, 1}λ,
a message space M ⊆ {0, 1}∗, an associated data space AD ⊆ {0, 1}∗, and a

1 For the network-layer protocols, we only consider the Internet Protocol and its IP
address header fields because our model mainly focuses on the application and trans-
port layers and additionally only captures the IP-spoofing attack.

2 Some protocol header fields (e.g., port numbers, checksums, etc.) can be excluded if
they are not the focus of the security analysis.

3 To fit TLS 1.3’s encryption scheme, unlike QACCE we model QUIC’s encryption
scheme as a more general stateful AEAD scheme rather than a nonce-based one.

412 S. Chen et al.

state space ST ⊆ {0, 1}∗), disjoint4 message spaces MKE,MSC,MpRST ⊆ M
with MKE,MSC for messages encrypted during key exchange and secure channel
phases respectively and MpRST for pre-reset messages (described later) encrypted
in a secure channel phase, a server configuration generation function scfg gen
described below.

The protocol’s execution is associated with the universal notion of time
divided into discrete periods τ1, τ2, During its execution, both parties can
keep states that are initialized to the empty string ε. In the beginning of each
time period, the protocol may periodically update each server’s configuration
state scfg with scfg gen (which takes as input 1λ, a server secret key, and a
time period, then outputs a server configuration state). Otherwise, scfg gen is
undefined and without loss of generality the protocol is executed within a single
time period.

A reset packet enables a sender, who lost its session state due to some error
condition (e.g., server reboots, denial-of-service attacks, etc.), to abruptly ter-
minate a session with the receiver. A pre-reset message (e.g., a reset token in
QUIC[TLS]) is sent to the receiver in a secure channel phase5 before the sender
loses its state in order to authenticate the sender’s reset packet. Each session
has at most one pre-reset message for each party. A non-reset packet is not a
reset packet. A header-only packet has no payload.

We say a party rejects a packet if its processing the packet leads to an error
(defined according to the protocol), and accepts it otherwise.

The protocol has two modes, full and resumption. Its corresponding execu-
tions are referred to as the full and resumption sessions. Each resumption session
is associated with a single previous full session and we say the resumption ses-
sion resumes its associated full session. In the beginning of a full or resumption
session, each party takes as input a list of messages6 Msnd = (M1, . . . ,Ml),Mi ∈
MSC, l ∈ N (where the total message length |Msnd| is polynomial in λ and Msnd

can be empty) as well as the other party’s IP address. In a full session, the server
runs Kg(1λ) to generate a public and secret key pair and sends its public key
to the client as input. In a resumption session, each party additionally takes as
input its own resumption state rs ∈ RS (set in the associated full session). In
either case, the client sends the first packet to start the session.

A D-stage msACCE protocol consists of D ∈ N+ successive stages and each
stage, e.g., the d-th (d ∈ [D]) stage, consists of one or two phases described as
follows:

4 Disjointness is a reasonable assumption as practical protocols (such as the 3 lay-
ered protocols that we consider) enforce different leading bits for different types of
messages.

5 A pre-reset message can also be carried within an encrypted key exchange packet.
We consider it encrypted as a separate secure channel packet to get a clean packet-
authentication security model described later.

6 For simplicity, we consider transportation of atomic messages rather than a data
stream that can be modeled as a stream-based channel [19] and later extended to
capture multiplexing [37].

TLS 1.3 (over TCP Fast Open) vs. QUIC 413

(1) Key Exchange. At the end of this phase each party sets its d-th stage key
kd = (kd

c , kd
s). At most one of kd

c and kd
s can be ⊥, i.e., unused.7 If this is

the final stage in a full session, each party can send additional messages8

in MKE encrypted with kd and by the end of this phase each party sets its
own resumption state.

(2) Secure Channel. This phase is mandatory for the final stage but optional
for other stages. In this phase, the parties can exchange messages from their
input lists as well as pre-reset messages, encrypted and decrypted using the
associated stateful AEAD scheme with kd. The client uses kd

c to encrypt and
the server uses it to decrypt, whereas the server uses kd

s to encrypt and the
client uses it to decrypt. They may also send reset or header-only packets.
At the end of this phase, each party outputs a list of received messages
(which may be empty) Mrcv

i = (M ′
1, . . . ,M

′
l′i
), l′i ∈ N, M ′

i ∈ MSC.

Each message exchanged between the parties must belong to some unique
phase at some unique stage. One stage’s second phase and the next stage’s first
phase may overlap, and the two phases in the final stage may also overlap. We
call the final stage key the session key and the other stage keys the interim keys.

Correctness. Consider a client and a server running a D-stage msACCE proto-
col in either mode without sending any reset packet. Each party’s input message
list Msnd, in which the messages are sent among D stages according to any
partitioning Msnd = Msnd

1 , . . . ,Msnd
D , is equal to the other party’s total output

message list Mrcv = Mrcv
1 , . . . ,Mrcv

D , in which the message order is preserved.
Each party terminates its session upon receiving the other party’s reset packet.

Remark. With our more general protocol syntax, the ACCE [24] and QC [35]
protocols can be classified into 1-stage and 2-stage msACCE protocols respec-
tively.

4.2 Security Models

We propose two security models respectively for basic authenticated and con-
fidential channel security and packet authentication. Our models do not con-
sider the key exchange and secure channel phases independently, as was the
case for some previous QUIC and TLS 1.3 security analyses [14,15,17,18,33],
because QUIC’s key exchange and secure channel phases are inherently insepa-
rable and the TLS 1.3 full handshake does not fit into a composability frame-
work, as discussed in [15,35]. We refer to the full version [9] for our basic model
(which we call msACCE-std) that considers standard security goals such as
server authentication and channel security (which captures data privacy and
integrity) for msACCE protocols. Here we only present our novel msACCE
packet-authentication (msACCE-pauth) model.
7 This captures the case where a 0-RTT key only consists of a client encryption key

while the server encryption key does not exist.
8 This captures the post-handshake key exchange messages that are used for session

resumption, post-handshake authentication, key update, etc.

414 S. Chen et al.

msACCE-pauth Overview. In this model, we consider security goals related
to packet authentication beyond those captured by the basic model. Note that
msACCE-std essentially focuses only on the packet fields in the application layer,
while msACCE-pauth further covers transport-layer headers and IP addresses.

First, we consider IP spoofing prevention (a.k.a. source authentication) as
with the QACCE model, but, as illustrated later, generalize one of the QACCE
queries to additionally capture IP spoofing attacks in the full sessions. Then
we define four novel packet-level security notions (elaborated later): KE Header
Integrity, KE Payload Integrity, SC Header Integrity, and Reset Authentication,
which enable a comprehensive and fine-grained security analysis of layered pro-
tocols.

In particular, KE Header and Payload Integrity respectively capture the
header and payload integrity of key exchange packets. Such security issues have
not been investigated before and, as we show later, lead to new availability
attacks for both TFO+TLS 1.3 and UDP+QUIC. Furthermore, we employ SC
Header Integrity to capture the header integrity of non-reset packets in secure
channel phases. Note that, unlike the availability attacks shown in [35], success-
ful attacks breaking our security notions are harder or impossible to detect by
the client as they do not affect the client’s session key establishment, so they are
more harmful in this sense. Finally, our model captures malicious undetectable
session resets in a secure channel phase with Reset Authentication.

msACCE-pauth Definitions. Like previous models, we consider a very pow-
erful adversary who can control communications between honest parties, can
adaptively learn their stage keys, and can adaptively corrupt servers to learn
their long-term keys and secret states. Our detailed security model is defined
below.

Protocol Entities. The set of parties P consists of two disjoint type of parties:
clients C and servers S, i.e., |P| = |C| + |S|.
Session Oracles. To capture multiple sequential and parallel protocol execu-
tions, each party P ∈ P is associated with a set of session oracles π1

P , π2
P , . . .,

where πi
P models P executing a protocol instance in session i ∈ N+.

Matching Conversations. As part of the security model, matching conver-
sations are used to model entity authentication, session key confirmation, and
handshake integrity. A client (resp. server) oracle has a matching conversation
with a server (resp. client) oracle if and only if both session oracles observe the
same9 session identifier sid defined according to the protocol specifications and
security goals. Note that a msACCE protocol may have two different session
identifiers in full and resumption modes, but for simplicity we use the same
9 As discussed in [24], two session oracles having matching conversations with each

other may not observe the same transcript due to the gap between one oracle sending
a message and the other receiving it. We can use symmetric session identifiers to
define matching conversations because our msACCE-std model focuses only on server
authentication and we require session identifiers to exclude, if any, a client oracle’s
last key exchange message(s) sent immediately before it sets its session key.

TLS 1.3 (over TCP Fast Open) vs. QUIC 415

notation sid. Compared to the general definition of matching conversations
[3,24], sid is often defined as a subset of the whole communication transcript.
For instance, QUIC’s sid in QACCE [35] is defined as the second-round key
exchange messages, i.e., ClientHello and ServerHello, while the first-round
messages are excluded to allow for valid but different source-address tokens or
signatures. Similarly, TLS 1.2’s sid in ACCE [28] is defined as the first three key
exchange messages, while the rest are excluded to allow for valid but different
encrypted Finished messages.

Peers. We say a client oracle and a server oracle are each other’s peer if they
observe the same first-stage session identifier sid1 (i.e., sid restricted to the first
stage), which intuitively means that they set the first stage key with each other.
Note that a client oracle may have more than one peers if sid1 consists of only
message(s) sent from the client oracle, which can be replayed to the same10 server
to establish multiple (identical) first-stage keys. Therefore, a session oracle’s peer
may not be its final unique communication partner. Instead, the real partner is
the session oracle with which the oracle has a matching conversation.

Security Experiments. In the beginning of the experiments, run Kg(1λ) for all
servers to generate the public and secret key pairs and initialize the global states
of all parties and the local states of all session oracles. In the beginning of each
time period, run scfg gen (if defined) for each server to update its configuration
state scfg. We assume that both the server oracles and the adversary A are
aware of the current time period. Let N ∈ N+ denote the maximum number of
msACCE protocol instances for each party. The adversary A is given all public
keys and the IP addresses associated with all parties and then interacts with
the session oracles via the same Connect,Resume,Send,Reveal, Corrupt queries
as in the msACCE-std model11 (which respectively give the adversary abilities
to start and resume a session, send key exchange messages and get responses,
reveal session keys, and corrupt servers, referring to the full version [9] for more
details), as well as the following:

• Connprivate(πi
C , πj

S , cmp), for C ∈ C, S ∈ S, i, j ∈ [N], cmp ∈ {0, 1}.
This query always returns ⊥. If cmp = 1, πi

C and πj
S establish a complete full

session privately without showing their communication to the adversary. If
cmp = 0, πi

C and πj
S establish a partial full session privately such that the

last packet sent from πi
C right before πj

S sets its first stage key is blocked.
This query allows the adversary to establish a complete or partial full

session between any client and server oracles without observing their commu-
nication. By taking an additional flag cmp as input, this query extends the
QACCE Connprivate query [35] to model IP-spoofing attacks happening in
both full and resumption sessions.

10 In practice, 0-RTT replay attacks can be mounted to different servers with the same
public-secret key pair. However, 0-RTT key exchange message(s) replayed to other
servers with different public-secret key pairs will be rejected.

11 Note that Encrypt and Decrypt queries are not needed because msACCE-pauth does
not consider data privacy explicitly.

416 S. Chen et al.

• Pack(πi
P , ad,m), for P ∈ P, i ∈ [N], ad ∈ AD,m ∈ MSC ∪ MpRST ∪

{prst, rst}.
This query returns ⊥ if πi

P is not in a secure channel phase. If m ∈
MSC ∪ MpRST, it asks πi

P to output the packet that it would send to its
peer(s) for the specified associated data ad and message m according to the
protocol, then returns this packet. If m = prst, πi

P generates its pre-reset
message (if any, hidden from the adversary), encrypts it with the specified
associated data ad, and outputs the resulting packet, then this packet is
returned. (Recall that each oracle has at most one pre-reset message, so at
most one input message m ∈ MpRST ∪ {prst} is allowed to be queried.) If
m = rst, this query asks πi

P to output its reset packet (if any) and returns it.
This query allows the adversary to specify any associated data and any

message in a secure channel phase, then get the packet output by the speci-
fied session oracle. The adversary can also specify a session oracle to get the
packet resulting from encrypting the session oracle’s pre-reset message (which
the adversary does not know) or get its reset packet.

• Deliver(πi
P , pkt), for P ∈ P, i ∈ [N], pkt ∈ {0, 1}∗.

This query returns ⊥ if πi
P is not in a secure channel phase. Otherwise, it

delivers pkt to πi
P and returns its response.

This query allows the adversary to deliver any packet to a specified session
oracle and get its response in a secure channel phase.

Advantage Measures. An adversary A against a msACCE protocol Π in
msACCE-pauth has the following associated advantage measures.

• IP-Spoofing Prevention. We define Advipsp
Π (A) as the probability that there

exist a client oracle πi
C and a server oracle πj

S such that the following holds:
1. πj

S has set its first stage key right after a Send(πj
S , (IPC , IPS , ·, ·)) query;

2. S was not corrupted before πj
S set its first stage key;

3. The only allowed queries concerning both C and S in the time period
associated with πj

S are:
– Connprivate(πx

C , πy
S , ·) for any x, y ∈ [N], and

– Send(πy
S , (IPC , IPS , ·, ·)) for any y ∈ [N], where (IPC , IPS , ·, ·) is the

last packet received by πy
S right before it sets its first stage key.

The above captures the attacks in which the adversary fools a server into
accepting a spurious connection request seemingly from an impersonated
client, without observing any previous communication between the client and
server in the same time period.

• KE Header Integrity. We define Advint-keh
Π (A) as the probability that there

exist a client oracle πi
C and a server oracle πj

S such that the following holds:
1. πi

C has set its session key and has a matching conversation with πj
S ;

2. S was not corrupted before πi
C set its session key;

3. No interim keys of πi
C or its peer(s) were revealed;

4. In a key exchange phase before πi
C set its session key, πi

C (resp. πj
S)

accepted a packet with a new header that was not output by πj
S (resp.

πi
C).

TLS 1.3 (over TCP Fast Open) vs. QUIC 417

The above captures the attacks in which the adversary modifies the pro-
tocol header of a key exchange packet of the communicating parties without
affecting the client setting its session key. In the above definition, we assume
that a client sets its session key immediately after sending its last key exchange
packet(s) (if any). Then, a forged packet that leads to a successful attack can-
not be any of these last packet(s), which have not yet been sent to the server.
The same assumption is made for KE Payload Integrity defined below.

• KE Payload Integrity. We define Advint-kep
Π (A) as the probability that there

exist a client oracle πi
C and a server oracle πj

S such that the same 1–3 condi-
tions as in the above KE Header Integrity notion and the following holds:
4. In a key exchange phase before πi

C set its session key, πi
C (resp. πj

S)
accepted a packet with a new payload that was not output by πj

S (resp.
πi

C).
The above captures the attacks in which the adversary modifies the payload
of a key exchange packet of the communicating parties without affecting the
client setting its session key.

• SC Header Integrity. We define Advint-h
Π (A) as the probability that A outputs

(P, i, d) such that the following holds:
1. If P = S ∈ S, πi

S has a matching conversation with a client oracle πj
C ; if

P = C ∈ C, denote S as πi
C ’s target server;

2. S was not corrupted before πi
P set its last stage key; If forward secrecy

is not required for the d-th stage keys, S was not corrupted in the same
time period associated with πi

P ;
3. No stage keys of πi

P or its peer(s) were revealed.
4. In the secure channel phase of the d-th stage, πi

P accepted a non-reset
packet with a new header that was not output by its peer(s) (via Pack
queries), or πi

P accepted a non-reset header-only packet.
The above captures the attacks in which the adversary creates a valid

non-reset secure channel packet by forging the protocol header. Note that in
the above security notion an invalid header forgery is detected immediately
after the malicious packet is received and processed, while the detection of
invalid packet forgeries in a key exchange phase (e.g., for plaintext packets)
can be delayed to the point when the client sets its session key, according to
the definitions of KE Header and Payload Integrity.

• Reset Authentication. We define Advrst-auth
Π (A) as the probability that A out-

puts (P, i, d) such that the same 1∼3 conditions as in the above SC Header
Integrity notion hold and the following holds:
4. In the secure channel of the d-th stage, πi

P accepted a packet output by a
Pack(·, ·, prst) query to its peer πj

P ′ . Later (in the d-th or a later stage),
πi

P accepted a reset packet but A made no Pack(πj
P ′ , ·, rst) queries.

The above captures the attacks in which the adversary forges a valid reset
packet. Note that such attacks are undetectable by the accepting party, as
opposed to a network attacker that simply drops packets.

We say a msACCE protocol Π achieves a security notion in our msACCE
security models if the associated advantage is negligible (in λ) or for any
probabilistic-polynomial-time (PPT) A.

418 S. Chen et al.

Remark about msACCE Security Model Completeness and Low-
Layer Integrity. Since the payload integrity in secure channels is captured
by msACCE-std, together with msACCE-pauth our models completely capture
the authentication (or integrity) of all packet fields in the transport and applica-
tion layers. Furthermore, msACCE-pauth captures (network-layer) IP-Spoofing
Prevention against weaker off-path attackers (i.e., those can only inject pack-
ets without observing the communication), but leaves other integrity attacks on
low layers (e.g., network, link, and physical layers) uncovered. Such attacks may
affect packet forwarding, node-to-node data transfer, or raw data transmission,
which are outside the scope of our work.

5 Provable Security Analysis

We now analyze and compare the security of TFO+TLS 1.3 and UDP+QUIC,
and refer to the full version [9] for the security analysis of UDP+QUIC[TLS]. The
security results are summarized in Table 1. As mentioned in the Introduction,
by [18] results, no protocol achieves forward secrecy for 0-RTT keys or protects
against 0-RTT data replays (which contribute to the first two rows in the table).
The third and fourth rows reflect security results in our basic msACCE-std model
(see the full version [9] for detailed analyses), which are derived by adapting
existing security results [16,18,33,35] to our model. We now move to the detailed
msACCE-pauth security analyses and start with TFO+TLS 1.3.

Table 1. Security comparison

TFO+TLS 1.3 UDP+QUIC UDP+QUIC[TLS] [9]

0-RTT Key Forward Secrecy [18] ✗ ✗ ✗

0-RTT Data Anti-Replay [18] ✗ ✗ ✗

Server Authentication [9] ✓ ✓ ✓

Channel Security [9] ✓ ✓ ✓

IP-Spoofing Prevention ✓ ✓ ✓

KE Header Integrity ✗ ✗ ✗

KE Payload Integrity ✓ ✗ ✗

SC Header Integrity ✗ ✓ ✓

Reset Authentication ✗ ✗ ✓

5.1 TLS 1.3 over TFO

We refer to Appendix A.1 for TFO+TLS 1.3’s protocol definition. Its session
identifier sidTLS is defined as all key exchange messages from ClientHello to
ServerFinished, excluding TCP headers and IP addresses. The msACCE-pauth
security analyses are shown as follows.

TLS 1.3 (over TCP Fast Open) vs. QUIC 419

IP-Spoofing Prevention. This security of TFO+TLS 1.3 is provided by the
TFO component through TCP sequence number randomization and TFO cook-
ies. By modeling the cookie generation function, an AES-128 block cipher, as a
PRF F : {0, 1}n × {0, 1}λ → {0, 1}n, we have the following theorem with the
proof in the full version [9]:

Theorem 1. For any PPT adversary A making at most q Send queries, there
exists a PPT adversary B such that:

Advipsp
TFO+TLS 1.3(A) ≤ |S|Advprf

F (B) +
q

min{2|sqn|, 2n} .

KE Header Integrity. TFO+TLS 1.3 does not achieve this security notion
because TCP headers are never authenticated. We find a new practical attack
below, where a PPT adversary A can always get Advint-keh

TFO+TLS 1.3(A) = 1:

TFO Cookie Removal. A can first make πi′
C complete a full handshake with πj′

S

(via Connect,Send queries), then query Resume(πi
C , πj

S , i′) (i > i′, j > j′) to get
the output packet (IPC , IPS ,H, pd), which is a SYN packet with a TFO cookie.
A then modifies the opt field of H to get a new H ′ 	= H that contains no cookie.
The resulting SYN packet will be accepted by πj

S , which will then respond with
a SYN-ACK packet that does not contain a TFO cookie, indicating a fallback to
the standard 3-way TCP. As a result, a 1-RTT handshake is needed to complete
the connection and any 0-RTT data sent with SYN would be retransmitted. This
eliminates the entire benefit of TFO without being detected, resulting in reduced
performance and increased handshake latency. A similar attack is possible by
removing the TFO cookie in a server’s SYN-ACK packet.

Interestingly, clients are supposed to cache negative TFO responses and avoid
sending TFO connections again for a lengthy period of time. This is because the
most likely explanation for this behavior is that the server does not support
TFO, but only standard TCP [10]. As a result, performing this attack for a
single connection prevents TFO from being used with this server for a lengthy
time period (i.e., days or weeks).

KE Payload Integrity. TFO+TLS 1.3 is secure in this regard simply because
sidTLS consists of the payloads of all key exchange packets exchanged between
the communicating parties before the client set its session key. That is, for any
client oracle that has a matching conversation with any server oracle, by defini-
tion they observe the same sidTLS and hence no key exchange packet payload
can be modified, i.e., Advint-kep

TFO+TLS 1.3(A) = 0 for any PPT adversary A.

SC Header Integrity. TFO+TLS 1.3 does not achieve this security again
because of the unauthenticated TCP headers. A PPT adversary A can get
Advint-h

TFO+TLS 1.3(A) = 1 by either modifying the TCP header of an encrypted
packet (e.g., reducing the window value) or by forging a header-only packet (e.g.,
removing the payload of an encrypted packet and changing its ack value). Such
packets are valid and will be accepted by the receiving session oracle.

420 S. Chen et al.

The above fact exposes the adversary’s ability to arbitrarily modify or even
entirely forge the information in the TCP header, which is being relied on to
provide reliable delivery, in-order delivery, flow control, and congestion control
for the targeted flow. This leads to a whole host of availability attacks that the
networking community has been slowly uncovering via manual investigation over
the last 30 years [2,7,8,21,25–27,30,31,36,40,41,46,48]. Some of the practical
attacks are described in the full version [9].

Reset Authentication. TFO+TLS 1.3 is insecure in this sense because
its reset packet, TCP Reset, is an unauthenticated header-only packet. This
leads to a practical attack below, where a PPT adversary A always gets
Advrst-auth

TFO+TLS 1.3(A) = 1:

TCP Reset Attack. A can first make two session oracles complete a handshake
using Connect,Send queries, then use Pack,Deliver queries to let them exchange
secure channel packets. By observing these packet headers, A can easily forge a
valid reset packet by setting its RST bit to 1 and the remaining header fields
to reasonable values. This attack will cause TCP to tear down the connection
immediately without waiting for all data to be delivered.

Note that even an off-path adversary who can only inject packets into the
communication channel may be able to accomplish this attack. The injected TCP
reset packet needs to be within the receive window for the client or server, but [48]
demonstrated that a surprisingly small number of packets is needed to achieve
this, thanks to the large receive windows typically used by implementations.

5.2 QUIC over UDP

We refer to Appendix A.2 for UDP+QUIC’s protocol definition. Its session iden-
tifier sidQUIC is defined as the ClientHello payload and ServerHello, exclud-
ing IP addresses. The msACCE-pauth security analyses are shown as follows.

IP-Spoofing Prevention. In [35], QUIC has been proven secure against IP
spoofing based on the AEAD security. Their IP-spoofing security notion is
the same as our IP-Spoofing Prevention notion for UDP+QUIC except that
ours additionally captures attacks in full sessions. However, since source-address
tokens are validated in both full and resumption sessions, their results can be
trivially adapted to show that UDP+QUIC achieves IP-Spoofing Prevention.

KE Header and Payload Integrity. UDP+QUIC does not achieve
these security notions because its first-round key exchange messages, i.e.,
InchoateClientHello and ServerReject, and any invalid ClientHello are
not fully authenticated. Interestingly, a variety of existing attacks on QUIC’s
availability discovered in [35] are all examples of key exchange packet manipula-
tions (e.g., the server config replay attack, connection ID manipulation attack,
etc.), but these attacks cause connection failure and hence are easy to detect.
However, successful attacks breaking KE Header or Payload Integrity will be
harder (if not impossible) to detect.

TLS 1.3 (over TCP Fast Open) vs. QUIC 421

For KE Header Integrity, we do not find any harmful attacks but theoretical
attacks exist. For instance, a PPT adversary A can get Advint-keh

UDP+QUIC(A) =
1 as follows. A can first query Connect(πi

C , πj
S) to get the output packet

(IPC , IPS ,H, pd), then modify the flag and sqn fields of H to get a new header
H ′ 	= H that only changes sqn’s length but not its value. The resulting packet
will be accepted by πj

S . This attack has no practical impact on UDP+QUIC but
it successfully modifies the protocol header without being detected.

For KE Payload Integrity, we find a new practical attack described below
where a PPT adversary A can get Advint-kep

UDP+QUIC(A) ≈ 1:

ServerReject Triggering. A can first let πi′
C complete a full handshake with πj′

S

with Connect,Send queries, then query Resume(πi
C , πj

S , i′) (i > i′, j > j′) to
get the output ClientHello packet. A then modifies its payload by replacing
the source-address token stk with a random value, which with high probabil-
ity is invalid. Sending this modified packet to πj

S will trigger a ServerReject
packet containing a new valid stk. This as a result downgrades the original 0-
RTT resumption connection to a full 1-RTT connection, which causes increased
latency and results in the retransmission of any 0-RTT data. Note that this
attack is hard to detect because πi

C may think its original stk′ has expired
(although this does not happen frequently).

SC Header Integrity. UDP+QUIC is secure in this regard because it does not
allow header-only packets to be sent in the secure channel phases and the entire
protocol header is taken as the associated data authenticated by the underlying
AEAD scheme. Therefore, UDP+QUIC’s SC Header Integrity can be reduced
to its level-1 Channel Security. Formally, for any PPT adversary A there exists
a PPT adversary B such that Advint-h

UDP+QUIC(A) ≤ 2Advcs-1
UDP+QUIC(B), where

the constant 2 is due to advantage definition differences between creating a valid
forgery and guessing a correct bit.

Reset Authentication. UDP+QUIC does not achieve this security notion
because, similar to TCP Reset, its reset packet PublicReset is not authenti-
cated either. In the following availability attack, a PPT adversary A can always
get Advrst-auth

UDP+QUIC(A) = 1:

PublicReset Attack. A can first make two session oracles complete a handshake
using Connect,Send queries, then use Pack,Deliver queries to let them exchange
secure channel packets. By observing these packet headers, A can easily forge a
valid (plaintext) reset packet by setting its PUBLIC FLAG RESET bit to 1 and
the remaining packet fields to reasonable values (which is easy because it simply
contains the connection ID cid, the sequence number of the rejected packet, and
a nonce to prevent replay). This attack will cause similar effects as described in
the TCP Reset attack. Note that this vulnerability is fixed in QUIC[TLS] (see
the full version [9]).

422 S. Chen et al.

6 Conclusion

Our work is the first to provide a thorough, formal, and fine-grained security
comparison of the most efficient secure channel establishment protocols on the
market today. By including packet-level attacks in our analysis, our results shed
light on how the reliability, flow control, and congestion control of TFO+TLS
1.3, UDP+QUIC, and UDP+QUIC[TLS] compare besides their basic security,
in adversarial settings.

We found that availability functionalities provided by transport-layer pro-
tocols like TCP can be easily compromised without packet-level authentica-
tion, which may undermine the performance of their supporting application-layer
protocols. To protect against availability attacks, new protocols should better
implement and authenticate their own transport functionalities like QUIC does.
Besides, the key exchange packet integrity should also be scrutinized to avoid
serious undetectable availability attacks.

Acknowledgments. We thank the anonymous reviewers for their comments. This
paper is based upon work supported by the National Science Foundation under Grant
No. 1422794.

A TFO+TLS 1.3 and UDP+QUIC Protocol Definitions

A.1 TFO+TLS 1.3 Protocol Definition

Referring to the msACCE protocol syntax, a TFO+TLS 1.3 2-RTT full hand-
shake (see Fig. 1) is a 2-stage msACCE protocol in the full mode and a 0-RTT
resumption handshake (see Fig. 1) is a 3-stage msACCE protocol in the resump-
tion mode. Note that we focus only on the main components of the handshakes
and omit more advanced features such as 0.5-RTT data, client authentication,
and post-handshake messages (except NewSessionTicket). In a full handshake,
the initial keys are set after sending or receiving ServerHello and the final keys
(i.e., session keys) are set after sending or receiving ClientFinished (but only
handshake messages up to ServerFinished are used for final key generation).
In a 0-RTT resumption handshake, the parties set 0-RTT keys to encrypt or
decrypt 0-RTT data, after sending or receiving ClientHello.

According to the TFO and TLS 1.3 specifications [10,43], the TFO+TLS
1.3 header contains the TCP header [39]. We ignore some uninteresting header
fields such as port numbers and the checksum because modifying them only
leads to redirected or dropped packets. Such adversarial capabilities are already
considered in the msACCE security models. We thus define the header space
H as containing the following fields: a 32-bit sequence number sqn, a 32-bit
acknowledgment number ack, a 4-bit data offset off, a 6-bit reserved field resvd,
a 6-bit control bits field ctrl, a 16-bit window window, a 16-bit urgent pointer
urgp, a variable-length (≤320-bit) padded options opt. For encrypted packets,
H additionally contains the TLS 1.3 record header fields: an 8-bit type type, a
16-bit version ver, and a 16-bit length len. We further define reset packets as

TLS 1.3 (over TCP Fast Open) vs. QUIC 423

those with the RST bit (i.e., the 4-th bit of ctrl) set to 1. Note that scfg gen is
undefined.

TLS 1.3 enforces different content types for encrypted key exchange and
secure channel messages. For simplicity, we define MKE and MSC as consisting of
bit strings differing in their first bits. MpRST = ∅. We refer to the full version [9]
for the remaining TFO details and to [6,18] for the detailed descriptions of TLS
1.3 handshake messages and key generations in earlier TLS 1.3 drafts as well as
[43] for the latest updates.

A.2 UDP+QUIC Protocol Definition

Referring to the msACCE protocol syntax, an UDP+QUIC 1-RTT full hand-
shake (see Fig. 2) is a 2-stage msACCE protocol in the full mode and a 0-RTT
resumption handshake (see Fig. 2) is a 2-stage msACCE protocol in the resump-
tion mode. The initial keys are set after sending or receiving ClientHello and
the final keys (i.e., session keys) are set after sending or receiving ServerHello.

According to the UDP and QUIC specifications [32,38,45], the UDP+QUIC
header contains the UDP header [38] and the QUIC header (described below).
As with the TCP header, we ignore the port numbers and checksum in the UDP
header. Similarly, we also ignore the UDP length field because it only affects
the length of the QUIC header and payload. We thus can completely omit the
UDP header and define the header space H as containing the following fields: an
8-bit public flag flag, a 64-bit connection ID cid, a variable-length (≤48-bit)
sequence number sqn, and other optional fields. We further define reset packets
as those with the PUBLIC FLAG RESET bit (i.e., the 7-th bit of flag) set to
1. A reset packet header only contains flag and cid.

As with TLS 1.3, we define MKE and MSC as consisting of bit strings differing
in their first bits. MpRST = ∅. We refer to [35] for the detailed descriptions of
scfg gen and QUIC handshake messages and key generations.

References

1. HTTPS encryption on the web - Google transparency report (2018). https://
transparencyreport.google.com/https/overview

2. Abramov, R., Herzberg, A.: TCP ack storm DoS attacks. In: Camenisch, J.,
Fischer-Hübner, S., Murayama, Y., Portmann, A., Rieder, C. (eds.) SEC 2011.
IAICT, vol. 354, pp. 29–40. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-21424-0 3

3. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-48329-2 21

4. Bhargavan, K., Blanchet, B., Kobeissi, N.: Verified models and reference imple-
mentations for the TLS 1.3 standard candidate. In: Security and Privacy (SP), pp.
483–502. IEEE (2017)

5. Bhargavan, K., Fournet, C., Kohlweiss, M., Pironti, A., Strub, P.-Y., Zanella-
Béguelin, S.: Proving the TLS handshake secure (as it is). In: Garay, J.A.,
Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 235–255. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1 14

https://transparencyreport.google.com/https/overview
https://transparencyreport.google.com/https/overview
https://doi.org/10.1007/978-3-642-21424-0_3
https://doi.org/10.1007/978-3-642-21424-0_3
https://doi.org/10.1007/3-540-48329-2_21
https://doi.org/10.1007/978-3-662-44381-1_14

424 S. Chen et al.

6. Brendel, J., Fischlin, M., Günther, F.: Breakdown resilience of key exchange pro-
tocols and the cases of newhope and TLS 1.3. Cryptology ePrint Archive, Report
2017/1252 (2017)

7. Cao, Y., Qian, Z., Wang, Z., Dao, T., Krishnamurthy, S.V., Marvel, L.M.: Off-
path TCP exploits: global rate limit considered dangerous. In: USENIX Security
Symposium (2016)

8. Centre for the Protection of National Infrastructure: Security assessment of the
transmission control protocol. Technical report CPNI Technical Note 3/2009, Cen-
tre for the Protection of National Infrastructure (2009)

9. Chen, S., Jero, S., Jagielski, M., Boldyreva, A., Nita-Rotaru, C.: Secure communi-
cation channel establishment: TLS 1.3 (over TCP Fast Open) vs. QUIC. Cryptol-
ogy ePrint Archive, Report 2019/433 (2019). https://eprint.iacr.org/2019/433

10. Cheng, Y., Chu, J., Radhakrishnan, S., Jain, A.: TCP Fast Open. RFC 7413
(Experimental), December 2014

11. Cremers, C., Horvat, M., Scott, S., van der Merwe, T.: Automated analysis and
verification of TLS 1.3: 0-RTT, resumption and delayed authentication. In: 2016
IEEE Symposium on Security and Privacy (SP), pp. 470–485 (2016). https://doi.
org/10.1109/SP.2016.35

12. Cremers, C., Horvat, M., Hoyland, J., Scott, S., van der Merwe, T.: A comprehen-
sive symbolic analysis of TLS 1.3. In: Proceedings of the 2017 ACM SIGSAC Con-
ference on Computer and Communications Security, pp. 1773–1788. ACM (2017)

13. Delignat-Lavaud, A., et al.: Implementing and proving the TLS 1.3 record layer.
In: 2017 IEEE Symposium on Security and Privacy, SP 2017, pp. 463–482. IEEE
Computer Society (2017)

14. Dowling, B., Fischlin, M., Günther, F., Stebila, D.: A cryptographic analysis
of the TLS 1.3 handshake protocol candidates. In: ACM SIGSAC Conference
on Computer and Communications Security, CCS 2015, pp. 1197–1210. ACM,
New York (2015)

15. Dowling, B., Fischlin, M., Günther, F., Stebila, D.: A cryptographic analysis of the
TLS 1.3 draft-10 full and pre-shared key handshake protocol. Cryptology ePrint
Archive, Report 2016/081 (2016). https://eprint.iacr.org/2016/081

16. Dowling, B.J.: Provable security of internet protocols. Ph.D. thesis, Queensland
University of Technology (2017)

17. Fischlin, M., Günther, F.: Multi-stage key exchange and the case of Google’s QUIC
protocol. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, pp. 1193–1204. ACM (2014)

18. Fischlin, M., Günther, F.: Replay attacks on zero round-trip time: the case of the
TLS 1.3 handshake candidates. In: 2017 IEEE European Symposium on Security
and Privacy (EuroS&P), pp. 60–75. IEEE (2017)

19. Fischlin, M., Günther, F., Marson, G.A., Paterson, K.G.: Data is a stream: security
of stream-based channels. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015.
LNCS, vol. 9216, pp. 545–564. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-48000-7 27

20. Gebhart, G.: Tipping the scales on HTTPS: 2017 in review, December 2017.
https://www.eff.org/deeplinks/2017/12/tipping-scales-https

21. Gilad, Y., Herzberg, A.: Off-path attacking the web. In: WOOT, pp. 41–52 (2012)
22. IP Latency Statistics — Verizon Enterprise Solutions: Verizon Enterprise Solutions

(2018). http://www.verizonenterprise.com/about/network/latency/
23. Iyengar, J., Thomson, M.: QUIC: a UDP-based multiplexed and secure transport,

January 2019. https://quicwg.org/base-drafts/draft-ietf-quic-transport.html

https://eprint.iacr.org/2019/433
https://doi.org/10.1109/SP.2016.35
https://doi.org/10.1109/SP.2016.35
https://eprint.iacr.org/2016/081
https://doi.org/10.1007/978-3-662-48000-7_27
https://doi.org/10.1007/978-3-662-48000-7_27
https://www.eff.org/deeplinks/2017/12/tipping-scales-https
http://www.verizonenterprise.com/about/network/latency/
https://quicwg.org/base-drafts/draft-ietf-quic-transport.html

TLS 1.3 (over TCP Fast Open) vs. QUIC 425

24. Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: On the security of TLS-DHE in the
standard model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 273–293. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-32009-5 17

25. Jero, S., Lee, H., Nita-Rotaru, C.: Leveraging state information for automated
attack discovery in transport protocol implementations. In: IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks (2015)

26. Jero, S., Hoque, E., Choffnes, D., Mislove, A., Nita-Rotaru, C.: Automated attack
discovery in TCP congestion control using a model-guided approach. In: Network
and Distributed Systems Security Symposium (NDSS) (2018)

27. Joncheray, L.: A simple active attack against TCP. In: USENIX Security Sympo-
sium (1995)

28. Krawczyk, H., Paterson, K.G., Wee, H.: On the security of the TLS protocol: a
systematic analysis. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS,
vol. 8042, pp. 429–448. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40041-4 24

29. Krawczyk, H., Wee, H.: The OPTLS protocol and TLS 1.3. In: 2016 IEEE Euro-
pean Symposium on Security and Privacy (EuroS&P), pp. 81–96. IEEE (2016)

30. Kumar, V.A., Jayalekshmy, P.S., Patra, G.K., Thangavelu, R.P.: On remote
exploitation of TCP sender for low-rate flooding denial-of-service attack. IEEE
Commun. Lett. 13(1), 46–48 (2009)

31. Kuzmanovic, A., Knightly, E.: Low-rate TCP-targeted denial of service attacks
and counter strategies. IEEE/ACM Trans. Netw. 14(4), 683–696 (2006)

32. Langley, A., Chang, W.: QUIC crypto (2016). https://docs.google.com/document/
d/1g5nIXAIkN Y-7XJW5K45IblHd L2f5LTaDUDwvZ5L6g/edit

33. Li, X., Xu, J., Zhang, Z., Feng, D., Hu, H.: Multiple handshakes security of TLS 1.3
candidates. In: 2016 IEEE Symposium on Security and Privacy (SP), pp. 486–505.
IEEE (2016)

34. Linden, G.: Make data useful (2006). https://sites.google.com/site/glinden/Home/
StanfordDataMining.2006-11-29.ppt

35. Lychev, R., Jero, S., Boldyreva, A., Nita-Rotaru, C.: How secure and quick is
QUIC? Provable security and performance analyses. In: 2015 IEEE Symposium on
Security and Privacy (SP), pp. 214–231. IEEE (2015)

36. Morris, R.: A weakness in the 4.2 BSD unix TCP/IP software. Technical report,
AT&T Bell Leboratories (1985)

37. Patton, C., Shrimpton, T.: Partially specified channels: the TLS 1.3 record layer
without elision. In: ACM SIGSAC Conference on Computer and Communications
Security. ACM (2018)

38. Postel, J.: User datagram protocol. RFC 768 (Standard) (1980)
39. Postel, J.: Transmission control protocol. RFC 793 (Standard) (1981)
40. Qian, Z., Mao, Z.M.: Off-path TCP sequence number inference attack - how firewall

middleboxes reduce security. In: IEEE Symposium on Security and Privacy, pp.
347–361 (2012)

41. Qian, Z., Mao, Z.M., Xie, Y.: Collaborative TCP sequence number inference attack:
how to crack sequence number under a second. In: ACM Conference on Computer
and Communications Security (2012)

42. Radhakrishnan, S., Cheng, Y., Chu, J., Jain, A., Raghavan, B.: TCP fast open.
In: Proceedings of the Seventh COnference on emerging Networking EXperiments
and Technologies, p. 21. ACM (2011)

43. Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446,
August 2018

https://doi.org/10.1007/978-3-642-32009-5_17
https://doi.org/10.1007/978-3-642-32009-5_17
https://doi.org/10.1007/978-3-642-40041-4_24
https://doi.org/10.1007/978-3-642-40041-4_24
https://docs.google.com/document/d/1g5nIXAIkN_Y-7XJW5K45IblHd_L2f5LTaDUDwvZ5L6g/edit
https://docs.google.com/document/d/1g5nIXAIkN_Y-7XJW5K45IblHd_L2f5LTaDUDwvZ5L6g/edit
https://sites.google.com/site/glinden/Home/StanfordDataMining.2006-11-29.ppt
https://sites.google.com/site/glinden/Home/StanfordDataMining.2006-11-29.ppt

426 S. Chen et al.

44. Rogaway, P.: Authenticated-encryption with associated-data. In: Proceedings of
the 9th ACM Conference on Computer and Communications Security, pp. 98–107.
ACM (2002)

45. Roskind, J.: QUIC(quick UDP internet connections): multiplexed stream transport
over UDP. Technical report, Google (2013)

46. Savage, S., Cardwell, N., Wetherall, D., Anderson, T.: TCP congestion control with
a misbehaving receiver. ACM SIGCOMM Comput. Commun. Rev. 29(5), 71–78
(1999)

47. Thomson, M., Turner, S.: Using transport layer security (TLS) to secure QUIC,
January 2019. https://quicwg.org/base-drafts/draft-ietf-quic-tls.html

48. Watson, P.: Slipping in the window: TCP reset attacks. Technical report,
CanSecWest (2004). http://bandwidthco.com/whitepapers/netforensics/tcpip/
TCPResetAttacks.pdf

https://quicwg.org/base-drafts/draft-ietf-quic-tls.html
http://bandwidthco.com/whitepapers/netforensics/tcpip/TCPResetAttacks.pdf
http://bandwidthco.com/whitepapers/netforensics/tcpip/TCPResetAttacks.pdf

Attacks

Where to Look for What You See Is
What You Sign? User Confusion

in Transaction Security

Vincent Haupert(B) and Stephan Gabert

Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
{vincent.haupert,stephan.gabert}@fau.de

Abstract. The What You See Is What You Sign (WYSIWYS) scheme
is a popular transaction verification method in online banking which is
designed to prevent fraud even if the transfer-issuing device is compro-
mised. To evaluate its practical effectiveness, we asked 100 online bank-
ing customers to pay two invoices by credit transfer. The second transfer
was attacked by secretly replacing the beneficiary’s account number and
displaying the fraudulent transaction details on the confirmation page
that asks a customer for a one-time password as generated by their sec-
ond factor device. The attacked authentication method was the same
the participants also use in private with their principal bank. Our attack
is highly effective and causes many participants to use the fraudulent
details displayed onscreen for verification instead of the original invoice.
On top of that, a majority did not verify their transactions at all. Partici-
pants with a technical background and experience with certain as well as
multiple transaction authentication methods were seen to be less likely
to fall victim to the attack.

1 Introduction

Conducting an online banking credit transfer leverages two-factor authentication
(2FA) and includes two steps: issuing and confirming. First, the customer issues
a transfer by logging in with her login credentials, filling in the beneficiary’s
account number, and the amount. Second, the confirmation step requires the
payer to approve the transaction using a transaction authentication number
(TAN), which is generated by means specific to the bank and as well as the
customer’s individual choice. As this process yields the TAN, it is referred to
as the TAN method. In the confirmation phase, a customer also has to verify
the transfer using the details that the TAN method displays, and must abort it
if they do not match the desired details. This principle is referred to as “What
You See Is What You Sign” (WYSIWYS) [16].

In the course of our research, we noted that many large German banks also
display the transfer’s details on their confirmation page. This behavior is not only
misleading but also dangerous as it suggests that the transfer-issuing device is
trustworthy. As a consequence, it encourages the customer to perform an insecure
c© Springer Nature Switzerland AG 2019
K. Sako et al. (Eds.): ESORICS 2019, LNCS 11735, pp. 429–449, 2019.
https://doi.org/10.1007/978-3-030-29959-0_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29959-0_21&domain=pdf
https://doi.org/10.1007/978-3-030-29959-0_21

430 V. Haupert and S. Gabert

transaction verification that relies on the TAN device and the details displayed
within the online banking website. To verify a transaction securely, however, the
user needs to compare the transfer details—that the TAN device displays—with
the source that is used to issue the transaction, e.g., an invoice.

The banks approach raises the question if online banking customers are aware
that the transfer-issuing device must not be part of the transaction verification
step. To that end, we implemented an attack that does not only at first secretly
replace a transfer’s beneficiary but second also displays the fraudulent details at
the confirmation page that asks the user for a one-time password as generated
by their TAN method. The latter step aimed at misguiding the user to compare
the transaction details displayed by the TAN method with the fraudulent details
injected into the online banking website.

We evaluate our attack with 100 online banking customers recruited from
an IT company. Our results show that the attack is highly effective and in fact
causes a participant to perform a faulty transaction verification. Our findings
also suggest that the concept of a secondary verification during the confirmation
step is flawed beyond repair: neither user education nor improved usability of a
TAN method is going to solve the problem as long as the WYSIWYS scheme
remains in place. We therefore emphasize the need for a new transaction security
approach that guarantees confidentiality, authenticity and integrity as soon as
the user enters the transfer details, eliminating the verification step altogether.

In summary, our contributions advance the state in online banking transac-
tion security substantially and methodologically:

– We use a novel, highly practical and effective attack that does only target the
transfer-issuing device while the TAN device remains of integrity.

– Our study is first to rely on the same TAN method the participants also use in
private with their principal bank. This ensures that the participant is familiar
with the TAN method she uses when the attack occurs. Previous work either
taught the participants how to use the TAN methods [29] or incorporated
participants without experience with the TAN method [11].

– We present a large sample size of 100 above-average tech-savvy participants.
Also, the distribution of our participants’ TAN methods roughly matches the
general population [20].

– In contrast to the previous work, each participant is only attacked once. This
avoids carry-over effects.

– To not affect the participants’ behavior, they conducted the study
autonomously and privately within a familiar environment.

The remainder of this paper is organized as follows: The next sections relate
our study to previous works, describe the methodology of our study and the
attack we performed. This is followed by the presentation of our participants and
the results. After this, we discuss our findings before drawing our conclusion.

2 Related Work

We first outline the previous work concerned with user and transaction authen-
tication before we relate it to our own study.

Where to Look for What You See Is What You Sign? 431

2.1 User Authentication

Krol et al. conducted a user study with 21 United Kingdom (UK) online banking
customers, examining website logins, payment setups, and the login into smart-
phone apps [15]. They observed that the satisfaction of participants dropped
while handling hardware tokens and in spite of using them over a period of
eleven days, the participants could not automate the authentication process and
were continually being disrupted from their primary task. Research also dealt
with the usability of hardware tokens, e.g., YubiKey [22] and FIDO U2F [5].

Schechter et al. evaluated different website authentication measures that were
designed to protect users from different site-forgery attacks [24]. They asked 67
bank customers to conduct common online banking tasks. For each task, the
users had to re-login and were confronted with increasingly alarming clues that
their connections were insecure. As all participants failed to correctly respond
to absent HTTPS indicators, Schechter’s study corroborated with prior studies,
suggesting the ineffectiveness of HTTPS indicators.

2.2 Transaction Authentication

Zomai et al. investigated whether participants were able to detect attacked trans-
actions by correctly verifying the transaction authentication messages sent via
e-mail, simulating the smsTAN procedure [29]. 92 participants took part in their
laboratory study using a simulated online banking system. Each of the partic-
ipants had to execute ten transactions: eight transactions were legitimate and
two contained an altered account number. While one transaction, at first, only
altered one digit of the eight-digit account number, another transaction con-
tained an account number with five digits changed. They concluded that the
smsTAN method is prone to attacks that alter the beneficiary because their
more realistic second attack succeeded in 21% of the cases.

Hartl and Schmuntzsch examined the perceptions of online banking users
towards fraudulent attacks, including the altering of the destination account
number and the transferred amount [11]. This was performed in a user-centered
study, consisting of two experiments, each of which was conducted in a labora-
tory setting with 25 participants. Throughout the second experiment, they used
the think-aloud method, i.e., asked the participants to express their thoughts
loudly. Their first experiment found that the participants rate the usability of
the chipTAN method below the smsTAN method. In the second experiment, each
participant had to execute three transactions, where every single transaction was
attacked in a different way. When the last attack secretly changed a transaction’s
beneficiary and the amount, they observed that 71% of the participants did not
detect the fraud while using the smsTAN or the chipTAN method.

Comparison to Our Work. As summarized in Table 1, the studies of Zomai
et al. and Hartl and Schmuntzsch are close to our own work as they also evaluate
transaction authentication security while performing similar attacks, but our
study has the following significant methodological advances:

432 V. Haupert and S. Gabert

Table 1. Our study compared to the related work in transaction security.

Personal TAN Method : Our attack only targeted the TAN method that the
participants also use with their principal bank. Moreover, we investigated
popular and widely applied transaction authentication methods, including
smartphone-based procedures.

Primary Task : Our participants had an easily manageable and realistic task of
paying two invoices. We only performed a single attack to avoid bias.

Unsupervised Execution: We did not supervise our participants but required
them to execute the study’s task autonomously in an environment that was
familiar to them.

Attack : Our attack only tampered with the beneficiary’s account number but
left the amount unchanged. In addition, it also manipulated the details that
the participants saw within the website during transaction confirmation.

3 Methodology

In the course of the study, the participants had to pay two different invoices by
credit transfer using two different TAN methods. The second transaction always
used the TAN method that the participants also used with their principal bank
to legitimize transfers. This transaction was attacked by secretly replacing the
original transaction account number with a fraudulent number and it tampered
with certain aspects of the appearance of the online banking.

Based on the model of Sparkasse, a popular German bank, we built a browser-
based online banking system that supports the most prevalent TAN methods for
transaction confirmation [20]:

Where to Look for What You See Is What You Sign? 433

smsTAN : Sends the transaction confirmation containing the TAN code via short
message service (SMS) to the customer’s mobile phone.

chipTAN : Uses a dedicated device—the TAN generator—and the customer’s
bank card to generate the TAN and to display the transaction details on the
integrated display. The TAN generator receives the transaction data from a
flickering code shown on the confirmation page.

appTAN : A TAN method that works in a similar way to the smsTAN procedure
but delivers the information over the Internet—e.g., via push notifications—
to a smartphone app.

When the participants accessed the invoice to get the payment details, we reg-
istered every key press, mouse movement, touch or paste event. If more than
five seconds passed since the last event, an invoice access was signaled to our
server. To avoid security-priming, our call-for-participation e-mail pretended to
conduct a study that was concerned with the usability of the mentioned TAN
methods.

3.1 Hypotheses

Grounded in the previous work and in our pilot study with 17 participants, we
hypothesized the following:

H1 Participants who relied on the invoice for verification in the first transaction
use the altered details displayed by the website during the verification of the
second transaction.

There is a relationship between falling victim and the participant’s

H2 personal TAN method.
H3 online banking usage duration.
H4 familiarity with different TAN methods.
H5 technical background.

3.2 Study Environment

We conducted our study in cooperation with a department of a medium-sized IT
company whose business area lays primarily within software development. The
specific department had approximately 240 employees and is responsible for the
development of the communication and security components of their products.

Ethical Guidelines. Prior to our study, we jointly reviewed our study proposal
with the department’s management, several data security and privacy officials,
and the Works Council1. We agreed that participation is entirely voluntary and

1 Neither our university nor the company had an institutional review board (IRB).

434 V. Haupert and S. Gabert

that we would not record any personally identifiable information. As a conse-
quence, we collected ranges instead of distinct data points, e.g., for the age (cf.
Table 2 for details).

At the end of our study, we jointly debriefed the entire department. Partici-
pants had a chance to make remarks and to ask questions as a part of an open
dialogue. In case a participant detected the attack, i.e., did not fall victim, an
individual debriefing took place immediately. Most participants were thankful
and stated that the study was an eye-opener for them and that they would be
more careful about such transactions from that point. Some people also asked
for additional information regarding the security of their TAN method. To the
best of our knowledge, our study did not leave any lingering negative effect that
we wanted to completely avoid.

Recruitment. Each participant took part in our study voluntarily by respond-
ing to an e-mail that asked them to participate in our pretended usability study.
To reduce the participants’ effort and to allow for a familiar environment, we
arranged our setup in isolated conference rooms near their workplace.

Participant Devices. All the participants had to operate Google Chrome on
a computer running Windows 7—the company’s default operating system—and
an LG Nexus 5X smartphone running Android 8.1 to use the smsTAN and
the appTAN method. The computer was connected to the company’s default
peripheral devices that all of the employees were familiar with. To ensure a high
degree of familiarity for the chipTAN users, we served them with three different
TAN generators, as offered by the most popular local banks.

3.3 Study Procedure

Briefing. In the beginning, we asked the participants to not interrupt us with
any questions to enable a similar level of knowledge for everyone. Next, they filled
in a basic data form that asked for their age, sex, and profession. After outlin-
ing the study’s procedure, we exposed the study’s primary task: performing two
credit transfers using a different TAN method for each transfer. Furthermore, we
introduced the basic handling of the smartphone and presented the TAN meth-
ods. Finally, we urged the participants to put themselves in the place of paying
their invoices at home. Accordingly, we left the room to allow for an autonomous
study execution. In the case of a technical issue, however, the participant had
the possibility to interrupt the study at any time by clicking a dedicated inter-
ruption button that was embedded in the website of the study. It is noteworthy
that we refrained from mentioning the study’s claimed usability purpose once
again. Instead, we focused on a neutral description of the study’s procedure and
task.

Questionnaire I. Prior to the transactions, the participants had to complete
Questionnaire I. This step was mainly concerned with determining the personal

Where to Look for What You See Is What You Sign? 435

TAN method that participants used with their principal bank but it did ask for
further information about their online banking background.

Transaction I. In this step, the participants had to perform a first transac-
tion with a TAN method different from the one they use with their principal
bank. This transaction was free from any tampering and had the intention to
familiarize the participants with the process of performing a transaction within
the study’s website. As Questionnaire I also unveiled the experiences with other
TAN methods, we used this information to assign a procedure that the partic-
ipant was familiar with. If a participant did not specify any experience beyond
her personal method, our study algorithm assigned a TAN method. Overall, the
platform tried to balance the TAN methods used in Transaction I.

To issue the transaction, the participant had to fill in the payment details found
on the invoice. After sending the transfer order to our server, the participant was
forwarded to the transaction confirmation page to verify and confirm the transfer
with the possibly unfamiliar TAN method. On this page, we also gave instructions
on how to operate the TAN method, just like a real banking website.

Transaction II. Right after Transaction I, the participant had to perform the
second transaction with her personal TAN method using a new invoice. Apart
from this, Transaction II worked analogously. While sending the transfer order,
however, our attack took place. This included replacing the beneficiary’s account
number in the background and showing the fraudulent transaction details on the
confirmation page. We describe the details of our attack in Sect. 4.

If a participant aborted the transaction, she was counted as a non-victim. The
same applied to participants who noticed the deviation without aborting the trans-
action right-away but instead chose to talk to us in person by interrupting the
study. We considered a participant a victim if she did not abort the transaction
and the post-study conversation did not challenge the validity of this outcome.

Questionnaire II. Although the closing questionnaire also asked for the par-
ticipants’ ease-of-use ratings of the operated TAN methods, it was primarily
concerned with pinpointing whether and how they verified the transactions.

Debriefing. Once the overall study had been completed, we debriefed the entire
department. Owing to the study environment, we refrained from debriefing the
participants who did not abort Transaction II as this would have increased
the risk of spreading the study’s structure and real intentions. Nevertheless,
we encouraged each participant to disclose any further remarks regarding their
participation. This had the intention to spot participants who confirmed Trans-
action II even though they noted a deviation but considered it a bug on our plat-
form. If a participant detected the fraud, the debriefing took place immediately.
In this case, we repeated the necessary steps for secure transaction verification
and encouraged the participant to continue to adhere to this process.

436 V. Haupert and S. Gabert

(a) Transaction I: not attacked. (b) Transaction II: attacked.

Fig. 1. The different appearance of the confirmation page of Transaction I and II.

4 Attack Procedure

4.1 Threat Model

We assume that the user issues the transaction on one and confirms it on another
device. In this scenario, she issues the transaction through her browser-based
online banking and confirms it using a TAN method on a second device. In par-
ticular, the TAN method provides dynamic linking and displays the transaction’s
details for verification.

Our threat model considers the transaction-issuing computer as an untrust-
worthy device. In contrast to that, we assume that the transaction-confirming
device possesses integrity. This enables an attacker to manipulate a transfer’s
details in the background without the user noticing. Furthermore, an adversary
has full control over the information the user’s online banking displays through
her browser. The adversary, however, is not able to confirm the transaction
autonomously. This implies that the user could detect and abort the transaction
by correctly verifying the unaltered details displayed on the TAN device.

Our assumptions are valid, because they leverage a threat model that real-
world malware already applied very successfully: in the United States alone, the
ZeuS banking malware infected approximately 3.6 million computers during 2009
and 2010 [9]. In fact, malware like ZeuS made the described threat model the
best practice and gave rise to 2FA with dynamic linking in online banking [10].

4.2 Course of Events

In our study, we used a man-in-the-browser attack implemented through a mali-
cious browser add-on. When the participant clicked the send button to issue
Transaction II, our attack started and performed the following actions:

Account Number Manipulation. Sending the data from Transaction II
caused our attack to stop the original request. If the beneficiary’s account number

Where to Look for What You See Is What You Sign? 437

was a valid international banking account number (IBAN), the attack changed
it to the adversary’s account number and relayed the request to the server. The
original account number that was contained in the invoice of Transaction II is
vastly different from the one we used for our attack:

Original DE62 3702 0500 0000 1020 30
Forged DE41 2001 0020 0599 0902 01

We assume that customers are usually aware of the amount they have to pay,
which is why we decided to leave it unchanged. The payee’s IBAN, however,
is frequently unknown to the payer. Both the original and the forged IBAN
belong to German banks, because credit transfers within the same nation are
particularly hard to detect for fraud detection systems in the bank’s backend [4].

Confirmation Page: Transfer Details. Next, the participant needed to pro-
vide a TAN on the transaction confirmation page, which was also subject to our
attack. In contrast to the first transaction’s unmodified confirmation page, the
second transaction’s tampered confirmation page did not only show the usage
instructions of the TAN method and an input element to enter the TAN but also
a highlighted text box that contained the details of the fraudulent transaction.
The injected text instructed the participant to perform an insecure transaction
verification: Instead of comparing the details shown on their TAN device to the
invoice, the text demanded a comparison to the displayed details. A screenshot
of the confirmation page for each transaction is given in Fig. 1.

5 Results

Overall, 82 out of 100 participants did neither abort Transaction II nor did they
raise any concern about its integrity. In the following, we present our study
population and test the hypotheses outlined in Sect. 3.1.

We used Fisher’s exact test (FE) with mid-p correction to determine the inde-
pendence of the victim variable to another binary variable. This non-parametric
statistical significance test is used as an exact alternative to the chi-squared
test as it also produces valid results if the sample sizes are small [18]. The mid-p
approach accounts for the overly conservative outcome of the traditional Fisher’s
exact test [12]. In the case of an ordinal dependent variable, we used the Mann–
Whitney U test (MWU), which is a nonparametric test as well. Both tests were
always applied two-sided. To control the false discovery rate due to multiple
hypothesis testing, we corrected the resulting p-values using the two-stage step-
up method of Benjamini et al. [2]. The corrected p-values were subsequently com-
pared to the established threshold for statistical significance, that is α = 0.05.
The null hypothesis was only rejected if p < α.

5.1 Study Population

In total, we incorporated 100 participants for our evaluation. Owing to the
corporate environment, our study acquired data on a diverse set of German

438 V. Haupert and S. Gabert

Fig. 2. Invoice access flows: Each circle represents the number of participants who
did or did not access the invoice during the confirmation. The arrows show how their
behavior in Transaction II corresponds to Transaction I.

employees of a medium-sized software company with different demographics
and backgrounds. 65 of our participants were male and 35 female. Their age
was widely distributed: on average, our participant was aged between 31–40,
the oldest participant 61–70 and the youngest 19–25. We assume that most of
them had a technical background as 74 participants stated that their job was
associated with IT. Given the company’s main business area and the depart-
ment we conducted the study with, we assume that even the group of 26 non-IT
participants had an above-average understanding of technology if not informa-
tion security. With respect to online banking, the participants can be roughly
divided into two equal groups that had either up to ten years (53) or even more
than ten years (47) of experience with online banking. As a consequence, the
average participant can be described as highly experienced. Ten participants
even stated that they performed online banking transactions at work. Overall,
the participants can be regarded as familiar with online banking. For additional
information, refer to Table 2.

5.2 Transaction Verification (H1)

A crucial step for transaction security is the user’s verification of the transaction
details during confirmation: if any of the transaction’s data displayed on the
customer’s TAN device does not match the invoice, she must abort the transac-
tion; the customer must not use any data displayed on the transaction-initiating
channel, as it may be compromised. To evaluate if our participants verified their
transactions using the original invoice, we monitored all accesses to it. Please
note that such an event only indicates that the participant consulted the invoice
but not to which extent. It does, however, provide a strong indication that the
participant verified either the invoiced amount, the account number or both.

Where to Look for What You See Is What You Sign? 439

Fig. 3. Performances in Transaction II depending on a technical background and the
TAN method.

The overall invoice accesses and the flow from Transaction I to II is given in
Fig. 2. It shows that two-thirds (N = 68) acted consistently in both transactions
with the majority (N = 57) neither accessing the invoice at the first nor the
second; this insecure behavior results in a victim rate of 98.25% (N = 56).
The group with the best performance accessed the invoice in both transactions
(N = 11) yielding a victim rate of 18.18% (N = 2). The remainder (N = 32)
checked the invoice in either of the transactions: Eight participants accessed the
invoice only during the second transaction with a victim rate of 37.50% (N = 3).

The 24 participants who accessed the invoice only in the first, but not in
the second transaction, were of special interest as we regard this behavior as an
indicator for a successful attack (H1): 21 fell victim and three aborted the second
transaction, yielding a victim rate of 87.50%. In Questionnaire II, only two of
these victims mentioned that they omitted the transaction verification altogether
while the remainder claimed that they checked the transactions’ integrity. On the
contrary, the three participants who detected the attack told us in the post-study
conversation that they immediately aborted the transaction without checking
the invoice again as the deviation was apparent. Testing H1 gave a statistically
significant result (p < 0.001, OR = 0.032, FE, 2 × 2).

5.3 Personal TAN Methods (H2)

As visualized in Fig. 3, 92% of the 48 participants using smsTAN as their personal
TAN method, 77% of the 31 using chipTAN, and 67% of the 21 using appTAN
fell victim to our attack. This already suggests a dependance between the per-
sonal TAN method and falling victim (H2) and is supported by a statistically
significant result (p = 0.033, FE, 2×3). Participants using the smsTAN method
performed significantly worse (p = 0.024, OR = 4.053, FE, 2 × 2) while par-
ticipants using the appTAN method performed significantly better (p = 0.033,
OR = 0.324, FE, 2× 2); only participants using chipTAN did not yield a statis-
tically significant difference (p = 0.221, OR = 0.650, FE, 2 × 2).

At the end of the study, the participants also had to rate the ease-of-use
of the TAN method applied in Transaction II (Likert scale, L = [1; 5], 1 =

440 V. Haupert and S. Gabert

Fig. 4. Distribution of (non-)victims according to their age and banking experience.

strongly agree, 5 = strongly disagree). Overall, the vast majority agreed (32) or
strongly agreed (65) that their personal TAN method is easy to use. Only three
participants remained neutral and no-one disagreed that the ease-of-use of their
TAN method is good. While looking at the distinct TAN methods, the smsTAN
method was rated the best, followed by the appTAN and the chipTAN method.
On average, victims tended to rate their personal TAN method better (L = 1.31)
than non-victims (L = 1.67).

5.4 Experience (H3, H4, H5)

Online banking experience relies on different parameters. One assumption is
that participants who have been using online banking for a longer time can
be regarded more experienced and, hence, are less likely to fall victim to our
attack (H3). As Fig. 4 already suggests, we did not find statistically significant
support for this assumption (p = 0.118, U = 887.500, MWU). Still, the 15
participants with a maximum usage time of two years all fell victim to the
attack. Additionally, this group is particularly young.

Another way to infer online banking experience is the number of TAN meth-
ods known to a participant (H4). In our test sample, 96.88% of the 32 participants
who were only familiar with the method they used in Transaction II were vic-
tims. 68 participants at least knew yet another TAN method and had a victim
rate of 75%. If a participant knew at least three or four TAN methods, the victim
rate reached a minimum of 57.89% (N = 19) and 60% (N = 5), respectively. We
conclude that a participant who was familiar with multiple TAN methods was
significantly more likely to detect the fraud (p = 0.002, U = 1085.5, MWU).

We anticipated that participants in a technical profession would perform
differently compared to participants with a non-technical job (H5). As Fig. 3

Where to Look for What You See Is What You Sign? 441

shows, the victim rate for the 74 participants with a technical background is
lower (77.03%) than for the non-technical staff (96.15%, N = 26). In fact, only
one of the non-technical participants detected the fraud. Testing this hypothesis
yielded a statistically significant result (p = 0.033, OR = 0.134, FE, 2 × 2).

6 Discussion

The most prevalent reason why our participants did not detect the fraud was
that they did not verify the transactions using the invoice. For the majority of
the participants, such behavior was consistent in both transactions, i.e., they
neither accessed the invoice in Transaction I nor in II.

Awareness. This suggests that online banking customers are not aware that
transaction verification using the original invoice is an essential security task [7,
24,28]. Our post-study conversations support this assumption: three participants
explicitly mentioned that they personally never verify transaction details and
that they only realized this due to our last questionnaire. One participant even
raised the question of whether it was a threat to not verify these details.

Liability. Research suggests that this is due to online banking customers deem-
ing it unlikely that they become victims of fraud themselves; still, if they would
encounter fraud, they do not feel responsible for any negative outcomes [6,23]. It
is, however, the responsibility of the customer to verify the transaction correctly:
failure to adhere is considered gross negligence by most banks and they will hold
the customer liable [19].

Intuition. If a victim verified Transaction II, she often used the unauthentic
data displayed on the confirmation site. From the perspective of the customer,
this behavior is intuitive and plausible due to three reasons: First, the user
immediately sees this site after issuing the transaction; hence, she will already
grasp the displayed information unintentionally. Second, the user has to interact
with this page in order to complete the transfer. The confirmation requires the
customer to at least enter the TAN. In the case of the chipTAN method, she
even needs to read the animated flicker code with her TAN generator. Third,
the majority of banks does display the transfer details on the confirmation page.
As a result, the customer is used to see this data there.

Technical Background. Participants with a technical background were sig-
nificantly more likely to detect the attack than non-technical ones. This makes
sense as individuals with a technical background have a better understanding
of the associated technical processes. Hence, they also have a better ability to
assess risks and make correct security decisions [21]. Female participants and our
youngest group (ages 18–25) were more vulnerable. These findings are coherent

442 V. Haupert and S. Gabert

with behavioral studies that evaluate phishing susceptibility [3,13,26]. Similar
to Sheng et al., we do not regard the female sex as a determining factor for their
higher victim rate but their lower affinity to technology [26].

Online Banking Experience. Knowing at least one TAN method beyond
the personal one also had an overall positive effect on detecting the fraud in
Transaction II. This is, however, not a result of a stressful experience during
Transaction I due to the application of an unfamiliar transaction method: On
average, the victims were quicker in the first transaction than the non-victims,
which suggests that the victims, in general, perform essential security tasks with
less care or omit them completely. When an online banking customer sets up a
new method, she usually has to consult a manual and further information from
the bank. We suppose that this helps in identifying the critical security steps
and to actually adhere to them in practice.

TAN Method. Partially, the three TAN methods performed significantly differ-
ent: users of the appTAN method performed best, smsTAN worst, and chipTAN
is in between but has still a below-average victim rate. This trend is also very
consistent when only looking at the victim rate of IT participants. To provide an
explanation, we compare how each TAN method presents the transaction details
to a customer and which actions she had to take to see the TAN.

– Structured : Only the smsTAN method does not display the transaction details
in a structured form but rather provides all the details in a block of continuous
text.

– All at once: Both sms- and appTAN display all the transaction details—
IBAN, amount, and the TAN—at once. Due to technical limitations of
the starburst display, the chipTAN method presents these details one after
another.

– Instant : Right after issuing the transaction, the sms- and appTAN methods
immediately deliver the verification data including the TAN. The chipTAN
method requires substantially more time.

– Interaction: The smsTAN method does not require interaction to see the
TAN and even allows for reading the full SMS message on the lock screen.
The appTAN message also creates a notification on the lock screen but to
see the actual TAN, one at least has to click on the notification message to
open the app. To get the TAN via the chipTAN method, one is required to
insert the bank card into the TAN generator, scan the flicker code and to
successively accept the displayed amount and destination account number by
pressing a button.

On average, the sms- and the appTAN method required the same time for
confirmation and both receive similar ease-of-use ratings. Unsurprisingly, victims
tended to require less time for confirmation. Therefore, we assume that the user’s

Where to Look for What You See Is What You Sign? 443

attention tends to be attracted if the TAN device displays the transaction details
in a well-arranged form. This is in line with previous research that already showed
that the font and the color have a significant effect on the user’s attention [8].

Against this background, we suspect that the appTAN method’s neater orga-
nization helps to quickly identify the important fields and therefore increases the
likelihood that people verify the transaction. The opposite is true for the smsTAN
method that prints all the details in a block of continuous text ending with the
TAN. We speculate that this unstructured organization makes it more likely that
the participant will go directly for the TAN. Correspondingly, all smsTAN users
who we found to read the TAN using the notification text rather than opening
the SMS app, fell for our attack. Even though the chipTAN method is rated
worst in terms of ease-of-use, it still features a structured way of displaying the
verification details, and has a below-average, but still a higher victim rate than
the appTAN method. chipTAN’s idea of forcing the user to separately verify the
amount and the destination account number may seem plausible, but we sus-
pect chipTAN’s inability to display all the information at once to be a drawback.
Additionally, consistent with the findings of Kiljan et al., we observed victims
to execute the confirmation faster than non-victims [14] and consequently, the
user might just click forward until reaching the TAN.

7 Limitations

Although we took great care during all steps of our research and even ran a pilot
study to closely examine our design, implementation, execution, and evaluation,
some study aspects still have limitations to a different extent.

Ecological Validity. The participants might have acted less securely than
they would have done using their personal online banking account. Schechter
et al. evaluated the security behavior of three groups when they logged into
their online banking website [24]: members of Group 1 and 2 played a role and
did not use their own accounts. In contrast to Group 1, Group 2 was security-
primed; the members of Group 3 used their personal online banking credentials.
When comparing Group 3 to the union of Group 1 and Group 2, they found that
Group 3 acted significantly more secure. They conclude that role playing causes
participants to perform study tasks less securely. The independent comparison
of Group 1—which roughly compares to our study participants—to Group 3 did,
however, not show a significant difference with respect to their security behavior.

We acknowledge that including an additional group using their personal bank
account would have been beneficial for the ecological validity of our results. Using
the participants’ personal accounts, however, would insert a threat into the study
design that would have been difficult to contain: in contrast to Schechter et al.,
not only would we have attacked the login process but also an actual transaction.
Our joint risk-benefit assessment raised strong ethical concerns and ultimately
rejected such a study protocol.

444 V. Haupert and S. Gabert

Anyway, our main interest was not if participants verify their transactions
but rather how their security behavior changed from the untampered first to the
attacked second transaction. Performing a transaction in a secure or insecure
fashion is also a matter of habituation [1]: it only consists of a few steps and
a user is either used to performing none, some or all of these steps. A limited
realistic risk would not rule out such behavior.

Study Population. Our study population was recruited from an IT com-
pany. Therefore, it is not representative: most of the participants’ profession
was directly connected to IT and the majority was male. While we acknowledge
that a more general population would foster the generalizability of the results,
we consider the tech-savviness of our population a best case scenario: if even
tech-savvy people are unable to verify transactions securely, this is likely also
true for the general online banking users who lack this understanding.

Invoice Format. In this paper, we focused on our attack’s efficacy. However,
to explore the impact of the invoice format, 50 participants each used either
the study’s computer or a dedicated tablet to access the invoice. The respective
victim rates of both groups were very near each other (84% and 80%) suggesting
that the invoice format has no quantifiable effect on detecting the attack.

8 Conclusion

In spite of using the personal transaction authentication method, the majority of
our study’s participants failed to detect the real-time credit transfer manipula-
tion which tampered with the destination account number. Even though our
study indicates broad satisfaction with individual transaction authentication
methods, people are not aware, neglect the core security tasks or are easily
deceived: the majority of the victims did not verify the transaction’s integrity
using the original invoice. Still, if they were in the habit of verification, they
could be tricked in performing a faulty transaction verification by asserting the
transaction’s integrity by using injected details within the browser session.

Against this background, we are glad that our findings led the German coop-
erative banks to stop displaying the transaction details on the confirmation page.
Although the change was not yet implemented in July 2019, we hope that other
banks will follow this example. Nevertheless, our results also suggest that this
alone will not solve the problem as the attacker is in control of all displayed infor-
mation. User education—even though it is a desirable goal—is not expected to
introduce a substantial change, particularly not in the short term [25]. Our study
also showed that technical individuals were more likely to detect the fraud but
this information alone shows that the majority is still vulnerable.

Therefore, we might need to rethink the currently employed WYSIWYS
scheme that relies on the secondary verification of the transaction details.
Instead, authentication methods should guarantee integrity as soon as the user

Where to Look for What You See Is What You Sign? 445

enters the details [17]. Leveraging the trusted execution environments (TEEs),
which are already present in the majority of today’s smartphones, is a promis-
ing approach for transaction security. Technically, TEEs like ARM’s TrustZone
can already provide secure in- and output today but they still lack the necessary
operating system interfaces [27]. Nevertheless, their wide hardware-side availabil-
ity might be a key factor for user acceptance and usable security, particularly
including—but not limited to—transaction security.

Appendix

Table 2. Victim rate (O, %) and frequency (N) depending on participant demographics
and their personal TAN method.

446 V. Haupert and S. Gabert

Fig. 5. Sparkasse Nürnberg (April 17, 2019): Whether the bank displays transaction
details on the confirmation page even depends on the TAN method the customer uses
with the bank. Our tests show that Sparkasse shows no details on confirm for the
chipTAN method but displays the full transaction details if the sms- or appTAN method
is used.

Where to Look for What You See Is What You Sign? 447

References

1. Anderson, B.B., Kirwan, C.B., Jenkins, J.L., Eargle, D., Howard, S., Vance, A.:
How polymorphic warnings reduce habituation in the brain: insights from an fMRI
study. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in
Computing Systems, CHI 2015, Seoul, Republic of Korea, 18–23 April 2015, pp.
2883–2892 (2015)

2. Benjamini, Y., Krieger, A.M., Yekutieli, D.: Adaptive linear step-up procedures
that control the false discovery rate. Biometrika 93(3), 491–507 (2006)

3. Blythe, M., Petrie, H., and Clark, J.A.: F for fake: four studies on how we fall
for phish. In: Proceedings of the International Conference on Human Factors in
Computing Systems, CHI 2011, Vancouver, BC, Canada, 7–12 May 2011, pp. 3469–
3478 (2011)

4. Carminati, M., Baggio, A., Maggi, F., Spagnolini, U., Zanero, S.: FraudBuster:
temporal analysis and detection of advanced financial frauds. In: Giuffrida, C.,
Bardin, S., Blanc, G. (eds.) DIMVA 2018. LNCS, vol. 10885, pp. 211–233. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-93411-2 10

5. Das, S., Dingman, A., and Camp, L.J.: Why johnny doesn’t use two factor: a
two-phase usability study of the FIDO U2F Security Key. In: Financial Cryptog-
raphy and Data Security - 22nd International Conference, FC 2018, Curaçao, 26
February– 2 March, 2018, Revised Selected Papers (2018)

6. Davinson, N., Sillence, E.: Using the health belief model to explore users’ per-
ceptions of ‘being safe and secure’ in the world of technology mediated financial
transactions. Int. J. Hum. Comput. Stud. 72(2), 154–168 (2014)

7. Dhamija, R., Tygar, J.D., and Hearst, M.A.: Why phishing works. In: Proceed-
ings of the 2006 Conference on Human Factors in Computing Systems, CHI 2006,
Montréal, Québec, Canada, 22–27 April 2006, pp. 581–590 (2006)

8. Egelman, S., Schechter, S.: The importance of being earnest [in security warnings].
In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 52–59. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39884-1 5

9. Etaher, N., Weir, G.R.S., Alazab, M.: From ZeuS to Zitmo: trends in banking
malware. In: 2015 IEEE TrustCom/BigDataSE/ISPA, Helsinki, Finland, 20–22
August 2015, vol. 1, pp. 1386–1391 (2015)

10. European Union Agency for Network and Information Security: Flash note: EU
cyber security agency ENISA; “High Roller” online bank robberies reveal security
gaps (2012). https://www.enisa.europa.eu/news/enisa-news/copy of eu-cyber-
security-agency-enisa-201chigh-roller201d-online-bank-robberiesreveal-security-
gaps. Accessed June 05 2018

11. Hartl, V.M.I.A., Schmuntzsch, U.: Fraud protection for online banking - a user-
centered approach on detecting typical double-dealings due to social engineering
and inobservance whilst operating with personal login credentials. In: Tryfonas, T.
(ed.) HAS 2016. LNCS, vol. 9750, pp. 37–47. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-39381-0 4

12. Hwang, J.T.G., Yang, M.-C.: An optimality theory for mid p-values In 2 x 2 con-
tingency tables. Statistica Sinica 11(3), 807–826 (2001)

13. Jagatic, T.N., Johnson, N.A., Jakobsson, M., Menczer, F.: Social phishing. Com-
mun. ACM 50(10), 94–100 (2007)

https://doi.org/10.1007/978-3-319-93411-2_10
https://doi.org/10.1007/978-3-642-39884-1_5
https://www.enisa.europa.eu/news/enisa-news/copy_of_eu-cyber-security-agency-enisa-201chigh-roller201d-online-bank-robberiesreveal-security-gaps
https://www.enisa.europa.eu/news/enisa-news/copy_of_eu-cyber-security-agency-enisa-201chigh-roller201d-online-bank-robberiesreveal-security-gaps
https://www.enisa.europa.eu/news/enisa-news/copy_of_eu-cyber-security-agency-enisa-201chigh-roller201d-online-bank-robberiesreveal-security-gaps
https://doi.org/10.1007/978-3-319-39381-0_4
https://doi.org/10.1007/978-3-319-39381-0_4

448 V. Haupert and S. Gabert

14. Kiljan, S., Vranken, H.P.E., van Eekelen, M.C.J.D.: What you enter is what you
sign: input integrity in an online banking environment. In: 2014 Workshop on
Socio-Technical Aspects in Security and Trust, STAST 2014, Vienna, Austria, 18
July 2014, pp. 40–47 (2014)

15. Krol, K., Philippou, E., Cristofaro, E.D., and Sasse, M.A.: “They brought in the
horrible key ring thing!” Analysing the usability of two-factor authentication in
UK online banking. In: Proceedings of the NDSS Workshop on Usable Security,
USEC 2015, San Diego, California, USA, 8–11 February 2015 (2015)

16. Landrock, P., Pedersen, T.P.: WYSIWYS? - what you see is what you sign? Inf.
Sec. Techn. Rep. 3(2), 55–61 (1998)

17. Li, S., Sadeghi, A.-R., Heisrath, S., Schmitz, R., Ahmad, J.J.: hPIN/hTAN: a
lightweight and low-cost E-banking solution against untrusted computers. In:
Danezis, G. (ed.) FC 2011. LNCS, vol. 7035, pp. 235–249. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-27576-0 19

18. Lydersen, S., Fagerland, M.W., Laake, P.: Recommended tests for association in 2
x 2 tables. Stat. Med. 28(7), 1159–1175 (2009)

19. Murdoch, S.J., et al.: Are payment card contracts unfair? (short paper). In:
Grossklags, J., Preneel, B. (eds.) FC 2016. LNCS, vol. 9603, pp. 600–608. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-662-54970-4 35

20. Norisbank GmbH: norisbank-Umfrage zum Thema Online-Banking, Ger-
man (2016). https://www.norisbank.de/ueberuns/presseinformation-norisbank-
umfrageonline-banking-ein-viertel-der-deutschen-nutzt-veraltetes-tan-verfahren.
html. Accessed 20 May 2018

21. Onarlioglu, K., Yilmaz, U.O., Kirda, E., Balzarotti, D.: Insights into user behavior
in dealing with internet attacks. In: 19th Annual Network and Distributed System
Security Symposium, NDSS 2012, San Diego, California, USA, 5–8 February 2012
(2012)

22. Reynolds, J., Smith, T., Reese, K., Dickinson, L., Ruoti, S., Seamons, K.: A tale of
two studies: the best and worst of YubiKey usability. In: 2018 IEEE Symposium
on Security and Privacy, SP 2018, San Francisco, CA, USA, 20–22 May 2018, pp.
1090–1106 (2018)

23. Rosoff, H., Cui, J., and John, R.S.: Behavioral experiments exploring victims’
response to cyber-based financial fraud and identity theft scenario simulations.
In: Tenth Symposium on Usable Privacy and Security, SOUPS 2014, Menlo Park,
CA, USA, 9–11 July 2014, pp. 175–186 (2014)

24. Schechter, S.E., Dhamija, R., Ozment, A., Fischer, I.: The emperor’s new secu-
rity indicators. In: 2007 IEEE Symposium on Security and Privacy (S&P 2007),
Oakland, California, USA, 20–23 May 2007, pp. 51–65 (2007)

25. Schneier, B.: Stop trying to fix the user. IEEE Secur. Priv. 14(5), 96 (2016)
26. Sheng, S., Holbrook, M.B., Kumaraguru, P., Cranor, L.F., Downs, J.S.: Who falls

for phish?: a demographic analysis of phishing susceptibility and effectiveness of
interventions. In: Proceedings of the 28th International Conference on Human Fac-
tors in Computing Systems, CHI 2010, Atlanta, Georgia, USA, 10–15 April 2010,
pp. 373–382 (2010)

27. Sun, H., Sun, K., Wang, Y., Jing, J.: TrustOTP: transforming smartphones into
secure one-time password tokens. In: Proceedings of the 22nd ACM SIGSAC Con-
ference on Computer and Communications Security, Denver, CO, USA, 12–16
October 2015, pp. 976–988 (2015)

https://doi.org/10.1007/978-3-642-27576-0_19
https://doi.org/10.1007/978-3-662-54970-4_35
https://www.norisbank.de/ueberuns/presseinformation-norisbank-umfrageonline-banking-ein-viertel-der-deutschen-nutzt-veraltetes-tan-verfahren.html
https://www.norisbank.de/ueberuns/presseinformation-norisbank-umfrageonline-banking-ein-viertel-der-deutschen-nutzt-veraltetes-tan-verfahren.html
https://www.norisbank.de/ueberuns/presseinformation-norisbank-umfrageonline-banking-ein-viertel-der-deutschen-nutzt-veraltetes-tan-verfahren.html

Where to Look for What You See Is What You Sign? 449

28. Watson, B., Zheng, J.: On the user awareness of mobile security recommendations.
In: Proceedings of the 2017 ACM Southeast Regional Conference, Kennesaw, GA,
USA, 13–15 April 2017, pp. 120–127 (2017)

29. Zomai, M.A., AlFayyadh, B., Jøsang, A., McCullagh, A.: An experimental investi-
gation of the usability of transaction authorization in online bank security systems.
In: Brankovic, L., Miller, M. (eds.) Sixth Australasian Information Security Confer-
ence, AISC 2008, Wollongong, NSW, Australia, January 2008. CRPIT, pp. 65–73.
Australian Computer Society (2008)

On the Security and Applicability
of Fragile Camera Fingerprints

Erwin Quiring1(B), Matthias Kirchner2(B), and Konrad Rieck1(B)

1 TU Braunschweig, Braunschweig, Germany
{e.quiring,k.rieck}@tu-bs.de

2 Binghamton University, Binghamton, USA
kirchner@binghamton.edu

Abstract. Camera sensor noise is one of the most reliable device charac-
teristics in digital image forensics, enabling the unique linkage of images
to digital cameras. This so-called camera fingerprint gives rise to differ-
ent applications, such as image forensics and authentication. However, if
images are publicly available, an adversary can estimate the fingerprint
from her victim and plant it into spurious images. The concept of fragile
camera fingerprints addresses this attack by exploiting asymmetries in
data access: While the camera owner will always have access to a full fin-
gerprint from uncompressed images, the adversary has typically access to
compressed images and thus only to a truncated fingerprint. The security
of this defense, however, has not been systematically explored yet. This
paper provides the first comprehensive analysis of fragile camera finger-
prints under attack. A series of theoretical and practical tests demon-
strate that fragile camera fingerprints allow a reliable device identifica-
tion for common compression levels in an adversarial environment.

Keywords: Fragile camera fingerprint · PRNU · Authentication

1 Introduction

Minimal, inevitable manufacturing imperfections of digital camera sensors lead
to the photo-response non-uniformity (PRNU) signal, a highly unique and reli-
ably detectable camera device characteristic [8]. Similar to a robust digital water-
mark, the PRNU signal is unnoticeably present in any image taken by the same
camera, but differs between images from different cameras. These properties
make the PRNU a natural camera fingerprint. It has found widespread applica-
tions in forensics to attribute digital images to their source camera [8]. Recent
works have also proposed to use the PRNU as a means to link mobile device
authentication to inherent hardware characteristics of the mobile device [2,26].

In practice, however, these use cases face the problem of fingerprint copy-
attacks [10,19]. If Alice shares images from her camera with the public, Mallory
can estimate Alice’s fingerprint, plant it into her images, and pretend that an
arbitrary image was captured by Alice’s camera. The so-called triangle test [13]
c© Springer Nature Switzerland AG 2019
K. Sako et al. (Eds.): ESORICS 2019, LNCS 11735, pp. 450–470, 2019.
https://doi.org/10.1007/978-3-030-29959-0_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29959-0_22&domain=pdf
https://doi.org/10.1007/978-3-030-29959-0_22

Security and Applicability of Fragile Camera Fingerprints 451

detects such attacks ex post, but it potentially requires an exhaustive search over
all public images shared by Alice. A proactive defense based on the notion of
fragile camera fingerprints has recently been proposed by Quiring and Kirchner
[23] for scenarios that warrant camera identification from high-quality (uncom-
pressed) images. Here, the camera owner Alice can exploit an asymmetry in the
quality of accessible data by only sharing JPEG-compressed images with the
public while retaining her uncompressed images private. As a result, she will
always be able to provide her full fingerprint from high-quality images when
asked to do so. In contrast, Mallory’s estimate of Alice’s fingerprint from public
JPEG images will only contain the part that is robust to lossy JPEG compres-
sion while lacking the fragile component. A test for the presence of the fragile
fingerprint will then prevent Mallory from making an uncompressed image look
like one of Alice’s uncompressed images.

In forensics applications, fragile camera fingerprints are of particular rele-
vance to the prevention of fingerprint-copy attacks in support of high-quality
image forgeries, which may otherwise convey a false sense of trustworthiness [4].
Equally important, fragile fingerprints are currently the only scalable approach
to establish mobile device authentication based on physical camera characteris-
tics that mitigates fingerprint leakage from public images: conducting the trian-
gle test [13] on every authentication attempt is computationally infeasible, and
an alternative proposal for a targeted fingerprint-copy attack detector by Ba
et al. [2] can be defeated by an adversary with two cameras.

The practical applicability of fragile camera fingerprints in these security-
related scenarios crucially depends on their robustness against attacks. As Quir-
ing and Kirchner’s work [23] only provided preliminary results in this regard, this
paper sets out to deliver a thorough and more comprehensive security analysis.
Specifically, we examine the amount of information that Mallory can estimate,
recover and exploit in a series of theoretical and empirical considerations. First,
we analytically derive an upper bound on the correlation between Alice’s and
Mallory’s fingerprint estimates with respect to the JPEG quality of publicly
shared images Mallory has access to. Second, to test for dependencies beyond
linear correlation, a kernel statistical test is used to assess whether Alice’s frag-
ile fingerprint is statistically independent of Mallory’s fingerprint. Third, we
demonstrate that practical attempts to recover quantized JPEG coefficients from
potentially remaining dependencies do not increase Mallory’s ability to mount
successful attacks. Fourth, we test the resistance of fragile fingerprints against
practical fingerprint-copy attacks. We finally illustrate that fragile fingerprints
and the triangle test are a powerful combination in forensics applications.

The rest of this paper is organized as follows. Section 2 reviews the back-
ground of sensor noise forensics before Sect. 3 discusses fragile fingerprints and
their possible applications. Section 4 provides a comprehensive analysis of Mal-
lory’s attack surface, while Sect. 5 reports on experiments around the applica-
bility of fragile fingerprints. Section 6 concludes the paper.

452 E. Quiring et al.

2 Background

Before introducing fragile fingerprints, we give a short primer on camera iden-
tification, the possible fingerprint-copy attack, and the triangle test as defense.
Throughout our work, the notation is as follows: vectors and matrices are set in
boldface font. Operations on vectors and matrices are point-wise if not stated
otherwise; the operator • denotes matrix multiplication.

2.1 Camera Identification from Sensor Noise Fingerprints

Due to sensor element manufacturing imperfections, each camera image does not
only contain the original noise-free image content I0, but also the PRNU K as
a camera-specific, multiplicative noise factor. A common simplified model of the
image capturing process assumes the final image I to take the form [8]

I = I0 + I0K + Γ , (1)

where Γ reflects a variety of other additive noise terms. Due to its multi-
plicative nature, the PRNU is not present in images with dark scene contents
(i.e., I0 ≈ 0). Extensive experiments have demonstrated that the PRNU factor
K represents a unique and robust camera fingerprint [14] that can be estimated
from a number of images I1, . . . , IN taken with a given camera of interest. The
standard approach utilizes a denoising filter F (·) and models noise residuals
Wk = Ik − F (Ik) as [8]

Wk = IkK + Θk. (2)

Modeling noise Θ subsumes Γ and residues of the image content due to inher-
ent imperfections of the denoising filter in separating image content from noise.
Adopting an i.i.d. Gaussian noise assumption for Θ, the maximum likelihood
(ML) estimator of K is [8]

K̂ =

(
N∑

k=1

WkIk

)
·
(

N∑
k=1

(Ik)2
)−1

. (3)

A more simple estimator takes the pixel-wise average of the noise residuals [19].
A post-processing step is recommended to clean K̂ from so-called non-unique
artifacts, e.g., due to demosaicing or lens distortion correction [8,11,12]. Given
a query image J of unknown provenance, camera identification then works by
computing the residual WJ = J−F (J), and evaluating its similarity to a camera
fingerprint estimate against a set threshold τ ,

φWJ ,J K̂ = sim(WJ ,JK̂) ≷ τ. (4)

Suitable similarity measures for this task are normalized correlation or peak-to-
correlation energy (PCE) [8,19].

Security and Applicability of Fragile Camera Fingerprints 453

2.2 Fingerprint-Copy Attack

Following the procedure described in Sect. 2.1, Mallory may obtain an estimate
of Alice’s camera fingerprint from a set of NE publicly available images. Denoting
this estimate K̂E , Mallory can then attempt to make an arbitrary image J look
as if it was captured by Alice’s camera. The multiplicative nature of PRNU
suggests a fingerprint copy attack of the form [19]

J ′ = [J(1 + αK̂E)], (5)

with α > 0 being the scalar fingerprint strength parameter. Attacks of this
type have been demonstrated to be effective, in the sense that they can suc-
cessfully mislead a camera identification algorithm in the form of Eq. (4). How-
ever, the attack’s success generally depends on a good choice of α: too low
values mean that the bogus image J ′ may not be assigned to Alice’s cam-
era; a too strong embedding will make the image appear suspicious [13,20]. In
practical scenarios, Mallory may have to apply further processing to make her
forgery more compelling, e.g., removing the genuine camera fingerprint [7,16],
synthesizing demosaicing artifacts [17], and removing or adding traces of JPEG
compression [25].

2.3 Triangle Test

Under realistic assumptions, it is impossible to prevent Mallory from forcing
a high similarity score in Eq. (4) for arbitrary images from a foreign camera.
Yet Alice can utilize that noise residuals computed with practical denoising
filters will always contain remnants of image content to establish that image J ′

underwent a fingerprint-copy attack [13]. The key observation here is that the
already existing similarity between a noise residual WI from an image I taken
with Alice’s camera and the noise residual WJ ′ due to a common PRNU term
will be slightly increased by some shared residual image content, if I contributed
to Mallory’s fingerprint estimate K̂E . Alice can thus test which of her public
images have been used by Mallory to mount the attack by evaluating whether
the similarity of their noise residuals WI with WJ ′ is suspiciously large.

Because the additional correlation imposed by shared image content is gener-
ally rather weak and also varies with macroscopic image characteristics, Goljan
et al. [13] propose a triangle test to calibrate the test statistic. Specifically, the
test does not only consider the observed correlation νWI ,WJ ′ between residu-
als WI and WJ ′ , but it also employs a correlation predictor to estimate the
correlation ν̃WI ,WJ ′ between WI and WJ ′ if image I had not participated in
the computation of K̂E . This predictor takes the correlation between Alice’s
own fingerprint and both WI and WJ ′ into account—hence the name trian-
gle test. Assuming a linear relationship between the observed and the predicted
correlation, the proposed test then evaluates

νWI ,WJ ′ − θ ν̃WI ,WJ ′ − μ ≷ t (6)

454 E. Quiring et al.

for a suitably chosen threshold t. The parameters θ and μ are estimated from
a set of safe images, for which it can be guaranteed that they have not been
used by Mallory. We refer to Goljan et al. [13] for a detailed exposition of the
correlation predictor and the parameter estimators. The test statistic in Eq. (6)
is expected to have zero mean when two noise residuals share only a common
PRNU term. A larger difference indicates an additional shared term, possibly
due to image I’s involvement in the attack. Observe that Alice may have to
test all images ever made public by her as part of a comprehensive defense. We
finally point out that a number of fingerprint-copy attack variations have been
proposed recently that are reportedly less likely to be exposed by the triangle
test (e.g. [20]).

3 Fragile Camera Fingerprint

As a novel and proactive defense against fingerprint-copy attacks, Quiring and
Kirchner [23] introduce the notion of fragile camera fingerprints that vanish
under lossy JPEG compression. The idea is based on two mild assumptions:
(1) Alice’s device supports capturing images in uncompressed format, which is
true nowadays for many devices operating under mobile platforms, such as iOS
and Android; (2) Alice only shares JPEG images with the public, which is already
today’s quasi-standard for image online storage and sharing. When combined,
these two assumptions allow Alice to effectively exploit an asymmetry in the
quality of data access. With full access to her camera, Alice is always in the
position to present a fingerprint estimate K̂ from uncompressed images while
Mallory is restricted to estimate K̂E from JPEG-compressed images.

On a technical level, the concept of fragile camera fingerprints exploits the
lossy nature of JPEG compression. JPEG maps each non-overlapping 8×8 pixel
block in an image to 8 × 8 discrete cosine transform (DCT) coefficients. Each
of the 64 coefficients quantifies the influence of a particular frequency subband
and will be quantized based on an 8 × 8 quantization table with quantization
factors for the 64 DCT subbands. Larger quantization factors mean that the
DCT coefficients in the corresponding subband are more likely to be quantized
to zero. Quantization factors generally increase with decreasing JPEG quality
and grow towards the bottom right corner of the quantization table to suppress
high-frequency image details more aggressively.

In consequence, Mallory’s camera fingerprint estimate from JPEG-
compressed images will be strongly distorted in the high-frequency DCT sub-
bands due to larger quantization errors. If the quantization is too strong, Mal-
lory’s images will lack high-frequency content altogether and so will her fin-
gerprint estimate. In other words, her estimate only comprises the fingerprint
component that is robust to JPEG compression. A fingerprint estimate from
uncompressed images is in turn distributed almost evenly over all subbands [23].
Hence, Alice has access to a fragile camera fingerprint, computed from the high-
frequency subbands only.

To obtain the fragile part, it is instructive to define a mode-selective highpass
filter Hc(·). Based on a binary multiplicative mask Hc = [hi,j], 1 � i, j � 8,

Security and Applicability of Fragile Camera Fingerprints 455

Fig. 1. Fragile fingerprint computation based on a subband-selective filter H1(X):
Each pixel block X is mapped to its DCT representation Y , element-wise multiplied
by a binary mask H1, and transformed back to the spatial domain to give X̃ .

the filter retains a defined set of DCT subbands and sets all other subband
coefficients to zero. Alice should choose Hc depending on the maximum JPEG
quality of her published images. For a sufficiently conservative choice, she can
assume that the retained subbands are available exclusively to her. Quiring and
Kirchner [23] propose to parameterize Hc with a cut-off along the (−c)-th anti-
diagonal of the DCT coefficient matrix,

hi,j = [(i + j − 8 − c) > 0], (7)

where [·] denotes the Iverson bracket. Figure 1 summarizes the internal steps of
Hc(·) for cut-off parameter c = 1, which retains all DCT subbands in the lower
right triangle. Equipped with Hc, a refined similarity test of the form

φWJ ,J K̂ (c) = sim
(
Hc(WJ),Hc(JK̂)

)
≷ τ. (8)

then establishes camera identification from fragile fingerprints, which is of par-
ticular relevance in the following two application scenarios.

Digital Image Forensics. Testing for the presence of camera fingerprints facili-
tates device identification and image manipulation detection in forensic appli-
cations [8]. Fragile camera fingerprints can benefit scenarios that warrant the
analysis of high-quality images, for instance when uncompressed images ought
to be presented as a source of particularly high trustworthiness. In this case,
Alice can establish that a spurious image was not captured by her camera by
having kept her uncompressed images private. She presents the fragile fingerprint
when needed, potentially in combination with cryptographic safeguards [21] or
in some form of zero-knowledge proof to further secure her fragile fingerprint
from leakage.

Mobile Device Authentication. Camera fingerprints have been proposed as build-
ing blocks for augmenting mobile device authentication schemes with physi-
cal hardware characteristics [2,5,26]. Yet like with device signatures from other
types of hardware sensors, the vulnerability to fingerprint-copy/spoofing attacks
is of particular concern [1]. To the best of our knowledge, the concept of fragile
fingerprints is the only existing approach that would address the problem in a

456 E. Quiring et al.

proactive and scalable manner. Performing a triangle test upon every authenti-
cation attempt is computationally infeasible, let alone that Alice may object to
the idea of sharing all her images with the service she wants to authenticate to.

Ba et al. [2] attempt to work around that issue in their authentication pro-
tocol by requiring the user to take two images of different visual codes during
the identification phase. Similar to the triangle test, the reasoning is that two
spoofed images will correlate implausibly strongly as they do not only share
Alice’s fingerprint but also the one from Mallory’s camera. This measure can
be easily circumvented by an attacker who uses two different devices to take
the respective pictures however. In this way, Mallory prevents the additionally
shared signal.

In summary, fragile camera fingerprints enable novel applications in image
forensics and mobile device authentication. Their applicability, however, depends
on the robustness against attacks. In the remainder of this work, we thus perform
a comprehensive security analysis.

4 Security Analysis

A secure application of fragile camera fingerprints demands that Mallory cannot
estimate the fragile fingerprint from JPEG-compressed images. We guide our
analysis along the following three questions:

(Q1) Can we bound the quality of Mallory’s fingerprint estimate K̂E ?
(Q2) Can Mallory improve her fingerprint estimate by exploiting the quantized

high-frequency or robust low-frequency information?
(Q3) Can Mallory perform a successful fingerprint-copy attack?

4.1 Datasets and Experimental Setup

Where empirical tests are warranted, we adopt the setup described by
Quiring and Kirchner [23]. The dataset consists of images from the Dres-
den Image Database [9] (DDB) and the RAISE Image Database [6], cf. Table 1.

Table 1. Number of images per test set and camera.

Database Camera model Fingerprint estimate Benchmark data

Camera 0 Camera 1 Camera 0 Camera 1

Dresden [9] Nikon D70 25 25 175 188

Nikon D70s 25 25 175 174

Nikon D200 25 25 360 370

RAISE [6] Nikon D7000 300 — 4648 —

In particular, we use 25 homogeneously lit flat field images of each DDB
camera to obtain uncompressed fingerprint estimates. 1442 natural images serve

Security and Applicability of Fragile Camera Fingerprints 457

as benchmark data. We present aggregated results over the six cameras in the
following, as all gave similar results. The RAISE database only provides natural
images. We randomly select 300 images for fingerprint computation, leaving
us with 4648 images for a benchmark set that facilitates the study of attacks
where Mallory has access to a large number of public images. Note that the
usage of 300 natural images for fingerprint estimation can be attributed to the
heterogenous content of natural images. In an authentication scenario, a user can
be asked to take a much smaller number of suitable images (e.g. a white wall)
without nuisance image content. If not stated otherwise, we use the standard
Wavelet denoiser to obtain noise residuals [19] and the ML formulation in Eq. (3)
to estimate fingerprints.

In order to also guide our evaluation at the practically used JPEG quality,
we collected over 1.4 Million JPEG images from Twitter, Instagram, Imgur,
Deviantart and Flickr. The average JPEG quality is 83.5 with a standard devi-
ation of 9.2. This, for instance, fits to recommendations from Flickr, Wikimedia
and the official Android documentation that recommend qualities less than 90.

4.2 (Q1) Analytical Quality of Fingerprint Estimation

Our first objective is to establish a bound on the quality of Mallory’s fingerprint
estimate from Alice’s camera irrespective of a concrete image data set to reflect
Mallory’s chances of performing a successful fingerprint-copy attack. In particu-
lar, we adopt the notion of quality of fingerprint estimation by Goljan et al. [13].
We derive an analytical expression for the correlation between Alice’s finger-
print from uncompressed images, K̂, and Mallory’s fingerprint from compressed
images, K̂E ,

cor(Hc(K̂), Hc(K̂E)). (9)

This quantity can be seen as a simplified version of the similarity measure in
Eq. (8) for images taken under ideal conditions, e.g. homogeneously lit. As we
focus on high-frequency subbands only, less image content disturbs the finger-
print calculation. Thus, Hc(JK̂) resembles Hc(K̂), as well Hc(WJ) ≈ Hc(K̂E).

We make three assumptions to simplify the calculation. First, Mallory com-
putes her fingerprint from the same, but compressed, image set that Alice uses
for her uncompressed estimate. This will yield a loose upper bound for cases
where Mallory obtains a different JPEG-compressed image set that Alice has not
used. Moreover, we apply a simple fingerprint estimator that takes the pixel-wise
average of noise residuals. Finally, we assume a negligible correlation between
individual DCT subbands and across images. The first and the second assump-
tion imply that the fingerprint calculation can be modeled as pixel-wise aver-
aging. Denote Xi the i-th uncompressed image from Alice’s camera and X̃i its
JPEG-compressed version to rewrite Eq. (9) as

cor(Hc(K̂), Hc(K̂E)) = cor
(∑

i Hc(Xi),
∑

i Hc(X̃i)
)

. (10)

458 E. Quiring et al.

Appendix A establishes that the sample correlation coefficient based on Eq. (10),
r(c), can be computed in the DCT domain directly. We write Yi and Ỹi for the
DCT representations of Xi and X̃i, respectively, to obtain

r(c) ∼= cor
(∑

i(Hc Yi),
∑

i(Hc Ỹi)
)

. (11)

The coefficient is parametrized by the cut-off c from Eq. (7). High-pass filter
Hc is now made explicit through the DCT mask Hc (see Sect. 3), yielding a
convenient formulation to compute the sample correlation coefficient between
Alice’s and Mallory’s fingerprint directly in the DCT domain. This formulation
thus allows us to use known statistical distribution models for DCT coefficients.

We continue to derive the population correlation coefficient by assuming a
Laplacian distribution for the AC DCT coefficients [24]. Specifically, denote Yi,s

the random variable representing the s-th subband of the i-the uncompressed
image. Equivalently, denote Ỹi,s the respective quantized counterpart to reflect
the effect of JPEG compression on Yi,s. Appendix B establishes the general
relation between the two random variables in terms of their covariance, which
can be expressed solely on the basis of the distribution of the uncompressed
variable Yi,s. We highlight this by defining Cov+(Yi,s) = Cov(Yi,s, Ỹi,s). A similar
derivation for the variance yields Var+(Yi,s) = Var(Ỹi,s). Appendix B shows how
aggregating these quantities over the various subbands s ∈ Sc as specified by
filter Hc of various images leads to the following formulation for the population
correlation coefficient:

ρ(c) ∼=
∑

i

∑
s∈Sc

Cov+(Yi,s)√∑
i

∑
s∈Sc

Var(Yi,s)
√∑

i

∑
s∈Sc

Var+(Yi,s)
. (12)

This equation is a first step towards an analytical understanding of the impact
of JPEG-induced quantization on the ability to estimate fragile camera finger-
prints. Specifically, it allows Alice to deduce the expected correlation of Mallory’s
fingerprint with her fingerprint based on general DCT distribution assumptions.
Note that the derived correlation is computed under the assumption of a strong
attacker: Mallory bases her fingerprint estimation on the same image set as Alice;
her images only differ in that they are JPEG-compressed. Consequently, Eq. (12)
can serve as upper bound for the more realistic scenario when Mallory has only
access to a different image set. Alice, as camera owner, will always be able to
create new images for her fingerprint. The next section demonstrates the validity
of our analytical derivation under practical conditions for both scenarios.

4.3 (Q1) Empirical Quality of Fingerprint Estimation

We start with the quality of Mallory’s fingerprint estimate when Alice and Mal-
lory operate on the same image set, and then continue with different image sets.

Same Image Sets. In a first step, we compute the population correlation coef-
ficient ρ from Eq. (12) on a set of 250 synthetic images. Each image follows

Security and Applicability of Fragile Camera Fingerprints 459

a zero-mean Laplacian distribution with a randomly generated scale parame-
ter. This allows us to examine ρ on idealized conditions. We compare ρ with
its empirical counterpart, r, as given in Eq. (11). Figure 2a shows that the two
derived quantities are consistent under varying JPEG compression levels.

In the next experiment, we use natural images from the Nikon D7000. We
give Mallory access to NE = 250 JPEG-compressed images, derived from the
same set that Alice uses for her fingerprint. Varying the JPEG quality and
cut-off parameter c, we compute ρ and r. The computation of ρ involved a
standard maximum likelihood estimator to obtain the Laplace scale parameter
for each DCT subband per image. For benchmark purposes, we also include the
sample correlation coefficient φ1 between Alice’s and Mallory’s fingerprint, both
calculated with the ML formulation in Eq. (3). We repeat the experiments five
times and report averaged results for ρ, r and φ1 in Figs. 2b–c for c ∈ {1, 2}. The
curves resemble each other reasonably well, with r generally predicting a slightly
higher fingerprint quality than ρ due to the implied independence assumptions
in the latter. As c increases, ρ slowly approaches φ1. This indicates that the
analytically derived ρ is a good approximation of Mallory’s fingerprint quality
under idealized conditions particularly in high-frequency DCT subbands.

100 90 80 70
0

0.25

0.5

0.75

1
(a) c = 1

JPEG

corr

100 90 80 70
0

0.25

0.5

0.75

1
(b) c = 1

JPEG

corr

100 90 80 70
0

0.25

0.5

0.75

1
(c) c = 2

JPEG

corr

ρ: Population Correlation φ1: Fingerprints from same set

r: Empirical Correlation φ2: Fingerprints from diff. set

Fig. 2. Quality of fingerprint estimation. Results from (a) NE = 250 synthetic images
and (b)–(c) NE = 250 natural Nikon D7000 images.

Different Image Sets. In a more realistic scenario, we assume Alice and Mallory
to work on different image sets. Figures 2b and c thus include φ2, the correspond-
ing sample correlation coefficient between Alice’s and Mallory’s fingerprints as
obtained with the ML estimator, averaged over five randomly compiled JPEG
image sets of size NE = 250 that Alice has not used for computing K̂. Alice’s
camera-specific fingerprint from 300 images was kept constant throughout all
repetitions. Not surprisingly, the population correlation coefficient ρ is a loose
upper bound to the observed correlation φ2 when Mallory operates on a different
image set: φ2 approaches zero quickly with increasing c and decreasing JPEG

460 E. Quiring et al.

quality. Appendix C gives additional insights by reporting the correlations for a
much larger number of JPEG images, NE . Mallory’s fingerprint quality increases
only slowly with the number of available JPEG images. For a suitable combina-
tion of JPEG quality and cut-off parameter c, the correlation remains extremely
small. As a result, less restrictive quality and cut-off parameters are possible
compared to the contrived situation where Alice and Mallory access the same
images.

Analysis Summary. Overall, strong guarantees for a scenario where Mallory
has access to JPEG-compressed versions of the very images Alice used for her
fingerprint are possible for JPEG qualities of 70 or smaller. In a more realistic
scenario with different image sets, a secure operation is already possible with
JPEG quality factors 90 or lower. For JPEG 85—the average quality factor on
various image platforms (see Sect. 4.1)—Alice may choose c � 3 to ensure a
reliable identification in an adversarial environment.

4.4 (Q2) Independence Test

The previous section has analyzed the correlation between Alice’s and Mal-
lory’s high-frequency fingerprint estimates—deriving first bounds when Alice’s
fingerprint remains private. We continue with this analysis under the scenario
of different image sets in the following sections.

Quiring and Kirchner have shown [23] that the high-frequency pixel part
kept by Hc is uncorrelated to the complementary low-frequency part kept by
Lc = Hc XOR 1. Consequently, Mallory cannot exploit linear dependencies
between her robust low-frequency fingerprint and Alice’s fragile fingerprint. How-
ever, correlation does not cover all modes of dependence. In this section, we thus
examine if Mallory can exploit non-linear dependencies and conduct a kernel
statistical test of independence. In particular, we choose the Hilbert-Schmidt
independence criterion1 (HSIC)[15]. In simplified terms, this test maps the pos-
sibly non-linear dependencies to a linear space where independence is tested. The
test is consistent in the sense that the level of alpha controls the type I error
(detects dependence although independence is true) while the type II errors goes
to zero for an increasing sample size [15].

We consider the following two scenarios. First, we test if Alice’s high fre-
quency fingerprint is independent to Mallory’s high-frequency fingerprint from
JPEG-compressed images:

H0 : Hc(K̂) ⊥⊥ Hc(K̂E). (13)

Equivalently, the second scenario tests if Alice’s high frequency fingerprint is
independent to Mallory’s full fingerprint from JPEG-compressed images:

H0 : Hc(K̂) ⊥⊥ K̂E . (14)

1 We use a Gaussian kernel, an alpha value of 0.05, and split the images into 320×320
pixel blocks with varying offsets to keep the sample size manageable.

Security and Applicability of Fragile Camera Fingerprints 461

We grant Mallory access to NE = 150 images of each DDB camera and
NE = 1000 RAISE images. We aggregate results over ten randomly compiled sets
of size NE .

For both scenarios, Fig. 3 depicts the observed H0 acceptance rates, i.e. the
percentage of cases for which we cannot detect a measurable dependence between
the two quantities under test. This rate increases with lower JPEG qualities or
larger cut-off parameters c. In the first scenario, the test statistic suggests inde-
pendence at a considerable rate for c = 4 and JPEG quality 90 for all cameras.
Interestingly, the second scenario—where Alice’s high frequency fingerprint is
tested against Mallory’s full fingerprint—is characterized by a lower rate of inde-
pendence. A comparison of both scenarios thus suggests that remaining depen-
dencies may result from the low-frequency part. This dependency would have to
be non-linear, as the low- and high-frequency signal are not correlated to each
other. As we show in the next section, it is unclear how Mallory can exploit these
potentially remaining dependencies in practice, however.

100 90 80 70
0

25

50

75

100

(a) DDB

JPEG

A
cc

ep
ta

n
ce

of
H

0
[%

]

100 90 80 70

(b) RAISE

JPEG

100 90 80 70

(c) DDB

JPEG

100 90 80 70

(d) RAISE

JPEG

Hc(K̂) ⊥⊥ Hc(K̂E) Hc(K̂) ⊥⊥ K̂E

c = 1 c = 2 c = 3 c = 4 c = 5

Fig. 3. Kernel statistical test of independence. Plots (a) and (b) depict the first sce-
nario; Plots (c) and (d) the second scenario for both databases.

We surmise that the notably less conclusive results on the RAISE data are
due to non-trivial remnants of image content in the noise residuals. In contrast to
the Dresden database, Alice’s fingerprint is here calculated from natural instead
of homogeneously lit images, raising the bar for establishing independence
considerably.

Analysis Summary. The chosen HSIC test establishes statistical independence
for suitable JPEG and cut-off parameters, which gives a strong evidence that
Mallory cannot exploit any dependence to recover Alice’s fingerprint. Consider-
ing the high-frequency signals, Alice may choose c � 3 for quality factor 85.

462 E. Quiring et al.

4.5 (Q2) DCT Recovery

In the next experiment, we examine if Mallory can exploit remaining dependen-
cies to recover DCT coefficients. Although a DCT coefficient that is quantized
to zero does not reveal information about the fingerprint, non-zero coefficients
may leak information at least with their sign. By averaging enough images, Mal-
lory may thus obtain a coarse fingerprint estimate. We test below if Mallory
can improve her fingerprint by recovering DCT coefficients that were quantized
to zero.

We adapt the systematic approach by Li et al. [18], since it is in principle
also applicable to the recovery of high-frequency DCT coefficients. The recovery
is a linear optimization problem with the objective to minimize the spatial dis-
tance of neighboring pixels within and across the 8 × 8 pixel blocks from JPEG
compression. The first constraint is that the recovered pixel values must corre-
spond to their DCT coefficients. Second, DCT coefficients that should not be
recovered are fixed. Finally, the pixel and DCT coefficients have to be within
their dynamic range. The optimization problem can be summarized as

min
∑

l,l′ |X(l) − X(l′)| (15)

s.t. X − D� • Y • D = 0, (16)
Y (s) = Y ∗(s) , (17)
X(l) ∈ [xmin, xmax], Y (s) ∈ [ymin, ymax], (18)

where l and l′ are the indices of neighboring pixels in the spatial domain, D
denotes the DCT transformation matrix, and s is the index of a DCT subband.
The second constraint fixes with Y ∗ all DCT coefficients that are not part of the
subbands retained by filter Hc or are non-zero in the subbands retained by Hc.
As a result, we recover only zero-valued DCT coefficients that Hc retains. For
each image, and for each 8 × 8 pixel block, we set up such an optimization
problem and include its direct neighboring blocks.

Table 2. Contingency table of DCT recovery from 50 Nikon D70 images

Fraction Predicted Sign

JPEG 100 JPEG 95

neg zero pos neg zero pos

Fraction True Sign neg 0.08 0.09 0.05 0.11 0.15 0.09

zero 0.16 0.08 0.16 0.07 0.11 0.07

pos 0.05 0.09 0.24 0.09 0.15 0.17

We report results for 50 images from a Nikon D70 over the JPEG qualities 100
and 95 as well as the cut-off frequency c = 1. The performance does not change
considerably for smaller JPEG qualities or larger cut-off frequencies and thus

Security and Applicability of Fragile Camera Fingerprints 463

are omitted. Table 2 depicts a contingency table that summarizes the frequency
of correctly predicted signs. This is the case when the sign of the predicted
DCT coefficient equals the sign from the corresponding original uncompressed
image or both the predicted and uncompressed coefficient lie in the zero range
[−0.25, 0.25]. Even for JPEG quality 100, the recovery cannot reliably predict
the sign. The correct distinction drops further for a smaller JPEG quality and
tends towards a random classifier. In each case, the correlation to Alice’s fragile
fingerprint decreases when Mallory uses the recovered images for her estimate. In
contrast, the recovery of low-frequency subbands is successful with an average
recovery rate of 70%. However, only the correlation to Alice’s low-frequency
fingerprint increases in our experiments.

Analysis Summary. The recovery of the correct sign is partly possible for low-
frequency subbands, while the recovery of high-frequency subbands is already
difficult for JPEG quality 100. Mallory can thus not improve her estimate of
Alice’s fragile fingerprint through a DCT recovery.

4.6 (Q3) Fingerprint-Copy Attack

We finally consider a realistic fingerprint-copy attack where Mallory plants her
calculated fingerprint estimate K̂E from Alice’s camera into 100 randomly cho-
sen uncompressed images taken by a different camera (see Sect. 2.2). Figure 4
depicts the average PCE values with respect to the embedding strength for
varying JPEG qualities. We present results only for the Nikon D7000 from the
RAISE database with NE = 4648. This allows us to depict the effect when Mal-
lory uses a large number of public images. We refer to Quiring and Kirchner [23]
for results from the DDB, which are similar to the results reported here.

0.02 0.1 0.4 1 2 5 10
100

101

102

103

104

105

(a) JPEG100

embedding strength α

0.02 0.1 0.4 1 2 5 10
100

101

102

103

104

105

(b) JPEG90

embedding strength α

0.02 0.1 0.4 1 2 5 10
100

101

102

103

104

105

(c) JPEG85

embedding strength α

P
C

E

full c = 1 c = 2 c = 3 c = 4 c = 5

Fig. 4. Fingerprint-copy attack with fragile fingerprints. Average PCE values as a
function of the embedding strength α with NE = 4648 (Nikon D7000) for different
JPEG qualities.

As expected, high-quality JPEG 100 images enable Mallory to perform a
successful attack due to the negligible quantization (Fig. 4(a)). The situation is

464 E. Quiring et al.

substantially different with stronger compression. For JPEG 90, only the full
fingerprint gives high PCE values for small embedding strengths. Yet, larger
cut-offs demand extremely strong embeddings to achieve high PCEs. For JPEG
quality 85, no choice of α will produce Mallory’s desired result with c � 3.

Analysis Summary. Fragile fingerprints allow a secure identification starting
from JPEG 90 and lower. In accordance to our results from previous sections,
no choice of α will allow an attack with c � 3 for quality factor 85.

5 Application Analysis

We finally examine the application of fragile sensor noise fingerprints. First, we
verify that they are still discriminative enough to distinguish different cameras.
Second, we compare them with the triangle test against fingerprint-copy attacks.

5.1 Camera Identification

In the following, we show that fragile fingerprints allow a reliable camera iden-
tification compared to traditional full camera fingerprints. We only consider
uncompressed images here by the very nature of fragile fingerprints. The PCE
is used as similarity measure for images of each camera (true positives) and all
remaining natural images from the Dresden Image Database (true negatives).
Figure 5a shows the ROC curves for different cut-off frequencies c—aggregated
over 1442 images from the six DDB cameras. The full frequency range is included
for comparison.

Although a fragile fingerprint with c = 1 employs only 28 DCT coefficients in
each block, it achieves the same detection performance as the full fingerprint with
64 coefficients. An almost perfect detection is possible with c � 4 for the Dresden
database. The results for the Nikon D7000 camera are comparable for c � 3. We
contribute this smaller choice of c to a more perturbed fingerprint estimate of
this camera—due to more image content in the respective noise residuals.

Analysis Summary. Fragile fingerprints allow a reliable camera identification.
Together with our security analysis, for a common JPEG quality factor of 85,
Alice can choose c = 3 to achieve both a reliable camera identification and attack
resistance.

5.2 Comparison with Triangle Test

While the triangle test cannot be recommended for authentication, it is a rea-
sonable defense in digital image forensics. Our final experiment highlights its
powerful combination with fragile fingerprints in forensic applications against
fingerprint-copy attacks. Our previous results underline that remaining finger-
print information after quantization are usable for large embedding strengths
with too small cut-off parameters (c � 2). However, the triangle test shows its

Security and Applicability of Fragile Camera Fingerprints 465

0 5 10 15 20 25
96

97

98

99

100

(a)

false positive rate [%]

tr
u
e

p
os

it
iv

e
ra

te
[%

]

full

c = 1

c = 2

c = 3

c = 4

c = 5

0.02 0.1 0.2 0.5 1 2 5 10
0

0.25

0.5

0.75

1

(b)

embedding strength α

A
li
ce

’s
se

cu
ri

ty
ra

ti
o

Triangle Test

Fragile Fing.

Fig. 5. Applications. Plot (a) shows the camera identification of uncompressed images.
Plot (b) depicts the defense performance against fingerprint-copy attack using the
triangle test and fragile fingerprints (JPEG quality 90, c = 1).

strengths exactly in these cases, as the additional residual image content from
the forgery process emerges more clearly with a larger embedding strength [13].

In the following, we assume Mallory to have access to NE = 150 public
JPEG images with quality factor 90 from Alice’s Nikon D200 camera. Mallory
embeds her spoofed fingerprint into an uncompressed image from another camera
while varying α as defined in the previous section. On the defender side, the
linear parameters θ and μ of the test statistic are estimated from 200 images
that Mallory has not used, cf. Eq. (6). We set the threshold t such that the
false alarm probability is 10−3. Finally, Alice reports her security ratio: the
percentage of images that Mallory has used and that are correctly marked as
those. We repeat the process over 100 randomly chosen uncompressed images
where Mallory embeds her spoofed fingerprint. Figure 5b depicts the averaged
security ratio.

For reference, we include the corresponding results with the fragile fingerprint
approach. We focus on c = 1 and JPEG quality 90, where Mallory obtains
considerably high PCE values with a fingerprint-copy attack (see Fig. 4(b)). In
particular, we estimate the distribution of the PCE values from uncompressed
images with a Gaussian kernel density estimator. The PCE threshold under
which an image is not assumed as one from Alice’s camera is set such that the
false positive probability is 10−3. Alice’s security ratio expresses the percentage
of Mallory’s images that do not exceed the PCE threshold and thus are correctly
identified as being not from Alice’s camera.

Figure 5b emphasizes that both approaches are a powerful combination when
Mallory has just access to JPEG images. At the point where Mallory starts to
circumvent fragile fingerprints, the triangle test already detects more than 50% of
images that are involved in Mallory’s attack; usually enough to raise suspicion
that Mallory has forged the image under investigation. In summary, Mallory
faces the following dilemma: A too strong fingerprint strength is likely to be
uncovered by the triangle test; with a too weak embedding, Mallory’s forged

466 E. Quiring et al.

image will not be identified as one of Alice’s images. By using the triangle test
in addition, Alice can even use smaller cut-off values for her fragile fingerprint.

6 Conclusion

This paper contributes to a thorough understanding of fragile camera fingerprints
by providing a comprehensive security analysis. In multiple tests, we confirm
that Mallory cannot estimate Alice’s camera fingerprint from JPEG-compressed
images with common compression levels. Our analysis thus motivates the usage
of fragile fingerprints in various applications, such as authentication or digital
image forensics. Finally, we note that the concept of fragile fingerprints effec-
tively demonstrates how asymmetries in the quality of accessible data can be
exploited. In the context of recent unification attempts between related research
disciplines [3,22], this may foster novel strategies in adversarial machine learning
or signal processing.

Acknowledgments. The authors gratefully acknowledge funding from Deutsche
Forschungsgemeinschaft (DFG) under the project RI 2469/3-1, from the German
Federal Ministry of Education and Research (BMBF) under the project FIDI (FKZ
16KIS0786K), and by the NSF grant 1464275. The first author also thanks the Ger-
man Academic Exchange Service (DAAD) for financial support during his stay in
Binghamton.

A Sample Correlation Coefficient

The objective is to compute Pearson’s sample correlation coefficient between two
images u and v equivalently in the DCT domain. Without loss of generality, we
focus on an 8 × 8 pixel block, so that the correlation is given as

r =
n

∑
u(l)v(l) − ∑

u(l)
∑

v(l)

n

√∑
u(l)2 − (

∑
u(l))2

√∑
v(l)2 − (

∑
v(l))2

(19)

where u(l) and v(l) are the pixel values. The total number of pixel values or
DCT coefficients is given by n, thus for one block n = 64. To obtain the same
correlation value just with the DCT representation U and V of both images, we
use the following identities between spatial pixels and DCT coefficients:

n
∑

u(l)v(l) = n
∑

U(l)V (l) (20)∑
u(l)

∑
v(l) = n2 ū v̄ = n U(0)V (0) (21)

n
∑

u(l)2 = n
∑

U(l)2 (22)(∑
u(l)

)2

= (n ū)2 = n U(0)2. (23)

Security and Applicability of Fragile Camera Fingerprints 467

Incorporating these identities in Eq. (19) and canceling n, we obtain the following
correlation equation for one 8 × 8 pixel block:

r =
∑

U(l)V (l) − U(0)V (0)√∑
(U(l)2) − U(0)2

√∑
(V (l)2) − V (0)2

(24)

The generalization over all image blocks yields the same result. If we now just
focus on AC coefficients, the DC coefficient U(0) and V (0) become zero. As the
AC coefficient’s mean goes to zero, Eq. (24) corresponds to Eq. (19). In other
words, we can directly feed the AC DCT coefficients into the standard Pearson
correlation equation.

B Population Correlation Coefficient

Given a quantizer and uniform step size q, we denote by U an uncompressed
image as random variable and by V its quantized output, V = �U/q + 0.5� · q.
The objective is to compute the population correlation coefficient between U
and V :

ρ =
Cov(U, V)√

Var(U)
√

Var(V)
. (25)

The following general relations between the random variable U and output V
can be established when U is assumed to have a symmetrical and zero-mean pdf
fU (x) with characteristic function ΦU (x) [27]:

Var(V) = Var(U) +
q2

12
+

q2

π2

∞∑
k=1

ΦU

(
2πk

q

)
· (−1)k

k2

+
2q

π

∞∑
k=1

Φ
′
U

(
2πk

q

)
(−1)k+1

k
(26)

Cov(U, V) = Var(U) +
q

π

∞∑
k=1

Φ
′
U

(
2πk

q

)
(−1)k+1

k
(27)

For a zero-mean Laplacian distribution with parameter λ, the characteristic
function is given as:

ΦU (x) =
λ2

x2 + λ2
. (28)

To highlight that the covariance and variance terms are only based on variable U ,
we write Cov(U, V) = Cov+(U) and Var(V) = Var+(U).

In the next step, to determine the fingerprint quality, we need to calculate
the correlation after averaging the uncompressed images and their compressed
counterparts, respectively:

cor (
∑

i Ui,
∑

i Vi) . (29)

468 E. Quiring et al.

We start with the distribution on one subband and denote by Ui,s and Vi,s the
s-th subband of the i-th image and its compressed version. The aggregation
over various subbands follows from the linear property of the covariance and the
assumption of uncorrelated DCT subbands:

Cov (
∑

s Ui,s,
∑

s Vi,s) =
∑

s Cov(Ui,s, Vi,s) . (30)

This is also possible for the variance of a sum of random variables. Finally, we
assume the images to be uncorrelated to average the covariance over all images:

Cov (
∑

i Ui,
∑

i Vi) =
∑

i

∑
s Cov(Ui,s, Vi,s). (31)

Taking all together, the population correlation coefficient is given as

ρ (
∑

i Ui,
∑

i Vi) =
∑

i

∑
s Cov+(Ui,s)√∑

i

∑
s Var(Ui,s)

√∑
i

∑
s Var+(Ui,s)

. (32)

C Empirical Quality of Fingerprint Estimation

For the different image set scenario, Table 3 shows the correlations for NE =
2000 and NE = 4648 JPEG images. NE = 4648 is the maximum number of
available images in our setup, so that its values are from a single instance of the
experiment.

Table 3. Quality of fingerprint estimation (RAISE)

NE JPEG c

Full 1 2 3 4 5

2000 100 0.6241 0.6070 0.5613 0.4867 0.3858 0.2654

95 0.5484 0.3853 0.2694 0.1622 0.0824 0.0551

90 0.4633 0.1588 0.0793 0.0375 0.0181 0.0185

85 0.4030 0.0550 0.0178 0.0071 0.0031 0.0065

80 0.3619 0.0195 0.0026 −0.0003 0.0002 0.0045

75 0.3301 0.0070 −0.0029 −0.0024 0.0004 0.0023

70 0.3093 0.0035 −0.0042 −0.0036 −0.0001 0.0017

4648 100 0.6526 0.6387 0.5968 0.5279 0.4330 0.3151

95 0.5890 0.4654 0.3531 0.2269 0.1208 0.0808

90 0.5054 0.2162 0.1130 0.0543 0.0264 0.0277

85 0.4451 0.0757 0.0248 0.0099 0.0040 0.0094

80 0.4045 0.0272 0.0033 −0.0008 −0.0005 0.0047

75 0.3732 0.0100 −0.0044 −0.0035 0.0006 0.0033

70 0.3535 0.0053 −0.0058 −0.0053 −0.0003 0.0022

Security and Applicability of Fragile Camera Fingerprints 469

References

1. Alaca, F., van Oorschot, P.C.: Device fingerprinting for augmenting web authenti-
cation: Classification and analysis of methods. In: Annual Conference on Computer
Security Applications (ACSAC) (2016)

2. Ba, Z., Piao, S., Fu, X., Koutsonikolas, D., Mohaisen, A., Ren, K.: ABC: enabling
smartphone authentication with built-in camera. In: Proceedings of Network and
Distributed System Security Symposium (NDSS) (2018)

3. Barni, M., Pérez-González, F.: Coping with the enemy: advances in adversary-
aware signal processing. In: IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP) (2013)

4. Böhme, R., Freiling, F.C., Gloe, T., Kirchner, M.: Multimedia forensics is not
computer forensics. In: Geradts, Z.J.M.H., Franke, K.Y., Veenman, C.J. (eds.)
IWCF 2009. LNCS, vol. 5718, pp. 90–103. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-03521-0 9

5. Bojinov, H., Michalevsky, Y., Nakibly, G., Boneh, D.: Mobile device identification
via sensor fingerprinting. CoRR abs/1408.1416 (2014)

6. Dang-Nguyen, D.T., Pasquini, C., Conotter, V., Boato, G.: RAISE: a raw images
dataset for digital image forensics. In: 6th ACM Multimedia Systems Conference
(2015)

7. Entrieri, J., Kirchner, M.: Patch-based desynchronization of digital camera sen-
sor fingerprints. In: IS&T Electronic Imaging: Media Watermarking, Security, and
Forensics (2016)

8. Fridrich, J.: Sensor defects in digital image forensic. In: Sencar, H., Memon, N.
(eds.) Digital Image Forensics. There is More to a Picture than Meets the Eye, pp.
179–218. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-0757-
7 6

9. Gloe, T., Böhme, R.: The Dresden Image Database for benchmarking digital image
forensics. J. Digit. Forensic Pract. 3(2–4), 150–159 (2010)

10. Gloe, T., Kirchner, M., Winkler, A., Böhme, R.: Can we trust digital image foren-
sics? In: 15th International Conference on Multimedia (2007)

11. Gloe, T., Pfennig, S., Kirchner, M.: Unexpected artefacts in PRNU-based camera
identification: a ‘Dresden Image Database’ case-study. In: ACM Multimedia and
Security Workshop (2012)

12. Goljan, M., Fridrich, J.: Sensor-fingerprint based identification of images corrected
for lens distortion. In: Memon, N., Alattar, A.M., Delp, E.J. (eds.) Media Water-
marking, Security, and Forensics. Proceedings of SPIE, vol. 8303, p. 83030H (2012)

13. Goljan, M., Fridrich, J., Chen, M.: Defending against fingerprint-copy attack in
sensor-based camera identification. IEEE Trans. Inf. Forensics Secur. (TIFS) 6(1),
227–236 (2011)

14. Goljan, M., Fridrich, J., Filler, T.: Large scale test of sensor fingerprint camera
identification. In: Delp, E.J., Dittmann, J., Memon, N., Wong, P.W. (eds.) Media
Forensics and Security. Proceedings of SPIE, vol. 7254, p. 72540I (2009)

15. Gretton, A., Fukumizu, K., Teo, C.H., Song, L., Schölkopf, B., Smola, A.J.: A kernel
statistical test of independence. In: Advances in Neural Information Processing
Systems (NIPS) (2008)

16. Karaküçük, A., Dirik, A.E.: Adaptive photo-response non-uniformity noise removal
against image source attribution. Digit. Investig. 12, 66–76 (2015)

17. Kirchner, M., Böhme, R.: Synthesis of color filter array pattern in digital images.
In: Delp, E.J., Dittmann, J., Memon, N., Wong, P.W. (eds.) Media Forensics and
Security. Proceedings of SPIE, vol. 7254, p. 72540K (2009)

https://doi.org/10.1007/978-3-642-03521-0_9
https://doi.org/10.1007/978-3-642-03521-0_9
https://doi.org/10.1007/978-1-4614-0757-7_6
https://doi.org/10.1007/978-1-4614-0757-7_6

470 E. Quiring et al.

18. Li, S., Karrenbauer, A., Saupe, D., Kuo, C.C.J.: Recovering missing coefficients in
DCT-transformed images. In: IEEE International Conference on Image Processing
(ICIP) (2011)

19. Lukáš, J., Fridrich, J., Goljan, M.: Digital camera identification from sensor pattern
noise. IEEE Trans. Inf. Forensics Secur. (TIFS) 1(2), 205–214 (2006)

20. Marra, F., Roli, F., Cozzolino, D., Sansone, C., Verdoliva, L.: Attacking the triangle
test in sensor-based camera identification. In: IEEE International Conference on
Image Processing (ICIP) (2014)

21. Mohanty, M., Zhang, M., Asghar, M.R., Russello, G.: e-PRNU: Encrypted domain
PRNU-based camera attribution for preserving privacy. IEEE Trans. Dependable
Secur. Comput. (TDSC) (2019)

22. Quiring, E., Arp, D., Rieck, K.: Forgotten siblings: unifying attacks on machine
learning and digital watermarking. In: IEEE European Symposium on Security
and Privacy (EuroS&P) (2018)

23. Quiring, E., Kirchner, M.: Fragile sensor fingerprint camera identification. In: IEEE
International Workshop on Information Forensics and Security (WIFS) (2015)

24. Reininger, R.C., Gibson, J.D.: Distributions of the two-dimensional DCT coeffi-
cients for images. IEEE Trans. Commun. 31(6), 835–839 (1983)

25. Stamm, M.C., Liu, K.J.R.: Anti-forensics of digital image compression. IEEE
Trans. Inf. Forensics Secur. (TIFS) 6(3), 1050–1065 (2011)

26. Valsesia, D., Coluccia, G., Bianchi, T., Magli, E.: User authentication via PRNU-
based physical unclonable functions. IEEE Trans. Inf. Forensics Secur. (TIFS)
12(8), 1941–1956 (2017)

27. Widrow, B., Kollár, I.: Quantization Noise. Cambridge University Press, Cam-
bridge (2008)

Attacking Speaker Recognition Systems
with Phoneme Morphing

Henry Turner(B), Giulio Lovisotto, and Ivan Martinovic

University of Oxford, Oxford, UK
{henry.turner,giulio.lovisotto,ivan.martinovic}@cs.ox.ac.uk

Abstract. As voice interfaces become more widely available they
increasingly implement speaker recognition, to provide both personalized
functionalities and security via authentication. In this paper, we present
a method that transforms the voice of one person so that it resembles
the voice of a victim, such that it can be used to deceive speaker recogni-
tion systems into believing an utterance was spoken by the victim. The
transformation only requires short pieces of audio recordings from the
source and victim voices, and does not require specific words to be spo-
ken by the victim. We show that the attack can be improved by using a
population of source voices and we provide a metric to identify promising
source voices, from within such a population.

We evaluate our attack along a set of dimensions, including: varying
quantity, quality and types of known victim audio, verification and iden-
tification systems, white- and black-box models and both over-the-wire
and over-the-air access. We test the audio transformation on two dif-
ferent proprietary models: (i) the Azure Speaker Recognition API and
(ii) the Siri voice activation of an Apple iPhone, showing that individ-
uals can easily be impersonated by obtaining as little as one minute of
their audio, even when such audio is recorded in noisy conditions. With
attempts from only three source voices, our attack achieves success rates
of over 40% in the weakest assumption scenario against the Azure Veri-
fication API and rates of over 80% in all scenarios against Siri.

Keywords: Voice conversion · Speaker · Authentication · Biometrics

1 Introduction

As voice interfaces become more popular, voice-based devices are now adding
speaker recognition to their capabilities, so they can understand both what has
been said (speech recognition) and who has said it (speaker recognition). Speaker
recognition allows for customized functionality, as well as authentication, remov-
ing the burden of other less user-friendly authentication approaches (e.g., PINs
or passwords). Nowadays, speaker recognition is available in commercial prod-
ucts such as Google Home [16] or Apple Siri [2]. Additionally, speaker recognition
is increasingly been deployed for over the phone authentication by companies in
the financial sector (e.g., HSBC [18], Lloyds Bank [25]).
c© Springer Nature Switzerland AG 2019
K. Sako et al. (Eds.): ESORICS 2019, LNCS 11735, pp. 471–492, 2019.
https://doi.org/10.1007/978-3-030-29959-0_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29959-0_23&domain=pdf
https://doi.org/10.1007/978-3-030-29959-0_23

472 H. Turner et al.

Recent studies have focused on analyzing the security of speech recognition
systems [7,8,33,35,36], often with attacks which use adversarial machine learn-
ing techniques to craft malicious audio. These studies have shown that many
voice assistants are vulnerable to these types of attacks, and that commands
can inconspicuously be injected or hidden in other sounds, such as songs [35].
However, as speaker recognition becomes widely available and used for sensitive
functions, additional investigations are needed to assess its security guarantees.
When targeting a speaker recognition system, rather than inconspicuously inject
voice commands, the adversary’s goal is to unlock access to a voice-protected
device by replaying audio that resembles the device owner’s voice.

Previous work in this area focused on creating complex and expensive mod-
els for synthesizing audio or converting one’s own voice into the voice of the
victim [10,13,19,21,26,31]. Generally the training audio is collected in a well-
isolated studio environment and the ultimate goal of the generated audio is to
deceive a human listener. However, from an adversarial perspective, obtaining
audio of spoken utterances could be suspicious or unfeasible for certain vic-
tims. The unavailability of long samples of victim audio brings two limitations
in re-creating the victim’s voice: (i) models based on parallel datasets for voice
conversion can not be used and (ii) synthesizers or conversion methods based
on deep models do not reach sufficient accuracy, as intra-user variability is not
efficiently captured. A detailed analysis of related work is given in Sect. 2.

In this paper, we present a voice conversion attack that manipulates individ-
ual phonemes from a source voice into sounding like those of a target voice. This
attack is not aimed at deceiving humans, but at deceiving speaker recognition
systems. The transformation is based on morphing phoneme-related features in
the Mel frequency cepstrum space [27], which is a representation of sound com-
monly used as feature inputs for voice recognition systems. Our transformation
only requires knowledge of the number of phonemes in the target language and a
piece of audio from the victim. We show that such an attack can be improved by
using a population of candidate source voices (easily available online), as some
voices are better transformed into others. We provide a method of identifying
which source voices are likely to succeed in impersonating a target voice.

We evaluate the transformation on different speaker recognition systems.
We use a white-box model to learn how to improve the voice conversion and
we show that the attack can successfully fool black-box models in both over-
the-wire and over-the-air access. We conduct our evaluation across a different
set of assumptions for the adversary, including (i) amount of known audio and
(ii) recording noise. We further show that our transformation can be used on
verification systems unlocked with a text-dependent keyphrase, as well as text-
independent voice identification systems.

The main contributions of this paper are the following:

– We propose a new voice conversion method based on the creation of a
phoneme mapping function between a source and a target voice in MFCC
space, which only requires knowledge of the language’s number of phonemes.

Attacking Speaker Recognition Systems with Phoneme Morphing 473

– We analyze the effectiveness of the transformation across different assump-
tions regarding quantity and quality of training data, identification and verifi-
cation use-cases. We show that only few authentication attempts can deceive
the proprietary models of the Azure Speaker Recognition APIs.

– We further test the attack over-the-air on the Siri assistant of Apple iOS,
achieving success rates of over 50% with only one authentication attempt in
the worst case.

2 Related Work

Prior work in this area focused on two different domains. The first consists of
attacks on speech recognition, where the aim is to inconspicuously inject mali-
cious commands into voice assistants (e.g., “delete my contact list”). This is
done both by generating new audio that is inaudible to the user or by modi-
fying existing audio in a way that is non-perceivable by a human. The second
domain consists of attacks on speaker recognition, where an adversary attempts
to impersonate a victim’s voice. Impersonation attacks are particularly threat-
ening in verification (authentication) scenarios, where a system uses voice-based
access control, but can also be dangerous in identification use-cases, where an
adversary could fool the system about their identity. We cover both domains in
this section.

2.1 Speech Recognition

For speech recognition, several works attempted to create inconspicuous ways
to embed or hide speech commands which trigger specific actions on voice assis-
tants. Vaidya et al. [33] introduced obfuscated voice commands, which are rec-
ognized and executed by voice systems but unintelligible to a human listener.
This is done through repeated application of a Mel Frequency Cepstrum Coeffi-
cient (MFCC) based audio mangler, which applies and then inverts the MFCC
transform. This work is extended in [7], showing that an attacker can perform
this attack even in more realistic conditions, such as black-box models, and in
the presence of background noise, while retaining the non-intelligibility of the
commands for humans. Yuan et al. [35] demonstrate a technique which allows
an adversary to embed speech commands into songs, which allows an attack to
be conducted in front of a victim with greater ease. In [8] this is extended to
allow any pre-chosen command to be embedded into a given audio sample, such
that a human does not perceive the command. This allows a human to hear one
utterance but the system to believe it is has heard something entirely different.
A slightly different approach is taken in [36], where Zhang et al. demonstrate
embedding commands entirely in (human-)inaudible frequency range, but which
are still accepted by voice assistants.

Our Work. As opposed to speech recognition, we specifically focus on the secu-
rity of speaker recognition systems. This means that our work is related to speech
recognition, but does not overlap directly. An adversary could design a way to

474 H. Turner et al.

combine our method with a speech recognition attack to bypass impersonation
while still achieving inconspicuous malicious transcription. Compared to speech
recognition attacks, we do not require the audio to have non-intelligible or
inaudible properties. Since the adversary wants to be able to interact with the
voice-based system directly to perform some malicious activity, they require tem-
porary unsupervised access to the device, and as such nothing is gained by the
audio being imperceptible. We also retain the goal of correct transcription,
so that keyphrases are still accepted by the system.

2.2 Speaker Recognition

The goal of attacks on speaker recognition systems is to impersonate users, that
is to create audio that is incorrectly interpreted by the system as belonging to
a specific user. Attacks against speaker recognition systems can be divided into
four categories: (i) impersonation, (ii) replay, (iii) speech synthesis and (iv) voice
conversion [14]. In mimicry attacks, human impersonators attempt to alter their
own voice in order to mimic another person’s voice [23]. Replay attacks involve
replaying (with a loudspeaker) audio samples to the system, either in whole
or by merging parts of other audio files together [24]. Speech synthesis aims
to create a model for generating completely artificial speech. In [10] De Leon
et al. proposed a technique based on a Hidden Markov Model (HMM), which
adapts a background model in order to derive an audio synthesizer. The analysis
show that such a synthesizer can impersonate users in the well known Gaussian
Mixture Model (GMM) [3] 81% of the time.

The method presented in this paper falls in the voice conversion category,
where the goal is to convert the perceived speaker identity of a given utterance.
Many works have addressed the problem of voice conversion and recently the
popularity of the Voice Conversion Challenge [32] gave way to a numerous set
of works [13,19,21,26,31]. Approaches such as [26] use a probabilistic mapping
of vocal tract models to convert between speakers, where as [21] use a GMM
trained on aligned audio from victim and attacker, which can then be applied
to the source audio.

Both speech synthesis and voice conversion approaches have been shown to
achieve good results in re-creating a person’s voice. However, these approaches
are designed for non-adversarial scenarios, where large volumes of high-quality
audio for each speaker are available to train models. Additionally, voice con-
version approaches often require labelled parallel training data: both source and
target speaker uttering the same known sentences, so that a model can be trained
by mapping them on a one-to-one basis. Furthermore, these approaches are gen-
erally targeted at fooling human listeners, imposing many constraints on how
realistic the voice sounds.

Our Work. We address the voice conversion problem from an adversarial per-
spective, which brings limited availability of audio: both in quantity and in
quality (noise). Additionally, we focus on fooling systems rather than human
listeners. Fooling a human listener would not provide an advantage to the adver-
sary in our case (the system is unsupervised at the time of the attack).

Attacking Speaker Recognition Systems with Phoneme Morphing 475

audio
transformation

phase 1 phase 2 phase 3

Fig. 1. Threat model. The adversary initially records audio of the victim. This is used
to create a transformation, which is applied to some source audio and replayed to the
device (e.g., with a loudspeaker).

In our approach we learn a phoneme-specific transformation from a source
voice to the victim voice, guaranteeing that each phoneme from the source can
be transformed to a similarly-sounding phoneme for the victim. This allows the
correct transcription to be retained for the speech recognition, while at the same
time transforms the source voice so that it resembles the victim’s voice. The
method works with limited amounts of text-independent voice data, and even in
the presence of noise, and only requires knowledge of the approximate number
of phonemes in a language. The goal of our analysis is to evaluate the security
of speaker recognition systems in realistic threat scenarios.

3 Threat Model

The phases of an attack are shown in Fig. 1. The adversary first records the victim
speaking and then constructs a mapping function between another individual’s
voice and the victim’s voice. They then use this function to transform the other
individual’s voice into the victim’s and replays the transformed audio into the
system, with the goal of impersonating the victim.

Background. Users interact with a speaker recognition system, either verifi-
cation or identification. In the case of verification, the system requires users to
utter a specific sentence, hereafter keyphrase, and uses such utterance to recog-
nize users, in either authentication or identification use cases. As an example, a
laptop could use speaker authentication with the “Hey Siri, it’s me” keyphrase
in order to be unlocked (rather than typing a password). The keyphrase could
either be fixed or contain a challenge, such as asking to speak today’s date or
utter a set of numbers being shown on the screen at the time of authentication.

Capabilities. Adversaries can: (i) record audio of the victims talking, (ii) replay
audio to the voice recognition system (e.g., with a loudspeaker).

Knowledge. Following from the capabilities, adversaries have some knowledge
of the victims voice trait (from recording audio of them talking). Additionally,
the adversary has a set of audio samples containing spoken words for a population
of individuals. This can be achieved easily by utilizing free speech datasets such
as VoxForge [34]. However, adversaries are limited along the following dimen-
sions:

476 H. Turner et al.

Fig. 2. Sound wave of the utterance “Hey Siri”. Within the same phoneme (/i/) a
wave pattern repeats itself, depending on the fundamental frequency of voice [15].

1. black-box model : adversaries do not know what voice processing and recog-
nition algorithms are in place, and thus cannot optimize their attack for a
specific method.

2. recorded utterances: adversaries cannot record victims uttering the exact
keyphrase required for authentication, nor its individual words (not all of
them). This is straightforward when the keyphrase includes a challenge, but
also reasonable when it does not. Keyphrases are typically designed so that
they do not occur in normal day-to-day speech, to avoid unwanted authenti-
cations.

3. audio quality : adversaries may only be able to record audio in public settings.
This means that the recorded audio would have poor quality, as it involves
a combination of (i) background noise, (ii) recording from a distance, (iii)
recorded audio being emitted by loudspeakers rather than victims themselves.

4. audio duration: adversaries can only record the victim for a limited amount
of time before raising suspicion. Consequently, they might have a weak rep-
resentation of victims vocal characteristics, increasing modelling difficulty.

Scenarios. Following from the considerations of the previous paragraphs, we
define three different scenarios that represent realistic attack situations.

– Conference: the attacker is attending a conference where the victim is giving
a talk, and records the victim speaking during their talk. The recorded audio
is not of the victim directly, but is a recording of the room speakers connected
to the victim’s microphone.

– Cafe: the attacker is at the same cafe where the victim is enjoying a coffee
while having a conversation with other people. The victim’s audio is recorded
from a distance and is subject to background noise.

– Ideal : the attacker obtains high quality audio of the victim from the internet
and uses it for their attack. The audio is extracted from a source such as a
podcast, or a video of the victim speaking.

All attackers finalize the attack by playing their generated audio to the device.
If attackers want to avoid detection, depending on the scenario, they can wait
for the device to be left unattended before replaying audio to the device. These
adversaries guide our experimental design. We further discuss how we model
them in Sect. 5.

Attacking Speaker Recognition Systems with Phoneme Morphing 477

4 Attack Method

Overview. We construct the attack using the concept of phonemes, which are
the individually perceivable units of sound in spoken language. We show in
Fig. 2 how phonemes appear in an audio wave of a spoken word: each phoneme
is composed of a repeating wave pattern. The attack aims to transform each of
these phoneme-related patterns so that they closely resemble the victim’s. This
is done by deriving a function which maps phonemes spoken by a known speaker
into phonemes that resembles those spoken by the victim. The strength of using
such an approach is that all knowledge requirements about the structure of the
spoken language are removed. This way, an attacker can also afford to ignore the
relationship between these phonemes and utterances (i.e., whether a particular
phoneme occurs in an audio sample). In fact, no phoneme extraction is necessary,
knowing the approximate number of phonemes for the language is sufficient (in
spoken British English there are 44 phonemes [17]). We construct the mapping
in the MFCC domain, as opposed to modifying the raw audio wave. We show
that mapping the outputs of the MFCC extraction and reconstructing the audio
wave afterwards is sufficient for the transformation to work.

optimal assignment

MFCC
clustering

1 442

source
voice

target
voice

source
utterance

MFCC
m

ap
pi

ng invert
MFCC

mapped
MFCC

transformed
utterance

Step 1

MFCC

clustering
1 442

Step 2

Step 3

Fig. 3. Steps to craft transformed utterances. In the first and second step the adversary
computes the optimal mapping between the source and the target phonemes, in the
third step they use the mapping to transform a specific utterance from the source.

4.1 Formulation

Given two speakers S and T (source and target) and a set of known audio
recordings produced by them si, tj , the transformation works as follows. Initially,
the audio recordings are transformed into the MFCC spectrum, for a single audio
file a we obtain a set of samples (due to the windowing process) as follows:

mfcc(a) = {m
(a)
0 , . . . ,m(a)

n } (1)

where the number of points n depends on the audio length. We extract MFCC
features for all audio recordings ai belonging to a speaker. Then we use K -means
clustering, where K is the number of phonemes in the language, (K = 44 in our
case) on all the samples (separately for T and S) to infer the clusters C

(S)
k , C

(T)
k ,

where each cluster represents a phoneme. With the clusters, we also obtain the
cluster centroids CS = {s1, . . . , sK} and CT = {t1, . . . , tK}.

478 H. Turner et al.

Afterwards, we compute an optimal mapping between individual cluster cen-
troids from the two sets CS , CT . We formulate the optimization as an assignment
problem, which we solve with the Hungarian algorithm [22]. We use l1 as the
distance function between two centroids. The output of the mapping consists in
a set of pairs (k, j) where k, j ∈ {1, . . . , K} and the pair (k, j) indicates that
points belonging to cluster k for speaker S should be transformed into points
belonging to cluster j for the speaker T to maximize the similarity.

We implement the above transformation using a linear shift in MFCC space.
Given m

(a)
i ∈ C

(S)
k and given the optimal mapping for cluster k, pair (k, j), we

compute a transformed sample o
(a)
i as follows:

o
(a)
i = m

(a)
i + tj − sk. (2)

For an entire audio recording a, Eq. 2 is applied sequentially to each sample m
(a)
i

in mfcc(a), resulting in a set of transformed samples {o
(a)
0 , . . . , o

(a)
n }. Finally we

invert the MFCC transformation using the method shown by Ellis [12], to give
the transformed audio a∗:

a∗ = mfcc−1({o
(a)
0 , . . . , o(a)n }) (3)

4.2 Attack Execution

There are three steps to generate the attack audio, shown in Fig. 3. In the first
step, adversaries compute the phoneme clustering for a source voice, which can
be their own. In the second step, they obtain a recording of the target’s voice
and compute clustering for this data. Immediately afterwards, the adversary
can compute the optimal phoneme mappings between the source and the target
clusters. In the final step the adversary selects a source utterance, usually the
keyphrase or a voice command used by the system, applies the transformation in
Eq. 2 and creates a transformed utterance audio to be played to the system. The
first step can always be computed offline, that is before the adversary selects a
target, while the remaining steps depend on when the adversary is able to record
the victim speaking and when they obtain physical access to the system.

Choice of Source Speaker. We found that the selection of source speaker
greatly affects the quality of the transformation, meaning that certain voices
can be more accurately mapped to certain targets. We therefore extend our
attack to consider a population of individuals as sources, that the adversary
can obtain by downloading online voice datasets, or recruiting a population of
people to provide a set of potential source voices. This way, the adversary can
compute mappings for each individual in the population, and later has several
candidates to choose as the source utterance in the last phase of the attack (see
Fig. 3). As it is reasonable for adversaries to limit the number of failed attempts
(i.e., playing an attack utterance and being rejected or wrongly classified by the
system), one strategy is to estimate the chance of successful impersonation based
on the mapping output.

Attacking Speaker Recognition Systems with Phoneme Morphing 479

Following these considerations, given a mapping composed of a set of pairs
(k1, j1), . . . , (kK , jK) we use the sum of the L1 norm of paired cluster centroids
as an indicator:

ε =
K∑

i=1

||ski
− tji ||1 (4)

Intuitively, the lower the distance (error, ε) between the mapped clusters, the
more accurate the transformation becomes. Therefore, whenever the adversary
carries out an attack they sort the possible source voices based on increasing ε
and use them as sources in this order.

5 Experimental Design

In this section we describe our data collection method, then present how we
model the adversaries of Sect. 3 and describe the target systems considered for
the evaluation.

5.1 Data Collection

Collection Procedure. We collected audio data from 20 male native English
speakers, recruited mainly through social media and mailing lists. Participants
were mostly from southern England, and aged between 18 and 30. Recording
sessions took place in an isolated room in a university building, taking approx-
imately 30 min. Recordings were conducted using an AmazonBasics Portable
USB Condenser Microphone, connected to a Windows laptop. Recordings used
the inbuilt “Voice Recorder” software. Participants were instructed to keep the
distance between themselves and the microphone between 5 and 15 cm. The data
collection was approved by an ethical review board at our University, Reference:
SSD/CUREC1A CS C1A 18 032. Participants were informed of the purpose of
the study and informed consent was obtained from them prior to commencing
any recording sessions. As voice is personally identifying information, we do not
publicly share the voice dataset.

Transcripts. The participants were required to utter sentences from four dif-
ferent categories: (i) conference transcripts, (ii) conversation transcripts, (iii)
commands and (iv) enrollment transcripts. Each utterance source is designed
to re-create the scenarios mentioned in Sect. 3. The enrollment and commands
transcripts are identical for every participant, while for conference and conversa-
tion, to increase the dissimilarity of spoken words, we randomly assign one out
of five transcripts to each user1. Transcripts were split into utterances of roughly
equal length, with an utterance typically containing a single sentence.

1 Transcript summaries are available in Appendix A.

480 H. Turner et al.

5.2 Adversary Modelling

Conference Attacker. This attacker only obtains audio samples coming from
utterances from the conference transcripts. In order to recreate the “confer-
ence” effect (the recorded audio coming from distant loudspeakers), we apply
the following processing to the original audio. First we apply the Freeverb [30]
algorithm to generate reverberation in the audio (following data augmentation
practices used in Kaldi [29]). To simulate recording from a distance, we apply a
low-pass filter (with cutoff at 8KHz) to attenuate higher frequencies, and scale
the amplitude of the signal to reduce the volume.

Cafe Attacker. This attacker only obtains audio samples coming from utter-
ances from the conversation transcripts. In order to recreate the “cafe” effect
(recording from a distance plus background chatter and noise), we apply the
same processing used for Conference Attacker (with less reverberation). Addi-
tionally, we mix the audio file with common cafe background noise2 (the overlaid
noise segment is chosen randomly per sample).

Ideal Attacker. This attacker uses the clean recorded audio from the data
collection, with no post-processing or noise applied to it. The Ideal Attacker
represents a worst-case scenario where the adversary obtains good quality audio
samples, and we use it as an indication of the empirical upper bound for the
attacker’s success rate.

Audio Duration. In order to evaluate the effect of different amounts of audio on
the attack success, we model two different audio durations in our experiments:
all and one minute. The all case represents the case where we use all audio
collected for a given scenario (either conference or cafe). The audio quantity
averages 317.7 s for the Conference Attacker and 330.5 s for the Cafe Attacker,
including pre- and post- speech silence. Ideal Attacker uses all the audio avail-
able for that victim, giving an average of 648.2 s per victim. In the one minute.
case, we randomly sample utterances from the related transcripts until we reach
a cumulative total of 60 s of audio, including silence parts. We choose to system-
atically analyze each combination of these, creating six different scenarios (three
attackers, two audio lengths).

5.3 Target Systems

We evaluate our experiments against speaker recognition systems, both in the
identification and verification use-case. We use three different systems for the
evaluation: (i) Spear [20] (ii) Azure Speaker Recognition APIs3 and (iii) Apple
iOS Siri (“Hey Siri”). The Spear toolbox is a set of libraries used to train and
evaluate speaker recognition models, which we download and train locally with
the VoxForge [34] dataset. Meanwhile, Azure Speaker Recognition only offers

2 https://youtube.com/watch?v=BOdLmxy06H0.
3 https://azure.microsoft.com/en-us/services/cognitive-services/.

https://youtube.com/watch?v=BOdLmxy06H0
https://azure.microsoft.com/en-us/services/cognitive-services/

Attacking Speaker Recognition Systems with Phoneme Morphing 481

−2 −1 0 1 2 3 4
score

0.0
0.2
0.4
0.6
0.8
1.0

fr
eq
ue
nc
y

original transformed

Fig. 4. Frequency distribution of scores
for identification before and after the
phoneme transformation. Scores move
towards the decision boundary after the
application of transformation (Spear).

low high
distance ()

0.5

1.0

1.5

2.0

sc
or
e

Fig. 5. Similarity score between trans-
formed audio and target user templates,
computed by the classifier, as a func-
tion of distance between voices. Reduced
distance leads to an increase in score
(Spear).

online (subscription-based) API access. Microsoft reported that the verification
API has performance “competitive with the best published number” and that
the identification API has “high precision (above 90%) [which] is obtained at
around a 5% rejection rate” [28]4. Apple iOS Siri provides a real world test of
the attack against a widely deployed system, which is used for accessing functions
on iOS devices. Apple reports that the end-to-end performance of the system
has an imposter acceptance rate of 3.2% [2] and an EER of 4.3% on the speaker
recognition task alone (i.e not including keyphrase matching). In all cases, we
treat the system as a black-box model: we never change nor adapt the method
of Sect. 4.

6 Experimental Evaluation

In this section we first show some preliminary results on the Spear system, then
show the results on the Azure Speaker API and finally on the Apple iPhone Siri.

6.1 Spear Toolkit

Setup. We use the Spear toolkit to train a GMM-based classifier, with 20 MFCC
features plus their first and second derivatives as input features. Throughout our
Spear experiments we use audio data obtained from the VoxForge [34] database.
Specifically, we use data from users who define themselves as speaking “American
English” and take the 63 users with the longest total amount of recorded audio.
The users are then randomly split into three groups of 15 plus one of 18: (i)
one group for training the background model, (ii) one for refining the model
parameters (development set), (iii) one enrolled into the system (test set), and
we use the larger (iv) fourth group as voice sources for the attack.

4 We conducted our experiments against the Microsoft APIs in January 2019.

482 H. Turner et al.

The classifier decides whether an input audio file belongs to certain enrolled
user by computing a similarity score between the audio and the enrolled tem-
plate for every user (identification), with larger scores being closer matches. We
compute the EER on the development set by varying the score threshold for
acceptance, we find EER to be 7% corresponding to a decision boundary thresh-
old of 1.38. We use the learned threshold on the (unseen) test set to compute
the system recognition rates, which leads to a false accept rate of 3.7% and a
false reject rate of 0%. Since we are using Spear as a baseline system to quickly
evaluate the attack, we only consider the Ideal attacker in this section.

Results. Figure 4 shows two frequency distributions of distance scores from the
acceptance decision boundary (vertical dashed line, set at the EER). The origi-
nal distribution corresponds to distances obtained by testing an impersonation
attack with non-modified voice samples (zero-effort attack), all possible source-
target pairs (15×18) are used for the visualization. The transformed distribution
shows the distance scores for the same samples, but when applying the transfor-
mation of Sect. 4, no population is used in this case. Figure 4 shows that applying
the transformation greatly increases the likelihood of the sample lying above the
decision threshold and therefore being accepted.

Figure 5 shows how the mapping accuracy affects the success rate of the
attack. The figure reports the distance from the decision boundary (score)
of transformed samples, as a function of the error ε measuring the mapping
(in)accuracy (see Sect. 4.2): lower error is correlated with higher matching score
(r = .48). In Fig. 5, each marker identifies all the data points related to a par-
ticular source voice (i.e., for source voice i, each i → j transformation with j
being a target voice). For each source, we fit a linear regression curve to high-
light this trend and we can see that as the distance (error) ε increases, the score
of transformed samples decreases. Figure 5 also shows how some victim voices
are more vulnerable to being impersonated than others, with clusters of higher
scoring points belonging to some victims. In the next section we build on these
results to evaluate the attack against the Azure APIs.

0 5 10 15
cumulative attempted sources

0.0

0.2

0.4

0.6

0.8

1.0

su
cc
es
sf
ul

at
ta
ck
s

all
1min

(a) Ideal Attacker.

0 5 10 15
cumulative attempted sources

0.0

0.2

0.4

0.6

0.8

1.0

all
1min

(b) Cafe Attacker.

0 5 10 15
cumulative attempted sources

0.0

0.2

0.4

0.6

0.8

1.0

all
1min

(c) Conference Attacker.

Fig. 6. Results of the different attackers on ASV, considering different amounts of
audio. Shaded areas show results within one standard deviation, averaged over the
four keyphrases.

Attacking Speaker Recognition Systems with Phoneme Morphing 483

6.2 Azure Speaker Verification

Setup. The idea behind this experiment is to see whether the attack can be
successfully conducted against a commercially available API, with a proprietary
model for speaker verification. The Azure Speaker Verification API (hereafter
ASV) is text-dependent and has a set of keyphrases that can be used with it.
We collected audio of five of these keyphrases, which we require each participant
to speak four times. Each user is enrolled using four samples of a given phrase
(ASV requires at least three samples). There are no parameters within ASV to
modify its performance, and as such no way to adjust any thresholds associated
with acceptance or rejection5.

We generate attack samples for these keyphrases using each of our partici-
pants as a victim, and using all the remaining participants as source voices, for
each of our scenarios in turn. As we have four repetitions of each keyphrase, the
attacker performs four authentication attempts for one source before moving to
the next source. We submit each of these attack samples to ASV and receive
a reject/accept response. Across all scenarios we create and evaluate a total of
38,400 attack samples, which we use to evaluate the performance of our attack.

Table 1. Percentage of successful attacks using up to three source voices on ASV,
computed for all scenarios and keyphrases.

Keyphrase Ideal Conference Cafe

1 min all 1 min all 1 min all

KP1 :“my voice is stronger than passwords” 26.3% 52.6% 47.4% 57.9% 42.1% 57.9%

KP2 :“my password is not your business” 68.4% 94.7% 84.2% 89.5% 89.5% 89.5%

KP3 :“apple juice tastes funny after toothpaste” 21.1% 42.1% 15.8% 31.6% 21.1% 42.1%

KP4 :“you can activate security system now” 63.2% 73.7% 31.6% 52.6% 47.4% 73.7%

Results. Table 1 shows the results of verification experiments, for each scenario
and keyphrase. The values in Table 1 are the percentages of successful imperson-
ation attacks, which are calculated in the following way: the adversary attempts
impersonation with the first three sources in the ε-ranked list (see Sect. 4), if any
of these are successful then we count this as a successful attack.

There is significant variability in the results between different keyphrases:
KP2 obtains the highest success rate on average (85%), while KP3 performs the
lowest (28%). This might be related to the mapping accuracy of the phonemes
that form these utterances, which degrades when some phonemes are under-
represented (i.e., they occur in low number) in the known victim audio. For
example, the phonemes [dZ], [U] and [T] all occur in KP3 , and are the 7th,
4th and 3rd least common phonemes respectively [6], and therefore likely to be
5 We had to remove one phrase, “Houston we have had a problem”, as participants

spoke the phrase as “Houston we have a problem”, a popular misconception.

484 H. Turner et al.

Ideal Conference Cafe
0.0

0.2

0.4

0.6

0.8

1.0
su
cc
es
sf
ul

at
ta
ck
s

all 1min

(a) Scenario analysis.

victims
0.0

0.2

0.4

0.6

0.8

1.0

su
cc
es
sf
ul

at
ta
ck
s

all
1min

(b) Per-victim Analysis.

Fig. 7. Average successful impersonations on ASI. Results show that changes in audio
quantity and quality only have small effects on success rate. Plots show the successful
attacks for each scenario.

under represented. We see differing success rates across scenarios and amount of
known audio, with the one minute audio scenario performing consistently worse
(−16%) than the all audio scenario. Ideal Attacker performs the best, but even
the noisy audio of Conference and Cafe Attacker achieves high success rates.

Figure 6 shows the cumulative successful attacks as the adversary attempts
impersonation with each source voice in his dataset (sources are ranked by ε).
Unexpectedly, Cafe and Conference attacker do not seem to greatly suffer from
the additional audio noise in comparison to Ideal. This suggests that even noisy
recordings of the victim audio might carry sufficient information about his vocal
tracts and further confirms that most of the distinctiveness of one’s voice comes
from lower frequencies, which best survive noise during the recording. The plots
additionally show how one minute of audio is also sufficient (though with a
slight decrease in success rate when compared to all audio) to re-create one’s
voice. The curve slope indicates that the ranking of possible sources brings a
greater percentage of successes in the beginning, where promising sources are
tested first. We can see that at around three attempted sources (corresponding
to 12 authentication attempts), the adversary can get up to 60% success rate
depending on the scenario. Even if there are only marginal increments in the
successful attacks after testing 15 sources, using a larger population of sources
would increase overall attack effectiveness, as this increases the likelihood of
having promising source voices, which can be mapped accurately to the victim.

6.3 Azure Speaker Identification

Setup. The Azure Speaker Identification API (hereafter ASI) is text-
independent and requires a set of users to be enrolled, which are candidate users
for who is speaking. In this case, enrollment requires a minimum of 30 s of audio
per speaker, once silence is removed. To enroll users, we use audio specifically
collected for this purpose, enrolling half of our participants in the system (see
Appendix A for details). This gives us 10 potential victims, and 10 attackers,
for a total of 100 source-victim pairs.

Attacking Speaker Recognition Systems with Phoneme Morphing 485

Table 2. Percentage of incorrect and empty responses for the experiment on ASI, for
each attacker and audio duration. ASI returns empty when the provided audio does
not match any of the enrolled users. We report Misclassified whenever the returned
identity does not match the target victim.

Ideal Conference Cafe

1 min all 1 min all 1 min all

Misclassified 31.1% 27.6% 28.1% 26.4% 31.9% 29.2%

None 19.9% 16.0% 17.4% 16.9% 19.0% 17.3%

ASI accepts an audio sample as input and replies with the inferred identity
from the list of the 10 enrolled users, or an empty reply when an audio sample
does not match any of them. It is not possible to adjust any threshold for ASI,
and as such there is no way of adjusting the threshold for when empty set is
returned. We send all command utterances that have been transformed between
a particular source and victim to ASI, but we concatenate audio files together
into groups of four to obtain audio samples of approximately 8 seconds. This is
because ASI is designed for longer audio samples, and without this concatenation
the system returns none, as the samples are too short to make a decision. In total
we submit 5,400 requests to ASI to conduct our experiments.

Results. Figure 7a shows the overall success rate for ASI for the three attackers
and the two audio length combinations. In this use case each success corresponds
to a submitted audio sample that is identified by the system as belonging to the
victim. We see that the performance is broadly consistent across the scenarios,
with a slight worsening of the recognition rates for the Cafe Attacker in particular
(though not statistically significant, averaged over the 100 source-victim pairs)
The performance slightly decreases in the one minute of audio case, but again
with a minimal effect in the overall success.

Interestingly our results also reveal more information about ASI and its sen-
sitivity. Table 2 shows that for all scenarios ASI was more likely to assign a
speaker to an incorrect label than it was to return the empty user classification.
This suggests that the decision boundaries across different users are not very
conservative and that generally they can not deal well with outliers.

Figure 7b shows how the successful attacks distribute over different victims.
The plot highlights that certain voices are more vulnerable to this type of attack
than others: comparing the hardest to attack with the easiest to attack victim we
get a difference of around 40% in the success rate. Similar uneven distributions of
rates have been noticed before in previous work [1,11]. This suggests that some
voices might be inherently harder to replicate, however, in our data, this might
be due to a sample bias: some voices might significantly differ from our “average
voice”. A larger dataset would be required to investigate further whether this is
the case.

486 H. Turner et al.

6.4 Apple iPhone’s Siri

Setup. In order to measure the capability of the attack of being conducted
over-the-air, we test the samples against the voice activation functionality of the
Apple’s Siri digital assistant on an iPhone 6S, running iOS version 12.2. We use
the collected voice recordings of each of our 20 participants to enrol them onto the
device. For both enrolment and attacks, we use a Bose SoundLink Mini 2 speaker
to replay the participants audio samples. The speaker is placed 6 cm away from
the smartphone in an office environment. Initial enrolment requires the user to
pronounce four different phrases, which we construct by combining the original
recordings of the collected “Hey Siri” utterance with the remaining words of the
enrollment utterance added by splicing together audio from other recordings of
the same individual. Siri speaker recognition updates the user template after a
successful access [2]. Therefore, after a successful attack we erase the user profile
and repeat the enrollment process.

We test the system along the same dimensions as our previous experiments.
When conducting the attack, we play a single transformed utterance of the
keyphrase (“Hey Siri”), from each source voice, in the order suggested by our
error function (nearest to furthest). If Siri activates, i.e., the voice is recognized
as belonging to the legitimate user, we consider the attack successful and we do
not present further samples. At the time of writing, Apple claimed Siri had an
imposter accept rate of 3.2% [2].

0 1 2 3 4 5 6 7 8 9 10
cumulative attempts

0.0
0.2
0.4
0.6
0.8
1.0

su
cc
es
sf
ul
la

tt
ac
ks

all
1min

(a) Ideal Attacker.

0 1 2 3 4 5 6 7 8 9 10
cumulative attempts

0.0
0.2
0.4
0.6
0.8
1.0

all
1min

(b) Cafe Attacker.

0 1 2 3 4 5 6 7 8 9 10
cumulative attempts

0.0
0.2
0.4
0.6
0.8
1.0

all
1min

(c) Conference Attacker.

Fig. 8. Results for different attackers on Siri. Plots show ratio of successful imperson-
ations as the adversary consecutively attempts the attack with different source voices.

Results. Figure 8 shows the percentage of victims successfully impersonated
after a given number of attempts, for each attacker and the two known audio
amounts. The results show that performance is consistent with previous exper-
iments, in that the differing scenarios lead to slightly worse success rate, and
that performance is also worse in the one minute audio case. Our results demon-
strate that the Siri voice activation is easily fooled by our attack. For all scenario
and amount of known audio combinations over 70% of victims can be attacked
in three attempts or fewer. Excluding one individual in two of the one minute
scenario-time combinations, who could not be impersonated, all other attacks
were successfully conducted in 8 attempts or fewer. In our dataset an utter-
ance of “Hey Siri” took approximately 2 seconds, meaning that in most cases 20
seconds would suffice to successfully carry the attack out.

Attacking Speaker Recognition Systems with Phoneme Morphing 487

7 Discussion

Implications. The attack presented in this paper shows that a minimal amount
of voice from a victim can be sufficient for an adversary to impersonate that vic-
tim with a high success rate. The attack’s only requirement is to obtain a record-
ing of the victim talking. Sources such as social media, podcasts and recordings
of public speaking events are all easily available sources of such audio. Conse-
quently, the audio becomes even easier to gather for higher profile targets. The
ease of collection of voice samples in adversarial scenarios brings an inherent
security vulnerability of voice-based systems, as highlighted by our analysis. We
point out this vulnerability in order to raise awareness of the limitations of such
authentication mechanisms, so that they can be accounted for during the the
design of voice-based systems.

Our analysis highlights the weaknesses of voice-based authentication (and
identification) in adversarial scenarios. This is not strictly due to the recogni-
tion algorithms themselves but rather to the availability and ease of collection of
voice biometric samples. We point out this vulnerability in order to raise aware-
ness to the limitations of such authentication mechanisms, so that these can be
accounted for during the the design of voice-based systems.

Replay Detection. Similarly to other voice-based attacks, our method involves
replaying audio to the system microphone via a speaker. This is necessary for
all attacks on voice systems that use only over-the-air interaction, and do not
require harder to obtain over-the-wire access. A set of works have addressed
the detection of replay attacks on such systems [4,5,9,13,14,37]. Some detection
techniques rely on a combination of better hardware (e.g., multiple microphones)
or require additional interactions from the user. Often replay detection evolves
into an arms race with the adversaries improving their audio sample to present
the features required to bypass detection. This work is orthogonal to replay
detection, which could be bypassed with enough investment from an attacker.

Rate-Limiting. Oftentimes in verification systems, the number of failed authen-
tication attempts can be used to temporarily block the authentication or swap
it with more secure alternatives. For example, in Apple FaceID the face recogni-
tion is disabled after five failed authentication attempts, at which point a PIN
is required to unlock the phone. We find that even if the 5-attempts limit were
the same for Siri, a high percentage of victims would still be attack-able (90%
in the 1 min ideal scenario). Keeping the number of sequentially allowed failures
low before locking the system becomes an immediate an effective way to prevent
our and other population-based attacks.

8 Conclusions

In this paper, we describe a method to transform a source voice into a victim’s
voice to deceive speaker recognition systems. The transformation maps individ-
ual phonemes between the source and target voices and only requires knowledge

488 H. Turner et al.

of the number of language phonemes, a set of source voices (easily available
online) and an audio sample of the victim speaking. Furthermore, we identify
a metric for determining which voice among a group of voices is most likely to
lead to a successful authentication.

We evaluate the attack under a set of scenarios that include different amounts
and quality of victim audio and different systems. We test our attack on both
the Azure Speaker Recognitions APIs and the Apple iOS Siri voice assistant. On
Azure, for verification, we show that 12 authentication attempts are sufficient
to successfully impersonate victims in 40% up to 68% of cases, using just one
minute of victim audio for training, even in noisy recordings conditions. For
identification, the method achieves much higher success rates reaching over 50%
on average with a single attempt. We demonstrate that high success rates can be
obtained even when testing the attack over-the-air on Siri: 80% of victims can
be impersonated within three attempts, which correspond to only 8 s of audio
in total.

Compared to previous work, these findings reveal that limited quantity and
quality of audio have only limited impacts on the overall success of this attack.
Given the increasing availability of potential victim’s audio, our analysis high-
lights the vulnerability of using voice as a biometric for access control in adver-
sarial settings, suggesting that such weakness should be included in the design
phase of such systems.

Acknowledgements. This work was supported by a grant from Mastercard and the
Engineering and Physical Sciences Research Council [grant numbers EP/N509711/1
and EP/P00881X/1].

A Audio Collected

A.1 Commands

Command data was sourced as both utterances that could be presented to sys-
tems in existence, as well as commands used specifically by the Azure Speaker
recognition system for verification. The utterances recorded were as follows:

1. Hey Siri (Repeated 4 times)
2. Ok Google (Repeated 4 times)
3. What is the weather like?
4. What time is it?
5. Who am I?
6. How tall is the shard?
7. My voice is stronger than passwords (Repeated 4 times)
8. My password is not your business (Repeated 4 times)
9. Apple juice tastes funny after toothpaste (Repeated 4 times)

10. Houston we have had a problem (Repeated 4 times)
11. You can activate security system now (Repeated 4 times)
12. My voice is my password (Repeated 4 times)

Attacking Speaker Recognition Systems with Phoneme Morphing 489

A.2 Conference

Conference talk transcripts were obtained from popular TED talks. The tran-
scripts were shortened, so that they contained approximately the first 6 min of
a given talk. The transcripts were then split into individual utterances, with
each utterance being recorded as a separate audio file by the participant. Five
different conference talk transcripts were used, which are the following:

1. Do schools kill creativity? by Sir Ken Robinson -
www.ted.com/talks/ken robinson says schools kill creativity/transcript

2. Your body language may shape who you are by Amy Cuddy -
www.ted.com/talks/amy cuddy your body language shapes who you are/
transcript

3. What makes a good life? by Robert Waldinger -
www.ted.com/talks/robert waldinger what makes a good life lessons from
the longest study on happiness/transcript

4. How great leaders inspire action by Simon Sinek -
www.ted.com/talks/simon sinek how great leaders inspire action/transcript

5. The power of vulnerability by Brené Brown -
www.ted.com/talks/brene brown on vulnerability/transcript

A.3 Cafe

Our conversation audio is derived from TED talks where two people are having
a conversation. A single speakers audio was extracted from each transcript, and
the transcript was shortened until it was approximately 6 min in length. Five dif-
ferent conversation transcripts were used, which were dervied from the following
talks:

1. SpaceX’s plan to fly you across the globe in 20 min - Gwynne Shotwell -
https://www.ted.com/talks/gwynne shotwell spacex s plan to fly you
across the globe in 30 minutes/transcript

2. How Netflix changed entertainment - Reed Hastings -
https://www.ted.com/talks/reed hastings how netflix changed
entertainment and where it s headed/transcript

3. Mammoths resurrected, geoengineering and other thoughts from a futurist -
Stewart Brand -
https://www.ted.com/talks/stewart brand and chris anderson mammoths
resurrected geoengineering and other thoughts from a futurist/transcript

4. The future we’re building and boring - Elon Musk - https://www.ted.com/
talks/elon musk the future we re building and boring/transcript

5. What everyday citizens can do to claim power on the internet - Fadi Cehadé
-
https://www.ted.com/talks/fadi chehade what everyday citizens can do
to claim power on the internet/transcript

www.ted.com/talks/ken_robinson_says_schools_kill_creativity/transcript
www.ted.com/talks/amy_cuddy_your_body_language_shapes_who_you_are/transcript
www.ted.com/talks/amy_cuddy_your_body_language_shapes_who_you_are/transcript
www.ted.com/talks/robert_waldinger_what_makes_a_good_life_lessons_from_the_longest_study_on_happiness/transcript
www.ted.com/talks/robert_waldinger_what_makes_a_good_life_lessons_from_the_longest_study_on_happiness/transcript
www.ted.com/talks/simon_sinek_how_great_leaders_inspire_action/transcript
www.ted.com/talks/brene_brown_on_vulnerability/transcript
https://www.ted.com/talks/gwynne_shotwell_spacex_s_plan_to_fly_you_across_the_globe_in_30_minutes/transcript
https://www.ted.com/talks/gwynne_shotwell_spacex_s_plan_to_fly_you_across_the_globe_in_30_minutes/transcript
https://www.ted.com/talks/reed_hastings_how_netflix_changed_entertainment_and_where_it_s_headed/transcript
https://www.ted.com/talks/reed_hastings_how_netflix_changed_entertainment_and_where_it_s_headed/transcript
https://www.ted.com/talks/stewart_brand_and_chris_anderson_mammoths_resurrected_geoengineering_and_other_thoughts_from_a_futurist/transcript
https://www.ted.com/talks/stewart_brand_and_chris_anderson_mammoths_resurrected_geoengineering_and_other_thoughts_from_a_futurist/transcript
https://www.ted.com/talks/elon_musk_the_future_we_re_building_and_boring/transcript
https://www.ted.com/talks/elon_musk_the_future_we_re_building_and_boring/transcript
https://www.ted.com/talks/fadi_chehade_what_everyday_citizens_can_do_to_claim_power_on_the_internet/transcript
https://www.ted.com/talks/fadi_chehade_what_everyday_citizens_can_do_to_claim_power_on_the_internet/transcript

490 H. Turner et al.

A.4 Enrolment

Enrolment audio was used to enroll individual speakers with the Azure Speaker
Recognition API for identification. Participants were asked to read the first 6
paragraphs of the speech given by UK Prime Minister David Cameron at the
start of the London 2012 Olympics. The speech can be found on the UK govern-
ment speeches website at the following URL: https://www.gov.uk/government/
speeches/pms-speech-at-olympics-press-conference

References

1. Allix, K., Bissyandé, T.F., Klein, J., Le Traon, Y.: Are your training datasets yet
relevant? In: Piessens, F., Caballero, J., Bielova, N. (eds.) ESSoS 2015. LNCS,
vol. 8978, pp. 51–67. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
15618-7 5

2. Apple Siri Team: Personalized Hey Siri - Apple (2018). https://machinelearning.
apple.com/2018/04/16/personalized-hey-siri.html. Accessed 7 Jul 2019

3. Bimbot, F., et al.: A tutorial on text-independent speaker verification. EURASIP
J. Adv. Signal Process. 2004(4), 101962 (2004)

4. Blue, L., Abdullah, H., Vargas, L., Traynor, P.: 2MA: verifying voice commands
via two microphone authentication. In: Proceedings of the 13th on Asia Conference
on Computer and Communications Security, pp. 89–100. ACM (2018)

5. Blue, L., Vargas, L., Traynor, P.: Hello, is it me you’re looking for?: differentiating
between human and electronic speakers for voice interface security. In: Proceedings
of the 11th Conference on Security & Privacy in Wireless and Mobile Networks,
pp. 123–133. ACM (2018)

6. Blumeyer, D.: Relative frequencies of english phonemes (2012). https://
cmloegcmluin.wordpress.com/2012/11/10/relative-frequencies-of-english-
phonemes/. Accessed 27 Apr 2019

7. Carlini, N., et al.: Hidden voice commands. In: Proceedings of the 25th USENIX
Security Symposium, pp. 513–530 (2016)

8. Carlini, N., Wagner, D.: Audio adversarial examples: targeted attacks on speech-
to-text. In: IEEE Security and Privacy Workshops, pp. 1–7. IEEE (2018)

9. Chen, S., et al.: You can hear but you cannot steal: defending against voice imper-
sonation attacks on smartphones. In: Proceedings of the 37th International Con-
ference on Distributed Computing Systems, pp. 183–195. IEEE (2017)

10. De Leon, P.L., Pucher, M., Yamagishi, J., Hernaez, I., Saratxaga, I.: Evaluation of
speaker verification security and detection of HMM-based synthetic speech. Trans-
actions on Audio, Speech and Language Processing (2012)

11. Eberz, S., Rasmussen, K.B., Lenders, V., Martinovic, I.: Evaluating behavioral bio-
metrics for continuous authentication. In: Proceedings of the 12th Asia Conference
on Computer and Communications Security, pp. 386–399 (2017)

12. Ellis, D.P.W.: PLP and RASTA (and MFCC, and inversion) in Matlab (2005).
http://www.ee.columbia.edu/∼dpwe/resources/matlab/rastamat/. Accessed 8 Jul
2019

13. Ergünay, S.K., Khoury, E., Lazaridis, A., Marcel, S.: On the vulnerability of speaker
verification to realistic voice spoofing. In: Proceedings of the 7th International
Conference on Biometrics Theory, Applications and Systems, pp. 1–6. IEEE (2015)

https://www.gov.uk/government/speeches/pms-speech-at-olympics-press-conference
https://www.gov.uk/government/speeches/pms-speech-at-olympics-press-conference
https://doi.org/10.1007/978-3-319-15618-7_5
https://doi.org/10.1007/978-3-319-15618-7_5
https://machinelearning.apple.com/2018/04/16/personalized-hey-siri.html
https://machinelearning.apple.com/2018/04/16/personalized-hey-siri.html
https://cmloegcmluin.wordpress.com/2012/11/10/relative-frequencies-of-english-phonemes/
https://cmloegcmluin.wordpress.com/2012/11/10/relative-frequencies-of-english-phonemes/
https://cmloegcmluin.wordpress.com/2012/11/10/relative-frequencies-of-english-phonemes/
http://www.ee.columbia.edu/~dpwe/resources/matlab/rastamat/

Attacking Speaker Recognition Systems with Phoneme Morphing 491

14. Evans, N., Kinnunen, T., Yamagishi, J.: Spoofing and countermeasures for auto-
matic speaker verification. In: Proceedings of the Annual Conference of the Inter-
national Speech Communication Association pp. 925–929 (2013)

15. Fant, G.: Acoustic theory of speech production: with calculations based on X-ray
studies of Russian articulations. No. 2, Walter de Gruyter (1970)

16. Google: Set up Voice Match on Google Home - Google Home Help (2018). https://
support.google.com/googlehome/answer/7323910. Accessed 8 Jul 2019

17. Helland, T., Kaasa, R.: Dyslexia in english as a second language. Dyslexia 11(1),
41–60 (2005)

18. HSBC: Voice ID — HSBC UK (2018). https://www.hsbc.co.uk/1/2/voice-id.
Accessed 8 Jul 2019

19. Hsu, C.C., Hwang, H.T., Wu, Y.C., Tsao, Y., Wang, H.M.: Voice conversion from
non-parallel corpora using variational auto-encoder. In: Proceedings of the Signal
and Information Processing Association Annual Summit and Conference, pp. 1–6.
IEEE (2016)

20. Khoury, E., El Shafey, L., Marcel, S.: Spear: an open source toolbox for speaker
recognition based on Bob. In: Proceedings of the International Conference on
Acoustics, Speech and Signal Processing, pp. 1655–1659. IEEE (2014)

21. Kinnunen, T., Wu, Z.Z., Lee, K.A., Sedlak, F., Chng, E.S., Li, H.: Vulnerability
of speaker verification systems against voice conversion spoofing attacks: the case
of telephone speech. In: Proceedings of the International Conference on Acoustics,
Speech and Signal Processing, pp. 4401–4404. IEEE (2012)

22. Kuhn, H.W.: The hungarian method for the assignment problem. Naval Res. Logis-
tics Q. 2(1–2), 83–97 (1955)

23. Lau, Y.W., Tran, D., Wagner, M.: Testing voice mimicry with the YOHO
speaker verification corpus. In: Proceedings of the 9th International Conference
on Knowledge-Based Intelligent Information And Engineering Systems, vol. 3584,
pp. 15–21 (2005)

24. Lindberg, J., Blomberg, M.: Vulnerability in speaker verification-a study of techni-
cal impostor techniques. In: Proceedings of the 6th European Conference on Speech
Communication and Technology (1999)

25. Lloyds Bank: Voice ID — Lloyds Bank (2019). https://www.lloydsbank.com/
contact-us/voice-id.asp. Accessed 8 Jul 2019

26. Matrouf, D., Bonastre, J.F., Fredouille, C.: Effect of speech transformation on
impostor acceptance. In: Proceedings of the 31st International Conference on
Acoustics Speech and Signal Processing, vol. 1. IEEE (2006)

27. Mermelstein, P.: Distance measures for speech recognition, psychological and
instrumental. Pattern Recogn. Artif. Intell. 116, 374–388 (1976)

28. Microsoft ML Blog Team: Now available: Speaker & video apis from
microsoft project oxford. https://blogs.technet.microsoft.com/machinelearning/
2015/12/14/now-available-speaker-video-apis-from-microsoft-project-oxford/

29. Povey, D., et al.: The kaldi speech recognition toolkit. In: Proceedings of the 2011
Workshop on Automatic Speech Recognition and Understanding. IEEE (2011)

30. Smith, J.O.: Physical audio signal processing. https://ccrma.stanford.edu/∼jos/
pasp/Freeverb.html. Accessed 8 Jul 2019

31. Sun, L., Li, K., Wang, H., Kang, S., Meng, H.: Phonetic posteriorgrams for many-
to-one voice conversion without parallel data training. In: Proceedings of the 2016
International Conference on Multimedia and Expo, pp. 1–6. IEEE (2016)

32. Toda, T., et al.: The voice conversion challenge 2016. In: Proceedings of the Annual
Conference of the International Speech Communication Association (2016)

https://support.google.com/googlehome/answer/7323910
https://support.google.com/googlehome/answer/7323910
https://www.hsbc.co.uk/1/2/voice-id
https://www.lloydsbank.com/contact-us/voice-id.asp
https://www.lloydsbank.com/contact-us/voice-id.asp
https://blogs.technet.microsoft.com/machinelearning/2015/12/14/now-available-speaker-video-apis-from-microsoft-project-oxford/
https://blogs.technet.microsoft.com/machinelearning/2015/12/14/now-available-speaker-video-apis-from-microsoft-project-oxford/
https://ccrma.stanford.edu/~jos/pasp/Freeverb.html
https://ccrma.stanford.edu/~jos/pasp/Freeverb.html

492 H. Turner et al.

33. Vaidya, T., Zhang, Y., Sherr, M., Shields, C.: Cocaine noodles: exploiting the
gap between human and machine speech recognition. In: Proceedings of the 9th
USENIX Workshop on Offensive Technologies (2015)

34. Voxforge Dataset: Free speech... recognition. http://www.voxforge.org/. Accessed
8 Jul 2019

35. Yuan, X., et al.: Commandersong: a systematic approach for practical adversarial
voice recognition. In: Proceedings of the 27th USENIX Security Symposium, pp.
49–64 (2018)

36. Zhang, G., Yan, C., Ji, X., Zhang, T., Zhang, T., Xu, W.: Dolphinattack: inaudible
voice commands. In: Proceedings of the 24th SIGSAC Conference on Computer
and Communications Security, pp. 103–117. ACM (2017)

37. Zhang, L., Tan, S., Yang, J., Chen, Y.: Voicelive: a phoneme localization based
liveness detection for voice authentication on smartphones. In: Proceedings of the
23rd SIGSAC Conference on Computer and Communications Security, pp. 1080–
1091. ACM (2016)

http://www.voxforge.org/

Practical Bayesian Poisoning Attacks
on Challenge-Based Collaborative

Intrusion Detection Networks

Weizhi Meng1(B), Wenjuan Li1,2, Lijun Jiang3, Kim-Kwang Raymond Choo4,
and Chunhua Su5

1 Department of Applied Mathematics and Computer Science,
Technical University of Denmark, Lyngby, Denmark

weme@dtu.dk
2 Department of Computer Science,

City University of Hong Kong, Kowloon Tong, Hong Kong
3 Cyber Tree Research Center, Pokfulam, Hong Kong

4 Department of Information Systems and Cyber Security,
The University of Texas at San Antonio, San Antonio, USA

5 Division of Computer Science, University of Aizu, Aizuwakamatsu, Japan

Abstract. As adversarial techniques constantly evolve to circumvent
existing security measures, an isolated, stand-alone intrusion detection
system (IDS) is unlikely to be efficient or effective. Hence, there has
been a trend towards developing collaborative intrusion detection net-
works (CIDNs), where IDS nodes collaborate and communicate with
each other. Such a distributed ecosystem can achieve improved detec-
tion accuracy, particularly for detecting emerging threats in a timely
fashion (before the threat becomes common knowledge). However, there
are inherent limitations due to malicious insiders who can seek to com-
promise and poison the ecosystem. A potential mitigation strategy is to
introduce a challenge-based trust mechanism, in order to identify and
penalize misbehaving nodes by evaluating the satisfaction between chal-
lenges and responses. While this mechanism has been shown to be robust
against common insider attacks, it may still be vulnerable to advanced
insider attacks in a real-world deployment. Therefore, in this paper, we
develop a collusion attack, hereafter referred to as Bayesian Poisoning
Attack, which enables a malicious node to model received messages and to
craft a malicious response to those messages whose aggregated appear-
ance probability of normal requests is above the defined threshold. In
the evaluation, we explore the attack performance under both simulated
and real network environments. Experimental results demonstrate that
the malicious nodes under our attack can successfully craft and send
untruthful feedback while maintaining their trust values.

Keywords: Intrusion detection · Collaborative network ·
Insider threat · Bayesian Poisoning Attack ·
Challenge-based trust mechanism

c© Springer Nature Switzerland AG 2019
K. Sako et al. (Eds.): ESORICS 2019, LNCS 11735, pp. 493–511, 2019.
https://doi.org/10.1007/978-3-030-29959-0_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29959-0_24&domain=pdf
https://doi.org/10.1007/978-3-030-29959-0_24

494 W. Meng et al.

1 Introduction

Intrusion detection/prevention systems (IDSs/IPSs; collectively referred to as
IDSs in this paper) are widely deployed in computing networks, with the purpose
of identifying and isolating intrusion attempts [11,26]. Traditionally, an IDS can
be classified as either network-based (NIDS) or host-based (HIDS) [29]. As the
importance of cyber security is increasingly recognized by both organizations
and governments, so does the sophistication of cyber attackers. For example, an
isolated IDS in any organization would easily be bypassed by zero-day attacks,
since they (IDS and the organization) are not able to learn from ongoing attack
campaigns faced by their peers or other industry sectors, either in the same
jurisdiction or any part of the world. Thus, this maximizes the impact of a cyber
attack in the sense that the same exploit or vulnerability can affect tens to
hundreds or thousands of IDSs and organizations. However, if we are able to
learn from an ongoing attack that is faced by organization X in country Y, then
the entire ecosystem would be better prepared against attackers making use of
the same exploit or vulnerability.

This gives rise to collaborative intrusion detection networks (CIDNs), so that
IDS nodes can collaborate and communicate with each other [5,35]. Due to its
distributed architecture, insider attacks are a key threat to the ecosystem [3].
For example, in a collusion attack, two or more malicious nodes can collude to
provide untruthful information of alarm ranking and reduce the effectiveness
of alarm aggregation. Thus, we need to establish some form of robust trust
mechanisms to safeguard CIDNs against insider attacks.

In the literature, challenge-based trust mechanisms (shortly challenge mech-
anisms) are a promising solution to defend CIDNs against insider attacks, by
identifying malicious nodes through evaluating the satisfaction between chal-
lenges and responses [8]. More specifically, a challenge can contain a set of alarms
asking for the severity level, and can be sent to evaluate the trustworthiness of
the suspected/tested nodes. Under this mechanism, the testing node knows the
severity of the alarms; thus, it can utilize the received responses to derive a
trust value (e.g., satisfaction level) for the target node. Studies, such as those in
[5–7], have demonstrated that the challenge-based trust mechanism can mitigate
common insider attacks like collusion attacks and betrayal attacks.

However, challenge mechanisms reply on two assumptions, namely: (assump-
tion A1) challenges are sent out in a way that makes it toilsome for anyone
to distinguish the challenges from normal messages; and (assumption A2) mali-
cious nodes always send feedback contrary to its truthful judgment. In practice,
however, malicious nodes may act more dynamically and have a complex behav-
ior [8]. For example, malicious nodes may act faithfully most of the times and
only untruthfully on some occasions (e.g., targeting specific events or systems).
Therefore, existing challenge mechanisms may not be able to mitigate advanced
insider attacks. For instance, Li et al. [16] developed the passive message fin-
gerprint attack (PMFA) to distinguish challenges from normal requests; thus,
circumventing the challenge-based trust mechanism. However, this attack can
be mitigated by controlling the timing of sending normal requests.

Practical Bayesian Poisoning Attacks on Challenge-Based CIDNs 495

Motivation and Contributions. Given the potential of challenge mechanisms
to protect CIDNs against a range of attacks, including common insider attacks,
we posit the importance of enhancing the robustness of such mechanisms against
advanced attacks that are practical in nature. Focused on this issue, in this work,
we develop an advanced collusion attack, coined Bayesian Poisoning Attack. In
this attack, a malicious node can model the received messages and successfully
send a untruthful response to messages that have a higher probability of being a
normal request; thus, circumventing assumption A1 of the challenge-based trust
mechanism. Specifically, building on PMFA, we develop the Bayesian Poisoning
Attack, where two or more malicious nodes can collude to collect messages and
give untruthful answers to a normal request, without adversely affecting their
trust values. Hopefully, the findings of this work will simulate further interest
in designing more robust challenge-based CIDNs to deal with advanced insider
attacks, as well as other practical attacks. In the end, we also discuss some
countermeasures to defend our attack.

In the next section, we will revisit challenge-based CIDNs, including briefly
introducing their key building blocks. In Sect. 3, we analyze the assumptions
used in the existing challenge mechanisms and describe our Bayesian poisoning
attack. In Sect. 4, we describe our evaluation setup and explain our findings
under both simulated and real CIDN environments. Specifically, we show that
our attack can help a malicious entity identify an appropriate timing for giving
untruthful feedback, and it is effective to compromise the challenge-based trust
mechanism in practical deployment. Related literature is reviewed in Sect. 5, and
the last section concludes our work.

2 Challenge-Based CIDNs

Intuitively, challenge-based CIDNs employ the challenge-based trust mechanisms
to defend against insider attacks. Figure 1 depicts the high-level architecture of
a common challenge-based CIDN and its key building blocks. This architecture
can be applied to network structure, such as wireless sensor networks (WSNs)
and Internet of Things (IoT).

Network Interactions. In the architecture, each IDS node can choose its part-
ners or collaborators, based on its own policies and experience. These nodes can
be associated if they have a collaborative relationship (e.g., vendor, and orga-
nizations/entities within the same system). Each node can maintain a list of
their collaborated nodes, called partner list (or acquaintance list). Such list is
customizable and stores information of other nodes (e.g., public keys and their
current trust values). Before a node can join the network, it has to register with
a trusted certificate authority (CA) and obtain its unique proof of identity (e.g.,
a key pair with a public key and a private key). As shown in Fig. 1(a), if node C
wishes to join the network, it needs to send an application to a network node,
say node A. Then, node A makes a decision and sends back an initial partner
list, if node C is accepted.

496 W. Meng et al.

A
B

C

Ask to join

Decision & Info

Request or
Challenge

Feedback

CIDN
Partner

…

CA

Register Cert
IDS

Trust Management

Collaboration

P2P Communication

IDS

Trust Management

Collaboration

P2P Communication

(a) (b)

Fig. 1. (a) High-level architecture of a common challenge-based CIDN and (b) key
building blocks.

CIDNs allow IDS nodes to exchange the necessary and required messages in-
between to improve the performance. There are two major types of interactive
messages, namely: challenges and normal requests.

– Challenges. A challenge contains a set of IDS alarms asking to label their
severity. A testing node can send a challenge to other tested nodes and obtain
the relevant feedback. As the testing node knows the severity of the sent
alarms, it can use the received feedback to derive a trust value (e.g., satisfac-
tion level) for the tested node.

– Normal requests. A normal request is sent by a node for alarm aggregation.
Other IDS nodes should send back alarm ranking information as their feed-
back. Alarm aggregation is an important feature for CIDNs, which can help
improve the detection performance, and it usually considers the feedback from
trusted nodes.

Network Components. Figure 1(b) shows the key building blocks in a CIDN
node, including trust management component, collaboration component and P2P
communication.

– Trust management component. This component is responsible for evaluat-
ing the trustworthiness of other nodes. Under the challenge mechanism, the
trustworthiness of other nodes is mainly computed by evaluating the received
feedback. Each node can send out either normal requests or challenges for
alert ranking (consultation). To protect challenges, it is worth noting that
challenges should be sent out in a random manner and in a way that makes
them difficult to be distinguished from a normal alarm ranking request.

– Collaboration component. This component is mainly responsible for assisting
a node to evaluate the trustworthiness of other nodes by sending out normal
requests and/or challenges, and upon receiving the relevant feedback to eval-
uate its truthfulness. As shown in Fig. 1, if node A sends a request/challenge
to node B, then node B will send back the relevant feedback.

Practical Bayesian Poisoning Attacks on Challenge-Based CIDNs 497

– P2P communication. This component is responsible for connecting with other
IDS nodes and providing network organization, management and communi-
cation among IDS nodes.

Robustness. It has been shown that challenge-based trust mechanisms can
enhance the CIDN’s resilience in mitigating common insider attacks, such as
Sybil, newcomer, betrayal and collusion attacks [5–8].

– Sybil attack. This attack occurs when a malicious node creates a large number
of fake identities [2], with the aim of having an unfair influence on the alert
aggregation. As shown in Fig. 1, an IDS node should register with a CA and
obtain a unique proof identity; thus, mitigating such an attack. Clearly, if
the CA is corrupted, then this attack will work. However, CA has a vested
interest to ensure that they are not compromised or known to have laxed
security practices, as this will affect their bottomline.

– Newcomer (re-entry) attack. This attack occurs when a malicious node regis-
ters as a new user, in order to erase its bad history. Challenge-based CIDNs
begin by giving low initial trust values to all newcomers, so that the influence
of new nodes on alarm aggregation is minimal. This is somewhat analogous
to the credit history system, where one’s creditworthiness is built over time
(e.g., based on the factors like payment history and age of credit history).

– Betrayal attack. This attack occurs when a trusted node becomes malicious.
To defeat such an attack, a high trust value should only be established after
a lengthy interaction and consistently good behavior (again, similar to the
credit history system), and only a few bad actions will ruin the trust value (in
the context of the credit history system, bad activities like derogatory marks
due to payment default, or hard credit inquiries). In particular, it employs a
forgetting factor to give more credits to recent behaviors.

– Collusion attack. This attack happens when a group of malicious peers col-
lude to provide false alarm rankings in order to compromise the network.
Challenge-based trust mechanisms can uncover malicious peers via sending
the challenges, where the trust values of malicious nodes can decrease rapidly
if their untruthful feedback is detected.

3 Our Proposed Attack

In this section, we discuss the underlying assumptions (or threat model) made
by challenge-based trust mechanisms, and describe our attack.

3.1 Threat Model and Assumption Analysis

As previously discussed, challenge-based mechanisms can be effective in defending
against most common insider attacks, based on the following two assumptions.

– A1. Challenges are sent out in a random way, which is challenging to be
distinguished from normal messages.

– A2. Malicious nodes always send feedback contrary to its true assessment
(i.e., misreporting a malicious event as benign, and vice versa).

498 W. Meng et al.

These two assumptions are key to protecting challenges and identifying mali-
cious nodes. In particular, the first assumption implies two conditions: a random
manner and hard to distinguish. These ensure that an IDS node cannot distin-
guish a challenge from normal requests. Thus, malicious nodes have a trivial
possibility of identifying challenges, and have to respond to each message.

The second assumption implies a maximal harm model, where an adversary
always chooses to report untruthful feedback with the intention to bring the most
negative impact to the request sender [7]. As an example, whenever a malicious
node receives a ranking request, it will reply with a ‘no risk’ for an alarm whose
real risk level could be ‘medium’, because this feedback can maximize the impact
at the sender side.

Are These Two Assumptions Realistic/Practical? These assumptions are
reasonable in scenarios, where attackers (or naive attackers) choose a maximal
harm model. In practical implementations, however, attackers can choose to go
under the radar in order to avoid detection. For example, why would an attacker
risk been identified as malicious by ‘lying’ all the times? Would it not make more
sense to ‘lie’ only on events of importance (e.g., some sort of ‘sleeper’ node)?
In other words, advanced attackers, including advanced persistent threat (APT)
attackers, would likely behave normally/truthfully most of the time (referred
to as ‘advanced attack’ where attackers can perform complex operations, unlike
naive attacks in the maximal harm model, in this paper).

Thus, the existing challenge-based trust mechanisms that rely on the two
assumptions will be insecure against such advanced attackers. This is the premise
of our proposed attacks, to be described next.

3.2 Bayesian Poisoning Attacks

An example of an insider attack not captured in existing CIDN systems is the
passive message fingerprint attack (PMFA) of Li et al. [16]. In such an attack,
the attacker is able to distinguish normal requests from messages, based on the
observation that a generic CIDN would send normal requests to trusted nodes
at the same time in practice. In other words, if several nodes receive the same
message (containing the same alarm set), then this message is very likely to be
a normal request (and not a challenge).

However, this attack can be easily mitigated through controlling the timing
of sending normal requests (i.e., sending the next request after getting a response
from the last request). In this case, PMFA can be largely mitigated. In this work,
we develop the Bayesian Poisoning Attack, in which malicious nodes can send
untruthful feedback to those messages who have a high probability of being a
normal request.

Main idea. The challenge mechanism can be compromised if malicious nodes
can only send untruthful feedback to normal requests, but send truthful feedback
to challenges. As a result, the key idea is to find an appropriate timing to deliver
malicious feedback. Based on this key idea, our developed Bayesian Poisoning
Attack aims to passively collect messages and send untruthful feedback in a

Practical Bayesian Poisoning Attacks on Challenge-Based CIDNs 499

A
(Testing Node)

B

C

Information
Exchange

Step 1

CIDN

…

…

Feedback

Challenge

D

…

…

Normal Request

Malicious Feedback

Step 3

Step 2

Step 1

Step 2

Fig. 2. Steps of Bayesian poisoning attacks on challenge-based CIDNs.

probability that is computed by the Bayesian inference model. That is, our attack
can decide whether an incoming message has a high probability of being a normal
request. Subsequently, suspicious nodes are able to send untruthful feedback only
to normal requests, while providing truthful answers to other received messages.

Figure 2 provides an example to illustrate how such attack operates in prac-
tice. Suppose a testing node A delivers either requests or challenges to its part-
ners. Under the mechanism, all tested nodes should provide feedback after receiv-
ing the messages. Assume nodes B, C and D to be suspicious/malicious, we
explain our attack with detailed steps as follows.

– Step 1. At this stage, every suspicious node starts collecting and recording
all received messages from the testing node. In this attack, we accept the first
assumption that challenges are sent out in a random way, which is challenging
to be distinguished from normal messages. Thus, malicious nodes have to
passively collect data at this stage.

– Step 2. At this stage, suspicious nodes can collaborate with each other to
exchange recorded messages. In practice, in order to rank alarms, normal
requests have to be delivered to all trusted nodes. This opens a chance to
distinguish normal request from messages [16]. Taking node B as an example,
it can compare the recorded messages from nodes C and D. A message could
be a normal request with a high probability, if a match is identified.

– Step 3. Based on the number of identified normal requests and the number of
received messages, our attack builds a model and computes the probability of
normal requests. By given a threshold, suspicious nodes can return untruthful
feedback to the messages with a high probability of being a normal request.
For other messages, malicious nodes can still return truthful answers.

500 W. Meng et al.

Bayesian Inference Model. This is a statistical method of inference, by using
the Bayes’ rule to predict the probability for a hypothesis as additional evi-
dence [33]. To compute the appearance probability of a normal request, suppose
there are N messages received from the testing node, among which k messages
are normal requests. Assume a Binomial distribution controls the probability of
observing n(N) = k. The equation is shown below.

P (n(N) = k|p) = (N
k)pk(1 − p)N−k (1)

where n(N) describes how many normal requests are received, and p describes
how likely a message to be a normal request. Binomial distribution describes
a distribution where there are two mutually exclusive outcomes to an event. It
helps identify a sequence of n trials where each has the same probability of p. The
ultimate goal of our model is to predict the possibility: P (VN+1 = 1|n(N) = k);
that is, measuring how likely the (N + 1)th message can be a normal request.
According to the Bayesian theorem, we can have the following:

P (VN+1 = 1|n(N) = k) =
P (VN+1 = 1, n(N) = k)

P (n(N) = k)
(2)

where P (VN+1 = 1|n(N) = k) describes how likely the (N + 1)th message is a
normal request, if we receive N messages which contain k normal requests. We
further apply a marginal probability distribution1 and can have the followings:

P (n(N) = k) =
∫ 1

0

P (n(N) = k|p)f(p) · dp (3)

P (VN+1 = 1, n(N) = k) =
∫ 1

0

P (n(N) = k|p)f(p)p · dp (4)

To estimate the prior information regarding p ∈ [0, 1], it is reasonable to
assume that it is decided by a uniform prior distribution f(p) = 1. According
to Eqs. (2) to (4), we can obtain the following equation, which can describe the
appearance possibility of a normal request, Preq, within a time period.

Preq = P (VN+1 = 1|n(N) = k) =

∫ 1

0
P (n(N) = k|p)f(p)p · dp∫ 1

0
P (n(N) = k|p)f(p) · dp

=
k + 1
N + 2

(5)

Bayesian Modeling of Normal Request Distribution. In a real-world
deployment, the number of challenges is often pre-defined whereas the num-
ber of normal requests is dynamic based on the network traffic. The challenge
mechanism assumes that the challenges are randomly sent, but a real-world envi-
ronment can only achieve pseudo-randomness. To emphasize the identification
1 Marginal distribution describes the possibility of various values of the variables in

the subset, without considering the values of the other variables.

Practical Bayesian Poisoning Attacks on Challenge-Based CIDNs 501

0 10 20 30

1/2

2/3

3/4

4/5

5/6

6/7

7/8
P

ro
ba

bi
lit

y

Message

Fig. 3. An example of appearance prob-
ability of normal requests (Preq) for a
node in one day.

0 10 20 30
0.0

0.2

0.4

0.6

0.8

P
ro

ba
bi

lit
y

Message

--

Fig. 4. Aggregated appearance probabil-
ity of normal requests after one month.

of a challenge, we restore Preq to 1/2 when detecting a message is not a normal
request. Subsequently, after collecting messages a period of time, it is feasible
to model the appearance probability of normal requests based on Eq. (5). The
aggregated appearance probability of normal requests for node I (APreq(I)) and
message j can be computed as below.

AP j
req(I) =

∑DN
1 P j

req

DN
(6)

In the above equation, DN denotes the number of days.
Figure 3 shows an example of Preq for a node in one day, where a probability

of 1/2 means an identification of a message that is not a normal request. To
model the appearance probability of normal requests, there is a need to monitor
the data for a longer period of time. Thus, we continue collecting statistics of
messages, and Fig. 4 depicts a Bayesian distribution of the normal request based
on Eq. (6), after a month. It is shown that the appearance probability of normal
requests varies with messages. For an attacker, it is critical to select a proper
threshold, with the purpose of having a better chance to behave maliciously to
normal requests. In this work, we select a threshold of 0.8 to strike a balance
between the attack performance and the risk of being detected. For instance,
given the threshold of 0.8, our attack allows one to send 16 untruthful feedback
to corresponding messages, as shown in Fig. 4.

In summary, after selecting a threshold, suspicious nodes can decide whether
to send malicious answers to those messages whose aggregated appearance prob-
ability of normal requests is above the threshold, and respond truthfully to other
messages. This can circumvent the challenge-based trust mechanism; thus, mali-
cious nodes can have a negative impact on the process of alarm aggregation while
maintaining their reputation.

502 W. Meng et al.

Table 1. Parameter settings in the experiment.

Parameters Value Description

εl 10/day Low request frequency

εh 20/day High request frequency

r 0.8 Trust threshold

λ 0.9 Forgetting factor

m 10 Lower limit of received feedback

d 0.3 Severity of punishment

Ts 0.5 Trust value for newcomers

4 Evaluation

We mainly perform two experiments in this section to investigate our attack
performance with simulated settings and a real network, respectively.

– Experiment-1. We first evaluate our Bayesian poisoning attack in a simulated
CIDN environment, in comparison with naive collusion attack and PMFA.

– Experiment-2. We then collaborate with an information center to exploit the
impact of our attack in a practical CIDN, e.g., how the reputation of suspi-
cious nodes changes and the influence on aggregating alarms.

4.1 CIDN Settings

A total of 25 nodes that are randomly distributed in the simulated CIDN envi-
ronment with a 5 × 5 grid region. Snort [32] was deployed in each node as IDS
component. A node can build a partner list by communicating with other nodes
after a time period. To facilitate the comparison with previous work [6,7], we
set the initial trust values of all nodes in the partner list as Ts = 0.5.

To measure the reputation of each partner node, a challenge can be delivered
randomly with an average rate of ε. In this work, we adopted the same frequency
levels: a low level of εl and a high level of εh. Intuitively, we should be confi-
dent about a highly trusted or untrusted node; thus, we can set a low request
frequency for these nodes. By contrast, we should set a high request frequency
to evaluate the nodes with a medium trust value around the threshold. To make
a comparison with other competing approaches, we use the same settings as
in [6,7,14]. Table 1 describes the parameter settings.

Node Expertise. Similar to previous work, we also adopted three levels of
expertise to describe the detection capability of an IDS node, such as low (0.1),
medium (0.5) and high (0.95). In particular, we can use the below beta function
to measure the expertise of an IDS.

f(p′|α, β) =
1

B(α, β)
p′α−1(1 − p′)β−1

B(α, β) =
∫ 1

0

tα−1(1 − t)β−1dt

(7)

Practical Bayesian Poisoning Attacks on Challenge-Based CIDNs 503

In the above equation, p′(∈ [0, 1]) describes the possibility of an intrusion
under the examination of an IDS. l means the expertise level, d(∈ [0, 1]) indicates
the difficulty level, and f(p′|α, β) describes the possibility that under d, a node
with l can identify an intrusion with p′. Intuitively, a bigger l reflects a better
chance of correctly detecting an attack, whereas a bigger d indicates it is harder
to identify an attack. The derivation of α and β can refer to the previous work [6].

α = 1 +
l(1 − d)
d(1 − l)

r

β = 1 +
l(1 − d)
d(1 − l)

(1 − r)
(8)

In the above equation, r ∈ {0, 1} describes the desirable detection outcomes.
Generally, given a fixed d, the node with higher expertise can have better detec-
tion performance. For instance, if d = 0, then a node with l = 1 can identify an
attack without errors.

Node Trust Evaluation. To measure the reputation of a node, a randomly
generated challenge can be delivered to the tested node. Then we can calculate
the satisfaction level based on the received feedback. In particular, the reputation
of a node i according to node j can be computed as below [5]:

T j
i = (ws

∑n
k=0 F j,i

k λtk∑n
k=0 λtk

− Ts)(1 − x)d′
+ Ts, (9)

where n counts the number of received feedback, and F j,i
k ∈ [0, 1] describes

the satisfaction level regarding the received feedback k. The forgetting factor,
denoted as λ, emphasizes more weights on the recent feedback. ws means a
significant weight varying with the received feedback. If the number of received
feedback is smaller than m, then ws =

∑n
k=0 λtk

m ; otherwise, ws = 1. In addition,
x describes how many ‘do not know’ answers are received within a time period,
d′ is used to punish ‘do not know’ answers.

Satisfaction Level. Let e ∈ [0, 1] denote an expected feedback, r ∈ [0, 1] denote
an actual received feedback, and F (∈ [0, 1]) denote the satisfaction level. Then
we can have the followings based on [6,7]:

F = 1 − (
e − r

max(c1e, 1 − e)
)c2 e > r (10)

F = 1 − (
c1(r − e)

max(c1e, 1 − e)
)c2 e ≤ r (11)

In the above equations, c1 indicates the penalty degree for errors, and c2
indicates the sensitivity degree. To make the comparison workable with pervious
studies like [6], we adopted c1 = 1.5 and c2 = 1 in the simulation.

504 W. Meng et al.

5 10 15 20 25 30 35 40
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
us

t V
al

ue
s

Days

l=0.1
l=0.5
l=0.95

Fig. 5. Convergence of trust values of
IDS nodes regarding three expertise
levels.

45 50 55 60 65 70
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
us

t V
al

ue

Days

 Malicious Node 1
 Malicious Node 2
 Malicious Node 3

Threshold

Fig. 6. Trust values of malicious nodes
under naive collusion attacks.

4.2 Experiment-1

In this experiment, we attempt to evaluate the initial performance of our attack,
naive collusion attack and PMFA [16]. Note that naive collusion attack adopts
a maximal harm model, as discussed earlier. Under this attack, malicious nodes
can cooperate to always respond with untruthful alarm ranking. Figures 5 and 6
depict the convergence of trust values and the reputation of malicious nodes
under this attack, respectively.

Figure 5 shows the convergence of trust values for nodes with three expert
levels. The observations echoed those of [5,6]; that is, a node with higher exper-
tise can obtain better reputation. For example, the nodes with an expertise of
high can reach a trust value above 0.9. In our settings, the reputation of all
nodes started to be converged after a period of 15–20 days.

To launch naive collusion attack, we then choose three expert nodes (I =
0.95) randomly, which could behave maliciously from Day 45. We denote these
nodes as malicious node 1, malicious node 2 and malicious node 3. Figure 6
presents the malicious nodes’ reputation under this attack. It is observed that
within 2–3 days, the reputation of malicious nodes could decrease very fast to
below the threshold of 0.8. This is because naive-collusion nodes always behave
maliciously, and it is easy to be detected. Subsequently, challenge-based CIDNs
can operate well under the native collusion attack, by decreasing malicios nodes’
trust values in a short time period.

Advanced Attacks. We further investigate the performance of our attack, as
well as those of the passive message fingerprint attack (PMFA). Similarly, we
adopted the same three expert nodes of malicious node 1, malicious node 2
and malicious node 3. We further remark that the CIDN controls the timing of
sending the normal request (i.e., send next request after getting a response from
the last request). Figures 7 and 8 show the malicious nodes’ reputation and the
average errors, respectively.

Practical Bayesian Poisoning Attacks on Challenge-Based CIDNs 505

45 50 55 60 65 70
0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95
Tr

us
t V

al
ue

Days

 Malicious Node 1 (PMFA)
 Malicious Node 2 (PMFA)
 Malicious Node 3 (PMFA)
 Malicious Node 1 (Our Attack)
 Malicious Node 2 (Our Attack)
 Malicious Node 3 (Our Attack)

Fig. 7. Trust values of malicious nodes
under our attack and PMFA.

PMFA Our Attack
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

R
at

e

FP
FN

Fig. 8. Average false rates in alarm
aggregation under our attack and PMFA.

Figure 7 shows that the reputation of malicious nodes in PMFA could drop to
below the threshold of 0.8 gradually, because PMFA can only ensure that at most
one malicious node can identify the normal request, while the other colluding
nodes could be identified by challenges. It is found that the trustworthiness
of the malicious nodes under our attack decreased slightly but still remained
above the threshold. This is because the nodes under our attack only responded
untruthfully occasionally.

Figure 8 shows the average alarm aggregation errors between PFMA and our
attack. The errors could include both false negatives (FN) and false positions
(FP). It is easily observed that the alarm aggregation errors are about 14%–16%
and 35%–38% under PMFA and our attack, respectively. Our attack can make
a larger impact on the alarm aggregation process.

Thus, our results demonstrate the feasibility of our attack, where suspicious
nodes can have a better chance of behaving maliciously to most normal requests,
while providing a truthful response to the remaining messages. In this case, our
attack enables malicious nodes acting maliciously without losing their reputa-
tion, thus can still make an impact on alarm aggregation.

4.3 Experiment-2

We further collaborated with an information center (including over 1000 person-
nel) and validate our attack performance in a practical CIDN environment. The
information center deploys a wired CIDN, which contains up to 55 nodes, where
the incoming network traffic can reach 1305 packets on average. We adopted the
same setting as shown in Table 1. Before the experiment, we implemented the
challenge mechanism and waited for the trust values to become stable. During
this period, each node collected messages and established a Bayesian distribu-
tion of normal requests. Similarly, we also selected three expert nodes randomly
to be malicious. The main results are depicted in Figs. 9 and 10.

506 W. Meng et al.

60 65 70 75 80 85
0.70

0.75

0.80

0.85

0.90

Tr
us

t V
al

ue

Days

 Malicious Node 1
 Malicious Node 2
 Malicious Node 3

Fig. 9. Trust values of malicious nodes
under our attack in a real CIDN.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

R
at

e

FP
FN

Fig. 10. Average false rates in alarm
aggregation under our attack in a real
CIDN.

– Figure 9 depicts that the malicious nodes’ reputation under our attack could
remain above the threshold of 0.8; thus, these nodes can make a negative
impact on the alarm aggregation.

– Figure 10 shows that the caused average alarm aggregation errors could be
around 37%–39% in the center environment. This is because the suspicious
nodes under our attack without detection could keep behaving untruthfully
to make an influence on the alarm aggregation.

Thus, our results validate the viability of our attack in a practical CIDN envi-
ronment, and reveal the limitations of existing challenge-based trust mechanisms
against such a practical attack.

4.4 Discussion and Countermeasures

As noted above, existing challenge-based CIDNs need to be redesigned to take
into consideration practical attacks such as the attack we reveal in this paper. In
other words, sending challenges in a random manner may not be good enough to
protect the robustness of challenge-based CIDNs. To defeat our proposed attack,
we discuss some potential countermeasures as below.

– One possible solution is to insert a special alarm in a normal request to
validate the response. Such special alarm should be inserted in a random
position every time, in order to raise the cracking difficulty.

– It is a promising way to combine other types of trust into challenge-based
CIDNs. For instance, we can examine the packets that are sent by malicious
nodes (denote as packet-level trust), as these nodes are most likely to deliver
malicious traffic during an attack [24].

– There is also a good idea to involve some validation mechanisms, which can
help check whether the received feedback is malicious or not. Due to the
popularity of blockchain technology, it can be considered to help build a
trusted feedback-chain that can be validated by all peers.

Practical Bayesian Poisoning Attacks on Challenge-Based CIDNs 507

4.5 Limitations

In this work, our main purpose is to exploit the robustness of challenge-based
CIDNs by designing a practical insider attack - Bayesian Poisoning Attack. Due
to the scope, there are some limitations and open challenges on this topic.

– CIDN deployment. Distributed/collaborative intrusion detection has been
proposed for decades, while these systems are mainly deployed at a small-
scale, i.e., security-sensitive organizations, and security companies. With the
current threats being more sophisticated, there is a trend towards developing
a more practical, effective and robust DIDS/CIDN in various organizations.
Our work is an effort to stimulate more research in this direction.

– Existing security mechanisms. There are many other security mechanisms
in practice, like OSINT-based curated security feeds/platforms, and security
information and event management (SIEM) system that correlates events
coming from multiple sensors. Because of our focus, we did not discuss the
existing security mechanisms, but intuitively, DIDS/CIDN is an alternative
to collaborate with existing security solutions.

In the current literature, distributed/collaborative intrusion detection has
been applied to many disciplines. For example, Shekari et al. [30] focused
on supervisory control and data acquisition (SCADA) and proposed a radio
frequency-based distributed intrusion detection system (RFDIDS), which uses
radio frequency (RF) emissions to monitor the power grid substation activities.
Hence, our work advocates the need of enhancing intrusion detection by enabling
collaboration among various detectors, but also figures out the open challenge
on how to design a practical, effective and robust DIDS/CIDN.

5 Related Work

Intuitively, it is challenging for an isolated IDS to learn about the evolving,
real-time threat landscape. Thus, there is a need for sharing of information
and threats, for example via a distributed system. Examples of such systems
include Centralized/Hierarchical systems (e.g., Emerald [28] and DIDS [31]),
Publish/subscribe systems (e.g., COSSACK [27] and DOMINO [36]), and P2P
Querying-based systems (e.g., Netbait [1] and PIER [10]). CIDN is yet another
example, and the focus of this paper. Specifically, in a CIDN [35], an IDS node
can achieve better accuracy by collecting and communicating relevant informa-
tion from other IDS nodes (i.e., collating the alerts from other nodes and synthe-
sizing a global and aggregated alarm). However, insider attack is a major threat
for such collaborative networks, as shown by researchers such as Li et al. [12].
Specifically, Li et al. [12] proposed a system based on the emerging decentral-
ized location and routing infrastructure, and assumed that all peers are trusted.
This is clearly vulnerable to insider attacks, such as betrayal attacks where some
nodes become malicious suddenly (e.g., due to compromise).

508 W. Meng et al.

The need to establish appropriate and strong trust models to defend against
insider attacks is well-studied. Duma et al. [3], for example, proposed a P2P-
based overlay for intrusion detection (Overlay IDS) that mitigated such insider
threats, by using a trust-aware engine for correlating alerts and an adaptive
scheme for managing trust. Tuan [34] utilized the game theory to model and
analyze the processes of reporting and exclusion in a P2P network. They iden-
tified that if a reputation system is not incentive compatible, then peers in the
system will be less inclined to report a malicious peer.

While challenge-based trust mechanisms are an effective approach of building
trust among CIDN nodes (i.e., trustworthiness of a node depends on the received
answers to the challenges), they are not infallible. Fung et al. [5] proposed a HIDS
collaboration framework, which enables each HIDS to evaluate the trustworthi-
ness of others based on its own experience by means of a forgetting factor. The
forgetting factor can give more emphasis on the recent experience of the peer.
Then, they improved their trust management model by using a Dirichlet-based
model to measure the level of trustworthiness among IDS nodes, according to
their mutual experience [6]. This model has strong scalability properties and
is sufficiently robust against common insider threats, as demonstrated by their
evalution findings. As feedback aggregation is a key component in a challenge
mechanism, they further applied a Bayesian approach to feedback aggregation
to minimize the combined costs of missed detection and false alarm [7].

To further improve the detection accuracy of challenge-based CIDNs, Li et
al. [13] explained that different IDS nodes may have different levels of sensitivity
in detecting different types of intrusions. They also proposed a notion of intru-
sion sensitivity that measures the detection sensitivity of an IDS in detecting
different kinds of intrusions. For example, if a signature-based IDS node has more
signatures (or rules) in detecting DoS attacks, then it should be considered to
be more powerful in detecting such attacks, in comparison to other nodes with
relatively fewer signatures. This notion is helpful when making decisions based
on the collected information from different nodes, as it can help detect intrusions
and correlate IDS alerts through emphasizing the impact of an expert IDS. Li
et al. [14] further proposed an intrusion sensitivity-based trust management
model for automating the allocation of intrusion sensitivity, using machine learn-
ing techniques such as knowledge-based KNN classifier [22]. The use of intrusion
sensitivity could also be beneficial for alarm aggregation and defending against
pollution attacks [15]. Experimental results demonstrated that intrusion sensi-
tivity can decrease the trust values of malicious nodes promptly. Other related
studies on intrusion detection enhancement include those of [4,9,18–21,24,25]

Challenge-based CIDNs are robust against common insider attacks, whereas
some advanced insider threats are still feasible. Li et al. [16] showed an advanced
insider attack named passive message fingerprint attack (PMFA), where multi-
ple suspicious nodes could work together to identify normal requests from the
received messages. They further introduced another attack called Special On-Off
Attack SOOA [17], which could send truthful answers to partial messages while
behaving maliciously to other messages. The random poisoning attack [23] is a

Practical Bayesian Poisoning Attacks on Challenge-Based CIDNs 509

special case of SOOA, in which malicious nodes can send a malicious response
with a possibility of 1/2. The main difference between the above studies and our
work is that we use a Bayesian approach to identify normal requests with a high
possibility, hence each malicious node can have their own possibility list.

6 Conclusion

With the purpose of enhancing the robustness of challenge-based CIDNs against
a broader range of attacks, we posit the importance of designing advanced and
practical attacks. In this paper, we developed a type of collusion attack, Bayesian
Poisoning Attack, which enables a malicious node to establish an appearance
probability of normal requests based on Bayesian inference. In our attack, mali-
cious nodes can respond untruthfully to messages, which have a higher possibility
to be a normal request. In the evaluation, we compare our attack with naive col-
lusion attack and PMFA under both simulated and practical environment, and
experimental results demonstrated the utility of our attack (i.e., malicious nodes
can respond untruthfully, while maintaining their trust values and causing errors
in the alarm aggregation). We also discuss some potential countermeasures (e.g.,
combining other trust types) to defeat such type of attack, which could be one
of our future work. Our work attempts to stimulate more research in building
robust and practical challenge-based CIDNs.

Acknowledgments. We would like to thank all anonymous reviewers for their helpful
comments in improving the paper. Weizhi Meng was partially supported by H2020 SU-
ICT-03-2018 CyberSec4Europe.

References

1. Chun, B., Lee, J., Weatherspoon, H., Chun, B.N.: Netbait: a Distributed Worm
Detection Service. Technical Report IRB-TR-03-033, Intel Research Berkeley
(2003)

2. Douceur, J.R.: The sybil attack. In: Druschel, P., Kaashoek, F., Rowstron, A. (eds.)
IPTPS 2002. LNCS, vol. 2429, pp. 251–260. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45748-8 24

3. Duma, C., Karresand, M., Shahmehri, N., Caronni, G.: A trust-aware, P2P-based
overlay for intrusion detection. In: DEXA Workshop, pp. 692–697 (2006)

4. Friedberg, I., Skopik, F., Settanni, G., Fiedler, R.: Combating advanced persistent
threats: from network event correlation to incident detection. Comput. Secur. 48,
35–57 (2015)

5. Fung, C.J., Baysal, O., Zhang, J., Aib, I., Boutaba, R.: Trust management for host-
based collaborative intrusion detection. In: De Turck, F., Kellerer, W., Kormentzas,
G. (eds.) DSOM 2008. LNCS, vol. 5273, pp. 109–122. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-87353-2 9

6. Fung, C.J., Zhang. J., Aib, I., Boutaba, R.: Robust and scalable trust management
for collaborative intrusion detection. In: Proceedings of the 11th IFIP/IEEE Inter-
national Conference on Symposium on Integrated Network Management (IM), pp.
33–40 (2009)

https://doi.org/10.1007/3-540-45748-8_24
https://doi.org/10.1007/3-540-45748-8_24
https://doi.org/10.1007/978-3-540-87353-2_9

510 W. Meng et al.

7. Fung, C.J.; Zhu, Q., Boutaba, R., Basar, T.: Bayesian decision aggregation in
collaborative intrusion detection networks. In: NOMS, pp. 349–356 (2010)

8. Fung, C.J., Boutaba, R.: Design and management of collaborative intrusion detec-
tion networks. In: Proceedings of the 2013 IFIP/IEEE International Symposium
on Integrated Network Management (IM), pp. 955–961 (2013)

9. Gou, Z., Ahmadon, M.A.B., Yamaguchi, S., Gupta, B.B.: A petri net-based frame-
work of intrusion detection systems. In: Proceedings of the 4th IEEE Global Con-
ference on Consumer Electronics, pp. 579–583 (2015)

10. Huebsch, R., et al.: The architecture of PIER: an internet-scale query processor. In:
Proceedings of the 2005 Conference on Innovative Data Systems Research (CIDR),
pp. 28–43 (2005)

11. Kiennert, C., Ismail, Z., Debar, H., Leneutre, J.: A survey on game-theoretic
approaches for intrusion detection and response optimization. ACM Comput. Surv.
(CSUR) 51(5), 90 (2018)

12. Li, Z., Chen, Y., Beach, A.: Towards scalable and robust distributed intrusion alert
fusion with good load balancing. In: Proceedings of the 2006 SIGCOMM Workshop
on Large-Scale Attack Defense (LSAD), pp. 115–122 (2006)

13. Li, W., Meng, Y., Kwok, L.-F.: Enhancing trust evaluation using intrusion sensi-
tivity in collaborative intrusion detection networks: feasibility and challenges. In:
Proceedings of the 9th International Conference on Computational Intelligence and
Security (CIS), pp. 518–522. IEEE (2013)

14. Li, W., Meng, W., Kwok, L.-F.: Design of intrusion sensitivity-based trust manage-
ment model for collaborative intrusion detection networks. In: Zhou, J., Gal-Oz,
N., Zhang, J., Gudes, E. (eds.) IFIPTM 2014. IAICT, vol. 430, pp. 61–76. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-43813-8 5

15. Li, W., Meng, W.: Enhancing collaborative intrusion detection networks using
intrusion sensitivity in detecting pollution attacks. Inf. Comput. Secur. 24(3), 265–
276 (2016)

16. Li, W., Meng, W., Kwok, L.-F., Ip, H.H.S.: PMFA: toward passive message fin-
gerprint attacks on challenge-based collaborative intrusion detection networks. In:
Proceedings of the 10th International Conference on Network and System Security
(NSS), pp. 433–449 (2016)

17. Li, W., Meng, W., Kwok, L.F.: SOOA: exploring special on-off attacks on challenge-
based collaborative intrusion detection networks. In: Proceedings of GPC, pp. 402–
415 (2017)

18. Meng, Y., Kwok, L.F.: Enhancing false alarm reduction using voted ensemble selec-
tion in intrusion detection. Int. J. Comput. Intell. Syst. 6(4), 626–638 (2013)

19. Meng, Y., Li, W., Kwok, L.F.: Towards Adaptive character frequency-based exclu-
sive signature matching scheme and its applications in distributed intrusion detec-
tion. Comput. Netw. 57(17), 3630–3640 (2013)

20. Meng, W., Li, W., Kwok, L.-F.: An evaluation of single character frequency-based
exclusive signature matching in distinct IDS environments. In: Proceedings of the
17th International Conference on Information Security (ISC), pp. 465–476 (2014)

21. Meng, W., Li, W., Kwok, L.-F.: EFM: enhancing the performance of signature-
based network intrusion detection systems using enhanced filter mechanism. Com-
put. Secur. 43, 189–204 (2014)

22. Meng, W., Li, W., Kwok, L.-F.: Design of intelligent KNN-based alarm filter using
knowledge-based alert verification in intrusion detection. Secur. Commun. Netw.
8(18), 3883–3895 (2015)

https://doi.org/10.1007/978-3-662-43813-8_5

Practical Bayesian Poisoning Attacks on Challenge-Based CIDNs 511

23. Meng, W., Luo, X., Li, W., Li, Y.: Design and evaluation of advanced collusion
attacks on collaborative intrusion detection networks in practice. In: Proceedings
of the 15th IEEE International Conference on Trust, Security and Privacy in Com-
puting and Communications (TrustCom), pp. 1061–1068 (2016)

24. Meng, W., Li, W., Kwok, L.-F.: Towards effective trust-based packet filtering in
collaborative network environments. IEEE Trans. Netw. Serv. Manage. 14(1), 233–
245 (2017)

25. Mishra, A., Gupta, B.B., Joshi, R.C.: A comparative study of distributed denial of
service attacks, intrusion tolerance and mitigation techniques. In: Proceedings of
the 2011 European Intelligence and Security Informatics Conference, pp. 286–289
(2011)

26. Nisioti, A., Mylonas, A., Yoo, P.D., Katos, V.: From intrusion detection to attacker
attribution: a comprehensive survey of unsupervised methods. IEEE Commun.
Surv. Tutorials 20(4), 3369–3388 (2018)

27. Papadopoulos, C., Lindell, R., Mehringer, J., Hussain, A., Govindan, R.: COS-
SACK: coordinated suppression of simultaneous attacks. In: Proceedings of the
2003 DARPA Information Survivability Conference and Exposition (DISCEX),
pp. 94–96 (2003)

28. Porras, P.A., Neumann, P.G.: Emerald: event monitoring enabling responses to
anomalous live disturbances. In: Proceedings of the 20th National Information
Systems Security Conference, pp. 353–365 (1997)

29. Scarfone, K., Mell, P.: Guide to Intrusion Detection and Prevention Systems
(IDPS). NIST Special Publication 800-94 (2007)

30. Shekari, T., Bayens, C., Cohen, M., Graber, L., Beyah, R.: RFDIDS: radio
frequency-based distributed intrusion detection system for the power grid. In: Pro-
ceedings of the 26th Annual Network and Distributed System Security Symposium
(NDSS) (2019)

31. Snapp, S.R., et al.: DIDS (Distributed Intrusion Detection System) - motivation,
architecture, and an early prototype. In: Proceedings of the 14th National Com-
puter Security Conference, pp. 167–176 (1991)

32. Snort: An an open source network intrusion prevention and detection system
(IDS/IPS). http://www.snort.org/

33. Sun, Y., Yu, W., Han, Z., Liu, K.: Information theoretic framework of trust mod-
eling and evaluation for ad hoc networks. IEEE J. Sel. Areas Commun. 24(2),
305–317 (2006)

34. Tuan, T.A.: A game-theoretic analysis of trust management in P2P systems. In:
Proceedings of ICCE, pp. 130–134 (2006)

35. Wu, Y.-S., Foo, B., Mei, Y., Bagchi, S.: Collaborative Intrusion Detection System
(CIDS): a framework for accurate and efficient IDS. In: Proceedings of the 2003
Annual Computer Security Applications Conference (ACSAC), pp. 234–244 (2003)

36. Yegneswaran, V., Barford, P., Jha, S.: Global intrusion detection in the DOMINO
overlay system. In: Proceedings of the 2004 Network and Distributed System Secu-
rity Symposium (NDSS), pp. 1–17 (2004)

http://www.snort.org/

A Framework for Evaluating Security in
the Presence of Signal Injection Attacks

Ilias Giechaskiel(B), Youqian Zhang, and Kasper B. Rasmussen

University of Oxford, Oxford, UK
{ilias.giechaskiel,youqian.zhang,kasper.rasmussen}@cs.ox.ac.uk

Abstract. Sensors are embedded in security-critical applications from
medical devices to nuclear power plants, but their outputs can be
spoofed through electromagnetic and other types of signals transmit-
ted by attackers at a distance. To address the lack of a unifying frame-
work for evaluating the effect of such transmissions, we introduce a sys-
tem and threat model for signal injection attacks. We further define the
concepts of existential, selective, and universal security, which address
attacker goals from mere disruptions of the sensor readings to precise
waveform injections. Moreover, we introduce an algorithm which allows
circuit designers to concretely calculate the security level of real sys-
tems. Finally, we apply our definitions and algorithm in practice using
measurements of injections against a smartphone microphone, and ana-
lyze the demodulation characteristics of commercial Analog-to-Digital
Converters (ADCs). Overall, our work highlights the importance of eval-
uating the susceptibility of systems against signal injection attacks, and
introduces both the terminology and the methodology to do so.

Keywords: Signal injection attacks · Non-linearities · Security metrics ·
Analog-to-Digital Converters · Electromagnetic interference

1 Introduction

In our daily routine we interact with dozens of sensors: from motion detection
in home security systems and tire pressure monitors in cars, to accelerometers
in smartphones and heart rate monitors in smartwatches. The integrity of these
sensor outputs is crucial, as many security-critical decisions are taken in response
to the sensor values. However, specially-crafted adversarial signals can be used
to remotely induce waveforms into the outputs of sensors, thereby attacking
pacemakers [9], temperature sensors [4], smartphone microphones [8], and car-
braking mechanisms [18]. These attacks cause a system to report values which do
not match the true sensor measurements, and trick it into performing dangerous
actions such as raising false alarms, or even delivering defibrillation shocks.

The root cause of these vulnerabilities lies in the unintentional side-effects of
the physical components of a system. For example, the wires connecting sensors

c© Springer Nature Switzerland AG 2019
K. Sako et al. (Eds.): ESORICS 2019, LNCS 11735, pp. 512–532, 2019.
https://doi.org/10.1007/978-3-030-29959-0_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29959-0_25&domain=pdf
https://doi.org/10.1007/978-3-030-29959-0_25

Security Framework for Signal Injection Attacks 513

to microcontrollers behave like low-power, low-gain antennas, and can thus pick
up high-frequency electromagnetic radiations. Although these radiations are con-
sidered “noise” from an electrical point of view, hardware imperfections in the
subsequent parts of the circuit can transform attacker injections into meaningful
waveforms. Specifically, these radiations are digitized along with the true sensor
outputs, which represent a physical property as an analog electrical quantity.
This digitization process is conducted by Analog-to-Digital Converters (ADCs),
which, when used outside of their intended range, can cause high-frequency sig-
nals to be interpreted as meaningful low-frequency signals.

Despite the potential that signal injection attacks have to break security guar-
antees, there is no unifying framework for evaluating the effect of such adversarial
transmissions. Our work fills this gap through the following contributions:

1. We propose a system model which abstracts away from engineering concerns
associated with remote transmissions, such as antenna design (Sect. 2).

2. We define security against adversarial signal injection attacks. Our definitions
address effects ranging from mere disruptions of the sensor readings, to precise
waveform injections of attacker-chosen values (Sect. 3).

3. We introduce an algorithm to calculate the security level of a system under
our definitions and demonstrate it in practice by injecting “OK Google” com-
mands into a smartphone (Sect. 4).

4. We investigate how vulnerable commercial ADCs are to malicious signal injec-
tion attacks by testing their demodulation properties (Sect. 5).

5. We discuss how our model can be used to inform circuit design choices,
and how to interpret defense mechanisms and other types of signal injection
attacks in its context (Sect. 6).

Overall, our work highlights the importance of testing systems against signal
injection attacks, and proposes a methodology to test the security of real devices.

2 System and Adversary Model

Remote signal injection attacks pose new challenges from a threat-modeling
perspective, since the electrical properties of systems suggest that adversaries
cannot arbitrarily and precisely change any sensor reading. To create a threat
model and define security in its context, we need to first abstract away from spe-
cific circuit designs and engineering concerns related to remote transmissions. To
do so, we separate the behavior of a system into two different transfer functions.
The first function describes circuit-specific behavior, including how adversarial
signals enter the circuit (e.g., through PCB wires acting as antennas), while
the second one is ADC-specific, and dictates how the signals which have made it
into the circuit are digitized. We describe this model in greater detail in Sect. 2.1,
taking a necessary detour into electrical engineering to show why our proposal
makes for a good system model. We then explain some sources of measurement
errors even in the absence of an adversary in Sect. 2.2 and finish by detailing the
capabilities and limitations of the adversary in Sect. 2.3. Both sub-sections are
crucial in motivating the security definitions of Sect. 3.

514 I. Giechaskiel et al.

Fig. 1. System model: an adversarial signal v(t) enters the circuit and is transformed
via the transfer function HC . It is digitized along with the sensor signal s(t) and
the noise n(t) through an ADC-specific transfer function HA. In successful attacks,
the digitized signal will contain the demodulated version w(t) of the attacker signal
v(t) = M(w(t)), where M is the modulation function (e.g., amplitude modulation over
a high-frequency carrier).

2.1 Circuit Model

Analog-to-Digital Converters (ADCs) are central in the digitization process of
converting signals from the analog to the digital realm, and our circuit block
diagram (Fig. 1) reflects that. In the absence of an adversary, the ADC digitizes
the sensor signal s(t) as well as the environmental noise n(t), and transfers the
digital bits to a microcontroller. We model the ADC in two parts: an “ideal”
ADC which simply digitizes the signal, and a transfer function HA. This transfer
function describes the internal behavior of the ADC, which includes effects such
as filtering and amplification. The digitized version of the signal s̃f (t) depends
both on this transfer function, and the sampling frequency f of the ADC. An
adversarial signal can enter the system (e.g., through the wires connecting the
sensor to the ADC) and add to the sensor signal and the noise. This process can
be described by a second, circuit-specific transfer function HC , which transforms
the adversarial signal v(t) into ṽ(t). Note that components such as external filters
and amplifiers in the signal path between the point of injection and the ADC
can be included in either HA or HC . We include them in HA when they also
affect the sensor signal s(t), but in HC when they are specific to the coupling
effect. HC and HA are discussed in detail below.

Circuit Transfer Function HC . To capture the response of the circuit to
external signal injections, we introduce a transfer function HC . This transfer
function explains why the adversarial waveforms must be modulated, and why
it is helpful to try and reduce the number of remote experiments to perform.
For electromagnetic interference (EMI) attacks, the wires connecting the sensor
to the ADC pick up signals by acting as (unintentional) low-power and low-gain
antennas, which are resonant at specific frequencies related to the inverse of the
wire length [10]. Non-resonant frequencies are attenuated more, so for a success-
ful attack the adversary must transmit signals at frequencies with relatively low
attenuation. For short wires, these frequencies are in the GHz range [10], so the
low-frequency waveform w(t) that the adversary wants to inject into the output

Security Framework for Signal Injection Attacks 515

Fig. 2. The sample-and-hold mechanism of an ADC is an RC low-pass filter. Electro-
static Discharge (ESD) protection diodes can also introduce non-linearities.

of the ADC s̃f (t) may need to be modulated over a high-frequency carrier using a
function M . We denote this modulated version of the signal by v(t) = M(w(t)).

HC is also affected by passive and active components on the path to the
ADC, and can also be influenced by inductive and capacitive coupling for small
transmission distances, as it closely depends on the circuit components and their
placement. Specifically, it is possible for 2 circuits with “the same components,
circuit topology and placement area” to have different EMI behavior depending
on the component placement on the board [11]. Despite the fact that it is hard to
mathematically model and predict the behavior of circuits in response to different
signal transmissions, HC can still be determined empirically using frequency
sweeps. It presents a useful abstraction, allowing us to separate the behavior of
the ADC (which need only be determined once, for instance by the manufacturer)
from circuit layout and transmission details.

Note, finally, that HC can also account for distance factors between the
adversary and the circuit under test: due to the Friis transmission formula [3],
as distance doubles, EMI transmission power needs to quadruple. This effect
can be captured by increasing the attenuation of HC by 6 dB, while defense
mechanisms such as shielding can be addressed similarly. This approach allows
us to side-step engineering issues of remote transmissions and reduce the number
of parameters used in the security definitions we propose in Sect. 3.

ADC Transfer Function HA. Every system with sensors contains one or more
ADCs, which may even be integrated into the sensor chip itself. ADCs are not
perfect, but contain components which may cause a mismatch between the “true”
value at the ADC input and the digitized output. In this section, we describe
how these components affect the digitization process.

Although there are many types of ADCs, every ADC contains three basic
components: a “sample- or track-and-hold circuit where the sampling takes
place, the digital-to-analog converter and a level-comparison mechanism” [13].
The sample-and-hold component acts as a low-pass filter, and makes it harder
for an adversary to inject signals modulated at high frequencies. However, the
level-comparison mechanism is essentially an amplifier with non-linearities which
induces DC offsets, and allows low-frequency intermodulation products to pass
through. These ADC-specific transformations, modeled through HA, uninten-
tionally demodulate high-frequency signals which are not attenuated by HC .

516 I. Giechaskiel et al.

Sample-and-Hold Filter Characteristics. A sample-and-hold (S/H) mech-
anism is an RC circuit connected to the analog input, with the resistor and
the capacitor connected in series (Fig. 2). The transfer function of the voltage
across the capacitor is HS/H(jω) = 1

1+jωRC , and the magnitude of the gain
is GS/H = 1√

1+(ωRC)2
. As the angular frequency ω = 2πf increases, the gain

is reduced: the S/H mechanism acts as a low-pass filter. The −3 dB cutoff fre-
quency is thus fcut = 1

2πRC , which is often higher than the ADC sampling rate
(Sect. 5). Hence, “aliasing” occurs when signals beyond the Nyquist frequency
are digitized by the ADC: high-frequency signals become indistinguishable from
low-frequency signals which the ADC can sample accurately.

Amplifier Non-linearities. Every ADC contains amplifiers: a comparator, and
possibly buffer and differential amplifiers. Many circuits also contain additional
external amplifiers to make weak signals measurable. All these amplifiers have
harmonic and intermodulation non-linear distortions [15], which an adversary
can exploit. Harmonics are produced when an amplifier transforms an input vin

to an output vout =
∑∞

n=1 anvn
in. In particular, if vin = v̂ · sin(ωt), then:

vout =
(

a2v̂
2

2
+

3a4v̂
4

8
+ · · ·

)

+(a1v̂ + · · ·) sin(ωt)−
(

a2v̂
2

2
+ · · ·

)

cos(2ωt)+· · ·

This equation shows that “the frequency spectrum of the output contains a
spectral component at the original (fundamental) frequency, [and] at multiples
of the fundamental frequency (harmonic frequencies)” [15]. Moreover, the output
includes a DC component, which depends only on the even-order non-linearities
of the system. Besides harmonics, intermodulation products arise when the input
signal is a sum of two sinusoids (for instance when the injected signal sums with
the sensor signal): vin = v̂1 · sin(ω1t) + v̂2 · sin(ω2t). In that case, the output
signal contains frequencies of the form nω1 ± mω2 for integers n,m �= 0. These
non-linearities demodulate attacker waveforms, even when they are modulated
on high-frequency carriers.

Diode Rectification. Figure 2 shows that the input to an ADC can contain
reverse-biased diodes to ground and Vcc to protect the input from Electrostatic
Discharge (ESD). When the input to the ADC is negative, or when it exceeds
Vcc, the diodes clamp it, causing non-linear behavior. When the sensor signal
s(t) is positive, this behavior is also asymmetric, causing a DC shift [15], which
compounds with the amplifier non-linearities.

Conclusion. All ADCs contain the same basic building blocks, modeled through
HA. Although the sample-and-hold mechanism should attenuate high-frequency
signals beyond the maximum sampling rate of the ADC, non-linearities due to
ESD diodes and amplifiers in the ADC cause DC offsets and the demodulation of
signals through harmonics and intermodulation products. Section 5 exemplifies
these effects through experiments with different types of ADCs.

Security Framework for Signal Injection Attacks 517

Fig. 3. Noise probability distribution p(x). The shaded area represents the probability
ε = N(x) = Pr[|n(t)| ≤ x].

2.2 Sampling Errors in the Absence of an Adversary

The digitization process through ADCs entails errors due to quantization and
environmental noise. Quantization errors exist due to the inherent loss of accu-
racy in the sampling process. An ADC can only represent values within a range,
say between Vmin and Vmax volts, with a finite binary representation of N bits,
called the resolution of the ADC. In other words, every value between Vmin and
Vmax is mapped to one of the 2N values that can be represented using N bits.
As a result, there is a quantization error between the true sensor analog value s
and the digitized value s̃. The maximum value of this error is

Q =
Vmax − Vmin

2N+1
≥ |s − s̃| (1)

The second source of error comes from environmental noise, which may affect
measurements. We assume that this noise, denoted by n(t), is independent of
the signal being measured, and that it comes from a zero-mean distribution, i.e.,
that the noise is white. The security definitions we introduce in Sect. 3 require
an estimate of the level of noise in the system, so we introduce some relevant
notation here. We assume that n(t) follows a probability distribution function
(PDF) p(x), and define N(x) as the probability that the noise is between −x
and x, as shown in Fig. 3, i.e.,

N(x) = Pr [|n(t)| ≤ x] =
∫ x

−x

p(u)du

Note that typically the noise is assumed to come from a normal distribution,
but this assumption is not necessary in our models and definitions.

We are also interested in the inverse of this function, where given a probability
0 ≤ ε < 1, we want to find x ≥ 0 such that N(x) = ε. For this x, the probability
that the noise magnitude falls within [−x, x] is ε, as also shown in Fig. 3. Because
for some distributions there might be multiple x for which N(x) = ε, we use the
smallest such value:

N−1(ε) = inf{x ≥ 0 : N(x) = ε} (2)

Since N(x) is an increasing function, so is N−1(ε).
To account for repeated measurements, we introduce a short-hand for sam-

pling errors, which we denote by Es(t). The sampling errors depend on the sensor

518 I. Giechaskiel et al.

input into the ADC s(t), the sampling rate f , the discrete output of the ADC
s̃f (t) as well as the conversion delay τ , representing the time the ADC takes for
complete a conversion:

Es(t) =

{
|s̃f (t + τ) − s(t)| if a conversion starts at t

0 otherwise
(3)

2.3 Adversary Model

Our threat model and definitions can capture a range of attacker goals, from
attackers who merely want to disrupt sensor outputs, to those who wish to
inject precise waveforms into a system. We define these notions precisely in
Sect. 3, but here we describe the attacker capabilities based on our model of
Fig. 1. Specifically, in our model, the adversary can only alter the transmitted
adversarial signal v(t). He/she cannot directly influence the sensor signal s(t), the
(residual) noise n(t), or the transfer functions HA and HC . The adversary knows
HA, HC , and the distribution of the noise n(t), although the true sensor signal
s(t) might be hidden from the adversary (see Sect. 3.2). The only constraint
placed on the adversarial signal is that the attacker is only allowed to transmit
signals v(t) whose peak voltage level is bounded by some constant V Adv

PK , i.e.,
|v(t)| ≤ V Adv

PK for all t. We call this adversary a V Adv
PK -bound adversary, and all

security definitions are against such bounded adversaries.
We choose to restrict voltage rather than restricting power or distance, as

it makes for a more powerful adversarial model. Our model gives the adversary
access to any physical equipment necessary (such as powerful amplifiers and
highly-directional antennas), while reducing the number of parameters needed
for our security definitions of Sect. 3. Distance and power effects can be compen-
sated directly through altering V Adv

PK , or indirectly by integrating them into HC ,
as discussed in Sect. 2.1.

3 Security Definitions

Using the model of Fig. 1, we can define security in the presence of signal injection
attacks. The V Adv

PK -bound adversary is allowed to transmit any waveform v(t),
provided that |v(t)| ≤ V Adv

PK for all t: the adversary is only constrained by the
voltage budget. Whether or not the adversary succeeds in injecting the target
waveform w(t) into the output of the system depends on the transfer functions
HC and HA. For a given system described by HA and HC , there are three
outcomes against an adversary whose only restriction is voltage:

1. The adversary can disturb the sensor readings, but cannot precisely control
the measurement outputs, an attack we call existential injection. The lack of
existential injections can be considered universal security.

2. The adversary can inject a target waveform w(t) into the ADC outputs with
high fidelity, performing a selective injection. If the adversary is unable to
succeed, the system is selectively secure against w(t).

Security Framework for Signal Injection Attacks 519

Table 1. Correspondence between security properties of a sensor system, adversarial
injection attacks, and the resulting ADC waveform errors (signals).

Security Injection ADC error Es(t)

Universal Existential Bounded away from 0

Selective Selective Target waveform w(t)

Existential Universal Non-trivial waveforms w(t)

3. The adversary can universally inject any waveform w(t). If there is any non-
trivial waveform for which he/she fails, the system is existentially secure.

This section sets out to precisely define the above security notions by account-
ing for noise and quantization error (Eq. (1)). Our definitions capture the intu-
ition that systems are secure when there are no adversarial transmissions, and
are “monotonic” in voltage, i.e., systems are more vulnerable against adversaries
with access to higher-powered transmitters. Our definitions are also monotonic
in noise: in other words, in environments with low noise, even a small disturbance
of the output is sufficient to break the security of a system. Section 3.1 evaluates
whether an adversary can disturb the ADC output away from its correct value
sufficiently. Section 3.2 then formalizes the notion of selective security against
target waveforms w(t). Finally, Sect. 3.3 introduces universal injections by defin-
ing what a non-trivial waveform is. The three types of signal injection attacks,
the corresponding security properties, and the ensuing ADC errors (injected
waveforms) are summarized in Table 1.1

3.1 Existential Injection, Universal Security

The most primitive type of signal injection attack is a simple disruption of the
sensor readings. There are two axes in which this notion can be evaluated: adver-
sarial voltage and probability of success (success is probabilistic, as noise is a
random variable). For a fixed probability of success, we want to determine the
smallest voltage level for which an attack is successful. For a fixed voltage level,
we want to find the probability of a successful attack. Alternatively, if we fix both
the voltage and the probability of success, we want to determine if a system is
secure against disruptive signal injection attacks.

The definition for universal security is a formalization of the above intuition,
calling a system secure when, even in the presence of injections (bounded by
adversarial voltage), the true analog sensor value and the ADC digital output do
not deviate by more than the quantization error and the noise, with sufficiently
high probability. Mathematically:

1 The terminology chosen was inspired by attacks against signature schemes, where
how broken a system is depends on what types of messages an attacker can forge [7].

520 I. Giechaskiel et al.

Definition 1 (Universal Security, Existential Injection). For 0 ≤ ε < 1,
and V Adv

PK ≥ 0, we call a system universally (ε, V Adv
PK)-secure if

Pr

[

Es(t) ≥ Q + N−1

(
ε + 1

2

)]

≤ ε + 1
2

(4)

for every adversarial waveform v(t), with |v(t)| ≤ V Adv
PK for all t. Q is the quan-

tization error of the system, N−1 is the noise distribution inverse defined in
Eq. (2), and Es is the sampling error as defined by Eq. (3). The probability is
taken over the duration of the attack, i.e., at each sampling point within the
interval tstart ≤ t ≤ tend. We call a successful attack an existential injection,
and simply call a system universally ε-secure, when V Adv

PK is implied.

We first show that in the absence of injections, the system is universally
ε-secure for all 0 ≤ ε < 1. Indeed, let x = N−1

(
ε+1
2

)
, so that Pr [|n(t)| ≤ x] =

ε+1
2 . Then, in the absence of injections,

Pr

[

Es(t) ≥ Q + N−1

(
ε + 1

2

)]

= Pr [|n(t)| ≥ x]

= 1 − ε + 1
2

=
1 − ε

2
≤ ε + 1

2
which holds for all 0 ≤ ε < 1, as desired. This proof is precisely the reason for
requiring a noise level and probability of at least 50% in the definition: the proof
no longer works if (1 + ε)/2 is replaced by just ε. In other words, mere noise
would be classified as an attack by the modified definition.

Voltage. We now show that a higher adversarial voltage budget can only make
a system more vulnerable. Indeed, if a system is universally (ε, V1)-secure, then
it is universally (ε, V2)-secure for V2 ≤ V1. For this, it suffices to prove the
contrapositive, i.e., that if a system is not universally (ε, V2)-secure, then it is
not universally (ε, V1)-secure. For the proof, let v(t) be an adversarial waveform
with |v(t)| ≤ V2 such that Eq. (4) does not hold, which exists by the assumption
that the system is not universally (ε, V2)-secure. Then, by the transitive property,
|v(t)| ≤ V1, making v(t) a valid counterexample for universal (ε, V1) security.

Probability. The third property we show is probability monotonicity, allowing
us to define a “critical threshold” for ε, above which a system is universally secure
(for a fixed V Adv

PK), and below which a system is not universally secure. Indeed,
for fixed V Adv

PK , if a system is universally (ε, V Adv
PK)-secure, then it is universally

(ε + δ, V Adv
PK)-secure for 0 ≤ δ < 1 − ε, as

Pr

[

Es(t) ≥ Q + N−1

(
ε + δ + 1

2

)]

≤ Pr

[

Es(t) ≥ Q + N−1

(
ε + 1

2

)]

≤ ε + 1
2

≤ ε + δ + 1
2

because N−1 is increasing. The contrapositive is, of course, also true: if a system
is not universally secure for a given ε, it is also not universally secure for ε − δ
with 0 ≤ δ ≤ ε.

Security Framework for Signal Injection Attacks 521

Thresholds. For a given security level ε, then, we can talk about the maximum
(if any) V Adv

PK such that a system is universally (ε, V Adv
PK)-secure, or conversely the

minimum (if any) V Adv
PK such that a system is not universally (ε, V Adv

PK)-secure.
This is the critical universal voltage level Vc for the given ε. Moreover, for
any V Adv

PK , there is a unique critical universal security threshold εc such
that the system is universally (ε, V Adv

PK)-secure for εc < ε < 1 and not universally
(ε, V Adv

PK)-secure for 0 ≤ ε < εc. By convention we take εc = 0 if the system is
secure for all ε, and εc = 1 if there is no ε for which the system is secure. This
critical threshold indicates the security level of a system: the lower εc is, the
better a system is protected against signal injection attacks.

3.2 Selective Injection and Security

The second definition captures the notion of security against specific target wave-
forms w(t): we wish to find the probability that a V Adv

PK -bounded adversary can
make w(t) appear in the output of the ADC. Conversely, to define security in
this context, we must make sure that the digitized signal s̃f (t) differs from the
waveform s(t) + w(t) with high probability, even if plenty of noise is allowed.
There are two crucial points to notice about the waveform w(t). First, w(t) is not
the raw signal v(t) the adversary is transmitting, as this signal undergoes two
transformations via HC and HA. Instead, w(t) is the signal that the adversary
wants the ADC to think that it is seeing, and is usually a demodulated version
of v(t) (see Fig. 1). Second, w(t) does not necessarily cancel out or overpower
s(t), because that would require predictive modeling of the sensor signal s(t).
However, if the adversary can predict s(t) (e.g., by monitoring the output of
the ADC, or by using identical sensors), we can then ask about security against
the waveform w′(t) = w(t) − s(t) instead. Given this intuition, we can define
selective security as follows:

Definition 2 (Selective Security, Selective Injection). For 0 ≤ ε < 1, and
V Adv

PK ≥ 0, a system is called selectively (ε, w(t), V Adv
PK)-secure if

Pr

[

Es+w(t) ≥ Q + N−1

(
(1 − ε) + 1

2

)]

>
2 − ε

2
(5)

for every adversarial waveform v(t), with |v(t)| ≤ V Adv
PK for all t, where the

probability is taken over the duration of the attack. Q is the quantization error
of the system, N−1 is the noise distribution inverse defined in Eq. (2), and
Es+w(t) = |s̃f (t + τ) − s(t) − w(t)| during sampling periods, and 0 otherwise.
We call a successful attack a selective injection, and simply call a system
selectively ε-secure, when V Adv

PK and w(t) are clear from context.

This definition is monotonic in voltage and the probability of success, allowing
us to talk about “the” probability of success for a given waveform:

Voltage. A similar argument shows that increasing V Adv
PK can only make a secure

system insecure, but not vice versa, i.e., that if a system is selectively (ε, w(t), V1)-
secure, then it is selectively (ε, w(t), V2)-secure for V2 ≤ V1. We can thus define
the critical selective voltage level V w

c for a given ε and w(t).

522 I. Giechaskiel et al.

Probability. If a system is selectively ε-secure (against a target waveform and
voltage budget), then it is selectively (ε + δ)-secure for 0 ≤ δ < 1 − ε, because

P = Pr

[

Es+w(t) ≥ Q + N−1

(
1 − (ε + δ) + 1

2

)]

≥ Pr

[

Es+w(t) ≥ Q + N−1

(
1 − ε + 1

2

)]

>
2 − ε

2
≥ 2 − (ε + δ)

2

If the system is not selectively ε-secure, then it is not selectively (ε − δ)-secure.
Given the above, for a given waveform w(t) and fixed V Adv

PK , we can define
a waveform-specific critical selective security threshold εw

c such that the
system is vulnerable for all εw with 0 ≤ εw < εw

c and secure for all εw with
εw
c < εw < 1. By convention we take εw

c = 0 if there is no ε for which the system
is vulnerable, and εw

c = 1 if there is no ε for which the system is secure.

Threshold Relationship. The critical universal threshold of a system εc is
related to the critical selective threshold ε0c against the zero waveform w(t) =
0 through the equation ε0c = 1 − εc. Indeed, if a system is not universally ε-
secure, then P = Pr

[
Es(t) ≥ Q + N−1

(
ε+1
2

)]
> ε+1

2 , so 2−(1−ε)
2 = ε+1

2 < P =

Pr
[
Es+0(t) ≥ Q + N−1

(
(1−(1−ε))+1

2

)]
, making the system selectively (1 − ε)-

secure for the zero waveform. Conversely, if a system is selectively (1 − ε)-secure
for the zero waveform, then it is not universally ε-secure. The fact that a low
critical universal threshold results in a high critical selective threshold for the
zero threshold is not surprising: it is easy for an adversary to inject a zero signal
by simply not transmitting anything.

3.3 Universal Injection, Existential Security

The final notion of security is a weak one, which requires that the adversary
cannot inject at least one “representable” waveform into the system, i.e., one
which is within the ADC limits. We can express this more precisely as follows:

Definition 3 (Representable Waveform). A waveform w(t) is called rep-
resentable if it is within the ADC voltage levels, and has a maximum fre-
quency component bounded by the Nyquist frequency of the ADC. Mathemati-
cally, Vmin ≤ w(t) ≤ Vmax and fmax ≤ fs/2.

Using this, we can define security against at least one representable waveform:

Definition 4 (Existential Security, Universal Injection). For 0 ≤ ε < 1,
and V Adv

PK ≥ 0, a system is called existentially (ε, V Adv
PK)-secure if there exists

a representable waveform w(t) for which the system is selectively (ε, w(t), V Adv
PK)-

secure. We call a system existentially ε-secure when V Adv
PK is clear. If there is no

such w(t), we say that the adversary can perform any universal injection.

Security Framework for Signal Injection Attacks 523

Table 2. The adversary can easily disturb the smartphone output (existential injec-
tion), and inject human speech (universal injection). Selective injections of sines are
less precise than exponentials of the same frequency.

Injection Resulting signal Crit. thres.

Existential w(t) �= 0 0.892

Selective w(t) = esin(2πfmt) 0.747

Selective w(t) = sin(2πfmt) 0.562

Universal “OK Google” commands ≤0.562

As above, voltage and probability are monotonic in the opposite direction.

Voltage. If a system is existentially (ε, V1)-secure, then it is (ε, V2)-secure for
V2 ≤ V1. By assumption, there is a representable w(t) such that the sys-
tem is selectively (ε, w(t), V1)-secure. By the previous section, this system is
(ε, w(t), V2)-secure, concluding the proof.

Probability. If a system is existentially (ε1, V)-secure, then it is (ε2, V)-secure
for ε1 ≤ ε2. By assumption, there is a representable w(t) such that the system
is selectively (ε1, w(t), V)-secure. By the previous section, the system is also
(ε2, w(t), V)-secure, as desired.

Thresholds. Extending the definitions of the previous sections, for fixed ε we
can define a critical existential voltage level V exist

c below which a system
is existentially ε-secure, and above which the system is existentially ε-insecure.
Similarly, for a fixed adversarial voltage we can define the critical existential
security threshold εexist

c , above which the system is existentially secure, and
below which the system is insecure.

In some cases, security designers may wish to adjust the definitions to restrict
target waveforms (and existential security counterexamples) even further. For
instance, we might wish to check whether an adversary can inject all waveforms
which are sufficiently bounded away from 0, periodic waveforms, or waveforms
of a specific frequency. The proofs for voltage and probability monotonicity still
hold, allowing us to talk about universal security against S-representable wave-
forms: waveforms which are representable and also in a set S.

4 Security Evaluation of a Smartphone Microphone

In this section, we illustrate how our security definitions can be used to determine
the security level of a commercial, off-the-shelf smartphone microphone. We
first introduce an algorithm to calculate the critical selective security threshold
εw
c against a target waveform w(t) in Sect. 4.1. We then use the algorithm to

calculate the critical thresholds of a smartphone in Sect. 4.2. Finally, we comment
on universal security in Sect. 4.3, where we show that we are able to inject
complex “OK Google” commands. We summarize our results in Table 2.

524 I. Giechaskiel et al.

4.1 Algorithm for Selective Security Thresholds

In this section, we introduce an algorithm to calculate the critical selective secu-
rity threshold εw

c of a system against a target waveform w(t), using a trans-
mitted signal v(t). The first step in calculating the security level is determining
the noise distribution. To that end, we collect N measurements of the system
output s̃f (t) during the injection and pick one as the reference signal. We then
pick 1 ≤ k ≤ N −2 of them to calculate the noise (estimation signals), while the
remaining are used to verify our calculations (validation signals).

Our algorithm first removes any DC offset and re-scales the measurements
so that the root-mean-square (RMS) voltages of the signals are the same. The
repeated measurements are then phase-aligned, and we calculate the distance
between the reference signal and the estimation signals. The average of this
distance should be very close to 0, as the signals are generated in the same
way. However, the standard deviation σ is non-zero, so we can model noise
as following a zero-mean normal distribution n(t) ∼ N(0, σ2). We can then find
the critical threshold between the reference signal and any target ideal waveform
w(t) as follows: we first detrend, scale, and align the ideal signal to the reference
waveform, as with the estimation signals. Then, we calculate the errors (distance)
between the ideal and the reference signal. Finally, we perform a binary search
for different values of ε, in order to find the largest ε for which Eq. (5) does not
hold: this is the critical threshold εw

c . To calculate the inverse of the noise, we
use the percentile point function ppf(ε), which is the inverse of the cumulative
distribution function, and satisfies N−1(ε) = ppf((1+ ε)/2). Note that since the
critical universal threshold εc is related to the selective critical threshold of the
zero waveform ε0c through εc = 1−ε0c (Sect. 3.2), the same algorithm can be used
to calculate the critical universal security threshold εc.

4.2 Existential and Selective Injections into a Smartphone

We demonstrate how our algorithm can be used in a realistic setup using
a Motorola XT1541 Moto G3 smartphone. We inject amplitude-modulated
fm = 1 kHz signals using a Rohde & Schwarz SMC100A/B103 generator into the
headphone jack of the phone, following direct power injection (DPI) methodol-
ogy [6]. We collect N = 10 measurements of 215 sample points per run using an
“Audio Recorder” app, and record the data at a frequency of fs = 44.1 kHz in
a [−1, 1] dimensionless range (AAC encoding). We first AM-modulate fm over
fc = 200 MHz using an output level of V Adv

RMS = V Adv
PK /

√
2 = 0.2 V. This injection

is demodulated well by the smartphone and has a similarity (as indicated by the
Pearson Correlation Coefficient) of over 0.98 compared to a pure 1 kHz tone. We
call this example the “clean” waveform. The second injection, which we call the
“distorted” waveform, uses fc = 25 MHz, V Adv

RMS = 0.9 V, and has a similarity
of less than 0.55 to the ideal tone. Example measurements of these signals and
“ideal” signals (see below) are shown in Fig. 4.

The algorithm first calculates the noise level using the reference signals. As
expected, the error average is very close to 0 (usually less than 10−6), while the
standard deviation σ is noticeable at around 0.0015. Taking the reference signals

Security Framework for Signal Injection Attacks 525

0 1 2 3 4 5 6
10-3

-0.04

-0.02

0

0.02

0.04

0.06

2 4 6 8 10
10-4

-0.02

0

0.02

0.04

(a) V Adv
RMS = 0.2V, fc = 200MHz

0 1 2 3 4 5 6
10-3

-0.5

0

0.5

2 4 6 8 10
10-4

-0.2

0

0.2

(b) V Adv
RMS = 0.9V, fc = 25MHz

Fig. 4. Clean (a) and Distorted (b) waveforms injected into the smartphone, with ideal
sine and exponential sine functions for comparison.

Table 3. Mean and std. deviation (μ, σ) of critical selective thresholds εw
c for different

target signals w(t). Injections using the clean waveform are always more successful than
with the distorted waveform. Validation signals are injected with high fidelity, and are
better modeled by an exponential rather than a pure sine.

Waveform Validation Ideal Sine eIdealSine w(t) �= 0

Clean (0.98, 0.03) (0.56, 0.04) (0.75, 0.06) (0.89, 0.01)

Distorted (0.95, 0.09) (0.31, 0.05) (0.34, 0.05) (0.71, 0.04)

as the target signal w(t), the critical selective thresholds are close to 1. In other
words, even if the injected waveforms do not correspond to “pure” signals, the
adversary can inject them with high fidelity: the system is not selectively secure
against them with high probability.

We also tried two signals as the signal w(t) that the adversary is trying to
inject: a pure 1 kHz sine wave, and an exponential of the same sine wave. The
averages and standard deviations for the calculated thresholds over all combina-
tions of k and reference signals are shown in Table 3. As we would expect, the
thresholds for the distorted waveform are much lower than the values for the
clean waveform: the signal is distorted, so it is hard to inject an ideal signal.
We also find that the exponential function is a better fit for the signal we are
seeing, and can better explain the harmonics. Table 3 also includes the critical
universal injection threshold based on the two waveform injections. This thresh-
old is much higher for both waveforms, as injections disturb the ADC output
sufficiently, even when the demodulated signal is not ideal.

4.3 Universal Injections on a Smartphone

In this section, we demonstrate that the smartphone is vulnerable to the injec-
tion of arbitrary commands, which cause the smartphone to behave as if the user
initiated an action. Using the same setup of direct power injection (Sect. 4.2), we

526 I. Giechaskiel et al.

Table 4. The ADCs used in our experiments cover a range of different properties.

ADC Manufacturer Package Type Bits Max fs fcut

TLC549 Texas Instruments DIP SAR 8 40 kHz 2.7 MHz

ATmega328P Atmel Integrated SAR 10 76.9 kHz 0.1–11.4 MHz

Artix7 Xilinx Integrated SAR 12 1 MHz 5.3 MHz

AD7276 Analog Devices TSOT SAR 12 3 MHz 66.3 MHz

AD7783 Analog Devices TSSOP ΔΣ 24 19.79 Hz [50,60 Hz]

AD7822 Analog Devices DIP Flash 8 2 MHz 128.4 MHz

first inject a modulated recording of “OK Google, turn on the flashlight” into the
microphone port, checking both whether the voice command service was acti-
vated in response to “OK Google”, and whether the desired action was executed.
We repeat measurements 10 times, each time amplitude-modulating the com-
mand at a depth of m = 100% with V Adv

RMS = 0.6 V on 26 carrier frequencies fc:
25 MHz, 50 MHz, and 100–2400 MHz at a step of 100 MHz. The voice-activation
feature (“OK Google”) worked with 100% success rate (10/10 repetitions) for all
frequencies, while the full command was successfully executed for 23 of the 26
frequencies we tested (all frequencies except fc ∈ {1.3, 2.0, 2.4GHz}). Increasing
the output level to V Adv

RMS = 0.9 V, increased success rate to 25/26 frequencies.
Only fc = 2.4 GHz did not result in a full command injection, possibly because
the Wi-Fi disconnected in the process.

We repeated the above injections, testing 5 further commands to (1) call a
contact; (2) text a contact; (3) set a timer; (4) mute the volume; and (5) turn
on airplane mode. The results remained identical, regardless of the actual com-
mand to be executed. As a result, all carrier frequencies which are not severely
attenuated by HC (e.g., when coupling to the user’s headphones) are vulnerable
to injections of complex waveforms such as human speech.

5 Commercial ADC Response HA to Malicious Signals

As explained in Sect. 2, an adversary trying to inject signals remotely into a sys-
tem typically needs to transmit modulated signals over high-frequency carriers.
As HC is unique to each circuit and needs to be re-calculated even for minor
changes to its components and layout [5], the first step to determine the system
vulnerability is to understand the behavior HA of the ADC used.

To do so, we inject signals generated via a Rohde & Schwarz SMC100A/B103
signal generator directly into 6 ADCs and determine their demodulation char-
acteristics. The ADCs come from 4 manufacturers in different packages and are
controlled via different protocols. The maximum sampling rate fs of the ADCs
ranges from a few Hz to several MHz, while the resolution ranges from 8 to
24 bits. The ADC types include Delta-Sigma (ΔΣ), half-flash, and successive
approximation (SAR). Table 4 shows these properties along with the −3 dB cut-
off frequency fcut, calculated using the R,C parameters in the ADCs’ datasheets.

Security Framework for Signal Injection Attacks 527

0 2 4 6 8 10 12

0.4

0.6

0.8

1

1.294 1.296 1.298
0.7
0.8

10-1 100 101 102 103
-200

-100

0

(a) fc = 10MHz

0 2 4 6 8 10 12

0.4

0.6

0.8

1.238 1.24 1.242
0.64
0.66

10-1 100 101 102 103
-200

-100

0

(b) fc = 80MHz

Fig. 5. Example ATmega328P output for power P = 0 dBm, signal frequency fm =
1 Hz, and modulation depth m = 50%. The signal exhibits the correct fundamental
frequency, but also contains strong harmonics and a high-frequency component, which
is attenuated as the carrier frequency fc increases.

We inject sinusoidal signals of different frequencies fm, which have been
amplitude modulated (AM) on different carrier carrier frequencies fc. In other
words, we consider the intended signal to be w(t) = sin(2πfmt), the sensor signal
to be absent (s(t) = 0), and evaluate how “close” w(t) is to the ADC output
s̃f (t). Due to space restrictions, we only describe typical results for each ADC.

ATmega328P. Figure 5 presents two example measurements of outputs of the
ATmega328P, both in the time domain and in the frequency domain. The input
to the ADC is a fm = 1 Hz signal modulated over different high-frequency car-
riers. As shown in the frequency domain (bottom of Fig. 5), the fundamental
frequency fm dominates all other frequencies, so the attacker is able to inject a
signal of the intended frequency into the output of the ADC. However, the out-
put at both carrier frequencies has strong harmonics at 2fm, 3fm, . . . Hz, which
indicates that the resulting signal is not pure. Moreover, there is a residual high-
frequency component, which is attenuated as the carrier frequency fc increases.
Finally, there is a frequency-dependent DC offset caused, in part, by the ESD
diodes, while the peak-to-peak amplitude of the measured signal decreases as
the carrier frequency increases. This is due to the low-pass filtering behavior of
the sample-and-hold mechanism, which also explains why we are only able to
demodulate signals for carrier frequencies until approximately 150 MHz.

TLC549. The TLC549 (Fig. 6a) also demodulates the injected signal, but still
contains harmonics and a small high-frequency component.

AD7783. As the AD7783 (Fig. 6b) only has a sampling frequency of fs =
19.79 Hz, aliasing occurs when the baseband signal exceeds the Nyquist frequency
fs/2. For example, when the baseband frequency is fm = 10 Hz, the fundamental
frequency dominating the measurements is of frequency 2fm −fs = 20−19.79 =
0.21 Hz, with a high-frequency component of fs − fm = 9.79 Hz.

528 I. Giechaskiel et al.

0 0.5 1 1.5 2 2.5 3
1

1.5

2

2.5

0.283 0.284

2
2.2

100 101 102 103 104
-150

-100

-50

0

(a) TLC549: fc = 80MHz, m = 50%,
fm = 1Hz

0 5 10 15

1.15

1.2

1.25

3 3.5 4

1.14
1.15

10-1 100
-100

-50

0

(b) AD7783: fc = 40MHz, m = 100%,
fm = 10Hz

Fig. 6. Example TLC549 (a) and AD7783 (b) outputs for a transmission power of
P = 5 dBm. Both ADCs demodulate the injected signal, but present harmonics and
some high-frequency components. The AD7783 signal is aliased.

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.5

1

0.04 0.044
0

0.4
0.8

101 102 103 104
-150

-100

-50

0

(a) fc = 79.4933MHz

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.5

1

0.14 0.142
0.2
0.4
0.6

101 102 103 104
-150

-100

-50

0

(b) fc = 79.4936MHz

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.6

0.8

1

0.044 0.045
0.48
0.5

0.52

101 102 103 104
-150

-100

-50

0

(c) fc = 79.4937MHz

Fig. 7. Example AD7822 output for power P = −5 dBm, signal frequency fm = 5 Hz,
and depth m = 50%. Signal demodulation requires a fine-tuned fc.

AD7822, AD7276, Artix7. The three remaining ADCs contain strong high-
frequency components which dominate the low-frequency signal. Their outputs
appear to be AM-modulated, but at a carrier frequency which is below the
ADC’s Nyquist frequency. However, with manual tuning of the carrier frequency,
it is possible to remove this high frequency component, causing the ADC to
demodulate the input. This is shown for the Flash ADC AD7822 in Fig. 7, where
we change the carrier frequency fc in steps of 100 Hz.

Conclusion. The results of our experiments lead to the following observations:

1. Generality – All 6 ADCs tested are vulnerable to signal injections at mul-
tiple carrier frequencies, as they demodulate signals, matching the theoreti-
cal expectations of Sect. 2.1. As the ADCs are of all major types and with a
range of different resolutions and sampling frequencies, the conclusions drawn
should also be valid for other ADC chips.

2. Low-Pass Filter – Although all ADCs exhibited low-pass filtering charac-
teristics, the maximum vulnerable carrier frequency for a given power level
was multiple times the cut-off frequency of the RC circuit at the input of

Security Framework for Signal Injection Attacks 529

the ADC. This extended the frequency range that an attacker could use for
transmissions to attack the system.

3. Power – The adversary needs to select the power level of transmissions care-
fully: too much power in the input of the ADC can cause saturation and/or
clipping of the measured signal. Too little power, on the other hand, results
in output that looks like noise or a zero signal.

4. Carrier Frequency – Some ADCs were vulnerable at any carrier frequency
that is not severely attenuated by the sample-and-hold mechanism. For oth-
ers, high-frequency components dominated the intended baseband signal of
frequency fm in the ADC output for most frequencies. Even then, carefully-
chosen carrier frequencies resulted in a demodulated ADC output.

6 Discussion

We now discuss how our work can inform design choices. To start, choosing
the right ADC directly impacts the susceptibility to signal injection attacks.
As shown in Sect. 5, some ADCs distort the demodulated output, and are thus
more resilient to clean sinusoidal injections. Moreover, other ADCs require fine-
grained control over the carrier frequency of injection. As the adversarial signal
is transformed through the circuit-specific transfer function HC , the adversary
may not have such control, resulting in a more secure system.

Having chosen the appropriate ADC based on cost, performance, security, or
other considerations, a designer needs to assess the impact of HC . Prior work
has shown that even small layout or component changes affect the EMI behavior
of a circuit [5,11,21]. Since the ADC behavior can be independently determined
through direct power injections, fewer experiments with remote transmissions are
required to evaluate the full circuit behavior and how changes in the circuit’s
topology influence the system’s security.

Our selective security definition and algorithm address how to determine the
vulnerability of a system against specific waveforms. Universal security, on the
other hand, allows us to directly compare the security of two systems for a fixed
adversarial voltage budget through their critical universal security thresholds.
Moreover, given a probability/threshold ε, we can calculate the critical universal
voltage level, which is the maximum output level for which a system is still
universally ε-secure.

Our smartphone case study showed that our framework can be used in prac-
tice with real systems, while our “OK Google” experiments demonstrated that
less-than-perfect injections of adversarial waveforms can have the same effect as
perfect injections. This is because there is a mismatch between the true noise
level of a system and the worst-case noise level that the system expects. In other
words, injections worked at all carrier frequencies, even when the demodulated
output was noisy or distorted. This is a deliberate, permissive design decision,
which allows the adversary to succeed with a range of different and noisy wave-
forms w(t), despite small amplitudes and DC offsets.

Although not heavily discussed in this paper, our model and definitions are
general enough to capture alternative signal injection techniques. For instance,

530 I. Giechaskiel et al.

electro-mechanical sensors have resonant frequencies which allow acoustic injec-
tion attacks [20,23]. HC can account for such imperfections in the sensors them-
selves, attenuating injection frequencies which are not close to the resonant fre-
quencies. Our system model also makes it easy to evaluate countermeasures and
defense mechanisms in its context. For example, shielding increases the attenu-
ation factor of HC , thereby increasing the power requirements for the adversary
(Sect. 2.1). Alternatively, a low-pass filter (LPF) before the ADC and/or ampli-
fier changes HA, and attenuates the high-frequency components which would
induce non-linearities. Note, however, that even moving the pre-amplifier, LPF
and ADC into the same IC package does not fully eliminate the vulnerability to
signal injection attacks (Sect. 7) as the channel between the analog sensor and
the ADC cannot be fundamentally authenticated.

7 Related Work

Ever since a 2013 paper by Kune et al. showed that electromagnetic (EM) signals
can be used to cause medical devices to deliver defibrillation shocks [9], there has
been a rise in EM, acoustic, and optical signal injection attacks against sensor
and actuator systems [6]. Although some papers have focused on vulnerabilities
caused by the ADC sampling process itself [1], others have focused on exploit-
ing the control algorithms that make use of the digitized signal. For example,
Shoukry et al. showed how to force the Anti-Lock Braking Systems (ABS) to
model the real input signal as a disturbance [18]. Selvaraj et al. also used the
magnetic field to perform attacks on actuators, but further explored the rela-
tionship between frequency and the average injected voltage into ADCs [17]. By
contrast, our paper primarily focused on a formal mathematical framework to
understand security in the context of signal injection attacks, but also investi-
gated the demodulation properties of different ADCs.

Our work further highlighted how to use the introduced algorithm and defi-
nitions to investigate the security of a smartphone, complementing earlier work
which had shown that AM-modulated electromagnetic transmissions can be
picked up by hands-free headsets to trigger voice commands in smartphones [8].
Voice injection attacks can also be achieved by modulating signals on ultra-
sound frequencies [25], or by playing two tones at different ultrasound frequen-
cies and exploiting non-linearities in components [16]. Acoustic transmissions at
a device’s resonant frequencies can also incapacitate [20] or precisely control [22]
drones, with attackers who account for sampling rate drifts being able to control
the outputs of accelerometers for longer periods of time [23]. Moreover, optical
attacks can be used to spoof medical infusion pump measurements [12], and cause
autonomous cars and unmanned aerial vehicles (UAVs) to drift or fail [2,14,24].

It should be noted that although the literature has primarily focused on
signal injection attacks, some works have also proposed countermeasures. These
defense mechanisms revolve around better sampling techniques, for example by
adding unspoofable physical and computational delays [19], or by oversampling
and selectively turning the sensors off using a secret sequence [26].

Security Framework for Signal Injection Attacks 531

Overall, despite the extensive literature on signal injection attacks and
defenses, the setup and effectiveness of different works is often reported in an
inconsistent way, making their results hard to compare [6]. Our work, recognizing
this gap, introduced a formal foundation to define and quantify security against
signal injection attacks, working towards unifying the reporting methodology for
competing works.

8 Conclusion

Sensors guide many of our choices, and we often blindly trust their values. How-
ever, it is possible to spoof their outputs through electromagnetic or other signal
injection attacks. To address the lack of a unifying framework describing the sus-
ceptibility of devices to such attacks, we defined a system and adversary model
for signal injections. Our model is the first to abstract away from specific envi-
ronments and circuit designs and presents a strong adversary who is only limited
by transmission power. It also makes it easy to discuss and evaluate countermea-
sures in its context and covers different types of signal injection attacks.

Within our model, we defined existential, selective, and universal security,
capturing effects ranging from mere disruptions of the ADC outputs to precise
injections of all waveforms. We showed that our definitions can be used to evalu-
ate the security level of an off-the-shelf smartphone, and introduced an algorithm
to calculate “critical” thresholds, which express how close an injected signal is
to the ideal signal. Finally, we characterized the demodulation characteristics
of commercial ADCs to malicious injections. In response to the emerging signal
injection threat, our work paves the way towards a future where security can be
quantified and compared through our methodology and security definitions.

References

1. Bolshev, A., Larsen, J., Krotofil, M., Wightman, R.: A rising tide: design exploits
in industrial control systems. In: USENIX Workshop on Offensive Technologies
(WOOT) (2016)

2. Davidson, D., Wu, H., Jellinek, R., Singh, V., Ristenpart, T.: Controlling UAVs
with sensor input spoofing attacks. In: USENIX Workshop on Offensive Technolo-
gies (WOOT) (2016)

3. Friis, H.T.: A note on a simple transmission formula. Proc. IRE (JRPROC) 34(5),
254–256 (1946)

4. Fu, K., Xu, W.: Risks of trusting the physics of sensors. Commun. ACM 61(2),
20–23 (2018)

5. Gago, J., Balcells, J., González, D., Lamich, M., Mon, J., Santolaria, A.: EMI
susceptibility model of signal conditioning circuits based on operational amplifiers.
IEEE Trans. Electromagn. Compat. 49(4), 849–859 (2007)

6. Giechaskiel, I., Rasmussen, K.B.: Taxonomy and challenges of out-of-band signal
injection attacks and defenses. arXiv:1901.06935 (2019)

7. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)

http://arxiv.org/abs/1901.06935

532 I. Giechaskiel et al.

8. Kasmi, C., Lopes-Esteves, J.: IEMI threats for information security: remote com-
mand injection on modern smartphones. IEEE Trans. Electromagn. Compat.
57(6), 1752–1755 (2015)

9. Kune, D.F., et al.: Ghost talk: mitigating EMI signal injection attacks against
analog sensors. In: IEEE Symposium on Security and Privacy (S&P) (2013)

10. Leone, M., Singer, H.L.: On the coupling of an external electromagnetic field to
a printed circuit board trace. IEEE Trans. Electromagn. Compat. 41(4), 418–424
(1999)

11. Lissner, A., Hoene, E., Stube, B., Guttowski, S.: Predicting the influence of place-
ment of passive components on EMI behaviour. In: European Conference on Power
Electronics and Applications (2007)

12. Park, Y.S., Son, Y., Shin, H., Kim, D., Kim, Y.: This ain’t your dose: sensor
spoofing attack on medical infusion pump. In: USENIX Workshop on Offensive
Technologies (WOOT) (2016)

13. Pelgrom, M.J.M.: Analog-to-Digital Conversion, 3rd edn. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-44971-5

14. Petit, J., Stottelaar, B., Feiri, M., Kargl, F.: Remote attacks on automated vehicles
sensors: experiments on camera and LiDAR. Black Hat Europe (2015)

15. Redouté, J.M., Steyaert, M.: EMC of Analog Integrated Circuits, 1st edn. Springer,
Dordrecht (2009). https://doi.org/10.1007/978-90-481-3230-0

16. Roy, N., Hassanieh, H., Roy Choudhury, R.: BackDoor: making microphones hear
inaudible sounds. In: International Conference on Mobile Systems, Applications,
and Services (MobiSys) (2017)

17. Selvaraj, J., Dayanikli, G.Y., Gaunkar, N.P., Ware, D., Gerdes, R.M., Mina, M.:
Electromagnetic induction attacks against embedded systems. In: Asia Conference
on Computer and Communications Security (ASIACCS) (2018)

18. Shoukry, Y., Martin, P., Tabuada, P., Srivastava, M.: Non-invasive spoofing attacks
for anti-lock braking systems. In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013.
LNCS, vol. 8086, pp. 55–72. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-40349-1 4

19. Shoukry, Y., Martin, P.D., Yona, Y., Diggavi, S., Srivastava, M.B.: PyCRA: physi-
cal challenge-response authentication for active sensors under spoofing attacks. In:
Conference on Computer and Communications Security (CCS) (2015)

20. Son, Y., et al.: Rocking drones with intentional sound noise on gyroscopic sensors.
In: USENIX Security Symposium (2015)

21. Sutu, Y.H., Whalen, J.J.: Statistics for demodulation RFI in operational amplifiers.
In: International Symposium on Electromagnetic Compatibility (EMC) (1983)

22. Trippel, T., Weisse, O., Xu, W., Honeyman, P., Fu, K.: WALNUT: waging doubt
on the integrity of MEMS accelerometers with acoustic injection attacks. In: IEEE
European Symposium on Security and Privacy (EuroS&P) (2017)

23. Tu, Y., Lin, Z., Lee, I., Hei, X.: Injected and delivered: fabricating implicit control
over actuation systems by spoofing inertial sensors. In: USENIX Security Sympo-
sium (2018)

24. Yan, C., Xu, W., Liu, J.: Can you trust autonomous vehicles: contactless attacks
against sensors of self-driving vehicle. DEFCON (2016)

25. Zhang, G., Yan, C., Ji, X., Zhang, T., Zhang, T., Xu, W.: DolphinAttack: inaudi-
ble voice commands. In: Conference on Computer and Communications Security
(CCS) (2017)

26. Zhang, Y., Rasmussen, K.B.: Detection of electromagnetic interference attacks on
sensor systems. In: IEEE Symposium on Security and Privacy (S&P) (2020)

https://doi.org/10.1007/978-3-319-44971-5
https://doi.org/10.1007/978-90-481-3230-0
https://doi.org/10.1007/978-3-642-40349-1_4
https://doi.org/10.1007/978-3-642-40349-1_4

Secure Protocols

Formalizing and Proving Privacy
Properties of Voting Protocols Using

Alpha-Beta Privacy

Sébastien Gondron(B) and Sebastian Mödersheim

DTU Compute, Richard Petersens Plads, Building 324,
2800 Kongens Lyngby, Denmark

{spcg,samo}@dtu.dk

Abstract. Most common formulations of privacy-type properties for
security protocols are specified as bisimilarity of processes in applied-
π calculus. For instance, voting privacy is specified as the bisimilarity
between two processes that differ only by a swap of two votes. Similar
methods are applied to formalize receipt-freeness. We believe that there
exists a gap between these technical encodings and an intuitive under-
standing of these properties.

We use (α, β)-privacy to formalize privacy goals in a different way,
namely as a reachability problem. Every state consists of a pair of for-
mulae: α expresses the publicly released information (like the result of the
vote) and β expresses the additional information available to the intruder
(like observed messages). Privacy holds in a state if every model of α can
be extended to a model of β, i.e., the intruder cannot make any deduc-
tions beyond what was deliberately released; and privacy of a protocol
holds if privacy holds in every reachable state.

This allows us to give formulations of voting privacy and receipt-
freeness that are more declarative than the common bisimilarity based
formulations, since we reason about models that are consistent with all
observations like interaction with coerced (but potentially lying) voters.
Also, we show a relation between the goals: receipt-freeness implies vot-
ing privacy.

Finally, the logical approach also allows for declarative manual
proofs (as opposed to long machine-generated proofs) like reasoning
about a permutation of votes and the intruder’s knowledge about that
permutation.

Keywords: Formal security models · Logic and verification ·
Privacy preserving systems · Voting protocols · Receipt-freeness ·
Security requirements · Security protocols

1 Introduction

Privacy is essential for freedom: to make a choice like a vote in a completely
free way, i.e., determined only by one’s own convictions, context, interests and
c© Springer Nature Switzerland AG 2019
K. Sako et al. (Eds.): ESORICS 2019, LNCS 11735, pp. 535–555, 2019.
https://doi.org/10.1007/978-3-030-29959-0_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29959-0_26&domain=pdf
https://doi.org/10.1007/978-3-030-29959-0_26

536 S. Gondron and S. Mödersheim

expectations (rather than those of others), it is crucial that this choice cannot
be observed by others. However, it is not sufficient to give people the possibility
to make the choice in a private way: we also have to actually prevent them from
proving what they have chosen. While one has the right to say what one has
chosen (by the freedom of speech), we must also guarantee the possibility to lie
about it, too. The reason is that otherwise we limit the privacy through a back-
door, as there can arise pressure to prove what one has chosen, especially when
bribery or abuse of power comes into play. This paper investigates the tension
between privacy and coercion with the focus on voting privacy, however, this
is also relevant in other areas like electronic medical prescriptions (preventing
pressure from the pharmaceutical industry onto doctors).

Related to the understanding of privacy goals is the problem that a dem-
agogue can easily raise doubts about the legitimacy of an election. Our best
chance to defeat this are open source systems that scientists, and ideally also
ordinary people, can understand and convince themselves to be correct. The
less obscure, the harder it is to defame, and the easier to recognize criticisms
as unfounded. One of the challenges for describing systems in both a formally
precise and intuitive way is privacy goals and their subtle relation to coercion.

Most common formulations of privacy-type properties for security protocols
are specified as bisimilarity of processes in applied-π calculus [1–4], and we regard
this as a rather technical way to encode the properties: it is quite hard to intu-
itively understand what such a bisimilarity goal actually entails and what not.
While one can get insights from a failed proof when the goal is too strong, one
cannot easily see when it is too weak (with respect to one’s intuition).

This paper gives a model-theoretic way to formalize and reason about pri-
vacy and receipt-freeness. We build on the framework of (α, β)-privacy [5], that
defines privacy as a state-based safety property, where each state consists of two
formulae α, the deliberately released high-level information like the result of an
election, and β, the observations that the intruder could make. During transi-
tions, the information in α and β can only increase (by adding new conjuncts to
the formulae). The question is (for every reachable state), whether every model
of α is compatible with the observations in β: if not, the intruder is able to rule
out some models of α and thus has obtained more information about the system
than we have deliberately released. In particular we use this to come as close as
possible to the following intuitive definition of privacy goals:

(a) Voting privacy: the number of voters and the result of the election are
published at the end of the election. The intruder should not find out more
than that about voters and votes.

(b) Receipt-freeness: no voter has a way to prove how they voted. This can
be indirectly expressed by saying: for everything that could have happened
according to (a), the voter can make up a consistent “story”.

Our contribution is a general methodology to modeling voting privacy and
receipt-freeness with (α, β)-privacy that can be applied for a variety of pro-
tocols. This in particular includes a proof methodology that allows for simple
model-theoretic arguments, suitable for manual proofs and proof assistants like

Formalizing and Proving Privacy Properties Using Alpha-Beta Privacy 537

Isabelle and Coq. We illustrated this practically at hand of the FOO’92 protocol
as an example, showing in particular how the use of permutations in the rea-
soning can lead to elegant proofs. In the model we propose, α is the same for
both voting secrecy and receipt-freeness; the difference lies in β, namely in the
challenge for a coerced voter to make a consistent story. From this construction
it immediately follows that receipt-freeness implies vote secrecy.

We do regard our models in (α, β)-privacy as a complementary view to exist-
ing approaches like [6]. We believe that their formalizations may be equivalent
in some sense to ours (at least we found no examples where the notions would
differ), and regardless, our models aim to provide a fresh perspective. This holds
in particular as it allows for a different style of proofs that are in some sense
easier to conduct. While we do not consider any questions of automation, a hope
is that this may also broaden the scope of methods for automatically analyzing
privacy-type goals.

2 Preliminaries

It is common in protocol verification to consider an algebraic model of mes-
sages, namely interpreting functions in the quotient algebra modulo a set of
algebraic equations (i.e., two terms are different unless the algebraic equations
deem them equal). Many approaches usually reason about only logical implica-
tions, i.e. derivations that follow in every interpretation. In contrast, we here
reason about the different interpretations of formulae and hence have to make
the interpretation of functions explicit. For this reason, we use Herbrand logic [7],
a variant of first-order logic, that allows us just that.

2.1 Herbrand Logic

For brevity, we only highlight the differences to standard first-order logic, the
precise definition that we use can be found in the original paper on (α, β)-
privacy [5]. The main point is that in Herbrand logic fixes the universe in which
to interpret all symbols. To that end, we consider always a signature Σ = Σf �
Σi � Σr that distinguishes three kinds of symbols: Σf the set of uninterpreted
function symbols, Σi the set of interpreted function symbols and Σr the set of
relation symbols. Let TΣf

be the set of (ground) terms that can be built using
symbols in Σf , and let ≈ be a congruence relation on TΣf

, then the Herbrand
universe is the quotient algebra A = TΣf

/ ≈. Note that the universe A of A
thus consists of equivalence classes of terms, i.e., A = {�t�≈ | t ∈ TΣf

} where
�t�≈ = {t′ | t ∈ TΣf

∧ t ≈ t′}. Algebra A also fixes the “interpretation” of all
uninterpreted function symbols, namely fA(�t1�≈, . . . , �tn�≈) = �f(t1, . . . , tn)�≈.

The interpreted function symbols Σi and the relation symbols Σr behave
as in standard first-order logic, namely as function and relation symbols on the
universe. To highlight syntactically the distinction between uninterpreted and
interpreted function symbols, we write f(t1, . . . , tn) if f ∈ Σf and f [t1, . . . , tn]
if f ∈ Σi. Given a signature Σ, a set of variables V distinct from Σ, and a

538 S. Gondron and S. Mödersheim

congruence ≈, and thus fixing a universe A, we define an interpretation I (w.r.t.
Σ, V, and ≈) as a function such that I(x) ∈ A for every x ∈ V, I(f) : An → A for
every f ∈ Σi of arity n, and I(r) ⊆ An for every r ∈ Σr of arity n. (The functions
of Σf are determined by the quotient algebra). We define a model relation I |= φ
(formula φ holds under I) as standard and use common notations like φ |= ψ.

For the rest of the paper, we assume that Σf contains the constant 0 and the
unary function s, and Σi contains the binary function +. This means that the
universe contains the natural numbers 0, s(0), s(s(1)), . . . which we often write
as 0, 1, 2, We characterize + by the following axiom that we also generally
assume for the rest of this paper:

αax = ∀x, y. x + 0 = x ∧ x + s(y) = s(x + y) (1)

Note that this characterization is only possible due to the expressive power
of Herbrand logic (in standard First-Order Logic one cannot characterize the
universe appropriately).

2.2 Encoding of Frames

We use, as it is standard in security protocol verification, a black-box algebraic
model. We choose a subset Σop ⊆ Σf of uninterpreted functions to be the oper-
ators available to the intruder. For instance we generally require 0, s ∈ Σop, so
the intruder can “generate” any natural number.1 For representing the intruder
knowledge, we use the concept of frames:

Definition 1 (Frame [5]). A frame is written as � = {|m1 	→ t1, . . . ,ml 	→ tl|}
where the mi are distinguished constants and the ti are terms that do not contain
any mi. We call m1, . . . ,ml the domain and t1, . . . , tl the image of the frame.
We write �{|t|} for replacing in the term t every occurrence of mi with ti, i.e.,
� works like a substitution. �

D denotes the restriction of � to sub-domain D.

The mi can be regarded as memory locations of the intruder, representing
that the intruder knows the messages ti. The set of recipes is the least set that
contains m1, . . . ,ml and that is closed under all the cryptographic operators
Σop.

In order to formalize frames in Herbrand logic, we introduce two new symbols:
a unary predicate symbol gen that characterizes the set of recipes and a unary
interpreted function symbol kn� that encodes the frame � as a function from
recipes to messages. The following axioms characterize these symbols.

1 The fact that + /∈ Σop does not limit the intruder: all natural arithmetic reasoning
is part of the models relation already (thanks to αax).

Formalizing and Proving Privacy Properties Using Alpha-Beta Privacy 539

Definition 2 (φgen(D) and φframe(�) [5]). For a frame � = {|m1 	→ t1, . . . ,
ml 	→ tl|} with domain D = {m1, . . . ,ml}, a unary predicate gen and an inter-
preted unary function symbol kn�, we define the Herbrand logic formulae:

φgen(D) ≡ ∀r.gen(r)

⇐⇒ (
r ∈ D ∨

∨

fn∈Σop

∃r1, . . . , rn. r = f(r1, . . . , rn) ∧ gen(r1) ∧ . . . ∧ gen(rn)
)

φframe(�) ≡ kn�[m1] = t1 ∧ . . . ∧ kn�[ml] = tl ∧
∧

fn∈Σop

∀r1, . . . , rn : gen. kn�[f(r1, . . . , rn)] = f(kn�[r1], . . . , kn�[rn])

The axiom φgen(�) defines the unary predicate gen to be the set of recipes from
D and Σop. Here we write fn ∈ Σop to denote that f is an n-ary function symbol.
We can use gen like a type and for instance write ∀r : gen.φ as shorthand for
∀r.gen(r) =⇒ φ. The axiom φframe(�) characterizes that kn� works like a
substitution on recipes, mapping mi to ti.

Two frames �1 and �2 with the same domain are called statically equivalent,
if on every pair of recipes, �1 produces the same result iff �2 does:

Definition 3 (φ∼(�1, �2) [5]). Let �1 and �2 be frames with the same
domain.

φ∼(�1, �2) ≡ ∀r, s : gen. kn�1 [r] = kn�1 [s] ⇐⇒ kn�2 [r] = kn�2 [s]

2.3 Alpha-Beta Privacy

(α, β)-privacy is mainly based on the specification of two formulae α and β in
Herbrand Logic for every reachable state. α is the intentionally released infor-
mation, i.e. the “non-technical” information or the “payload”. β represents all
other observations that the intruder made, e.g. messages he has seen, also called
the “technical” information. This distinction between payload and technical is
at the core of (α, β)-privacy. We formalize it by a distinguished subset Σ0 ⊂ Σ
of the alphabet, where Σ0 contains only the non-technical information, such as
votes and addition, while Σ \ Σ0 includes cryptographic operators. The formula
α is always over just Σ0, while β can use the full Σ.

Definition 4 (Model-theoretical (α, β)-privacy [5]). Consider a countable
signature Σ and a payload alphabet Σ0 ⊂ Σ, a formula α over Σ0 and a formula
β over Σ such that fv(α) = fv(β), both α and β are consistent and β |= α. We
say that (α, β)-privacy holds (model-theoretically) iff every Σ0-model of α can
be extended to a Σ-model of β. Here a Σ-interpretation I ′ is an extension of a
Σ0-interpretation I if they agree on all variables and all the interpreted function
and relation symbols of Σ0.

For the rest of this paper, we consider as α only combinatoric formulae, which
means Σ0 is finite and contains only uninterpreted constants. Then α has only
finitely many models (that assign constants of Σ0 to the free variables of α).

While classical bi-similarity approaches are always about the distinguishabil-
ity between two alternatives, in (α, β)-privacy every reachable state represents

540 S. Gondron and S. Mödersheim

only one single situation that can occur, and it is the question how far the
intruder can know what happened. The intruder knowledge is for this reason
more complex: besides the concrete messages he knows, we also model that he
may know something about the structure of messages, e.g. that a particular
encrypted message in his knowledge contains the vote v1, where v1 is a free vari-
able of α. We thus define the intruder knowledge by two frames concr and struct
where struct may contain free variables of α, and concr is the same except that
all variables are instantiated with what really happened, e.g. v1 = 1. For sim-
plicity let us use in Herbrand formulae also concr and struct as two interpreted
functions (instead of knconcr and knstruct) and we call them the concrete and
structural knowledge. We always use gen to refer to the recipes for both (since
they must have the same domain).

The clou is that we require as part of β that struct and concr are statically
equivalent. That means, if the intruder knows that two concrete constructible
messages are unequal, then also their structure has to be unequal, and vice-versa.
For instance, let h ∈ Σp \ Σop and

struct = {m1 	→ h(v1),m2 	→ h(v2)} and concr = {m1 	→ h(0),m2 	→ h(1)}.

Then every model of β has the property v1 �= v2. Suppose α ≡ v1, v2 ∈ {0, 1},
then (α, β)-privacy is violated, since for instance v1 = 0, v2 = 0 is a model of
α, but cannot be extended to a model of β. If α ≡ v1, v2 ∈ {0, 1} ∧ v1 + v2 = 1
however, then all models of α are compatible with β and privacy is preserved.

Definition 5 (Message-analysis problem (adapted from [5])). Let α be
combinatoric, and struct and concr be two frames with domain D. We say that
β is a message-analysis problem if β ≡ MsgAna(D,α, struct , concr) with:

MsgAna(D,α, struct , concr)
≡ α ∧ φgen(D) ∧ φframe(struct) ∧ φframe(concr) ∧ φ∼(struct , concr)

Typically, we consider for every state one distinguished model θ of α, called the
reality, and have concr = θ(struct).

3 Verifying Voting Privacy

An (α, β)-pair characterizes a single state of a transition system. To illustrate
voting privacy and receipt-freeness we pick a few reachable states of the vot-
ing protocol FOO’92 and prove (or disprove) fulfillment of some properties. In
fact, a manual proof for the entire infinite state-space is possible by appropriate
generalization, but for the purpose of illustration, this would be overkill.

First, let us look at α and for simplicity consider a choice between 0 or 1
(all definitions can be easily extended to more complex voting choices). We use
a sequence of variables v1, . . . , vN to model the votes. During each transition
where an honest voter i sends a message that contains their vote vi, we augment
α by vi ∈ {0, 1}, since the intruder does not know more than they will cast a

Formalizing and Proving Privacy Properties Using Alpha-Beta Privacy 541

valid vote. For dishonest voters, it is more complicated and actually depends on
the protocol, since dishonest voters (or the intruder) may not follow the protocol
and, e.g., replay a message of some honest voter (thus not necessarily knowing
what vote they have cast). Anyway in this case one should augment α with
vi = b for the concrete b that they have cast, since the intruder is allowed to
know all dishonest votes. Finally, when the result is about to be published and
suppose R of the votes vi are 1, then we finally augment α with the information∑N

i=1 vi = R. Therefore, from this point on, the intruder is allowed to know the
result, but before this point, it is already a violation if he can obtain a partial
result (beyond the votes of the dishonest agents). For all examples in this paper
we have

α ≡ v1 ∈ {0, 1} ∧ . . . ∧ vN ∈ {0, 1} ∧
N∑

i=1

vi = R , (2)

i.e., N honest voters have cast their votes, and R of them are 1. In fact, we also
use the same formula in examples for receipt-freeness since we want that the
same amount of information is kept secret, just some honest voters are “under
more pressure” from the intruder.

3.1 The FOO’92 Voting Protocol in Alpha-Beta Privacy

The FOO’92 protocol [8] has been formally studied with the Applied
π-calculus [9]; for a full description we refer to that paper, and we only introduce
relevant aspects on the fly. The final result of FOO’92 is the publication of a bul-
letin board of cryptographic messages containing all the votes. More precisely,
each entry contains sign(priv(A), commit(vi, ri)) and ri for some i ∈ {1, . . . , N}.
This is the signature with the private key of an administrator A and containing a
cryptographic commitment of the vote with some (initially secret) random value
ri. Here we assume as part of Σop the following operators: sign for signature,
verify for signature verification, and retrieve for obtaining the message under the
signature; this is characterized by the equations retrieve(sign(priv(A),m)) ≈ m
and verify(pub(A), sign(priv(A),m)) ≈ yes. Moreover we have commit , vcommit
and open for commitments with the properties open(commit(m, r), r) ≈ m and
vcommit(r, commit(m, r)) ≈ yes.

Let us consider an intruder who just obtains this bulletin board. This is
not unrealistic since the exchanges in the other phases are best protected by
anonymous channels, anyway. It is crucial that the bulletin board lists its entries
in some unpredictable order. To model that, we introduce an interpreted function
π[·] that is a permutation on {1, . . . , N}.2 To conveniently make use of this
function, we like to also access the votes vi and the random values ri (these are
uninterpreted constants of Σ \ Σ0) through a function and thus introduce two
further interpreted functions v[·] and r[·] with the property vi = v[i] and ri = r[i]
for each 1 ≤ i ≤ N .

2 i.e. ∀i. 1 ≤ i ≤ N =⇒ 1 ≤ π[i] ≤ N ∧ ∀j. 1 ≤ j ≤ N ∧ π[i] = π[j] =⇒ i = j.

542 S. Gondron and S. Mödersheim

We can then describe the structural knowledge of the intruder who initially
knows all public keys and has seen the bulletin board by the following frame:

struct = {|m0 	→ pub(A),m1 	→ pub(V1), . . . ,mn 	→ pub(VN),
mN+1 	→ sign(priv(A), commit(v[π[1]], r[π[1]])), . . . ,
m2N 	→ sign(priv(A), commit(v[π[N]], r[π[N]])),
m2N+1 	→ r[π[1]], . . . ,m3N 	→ r[π[N]]|}

To obtain the concrete knowledge frame, we need to replace the interpreted
terms by their actual values. For π this means the actual permutation on the
bulletin board; let us call it π0. Mind π0 is not a symbol of Σ but an actual
permutation. Further let θ0 |= α be an interpretation of each vi with 0, 1 that
is a model of α, i.e., the true vote of every voter. Note that both π0 and θ0 are
arbitrary, so the proofs we give hold for every such choice. Then, the concrete
knowledge is obtained by replacing π[x] by π0(x), v[x] by θ0(vx) and r[x] by rx.
Now we can specify concr as follows:

concr = {|m0 	→ pub(A),m1 	→ pub(V1), . . . , mn 	→ pub(VN),
mN+1 	→ sign(priv(A), commit(θ0(vπ0(1)), rπ0(1))), . . . ,
m2N 	→ sign(priv(A), commit(θ0(vπ0(N)), rπ0(N))),
m2N+1 	→ rπ0(1), . . . ,m3N 	→ rπ0(N)|}

Thus the concr frame replaces every occurrence of v[π[i]] by θ0(vπ0(i)) and every
r[π[i]] by rπ0(i). The point is that in the concrete messages that the intruder
observes, everything is instantiated with respect to π0 and θ0, while the struc-
tural knowledge about these messages is with respect to π[·] and v[·], i.e., reflect-
ing what the intruder knows that about the content of a message. E.g. v[π[j]]
reflects that the intruder knows that this is the vote of the voter who has entry
number j on the bulletin board, but he may be unable to find out the true
permutation π0 and neither the votes directly as a function of the voters.

β ≡
N∧

i=1

(
v[i] = vi ∧ r[i] = ri

)
∧ MsgAna(D,α, struct , concr) (3)

Let us call S the state with this β and the α of (2).

3.2 Voting Privacy Holds in S

To show that (α, β)-privacy holds in S, we need to show how an arbitrary model
of α can be extended to a model of β. To that end, we consider an arbitrary
model θI |= α, called an intruder hypothesis, i.e., that maps each vi to {0, 1} so
that their sum is R. We show how θI can be extended to a model I |= β. In
other words, we show that β does not allow the intruder to logically rule out
any hypothesis about the votes vi. We do this construction for an arbitrary θI ,
thus, every model of α can be extended to a model of β.

Formalizing and Proving Privacy Properties Using Alpha-Beta Privacy 543

Since I must be an extension of θI , we have I(vi) = θI(vi) for all votes
vi. Further, we need to give an interpretation for all other symbols of Σ, in our
example gen(·), struct [·], concr [·], π[·], r[·] and of course v[·]. For the symbols gen,
struct , and concr there is not much choice so that they satisfy the formulae φgen ,
φframe(struct) and φframe(concr), and we give a canonical construction for them
(i.e., the same construction applies for any message analysis problem). More
interesting is to find an interpretation of the protocol specific functions π[·], r[·]
and v[·], so that I |= φ∼(struct , concr), i.e., satisfying the static equivalence of
struct and concr modulo ≈. While this is generally difficult, we are sometimes in
luck: in some cases (α, β)-privacy allows for a relatively easy proof by reasoning
about permutations – i.e. how “human provers” would like to do it. Indeed, for
the state S, we can find an interpretation for π[·] (and the other functions) such
that I(struct) = I(concr). In this case I |= φ∼(struct , concr) follows trivially.
Note that here we do not even need to reason about algebraic properties of the
operators (i.e. the congruence relation ≈) to conduct the proof.

The proof idea for this is actually straightforward in this case. Remember
that S entails “what really happened”, i.e., a particular model θ0 |= α and a
particular permutation π0 that reflect the true outcome of the vote, and the true
permutation under which the votes have been published. The idea is that any
discrepancy between θI and θ0 can be “balanced” by an appropriate interpreta-
tion of π. More precisely, the voting function is interpreted following the intruder
hypothesis, i.e. v[i] is θI(vi) for all voters. Since both θ0 |= α and θI |= α, we have
∑N

i=1 θ0(vi) =
∑N

i=1 θI(vi) = R. Since v1, . . . , vN ∈ {0, 1}, the list [θI(v1), . . . ,
θI(vN)] is a permutation of [θ0(v1), . . . , θ0(vN)]. Thus we can find a permutation
ψ : {1, . . . , N} → {1, . . . , N} such that θI(vi) = θ0(vψ(i)) for all i ∈ {1, . . . , N}.
Intuitively, ψ is the discrepancy between θI and θ0. Then let us define πI as the
intruder’s hypothesis of π: πI = ψ−1 ◦π0. Finally, r is interpreted accordingly, as
the commitment secrets permuted the same way that the votes, i.e. a value r[i] is
rψ(i). Let us thus define (recall the Herbrand universe is A = {�t�≈ | t ∈ TΣf

}):

Definition 6 (A model of the functions). Let I map v to the function
I(v) : A → A, r to the function I(r) : A → A and π to the function I(π) : A → A:

I(v)(�t�≈) = �θI(vt)�≈ if t ∈ �{1, . . . , N}�≈ and I(v)(�t�≈) = �t�≈ otherwise
I(r)(�t�≈) = �rψ(t)�≈ if t ∈ �{1, . . . , N}�≈ and I(r)(�t�≈) = �t�≈ otherwise
I(π)(�t�≈) = �πI(t)�≈ if t ∈ �{1, . . . , N}�≈ and I(π)(�t�≈) = �t�≈ otherwise

Example 1. Given three voters, i.e. N = 3 and the result of the vote is R = 2,
the true result of the vote is θ0 = {v1 	→ 1, v2 	→ 1, v3 	→ 0} and the actual
permutation is π0 =

(
1 2 3
1 3 2

)
, the bulletin board is then:

Bulletin board j 1 2 3
vπ0(j) 1 0 1

Let us consider one possible intruder hypothesis, i.e. one model of α, θI = {v1 	→
0, v2 	→ 1, v3 	→ 1}. It is then possible to isolate one permutation: ψ =

(
1 2 3
3 1 2

)
.

We can then build πI =
(
1 2 3
2 1 3

)
.

544 S. Gondron and S. Mödersheim

The construction of the remaining items is generic for all message analysis
problems, namely struct and concr behave like substitutions and that gen is
true exactly for the recipes:

Definition 7 (A model of gen, struct and concr). Let D be the domain of
the considered frames. Then we define

I(gen) = {�t�≈ | t ∈ TΣop∪D}
I(struct)(�t�≈) = I(struct{|t|}) for all t ∈ TΣf

I(concr)(�t�≈) = I(concr{|t|}) for all t ∈ TΣf

This interpretation expresses that gen is exactly the set of recipes. For struct
and concr , we define the meaning by first applying the actual frames struct{|·|}
and concr{|·|} as substitutions to a given term t, i.e. replacing the labels mi ∈ D
in t; afterwards, we apply I to the resulting term since struct{|t|} in general
contains variables and interpreted function symbols that need to be interpreted.

This interpretation is well-defined because it does not depend on the
choice of the representative of the equivalence classes, e.g. if s ≈ t then
struct{|s|} ≈ struct{|t|}. It is immediate that I is a model of φframe(struct)
and φframe(concr):

Lemma 1. I |= φframe(struct) and I |= φframe(concr).

It remains to show that I |= φ∼(struct , concr). In general, such a proof of static
equivalence of two frames can be difficult (especially by hand). However, in
our case we have I(struct) = I(concr) by construction—we have designed the
interpretation of π so that this holds—and then static equivalence is immediate:

Lemma 2. If I(struct) = I(concr) then I |= φ∼(struct , concr).

Theorem 1. Voting privacy holds in the state S.

This FOO’92 example demonstrates the declarativity of the (α, β)-privacy app-
roach, in particular that we are able to reason about permutations allows for
a rather simple proof how “human provers” would like it: after a small insight
(the discrepancy between θI and θ0 can be balanced in the interpretation of π)
then the rest all falls into place.

3.3 Voting Privacy Holds in S’

In many cases it is not as easy as before. For instance, in the FOO’92 protocol,
we have a first phase where send a blind signature of their vote-commitment to
an administrator and receive a signature from that administrator. Let us now
consider a state S′ where the intruder has seen also all theses blinded signatures
(the formula α is again (2)):

Formalizing and Proving Privacy Properties Using Alpha-Beta Privacy 545

struct = {|m0 	→ pub(A),m1 	→ pub(V1), . . . , mN 	→ pub(VN),
mN+1 	→ sign(priv(A), commit(v[π[1]], r[π[1]])), . . . ,
m2N 	→ sign(priv(A), commit(v[π[N]], r[π[N]])),
m2N+1 	→ r[π[1]], . . . ,m3N 	→ r[π[N]],
m3N+1 	→ sign(priv(V1), blind(commit(v[1], r[1]), b1)), . . . ,
m4N 	→ sign(priv(VN), blind(commit(v[N], r[N]), bN)),
m4N+1 	→ sign(priv(A), blind(commit(v[1], r[1]), b1)), . . . ,
m5N 	→ sign(priv(A), blind(commit(v[N], r[N]), bN))|}

Here, we have augmented the frame from S by the 3N + i messages from the
voters and the 4N + i replies from the administrator, and bi is the corresponding
blinding secret of voter Vi. We assume the following properties about blind :
unblind(x, blind(x,m)) ≈ m and sign(x, blind(y,m)) ≈ blind(y, sign(x,m)), so
that each voter can unblind the reply message from the administrator. The
concrete frame concr is again obtained by replacing π[x] by π0(x), v[x] by θ0(vx)
and r[x] by rx.

Note that the messages between voters and administrators are actually shown
in the order of the voters rather than under a permutation. The reason is that
such a permutation would not make the problem harder for the intruder, since
the signatures of the voters already identify which message belongs to whom and
the replies from the administrator could probably be linked due to timing.

Now the difficulty is that we cannot find an interpretation I such that
I(struct) = I(concr), because the messages at 3N + i are signed by the indi-
vidual voters and are thus linked to the voters.3 Instead, the point is here that,
due to the blinding, the intruder cannot derive anything useful from these mes-
sages. Formally, we show for the same I as constructed for S (for given θI |= α),
that the weaker property I |= φ∼(struct , concr) still holds in S′. This therefore
requires a full static equivalence proof modulo the properties of ≈ which is quite
involved (cf. for instance [10]) and we give only a sketch in the appendix. This
allows us to conclude:

Theorem 2. Voting privacy holds in the state S′.

4 Receipt-Freeness

We now assume that the intruder tries to influence one particular voter, let us call
him Dan and identify him with the first voter V1. We will later briefly discuss the
case when the intruder tries to influence several voters. The question is whether
Dan can prove to the intruder how he voted by a kind of “receipt”. The protocol
does not explicitly produce any such receipt, but revealing all messages that

3 In fact, due to the 3N + i messages, in any model I where I(struct) = I(concr) we
necessarily also have θ0 = θI , and thus there cannot be such a simple construction
for every θI |= α.

546 S. Gondron and S. Mödersheim

Dan knows could allow the intruder to verify how Dan voted, i.e., that Dan is
unable to lie about his vote. For instance, for FOO’92, we will now show, if the
intruder has observed all the messages between voters and administrators (state
S′), and if Dan reveals his blinding factor, then the intruder can indeed identify
Dan’s vote with certainty. If we consider however FOO’92 without the blinded
signature messages (as in state S) and the intruder sees only the final bulletin
board, Dan can claim any vote to be his—and the intruder has no chance to
falsify that claim. Mind that does not hold in the state before the commitments
are opened as we also discuss below.

4.1 Formalizing Receipt-Freeness

Consider a given state where we want to check whether the protocol is receipt-
free with respect to the voter Dan. The intruder can ask Dan to reveal his entire
knowledge, i.e., all the secrets Dan knows (his private key, his commitment value
and his blinding factor) as well as messages that Dan has received from other
parties, like the administrator. If Dan has any “receipt” (in the broadest sense
of the word), then it is something that can be derived from this knowledge.
The point is that Dan does not necessarily tell the truth, but can present any
collection of messages that can be constructed from his knowledge. We call this
Dan’s story. Dan’s story has to be consistent with whatever the intruder can
check, e.g., Dan cannot lie about his private key, since the intruder knows his
public key. We thus want to express that a state is receipt-free, if for every model
θI |= α, Dan can come up with a consistent story (in particular consistent with
θI). We do not even change the formula α, but only add an additional challenge
to β: that the intruder obtains a story from Dan, i.e. what he claims to be his
knowledge. We see receipt-freeness as preserving voting privacy even under this
additional challenge. From that actually follows a relation between the goals:
receipt freeness implies voting privacy.

We reason about Dan’s knowledge similarly to the intruder’s knowledge:
we introduce the frames concrDan and structDan whose domain DDan =
{d1, . . . , dl} is disjoint from the domain D of the intruder knowledge: DDan∩D =
∅. If we consider that the protocol itself is not a secret, the intruder “knows”
structDan, i.e., what the messages are supposed to be according to protocol, and
Dan’s story has to be consistent with this. The idea is that what Dan can lie
about is concrDan. We let Dan choose any recipes s1, . . . , sl (with respect to
DDan), one for each item in his knowledge and send concr [s1], . . . , concr [sl] as
his story to the intruder. The augmented intruder knowledge has then domain
D∪DDan where the concr ’s are filled with Dan’s story and the struct is identical
with structDan, i.e., what it is supposed to be. This is captured by the formula
φlie :

Definition 8 (φlie).

φlie(struct , concr , structDan , concrDan)

≡ struct [d1] = structDan [d1] ∧ . . . ∧ struct [dl] = structDan [dl]

∧ ∃s1, . . . , sl : genDDan
.
(
concr [d1] = concrDan [s1] ∧ . . . ∧ concr [dl] = concrDan [sl]

)

Formalizing and Proving Privacy Properties Using Alpha-Beta Privacy 547

In fact, I |= φlie(concr , struct) (w.r.t. the whole domain D ∪ DDan) means
that Dan’s story is consistent with the protocol (i.e., the struct values) and I’s
interpretation of the free variables of α. Thus we define:

Definition 9 (Receipt-freeness problem). We say that β is a receipt-
freeness problem (with respect to a combinatoric α, the frames struct and concr
with domain D∪DDan , the frames structDan and concrDan with domain DDan)
if β ≡ RcpFree(D,DDan , α, struct , concr , structDan, concrDan) where:

RcpFree(D,DDan , α, struct , concr , structDan , concrDan)
≡ φgenDDan

(DDan) ∧ φframe(structDan) ∧ φframe(concrDan)

∧ MsgAna(D ∪ DDan , α, struct , concr) ∧ φlie(struct , concr , structDan , concrDan)

We say receipt-freeness holds if the (α, β)-pair is consistent. We call β′ ≡
MsgAna(D,α, struct , concr) the message-analysis problem underlying β.

β is always consistent since there is at least one way to satisfy β: the truth (i.e.
Dan selects si = di for each 1 ≤ i ≤ l). Note that the story of Dan may be the
truth when this is compatible with the intruder hypothesis (e.g. when θI = θ0)
without breaking receipt-freeness. What matters is only that the intruder cannot
rule out any model of α, including the truth when θI coincides with θ0.

The consistent “story” is here represented by the axiom φlie . For every
receipt-freeness problem, we also defined an underlying message-analysis prob-
lem that is just a restriction of the original receipt-freeness problem. Indeed,
the message-analysis problem is part of the receipt-freeness problem and can be
restricted over the domain D. In that sense, the next proposition relates the two
privacy properties.

Proposition 1. RcpFree(D,DDan , α, struct , concr , structDan , concrDan) |=
MsgAna(D,α, struct , concr).

It is then sufficient to prove receipt-freeness to prove plain voting privacy.

4.2 Receipt-Freeness in S

FOO’92 does not satisfy receipt-freeness as shown in [6], and even though
our notion of receipt-freeness is defined differently, it agrees with their results.
FOO’92 serves well anyway for illustration: in the final state S that we have
considered before (where the intruder has seen only the final bulletin board),
receipt-freeness does hold as we now show.

Example 2. Let us first continue with Example 1. In the intruder’s hypothesis
θI that we considered, the intruder supposes Dan (i.e. V1) has voted 0, but he
actually voted 1 (see θ0). Dan can however point to a vote that is consistent with
θI , namely the second entry on the bulletin board, and claim it to be his vote.
While the intruder may have doubts about Dan’s story, he just cannot rule out
that Dan speaks the truth.

548 S. Gondron and S. Mödersheim

Let us first consider S, augment it to a receipt-freeness problem with respect
to a voter Dan and show that receipt-freeness actually holds in this state. We first
need to define what the knowledge of voter Dan is. The structural information
is very similar to the intruder’s information that consists of the published infor-
mation (the bulletin board and the public keys); additionally Dan also knows
his private key, his own vote, his own commitment value and his blinding factor.
We did not include the blinded message as it can be reconstructed using the
blinding factor.

structDan = {|d0 	→ pub(A), d1 	→ pub(V1), . . . , dn 	→ pub(VN),
dN+1 	→ sign(priv(A), commit(v[π[1]], r[π[1]])), . . . ,
d2N 	→ sign(priv(A), commit(v[π[N]], r[π[N]])),
d2N+1 	→ r[π[1]], . . . , d3N 	→ r[π[N]], d3N+1 	→ priv(Dan), d3N+2 	→ v[1],
d3N+3 	→ r[1], d3N+4 	→ b1|}

The concrete frame is again obtained by replacing π[x] by π0(x), v[x] by
θ0(vx) and r[x] by rx. The formula α is the same for receipt-freeness as for
voting privacy, i.e., the intruder still is not supposed to find out anything more
than the published result of the election (in particular not what Dan has voted).
He has more information in β due to the story that Dan gives to the intruder as
part of the receipt-freeness definition:

βRF ≡
N∧

i=1

v[i] = vi ∧ r[i] = ri

∧ RcpFree(D,DDan , α, struct , concr , structDan , concrDan)

When it comes to crafting his story for the public values, Dan has no choice
but to tell the truth. As the intruder knows Dan’s public key, Dan also has to tell
the truth for his private key. For his blinding factor, he may also use the truth as
the intruder has not witnessed the exchange with the administrator. For d3N+2

(the actual vote) and d3N+3 (the commitment value), Dan needs to adapt his
story to what the intruder “wants to hear”, i.e. to a given θI (and πI). Observe
at this point the order of quantifications here: we want to show that every model
θI |= α can be extended to a model I |= βRF where βRF entails an existential
quantifier for Dan’s story. So we have to show how, given θI , we can construct
I and a value for the recipes of the story s1, . . . , sl that satisfies all conditions.
We take exactly the same construction for I (depending on θI) that we used
for state S, i.e., using the discrepancy ψ between the intruder hypothesis θI and
the reality θ0 (i.e., such that θ0(vψ(i)) = θI(vi)) for interpreting π[·], namely as
the permutation πI = ψ−1 · π0. It is sufficient to show that Dan can make his
story consistent with this interpretation, namely by pointing to the vote ψ(1) as
being his own vote. Let dN+ψ(1) and d2N+ψ(1) be the indices in Dan’s knowledge
for the signed commitment and commitment values on the bulletin board at
position ψ(1). He can claim this entry by choosing:

s3N+2 = open(retrieve(dN+ψ(1)), d2N+ψ(1)) and s3N+3 = d2N+ψ(1)

Formalizing and Proving Privacy Properties Using Alpha-Beta Privacy 549

For all other values si, Dan says the truth, i.e. si = di. With this we can
conclude:

Theorem 3. (α, βRF)-privacy holds, i.e., receipt-freeness holds in S.

One may argue that the choice of s3N+2 and s3N+3 is hardly a strategy for
Dan, since the choice is based on the permutation ψ (that neither Dan nor the
intruder would know), but formally that is fine since the existential quantifier
over the si only requires that there is a recipe that works, and thus our construc-
tion is just the simplest way to conduct the proof of receipt-freeness. Dan can
choose any vote on the bulletin board that matches the intruder’s expectation
for Dan θI(v1).

The aspect of strategy becomes more relevant if we consider the case that
more than one voter is bribed by the intruder, because the intruder knows that
some agent is lying if more than one points to the same vote. This becomes an
issue when the intruder has bribed a significant part of the voters, which may
be possible when a vote is held among a small consortium. If the bribed voters
have no way to “coordinate” their story, the risk of a collision (that reveals the
lie) comes into play. For instance, suppose there are 100 voters, and 40 voted
yes. If the intruder has bribed 20 of them, there is a substantial chance that two
or more of them point to the same vote if they cannot coordinate their story.

We observe that our definition of receipt-freeness is independent of what the
intruder actually wants: we actually have formalized that agents vote however
they want and we prove that they can get away with lying—however only with
respect to models of α. If the intruder has bribed more voters than actually want
to vote for the intruder’s preferred choice, then the expected outcome is not a
model of α (since the result is not compatible with all bribed people having voted
the way the intruder wants). Both this and the previous issue (of coordination)
are problems that arise when a significant part of the votership is bribed: they
may be coerced into voting what the intruder wants out of fear not to get away
with lying after all. These are the boundaries where a possibilistic approach like
(α, β)-privacy makes sense and where probabilities and behavior models would
be needed. We see it as a strong point for the declarativity of (α, β)-privacy that
such subtle points become clearly visible from the formalization and discussion
of examples.

4.3 Violation of Receipt-Freeness in FOO’92

To see the problems of FOO’92 with receipt-freeness, let us consider just the
state after the third phase of the protocol. In this case, the bulletin board con-
tains all the ballots (the signed commitments) but the commitment secrets have
not yet been revealed. In this state receipt-freeness does not hold: Unopened
commitments violate receipt freeness, since the creator of the commitment is in
a unique position to prove authorship to the intruder (by revealing the commit-
ment secret). Effectively, this allows the intruder to bribe agents for obtaining
the commitment secrets, and this is captured by our notion of receipt freeness.

550 S. Gondron and S. Mödersheim

This is in particular relevant since voters could refuse to make the last step
(the protocol cannot force them, since, by construction, one cannot see who the
missing voters are).

While it is intuitively clear that receipt-freeness is violated in this interme-
diate step, let us prove that it is violated according to our formal definition.
Consider the bulletin board without the commitments open, i.e. the same frame
as in state S but removing the elements m2N+1, . . . ,m3N (the commitment val-
ues). Since in this case also the result has not been published yet, we have here
α = v1, . . . , vN ∈ {0, 1}, i.e. the intruder knows nothing more than there are N
binary votes in the game.

The knowledge of the coerced voter Dan is the same as in the previous sub-
section, except for removing the entries d2N+1, . . . d3N which contain the r[π[i]]
that have not yet been published at this point, of course. The intruder again
asks Dan to reveal his knowledge as before, which entails that Dan must claim
some vote on the bulletin board to be his own and present a fitting commitment
secret, namely structDan[d3N+3] = r[1]. Thus the only consistent story that Dan
can give for this value is the truth: s3N+3 = d3N+3. That in turn is only consis-
tent with a given intruder hypothesis θI |= α if θI(v1) = θ0(v1), i.e., it rules out
any model that does not state Dan’s vote correctly. Thus, at this point, Dan has
proved to the intruder what he voted.

In fact, this demonstrates how our notion of receipt-freeness is connected to
voting secrecy, namely whether the information given by Dan proves anything
to the intruder, i.e., whether it allows him to rule out any model θI of α. Note
that this is a very fine notion: receipt-freeness would be violated even in a state
where Dan cannot precisely prove what he voted, but only giving the intruder
enough information to rule out some model of α.

5 Related Work

This work is based on the framework of (α, β)-privacy [5], which is in turn
based on Herbrand logic [7]. As a variant of First-Order Logic, using the ground
terms of uninterpreted function symbols as a universe, Herbrand logic is very
expressive, e.g. it can axiomatize natural number arithmetic. The main idea of
(α, β)-privacy is to depart from the most popular approach of specifying privacy
as bisimilarity of pairs of processes as in [1–4]. Instead, we define privacy as a
reachability problem of states, where each state is characterized by (at least)
two formulae, namely α giving the public high-level information (like a voting
result), and β containing all observations that the intruder could make.

While [5] has already defined voting secrecy, this paper gives the first
adaption of (α, β)-privacy to a real-world voting protocol, namely FOO’92 [8].
Another core contribution is the formalization of receipt-freeness, namely as a
refinement of standard voting secrecy. Here, the high-level information α remains
the same (i.e., the same information must be kept private), but the intruder gets
extra observations as part of β through the interaction with a voter Dan. The
most similar work is [6] where voting privacy, receipt-freeness and coercion-
resistance have been expressed with observational equivalence (see also [11]).

Formalizing and Proving Privacy Properties Using Alpha-Beta Privacy 551

The formalization of these properties rely on labeled bisimilarity of two processes,
also proving a hierarchy between these goals. We believe that our formalization
in (α, β)-privacy is more declarative and intuitive, due to its model-theoretic
formulation. An interesting question for future work is how the two approaches
compare, i.e., whether one can captures anything as an attack that the other
does not. If they turned out to be equivalent in some sense instead, then this
would indicate that the “right” concept has been hit.

Another question is automation. There are several fragments of bisimilar-
ity for which automation is being developed. However some protocols, even the
relatively simple FOO’92, are hard to analyze fully automatically: for instance,
[6] is at the high-level a manual proof, reducing the problem to a static equiv-
alence of two frames (which is then automated). Only in the recent paper [12]
a fully automatic analysis of FOO’92 is given. Our focus on a declarative for-
malization rather than automation concerns allows often for very simple proofs,
e.g. in FOO’92 in S, which basically amounts to finding a fitting interpretation
for a permutation. This is exactly how one may want to prove such a property
manually or in a proof assistant like Isabelle or Coq.

6 Conclusion

(α, β)-privacy was introduced as a simple and declarative way to specify privacy
goals and reason about them. We present here the first major use-case using
this framework. This use-case illustrates the refined voting privacy goal that we
have defined in this work. Indeed, we showed how for any model θ of α, we
could step by step construct a model I of β. On top of this privacy property,
we defined a new property: receipt-freeness. We showed that receipt-freeness
implies voting privacy. We illustrated these properties for a voting system, but
both privacy and receipt-freeness are actually relevant to a variety of areas, for
instance healthcare privacy [13]. Indeed, prescriptions by a medial doctor have
similar requirements regarding privacy and even receipt-freeness: for instance,
we want to prevent that a doctor could be coerced by a pharmaceutical company
to prescribe specific medication, which is actually a receipt-freeness problem.

We are currently investigating coercion resistance as a stronger variant of
receipt-freeness, where the intruder can initially determine values for the coerced
voter to use. To counter such attacks, one needs protocols with a different setup
than FOO’92, allowing re-voting. This also requires to formalize more details
about the underlying transition system than we did in this work, including how
the intruder can take a more active part in the protocol. In fact, it is part of
ongoing work to provide languages, proof strategies and potentially automated
tools for specifying and verifying transition systems with (α, β)-privacy. The
idea is here that the formula β can be automatically derived from what happens
(like message exchanges) and that only α needs to be specified by the modeler,
namely indicating at which point which information is deliberately released.

552 S. Gondron and S. Mödersheim

A Proofs

Lemma 1. I |= φframe(struct) and I |= φframe(concr).

Proof. Following Definition 7, I models the first conjunct of φframe(struct) and
φframe(concr).

It remains to show that I models the last conjunct of φframe(struct) and
φframe(concr). Let fn ∈ Σop. Let r1, . . . , rn be n recipes in TΣop∪D. Note
that I(ri) = �ri�≈. It is sufficient to show that I |= struct [f(r1, . . . , rn)]) =
f(struct [r1], . . . , struct [rn]).

I(struct [f(r1, . . . , rn)]) = I(struct)(I(f(r1, . . . , rn)))
= I(struct)(�f(r1, . . . , rn)�≈)
= �struct{|f(r1, . . . , rn) |}�≈ by Def. 7,
= �f(struct{|r1 |}, . . . , struct{|rn |})�≈,

= f(�struct{|r1 |}�≈, . . . , �struct{|rn |}�≈),
= f(I(struct)(�r1�≈), . . . , I(struct)(�rn�≈)), by Def. 7,
= f(I(struct)(I(r1)), . . . , I(struct)(I(rn)))
= f(I(struct [r1]), . . . , I(struct [rn]))
= I(f(struct [r1], . . . , struct [rn])).

Therefore we proved that I |= φframe(struct). By a similar reasoning, we prove
that I |= φframe(concr). Thus I |= φframe(struct) and I |= φframe(concr).

Lemma 2. If I(struct) = I(concr) then I |= φ∼(struct , concr).

Proof. Suppose I(struct) = I(concr). Recall that struct and concr have the
same domain D so genstruct = genconcr = gen. Let r and s be two recipes in
TΣop∪D. Suppose now that I |= struct [r] = struct [s].

I |= struct [r] = struct [s] iff I(struct)(I(r))= I(struct)(I(s))
iff I(concr)(I(r))= I(concr)(I(s))
iff I |= concr [r] = concr [s]

Thus I |= φ∼(struct , concr).

Theorem 1. Voting privacy holds in the state S.

Proof. First, let us prove that I(struct) = I(concr). For the struct , we just have
to look at the interpretation of v[π[i]] and r[π[i]] because all the other terms are
uninterpreted symbols. For i ∈ {1, . . . , N},

I(v[π[i]]) = I(v)(I(π)(�i�≈)) = I(v)(�πI(i)�≈) = I(v)(�(ψ−1 ◦ π0)(i)�≈)
= �θI(vψ−1(π0(i)))�≈ = �θ0(vπ0(i))�≈

I(r[π[i]]) = I(r)(I(π)(�i�≈)) = I(r)(�πI(i)�≈) = I(r)(�(ψ−1 ◦ π0)(i)�≈)
= �r(ψ◦ψ−1◦π0)(i)�≈ = �rπ0(i)�≈.

Formalizing and Proving Privacy Properties Using Alpha-Beta Privacy 553

Since for the concr , the messages are of the form mN+i 	→ sign(priv(A), commit(
θ0(vπo(i)), rπ0(i))), we have I(struct) = I(concr). Then we have shown that for
every model θI |= α, i.e. any possible intruder’s hypothesis, we can find a model
I of β that agrees with θI , i.e. I(v[i]) = θI(vi) for all votes vi.

Theorem 2. Voting privacy holds in the state S′.

Proof (Sketch). As a first step, let us extend the two frames by the messages
that the intruder can deduce by decomposition steps:

struct = {|. . . ,m′
N+1 	→ commit(v[π[1]], r[π[1]]), . . . ,

m′
2N 	→ commit(v[π[N]], r[π[N]]),m′

2N+1 	→ v[π[1]], . . . , m′
3N 	→ v[π[N]],

m′
3N+1 	→ blind(commit(v[1], r[1]), b1), . . . ,

m′
4N 	→ blind(commit(v[N], r[N]), bN)|}

No further subterms can be obtained by decomposition, and the checks that
verifiers give us are analogous between I(struct) and I(concr).

Consider any two equivalent terms s ≈ t that do not contain destructors or
verifiers. While ≈ allows to reorder signatures and blindings, it cannot remove
or introduce any signature or blinding, i.e., if sign(k,m) is a subterm of s,
then there is a subterm sign(k,m′) of t (modulo ≈) for some term m′. Similar
statements hold for blind and commit.

Suppose now two recipes r1 and r2 that only contain constructors (sign,
blind, commit) and labels, and suppose I(struct [r1]) = I(struct [r2]). We show
that then also I(concr [r1]) = I(concr [r2]). (The proof for the other direction is
similar).

The proof is by induction over the maximum depth of r1 and r2 where
depth(mi) = 0 and depth(f(t1, . . . , tn)) = 1 + maxn

i=1(depth(ti)). For depth
0, i.e., two labels, it is trivial: for two distinct labels the result is the same only
on plain votes (i.e. m′

2N+i), and here I(concr) = I(struct).
Suppose now the statement holds for all r′

1, r′
2 up to depth N, we show that

it also holds for all r1 and r2 up to depth N+ 1. We proceed by case distinction
(omitting symmetric cases).

1. r1 is a label and r2 is of depth N + 1 (otherwise it is already covered). Thus
r2 starts with a constructor, which we can distinguish:

– r2 = sign(r′, r′′). Now I(struct [r′]) is a term that the intruder uses as
a signing key and that is a known term to him. Note that no message
contains a signature with a signing key known to the intruder. It is thus
actually impossible that I(struct(r1)) = I(struct(r2)), since signatures
cannot disappear in constructor terms.

– A similar proof shows that r2 = commit(r′, r′′) and r2 = blind(r′, r′′) is
impossible.

554 S. Gondron and S. Mödersheim

2. Both r1 and r2 are composed, at least one, say r1, is of depth N+1. Again let
us consider the case that r1 = sign(r′

1, r
′′
2), the proof for commit and blind

is similar.
Again, since signatures cannot disappear in constructor terms, I(struct [r2])
must contain a subterm sign(k,m) with k = I(struct [r′

1]). Since k is a term
the intruder can construct, and he knows no key that has been used for signing
in his knowledge, this signature was constructed by the intruder in r2 as well.
Thus r2 ≈ sign(r′

2, r
′′
2) such that I |= struct [r′

1] = struct [r′
2] ∧ struct [r′′

1] =
struct [r′′

2]. Since r′
1, r′

2, r′′
1 , and r′′

2 are all of size smaller or equal to N,
so we can apply the induction hypothesis and conclude I |= concr [r′

1] =
concr [r′

2] ∧ concr [r′′
1] = concr [r′′

2] and thus I |= concr [r1] = concr [r2].

Theorem 3. (α, βRF)-privacy holds, i.e., receipt-freeness holds in S.

Proof The idea once again here is to prove that for all θI |= α, I(struct) =
I(concr). We extend the proof of Theorem1. gen is extended to the domain
D ∪DDan . The frames struct and concr are also extended to the new domain as
explained with the knowledge of Dan. We already described Dan’s strategy for
lying. By definition, I(v[1]) = �θI(v1)�≈ and I(r[1]) = �rψ(1)�≈

Since I(concr [d3N+2]) = I(concrDan [s3N+2]) = �θ0(vψ(1))�≈ = �θI(v1)�≈
and I(concr [d3N+3]) = I(concrDan [s3N+3]) = �rψ(1)�≈ by construction, we still
have I(struct) = I(concr). Thus, in the augmented state S, receipt-freeness
holds.

References

1. Abadi, M., Blanchet, B., Fournet, C.: The applied pi calculus: mobile values, new
names, and secure communication. J. ACM 65(1), 1–41 (2017)

2. Blanchet, B., Abadi, M., Fournet, C.: Automated verification of selected equiv-
alences for security protocols. In: Proceedings of the 20th IEEE Symposium on
Logic in Computer Science (LICS 2005), pp. 331–340. IEEE (2005)

3. Cortier, V., Rusinowitch, M., Zalinescu, E.: Relating two standard notions of
secrecy. Log. Methods Comput. Sci. 3(3), 303–318 (2007)

4. Delaune, S., Ryan, M., Smyth, B.: Automatic verification of privacy properties in
the applied pi calculus. In: Karabulut, Y., Mitchell, J., Herrmann, P., Jensen, C.D.
(eds.) IFIPTM 2008. IFIPAICT, vol. 263, pp. 263–278. Springer, Boston (2008).
https://doi.org/10.1007/978-0-387-09428-1 17

5. Mödersheim, S., Viganò, L.: Alpha-beta privacy. ACM Transactions on Privacy
and Security. Preprint available as DTU Compute Technical report-2018-7 (2018).
http://imm.dtu.dk/∼samo/abpn.pdf

6. Delaune, S., Kremer, S., Ryan, M.: Verifying privacy-type properties of electronic
voting protocols. J. Comput. Secur. 17(4), 435–487 (2009)

7. Hinrichs, T., Genesereth, M.: Herbrand Logic. Technical report LG-2006-02, Stan-
ford University, Stanford, CA, USA (2006)

8. Fujioka, A., Okamoto, T., Ohta, K.: A practical secret voting scheme for large scale
elections. In: Seberry, J., Zheng, Y. (eds.) AUSCRYPT 1992. LNCS, vol. 718, pp.
244–251. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57220-1 66

https://doi.org/10.1007/978-0-387-09428-1_17
http://imm.dtu.dk/~samo/abpn.pdf
https://doi.org/10.1007/3-540-57220-1_66

Formalizing and Proving Privacy Properties Using Alpha-Beta Privacy 555

9. Kremer, S., Ryan, M.: Analysis of an electronic voting protocol in the applied pi
calculus. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 186–200. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-31987-0 14

10. Chadha, R., Cheval, V., Cioâcă, Ş., Kremer, S.: Automated verification of equiv-
alence properties of cryptographic protocols. ACM Trans. Comput. Logic 17(4),
108–127 (2016)

11. Arapinis, M., Liu, J., Ritter, E., Ryan, M.: Stateful applied pi calculus: observa-
tional equivalence and labelled bisimilarity. J. Log. Algebraic Methods Program.
89, 95–149 (2017)

12. Blanchet, B., Smyth, B.: Automated reasoning for equivalences in the applied pi
calculus with barriers. J. Comput. Secur. 26(3), 367–422 (2018)

13. Dong, N., Jonker, H., Pang, J.: Formal analysis of privacy in an eHealth protocol.
In: Foresti, S., Yung, M., Martinelli, F. (eds.) ESORICS 2012. LNCS, vol. 7459, pp.
325–342. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33167-
1 19

https://doi.org/10.1007/978-3-540-31987-0_14
https://doi.org/10.1007/978-3-642-33167-1_19
https://doi.org/10.1007/978-3-642-33167-1_19

ProCSA: Protecting Privacy
in Crowdsourced Spectrum Allocation

Max Curran, Xiao Liang(B), Himanshu Gupta, Omkant Pandey,
and Samir R. Das

Stony Brook University, Stony Brook, USA
{mcurran,liang1,hgupta,omkant,samir}@cs.stonybrook.edu

Abstract. Sharing a spectrum is an emerging paradigm to increase
spectrum utilization and thus address the unabated increase in mobile
data consumption. The paradigm allows the “unused” spectrum bands
of licensed primary users to be shared with secondary users, as long as
the allocated spectrum to the secondary users does not cause any harm-
ful interference to the primary users. However, such shared spectrum
paradigms pose serious privacy risks to the participating entities, e.g.,
the secondary users may be sensitive about their locations and usage pat-
terns. This paper presents a privacy-preserving protocol for the shared
spectrum allocation problem in a crowdsourced architecture, wherein
spectrum allocation to secondary users is done based on real-time sens-
ing reports from geographically distributed and crowdsourced spectrum
sensors. Such an architecture is highly desirable since it obviates the need
to assume a propagation model, and facilitates estimation based on real-
time propagation conditions and high granularity data via inexpensive
means.

We design our protocol by leveraging the efficiency and generality of
recently developed fast and secure two-party computation (S2PC) pro-
tocols. We show that this approach leads to practical solutions that out-
perform the state-of-the-art in terms of both efficiency as well as func-
tionality. To achieve the desired computational efficiency, we optimize
the spectrum allocation algorithm to select a small number of relevant
reports based on certain parameters. This results in a faster RAM pro-
gram for power allocation which, under suitable adjustments to under-
lying arithmetic operations, can be efficiently implemented using S2PC.
We use the standard “ideal/real paradigm” to define the security of spec-
trum allocation and prove security of our protocol (in the semi-honest
model). We also provide data from extensive simulations to demonstrate
the accuracy, as well as computational and communication efficiency of
our schemes.

1 Introduction

The RF spectrum is a natural resource in great demand due to the unabated
increase in mobile (and hence, wireless) data consumption [5]. The research com-
munity has addressed this capacity crunch via development of shared spectrum
paradigms, where the unused spectrum bands of a licensed primary user (PU)

c© Springer Nature Switzerland AG 2019
K. Sako et al. (Eds.): ESORICS 2019, LNCS 11735, pp. 556–576, 2019.
https://doi.org/10.1007/978-3-030-29959-0_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29959-0_27&domain=pdf
https://doi.org/10.1007/978-3-030-29959-0_27

ProCSA: Protecting Privacy in Crowdsourced Spectrum Allocation 557

can be allocated to an unlicensed secondary user (SU) as long as SU’s usage
does not cause harmful (wireless) interference to the PU. In a commonly used
architecture for such shared spectrum systems, a centralized spectrum manager
(SM) allocates available spectrum to SUs upon request, based on PUs’ parame-
ters and signal attenuation (path-loss) characteristics. In the crowdsourced sens-
ing model we follow, the path-loss values are estimated from real-time sensing
reports of geographically distributed and crowdsourced spectrum sensors (SS).
Crowdsourcing allows high granularity spectrum data collection via relatively
inexpensive means, and most importantly, obviates the need to assume a sig-
nal propagation model. However, presence of many independent entities makes
the shared spectrum system particularly prone to leakage of private information
(e.g., location of radar transmitter) [11,25,31]. As the viability of crowdsourced
paradigm may depend upon privacy assurance of the crowdsourcing users (i.e.,
SS devices), it is critical to develop secured spectrum allocation protocols that
preserve privacy of all entities. The goal of our work is to develop an efficient
privacy-preserving spectrum allocation scheme in the context of the aforemen-
tioned shared spectrum architecture.

1.1 Spectrum Allocation Model, Security Challenges, Related Work

Crowdsourced Shared Spectrum Architecture. Spectrum allocation in
shared spectrum systems has been studied extensively (see [47] for a survey).
In the centralized SM architecture, it is generally assumed that the SM has
complete knowledge of the PU parameters. Many prior works assume a propa-
gation model which allows spectrum allocation power to be computed via simple
techniques (see [47] survey). However, in practice, since even the best-known
propagation models [17,20,38] have unsatisfactory accuracy, spectrum alloca-
tion must be done overly conservatively for correctness. Crowdsourced sensing
has the potential to eliminate this limitation.

In a crowdsourced architecture, for a spectrum allocation query from the
SU, the spectrum manager (SM) first estimates appropriate signal path-loss val-
ues from known PUs’ parameters and real-time sensing reports of crowdsourced
spectrum sensors (SS), and then use the estimated path-loss values to allocate
spectrum to the SU. Allocation based on real-time channel conditions is impor-
tant for accurate power allocation, as the conditions affecting signal attenuation
(e.g., air, rain, vehicular traffic) may change over time. However, spectrum allo-
cation based on sensing reports can be challenging, due to need for accurate
path-loss estimation techniques from relatively inexpensive sensors – but the
challenge is mitigated with the availability of a large number of sensing reports
via crowdsourced spectrum sensing [9,30]. The practicality of crowdsourced sens-
ing architectures has been demonstrated in research projects [8,9,55] as well as
commercial ventures such as Flightaware [3]. Malicious behavior of some SS
nodes (faulty sensing reports) can be handled by appropriate fault-tolerance
strategies [14].

Spectrum Allocation Algorithm. For a given SU query, the goal of the
spectrum allocation algorithm is to allocate maximum possible power to the

558 M. Curran et al.

SU such that its transmission at the allocated power would not inter-
fere with PU’s reception at any of its receivers. There are many
ways to model PU receivers, e.g., a coverage region around PU.

Fig. 1. Spectrum allocation in a shared spectrum
system

As in [29], we assume a finite
set of representative receivers
called PURs around a PU. Each
PUR is associated with an ini-
tial threshold, which is contin-
ually updated, to signify the
maximum additional interfer-
ence it can tolerate from the
SUs. At a high-level, for a sin-
gle SU request (see Sect. 3.1
for multiple SUs), the spectrum
allocation algorithm consists of
the following steps: (i) compute
the path loss between the SU and each of the PURs, (ii) allocate spectrum
as below, (iii) update the PURs’ thresholds. See Fig. 1. More formally, let us
denote the path loss function by P (,); we discuss estimation of this function
in more detail in Sect. 3.1. If an SU Si at location �i is allowed to transmit at
power ti, then the signal power received at PUR Rj at location �j is given by
pij = ti ·P (�i, �j). To ensure that pij is less than each Rj ’s current threshold τj ,
the maximum power that can be allocated to Si is:

min
j

τj

P (�i, �j)
. (1)

Once a certain transmit power ti has been allocated to an SU Si, the threshold
for a PUR at location �j is updated as:

τj = τj − ti × P (�i, �j) . (2)

Security Challenges. Despite the great potential of shared spectrum
paradigms in improving spectrum utilization efficiency, these systems suffer from
serious privacy and security risks – particularly, due to the presense of many
independent entities. The data collected by SM from SU/SS/PU entities con-
tains sensitive information such as the locations, transmit power, sensing reports,
requested spectrum, etc. For example, a PU can be a military entity, an SU can
be telecom operator, or an SS can be a private user. It is critical to protect the
location, behavior and other information of such entities for personal privacy,
corporate secrecy, and/or national security interests. Furthermore, the viability
of crowdsourced paradigm may depend upon privacy assurance of the crowd-
sourcing users (i.e., SS devices).

In order to ensure privacy of participating entities, it is essential that the SM
does not learn any information about them (including the allocated spectrum
power since it can reveal approximate location of the requesting SU). Further-
more, the scheme must not introduce too much latency, to maintain system’s

ProCSA: Protecting Privacy in Crowdsourced Spectrum Allocation 559

prompt responsiveness to SU requests; moreover, a delayed response may render
the spectrum availability information obsolete and thus useless. Such strong pri-
vacy and efficiency requirements introduce several technical difficulties that are
hard to resolve using basic cryptography. Indeed, the spectrum allocation func-
tion, which includes estimation of the path-loss values (as described in Sect. 3.1)
computed by the SM, has a rather complex algorithm. While this can be han-
dled using fully homomorphic encryption (FHE) [22], current FHE schemes are
far from practical. Another option is to consider general-purpose secure multi-
party computation (MPC) protocols [23,51]. While MPC would be impractical
if all sensor nodes are involved in the computation, it can be quite efficient for
smaller computations involving two (or three) parties. This is the approach we
take since, in the setting of secure spectrum allocation, two semi-trusted non-
colluding parties are naturally available: the SM and a key server (KS). The
non-trivial part is to express the computation (at the time of SU request) as a
small circuit or RAM program.

Related Works. The privacy and security issues in shared spectrum systems
have received serious attention in the research community only in the last decade
(see [25] for a survey). Due to the aforementioned difficulties, existing works
focus on simpler versions of spectrum allocation. In particular, many privacy-
preserving works have focused on the database-centric architecture, where the
spectrum allocation is done based on a spectrum database, often maintained
and controlled by a third party (e.g., Google, Spectrum Bridge, RadioSoft, etc.).
Here, the security solutions have focused on protecting SU’s location privacy
by either anonymizing its location/identity [35,46,54], private retrieval from the
database [10,19], or differential privacy or data obfuscation techniques [21,31]
(also used to protect PU privacy [11,42]). Most works in the crowdsourced spec-
trum management have focused on protecting privacy of SS nodes only, e.g.,
location leakage of spectrum sensors from their sensing reports. These include
encryption approaches to conceal the sensing reports [26,28,36] or using inter-
mediate nodes to hide location [27,28,37], which incurs significant computation
and communication overheads. Other approaches consider distributed architec-
tures [32] or architectures involving multiple service providers [48]. In summary,
most works have focused on privacy of SUs/SSs only, and either use data obfus-
cation techniques or incur substantial overheads.

State-of-the-Art. The state-of-the-art as well as closest to our work is the P2-
SAS system [16] which works in a simplified model where (a) rather than using
SSs’ real-time sensing reports, the SM pre-computes a signal attenuation map
based on an assumed propagation model such as Longley-Rice [44]; (b) SM does
not compute the actual allocation value; instead, the SM only provides a binary
yes/no answer indicating whether the SU can transmit at the requested power
v. Roughly speaking, these simplifications allow P2-SAS to express the compu-
tation as a linear function which can be computed over encrypted values using
the Paillier cryptosystem [40]. Since SM is not fully trusted, P2-SAS also intro-
duces a key server (KS) who is responsible for generating relevant keys but does
not see the encrypted data held by the SM. P2-SAS yields a solution in the

560 M. Curran et al.

semi-honest model where parties follow the protocol instructions and do not
collude (but may analyze the data in their possession). Despite its limitations,
P2-SAS makes significant progress on this problem: it can serve yes/no answers
to SU requests with 97–98% accuracy under seven seconds, with appropriate
acceleration strategies including parallelization of many computational steps.

1.2 Our Contributions

In this work, we present the first general solution to the problem of privacy-
preserving spectrum allocation in the crowdsourced spectrum sensing model
wherein a centralized spectrum manager orchestrates spectrum allocation using
sensing reports from crowdsourced spectrum sensors. Our overall contributions
are as follows:

– We present a new architecture for the problem of privacy preserving spectrum
allocation based on fast and general-purpose S2PC protocols [6,12,13,33,34].
Our protocol computes the power allocation based on the current sensing
reports by the SS nodes. Since the conditions affecting signal attenuation (e.g.,
air, rain, vehicular traffic) may change, path-loss estimation based on real-
time sensing reports is important for accurate power allocation. In contrast,
the state-of-the-art system P2-SAS pre-computes a signal attenuation map
over a grid based on an assumed propagation model, which then remains static
and does not reflect the latest conditions. We remark that pre-computation of
a attenuation map from sensing reports (i.e., without assuming a propagation
model) in a privacy-preserving manner is also non-trivial.

– Our protocol is an order of magnitude faster that the state-of-the-art systems.
More specifically, our protocol can compute the actual power allocation in 2–
2.5 s on average whereas P2-SAS takes 7 s for a yes/no answer which must be
iterated a few times to compute the actual allocation. See Table 1.

– As the spectrum allocation computation involving large number of sens-
ing reports is computationally very expensive to be carried out over S2PC
directly, we optimize the spectrum allocation algorithm to use only a small
number of relevant sensing reports. We show experimentally that this opti-
mization does not affect the quality of power allocation. Overall, this opti-
mization results in a faster RAM program which can be efficiently imple-
mented using fast S2PC protocols.

– To circumvent implementation issues in using available libraries for “S2PC
for RAM program” (see Sect. 3.2), we build a custom solution that can be
implemented in Ivory [43]. More specifically, we design a method for perform-
ing oblivious read/write operations, and use these routines with fast S2PC for
(small) circuits to obtain a protocol that is proven secure in the semi-honest
model under the standard ideal-world/real-world paradigm. We use additional
optimizations such as moving arithmetic operations outside the S2PC frame-
work whenever possible to extract further efficiency.

– The generality of our approach allows us to support simultaneous allocation
queries in which several SUs simultaneously request for power allocation as

ProCSA: Protecting Privacy in Crowdsourced Spectrum Allocation 561

Table 1. Summary of results

Algorithm Time Error wrt. plaintext Error wrt. optimal Comm. cost

Two SMs 2 s 2.10−4 dB 1dB (Log), 4 dB (L-R) 0.15 MB

SM-KS 2.5 s 2.10−4 dB 1dB (Log), 4 dB (L-R) 5.35 MB

P2-SAS [16] 7 s – 2.72% 5 MB

opposed to just one. The knowledge of several SU requests at once allows
the computation of power allocation for each one of them in a more fair
and optimal manner. Ours is the first system to support such simultaneous
allocation; it is not possible in P2-SAS or other known solutions since they
commonly rely on some form of homomorphic encryption, which severely
limits the type of functions they can compute within the encryption.

Results Summary. Table 1 shows the average time and accuracy of our
designed schemes to serve each SU request in a large area with 400 PUs and
40,000 SSs in two propagation models (used to generate the ground truth), viz.,
Log-distance (Log) and Longley-Rice (L-R). Table shows results for two of our
schemes: Two SMs (two spectrum managers) and SM-KS (SM and a key server).
To handle the SU request, we select 10 PUs and SSs appropriately using a grid
of 100 × 100 over the area. See Sect. 4 for further details. As the P2-SAS [16]
work outputs only yes/no answers, the P2-SAS entry below shows accuracy as
percentage of false positives and negatives.

2 Defining Semi-honest Secure Spectrum Allocation

We define the functionality for spectrum allocation within the framework of
secure multi-party computation. Informally, a MPC protocol is said to be secure
if any information learned by an adversary can also be generated (or “simu-
lated”) by an ideal-world simulator. We assume familiarity with standard MPC
framework (a formal treatment is given in our full version [4]). In the follow-
ing, we define the ideal functionality for our spectrum allocation task. We focus
on semi-honest model with static corruption, which means the set of corrupted
parties is fixed before the execution of the protocol and all parts (including the
corrupted ones) follow the protocol. We also assume authenticated communica-
tion channels between each pair of parties.

Ideal Functionality for Spectrum Allocation. The spectrum allocation
functionality involves the following participants: the requesting SU Si, PUs,
PURs, SSs, and the two spectrum managers SM0 and SM1. We note that the
roles of PUs, PURs, and SSs in the protocol are limited in that they only provide
data for the computation but do not receive any output. For clarity of presenta-
tion, we will use PNs (acronym for Private Nodes) to represent all PURs, PUs
and SSs. Also, even though PNs consist of many independent nodes, for ease of
presentation, we will treat the entire set of PNs as one single party and use D

562 M. Curran et al.

to denote the concatenation of their data. The above simplifications are merely
for clarity of presentation and do not affect the generality of our results.

The spectrum allocation functionality fSA is described as follows (details are
given in Sect. 3.1):

– Input: The requesting SU Si sends its location �i to fSA. SM0 and SM1 input
nothing to fSA, but we use the symbol ⊥ as a placeholder for them. All the
PNs (i.e., all the PURs, PUs and SSs, as mentioned above) send their data
D to fSA.

– Computation: Upon receiving the above input (�i,⊥,⊥,D), fSA does the
following (as described in Sect. 3.1):

• For j �= i, compute the path loss P (�i, �j) between the Si and Rj

• Calculate the proper transmit power ti to Si per Eq. (1)
• Update the thresholds for each PUR location �j per Eq. (2)

– Output: (ti,⊥,⊥,⊥) are the outputs to participants (Si,SM0,SM1,PNs)
respectively.

We note that SM0 and SM1 neither send any input nor receive any output
from fSA. Even though the SMs are “dummy” within fSA functionality, their
existence is important to define and prove the security of our protocol.

Correctness and Security. For a protocol Π, we define its correctness and
security w.r.t. fSA in the following way.

Definition 1 (Correctness). We say that Π correctly computes fSA if the
following holds except for negligible probability

outputΠ(�i,⊥,⊥,D) = fSA(�i,⊥,⊥,D) (3)

where the tuple (�i,⊥,⊥,D) denotes the input data from (Si,SM0,SM1,PNs)
and outputΠ is the output function of protocol Π.

Definition 2 (Security). We say that Π securely computes fSA in a semi-
honest model with static corruption if there exists a probabilistic polynomial-time
algorithm SΠ such that for every I ⊆ {Si,SM0,SM1,PNs} that does not contain
both SM0 and SM1,

{SΠ(I, inputI , f
SA
I (�i,⊥,⊥,D))} c≡ {viewΠ

I (�i,⊥,⊥,D)} (4)

where the tuple (�i,⊥,⊥,D) denotes the input data from (Si,SM0,SM1,PNs),
inputI denotes the input of parties in set I and viewΠ

I (�i,⊥,⊥,D) is the views
of parties in set I at Π’s termination on input (�i,⊥,⊥,D).

We remark that, in our model, set I cannot simultaneously include both SM
servers since they are non-colluding. The definitions are easy to modify to work
with a single SM and a KS, or other equivalent setups.

ProCSA: Protecting Privacy in Crowdsourced Spectrum Allocation 563

3 Secure Spectrum Allocation

Fig. 2. Path loss estimation

Our secured approach to spectrum
allocation is based on on the S2PC
technique, but we incorporate vari-
ous optimizations to make the over-
all approach viable for our context.
We start with describing the plain-
text (unsecured) version of our spec-
trum allocation algorithm.

3.1 Plaintext Algorithm

For a new SU request, the Plaintext
algorithm can be described as a
sequence of the following steps (as
per Sect. 1.1): (i) compute the path loss between the SU and each of the PURs,
(ii) allocate spectrum as per Eq. (1), and (iii) update the thresholds of the PURs
based on the allocation to the SU. We describe the first step in detail below;
the other two steps are just straightforward assignment of values to appropriate
variables. Later, we motivate and discuss selection of SSs and PUs to make the
algorithm more computationally efficient, without much compromise in spectrum
utilization.

Path Loss Estimation. As per Eq. (1), we need to compute the path loss
between the requesting SU Si and each of the PUs’ receivers (i.e., PURs). For a
given PUR Rjk of a PU Pj , we compute the path loss P (Si, Rjk) between Rjk

and Si as follows. See Fig. 2.

1. First, we compute the path loss P (Si, Pj) between the SU Si and PU Pj in
two steps as follows:
(a) Compute path loss P (Pj , C�) from PU Pj to each of the spectrum sensors

C�. Since a spectrum sensor C� only senses the aggregate power received
from all PUs, computing path loss from PU Pj to C� requires splitting
the sensed power across the PUs (as described later).

(b) Use interpolation to compute the path loss P (Si, Pj).
2. Then, we compute the desired path loss P (Si, Rjk) from the above computed

P (Si, Pj).

We now describe each of the above steps below.

(1a) Estimating P (Pj , C�) From Sensed Power at C�. As mentioned above, a
spectrum sensor C� senses only the aggregate power received from all the PUs.
Thus, we must first “split” the total received power of C� among the PUs; we do
this splitting based on the weighted distance as follows. Let r� be the total power
received at C�, and tx be the transmit power of a PU Px. Then, we estimate the
power received rjl at C� due to PU Pj as:

rjl =
tj/d (C�, Pj)

αs

∑
Px

tx/d (C�, Px)αs
× r� (5)

564 M. Curran et al.

Above, d() is the distance function and αs is an exponent parameter that is
used to control the above splitting. Now, we can easily compute the path loss
P (Pj , C�) as:

P (Pj , C�) = rjl/tj (6)

Note that the above estimation of P (Pj , C�) does not depend upon Si, and then
can be precomputed.

(1b) Interpolation to Compute P (Si, Pj). Once we have estimated the path loss
between a PU Pj and every SS C�, we use interpolation to estimate the path
loss from Pj to the current SU Si under consideration. Prior works [9,52] have
used Ordinary Kriging (OK), k-nearest neighbors (k-NN) classifier, or inverse
distance weighted (IDW) approaches for such interpolation—with k-NN and OK
performing similarly [52]. Here, for simplicity, we start with the IDW approach,
and later refine it to using IDW over k nearest neighbors (making the overall
scheme akin to a more sophisticated version of the traditional k-NN scheme [52]).
Using IDW, we get (here, Cx is a SS node):

P (Si, Pj) =

∑
Cx

P (Cx, Pj) /d (Si, Cx)αp

∑
Cx

1/d (Si, Cx)αp
(7)

Above, αp is an exponent parameter that is used to control the above
interpolation.

(2) Compute Path Loss P (Si, Rjk) from SU to PUR. We now use the estimated
path loss between the SU Si and a PU Pj to estimate the path loss between the
SU Si and the PU Pj ’s PURs. Each PUR Rjk is represented by its location.
To estimate the desired path loss P (Si, Rjk), we assume a uniform log-distance
path loss model within the triangle of nodes Pj , Si and Rjk. In particular, we
use:

P (Si, Rjk) =
P (Si, Rj) (d (Si, Rjk))αp

(d (Si, Rj))αp
(8)

Selection of PUs and SSs for Computational Efficiency. Involving all the
PUs and SSs in the above path loss estimation is quite inefficient, as the num-
ber of PUs and especially SSs can be very large. This computational efficiency
is particularly critical in the secured S2PC implementation. Thus, to improve
computational efficiency, we devise a strategy to select only a small number of
PUs and SSs—that are most pertinent to the SU Si requesting spectrum. Note
that the PUs that are very far away from Si are unlikely to be affected by the
spectrum allocated to Si, especially if there are sufficiently many PUs that are
close enough to Si. Similarly, only the SSs that are close to the selected PUs
(and thus to the SU Si) are going to be much useful in the above interpolation
step. Note that in the interpolation step, the SSs are weighted by the inverse
distance to Si; thus, SSs that are far away from Si will have minimal impact.
Based on the above arguments, for the sake of computational efficiency, we thus
select PUs and SSs that are “close” to the given SU Si and use only these PUs
and SSs in the above computations. In particular, given an SU Si, we pick kss

ProCSA: Protecting Privacy in Crowdsourced Spectrum Allocation 565

nearest SSs, and kpu nearest PUs; here, the distance to SSs is unweighted, but
the distance to a PU is weighted by the average of the thresholds of its PURs.
The kss and kpu values may be chosen based on the density of PUs and SSs.
Our simulation results (see Sect. 4) show that only a small number of close-by
SS and PU nodes suffice to obtain sufficiently accurate path-loss, if the density
of SS nodes is sufficiently high.

Grid Based Implementation. To implement the selection of SSs and PUs effi-
ciently, we employ a grid-based heuristic wherein we divide the given area into
cells using horizontal and vertical grid lines, and associate with each cell the
list of PUs and SSs that should be selected if the requesting SU is at the cell’s
center. When a request of SU Si comes, we determine the cell C in which the Si

lies, and use the PUs and SSs associated with C for path-loss estimation steps.
It is important to note that this grid-based heuristic is not exact, i.e., it may not
return the nearest set of SSs and weighted PUs as it approximates the position of
a requesting SU Si by the center of C, the cell in which Si lies. However, our simu-
lation results show that the grid-based approach is computationally efficient and
sufficiently accurate for our purposes. Note that the set of PUs associated with
some cell may need to be updated due to updates to the PUR thresholds after
every spectrum allocation (recall that the distance to PUs are weighted by the
average of their PUR thresholds); for efficiency, we only update the thresholds
of the PURs of the selected PUs.

Handling Multiple SUs. The above describes the process to allocate spectrum
to a single SU request. Multiple SU requests can be handled one at a time, except
that in step (1a) above, we need to also account for the fact that a SS may sense
power from SU transmissions. This can be handled easily by storing information
about the active SUs with the containing cell, and incorporating it in the (1a)
step. Multiple SU requests can also be handled simultaneously, to incorporate
a given fairness constraint, by solving a system of linear equations (with one
equation for each PUR) within our S2PC framework. Detailed implementation,
optimization, and evaluation of supporting multiple SU requests is deferred to
our future work.

3.2 Secured Algorithm Using Two SMs

In this section, we present the secured implementation of our plain algorithm
between two spectrum managers. We first present the solution in the simpler
setting where there are two semi-honest SMs, and then show how to replace the
second SM with a key server. This allows us to focus on core issues related to
security and efficiency first.

At a high-level, this secured algorithm works by having all the PNs secret-
share their data to the two SMs, who will then run S2PC protocols between
two SMs for each stage of our plain algorithm. Most of our spectrum allocation
algorithm involves only simple arithmetic operations which can be implemented
efficiently in S2PC; the only parts that require special attention are the following:

566 M. Curran et al.

in our grid-based interpolation, SMs need to read data from the selected PNs
and update the threshold for PURs. These operations happen on the large data
array secret-shared between the two SMs.

A direct S2PC implementation will be quite inefficient. One option is to
use “S2PC for RAM program” [24,39]. However, the actual implementation
using known libraries for efficient S2PC for RAM program [7,15,24,45,49,50,53]
runs into several issues. While there are several available implementations that
offer different features, these are maintained by individual researchers/teams
and often incompatible with each other. Our spectrum allocation algorithm best
operates as a RAM program often switching between arithmetic and boolean
operations, and it becomes difficult to obtain a workable solution existing known
implementations. Therefore, we design a novel oblivious read/write algorithms,
which allow fast and secure access of the secret-shared data array. These algo-
rithms can be easily incorporated into our secured protocol.

In the remainder of this subsection, we first give a formal description of our
secured protocol, and then present our oblivious Read/Write algorithm in detail.

Protocol 1 (Secured Spectrum Allocation). Our secured spectrum alloca-
tion protocol Π consists of the following stages (subprotocols):

Πoff : All the PNs secret-share their data D as D0 +D1 (using an additive secret
sharing scheme), and send D0 (resp. D1) to SM0 (resp. SM1). These two SMs
then run an S2PC protocol implementing the functionality foff , which denotes
all the steps in Sect. 3.1 before the request of any SU Si arrives. Specifically, it
includes step (1a) of Path Loss Estimation and the construction of the grid
system used to choose proper subset of PUs and SSs for efficient computation.
The result is stored in an array data structure A for later use. At the end of this
stage, SM0 and SM1 get A0 and A1 respectively, which are secret shares of A
(i.e. A0 +A1 = A). We remark that the task of this stage should be done off-line
(before any request of SU arrives) to improve efficiency.

Πslct: This is the selecting stage to get the subset J of indices of array A, which
indicates the data needed for pass loss estimation. Πslct asks Si to secret-share
its location �i = �0i + �1i to SM0 and SM1. Then the two SMs run an S2PC
protocol implementing the functionality fslct : (�0i , �

1
i) → (J0, J1) described as

follows. fslct takes input (�0i , �
1
i) from SM0 and SM1 respectively. It first recovers

�i = �0i + �1i and then computes the indices as specified in Selection of PUsand
SSs in Sect. 3.1, resulting in a set of indices J . Then the protocol secret shares
J = J0 + J1 to SM0 and SM1 as the output of this stage.

Πread: SM0 and SM1 use J0 and J1 respectively as input to read data from A,
following our Secured Array-Entry Read algorithm (specified later). At the end
of this sub-protocol, A[j] will be secrete shared as A′′

0 [j] + A′′
1 [j] for every j ∈ J .

The output of this stage to SM0 (resp. SM1) is the sequence of secret shares
{A′′

0 [j]}j∈J (resp. {A′′
1 [j]}j∈J).

Πalloc: SM0 and SM1 use {A′′
0 [j]}j∈J and {A′′

1 [j]}j∈J as input to calculate the
allocated transit power ti. ti is then secret-shared to t0i + t1i . SM0 (resp. SM1)
gets t0i (resp. t1i) as output. This sub-protocol again is implemented via 2PC.

ProCSA: Protecting Privacy in Crowdsourced Spectrum Allocation 567

Πupdate: SM0 and SM1 run an S2PC protocol implementing the computation of
the new threshold τj as per Eq. (2). The results are again secret shared. SM0

holds {τ0
j }j∈J , and SM1 holds {τ1

j }j∈J such that τ0
j + τ1

j = τj for all j ∈ J .

Πwrite: SM0 and SM1 use {τ0
j }j∈J and {τ1

j }j∈J as input to update data in
{A[j]}j∈J . This sub-protocol is implemented as our Secured Array-Entry Write
algorithm (specified later).

Πoutput: SM0 (resp. SM1) sends t0i (resp. t1i) as it received in Πalloc to Si. Si

recovers ti = t0i + t1i as the final output of the main protocol Π. �	

SM0(A0, j0) SM1(A1, j1)

A0[i] → A′
0[i] A1[i] → A′

1[i]
S2PC

protocol
(j0, s0) (j1, s1)

j′1 j′0
oblivious
transfer

(A′
0, j

′
1) (A′

1, j
′
0)

A′
1[j

′
1] A′

0[j
′
0]

S2PC for
re-sharing

(r0, A′
1[j

′
1]) (r1, A′

0[j
′
0])

A′′
0 [j] A′′

1 [j]

Fig. 3. Array-entry read operation

Secured Array-Entry Read. Con-
sider an array A[1..n]. The secret
sharing of array A[1..n] entails that
SM0 and SM1 store A0[1..n] and
A1[1..n] respectively with A0[i] and
A1[i] as two random numbers such
that A0[i] + A1[i] = A[i]. Now, let’s
say we are given an index j (that
has been “computed” in S2PC), and
we wish to “load” the entry A[j]
into S2PC without either SM learn-
ing about either the index j or the
entry A[j] being accessed. We use the
oblivious transfer (OT) technique [18,41] to implement our solution; the OT
techniques allows two parties to exchange information securely. In particular, if
one party has the array and the other party has the index of interest, then OT
allows the first party to transfer A[j] to another without either party knowing the
other party’s input parameter. In our context, the additional challenge is that
neither the index j nor the array A is known to either of the parties; these values
are shared across the two SMs. We address this challenge by random “shifting”
of the indexes and array values at each SM, and engage in S2PC appropriately
as described below. Our solution to access an entry A[j] into S2PC securely
involves the following steps:

We start with assuming that, from earlier stages in the execution of S2PC,
the target index j is shared across the two SMs. Thus, at the beginning of this
stage, SM0 holds j0 and A0 as input while SM1 holds j1 and A1 as input; here,
j0 and j1 are the secret shares of our target index j, and A0 and A1 are secret
shares of data array A.

1. First, each SM creates new arrays by shifting the indices and entries of the
given arrays by fixed random values. More formally, SM0 and SM1 create
arrays A′

0[1..n] and A′
1[1..n] as:

A′
0[i] = A0[(i + s0)%n] + r0, A′

1[i] = A1[(i + s1)%n] + r1

where s0 and r0 (resp. s1 and r1) are random numbers chosen by SM0 (resp.
SM1).

568 M. Curran et al.

2. Now, S2PC protocol transfers appropriate indices to the SMs. In particular,
SM0 (resp. SM1) holding j0 and s0 (resp. j1 and s1) as input run a S2PC
protocol to implement the following functionality f : Upon receiving inputs
from SM0 and SM1, f recovers j = j0 + j1 and sends j′

1 := (j + s1)%n (resp.
j′
0 := (j + s0)%n) to SM0 (resp. SM1) as the output.

3. Now, the SMs exchange array entries via OT. In particular, SM0 fetches A′
1[j

′
1]

from SM1, and SM1 fetches A′
0[j

′
0] from SM0.

4. Then SM0 (resp. SM1) uses A′
1[j

′
1] and r0 (resp. A′

0[j
′
0] and r1) as input to run

a S2PC protocol implementing the following functionality f : Upon receiving
inputs from SM0 and SM1, f recovers A[j] as

A[j] = A′
0[j

′
0] + A′

1[j
′
1] − r0 − r1

and then secret shares the A[j] as A′′
0 [j]+A′′

1 [j], and sends A′′
0 [j] (resp. A′′

1 [j])
to SM0 (resp. SM1) as the final output.

SM0(A0, j0, d0) SM1(A1, j1, d1)
S2PC

protocol
(j0, s0) (j1, s1)

j′1 := (j + s1)%n j′0 := (j + s0)%n

Create U0,V0 Create U1,V1
V ′
0[i] = V0[(i + s0)%n] V ′′

0 [i] = V ′
0[(i − s1)%n]

= V0[(i + s0 − s1)%n]

V ′
0

V ′
1[i] = V1[(i + s1)%n]V ′′

1 [i] = V ′
1[(i − s0)%n]

= V1[(i + s1 − s0)%n]

V ′
1

W0 = U0 + V ′′
1 W0[i] = W0[(i − s1)%n]

A1 updates to A1 +W0

W0

W1[i] = W1[(i − s0)%n]
A0 updates to A0 +W1

W1 = U1 + V ′′
0

W1

Fig. 4. Array-entry write operation

Secured Array-Entry
Write. Consider an array
A[1..n] again as above,
where the SM0 and SM1

store the secret shares
A0[1..n] and A1[1..n] respec-
tively of the array. Now,
given two private values
(secret-shared across the
SMs) j and d, we wish
to update the array entry
A[j] by adding d to it. We
achieve the above update
of A[j] to A[j] + d in a
secured manner by adding
zero to the remaining
entries A[i] (for i �= j). One simple (but inefficient) way to achieve the above is
as follows.

– At start, SM0 (resp. SM1) holds j0 and d0 (resp. j1 and d1) as input, where
j0 and j1 are the secret shares of the target index j while d0 and d1 are the
secret shares of value d to be added to A[j].

– SM0 creates an array D0[1..n] of random and private numbers.
– SM0 holding D0 and d0 as input and SM1 holding d1 as input execute a S2PC

protocol implementing the following functionality f : Upon receiving input
from SMs, f computes the “complement” D1 of D0 such that D0[i]+D1[i] = 0
for i �= j and D0[j] + D1[j] = d. f sends D1 to SM1 as the output.

– Finally, each SM updates its array as: A0[i] = A0[i] + D0[i] and A1[i] =
A1[i] + D1[i] for all i (including j).

ProCSA: Protecting Privacy in Crowdsourced Spectrum Allocation 569

The above approach however can be very inefficient due to a large number of
operations (O(n) additions) computed in S2PC. To circumvent this, we propose
another approach that limits the number of arithmetic operations at S2PC to
a small constant while pushing most of the arithmetic operations to the SMs.
We achieve this by creating two arrays at each SM, shifting their indexes and
exchanging them appropriately. We use the term shifting an array B[1..n] by m
to mean the operation B[i] = B[(i + m)%n]. For b ∈ {0, 1}, our approach works
as follows:

– Input. Same as in the above approach, SMb holds Ab, jb and db as input.
– Creating j′

b. Each SMb samples a random number sb. Then each SMb on input
(jb, sb) execute a S2PC protocol implementing the following functionality
f : Upon receiving SMs’ input, f recovers j = j0 + j1 and sends j′

1−b :=
(j + s1−b)%n to SMb as the output.

– Updating Arrays Ub and Vb. Each SMb creates two arrays Ub and Vb, such
that Ub[i] + Vb[i] = db for i = j′

1−b and 0 otherwise. Here, the idea is that
these arrays (after manipulation) will eventually be sent over to the other SM
(i.e., SM1−b) who will be able to shift these arrays by s1−b, to get the share
of d in the jth index.

– Manipulation and Exchange of Vb. Now, each SMb shifts Vb further by sb (its
private random number) and sends it over to the other SM (i.e., SM1−b). The
SMb on receiving V1−b shifts it by −sb. Thus, each SMb has V1−b which has
been shifted by sb + s1−b − sb = s1−b.

– Addition of Local Update Arrays, and Exchange. Each SMb now adds the
locally available Ub and V1−b (each has a shift of s1−b) to get Wb. At this
point, W0 and W1 are such that, if we ignore their shifts, their respective
entries add up to zero and d. SMs exchange their W0 and W1.

– Final Updating. Each SMb now has W1−b (with a shift of j1−b). The array
W1−b is finally shifted by −sb and added to Ab array.

Correctness and Security. The correctness of Protocol 1 is obvious. We give
a sketch of its security proof in AppendixA; see [4] for the detailed proof.

3.3 Secure Allocation Using One SM and a Key Server

We now modify the secured algorithm from previous subsection to the case of a
single SM and a key server. A key server (KS) is a semi-trusted entity in that it
can use its persistent storage to only store the cryptographic keys and no other
data. We can implement our secured approach over a single SM and a KS, with
the following modification to the secret sharing mechanism.

An entity E with the data ai that it wants to share (in our task, E could be a
SS/PU/PUR node with its input) will ask KS for an AES key ki. E secret shares
ai to ai0 + ai1. It then sends ai0 and AESki

(ai1) to SM, where AESki
(ai1) is the

AES-encrypted ai1 with key ki. This finishes the secret sharing stage. After all
the necessary data is shared in this way to SM, it can run our aforementioned
protocol Π with KS playing the role of SM1. More specifically, SM sends the

570 M. Curran et al.

Fig. 5. Average difference in power allocated by Plaintext and Optimal schemes for
varying number of (a) selected SSs, (b) selected PUs, and (c) grid size.

Fig. 6. Average difference in spectral power allocated by secured (i.e., 2-SMs or SM-KS)
and Plaintext schemes for varying parameter values.

encrypted shares to KS, who has the corresponding AES keys for decryption.
Now we are in the setting where two parties hold the secret shares of input for
the spectrum allocation task. They can then run protocol Π as if KS is SM1.

The above mechanism enables secured two-party computation using S2PC
protocol without requiring S2PC to perform any cryptographic operations. Also,
it can be used easily to implement the secure read and write operations as
described in the previous subsection.

4 Simulation Results

In this section, we evaluate our developed techniques for secured spectrum allo-
cation, by demonstrating its accuracy and computational efficiency.

S2PC Implementation. The core component of our designed algorithm is the
use of S2PC protocol to securely compute certain arithmetic operations. To aid
our implementation, we use a pre-existing S2PC library Ivory [43]. Ivory provides
pre-built circuits for simple operations over integers; these circuits can be used
to compute more complex functions using S2PC protocol. Limited by the Ivory
library, we use a fixed-point representation for values in S2PC. In particular, we
represent a real value v in terms of a standard int value x, such that v = x× 2k

where k is a (positive or negative) constant which determines the precision level
of the fixed point value. We use 64 bits to represent real values.

Simulation Setup and Parameters. Similar to the settings in the most closely
related work [16], we consider a geographic area of 10 km× 10 km, with 400 PUs

ProCSA: Protecting Privacy in Crowdsourced Spectrum Allocation 571

Fig. 7. Time taken by the secured algorithms for varying parameter values.

and 40000 SSs randomly distributed in the area; we use a large number of spec-
trum sensors to demonstrate the scalability of our approach in high-density
crowdsourced settings. We use 5 PURs for each PU located at 100 m around the
PU. In each of the plots below, we vary one of the parameter settings while keep-
ing the other parameter settings to their default values. In particular, the default
values for various parameter settings are as follows: number of selected PUs: 10,
number of selected SSs: 10, grid of 100 × 100. We consider two signal propaga-
tion models, viz., log-distance (Log) and Longley-Rice (L-R) [44], to generate the
“ground truth” data, i.e., the sensing reports at the SSs, based on the power and
location of each PU. Log-distance (Log) model is a simple model, wherein the
signal attenuation at a distance d is proportional to dα where α is the path-loss
exponent constant. In contrast, the Longley-Rice (L-R) is a complex model of
wireless propagation, which takes multiple parameters, such as geolocation of
transmitter (TX) and receiver (RX), their antenna configuration, terrain data,
weather, and soil condition. In particular, we use the SPLAT! application [1] to
generate path losses based on L-R model for desired pairs of points.

Accuracy of Plaintext (PT) Algorithm vs. Optimal (OPT). We start with
evaluating the accuracy of our PT algorithm (Sect. 3.1) with respect to the opti-
mal or “ground truth” (denoted by OPT) scheme which allocates maximum spec-
trum power possible based on the true path-loss values derived directly from the
underlying propagation model. Recall that accuracy of PT algorithm is affected
by three aspects of the algorithm: (i) path-loss estimation error, (ii) selection
strategy, which selects only the nearest SSs and PUs, and the (iii) grid-based
implementation which approximates a SU’s location with the containing grid-
cell’s center and updates the PUR thresholds of only the PUs that are associated
with the containing grid-cell. See Fig. 5, which plots the average spectrum dif-
ference (in dB) between the spectrum power allocated by the PT algorithm and
the optimal OPT, for varying number of selected SSs and PUs and grid size, for
Log-distance and Longley-Rice propagation models. For the Log-distance model,
as mentioned in Sect. 3.1, the first and the third steps of our path-loss estima-
tion process are provably 100% accurate if the chosen exponent is the same as
that of the underlying model (as is the case in the simulations); thus, the path-
loss estimation errors in the Log-distance model are solely due to the second
(interpolation) step. In Fig. 5, we observe that for the Log-distance (Log) model,
the difference between the PT and OPT schemes on average is minimal (1–2 dB)

572 M. Curran et al.

when the number of selected PUs and SSs is 10, and the grid size is at least as
100 × 100. For the Longley-Rice (L-R) model, the average error is about 4–5 dB
for similar parameter values; this is largely expected, as the complex L-R model
depends on various terrain-specific factors and thus is more difficult to estimate
accurately compared to the Log model which depends solely on distance between
points. In summary, a small number (10–15) of SSs and PUs are sufficient to
minimize the error, and choosing a larger number of SSs or PUs is not helpful.
Also, a 100 × 100 grid seems fine enough. This justifies our selection strategy
and its grid-based implementation, and facilitates computational efficiency of
our secured schemes as described below.

Accuracy of Secured vs. Plaintext Algorithms. We now present statistics
for the accuracy of our secured schemes (Sect. 3.2), as compared to the Plaintext
(PT) algorithm. Note that the two secured schemes, viz., using two SMs (2-SMs)
or an SM plus a key server KS (SM-KS), allocate the same spectrum power and
thus will have the same accuracy—as they differ only in their implementation.
In Fig. 6, we plot the difference between the spectrum power allocated by our
secured schemes and the Plaintext (PT) algorithm, for varying number of selected
SSs or PUs or grid size, for Log-distance (Log) and Longley-Rice (L-R) propa-
gation models. Here, the range of the values for number of SSs or PUs selected
is partly dictated by the results in Fig. 5 which show that only a small number
(10–15) of SSs of PUs are sufficient for minimizing the error of the Plaintext algo-
rithm. Figure 6 shows that across all parameter values of interest the difference
between the Secured and Plaintext is near zero dB.

Computation Time. Figure 7 plots computation time taken by the two secured
schemes, viz., 2-SMs (using two SMs) and SM-KS (one SM and a key server)
for varying grid size, # of selected SSs, and # of selected PUs selected. We
use a virtual machine with 48GB ram and 6 virtual CPUs—with each vCPU
implemented as a single hardware hyper-thread on a Intel Xeon E5 v3 (Haswell)
platform [2]. We observe that the computation time taken by either scheme is of
the order of 2–3 s, except for grids larger than 500×500 (due to higher grid-table
sizes). However, as shown in prior results, a 100 × 100 grid is fine enough for
delivering high accuracy.

Communication Overhead. The communication overhead of our secured
schemes was observed to be minimal. In particular, for the optimal parameters
of a grid of 100 × 100 and 10 selected SSs and PUs each, the secured schemes
(2-SMs as well as SM-KS) incur a communication overhead of about 150 KB in
computing the arithmetic and access operations. The SM-KS scheme incurs an
additional communication overhead of 5.2 MB to transfer the grid array. Thus,
the total communication overhead for the 2-SMs scheme is 150 KB, while that
for the SM-KS scheme is 5.35 MB.

5 Conclusions and Future Work

In this work, we developed an efficient privacy-preserving spectrum allocation
scheme in a crowdsourced sensing architecture of shared spectrum paradigms,

ProCSA: Protecting Privacy in Crowdsourced Spectrum Allocation 573

and demonstrated its viability via extensive simulations. As in prior works [16],
we assumed a semi-honest adversary model. Building efficient privacy-preserving
spectrum allocation protocols under malicious adversary model is a challenging
open problem, especially since there are no known general-purpose S2PC pro-
tocols that are efficient enough in the malicious-adversary setting. In addition,
our future work is focussed on developing privacy-preserving protocols for other
problems in the crowdsourced sensing architecture, e.g., localization of unautho-
rized access users (intruders), creating of spectrum occupancy maps.

A Security Proof

Theorem 1 (Security of Protocol 1). Protocol 1 is a secure multi-party com-
putation implementation of the plaintext algorithm shown in Sect. 3.1 with respect
to semi-honest adversaries which do not corrupt SM0 and SM1 at the same time.

Proof (Sketch; see [4] for a detailed proof). We need to show a simulator for
different combinations of views for all possible subset I ⊆ {Si,SM0,SM1,PNs}
such that I does not contain SM0 and SM1 at the same time (Recall that we
assume they do not collude). For Protocol 1, we claim that it will be sufficient
if we can construct a simulator for each party separately (which is not neces-
sarily true for general MPC protocols). This is because both Si (except for its
final output ti) and PNs receive no message during the execution of Π. Simu-
lators for them can be constructed in a “dummy” way by just outputting the
input/output of Si and PNs. So the essential part of Protocol 1 is actually a
S2PC protocol between SM0 and SM1. And it is not hard to verify that once
SM0 and SM1 are not corrupted at the same time, the simulator for a spectrum
manager can be composed with the aforementioned “dummy” simulators of Si

and PNs arbitrarily, to get a whole simulator for any corrupted set I that goes
through the security proof. Therefore, we only need to construct a simulator for
SM0 (SM1’s role is symmetric to that of SM0).

Notice that for each of the 6 subprotocols described in Protocol 1, the
input/output of SM0 are secret shares of some data. Due to the security of
the secret-sharing scheme, those shares is (purely) random. So if we substitute
each subprotocols by invoking the corresponding simulator on a random string,
we will get the final simulator for SM0. A formal proof involves a sequence of
hybrids where we substitute each subprotocol (with its simulator) in order and
proves indistinguishability in a careful but standard way.

We remark that the existence of simulators for subprotocols Πoff , Πslct,
Πalloc and Πupdate is guaranteed by the S2PC protocols used to implement
them. We still need to show simulators for Πread and Πwrite. The read algo-
rithm (Fig. 3) involves two S2PC protocols and one oblivious transfer, where all
the input/output are random secret shares. So a simulator can be constructed in
a straightforward way. The write algorithm (Fig. 4) consists of a S2PC protocol
followed by four message exchanges, which look random. So a simulator for it
can also be easily constructed. This completes the proof for Theorem 1. �	

574 M. Curran et al.

References

1. https://www.qsl.net/kd2bd/splat.html
2. https://cloud.google.com/compute/docs/cpu-platforms
3. FlightFeeder for Android, FlightAware. http://flightaware.com/adsb/android
4. Full version. https://www.cs.stonybrook.edu/∼hgupta/procsa.pdf
5. Andrews, J., et al.: What will 5G be? IEEE JSAC 32, 1065–1082 (2014)
6. Ben-David, A., Nisan, N., Pinkas, B.: FairplayMP: a system for secure multi-party

computation. In: Proceedings of the 15th ACM Conference on Computer and Com-
munications Security, pp. 257–266. ACM (2008)

7. Buescher, N., Weber, A., Katzenbeisser, S.: Towards practical RAM based secure
computation. In: Lopez, J., Zhou, J., Soriano, M. (eds.) ESORICS 2018. LNCS,
vol. 11099, pp. 416–437. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-98989-1 21

8. Calvo-Palomino, R. Giustiniano, D., Lenders, V., Fakhreddine, A.: Crowdsourc-
ing spectrum data decoding. In: IEEE INFOCOM 2017 - IEEE Conference on
Computer Communications (2017)

9. Chakraborty, A., Rahman, M.S., Gupta, H., Das, S.R.: SpecSense: crowdsensing
for efficient querying of spectrum occupancy. In IEEE INFOCOM 2017 - IEEE
Conference on Computer Communications (2017)

10. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval.
In: Proceedings of 36th Annual Symposium on Foundations of Computer Science,
pp. 41–50. IEEE (1995)

11. Clark, M.A., Psounis, K.: Trading utility for privacy in shared spectrum access
systems. IEEE/ACM Trans. Netw. 26, 259–273 (2017)

12. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 38

13. Demmler, D., Schneider, T., Zohner, M.: ABY-a framework for efficient mixed-
protocol secure two-party computation. In: NDSS (2015)

14. Ding, G., Song, F., Wu, Q., Zou, Y., Zhang, L., Feng, S., Wang, J.: Robust spectrum
sensing with crowd sensors. In: IEEE VTC (2014)

15. Doerner, J., Shelat, A.: Scaling ORAM for secure computation. In: Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security,
pp. 523–535. ACM (2017)

16. Dou, Y., Zeng, K.C., Li, H., Yang, Y., Gao, B., Ren, K., Li, S.: P2-SAS: privacy-
preserving centralized dynamic spectrum access system. IEEE J. Sel. Areas Com-
mun. 35(1), 173–187 (2017)

17. Drocella, E., Richards, J., Sole, R., Najmy, F., Lundy, A., McKenna, P.: 3.5 GHz
exclusion zone analyses and methodology. Technical report (2015)

18. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts.
Commun. ACM 28(6), 637–647 (1985)

19. Fan, B., Andersen, D.G, Kaminsky, M., Mitzenmacher, M.D.: Cuckoo filter: prac-
tically better than bloom. In: Proceedings of the 10th ACM International on Con-
ference on emerging Networking Experiments and Technologies, pp. 75–88. ACM
(2014)

20. U. FCC: Longley-rice methodology for evaluating TV coverage and interference.
OET Bulletin, 69 (2004)

https://www.qsl.net/kd2bd/splat.html
https://cloud.google.com/compute/docs/cpu-platforms
http://flightaware.com/adsb/android
https://www.cs.stonybrook.edu/~hgupta/procsa.pdf
https://doi.org/10.1007/978-3-319-98989-1_21
https://doi.org/10.1007/978-3-319-98989-1_21
https://doi.org/10.1007/978-3-642-32009-5_38

ProCSA: Protecting Privacy in Crowdsourced Spectrum Allocation 575

21. Gao, Z., Zhu, H., Liu, Y., Li, M., Cao, Z.: Location privacy in database-driven
cognitive radio networks: attacks and countermeasures. In: 2013 Proceedings of
IEEE INFOCOM, pp. 2751–2759. IEEE (2013)

22. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of
the 41st Annual ACM Symposium on Theory of Computing, pp. 169–178. ACM
(2009)

23. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: Pro-
ceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, pp.
218–229. ACM (1987)

24. Gordon, S.D., et al.: Secure two-party computation in sublinear (amortized) time.
In: Proceedings of the 2012 ACM Conference on Computer and Communications
Security, pp. 513–524. ACM (2012)

25. Grissa, M., Hamdaoui, B., Yavuza, A.A.: Location privacy in cognitive radio net-
works: a survey. IEEE Commun. Surv. Tutor. 19, 1726–1760 (2017)

26. Grissa, M., Yavuz, A., Hamdaoui, B.: LPOS: location privacy for optimal sensing
in cognitive radio networks. In: 2015 IEEE Global Communications Conference
(GLOBECOM), pp. 1–6. IEEE (2015)

27. Grissa, M., Yavuz, A., Hamdaoui, B.: An efficient technique for protecting location
privacy of cooperative spectrum sensing users. In: 2016 IEEE Conference on Com-
puter Communications Workshops (INFOCOM WKSHPS), pp. 915–920. IEEE
(2016)

28. Grissa, M., Yavuz, A.A., Hamdaoui, B.: Preserving the location privacy of sec-
ondary users in cooperative spectrum sensing. IEEE Trans. Inf. Forensics Secur.
12(2), 418–431 (2017)

29. Hoang, A.T., Liang, Y., Islam, M.H.: Power control and channel allocation in cog-
nitive radio networks with primary users’ cooperation. IEEE Trans. Mob. Comput.
9, 348–360 (2010)

30. Ishwar, P., Kumar, A., Ramchandran, K.: Distributed sampling for dense sensor
networks: a “Bit-Conservation Principle”. In: Zhao, F., Guibas, L. (eds.) IPSN
2003. LNCS, vol. 2634, pp. 17–31. Springer, Heidelberg (2003). https://doi.org/10.
1007/3-540-36978-3 2

31. Jin, X., Zhang, R., Chen, Y., Li, T., Zhang, Y.: DPSense: differentially private
crowdsourced spectrum sensing. In: Proceedings of the 2016 ACM SIGSAC Con-
ference on Computer and Communications Security, pp. 296–307. ACM (2016)

32. Kasiri, B., Lambadaris, I., Yu, F.R., Tang, H.: Privacy-preserving distributed coop-
erative spectrum sensing in multi-channel cognitive radio MANETs. In: 2015 IEEE
International Conference on Communications (ICC), pp. 7316–7321. IEEE (2015)

33. Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and
applications. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 486–498.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70583-3 40

34. Kreuter, B., Shelat, A., Shen, C.-H.: Billion-gate secure computation with mali-
cious adversaries. In: USENIX Security Symposium, vol. 12, pp. 285–300 (2012)

35. Li, H., Pei, Q., Zhang, W.: Location privacy-preserving channel allocation scheme
in cognitive radio networks. Int. J. Distrib. Sens. Netw. 12(7), 3794582 (2016)

36. Li, S., Zhu, H., Gao, Z., Guan, X., Xing, K., Shen, X.: Location privacy preservation
in collaborative spectrum sensing. In: 2012 Proceedings of IEEE INFOCOM, pp.
729–737. IEEE (2012)

https://doi.org/10.1007/3-540-36978-3_2
https://doi.org/10.1007/3-540-36978-3_2
https://doi.org/10.1007/978-3-540-70583-3_40

576 M. Curran et al.

37. Mao, Y., Chen, T., Zhang, Y., Wang, T., Zhong, S.: Protecting location information
in collaborative sensing of cognitive radio networks. In: Proceedings of the 18th
ACM International Conference on Modeling, Analysis and Simulation of Wireless
and Mobile Systems, pp. 219–226. ACM (2015)

38. Medeisis, A., Kajackas, A.: On the use of the universal Okumura-Hata propagation
prediction model in rural areas. In: 2000 IEEE 51st Vehicular Technology Confer-
ence Proceedings, VTC 2000-Spring Tokyo, vol. 3, pp. 1815–1818. IEEE (2000)

39. Ostrovsky, R., Shoup, V.: Private information storage. In: STOC, vol. 97, pp. 294–
303. Citeseer (1997)

40. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 16

41. Rabin, M.O.: How to exchange secrets with oblivious transfer. IACR Cryptology
ePrint Archive 2005, 187 (2005)

42. Rajkarnikar, N., Peha, J.M., Aguiar, A.: Location privacy from dummy devices in
database-coordinated spectrum sharing. In: 2017 IEEE International Symposium
on Dynamic Spectrum Access Networks (DySPAN), pp. 1–10. IEEE (2017)

43. Rindal, P.: Ivory (2018). https://github.com/ladnir/Ivory-Runtime
44. Seybold, J.: Introduction to RF Propagation. Wiley, New York (2005)
45. Stefanov, E., et al.: Path ORAM: an extremely simple oblivious ram protocol. In:

Proceedings of the 2013 ACM SIGSAC conference on Computer and Communica-
tions Security, pp. 299–310. ACM (2013)

46. Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzzi-
ness Knowl. Based Syst. 10(05), 557–570 (2002)

47. Tragos, E.Z., Zeadally, S., Fragkiadakis, A.G., Siris, V.A.: Spectrum assignment
in cognitive radio networks: a comprehensive survey. IEEE Commun. Surv. Tutor.
15(3), 1108–1135 (2013)

48. Wang, W., Zhang, Q.: Privacy-preserving collaborative spectrum sensing with mul-
tiple service providers. IEEE Trans. Wirel. Commun. 14(2), 1011–1019 (2015)

49. Wang, X., Chan, H., Shi, E.: Circuit ORAM: on tightness of the Goldreich-
Ostrovsky lower bound. In: Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, pp. 850–861. ACM (2015)

50. Wang, X.S., Huang, Y., Chan, T.H., Shelat, A., Shi, E.: SCORAM: oblivious ram
for secure computation. In: Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, pp. 191–202. ACM (2014)

51. Yao, A.C.-C.: How to generate and exchange secrets. In: 27th Annual Symposium
on Foundations of Computer Science, pp. 162–167. IEEE (1986)

52. Ying, X., Kim, C.W., Roy, S.: Revisiting TV coverage estimation with
measurement-based statistical interpolation (2015)

53. Zahur, S., et al.: Revisiting square-root ORAM: efficient random access in multi-
party computation. In: 2016 IEEE Symposium on Security and Privacy (SP), pp.
218–234. IEEE (2016)

54. Zhang, L., Fang, C., Li, Y., Zhu, H., Dong, M.: Optimal strategies for defending
location inference attack in database-driven CRNs. In: 2015 IEEE International
Conference on Communications (ICC), pp. 7640–7645. IEEE (2015)

55. Zhang, T., Leng, N., Banerjee, S.: A vehicle-based measurement framework for
enhancing whitespace spectrum databases. In: Proceedings of ACM Mobicom
(2014)

https://doi.org/10.1007/3-540-48910-X_16
https://github.com/ladnir/Ivory-Runtime

Breaking Unlinkability of the ICAO 9303
Standard for e-Passports Using Bisimilarity

Ihor Filimonov, Ross Horne(B), Sjouke Mauw, and Zach Smith

Computer Science and Communications, University of Luxembourg,
Esch sur Alzette, Luxembourg

ross.horne@uni.lu

Abstract. We clear up confusion surrounding privacy claims about the ICAO
9303 standard for e-passports. The ICAO 9303 standard includes a Basic Access
Control (BAC) protocol that should protect the user from being traced from one
session to another. While it is well known that there are attacks on BAC, allow-
ing an attacker to link multiple uses of the same passport, due to differences in
implementation; there still remains confusion about whether there is an attack on
unlinkability directly on the BAC protocol as specified in the ICAO 9303 stan-
dard. This paper clarifies the nature of the debate, and sources of potential confu-
sion. We demonstrate that the original privacy claims made are flawed, by uncov-
ering attacks on a strong formulation of unlinkability. We explain why the use
of the bisimilarity equivalence technique is essential for uncovering our attacks.
We also clarify what assumptions lead to proofs of formulations of unlinkabil-
ity using weaker notions of equivalence. Furthermore, we propose a fix for BAC
within the scope of the standard, and prove that it is correct, again using a state-
of-the-art approach to bisimilarity.

1 Introduction

The Basic Access Control (BAC) mechanism for e-passports, which forms part of the
ICAO 9303 standard [1], has been in operation since 2005. Since then, an improved
access control mechanism, the Password Authenticated Connection Establishment
(PACE) protocol [6], has been standardised in order to address known limitations with
the security of BAC. However, the BAC protocol is still being implemented by a grow-
ing number of e-documents, not only e-passports. For example, many national identity
cards are compliant with the BAC protocol in the ICAO 9303 standard. This means
that, firstly, even a relatively minor attack on privacy is of concern to a large number of
citizens internationally; and, secondly, the ICAO 9303 standard is being used in a wider
range of contexts that do not necessarily have system security comparable to an airport,
facilitating more sophisticated attacks.

For the above reasons, it is imperative that we clarify the existence of and nature
of attacks on the privacy of BAC explained in this paper. The notion of privacy we are
concerned with is a strong form of unlinkability, meaning that an e-passport that sat-
isfies such a privacy property cannot be linked from one session to another, by a third
party snooping in on wireless communications. Such a privacy issue is of concern to
users carrying e-passports, who do not wish third parties to track their movements.

Unlinkability can be formulated in the following terms: an attacker cannot observe
any difference between a scenario where each session with an e-passport reader is with
c© Springer Nature Switzerland AG 2019
K. Sako et al. (Eds.): ESORICS 2019, LNCS 11735, pp. 577–594, 2019.
https://doi.org/10.1007/978-3-030-29959-0_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29959-0_28&domain=pdf
https://doi.org/10.1007/978-3-030-29959-0_28

578 I. Filimonov et al.

a new e-passport and a scenario where the same e-passport may be involved in more
than one session. Strong unlinkability assumes, in addition, that the attacker has the
power to make some decisions, such as feeding a challenge into a remote reader rather
than a reader in the vicinity of the e-passport. We will explain that it is critical that
the additional power given to the attacker by strong unlinkability is modelled by using
bisimilarity as the notion of equivalence.

To understand why strong unlinkability, expressed in terms of bisimilarity, is impor-
tant, we must clarify the story in the literature up until this paper. The first paper [4]
formally analysing unlinkability of e-passports, using symbolic techniques, formulated
weak unlinkability as a property of traces, and strong unlinkability as an equivalence
problem in terms of bisimilarity. That paper mainly concerns an attack particular to
the implementation of the French e-passport, exploiting distinguishable error messages
from which the attacker can infer whether authentication was partially successful.

The problem with the above mentioned paper [4] is that they also make claims about
e-passports implementing the ICAO 9303 standard with a single error message for all
types of authentication failure, such as the UK e-passport. They make the claim that the
UK e-passport satisfies the strong form of unlinkability, expressed using bisimilarity.
The primary contribution we make is to clarify that their claim is false. Taking exactly
the same conditions—the way they define strong unlinkability and how they model the
UK e-passport—we discover a counter proof for their claims, and provide a witness in
terms of a modal logic formula describing an attack on strong unlinkability.

We survey related work [9–12,19], contributing to the story behind symbolically
analysing the unlinkability of BAC. With the exception of the original paper, the papers
surveyed concern alternative definitions of unlinkability expressed in terms of trace
equivalence rather than bisimilarity. This survey of trace-based approaches we use to
emphasise the impact of using bisimilarity rather than trace equivalence when verifying
unlinkability of protocols such as BAC. We also highlight other parameters impacting
whether a model proves unlinkability or discovers an attack.

A secondary contribution is to propose a fix for the BAC protocol, within the scope
of the ICAO 9303 standard [1]. We again showcase bisimilarity as a technique for
analysing privacy properties, providing a proof that strong unlinkability holds by defin-
ing a bisimulation that is witness to our claims. Finally, we discuss implications of our
analysis, for example, how our attack on strong unlinkability applies to a wide range of
protocols, not limited only to PACE and a minimal example of an RFID protocol used
as an illustrative example. We also touch on practical implications of our attack, which
are distinct from existing practical attacks on unlinkability [5,14].

Summary. In Sect. 2 we investigate and refine the analysis of the BAC protocol for e-
passports implemented similarly to the UK e-passport, reporting on different models and
results, and identifying the fundamental modelling problems surrounding unlinkability.
In Sect. 3 we introduce the strong unlinkability problem for a simplified authentication
protocol that we will use as an example throughout the paper, we also note a fix for the
protocol (encrypting the errormessage). Section 4 recalls backgroundmaterial on a state-
of-the-art presentation of bisimilarity facilitating our analysis. In Sect. 5, we show how
bisimilarity can be used to discover attacks on strong unlinkability. Finally, in Sect. 6 we
return to the original formulation of the UK version of the BAC protocol, demonstrating
howour attack lifts to an attack on strong unlinkability, invalidating the original claim [4].

Breaking Unlinkability of the ICAO 9303 Standard for e-Passports Using Bisimilarity 579

2 An Investigation into Unlinkability Claims About BAC

e-Passport Reader

km, ke

get challenge

Fresh nt, kt Fresh nr, kr

nt

Msg = {〈nr, 〈nt′, kr〉〉}ke
Mac = mac(Msg, km)

〈Msg, Mac〉

error
Mac �= mac(Msg, km)

error
nt′ �= nt

Msg′ = {〈nt, 〈nr, kt〉〉}ke
Mac′ = mac(Msg′, km)

〈Msg′, Mac′〉

Fig. 1. BAC protocol for the UK e-passport

In this section, we briefly survey, clarify, and
expand upon the body of work symbolically
analysing the Basic Access Control (BAC)
protocol. The purpose of BAC is to mutually
authenticate an e-passport and reader (e.g., at
passport control in an airport), and establish
a short-term key used in proceeding commu-
nication (e.g., transmitting personal informa-
tion about the owner).

The BAC protocol is sketched informally
in Fig. 1, where dashed lines (�) indicate a
message transmitted via an OCR session on
a page of the e-passport, and solid lines are
wireless communications between a chip and
reader. The reader first sends a constant mes-
sage get challenge requesting a challenge—
a nonce nt sent by the e-passport—which
is used during the mutual authentication of
the e-passport and reader. The standard spec-
ifies that an “operating system dependent
error” [1] should be sent when authentication fails. Such a failure occurs when the
e-passport receives an authentication request from the reader, and either the message
authentication code (MAC) is wrong, or a nonce in the message does not match the
challenge nt previously sent by the e-passport.

2.1 The Key Paper Defining Strong Unlinkability, but with a Flawed Claim

The primary contribution of this paper is to clarify that the first paper symbolically
analysing the BAC protocol, as implemented by countries such as the UK (Fig. 1), con-
tained a flawed claim. Arapinis et al. [4] define weak unlinkability as a property of
traces, faithful to the ISO standard for unlinkability [2]. They then argue for a stronger
property, called strong unlinkability, expressed using bisimilarity. Their work is accom-
panied with a trace that correctly demonstrates that the French BAC protocol violates
both their definitions of unlinkability. Regarding the UK BAC protocol, they say:

Checking the bisimulation by hand, we find that SystemUK ≈l SystemUK′ holds:
A repeating tag in the SystemUK process is matched by a new tag in the idealised
SystemUK′ version of the system.

Unfortunately, their statement above is false. In their work, SystemUK is a system
specification in which the same e-passport can be used many times, and SystemUK′ is an
idealised specification in which each e-passport is used only once. The above statement
SystemUK ≈l SystemUK′ claims the system specification and idealised specification are
indistinguishable to an attacker, expressed in terms of labelled bisimilarity [3]. Later, in

580 I. Filimonov et al.

Sects. 5 and 6, we will demonstrate that there is a witness invalidating the bisimilarity
claim above, and therefore there is an attack on strong unlinkability.

Although Arapinis et al. claim, in the quote above, to have proven strong unlinka-
bility by hand, no proof exists. Confusion was partly down to an old bug1 in ProVerif.

2.2 Alternative Models of Unlinkability Based on Trace Equivalence

There exist several examples of tool-supported analysis of weak unlinkability of the
BAC protocol, using trace equivalence. The PhD thesis of Cheval [9] and work on
disunification [11] is the basis of this line of work. The tool APTE [10] is the first
such tool able to directly verify finite trace equivalence properties of protocols with if-
then-else branches. To demonstrate the APTE tool, a survey is performed on a range of
protocols. However, the verification of the UK BAC protocol does not terminate after
2 days, and the authors mark it “safe?”.

The DEEPSEC [12] prover is a state-of-the-art tool for analysing finite trace equiv-
alence for security protocols. Depending on how the UK BAC protocol is modelled it
can, for two sessions, both find an attack [12], and claim that no attack exists. In our
GitHub repository2, we provide details on both modelling scenarios. In summary, an
attack is discovered if the fixed scenario with two different e-passports is compared to
a specification where all e-passports differ. In contrast, DEEPSEC discovers no attack
whenever we consider that, in reality, for two sessions, we either have two identical
e-passports or two different e-passports. Indeed the attack discovered using a fixed con-
figuration is considered not to be practical (no trace can be executed to confirm the
presence of the same e-passport twice, and the attack is longer than necessary).

Paper Equivalence
Type

Model Scope Observable Claim made

Finiteness Config. Constant
Message

Attack
Found? Correct?

Arapinis et al. [4] Bisim. Unbounded Arbitrary Yes No flawed
APTE [10] Trace 2 Sessions Fixed No ? N A
DEEPSEC [12] Trace 2 Sessions Fixed No Yes OK
DEEPSEC (OURS) Trace 2 Sessions Arbitrary Yes No OK
Hirschi et al. [19] Trace Unbounded Arbitrary No No OK

Fig. 2. Comparison table of various analyses of the UK e-passport. Note all the above assume the
number of internal communications is unobservable.

A summary of the above findings is presented in Fig. 2. We highlight only the most
important differences between these models, mentioned previously, namely: bisimi-
larity vs. trace equivalence; and, unbounded vs. arbitrary bounded vs. fixed bounded.
Another critical modelling parameter is the choice of observables, notably the constant
get challenge message in Fig. 1. This impacts whether strong unlinkability holds, by

1 This information on an old bug in ProVerif is due to Stéphanie Delaune and Vincent Cheval.
2 https://github.com/ZDSmith/bac-protocol-unlinkability.

https://github.com/ZDSmith/bac-protocol-unlinkability

Breaking Unlinkability of the ICAO 9303 Standard for e-Passports Using Bisimilarity 581

allowing an attacker to count the number of reader sessions based on the number of
observed get challenge messages. This parameter does not affect weak unlinkability.

Note on terminology: We use the term strong unlinkability in exactly the sense
it was originally communicated in CSF’10 [4]. A source of potential confusion is
that a paper communicated in S&P’16 [19] presents a proof of what they claim to
be strong unlinkability. That claim may be misleading, since they, in fact, signif-
icantly change the definition of strong unlinkability. The most important change
they make is to use trace equivalence rather than bisimilarity. If we have a proof,
with trace equivalence replacing bisimilarity in the definition of strong unlinka-
bility, then weak unlinkability follows as a corollary (this fact follows by adapting
Theorem 2 in the original paper [4], since the proof of Theorem 2 does not rely
on finer properties of bisimilarity). Note also that they [19] change slightly, but
significantly, the observables in the model of BAC. Their forthcoming journal ver-
sion [20] acknowledges and discusses this terminology mismatch.

Sometimes changing definitions of terms is of little consequence; for example,
differences between secrecy as a trace property and secrecy expressed in terms
of bisimilarity are insignificant [15]. However, the thesis of our paper is that the
same does not apply to privacy. Trace equivalence gives the attacker less power
to resolve choices, and hence misses attacks, such as on the unlinkability of BAC.
Related work also highlights the power of bisimilarity for discovering attacks in
the context of the anonymity of the MUTE file sharing system [13], and in dis-
cussions comparing strong unlinkability, weak unlinkability and computational
unlinkability games [8].

3 Minimal Variant of the BAC Authentication Protocol

The analysis of the full e-passport protocol involves some large messages, which can
obscure the essential problems with the protocol. Therefore, initially, we make two
simplifications to the analysis for pedagogical and methodological reasons:

1. We present a minimal mutual authentication protocol that features the same prob-
lems with strong unlinkability as the BAC protocol for e-passports.

2. We show our attack can be discovered systematically by using a slightly finer notion
of bisimilarity better suited to symbolic analysis.

Both of the above initial simplifications to our analysis are lifted later, in Sect. 6. Our
use of a minimal authentication protocol also highlights, as mentioned in the introduc-
tion, that the problems with strong unlinkability in this work affect a wider class of
authentication protocols, where the same key is used in different sessions.

3.1 An Illustrative Minimal Protocol for Mutual Authentication

We now describe our cut-down mutual authentication protocol in Fig. 4, sufficient to
explain problems with the full BAC protocol. Our protocol is similar to the Feldhoffer
protocol [18], which was proposed as a minimal mutual authentication protocol for

582 I. Filimonov et al.

Fig. 3. A syntax for applied π-calculus processes with a message theory.

RFID tags. A difference, compared to the Feldhoffer protocol, is that we include an
error message which is used by the RFID tag to signal a failed authentication session
to the reader. For minimality, we also simplify the response of the tag (the Feldhoffer
protocol responds with {〈n, m〉}k rather than simply m).

Like the ICAO 9303 standard BAC protocol for e-passports, our minimal protocol
achieves a strong authentication property called synchronisation [16], which is easily
checked using automated tools such as Scyther [16]. The key differences, compared to
BAC, is that BAC also establishes a shared session key, and uses message authentication
codes to improve message integrity.

We make use of the applied π-calculus for modelling processes. The syntax of pro-
cesses is presented in Fig. 3, along with a message theory featuring pairs and symmetric
encryption (encryption using a shared secret key).

3.2 Modelling Our Minimal Authentication Protocol in the Applied π-calculus

Tag Reader

fresh n fresh m

k

n

{〈m, n′〉}k
m

n = n′

error

Fig. 4. A linkable authentication pro-
tocol.

In the applied π-calculus, an honest reader in our
minimal example in Fig. 4 can be modelled as fol-
lows.

Reader � c(k).νm.a(x).a〈{m, x}k〉
Channel c is a private channel used to read a
secret key (for e-passports, calculated using data
read from a page using OCR). The reader receives
a challenge x, generates a fresh name m (the
counter-challenge) and transmits the nonce and
challenge encrypted together using the session
key, {〈m, x〉}k.

The tag is modelled in the applied π-calculus
as follows.

Linkable � c〈k〉.νn.a〈n〉.a(y).if snd(dec(y, k)) = n then a〈fst(dec(y, k))〉
else a〈error〉

The private channel c is used to transmit a private key unique to the tag (for e-passports
modelling the act of presenting a page to an OCR reader). The tag generates and sends

Breaking Unlinkability of the ICAO 9303 Standard for e-Passports Using Bisimilarity 583

a fresh challenge n. The response to the challenge y is received. If the response contains
the challenge, tested by snd(dec(y, k)) = n, then the counter-challenge fst(dec(y, k))
is sent. Otherwise, an error is sent. The error message signals to the reader that authen-
tication has failed, resulting in the protocol not successfully completing.

Combining the above reader and tag, we can describe the system as follows.

Linkable System � νc.(!Reader | !νk.!Linkable)
Notice that channel c, used for sending and receiving the key of the tag, is bound, hence
private. This suggests that an attacker does not have the power to intercept messages on
this channel (modelling a session with an OCR reader). However, other communica-
tions take place on a public channel a which an attacker can snoop over, e.g., reading
using an antenna in the vicinity, and writing using a fake tag.

In the above system specification, the replicated reader, written !Reader, indicates
that any number of sessions of the reader can be initiated in parallel. The sub-process
!νk.!Linkable indicates that any number of tags can be created in parallel, each with
a unique key k identifying them; and, furthermore, each tag can enter any number of
sessions using the same identity k, in parallel.

Unlinkability properties can be expressed using the above system specification and
the idealised specification below:

Linkable Spec � νc.(!Reader | !νk.Linkable)
Notice the only difference between Linkable System and Linkable Spec is the absence
of replication after the generation of the key. Thus, in Linkable Spec, each new session
is with a new tag, with a freshly generated key.

We formulate strong unlinkability as an equivalence problem by setting out to show-
ing that Linkable System and Linkable Spec are equivalent from the perspective of an
attacker. In principle, the idea is that if an attacker cannot tell the difference between a
scenario where the same tag is allowed to be used in multiple sessions and the scenario
where each tag is really used once, then you cannot link two uses of the same tag.

The important point in this paper is that strong unlinkability in fact fails. Indeed for
our minimal authentication example we can prove the following inequality, where ∼ is
a suitable notion of bisimilarity.

Linkable System � Linkable Spec

The use of bisimilarity grants the attacker more power than trace equivalence, essen-
tially allowing the attacker to resolve certain choices (in this case, to which reader the
challenge is sent). We will explain such attacks in the remaining sections of this paper.

3.3 Fixing Protocols to Achieve Strong Unlinkability

Beyond finding new attacks and shorter attacks, bisimilarity can also be used to provide
proofs of strong unlinkability when they exist. For many calculi, it is established that
bisimilarity is asymptotically more efficient to check than trace equivalence, particu-
larly in the limits [23] (for infinitely many sessions). Indeed, with expertise, finding a
bisimulation in the limit is relatively easy here.

584 I. Filimonov et al.

Tag Reader

fresh n, r fresh m

k

n

{〈m, n′〉}k
m

n = n′

{〈r, error〉}k

Fig. 5. Unlinkable authentication proto-
col.

Consider the variant of our running example
given in Fig. 5. Notice that the error message is
encrypted, along with a nonce to ensure that the
ciphertext is different on each execution. Note,
we assume that a fresh ciphertext {r, error}k and
a nonce m are indistinguishable. This prevents an
attacker intercepting communications from dis-
tinguishing between a correct response and an
error message.

To verify the fixed minimal authentication
protocol, we consider the following specification,
in which the else branch has been modified:

Unlinkable � c〈k〉.νn.a〈n〉.a(y).if snd(dec(y, k)) = n then a〈fst(dec(y, k))〉
else νr.a〈{〈r, error〉}k〉

The fixed system and specification are thereby stated as follows.

Unlinkable System � νc.(!Reader | !νk.!Unlinkable)
Unlinkable Spec � νc.(!Reader | !νk.Unlinkable)

Indeed, we can prove Unlinkable System ∼ Unlinkable Spec holds, where ∼ is a suit-
able notion of bisimilarity. This establishes that strong unlinkability holds for our fixed
basic authentication protocol. The same fix can be applied to BAC, which is a fix within
the scope of the ICAO 9303 standard [1], since the standard does not exclude encrypting
the error message in the BAC protocol.

4 Background on Bisimilarity for the Applied π-Calculus

We briefly recall a concise formulation of (strong) early bisimilarity for the applied
π-calculus. Our presentation makes use of extended processes (in normal form), and a
pure labelled transition system which simplifies the analysis of bisimilarity. Note the
presentation we adopt here makes it relatively easy to quickly discover our attack.

Extended processes in normal form νx.(σ | P) are subject to the restriction that the
variables in dom(σ) are fresh for x, fv(P) and fv(yσ), for all variables y (i.e., σ is idem-
potent, and substitutions are fully applied to P). We follow the convention that opera-
tional rules are defined directly on extended processes in normal forms. Note adopting
normal forms removes the need for several additional conditions that must be imposed
in other formulations of bisimilarity for the applied π-calculus [3].

We require a standard notion of static equivalence, which checks two processes are
indistinguishable in terms of the messages output so far.

Definition 1 (static equivalence). Extended processes in normal form νx.(σ | P) and
νy.(θ | Q) are statically equivalent whenever, for all pairs of messages M and N such
that (fv(M) ∪ fv(N)) ∩ (x ∪ y) = ∅, we have Mσ =E Nσ if and only if Mθ =E Nθ.

Breaking Unlinkability of the ICAO 9303 Standard for e-Passports Using Bisimilarity 585

We require the following definitions for composing extended processes in parallel
and with substitutions, defined whenever z � fv(B) ∪ fv(ρ) and dom(σ) ∩ dom(θ) = ∅.

σ | θ | Q � σ · θ | Q (σ | P) | (θ | Q) � σ · θ | (P | Q)
ρ | νz.A � νz.(ρ | A) B | νz.A � νz.(B | A) νz.A | B � νz.(A | B)

The above definitions are employed in our definition of (early) labelled transitions
(Fig. 6), which are defined directly on extended processes in normal form. Labels on
transitions are either: τ—an internal communication; M(z)—an output on channel M
binding the output message to variable z; or M N—an input on channel M receiving
message N. (Notice if-then-else makes no additional τ-transitions in this presentation).

Fig. 6. An early labelled transition system, plus symmetric rules for parallel composition and
choice. The equational theory over message terms can be applied at any point. The set of free
variables and α-conversion are as standard, where νx.P and M(x).P bind x in P. Define the bound
names such that bn(π) = {x} only if π = M(x) and bn(π) = ∅ otherwise. Define the names such
that n(M N) = fv(M) ∪ fv(N), n(M(x)) = fv(M) ∪ {x} and n(τ) = ∅.

The early labelled transition system and static equivalence together can be used to
define the following (strong) version of early bisimilarity.

Definition 2 (early bisimilarity). A symmetric relation between extended processes R
is an early bisimulation only if, whenever A R B the following hold:

– A and B are statically equivalent.
– If A π � A′ there exists B′ such that B π � B′ and A′ R B′.

Processes P and Q are early bisimilar, written P ∼ Q, whenever there exists an early
bisimulation R such that P R Q.

586 I. Filimonov et al.

Notice initially we consider here a strong notion of bisimilarity, where the number of
internal communications can be counted. This initially simplifies the analysis. To be
precise, the strong semantics preserves a notion called image finiteness, which is lost in
the weak setting and imposes additional technical challenges. However, later we show
attacks discovered lift to the weak setting (by including more observables).

5 Finding Attacks on Privacy Using Bisimilarity

In order to refer to intermediate states, we can break down the sub-states of Reader and
Linkable, from Sect. 3 as follows.

Wi � a(x).νm.a
〈
{m, x}ki

〉

Linkablei � c〈ki〉.νn.T(n)i
T(n)i � a〈n〉.a(y).U(n, y)i

U(n, y)i � if snd(dec(y, ki)) = n
then a〈fst(dec(y, ki))〉
else a〈error〉

The real system, which allows multiple instances of the same tag, can perform the
following two τ actions followed by an output action a(u). The idealised specification
on the right below follows with the same actions as best it can. Note we abbreviate
multiple transitions by writing sequences of actions on the label.

Linkable System τ τ a(u)� Broken System’ Linkable Spec τ τ a(u)� Broken Spec’

The states reached above are of the following form.

Broken System’ � νc, k1, n1, n2.({n1/u} | W1 | W1 | !Reader |
a(y).U(n1, y)1 | T(n2)1 | !Linkable1 | !νk.!Linkable)

Broken Spec’ � νc, k1, k2, n1, n2.({n1/u} | W1 | W2 | !Reader |
a(y).U(n1, y)1 | T(n2)2 | !νk.Linkable)

At this point, we can swap the system for the specification (exploiting the symmetry
of a bisimulation), and Broken Spec’ performs the sequence of actions below.

Broken Spec’ a u a(v) a v a(w)�
νc, k1, k2, n1, n2,m.(

{
n1,{m,n1}k2 ,error/u,v,w

}
| W1 | 0 | !Reader

| 0 | T(n2)2 | !νk.Linkable)
If the system and specification were equivalent (which they are not), then the system
should be able to perform the same actions to reach a state where the system appears
to be identical to the idealised specification, from the perspective of the attacker. The
longest Broken System’ can keep up this bisimulation game is as follows.

Broken System’ a u a(v) a v a(w)�
νc, k1, n1, n2,m.(

{
n1,{m,n1}k1 ,m/u,v,w

}
| W1 | 0 | !Reader

| 0 | T(n2)1 | !Linkable1 | !νk.!Linkable)
The important step above is the first input action a u. This transition affects sub-

processW2 in Broken Spec’, which evolves to a
〈
{m, n1}k2

〉
, i.e. a reader ready to respond

to challenge n1 by using key k2. In contrast, Broken System’ can only reach a state with

Breaking Unlinkability of the ICAO 9303 Standard for e-Passports Using Bisimilarity 587

sub-process a
〈
{m, n1}k1

〉
which is ready to respond to the same challenge n1 but using

key k1 (note there are two equivalent ways the system can act at this point, since two
readers with key k1 are active—both options lead to the same outcome). Both the system
and specification then proceed with the actions a(v), a v, then a(w), corresponding to
intercepting the response of the reader v, relaying v to the tag, and obtaining the output
w of the tag.

After the four transition steps described above, the real system satisfies the equation
w � error. In contrast, for the idealised specification we have that w = error holds.
Performing this test represents an attacker intercepting the third output on channel a,
named w above, and checking whether or not it is an error message. If the system does
not produce an error following this strategy, then unlinkability is violated. This way,
we can link the two sessions, since we have proof that they must involve the same tag.
Notice test w = error confirms static equivalence is violated.

6 Lifting Our Attack to the Setting of Labelled Bisimilarity for the
ICAO 9303 Standard BAC Protocol

Previously, in Sects. 3 and 5, we emphasised that we discussed a slightly simpler pro-
tocol than BAC which exhibits the same problems with strong unlinkability. We also
used a stronger notion of bisimilarity, allowing the attack to be discovered more easily.
These decisions were made in order to present details of the attack more clearly.

We simplify the presentation of our attack by making the following methodological
point. When we discover an attack under stronger assumptions, we can lift the attack
to a setting with weaker assumptions, and then check the attack is still valid. In this
section, we follow exactly this methodology—we describe how the attack lifts to the
setting of BAC under a weak notion of bisimilarity, exactly as assumed in the original
paper symbolically analysing BAC [4] (which, recall, made the opposite claims without
providing proofs).

In order to conduct our analysis, we require a constructor representing message
authentication codes. We extend the message language with function mac(M,N), with
no new equations in the message theory. For readability, we employ the abbreviation
let x = M in P � P

{
M/x
}
in the following specifications of the UK e-passport and

(generic) e-passport reader.

MainUK � ck〈ke, km〉.d(x).[x = get challenge
]
νnt.c〈nt〉.d(y).

if snd(y) = mac(fst(y) , km) then
if nt = fst(snd(dec(fst(y) , ke))) then

νkt.letm = {〈nt, 〈fst(dec(fst(y) , ke)), kt〉〉}ke in
c〈m, mac(m, km)〉

else c〈error〉
else c〈error〉

Reader � ck(xk).c〈get challenge〉.d(nt).νnr.νkr.
letm = {〈nr, 〈nt, kr〉〉}fst(xk) in c〈m, mac(〈m, snd(xk)〉)〉

588 I. Filimonov et al.

Similarly to our minimal authentication example, we can express the system and ide-
alised specification, respectively, as follows.

SystemUK � νck.(!Reader | !νke.νkm.!MainUK)
SystemUK′ � νck.(!Reader | !νke.νkm.MainUK)

We also employ labelled bisimilarity [3] which makes use of weak transitions, A
π � B

which allow zero or more τ transitions to occur before and after the transition π, or zero
transitions if π = τ. Notice B

π � B′ is the only difference compared to Def. 2.

Definition 3 (labelled bisimilarity). A symmetric relation between extended processes
R is a labelled bisimulation only if, whenever A R B the following hold:

– A and B are statically equivalent.
– If A π � A′ there exists B′ such that B

π � B′ and A′ R B′.

Labelled bisimilarity ≈l is the greatest labelled bisimulation.

Now, by following a similar strategy described in the previous section, we can prove
that strong unlinkability fails, expressed as follows.

SystemUK �l SystemUK′

A little more work is required, compared to the previous section, since we must count
the number of get challenge messages sent and received rather than number of τ transi-
tions. However, we can go through essentially the same symbolic reasoning to discover
a similar attack to the previous section. Rather than repeating the same analysis but on
a larger specification, we instead present a shorter way to describe such attacks and
informally describe how it can be exploited in a practical fashion.

6.1 Describing the Attack Using a Modal Logic Formula

We can concisely describe attacks on privacy using modal logic formulae. Attacks on
labelled bisimilarity can be described using the modal logic classical FM (F is for free
inputs,M is for match [24]). A syntax for classical FM is presented below.

φ� M = N equality
| φ ∧ φ conjunction
| 〈π〉φ diamond
| ¬φ negation

abbreviations:
M � N � ¬(M = N)[
π
]
φ � ¬〈π〉¬φ

φ ∨ ψ � ¬ (¬φ ∧ ¬ψ)
The semantics of classical FM is presented below.

νx.(σ | P) |= M = N iff Mσ =E Nσ and x ∩ (fv(M) ∪ fv(N)) = ∅
A |= 〈π〉φ iff there exists B such that A

π � B and B |= φ.
A |= φ1 ∧ φ2 iff A |= φ1 and A |= φ2.
A |= ¬φ iff A |= φ does not hold.

Using classical FM, we can define a witness that two processes are not labelled bisim-
ilar, as expressed using this soundness and completeness theorem. Note this is a more
standard classical version of a theorem in related work [21].

Breaking Unlinkability of the ICAO 9303 Standard for e-Passports Using Bisimilarity 589

Theorem 1 (soundness and completeness). P ≈l Q, whenever, for all formula φ, we
have P |= φ if and only if Q |= φ.
From the contrapositive of the above theorem, whenever P �l Q, there exists a formula
φ such that P |= φ holds, but Q
|= φ.

In the case of the failure of strong unlinkability of the UK BAC protocol, we have
the following classical FM formula, say ψ.

〈
d get challenge

〉〈
c(x)
〉〈
c(y)
〉〈
c(z)
〉(

x = get challenge ∧ y = get challenge ∧ z � get challenge ∧[
d z
](〈

c(u)
〉〈
d u
〉〈
c(v)
〉(
u � get challenge ∧ v � get challenge ∧ v � error

)

∨ [c(w)](w = get challenge)
))

For this formula we can verify SystemUK |= ψ holds. Clearly, interpreting such a wit-
ness for non-bisimilarity requires considerable expertise. The first part of the formula,
until input

[
d z
]
, starts an e-passport session and two reader sessions, and then sends

the challenge, named z in the formula, from the e-passport. The later branches of the
formula check whether or not the reader sessions are with the same e-passport or not.
The critical step is

[
d z
]
, which ranges over all ways in which the challenge z can be fed

back into the system as an input. In the bisimulation game, this corresponds to a swap-
ping of perspective, where the idealised specification leads, rather than the system (as
illustrated in the attack on the minimal authentication protocol in Sect. 5). In practical
terms, this means that the attacker takes control over where the input d z is performed.

Now consider SystemUK′. We show that SystemUK′
|= ψ. Notice that the branch[
c(w)
]
(w = get challenge) covers the possibility that the input is fed in when a

get challenge message is expected, leaving no possible output actions other than those
starting a fresh session. Notice also the possibility of an error occurring too early
(u = error) is also accommodated. Importantly, regardless of how SystemUK′ plays
the first four actions, in the state reached, there exists an input d u which fails to match
any of the eventualities described by the formula.

Note there are many such distinguishing formulae, each describing subtly different
attacks on strong unlinkability. We select this one, as it formally justifies the practical
description of the attack in the next section.

6.2 Practical Steps to Implement a Discovered Attack

Here, we give an example of a practical attack that might be carried out in the real
world, based on the attack on strong unlinkability given in the previous section. We
assume the presence of a Dolev-Yao [17] adversary, who can block or redirect messages.
Importantly, we assume that the adversary cannot interfere with the credentials on the
e-passport, for example by snooping on an OCR session.

The aim of our attack will be to identify the e-passport who has most recently inter-
acted with a specific reader device (which need not be under adversary control). For
example, in an airport, the attacker may wish to identify people who have travelled
through the “priority” lane, as they are more likely to be airline staff or other people of
interest. The attack proceeds at follows:

590 I. Filimonov et al.

ke, km

e-passport suspended reader

ke, km

t1

fresh nt, kt

malicious

fake reader

get challenge
malicious

fake passport
nt

nt

t3

fresh nr, kr

get challenge

t2
nt

R
R

R

C

C �= error

Fig. 7.Attack on UK e-passport: implementation involving fake reader and fake e-passport, infor-
mally. The critical moment is choosing where to feed nt. Assume Msg = {〈nr, 〈nt, kr〉〉}ke,
Msg′ = {〈nt, 〈nr, kt〉〉}ke, R = 〈Msg, mac(Msg, km)〉 and C = 〈Msg′, mac(Msg′, km)〉.

(1) An honest agent has their OCR details read by the targeted reader device.
(2) The adversary blocks any RF communication between the (now-scanned)

e-passport and the reader. The agent presumes that the machine is faulty and moves
on.

(3) The adversary brings a custom reader device close to an agent. This custom reader
initiates the BAC protocol with the agent’s e-passport.
– The fake reader does not make use of, or attempt to read, any OCR data. It acts
as if this phase has already been completed.

(4) The fake reader relays messages from the e-passport to the reader suspended in (2),
for example by using a RF retransmitter located close to the reader.
– The suspended reader still has OCR data stored from the earlier step.

(5) If the e-passport that the adversary is communicating with is indeed the e-passport
that was scanned by the reader (as is depicted in Fig. 7), then the protocol will
complete successfully, and the adversary will see an encrypted data packet.
– If the e-passport does not match the previously scanned one, the adversary will
see a constant error message.

The adversary never learns the keys of any e-passport in this case, but they do not
need to - they need only distinguish whether or not the final message is a constant term
or an encrypted packet.

In Fig. 7, we highlight three key timing constraints on this attack. The hard con-
straint, labelled t2, is the maximum time a genuine e-pasport reader waits between issu-
ing a request and receiving a response from an e-passport. We conducted experiments
on open source e-passport readers and found that t2 is bounded above by approximately
1.1 seconds. To perform this experiment we implemented a fake e-passport, to interact
with an open source e-passport reader3.

3 https://github.com/tananaev/passport-reader.

https://github.com/tananaev/passport-reader

Breaking Unlinkability of the ICAO 9303 Standard for e-Passports Using Bisimilarity 591

The constraint t3 represents how long an e-passport is willing to wait before receiv-
ing the next command after sending a challenge. It has no technical upper bound, as a
tag remains active (and awaiting commands) for as long as it is powered. The flow of
messages in Fig. 7 shows it is possible to arrange t3, such that is is bounded above by a
few seconds. Therefore, if the e-passport itself implements a timeout (which typically
they do not) it would be easy to stay within that timeout bound.

A key practical concern in step (2) is the duration for which an e-passport reader
will hold on to OCR details, indicated as t1 in Fig. 7. This is dependent on the spe-
cific firmware implementation of the reader (the OCR reader and RF session with BAC
combined). Certainly for open source readers for smart phones, this is not an obstacle.
To avoid this attack, airport e-passport readers should require that an upper bound is
enforced on t1. It is also unknown if a reader discards stored OCR data after it believes
it has finished executing the BAC protocol. This should be enforced, to ensure that the
attack cannot be repeated (i.e. we can attempt to link only one passport with the last
OCR scan).

An important point is that, if we interpret Fig. 7 simply as a trace of inputs and
outputs then it is not an attack. To see why, observe that even if the suspended reader
has different keys as expected in the idealised specification, then another (currently
unused) reader can be employed to produce the same sequence of actions. The use of
bisimilarity is essential.

7 Conclusions

Our primary contribution is to clear up confusion regarding the unlinkability of the
BAC, when implemented with a single plaintext error message, as in the UK e-passport.
We clarify that, contrary to claims previously made [4], there is a real attack on strong
unlinkability. The attack can be discovered quickly from the strategy that causes the
search for bisimulation to fail. While the attack is not as easy as the known attack on
the French e-passport, the attack is practical, as clarified in Sect. 6.2.

Our secondary contribution is to clarify how different modelling assumptions may
lead to different conclusions about the unlinkability of BAC. Our conclusion from this
survey is that in a model faithful to the problem, there is no attack on the unlinkability
of BAC that can be described as a simple trace. Our attacks on strong unlinkability
make non-trivial use of bisimilarity; in practical terms this corresponds to the attacker
making a decision about which reader receives a challenge. Thus we have:

– An attack, Sect. 6, correcting the original claim about strong unlinkability expressed
in terms of bisimilarity [4].

– No attack expressible as a trace, a claim supported by our DEEPSEC code in Sect. 2,
and by adapting [19].

Note that in both cases, we make the assumption that the initial configuration of the
system is not fixed, as discussed in Sect. 2. Also, in both cases, internal communica-
tions, modelled by τ-transitions, are assumed to be unobservable and a get challenge
message is observable.

592 I. Filimonov et al.

We also make significant methodological contributions. We discovered this attack
by employing a state-of-the-art approach to bisimilarity checking, never before applied
to a problem of this complexity. Our attack was discovered systematically, by the fol-
lowing methodology.

1. We search for a proof using a finer notion of bisimilarity called open bisimilarity
[7,21,25,26], which lazily explores the state space.

2. When a distinguishing strategy is discovered using open bisimilarity, we determine
whether it is an attack by constructing a distinguishing formula in an intermediate
modal logic called intuitionistic FM [21,22].

3. Given our formula, we check whether the formula is still distinguishing under clas-
sical assumptions. This confirms there is also an attack on early bisimilarity.

4. We check the attack is also valid in the setting of labelled bisimilarity [3] (for which
τ-transitions are silent), by checking where a lack of image finiteness allows addi-
tional processes to be created that may have an impact on the analysis.

While the above methodology discovers and confirms our attack systematically,
undoubtedly employing the above methodology required mastery of state-of-the-art
work on bisimilarity. Thus future work includes improving tool support.

Further perspectives on BAC and unlinkability.We note that the impact of our work
extends beyond the BAC protocol. Attacks on strong unlinkability we discover can be
adapted to a wide range of authentication protocols. We propose a general form for an
authentication protocol that may fail strong unlinkability.

– The same keys are used between the e-document and multiple readers.
– A failed authentication session behaves observably differently from a successful
authentication session.

Note observable differences between successful and failed sessions may be due to an
error message, as in the French and UK implementations of the BAC protocol; but may
also be due to the presence or absence of a valid message expected during authentica-
tion. Therefore our attack adapts also to a variant of BAC that signals a failed authenti-
cation session without any error message.

The latter point may be trickier to mitigate in practice. It may be possible to observe
the presence or absence of a message exchanged after authentication is complete. In the
ICAO 9303 standard, this phase is called the secure messaging phase. Such a practical
extension of our attack is a concern perpendicular to the study of the BAC protocol in
this work.

Another modelling dimension is the question of whether attacks such as those high-
lighted in this paper are down to inadequate definitions of unlinkability. A way to avoid
our attacks by modifying the definition of unlinkability is to sequentialise entire ses-
sions, such that exactly one reader starts and one passport starts, and both must have
used up all their actions before proceeding with any action in a new session. This essen-
tially models the situation where a round trip between an e-passport and remote reader
becomes infeasible (e.g., due to stricter timeouts). The current work however focuses
on clarifying established definitions of unlinkability.

Breaking Unlinkability of the ICAO 9303 Standard for e-Passports Using Bisimilarity 593

Acknowledgements. We thank the following people for their time and knowledge during the
investigation of these results: Vincent Cheval, Ugo Chirico, Stéphanie Delaune, Lucca Hirschi,
and Steve Kremer.

References

1. Machine readable travel documents. part 11: Security mechanisms for MRTDs. Technical
report Doc 9303. Seventh Edition, International Civil Aviation Organization (ICAO) (2015).
https://www.icao.int/publications/Documents/9303 p11 cons en.pdf

2. ISO 15408–2: Common criteria for information technology security evaluation. part 2:
Security functional requirements. Technical report. CCMB-2017-04-002, ISO/IEC standard
(2017). https://www.commoncriteriaportal.org/files/ccfiles/CCPART2V3.1R5.pdf

3. Abadi, M., Blanchet, B., Fournet, C.: The applied pi calculus: mobile values, new names,
and secure communication. J. ACM 65(1), 1:1–1:41 (2017)

4. Arapinis, M., Chothia, T., Ritter, E., Ryan, M.: Analysing unlinkability and anonymity using
the applied pi calculus. In: 2010 23rd IEEE Computer Security Foundations Symposium
(CSF), pp. 107–121. IEEE (2010)

5. Avoine, G., Beaujeant, A., Hernandez-Castro, J., Demay, L., Teuwen, P.: A survey of security
and privacy issues in epassport protocols. ACM Comput. Surv. 48(3), 47:1–47:37 (2016)

6. Bender, J., Fischlin, M., Kügler, D.: Security analysis of the PACE key-agreement protocol.
In: Samarati, P., Yung, M., Martinelli, F., Ardagna, C.A. (eds.) ISC 2009. LNCS, vol. 5735,
pp. 33–48. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04474-8 3

7. Briais, S., Nestmann, U.: Open bisimulation, revisited. Theor. Comput. Sci. 386(3), 236–271
(2007)

8. Brusó, M., Chatzikokolakis, K., Etalle, S., den Hartog, J.: Linking unlinkability. In:
Palamidessi, C., Ryan, M.D. (eds.) TGC 2012. LNCS, vol. 8191, pp. 129–144. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-41157-1 9

9. Cheval, V.: Automatic verification of cryptographic protocols: privacy-type properties. PhD
thesis, Laboratoire Spécification et Vérification, ENS Cachan (2012)

10. Cheval, V.: APTE: an algorithm for proving trace equivalence. In: Ábrahám, E., Havelund,
K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 587–592. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-54862-8 50

11. Cheval, V., Comon-Lundh, H., Delaune, S.: A procedure for deciding symbolic equivalence
between sets of constraint systems. Inf. Comput. 255(Part 1), 94–125 (2017)

12. Cheval, V., Kremer, S., Rakotonirina, I.: DEEPSEC: Deciding equivalence properties in secu-
rity protocols theory and practice. In: 2018 IEEE Symposium on Security and Privacy (S&P),
pp. 529–546 (2018)

13. Chothia, T.: Analysing the MUTE anonymous file-sharing system using the pi-calculus. In:
Najm, E., Pradat-Peyre, J.-F., Donzeau-Gouge, V.V. (eds.) FORTE 2006. LNCS, vol. 4229,
pp. 115–130. Springer, Heidelberg (2006). https://doi.org/10.1007/11888116 9

14. Chothia, T., Smirnov, V.: A traceability attack against e-passports. In: Sion, R. (ed.) FC 2010.
LNCS, vol. 6052, pp. 20–34. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-14577-3 5

15. Cortier, V., Rusinowitch, M., Zalinescu, E.: Relating two standard notions of secrecy. Log.
Methods Comput. Sci. 3(3), 1–29 (2007)

16. Cremers, C.J.F.: The scyther tool: verification, falsification, and analysis of security proto-
cols. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 414–418. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-70545-1 38

17. Dolev, D., Yao, A.: On the security of public-key protocols. IEEE Trans. Inf. Theory 2(29),
198–208 (1983)

https://www.icao.int/publications/Documents/9303_p11_cons_en.pdf
https://www.commoncriteriaportal.org/files/ccfiles/CCPART2V3.1R5.pdf
https://doi.org/10.1007/978-3-642-04474-8_3
https://doi.org/10.1007/978-3-642-41157-1_9
https://doi.org/10.1007/978-3-642-54862-8_50
https://doi.org/10.1007/978-3-642-54862-8_50
https://doi.org/10.1007/11888116_9
https://doi.org/10.1007/978-3-642-14577-3_5
https://doi.org/10.1007/978-3-642-14577-3_5
https://doi.org/10.1007/978-3-540-70545-1_38

594 I. Filimonov et al.

18. Feldhofer, M., Dominikus, S., Wolkerstorfer, J.: Strong authentication for RFID systems
using the AES algorithm. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156,
pp. 357–370. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5 26

19. Hirschi, L., Baelde, D., Delaune, S.: A method for verifying privacy-type properties: the
unbounded case. In: 2016 IEEE Symposium on Security and Privacy (S&P), pp. 564–581.
IEEE (2016)

20. Hirschi, L., Baelde, D., Delaune, S.: A method for unbounded verification of privacy-type
properties. J. Comput. Secur. 27(3), 277–342 (2019)

21. Horne, R.: A bisimilarity congruence for the applied π-calculus sufficiently coarse to verify
privacy properties, (arXiv:1811.02536) (2018), https://arxiv.org/abs/1811.02536

22. Horne, R., Ahn, K.Y., Lin, S.W., Tiu, A.: Quasi-open bisimilarity with mismatch is intuition-
istic. In: Dawar, A., Grädel, E. (eds.) Proceedings of 33rd Annual ACM/IEEE Symposium
on Logic in Computer Science, Oxford, United Kingdom, 9–12 July 2018, pp. 26–35 (2018)

23. Kanellakis, P.C., Smolka, S.A.: CCS expressions, finite state processes, and three problems
of equivalence. Inf. Comput. 86(1), 43–68 (1990)

24. Milner, R., Parrow, J., Walker, D.: Modal logics for mobile processes. Theor. Comput. Sci.
114(1), 149–171 (1993)

25. Sangiorgi, D.: A theory of bisimulation for the π-calculus. Acta Informatica 33(1), 69–97
(1996)

26. Tiu, A., Dawson, J.: Automating open bisimulation checking for the spi calculus. In: 2010
23rd IEEE Computer Security Foundations Symposium. pp. 307–321. IEEE (2010)

https://doi.org/10.1007/978-3-540-28632-5_26
http://arxiv.org/abs/1811.02536
https://arxiv.org/abs/1811.02536

Symmetric-Key Corruption Detection:
When XOR-MACs Meet Combinatorial

Group Testing

Kazuhiko Minematsu(B) and Norifumi Kamiya

NEC Corporation, Kawasaki, Japan
k-minematsu@ah.jp.nec.com, kamiya@bc.jp.nec.com

Abstract. We study a class of MACs, which we call corruption
detectable MAC, that is able to not only check the integrity of the whole
message, but also detect a part of the message that is corrupted. It can
be seen as an application of the classical Combinatorial Group Testing
(CGT) to message authentication. However, previous work on this appli-
cation has an inherent limitation in its communication cost. We present
a novel approach to combine CGT and a class of linear MACs (XOR-
MAC) that breaks this limit. Our proposal, XOR-GTM, has a signifi-
cantly smaller communication cost than any of the previous corruption
detectable MACs, while keeping the same corruption detection capabil-
ity. Our numerical examples for storage application show a reduction
of communication by a factor of around 15 to 70 compared with previ-
ous schemes. XOR-GTM is parallelizable and is as efficient as standard
MACs. We prove that XOR-GTM is provably secure under the standard
cryptographic assumptions.

Keywords: MAC · Corruption detection ·
Combinatorial Group Testing · XOR-MAC

1 Introduction

MAC and Corruption Detection. A Message Authentication Code (MAC)
is a symmetric-key cryptographic function for ensuring the message authenticity.
In a typical MAC protocol, the sender of a message M computes a fixed, short tag
T as a function of a MAC: T = MAC(K,M) for the secret key K. On receiving
the tuple (M ′, T ′) from the sender, which may be corrupted by the adversary,
the receiver checks if the tuple is correct by performing the tag computation
̂T = MAC(K,M ′) using the shared K and comparing T ′ and ̂T .

The standard MAC functions, such as HMAC or CMAC, are quite efficient,
and their securities have been extensively studied. However, the näıve application
described above only tells us whether M ′ has been corrupted or not, and nothing
about how M ′ is corrupted, i.e. the locations of the corruptions. Suppose a
message can be divided into m parts, say the entries in a database or the sectors
c© Springer Nature Switzerland AG 2019
K. Sako et al. (Eds.): ESORICS 2019, LNCS 11735, pp. 595–615, 2019.
https://doi.org/10.1007/978-3-030-29959-0_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29959-0_29&domain=pdf
https://doi.org/10.1007/978-3-030-29959-0_29

596 K. Minematsu and N. Kamiya

in a HDD. If we take a MAC tag for each part, the number of tags is m. This
scheme gives us full information on the corrupted parts, however, does not scale
as the amount of tag information grows linearly with m. We want to reduce
the number of tags without losing the detection ability too much. This is a
fundamental problem for many applications, such as storage integrity protection
and low-power wireless communication. In particular, the size of a trusted storage
for maintaining the integrity of a large, untrusted storage has been an important
issue in the storage security research [36,37] and the commercial solutions such
as Tripwire. In a broader sense, where a cryptographic hash function or a digital
signature may be used as well as MACs, similar problems occur at verification
of downloaded software, malware classification, and digital forensics etc. The
underlying problem is how to minimize the number of tags keeping the sufficient
ability to detect the corrupted parts. We call a MAC scheme for this purpose a
corruption detectable MAC.

Combinatorial Group Testing and Its Applications. It is known that
the corruption detectable MAC can be seen as an application of Combinato-
rial Group Testing (CGT) [22], a method invented by Dorfman in WWII [16]
to effectively find blood samples infected by syphilis. It has been studied for
long years, mainly from the viewpoint of theoretical computer science and appli-
cations to biology, such as DNA library screening [34]. CGT has been applied
to many other areas, such as machine learning and data mining [32,44], signal
processing [19], and sensor network [24] etc.

Suppose the sender wants to authenticate a message M consisting of m data
items, where at most d items of M are assumed to be corrupted when M is sent
to the receiver. What the sender can do is to take t MAC tags for certain sub-
sequences of M for some t ≤ m, corresponding to group testing in CGT. How tags
are computed is completely specified by a t × m binary matrix H, called a test
matrix. The trivial scheme described earlier uses the identity matrix and thus
is inefficient. However, it is known that if H has a property called d-disjunct1,
we can detect d′ ≤ d corrupted items. It is known that d-disjunct matrix can be
built with O(d2 log m) rows, thus the use of d-disjunct matrix can significantly
reduce the number of tags if d is much smaller than m.

Despite the simple and natural problem, corruption detectable MACs have
received surprisingly less attention to date. To our knowledge, Crescenzo
et al. [13,15] and Goodrich et al. [22] are the earliest work on this direction.
Corruption-localizing hash function was proposed at ESORICS 2009 [14] and
subsequently studied [9,12,14]. Minematsu [33] at ESORICS 2015 studied the
computational aspects of corruption detectable MACs. An application of CGT
to aggregate MAC [28] was studied by Hirose and Shikata [23].

Limitation of Previous Schemes. The most of previous corruption detectable
MACs and the variants used existing d-disjunct matrices for their test matrices.

1 The minimum condition is weaker (d-separable or d-separable), however this does
not guarantee an efficient detection.

Symmetric-Key Corruption Detection 597

We call it DirectGTM for the direct use of a disjunct matrix in a Group-Test-
based MAC. Constructions of d-disjunct matrix have been extensively studied
(see Sect. 3.2), however, finding one with optimally small number of rows for
given m and d is still a hard combinatorial problem even for tiny d. Besides, if d
is O(

√
m) it is impossible to build a non-trivial d-disjunct matrix. Consequently,

the communication efficiency of DirectGTM is inherently bounded by the current
knowledge of constructions of small-row disjunct matrix. The aforementioned
work by Minematsu [33] (hereafter Min15) showed that the computation cost of
DirectGTM can be effectively reduced to that of the single MAC function if we
employ a MAC function similar to XOR-MAC [4] or PMAC [7]. However, the
communication cost (i.e. the number of tags) is not reduced.

Beyond DirectGTM. We break the above limitation by presenting a new class
of corruption detectable MACs. Our scheme has a structure very similar to
Min15 for generation of tags, where a message subsequence specified by a row
of test matrix (H) is processed by a hash-then-encrypt MAC function. How-
ever, the verification is different from Min15 in that we use the decryption of
tags instead of the tags themselves. This seemingly tiny change will bring a ulti-
mate difference from Min15, since it allows us to use any linear combination of
(decrypted) tags for a verification of a new subsequence that is not specified
by H! Surprisingly, this suggests that H is not necessarily d-disjunct, but only
the row span of H over GF(2) is required to be d-disjunct. Therefore, the com-
munication efficiency is determined not by the number of rows but the rank of
d-disjunct matrix. We define the appropriate security notions for such a scheme,
which we call XOR-GTM, and show XOR-GTM is provably secure using the stan-
dard symmetric-key primitives, such as a pseudorandom function (PRF) and a
tweakable pseudorandom permutation (TPRP). Example 1 at Sect. 4.3 shows a
toy example of our scheme and how it can reduce the communication cost.

Efficient Instantiations. Efficient instantiations of XOR-GTM are not easy.
Despite the numerous studies on small-row d-disjunct matrices, their GF(2)-rank
has rarely been studied. Even worse, as far as we studied, the state-of-the-art
constructions tend to have a high rank, implying only a marginal gain from
(ideal) DirectGTM. Instead, somewhat surprisingly, we find that some classes of
near-square d-disjunct matrices, which are almost useless for CGT in general, are
quite useful for us. The matrices we found are not new: one of them is a modified
Hadamard matrix and the other is a point-line incidence matrix defined over
finite geometry. Both are classical and have been extensively studied for decades.
However, when we instantiate XOR-GTM with them (more precisely, the bases of
the row vectors of these matrices are used as the test matrix), we could achieve
what is impossible with any instantiation of DirectGTM including Min15. In more
detail, by using Hadamard matrix, DirectGTM can detect d = 2 corruptions with
log2(m+1)+1 tags, which is better than any DirectGTM scheme with 2-disjunct
test matrix by a factor of 3 to 5. Moreover, with point-line incidence matrices, we
can detect corruptions of d = O(

√
m) parts with t = O(

√
m) tags. This exhibits

a very strong advantage over the existing schemes. In our numerical examples
for storage application (Sect. 7), XOR-GTM needs fewer tags than the trivial

598 K. Minematsu and N. Kamiya

scheme by a factor of roughly 15 to 70, while any instantiation of DirectGTM
with a d-disjunct test matrix has almost no gain.

As well as Min15, XOR-GTM is parallelizable and incremental, in the sense
of [3]. The computation of XOR-GTM is very efficient at it is essentially the same
as taking a single MAC tag for the message. For our instantiations, the underly-
ing matrices are highly structured, which is useful for efficient implementation.
This gives another great advantage in comparison to the näıve use of a d-disjunct
matrix since the small-row disjunct matrix is typically very complex.

Further Related Work. In the context of cryptography in general, CGT has
been used for various related applications such as [1,8,11,40,45]. Although the
interaction between CGT and cryptography has not received much attentions
thus far, we believe it is very promising.

2 Preliminaries

2.1 Basic Notations

Let {0, 1}∞ be the set of all binary strings, including the empty string ε. The
bit length of X ∈ {0, 1}∞ is denoted by |X|. Here, |ε| = 0. We define {0, 1}∗ def=
{0, 1}∞ \ {ε}. For a binary string X, its hamming weight is denoted by Hw(X).
We define a set of m-tuples of non-empty strings as {0, 1}∗m def= ({0, 1}∗)m, and
define {0, 1}∗≤m def=

⋃m
i=1{0, 1}∗i. We write {0, 1}∞m def= ({0, 1}∞)m to denote

the set of m-tuples of possibly empty strings. Here, (ε, v) and (v, ε) for v �= ε
are distinct elements of {0, 1}∞2. A uniform sampling over a set X is written as
X

$← X . The base of logarithm is 2 unless otherwise written.
For a positive integer n, let2 �n� = {1, . . . , n} and �n� = {0, . . . , n − 1}. For

a finite set X , 2X denotes the power set, and let cmp : X × X → {0, 1} be the
comparison function, i.e. cmp(X,Y) = 0 if X = Y and cmp(X,Y) = 1 if X �= Y .
For M = (M [1], . . . , M [m]) ∈ {0, 1}∗m and M ′ = (M ′[1], . . . ,M ′[m]) ∈ {0, 1}∗m,
we define vector comparison vdiff(M,M ′) and index difference diff(M,M ′) as

vdiff(M,M ′) = (cmp(M [1],M ′[1]), . . . , cmp(M [m],M ′[m])),
diff(M,M ′) = {i ∈ �m� : M [i] �= M ′[i]}. (1)

For X = (X[1], . . . ,X[m]) ∈ {0, 1}m, let M �X ∈ {0, 1}∗m′
be a vector obtained

by subtracting M [i]s for all i s.t. X[i] = 0, where m′ = Hw(X). For example, if
m = 4 and X = (1, 0, 1, 0), M � X = (M [1],M [3]).

Disjunct Matrix. Let M be an n×m binary matrix. We write Mi,∗ to denote
the i-th row, and M∗,j to denote the j-th column, and Mi,j to denote the entry
at i-th row and j-th column. For simplicity we may abbreviate Mi,∗ to Mi. The
rows and columns of M are interchangeably seen as sets, e.g., Mi = {j ∈ �m� :
Mi,j = 1}, and a ∈ Mi means Mi,a = 1.

2 It is customary to use [n] but we want to avoid confusion, say with M [i].

Symmetric-Key Corruption Detection 599

For X,Y ∈ {0, 1}n, X ∨ Y denotes the bitwise Boolean sum (logical OR)
of X and Y . We say M is d-disjunct [17] if, for any S ⊆ �m� and |S| ∈ �d�,
M∗,j �⊆

∨

h∈S M∗,h holds for any j �∈ S. That is, a sum of any distinct i ≤ d
columns of M does not cover any other column. An m × m identity matrix is
trivially m-disjunct. A d-disjunct matrix is also said to have disjunctness of d.
The most important property of d-disjunct matrix is the number of rows for
given d and m (See Sect. 3.2). For convention, a d-disjunct matrix is said to be
“ideal” or “optimal” when it has the smallest number of rows for fixed d and m.

2.2 Cryptographic Functions

A keyed function with key space K, domain X , and range Y is a function F :
K × X → Y. We may write FK(X) for F (K,X), and if X = M × ��� for some
positive integer �, write F i

K(M) to denote FK(M, i) for (M, i) ∈ X . A tweakable
block cipher (TBC) [30] E : K × T × X → X is a keyed permutation over X
with additional tweak input in T , i.e., E(K,T, ∗) for any (K,T) ∈ K × T is a
permutation over X . We may write ET

K(X) instead of E(K,T,X) or EK(T,X).
The decryption of X with tweak T is written as E−1

K (T,X) or ET,−1
K (X).

A uniform random function (URF) R : X → Y is a keyed function with
uniform key distribution over all functions from X to Y. A uniform random per-
mutation (URP) P : X → X is defined analogously. A tweakable uniform random
permutation (TURP) with tweak space T and message space X is denoted by
˜P : T × X → X , which is a set of independent URPs indexed by T . The decryp-
tion of ˜P is denoted by ˜P

−1
. Let A be an adversary who (possibly adaptively)

queries to the oracle O and outputs a bit as a final decision. The advantage of A
in distinguishing two oracles, F : K×X → Y and F ′ : K′ ×X → Y, is defined as

Advind
FK ,F ′

K′ (A) def=
∣

∣

∣Pr[K $← K : AFK ⇒ 1] − Pr[K ′ $← K′ : AF ′
K′ ⇒ 1]

∣

∣

∣ ,

where AFK ⇒ 1 denotes the probability that A’s final decision is 1 when the
oracle is FK . We define Advind

FK ,R(A) def= Advprf
FK

(A) where R : X → Y is a
URF. It is called the PRF-advantage of FK (for A). We say FK is a PRF
when Advprf

FK
(A) is sufficiently small for all practical adversaries [2]. For a TBC

E : K × T × X → X , we define the Tweakable PRP (TPRP) advantage as
Advtprp

EK
(A) = Advind

EK ,˜P
(A) for A using chosen-plaintext (encryption) queries.

3 Previous Corruption Detectable MACs

3.1 DirectGTM

Given a t × m binary test matrix H, the basic form of a corruption detectable
MAC is described as follows. For message M ∈ {0, 1}∗m, the sender first
computes

T [i] = MACK(M � Hi, i) (2)

600 K. Minematsu and N. Kamiya

for all i ∈ �t�, using a MAC function MAC : K × {0, 1}∗≤m × �t� → {0, 1}n.
The output is the tag vector T = (T [1], . . . , T [t]) ∈ ({0, 1}n)t. The verifier
receives (M ′, T ′), which may be a corrupted version of (M,T), and computes
̂T = (̂T [1], . . . , ̂T [t]), where ̂T [i] = MACK(M ′ � Hi, i), and compares T ′ with ̂T

to obtain vdiff(T ′, ̂T). Then, the verifier tries to detect the corrupted items, by
subtracting Hi (as a set) from �m� for all i ∈ �t� such that cmp(T ′[i], ̂T [i]) = 0.
The remaining set indicates the indexes of the corrupted items. In the context
of CGT, the above procedure is called näıve decoding [17]. The following is a
well-known fact from the property of d-disjunct matrix.

Proposition 1. Suppose H is d-disjunct and diff(M,M ′) ≤ d and T ′ = T .
Then, the näıve decoding correctly detects all the corrupted items if
cmp(T ′[i], ̂T [i]) = cmp(M � Hi,M

′ � Hi) for all i ∈ �t�.

Proposition 1 holds since any negative (uncorrupted) item is included in at least
one test that does not contain any positive (corrupted) item. We call a cor-
ruption detectable MAC of the above form DirectGTM. While there are some
differences, the previous corruption detectable MACs and the variants are clas-
sified as DirectGTM.

Min15 [33] studied the computational overhead of DirectGTM from the stan-
dard MAC. Min15 showed that one can reduce the computation cost almost as
low as the standard MAC independent of the test matrix, by employing a deter-
ministic MAC similar to XOR-MAC [4] or PMAC [39]. Nevertheless, Min15 is
an instantiation of DirectGTM as it needs d-disjunct H to detect d corruptions.

3.2 Constructions of Disjunct Matrix

The construction of disjunct matrix has been extensively studied from the view-
point of designs and codes. Classical examples are Macula [31] and Kautz and
Singleton [29]. The Du-Hwang book [17] describes a number of known construc-
tions. Eppstein et al. proposed Chinese Reminder Sieve (CRS) [20]. Thierry-Mieg
proposed Shifted Transversal Design (STD) [43] for biological applications.

Let tmin(d,m) be the minimum number of rows for a d-disjunct matrix of
m columns. It is known that tmin(d,m) = Θ(d2 log m) [17]. The seminal work
of Porat and Rothschild [38] showed an order-optimal and deterministic con-
struction of d-disjunct matrix, however it needs a large (though polynomial)
search for matrix generation. Besides, the optimality including the constant is
not known. Only the case d = 1 has been solved: 1-disjunct matrix implies that
no column is contained in another column. Such a matrix is called a completely
separating system, and has about log m rows [17]. If we relax the condition to a
weaker one (1-separability), the concrete construction of
log m� rows is easy as
it is achieved by making all columns distinct. However, even for the case d = 2,
the question of optimal construction remains open for decades.

Symmetric-Key Corruption Detection 601

Lower Bounds. A lower bound of tmin(d,m) ≥ min
{

(

d+2
2

)

,m
}

was shown
by Dýachkov and Rykov [18], attributed to Bassalygo. An improved bound was
shown by Shangguan and Ge [41]:

tmin(d,m) ≥ min

{

d2(15 +
√

33)
24

,m

}

. (3)

Moreover, there is a conjectured lower bound by Erdös et al. [21]:

tmin(d,m) ≥ min
{

(d + 1)2,m
}

, (4)

which was later shown to be correct for d ≤ 5 (see [41]).

4 Our Proposal

4.1 Breaking the Barrier of DirectGTM

For the previous DirectGTMs, the choice of test matrix was independent of the
choice of MACK , and a d-disjunct matrix or its variant was suggested to be used
as H. Thus, to reduce the communication cost of DirectGTM, we must find a
small-row d-disjunct matrix. Unfortunately, this is a hard problem even for tiny
d and even impossible when d is close to

√
m, as shown in the previous section.

This limits the practical usefulness of DirectGTM.
We break this barrier by exploiting a certain linearity in the MAC com-

putation. Suppose we have a Min15 scheme with t tests (tags). There is an
intermediate vector S = (S[1], . . . , S[t]), where S[i] is a keyed hash value of a
subsequence of M specified by Hi, and an encryption of S[i] yields the i-th tag
T [i]. We observe that checking at T [i] is equivalent to checking at S[i], and even
more, any linear combination of S[i]s will yield another test, i.e., a verification
of a new subsequence of M .

For example, if T [1] is a tag for (M [1],M [2]) and T [2] is a tag for (M [2],M [3]),
the verifier can use S[1]⊕S[2] as a test for (M [1],M [3]). This is done by comput-
ing S[1] and S[2] from the decryption of the received tags and seeing if S[1]⊕S[2]
agrees with the value computed from M , denoted by ̂S[1]⊕ ̂S[2]. Hence, without
explicitly sending a tag for (M [1],M [3]), we could perform three tests with two
tags. In other words, when the authenticator takes MAC tags based on H, the
verifier can use (any sub-matrix of) the row span of H as a virtual test matrix.
This can bring significantly richer information to the verifier without increasing
the communication.

4.2 Syntax

We first define the syntax of the corruption detectable MAC. Let m, t, and n
be positive integers. They are the fixed parameters, but it is easy to extend
to the case of variable parameters. A corruption detectable MAC consists of

602 K. Minematsu and N. Kamiya

four algorithms. The key generation KG : N → K takes a security parameter
p ∈ N and returns a key K ∈ K. The key K is shared by the legitimate parties
(authenticator and verifier).

The tagging function Tag : K × M → T takes a message M ∈ M and a key
K ∈ K to return a tag vector T ∈ T , where M = {0, 1}∗m and T = ({0, 1}n)t.
We write as M = (M [1], . . . , M [m]) ∈ M and T = (T [1], . . . , T [t]) ∈ T , where
M [i] is called a message item (or item for short), and T [i] is called a tag string (or
tag for short). The verification function Ver : K×M×T → D with D = {0, 1} is
for verification: VerK(M ′, T ′) = 0 denotes the tuple (M ′, T ′) is authenticated (no
corruption), while VerK(M ′, T ′) = 1 denotes the tuple is not authenticated, thus
an authentication failure. Finally, the detection function Det : K×M×T → 2�m�

takes key K and the possibly corrupted tuple (M ′, T ′) to return a candidate of
the index set of corrupted message items P ∈ 2�m�. For example, {1, 3} ←
DetK(M ′, T ′) means M ′[1] and M ′[3] are considered to be corrupted.

In addition, we define the string-wise verification function SVer : K×M×T →
Dt that takes K, M ′ and T ′ to return B ∈ Dt. Here, B = (B[1], . . . , B[t]) =
(0, . . . , 0) corresponds to VerK(M ′, T ′) = 0 and any B �= (0, . . . , 0) means
VerK(M ′, T ′) = 1 with some additional information. Thus it potentially gives
about t-bit information on verification failure. The precise meaning of B[i] will
depend on the scheme. While SVer may be of practical relevance, we use it to
simplify our security analysis. This syntax will be used to define our security
notions at Sect. 5.

4.3 XOR-GTM

We present our corruption detectable MAC, XOR-GTM. The name comes from
the similarity to XOR-MAC [4], though, XOR-MAC is a plain stateful MAC,
which takes a message and a nonce and creates an atomic tag.

Parameters. XOR-GTM is a deterministic MAC over M = {0, 1}∗m for a fixed,
positive integer m. It has two parameters, t × m binary test matrix H and its
extension rule R. Here, R specifies the linear combinations of rows of H, and is
defined as R = (R1, . . . , Rv), where Ri ⊆ �t�, for some v ≥ t. We define HR as a
v × m extended test matrix obtained by taking the linear combinations of rows
of H specified by R, that is,

HR
i =

⊕

j∈Ri

Hj , for all i ∈ �v�. (5)

For simplicity, we assume Ri = {i} for i ∈ �t�. Hence, HR is a v × m matrix
obtained by adding v − t rows to H. For X = (X[1], . . . ,X[t]) ∈ ({0, 1}n)t, we
define XR = (XR[1], . . . , XR[v]) ∈ ({0, 1}n)v as

XR[i] =
⊕

j∈Ri

X[j], for all i ∈ �v�, (6)

which is an expansion of X by R.

Symmetric-Key Corruption Detection 603

To avoid trivial attacks and apparently redundant tests, we require the fol-
lowing soundness conditions for H and R.

Definition 1. A pair of H and R (or equivalently, HR) is said to be sound if
all rows of HR are distinct and there is an all-one row.

For simplicity, we assume H1 is all-one whenever H is sound. The crypto-
graphic components of XOR-GTM are PRF F : K × �m� × {0, 1}∗ → {0, 1}n and
TBC G : K′ × �t� × {0, 1}n → {0, 1}n for tweak space �t�. The procedures of
XOR-GTM are as follows.

Tag Computation. For message M ∈ {0, 1}∗m, we define

XOR-GTM[FK].hash(M) = (S[1], . . . , S[t]), where S[i] =
⊕

j∈Hi

F j
K(M [j]). (7)

The tag computation procedure (XOR-GTM[FK , GK′].tag(M)) first performs the
above and compute

T [i] = Gi
K′(S[i])

for all i ∈ �t� and outputs T = (T [1], . . . , T [t]), which is called a tag vector.

Verification and Corruption Detection. The verification of tuple (M ′, T ′)
(XOR-GTM[FK , GK′].verify(M ′, T ′)) first computes

̂T = XOR-GTM[FK , GK′].tag(M ′), (8)

and checks if ̂T = T ′. In fact, as we assumed H1 is all-one, checking the first
components of ̂T and T ′ will suffice. If they do not match, the receiver tries to
detect corruptions by the detection function XOR-GTM[FK , GK′].detect(M ′, T ′).
It computes S′ = (S′[1], . . . , S′[t]) for S′[i] = Gi,−1

K′ (T ′[i]), and also computes
̂S = XOR-GTM[FK].hash(M ′). It expands ̂S and S′ to ̂SR and (S′)R using (6).
The detection function finally performs the näıve decoder with HR. That is, for
all i ∈ �v� such that ̂SR[i] = (S′)R[i], it removes all the elements of HR

i (as a
set) from �m�, and outputs the remaining set as the indexes of the corrupted
items. See Fig. 1 for the pseudocodes.

Relationship to Min15. When v = t, HR = H and TR = T hold, and the
tagging, verification and detection functions are identical to those of Min15,
except the fact that we explicitly require the invertibility of G while Min15 does
not. The equivalence of verification holds because T [i] = ̂T [i] is equivalent to
Gi,−1

K′ (T [i]) = Gi,−1
K′ (̂T [i]).

Example 1. Let m = 4, t = 3 and v = 6. We define H and HR as follows. Here,
R = ({1}, {2}, {3}, {1, 2}, {2, 3}, {1, 2, 3}).

H =

⎛

⎝

1 1 0 0
0 1 1 0
0 0 1 1

⎞

⎠ , HR =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 1 0 0
0 1 1 0
0 0 1 1
1 0 1 0
0 1 0 1
1 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (9)

604 K. Minematsu and N. Kamiya

Fig. 1. XOR-GTM using t × m test matrix H and extension rule R with v elements.

Fig. 2. XOR-GTM for m = 4 and t = 3 (we omit the first all-one row). The invocations
of F in a dotted box can be avoided by caching.

For message M ∈ {0, 1}∗3, XOR-GTM generates T = (T [1], T [2], T [3]) where

T [1] = G1
K′(S[1]), S[1] = F 1

K(M [1]) ⊕ F 2
K(M [2]) (10)

T [2] = G2
K′(S[2]), S[2] = F 2

K(M [2]) ⊕ F 3
K(M [3])) (11)

T [3] = G3
K′(S[3]), S[3] = F 3

K(M [3]) ⊕ F 4
K(M [4])). (12)

The linear combinations of hash values (S) specified by R are:

S[4] = S[1] ⊕ S[2] = F 1
K(M [1]) ⊕ F 3

K(M [3]) (13)

S[5] = S[2] ⊕ S[3] = F 2
K(M [2]) ⊕ F 4

K(M [4]) (14)

S[6] = S[1] ⊕ S[2] ⊕ S[3] = F 1
K(M [1]) ⊕ F 4

K(M [4]). (15)

Given (M ′, T ′), the (basic) verification is done by comparing T ′ = (T ′[1],
T ′[2], T ′[3]) with ̂T = XOR-GTM[FK , GK′](M ′). To detect the corruptions,

Symmetric-Key Corruption Detection 605

we decrypt T ′ by GK′ to obtain S′ = (S′[1], S′[2], S′[3]) and compute ̂S =
(̂S[1], ̂S[2], ̂S[3]) from M ′, and expand S′ and ̂S as (13), (14), (15) to obtain
(S′)R and ̂SR (the computation of T is shown in Fig. 2).

In fact, HR comes from Macula [31] with parameter (n, k, d) = (4, 3, 2), hence
is 2-disjunct. Thus, this example detects at most 2 corruptions among 4 items
using 3 tags, which is impossible with DirectGTM as there is no 3 × 4 2-disjunct
matrix from (4). We note that this example is just to understand the idea: HR

is not sound as it lacks all-one row (hence not secure), and adding an all-one
row will make it useless.

Efficient Computation. Since Hi may intersect with other Hj , a straightfor-
ward tag computation will bring lots of redundant F calls. However, the com-
putation of T can be done by m calls of FK and t calls of GK′ as well as Min15.
See Fig. 1. A nice thing is that this feature is independent of the contents of H.
Usually m � t (as this is why we use CGT!), hence, XOR-GTM is roughly as
efficient as the standard MACs applied to the whole message. See Sect. 7 for our
preliminary implementation result.

5 Security Analysis

We show XOR-GTM is a secure MAC under the standard unforgeability notion
[5,6], and more importantly, it is hard to forge the detection procedure, if FK is
a PRF and GK′ is a tweakable PRP.

5.1 Security Notions

The first security notion is Tag Vector Unforgeability (TVUF), which is essen-
tially the same as the standard unforgeability of deterministic MACs. The sec-
ond is Tag String Unforgeability (TSUF), a stronger notion of unforgeability.
The third is Decoder Unforgeability (DUF), which captures the hardness of
fooling the näıve decoder to detect corruptions. To define them, we introduce
several oracles. Following the syntax defined at Sect. 4.2, we consider a corrup-
tion detectable MAC MACK as a tuple (KG,Tag,Ver,SVer,Det). We assume the
key K ∈ K has been generated by KG(p) in advance, for a security parameter p.

Definition 2 (Oracles). A tagging oracle OT accepts M and returns T =
TagK(M). The tag vector verification oracle OV , or simply the verification ora-
cle, accepts (M ′, T ′) ∈ M × T and returns VerK(M ′, T ′). The tag string veri-
fication oracle OSV accepts (M ′, T ′) and returns SVerK(M ′, T ′). The detection
oracle OD accepts (M ′, T ′) ∈ {0, 1}∗m × T t and returns DetK(M ′, T ′).

A query to OT is called a tagging query and written as T -query. Queries to
other oracles are called analogously.

606 K. Minematsu and N. Kamiya

Definition 3 (TVUF). Let A1 be an adversary who (possibly adaptively) queries
to OT and OV . We say A1 forges if it receives 0 from OV by querying (M ′, T ′)
without making a tagging query M ′. The advantage of A1 is defined as

Advtvuf
MACK

(A1)
def= Pr[AOT ,OV

1 forges]. (16)

Definition 4 (TSUF). Let A2 be an adversary who queries to OT and OSV .
We say A2 forges if it receives B = (B[1], . . . , B[t]) from OSV that indicates
a non-trivial tag-string forgery. That is, for an SV-query (M ′, T ′) and the cor-
responding response B from OSV , there exists i ∈ �t� such that B[i] = 0 and
(M ′ �Hi, T

′[i]) �= (M �Hi, T [i]) holds for any (M,T) obtained from a previous
T-query and its response. The advantage of A2 is defined as

Advtsuf
MACK

(A2)
def= Pr[AOT ,OSV

2 forges]. (17)

Definition 5 (DUF). Let A3 be an adversary who queries to OT and OD. We
assume A3 is d-corrupting, i.e. any D-query (M ′, T ′) satisfies (1) T ′ = T holds
for a previous T-query (M,T), where M is called a target message, and (2)
1 ≤ |diff(M ′,M)| ≤ d. We say A3 forges if OD fails, that is, it returns P �=
diff(M ′,M). We define

Advduf(d)
MACK

(A3)
def= Pr[AOT ,OD

3 forges]. (18)

The security against tag vector forgery is measured by TVUF advantage, and
we say MACK is secure against tag vector forgery if Advtvuf

MACK
(A1) is sufficiently

small for all practical adversaries. The security against tag string forgery and
decoder forgery are defined similarly.

These notions are the same as Min15, except TSUF which is slightly different.

Notes on DUF. Our DUF notion is to capture the hardness of fooling the
decoder when an adversary corrupts a target message M to some M ′. Naturally
we expect such target is unique, however Definition 5 allows distinct multiple
messages, say Mi and Mj , to be chosen as the target for a single attempt of
corruption, iff they yield the same tag vectors. This is not a definitional problem,
rather our preference of unifying queries into two types, either M (for tagging)
or (M,T) (for verification or detection) for all three notions. In fact, we can
modify the definition so that the target is always unique (say by querying a
tuple (M,M ′) and the oracle computes T ′ = T from M). Moreover, a non-
trivial tag collision breaks our scheme as it tells some non-trivial information on
the outputs of FK , and we count it as one of bad events in our provable security
analysis (see Sect. 5.2). Thus both definitions have no significant difference in
practice. See Sect. A for other discussions on DUF.

Symmetric-Key Corruption Detection 607

5.2 Provable Security Bounds

XOR-GTM[FK , GK′] is defined by the algorithms of Fig. 1 (where KG is triv-
ially defined and omitted): TagK = XOR-GTM[FK , GK′].tag, and VerK =
XOR-GTM[FK , GK′].verify, and SVerK = XOR-GTM[FK , GK′].verify-S, and
DetK = XOR-GTM[FK , GK′].detect, where K = (K,K ′).

We show the security bounds of XOR-GTM[FK , GK′] assuming t × m H and
R (consisting of v elements) are sound and HR is d-disjunct. For the proofs, due
to the space limitation, we here provide a sketch for DUF. The proofs of TVUF
and TSUF bounds are similar to those of Min15, and deferred to the full version
as well as the full proof of DUF.

Theorem 1 (TVUF security of XOR-GTM). For any A1 using qt T-queries and
qv V-queries with time complexity τ , we have

Advtvuf
XOR-GTM[FK ,GK′](A1) ≤ Advprf

FK
(AF) + Advtprp

GK′ (AG) +
tq2 + qv

2n
,

where q = qt + qv, for some AF using mq queries and τ ′ = O(τ) time, and AG

using tq queries and τ ′′ = O(τ) time.

Theorem 2 (TSUF security of XOR-GTM). For any A2 using q T-queries and
qv SV-queries with time complexity τ , we have

Advtsuf
XOR-GTM[FK ,GK′](A2) ≤ Advprf

FK
(AF) + Advtprp

GK′ (AG) +
tq2 + tqv

2n
,

where q = qt + qv, for some AF using mq queries and τ ′ = O(τ) time, and AG

using tq queries and τ ′′ = O(τ) time.

Theorem 3 (DUF security of XOR-GTM). For any d-corrupting A3 using qt
T-queries and qd D-queries with time complexity τ , we have

Advduf(d)
XOR-GTM[FK ,GK′](A3) ≤ Advprf

FK
(AF) + Advprf

GK′ (AG) +
vq2 + vqd

2n
,

where q = qt + qd, for some AF using m(q + qd) queries and τ ′ = O(τ) time,
and AG using vq queries and τ ′′ = O(τ) time.

These bounds show that XOR-GTM is provably secure if the number of queries
is sufficiently smaller than 2n/2, which is quite common to the MAC modes of
n-bit block ciphers, such as CMAC [25].

5.3 Proof Sketch of Theorem 3

We prove an information-theoretic bound for XOR-GTM[RF , ˜PG] using URF RF

and TURP ˜PG. The derivation of a computational analogue is standard [2]. We
consider a variant of DUF oracle, DUF′ oracle denoted by OD′ , which takes
the same input as OD but returns the raw decoder input. That is, when OD′

608 K. Minematsu and N. Kamiya

takes (M ′, T ′), M ′ = (M ′[1], . . . ,M ′[m]) and T ′ = (T ′[1], . . . , T ′[t]), it returns
̂B = (̂B[1], . . . , ̂B[v]) with ̂B[i] = cmp(S′[i], ̂S[i]) and

S′[i] = ˜P
i,−1

G (T ′[i]), for i ∈ �t�, (19)

S′[j] =
⊕

k∈Rj

S′[k], for j ∈ {t + 1, . . . , v}, (20)

̂S[i] =
⊕

j∈HR
i

RF,j(M ′[j]). (21)

A query to OD′ will be called a D′-query. Let P be the output of näıve decoder
taking ̂B. An adversary of DUF′ game is said to win (forge) if P �= diff(M,M ′).

Since the näıve decoder is a public function of ̂B, the adversary A′ in DUF′

game can always simulate the adversary A in the original DUF game, using the
same numbers of T - and D/D′-queries as A. Hence we have

Advduf(d)

XOR-GTM[RF ,˜PG]
(A) ≤ Advduf’(d)

XOR-GTM[RF ,˜PG]
(A′), (22)

where the latter term denotes the advantage under DUF′ game, which we want
to bound. From the invertibility of ˜PG, the right hand side of the above can be
bounded by TSUF advantage of another scheme DirectGTM[RF , ˜PG] that uses
v × m test matrix H′ = HR (where the tweak space of ˜PG is augmented if
needed) when the adversary simulates DUF game (in its SV-queries). Therefore,
we have

Advduf’(d)

XOR-GTM[RF ,˜PG]
(A) ≤ Advtsuf

DirectGTM[RF ,˜PG]
(A′) (23)

for some A′ using qt T -queries and qd SV -queries. Combining Eq. (22) and
Theorem 2 with Eq. (23), we complete the proof.

6 Instantiations of XOR-GTM

6.1 Finding Useful Matrices

For XOR-GTM, we need a d-disjunct matrix of a small rank instead of a small
number of rows. However, the rank was rarely studied in the existing con-
structions of disjunct matrix. Moreover, the state-of-the-art constructions tend
to have a high rank. For example, we investigated the rank of matrices from
CRS [20] and STD [43] used by Min15. As far as we tried, the rank was around
0.95t to 0.90t for the matrices of t rows, hence only up to 10% reduction in
communication. This phenomenon is more or less expected, as these matrices
are designed to have a small number rows and not to have a small rank.

In the following, we show several low-rank d-disjunct matrix constructions
which can be used as HR in XOR-GTM. The corresponding H is obtained as a
basis matrix (i.e. a matrix obtained by the basis of row vectors of HR), and R is
determined accordingly. Interestingly, all matrices are near-square, thus not the
choice for the common applications of CGT. However, they achieve a smaller
communication cost than any instantiation of DirectGTM.

Symmetric-Key Corruption Detection 609

6.2 Hadamard Matrix

We found a class of square matrices derived from Sylvester-type Hadamard
matrix that has the following properties: (1) it is m×m matrix with m = 2s −1
for a positive integer s and (2) the rank is at most s + 1 and (3) it is 2-disjunct
for any s ≥ 1. If we use this matrix as HR for XOR-GTM, it allows us to reduce
the number of tags of DirectGTM with optimal 2-disjunct matrix by a factor of
around 3 to 5. The details will be in the full version.

6.3 Matrix from Finite Geometry

The example of Sect. 6.2 is scalable in terms of m, however, still d is fixed to 2.
In the following, we show two matrix classes that are scalable both for m and d.
They are based on finite geometry. See e.g. [26] for the technical terms that will
appear in the following descriptions.

Table 1. Disjunct matrice from projective plane.

s 1 2 3 4 5 6 7 8 9 10 11 12 13

Rows 7 21 73 273 1057 4161 16513 65793 262657 1049601 4196353 16781313 67117057

Rank 4 10 28 82 244 730 2188 6562 19684 59050 177148 531442 1594324

Disjunctness 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

Bound 6 15 45 153 561 2145 8385 33153 131841 525825 2100225 8394753 33566721

Let s be a positive integer. Let P(s) be a square matrix of m = 22s + 2s + 1
rows, and is defined as a point-line incidence matrix for the two-dimensional
finite projective plane over GF(2s). To be more concrete, each row (column) of
P(s) represents 22s+2s+1 points (lines) over the projective plane. All points and
lines on the projective plane are indexed, and P(s)

i,j is 1 if i-th point is on the j-th
line, and 0 otherwise. It is known that the GF(2) rank of P(s) is t = 3s + 1 [42].
Its disjunctness is proved as follows.

Proposition 2. P(s) is 2s-disjunct.

Proof. P(s) has the following properties [26]:

(A) Each column (resp. row) has uniform weight 2s + 1;
(B) Any two columns (resp. rows) have exactly one 1-entry in common.

We observe that by (B), any two columns of P(s) have exactly one intersection. It
follows that any column has at most 2s intersections with the union of any other
2s columns, and thus it cannot be contained in that union since any column has
weight 2s + 1 by (A). This proves the proposition. ��

610 K. Minematsu and N. Kamiya

An example of P(s) is shown in Example 2. We call this instantiation
XOR-GTM-PPI for the use of Projective-Plane-Incidence matrix. It uses t inde-
pendent rows of P(s) as H and defines R accordingly so that HR = P(s). There-
fore, XOR-GTM-PPI can detect d = 2s = O(

√
m) corruptions using t = 3s + 1 =

O(
√

m) tags. This implies a significant improvement over DirectGTM, since t
grows as t = dlog 3 + 1 ≈ d1.58 and tmin(d,m) = O(d2 log m). Table 1 shows the
profiles of the disjunct matrices obtained by the projective plane.

Example 2. P(1) is a 7×7 matrix of rank 4 and disjunctness 2 which is described
as follows (note: it depends on the field polynomial).

P(1) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1
1 0 0 0 1 1 0
0 1 0 0 0 1 1
1 0 1 0 0 0 1
1 1 0 1 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (24)

The first 4 rows are linearly independent, and they span the row space of P(1).

More from Affine Plane. We found that matrices derived from Affine plane
are also useful. Whereas the space of possible (m, d, t) realized by the projective-
plane matrices is sparse and thus may not fit in the real-world use cases, a class
of affine-plane matrices proposed by Kamiya [27] for LDPC code (a class of
linear error-correcting codes) provides a greater flexibility in the possible space
of (m, d, t). The details will be in the full version.

Table 2. Numerical examples for XOR-GTM-PPI. The last column (improvement fac-
tor) shows the inverse ratio of Tag size to that of Trivial scheme.

Target: 4.4 TB HDD Total tag size Corrupted data Imp. factor

Trivial scheme 17.18 GB No limit 1

DirectGTM 14.85 GB 135MB 1.15

XOR-GTM-PPI (s = 15) 229.58 MB 135MB 74.82

Target: 1.1 TB HDD Total tag size Corrupted data Imp. factor

Trivial scheme 4.29 GB No limit 1

DirectGTM 3.71 GB 68MB 1.15

XOR-GTM-PPI (s = 14) 76.52 MB 68MB 56.06

Target: 4.3 GB memory Total tag size Corrupted data Imp. factor

Trivial scheme 16.79 MB No limit 1

DirectGTM 14.50 MB 5MB 1.15

XOR-GTM-PPI (s = 10) 0.94 MB 5MB 17.86

Symmetric-Key Corruption Detection 611

7 Comparison of XOR-GTM-PPI with DirectGTM

We compare the commutation cost of XOR-GTM-PPI and DirectGTM. Figure 3
shows the ratio t/m for XOR-GTM-PPI and DirectGTM, where the latter is
assumed to use an ideal d-disjunct matrix achieving the lower bound of (3). Note
that t/m represents the relative communication ratio from the trivial scheme
using m tags, whose ratio is 1 (lower is better). Note that the plots of DirectGTM
may be unachievable. We also show the conjectured lower bound (4) which was
constantly 1 in the figure. The ratio of XOR-GTM-PPI quickly approaches to
zero. For example, for s = 1 it is about 0.57 and for s = 10 it is about 0.056. In
contrast, the communication ratio of DirectGTM is 1 up to d = 5 (as (4) holds
for d ≤ 5) and is more than 0.8 even if s is large.

Numerical Examples for Storage Integrity Applications. Suppose we
apply XOR-GTM-PPI to detect corruptions in the storages, such as HDDs or
USB memories. Here, a data item represents the contents of a sector which
is 4,096 bytes. When s = 15, the size of a storage (HDD) amounts to about
4.4 TB, and XOR-GTM-PPI needs about 230 MB for storing the tags and can
detect up to 135 MB corruptions. The trivial scheme, which computes a tag for
each sector, and DirectGTM using a disjunct matrix achieving (3) need about
17.2 GB and 14.8 GB for the tags respectively. In terms of the amounts of tags,
the improvement factor from the trivial scheme is 74.82 for XOR-GTM-PPI, while
only 1.15 for the DirectGTM. Table 2 shows more examples.

Fig. 3. Comparison of communication ratios. The red solid line: XOR-GTM-PPI. The
blue dashed line: the lower bound of DirectGTM from (3). The black dotted line: the
conjectured lower bound of DirectGTM from (4) (true for d ≤ 5). (Color figure online)

612 K. Minematsu and N. Kamiya

Table 3. Preliminary implementation results of XOR-GTM-PPI showing cycles per
input byte. Verification includes corruption detection. Environment: Ubuntu 16.04 on
Intel Xeon E5-2699 (Broadwell) v4 at 2.2 GHz. Code written in C with gcc 5.4.0, using
AESNI. Single PMAC runs at 5.2 cycles per byte for long inputs.

Size of each
message item

s = 1 s = 2 s = 3 s = 4 s = 5

tag verf tag verf tag verf tag verf tag verf

1 KB 14.6 20.8 16.6 20.7 14.8 22.5 20.67 23.5 15.4 15.5

2 KB 14.5 18.2 14.5 18.2 10.8 17.6 15.0 15.1 16.8 16.9

4 KB 13.5 16.9 10.1 16.9 12.9 14.0 6.3 10.5 12.6 12.7

1MB 5.2 8.5 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2

Experimental Implementation. In a similar manner to Min15, we imple-
mented XOR-GTM-PPI for tagging, verification and detection on a conventional
server, using PMAC-AES for F and XEX-AES for G [39], for s ∈ �5�. We
have utilized the fact that the matrix HR is circulant (see Example 2) for
reducing memory. Since all the procedures need essentially O(m
x/128�) AES
computations when |M [i]| = x and simple linear operations, the computation
cost is expected to be close to that of single PMAC-AES on entire M . In our
implementations, we observed this when x is about 1 Mbyte. See Fig. 3 for our
preliminary result. Improving the performance of implementation and an exten-
sion to larger s are future work.

8 Conclusions

We have shown a new approach to corruption detectable MAC. As well as pre-
vious work, our XOR-GTM is based on the theory of combinatorial group test-
ing (CGT). However, using the linearity in the MAC computation, our scheme
breaks the inherent communication limit of previous schemes using d-disjunct
test matrices. Besides, the computational cost is quite small, roughly the same
as taking a single MAC for the whole data items, thus essentially minimum. We
formalize the security notions and prove the security of XOR-GTM, and provide
several instantiations of test matrices. Numerical examples for storage applica-
tion suggest significant improvement from any of previous scheme.

Acknowledgements. The authors would like to thank Hiroyasu Kubo, Nao Shibata,
and Maki Shigeri for implementation, and anonymous reviewers of ESORICS 2019 and
Eurocrypt 2019 for their insightful comments.

A Discussions on Decoder Unforgeability

As well as previous work [22,33], we assume that only the message is corrupted
for defining DUF, which is more restrictive than the standard attack model for

Symmetric-Key Corruption Detection 613

MACs. This is because when a tag is corrupted the verifier cannot decide whether
both the data and tag are corrupted, or only the tag is corrupted. This is not
a specific limitation of our scheme: it holds for the trivial scheme and Min15 as
well. The avoidance of tag-only corruption is practical for some use cases. In a
storage integrity protection system, MACs are applied to a large storage and the
tags are usually stored in a small, trusted place (e.g. a secure hardware or an
isolated server).

Meanwhile, it is also possible to extend our notions to capture the tag corrup-
tion (which corresponds to false positives in the test outcomes) or approximate
detection. This will require us to extend the notion of disjunctness as studied in
the context of CGT [10,34,35,43]. See also Sect. 3.5 of Min15.

References

1. Atallah, M.J., Frikken, K.B., Blanton, M., Cho, Y.: Private combinatorial group
testing. In: AsiaCCS, pp. 312–320. ACM (2008)

2. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of
symmetric encryption. In: FOCS, pp. 394–403. IEEE Computer Society (1997)

3. Bellare, M., Goldreich, O., Goldwasser, S.: Incremental cryptography and applica-
tion to virus protection. In: STOC, pp. 45–56. ACM (1995)

4. Bellare, M., Guérin, R., Rogaway, P.: XOR MACs: new methods for message
authentication using finite pseudorandom functions. In: Coppersmith, D. (ed.)
CRYPTO 1995. LNCS, vol. 963, pp. 15–28. Springer, Heidelberg (1995). https://
doi.org/10.1007/3-540-44750-4 2

5. Bellare, M., Kilian, J., Rogaway, P.: The security of the cipher block chaining
message authentication code. J. Comput. Syst. Sci. 61(3), 362–399 (2000)

6. Black, J., Rogaway, P.: CBC MACs for arbitrary-length messages: the three-key
constructions. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 197–215.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44598-6 12

7. Black, J., Rogaway, P.: A block-cipher mode of operation for parallelizable message
authentication. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp.
384–397. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7 25

8. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24676-3 30

9. De Bonis, A., Di Crescenzo, G.: Combinatorial group testing for corruption local-
izing hashing. In: Fu, B., Du, D.-Z. (eds.) COCOON 2011. LNCS, vol. 6842, pp.
579–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22685-
4 50

10. Cheraghchi, M.: Noise-resilient group testing: limitations and constructions. Dis-
crete Appl. Math. 161(1–2), 81–95 (2013)

11. Chor, B., Fiat, A., Naor, M.: Tracing traitors. In: Desmedt, Y.G. (ed.) CRYPTO
1994. LNCS, vol. 839, pp. 257–270. Springer, Heidelberg (1994). https://doi.org/
10.1007/3-540-48658-5 25

12. Di Crescenzo, G., Arce, G.: Data forensics constructions from cryptographic hash-
ing and coding. In: Shi, Y.Q., Kim, H.-J., Perez-Gonzalez, F. (eds.) IWDW 2011.
LNCS, vol. 7128, pp. 494–509. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-32205-1 39

https://doi.org/10.1007/3-540-44750-4_2
https://doi.org/10.1007/3-540-44750-4_2
https://doi.org/10.1007/3-540-44598-6_12
https://doi.org/10.1007/3-540-46035-7_25
https://doi.org/10.1007/978-3-540-24676-3_30
https://doi.org/10.1007/978-3-540-24676-3_30
https://doi.org/10.1007/978-3-642-22685-4_50
https://doi.org/10.1007/978-3-642-22685-4_50
https://doi.org/10.1007/3-540-48658-5_25
https://doi.org/10.1007/3-540-48658-5_25
https://doi.org/10.1007/978-3-642-32205-1_39
https://doi.org/10.1007/978-3-642-32205-1_39

614 K. Minematsu and N. Kamiya

13. Crescenzo, G.D., Ge, R., Arce, G.R.: Design and analysis of DBMAC, an error
localizing message authentication code. In: GLOBECOM, pp. 2224–2228. IEEE
(2004)

14. Di Crescenzo, G., Jiang, S., Safavi-Naini, R.: Corruption-localizing hashing. In:
Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp. 489–504. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-04444-1 30

15. Crescenzo, G.D., Vakil, F.: Cryptographic hashing for virus localization. In:
WORM, pp. 41–48. ACM Press (2006)

16. Dorfman, R.: The detection of defective members of large populations. Ann. Math.
Stat. 14(4), 436–440 (1943)

17. Du, D., Hwang, F.: Combinatorial Group Testing and Its Applications. Applied
Mathematics. World Scientific, Singapore (2000)

18. Dýachkov, A.G., Rykov, V.V.: A survey of superimposed code theory. Probl. Con-
trol. Inf. Theory 12(4), 229–242 (1983)

19. Emad, A., Milenkovic, O.: Poisson group testing: a probabilistic model for boolean
compressed sensing. IEEE Trans. Signal Process. 63(16), 4396–4410 (2015)

20. Eppstein, D., Goodrich, M.T., Hirschberg, D.S.: Improved combinatorial group
testing algorithms for real-world problem sizes. SIAM J. Comput. 36(5), 1360–
1375 (2007)

21. Erdös, P., Frankl, P., Füredi, Z.: Families of finite sets in which no set is covered
by the union of R others. Israel J. Math. 51(1), 79–89 (1985)

22. Goodrich, M.T., Atallah, M.J., Tamassia, R.: Indexing information for data foren-
sics. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531,
pp. 206–221. Springer, Heidelberg (2005). https://doi.org/10.1007/11496137 15

23. Hirose, S., Shikata, J.: Non-adaptive group-testing aggregate MAC scheme. In: Su,
C., Kikuchi, H. (eds.) ISPEC 2018. LNCS, vol. 11125, pp. 357–372. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-99807-7 22

24. Inan, H.A., Kairouz, P., Özgür, A.: Sparse group testing codes for low-energy
massive random access. In: Allerton, pp. 658–665. IEEE (2017)

25. Iwata, T., Kurosawa, K.: OMAC: one-key CBC MAC. In: Johansson, T. (ed.) FSE
2003. LNCS, vol. 2887, pp. 129–153. Springer, Heidelberg (2003). https://doi.org/
10.1007/978-3-540-39887-5 11

26. Assmus, E.F., Key, J.D.: Designs and Their Codes. Cambridge Tracts in Mathe-
matics, vol. 103. Cambridge University Press, Cambridge (1992)

27. Kamiya, N.: High-rate quasi-cyclic low-density parity-check codes derived from
finite affine planes. IEEE Trans. Inf. Theory 53(4), 1444–1459 (2007)

28. Katz, J., Lindell, A.Y.: Aggregate message authentication codes. In: Malkin, T.
(ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 155–169. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-79263-5 10

29. Kautz, W.H., Singleton, R.C.: Nonrandom binary superimposed codes. IEEE
Trans. Inf. Theory 10(4), 363–377 (1964)

30. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45708-9 3

31. Macula, A.J.: A simple construction of d-disjunct matrices with certain constant
weights. Discrete Math. 162(1–3), 311–312 (1996)

32. Macula, A.J., Popyack, L.J.: A group testing method for finding patterns in data.
Discrete Appl. Math. 144(1–2), 149–157 (2004)

https://doi.org/10.1007/978-3-642-04444-1_30
https://doi.org/10.1007/11496137_15
https://doi.org/10.1007/978-3-319-99807-7_22
https://doi.org/10.1007/978-3-540-39887-5_11
https://doi.org/10.1007/978-3-540-39887-5_11
https://doi.org/10.1007/978-3-540-79263-5_10
https://doi.org/10.1007/3-540-45708-9_3
https://doi.org/10.1007/3-540-45708-9_3

Symmetric-Key Corruption Detection 615

33. Minematsu, K.: Efficient message authentication codes with combinatorial group
testing. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS 2015. LNCS,
vol. 9326, pp. 185–202. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
24174-6 10

34. Ngo, H.Q., Du, D.Z.: A survey on combinatorial group testing algorithms with
applications to DNA library screening. DIMACS Ser. Discret. Math. Theor. Com-
put. Sci. 55, 171–182 (2000)

35. Ngo, H.Q., Porat, E., Rudra, A.: Efficiently decodable error-correcting list disjunct
matrices and applications. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP
2011. LNCS, vol. 6755, pp. 557–568. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22006-7 47

36. Oprea, A., Reiter, M.K.: Space-efficient block storage integrity. In: NDSS. The
Internet Society (2005)

37. Oprea, A., Reiter, M.K.: Integrity checking in cryptographic file systems with
constant trusted storage. In: USENIX Security Symposium. USENIX Association
(2007)

38. Porat, E., Rothschild, A.: Explicit nonadaptive combinatorial group testing
schemes. IEEE Trans. Inf. Theory 57(12), 7982–7989 (2011)

39. Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements
to modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol.
3329, pp. 16–31. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-
30539-2 2

40. Rudra, A.: CSE 709: compressed sensing and group testing, Part I (fall 2011 sem-
inar) (2011)

41. Shangguan, C., Ge, G.: New bounds on the number of tests for disjunct matrices.
IEEE Trans. Inf. Theory 62(12), 7518–7521 (2016)

42. Smith, K.J.C.: Majority Decodable Codes Derived from Finite Geometries. Insti-
tute of Statistics Mimeo Series 561 (1967)

43. Thierry-Mieg, N.: A new pooling strategy for high-throughput screening: the
shifted transversal design. BMC Bioinform. 7, 28 (2006)

44. Ubaru, S., Mazumdar, A.: Multilabel classification with group testing and codes.
In: ICML. Proceedings of Machine Learning Research, vol. 70, pp. 3492–3501.
PMLR (2017)

45. Zaverucha, G.M., Stinson, D.R.: Group testing and batch verification. In: Kuro-
sawa, K. (ed.) ICITS 2009. LNCS, vol. 5973, pp. 140–157. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-14496-7 12

https://doi.org/10.1007/978-3-319-24174-6_10
https://doi.org/10.1007/978-3-319-24174-6_10
https://doi.org/10.1007/978-3-642-22006-7_47
https://doi.org/10.1007/978-3-642-22006-7_47
https://doi.org/10.1007/978-3-540-30539-2_2
https://doi.org/10.1007/978-3-540-30539-2_2
https://doi.org/10.1007/978-3-642-14496-7_12

Useful Tools

Finding Flaws from Password
Authentication Code in Android Apps

Siqi Ma1(B), Elisa Bertino2, Surya Nepal1, Juanru Li3, Diethelm Ostry1,
Robert H. Deng4, and Sanjay Jha5

1 CSIRO, Sydney, Australia
{siqi.ma,surya.nepal,diet.ostry}@csiro.au

2 Purdue University, West Lafayette, USA
bertino@purdue.edu

3 Shanghai Jiao Tong University, Shanghai, China
jarod@sjtu.edu.cn

4 Singapore Management University, Singapore, Singapore
robertdeng@smu.edu.sg

5 University of New South Wales, Sydney, Kensington, Australia
sanjay.jha@unsw.edu.au

Abstract. Password authentication is widely used to validate users’
identities because it is convenient to use, easy for users to remember,
and simple to implement. The password authentication protocol trans-
mits passwords in plaintext, which makes the authentication vulnerable
to eavesdropping and replay attacks, and several protocols have been
proposed to protect against this. However, we find that secure password
authentication protocols are often implemented incorrectly in Android
applications (apps). To detect the implementation flaws in password
authentication code, we propose GLACIATE, a fully automated tool com-
bining machine learning and program analysis. Instead of creating detec-
tion templates/rules manually, GLACIATE automatically and accurately
learns the common authentication flaws from a relatively small train-
ing dataset, and then identifies whether the authentication flaws exist in
other apps. We collected 16,387 apps from Google Play for evaluation.
GLACIATE successfully identified 4,105 of these with incorrect password
authentication implementations. Examining these results, we observed
that a significant proportion of them had multiple flaws in their authen-
tication code. We further compared GLACIATE with the state-of-the-art
techniques to assess its detection accuracy.

Keywords: Password authentication protocol ·
Mobile application security · Authentication protocol flaws ·
Vulnerability detection · Automated program analysis

1 Introduction

Although a variety of authentication protocols are proposed, most Android appli-
cations (apps for short) with online services are still using password to authen-
ticate user’s identity because it is simple and inexpensive to create, use and
c© Springer Nature Switzerland AG 2019
K. Sako et al. (Eds.): ESORICS 2019, LNCS 11735, pp. 619–637, 2019.
https://doi.org/10.1007/978-3-030-29959-0_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29959-0_30&domain=pdf
https://doi.org/10.1007/978-3-030-29959-0_30

620 S. Ma et al.

revoke [13]. To validate the identity in the password authentication protocol [18]
(named as BPAP in this paper), a user sends a combination of username and
password in plaintext to a server through a client app, and the server replies
with an authentication-acknowledgement if the received password is valid.

While using BPAP over an insecure communication channel, the transmission
and verification of password become vulnerable to many attacks, such as eaves-
dropping and replay attacks. In recent years, many cases of password leakage,
even from those large corporations (e.g., Facebook and Yahoo), are reported.
To regulate the use of password, some secure password authentication protocols
(PAP) are proposed to help developers validate users’ credential: (1) BPAP over
Secure Socket Layer/Transport Layer Security (SSL/TLS) [4], which validates
the identities of the client and the server by checking their certificates and host-
name to set up a secure channel between them [12], and then the client sends the
combination of username and password over the secure channel; and (2) nonce-
based PAP [30], which utilizes the user’s password as a secret key to compute a
cryptographic function on a nonce value.

Unfortunately, we found that app developers tend to implement those secure
password authentication protocols incorrectly even though the requirements for a
secure password authentication are well-defined. A secure protocol with incorrect
implementation makes the authentication process become vulnerable to attack.
Suppose for example that in an app, a timestamp (Hour/Minute/Second) is gen-
erated for use in a password hash. An attacker could then launch replay attacks
by using the hashed password at the same time every day.

To detect implementation flaws of PAP in Android apps, several approaches
are proposed: MalloDroid [10] detects SSL implementation errors by checking
network API calls and Internet permissions. SMV-Hunter [25] detects SSL vul-
nerabilities by launching MITM attacks, using generated inputs to simulate inter-
actions between users and servers. Chen et al. [5] proposed an approach that tar-
gets the host head of HTTP implementations and launched a new attack “Host
of Troubles” on those HTTP implementations, and analyzed their behaviour in
handling the host headers. However, these approaches are highly implementation
dependant (i.e., they rely on specific APIs and inputs that can only recognize
certain protocols). To the best of our knowledge, there exist no approach that can
analyze password authentication protocols in a more general scope (e.g., BPAP
over SSL/TLS and nonce-based PAP). Moreover, most of the detected flaws are
summarized in a manual and ad-hoc way, and thus the detection processes are
neither automated nor general.

To address the limitations of previous approaches, i.e., implementation
dependant and high manual-effort, we propose a novel approach to extend state-
of-the-art insecure password authentication implementation detection. Our app-
roach first uses a machine learning algorithm, agglomerative hierarchical clus-
tering, to summarize detection rules in a fully automated way, and then utilizes
a fine-grained program analysis to detect flaws in Android apps according to
the generated rules. We implemented GLACIATE1, an automated analysis tool

1 GLACIATE: proGram anaLysis And maChIne leArning To dEtect.

Finding Flaws from Password Authentication Code in Android Apps 621

to support end-to-end automatic detection of insecure password authentication
implementations. Given only a small amount of training data, GLACIATE creates
detection rules automatically. It generates enriched call graphs for the apps and
groups similar enriched call graphs into different clusters, and mines the pat-
terns of flaws in each cluster to obtain templates of insecure implementation.
GLACIATE then uses a forward and backward program slicing to locate the code
part of password authentication in an Android app, and compares it with the
obtained templates to check whether the implementation is insecure.

To assess the effectiveness of GLACIATE, we compared GLACIATE with two
state-of-the-art tools, MalloDroid [10] and SMV-Hunter [25]. We found that
GLACIATE successfully identified 686 authentication flaws that are related to
SSL/TLS, achieving precision, recall, and F1 metrics of 91.3%, 93.5%, and 92.4%,
respectively. In the mean time, MalloDroid and SMV-Hunter only detected 201
and 572 flawed apps, respectively. Additionally, we downloaded 16,387 apps from
Google Play and utilized GLACIATE for a large scale analysis. GLACIATE identi-
fied 5,667 apps that implemented password authentication protocols, and found
that only 28% of them were implemented securely. Among the vulnerable apps
detected, 65% suffered from authentication flaws related to SSL/TLS. While
analyzing the transmitted passwords, 20% of them transmit passwords with inse-
cure hash, or even in plaintext. Moreover, 15 apps violate all the requirements
of establishing PAP.

Contributions: Overall, our contributions are as follows:

– We proposed a novel end-to-end approach to identify authentication flaws
from the implementation code of secure password authentication protocols.
By analyzing the authentication code of client apps, our approach locates all
the authentication flaws accurately.

– We designed a fully automated detection tool, GLACIATE. With only limited
training data, it uses both intra- and inter-procedural analyses to construct
enriched call graphs which represent the call relationships and data depen-
dencies in an app. GLACIATE then applies a clustering algorithm to construct
rule templates automatically. GLACIATE subsequently uses program analysis
to match an input app with those rule templates and so identify authentica-
tion flaws.

– We compared GLACIATE and state-of-the-art tools to assess its detection effec-
tiveness. We also applied GLACIATE on a large dataset of Android apps to ana-
lyze the implementation code of secure password authentication protocols.

Organization: The rest of this paper is organized as follows. Section 2 provides
background information on authentication protocols used in Android apps and
their correct implementation. In Sect. 3, we give an overview of GLACIATE design
and each component of GLACIATE in details. In Sect. 4, we evaluate the detection
effectiveness of GLACIATE against our dataset and compare it with the accuracy
of MalloDroid and SMV-Hunter. We discuss related work in Sect. 5 and Sect. 6
concludes the paper and outlines future work.

622 S. Ma et al.

2 Common Violations of Password Authentication
Protocols

In this section, we give an overview of the most commonly used secure password
authentication protocols (SPAP) in Android. In Sect. 2.1, we describe security
properties to establish secure password authentication protocols. and then we list
four types of violations that are commonly existed in the password authentication
implementation and describe how they can be exploited by attackers in Sect. 2.2.

2.1 Secure Password Authentication Protocol

The basic password authentication protocol (BPAP) is intended for users requir-
ing authentication by a local computer or a remote server over a closed network,
because BPAP is very simple, and only one message from the client to the server
is required, without the need for any cryptographic operations. To establish a
secure password authentication protocol (SPAP) over an opened network, the
following authentication protocols are commonly used.

BPAP over SSL/TLS. A common mitigation of the BPAP vulnerabilities
is using BPAP over SSL/TLS, where SSL/TLS is executed first to establish a
secure communication channel between the client and the server and then the
username and password are sent over the secure channel.

In SSL/TLS, the server is configured with a pair of public and private keys.
The public key is certified by a Certification Authority (CA) which issues a public
key certificate to the server. There are over 100 trusted CAs2 to support Android
apps. During the execution of the SSL/TLS protocol, it is crucial that the client
correctly performs a number of verifications on the public key certificate received
from the server. The verification steps are described as follows.

Step 1: Certificate Validation. The client verifies the server’s certificate by
performing three different checks [1,10]: (1) whether the certificate is signed
by a trusted CA; (2) whether the certificate is self-signed; and (3) whether
the certificate has expired.

Step 2: Hostname Verification. The client checks whether the hostname in
the subjectAltname field of the certificate matches the host portion of the
server’s URL in order to make sure that the certificate indeed belongs to the
server that the client is communicating with.

Nonce-Based Password Authentication Protocols. Another approach to
counter password eavesdropping and replay attacks is the use of nonce-based
password authentication protocols [14]. A nonce is a number used only once in
the execution of a protocol. Depending on whether the nonce is a random number
or a timestamp, nonce-based protocols can be classified into either challenge-
response or timestamp-based password authentication protocols. In the former,
the server sends a random number as a challenge to the client, and the client uses

2 https://developer.android.com/training/articles/security-ssl.

https://developer.android.com/training/articles/security-ssl

Finding Flaws from Password Authentication Code in Android Apps 623

the user’s password as a secret key to compute a cryptographic function on the
nonce (i.e., either by encryption of the nonce or a keyed hash of the nonce), and
sends the result to the server. In the latter, the client uses the user’s password
as a secret key to compute a cryptographic function on a timestamp and sends
the result to the server. Due to the use of a nonce, both protocols prevent replay
attacks in the sense that any replayed protocol message can be detected as such
by the server.

2.2 Authentication Flaws

A password authentication protocol is designed to meet specified security objec-
tives, but its security can be undermined if the implementation is incorrect. We
examine the authentication code in real-world apps and compare the implemen-
tations with the authentication primitives provided by the developer’s guides3.
Three types of authentication flaws listed below are discovered in Android apps.

Flaw 1: Insecure Password Transmission. Passwords are required to be
encrypted and hashed by the client app before transmission. An app without
encrypting passwords makes the authentication protocol become vulnerable to
eavesdropping and replay attacks. Consider the situation of transmitting an
encrypted password without being hashed, the password is easily to be leaked
at the server-side.

Flaw 2: Insecure Server Connection. To establish a secure channel between
apps and their servers, each app should follow two verification steps mentioned
in Sect. 2.1 to validate a server. However, we observe that some apps incorrectly
implement these two steps by simply accepting either all certificates or all host-
names.

Accepting all certificates represents that invalid certificates, including cer-
tificates signed by untrusted CAs, self-signed certificates, or expired certificates,
are also acceptable. It makes an app become vulnerable to several attacks, such
as MITM attacks, phishing attacks, and impersonation attacks. An attacker can
use a forged certificate to connect with the app to steal users’ usernames and
passwords.

Only checking the certificate from a server is not enough. An app should also
check if the hostname in the certificate matches that in the server’s URL. A
mismatch in hostname indicates that the server is using someone else’s (prob-
ably valid) certificate in the SSL/TLS handshake. Any app with this flaw is
potentially vulnerable to be connected to a malicious counterfeit server.

Flaw 3: Repeatable Timestamp. Timestamps must be used with great cau-
tion in any authentication protocol. For the timestamp-based password authen-
tication protocol, a timestamp in the format of Minute/Second results in the
protocol message being replayed every hour at the same minute and second
without being detectable by the server. A prudent practice is to have the times-
tamp in the format of Year/Month/Day/Hour/Minute/Second. This ensures the
3 Android Developers: https://developer.android.com/.

https://developer.android.com/

624 S. Ma et al.

uniqueness of the timestamp and hence the protocol message in any foreseeable
future.

Another potential authentication flaw is use of a repeatable challenge in the
challenge-response password authentication protocol. However, without access
to the source code of the authentication server, we are not aware of any efficient
techniques to determine the randomness of the challenge generated by the server.
Hence, we leave the analysis of this implementation flaw in Android apps as part
of our future work.

3 GLACIATE

In this section, we describe how GLACIATE detects authentication flaws automat-
ically (i.e. without manual predefined rules). Figure 1 illustrates the workflow of
GLACIATE, which contains two phases, Rules Creation and Flaws Detection. We
provide details of each phase below.

3.1 Rules Creation

The rules creation phase generates rule templates by processing labeled apps in
three steps - flow sequence construction, learning cluster generation, and detec-
tion rules mining.

Flow Sequence Construction. GLACIATE extracts enriched call graphs by
analyzing the Jimple code of each app and traverses each enriched call graph to
construct flow sequences. Details to construct flow sequences are listed below.

Flow Sequence Construc on

Detec on Rules Mining

Learning Cluster Genera on

Rules Crea on

Authen ca on Iden fica on

Rules Matching

Flaws Detec on

Rules ReportReport

Unlabeled

Labeled

Fig. 1. Workflow of GLACIATE

Enriched Call Graphs Generation. GLACIATE applies Soot [27] to trans-
late low-level Android bytecode into its intermediate representation (IR) (i.e.,
Jimple code in this paper) and generates enriched call graphs. Each node in an
enriched call graph represents either a local function or an external method4,
4 A local method is a method designed by developers, and an external method is a

system or library call.

Finding Flaws from Password Authentication Code in Android Apps 625

which can be represented by a 4-tuple: (ClassName, ReturnType, MethodName,
ParameterTypes[]). An edge connecting two nodes has three types: Call Edge,
Control Flow Edge and Data flow Edge that represent a method invocation, flow
of control and flow of data, respectively. The enriched call graph is generated in
the following steps:

1. GLACIATE first performs an intra-procedural analysis [3] to extract method
calls in each method and control flow relationships among those calls. At the
end of this process, for every method, we have a graph that captures the
control flow relationships among method calls made in the method.

2. Next, for each graph constructed in Step 1, GLACIATE examines the declared
arguments and variables to extract data dependencies. According to each data
dependency, a data flow edge is created between two nodes, and the data flow
edge is labeled with the corresponding argument/variable through which the
data dependency occurs.

3. Finally, we combine the graphs extracted in Steps 1 and 2, across all methods
by adding edges corresponding to method invocations.

Each enriched call graph may have redundant methods. GLACIATE performs
local distortions [21] to alter the graph topology (i.e., remove redundant meth-
ods), without changing the code’s functionality. To remove redundant functions,
GLACIATE first splits an enriched call graph into smaller pieces based on the
local method <init>. It then removes the <init> method which has only one
connected local method.
Flow Sequence Conversion. A flow sequence consists of a sequence of vectors,
each of which has four elements (Sfrom, Sto, Vin, Vout), indicating that method
Sfrom is the caller of method Sto, values Vin are input parameters of method
Sto, and values Vout are returned parameters of method Sto. Note that Vin and
Vout can be null to specify a method without any input parameters or return
values.

Given an enriched call graph, GLACIATE extracts the corresponding flow
sequences in three steps:

1. Following call edges, GLACIATE collects method invocations from the enriched
call graph and constructs pairs in the form of (Sfrom, Sto).

2. Following data flow edges, GLACIATE inserts input values Vin and returned
values Vout of each callee into the corresponding pair to construct a vector
(Sfrom, Sto, Vin, Vout).

3. Following control flow edges, GLACIATE extracts the sequence of vectors. Note
that we generate a flow sequence for each condition while processing the
decision making statements (e.g., if-else, switch, break).

Learning Cluster Generation. GLACIATE computes the similarity between
each enriched call graph and the other enriched call graphs, and groups the
similar enriched call graphs to produce learning clusters. Details are shown as
below.

626 S. Ma et al.

Similarity Computation. Based on the app labels, GLACIATE first classifies
enriched call graphs into five groups (Secure Group, Group 1, Group 2, Group 3,
and Group 4), which correspond to secure authentication, authentication with
flaw 1, authentication with flaw 2, authentication with flaw 3, and authentication
with flaw 4, respectively.

Within each group, GLACIATE compares enriched call graphs mutually, and
computes similarity scores by applying pairwise comparison [2]. Two enriched
call graphs are deemed to be similar only if their flow sequences are similar. To
check for this similarity, GLACIATE proceeds in the following steps:

1. GLACIATE constructs a pairwise comparison matrix to find the highest simi-
larity score between two enriched call graphs. The flow sequences FS of an
enriched call graph ECGi are listed on top row of the pairwise comparison
matrix, and the flow sequences FS′ of another enriched call graph ECGj are
listed on the left hand column of the pairwise comparison matrix.

2. GLACIATE compares flow sequences of two enriched call graphs by extracting
the longest common substring (LCS) [23] and fills the corresponding blank
matrix cell with the LCS length L of two flow sequences.

3. From each column, GLACIATE extracts the cell with the highest value Lmax.
The column and row of each cell should be unique.
If two cells from the same row are picked, GLACIATE then selects the next
highest value Lnext in each column and computes Lmax + Lnext interlaced.
GLACIATE chooses the pair (Lmax, Lnext) with the highest sum value.

4. Finally, GLACIATE computes the similarity score as SSim(ECGi, ECGj) =∑
Lmax.

Group Clustering. Given the similarity scores, GLACIATE performs agglomer-
ative hierarchical clustering [15], which works by measuring pairwise distances
between data points and grouping the data points one by one on the basis of
selecting nearest neighbours. GLACIATE uses the ECGs as a set of data points
and then applies the following steps to cluster them. We use the reciprocal of
the similarity score as the distance between two ECGs.

1. Given the ECGs, GLACIATE first labels each ECG as a single cluster C(ECG).
2. For two enriched call graphs ECG1 and ECG2, GLACIATE uses the reciprocal

of the similarity score to denote the distance between them as dist(1, 2).
3. Next, GLACIATE finds the closest pair of clusters C(ECG)m and C(ECG)n

from those single clusters, according to dist(m,n) = distmin(i, j), where the
minimum is over all pairs of clusters in the current clustering.

4. GLACIATE merges clusters C(ECG)m and C(ECG)n to form a new cluster,
and repeats from Step 2 until all the data points are merged into a single
cluster.

5. GLACIATE finally picks a distance threshold Tdist to cut the single cluster into
several different clusters, each of which is a learning cluster, used to generate
rule templates.

Finding Flaws from Password Authentication Code in Android Apps 627

Table 1. Indicator instructions

Secure protocols Instruction # Indicator instructions

BPAP 1 java.net.PasswordAuthentication char[]
getPassword

2 java.net.Authenticator
java.net.PasswordAuthentication
requestPasswordAuthentication

SSL 3 javax.net.ssl.SSLSocketFactory
java.net.Socket createSocket

4 javax.net.ssl.SSLContext
javax.net.ssl.SSLConext getInstance

5 javax.net.ssl.SSLSession
java.security.cert.Certificate[]
getLocalCertificates

6 javax.net.ssl.TrustManagerFactory
javax.net.ssl.TrustManagerFactory
getInstance

7 java.Security.cert.X509Certificate void verify

8 java.security.cert.X509Certificate: void
checkValidity

9 javax.net.ssl.HostnameVerifier boolean
verify

Timestamp 10 java.lang.System long currentTimeMillis

3.2 Detection Rules Mining

GLACIATE learns a rule template from each learning cluster. A rule template con-
sists of a set of indicator instructions, which specifies methods that are invoked
by all enriched call graphs, and a rule sequence, which specifies a subsequence
of vectors that is executed by all enriched call graphs.

To create a rule template from a learning cluster, GLACIATE executes an iter-
ative pattern mining which captures higher-order features from flow sequences.
A vector in a flow sequence, corresponding to a method invocation and a data
flow, can be treated as a feature. We apply an algorithm to mine closed unique
iterative patterns [22], which can capture all frequent iterative patterns without
any loss of information. In each learning cluster, GLACIATE compares enriched
call graphs and proceeds in the following steps:

1. GLACIATE observes the frequent vectors appeared in all enriched call graphs
and creates a set of indicator instructions. We manually selected nine indicator
instructions from the document provided by Android5, which are listed in
Table 1.

5 Android Doc: https://developer.android.com/training/articles/security-ssl#java.

https://developer.android.com/training/articles/security-ssl#java

628 S. Ma et al.

2. Starting from a frequent vector, GLACIATE creates a rule sequence. GLACIATE
searches for the following vector that appears in every enriched call graph,
and if found, includes it in the rule sequence. The rule sequence is created
successfully only if its length is longer than a threshold minrule. Step (2) is
executed recursively until the rule sequence is closed (i.e., does not grow).

3. For each rule sequence, GLACIATE finally replaces all concrete identifier values
(i.e., variables) with placeholders.

3.3 Flaws Detection

GLACIATE detects authentication flaws by selecting the most suitable template
in two steps as follows. These two steps are iterated until no further vulnerable
code segments are detected.

Authentication Identification. To detect whether there is any implemented
password authentication protocols, GLACIATE checks for matches with the sets
of indicator instructions. It compares flow sequences with each set of indicator
instructions and computes how many indicator instructions in the set match.
However, “noise” or unrelated vectors are present among the indicator instruc-
tions. The “noise” can correspond to unrelated method invocations, such as
toString(), <init>, etc. In view of this, we decide that a flow sequence matches
a set of indicator instructions if at least 80% of the indicator instructions are
matched.

Rules Matching. There are likely to be multiple rule templates which match
an enriched call graph. Instead of analyzing all the flow sequences of an enriched
call graph, GLACIATE applies program slicing [28] to compare flow sequences with
the corresponding matched rule templates one by one and in the following three
steps.

1. GLACIATE first identifies where the indicator instructions are located.
2. Beginning with each indicator instruction, GLACIATE compares the vectors in

the flow sequence FS with the vectors in the rule sequence RS by performing
forward program slicing. If sequences in FS can be matched with sequences
in RS, this enriched call graph will be labeled the same as RS, that is, secure,
flaw 1, flaw 2, flaw 3, or flaw 4. Noting that FS may include some redundant
vectors (i.e., redundant method invocations), FS and RS are matched if RS
is a subsequence of FS.

3. GLACIATE proceeds to the next detection template which matched, and exe-
cutes Step (2) until all matched rule templates have been analyzed.

4 Evaluation

In this section, we report the results of two experiments. The first experiment
assesses the performance of GLACIATE and compares it with MalloDroid [10] and

Finding Flaws from Password Authentication Code in Android Apps 629

SMV-Hunter [25], state-of-the-art tools for identifying flaws in the implementa-
tion of SSL/TLS validation in Android apps. MalloDroid is a semi-automated
detection tool, which requires manually-defined templates. SMV-Hunter is an
automatic detection tool that requires the manually generated inputs are
accurate enough to trigger vulnerabilities accurately. Differently, GLACIATE is
designed to detect violations in authentication code automatically, and as far as
we are aware, there are no other tools that can learn rules and detect authen-
tication flaws in this way. The second experiment demonstrates how GLACIATE
automatically analyze a large collection of Android apps to gain further insights
on the prevalence of authentication implementation flaws in these apps.

4.1 Assessment of GLACIATE

Dataset. We randomly collected 1,200 free apps from Google Play. In order to
ensure that our dataset has a wide coverage and does not have a bias towards any
particular type of app, we included apps from six categories: Communication,
Dating, Finance, Health & Fitness, Shopping, and Social Networking, and 200
apps from each category.

Due to the lack of an open source labeled dataset of apps with identified
authentication flaws, we created our own. As most implementations of password
authentication protocols follow the same structure, we believed that the struc-
tures are generalizable enough for our purpose.

For creating this ground-truth dataset, we asked a team of annotators (1
PhD student and 2 postdoctoral research fellows), all with more than 7 years of
programming experience in Java, to check whether implementations of password
authentication protocols in apps followed the rules that we created. We first
required team members to label apps independently. Then all members went
through the labels together and discussed any apps that were labeled differently.
The team had to come to an agreement before an app could be included in the
dataset. To evaluate whether the agreement was good enough, we computed the
Fleiss’s Kappa score [11]. The kappa score of the agreement is 0.901, which means
there was almost perfect agreement. Ultimately this procedure found a total of
1,205 implementations of password authentication protocols in 742 Android apps
(since some apps implement multiple protocols), and 1,087 authentication flaws
were identified in 695 apps (Flaw 1: 284, Flaw 2: 736, Flaw 3: 67).

Experiment Design. We used 10-fold cross validation [17] to evaluate the effec-
tiveness of GLACIATE. Furthermore, we compare GLACIATE with MalloDroid [10]
and SMV-Hunter [25]. While detecting authentication flaws, we set Tdist = 1.3 to
ensure that enriched call graphs in each cluster would be highly similar to each
other, and minrule = 2.

To assess the performance of GLACIATE, we generated an evaluation matrix
of the precision, recall, and F1 metrics. Precision is for measuring how accurate
our tool performs, recall reflects how many vulnerabilities are actually detected,
and F1 is used to balance precision and recall.

630 S. Ma et al.

Performance. For comparison, we applied the MalloDroid, SMV-Hunter and
GLACIATE to the entire dataset. Since MalloDroid and SMV-Hunter only detect
SSL/TLS-related flaws (i.e., flaw 2 in this paper), we limited GLACIATE to detect
flaw 2 (736 flaws in total) in this test. From the results we computed the precision,
recall and F1 over the entire dataset for each tool.

Table 2. Detection result: GLACIATE, MalloDroid, and SMV-Hunter

Flaw GLACIATE MalloDroid SMV-Hunter

Detected Correct Detected Correct Detected Correct

Flaw 2 751 686 214 201 627 572

Precision 91.3% 93.9% 91.2%

Recall 93.5% 27.3% 77.7%

F1 92.4% 42.3% 83.9%

Table 2 shows the assessment results. GLACIATE correctly detects 686 out
of 736 flaws, with precision, recall, and F1 values of 91.3%, 93.5%, and 92.4%,
respectively. On the other hand, MalloDroid can only detect 201 flaws, achieving
a recall of only 27.3%. SMV-Hunter successfully detects 572 SSL/TLS-related
flaws with precision, recall and F1 values of 91.2%, 77.7%, and 83.9%. Though
MalloDroid has fewer false positives, as evident from the marginally higher
precision (i.e., 93.9% against 91.3%), GLACIATE detects about 2.4 times more
flaw 2 than MalloDroid. Compared with SMV-Hunter, GLACIATE detects 20.2%
more flaws and has a 1.2% better precision. This means that GLACIATE generates
proportionally fewer false positives than SMV-Hunter.

TrustManagers are responsible for managing the trust material that is used
for deciding whether the received public key certificates should be accepted.
Besides the vulnerable TrustManagers detected by MalloDroid, GLACIATE also
finds three new types of vulnerable TrustManagers, namely BlindTrustManager,
InsecureTrustManager and AllTrustingTrustManager. Apps with these vulnerable
TrustManagers suffer from flaw 2.

GLACIATE: Further Analysis of Performance. In comparing the detection
performance of GLACIATE and MalloDroid, we find that MalloDroid fails to
correctly analyze apps that implement authentications across different classes,
which means MalloDroid is unable to analyze method invocation relationships
and cannot extract inter-component communications in apps. Furthermore, com-
paring the results for GLACIATE and SMV-Hunter, SMV-Hunter relies on user
inputs to trigger the recognition of authentication flaws. However, it is a chal-
lenging to generate accurate inputs to trigger the procedures.

GLACIATE did fail to analyze some apps. Since GLACIATE is built on top of
Soot, each app has to be decompiled using Soot. In total, Soot was unable
to decompile 184 apps, failing in “Soot.PackManager”. This method runs the

Finding Flaws from Password Authentication Code in Android Apps 631

ThreadPoolExecutor multiple times, and the executor Runnable is unable to han-
dle those threads separately. These fail-to-decompile apps can be reconsidered
when Soot is next upgraded6.

4.2 GLACIATE: Large Scale Analysis of Password Authentication

For this analysis, we downloaded 16,387 free apps at random from Google Play
and used our ground truth to build our detection model for further analysis. We
first checked whether our collected apps implemented any password authentica-
tion protocols. In total, 13,747 apps were successfully analyzed, and 5,667 (41%)
of them implemented BPAP. Further analyses were performed on those 5,667
apps. Apps failed to be analyzed by GLACIATE are unable to be decompiled by
Soot.

Table 3. Secure password authentication protocols in Android apps

of apps Secure password authentication protocols

3,353 Only BPAP over SSL/TLS

804 Only timestamp-based password authentication

385 Both BPAP over SSL/TLS and timestamp-based password
authentication

Based on the detection report generated by GLACIATE (see Table 3), we find
that 4,542 apps establish secure password authentication protocol by using at
least one protection protocol. Among the apps with at least one protection pro-
tocol, we observe that 3,738 implemented BPAP over SSL/TLS, which indi-
cates that SSL/TLS is the most common protection mechanism in practice. We
also identify 385 apps with both protections, i.e., BPAP over SSL/TLS and
timestamp-based password authentication protocols. By further analyzing those
apps with multiple password authentication protocols, we find that some apps
implement multiple login schemes (e.g., Facebook login, Wechat login, Tencent
login), and their developers import external authentication libraries directly to
implement those login schemes. The library providers offer a variety of password
authentication protocols7.

The password authentication protocol is suppose to be securely implemented.
To our surprise, A large portion of apps have flaws discussed in Sect. 2 in their
authentication code (shown in Table 4). Only 1,562 apps in our dataset imple-
mented secure password authentication protocols. GLACIATE reports that pass-
words in 1,125 apps are not been well-protected. For these apps with Flaw 1, we

6 The exception, “ERROR heros.solver.CountingThreadPoolExecutor - Worker thread
execution failed: Dex file overflow”, was posted in March, 2018. Soot might solve this
problem in its next version.

7 BPAP with SSL/TLS is nevertheless most used.

632 S. Ma et al.

Table 4. Authentication flaws in Android apps

of apps Authentication flaws

1,125 Insecure Password Transmission (Flaw 1)

2,684 Insecure Server Connection (Flaw 2)

250 Repeatable Timestamp (Flaw 3)

1,562 No flaw

observe that some of them use MD5 hash functions with a constant salt, which
is easy for attackers to find collision. However, most passwords are transmitted
in plaintext over an insecure HTTP channel. As SSL/TLS is the most com-
mon mechanism used to protect BPAP, SSL/TLS-related flaw is also the most
common one, i.e., flaw 2 (i.e., Insecure Server Connection). We also investigate
whether apps have multiple flaws. In what follows we discuss further insights
gained from this analysis.

Flaw 2: Insecure Server Connection. This is the most common implementa-
tion flaw presented in 2,684 apps; that is, nearly 47% of the apps with password
authentication meet this authentication flaw. This result indicates that devel-
opers are security conscious and understand that secure communication (e.g.,
SSL/TLS) should be used for transmitting passwords. However, they seem to
be unaware of the importance of validating certificates and hostnames of the
server, and the consequences of accepting invalid certificates and mismatched
servers, or they decide not to validate certificates and hostnames with the aim
of improving the app’s run-time performance.

Certificate Validation. In total, GLACIATE identifies 2,417 apps suffers the
flaws of accepting invalid certificates. A certificate validation includes two
aspects: signature validation and a certificate expiration check. The authenti-
cation code is insecure unless both checks are executed. Based on the trusted
CAs provided by Android8, we classify invalid certificates into certificates signed
by invalid CAs, self-signed certificates, and expired certificates. Table 5 lists the
number of apps with these types of certificate flaws. Those certificate validations
are incomplete in that 1,298 apps only verify whether certificates are signed by
valid CA but neglect to check whether they are self-signed or expired, and 185
apps only verify two of the necessary checks of certificate validity. Almost 35%
of the apps with flaw 2 do not have any certificate validation at all.

Hostname Verification. 2,059 of apps with flaw 2 accept all hostnames. Com-
paring this result with the result of certificate checking, a smaller number of apps
suffer from this, since more aspects are required to be checked when validating
certificates, i.e., expiry date and signature.

8 The list of trusted CAs can be found in https://www.digicert.com/blog/official-list-
trusted-root-certificates-android/.

https://www.digicert.com/blog/official-list-trusted-root-certificates-android/
https://www.digicert.com/blog/official-list-trusted-root-certificates-android/

Finding Flaws from Password Authentication Code in Android Apps 633

Table 5. Apps with incomplete certificate validation

of apps Certificate validations performed

1,298 Only implement one check, whether the certificates are signed by
an invalid CA

54 Only implement two checks, whether the certificates are
self-signed or signed by an invalid CA

131 Only implement two checks, whether the certificates are expired
or signed by an invalid CA

934 None of the above (e.g., they do not implement any certificate
verification)

Flaw 3: Repeatable Timestamp. Most apps with timestamp-based password
authentication are securely implemented, but nevertheless 250 out of 804 apps
used a repeatable timestamp.

Multiple Flaws. We also collected information about apps which were found
to have multiple violations. For the apps that used both protection mecha-
nisms, GLACIATE identified 37 apps suffering from two types of authentica-
tion flaws. Authentication code in 29 apps accept all certificates and gener-
ate repeatable timestamps. 8 of them implement the authentication protocol as
accepting all host names and generating repeatable timestamps. Additionally,
GLACIATE detected 15 apps that violates all the authentication requirements,
that is, accepting all certificates and all hostnames, and use repeatable times-
tamps. These results suggest that the capability of analyzing multiple password
authentication protocols in the same app is essential for a complete identification
of vulnerabilities.

5 Related Work

In the following, we first discuss detection techniques that are rule-based and
attack-based. We then discuss fully-automated approaches that use machine
learning algorithms.

5.1 Rule-Based Techniques

Most existing techniques detect vulnerabilities by using pre-defined rules/tem-
plates [9,10,24,29]. CRYPTOLINT [9] detects cryptographic misuses in Android
apps. According to the manually predefined cryptographic rules, CRYPTOLINT
computes a super control flow graph for each app and uses program slicing to
identify the violations. MalloDroid [10] is a detection tool for checking whether
the SSL/TLS code in Android apps are potentially vulnerable to MITM attacks.
By checking the network API calls and Internet permissions, MalloDroid deter-
mine whether the code has vulnerabilities, including accepting all certificates,

634 S. Ma et al.

accepting all hostnames, trusting many CAs, and using mixed-mode/no SSL.
However, because it only analyzes the network API calls, MalloDroid is unable to
identify all the potential flaws due to its inability to extract the inter-component
communications. Instead of performing code analysis, HVLearn [24] is a black-box
learning approach that infers certificate templates from the certificates with cer-
tain common names by using an automata learning algorithm. It further detects
those invalid certificates that cannot be matched with certificate templates. How-
ever, this approach can only be applied to the certificates with specific common
names.

Besides these static analysis techniques, some dynamic approaches have been
proposed without analyzing the code [6,26]. Spinner [26] is a tool that uses a
dynamic black-box detection approach to check certificate pinning vulnerabili-
ties which may hide improper hostname verification and enable MITM attacks.
Without requiring access to the code, Spinner generates traffic that includes
a certificate signed by the same CA, but with a different hostname. It then
checks whether the connection fails. A vulnerability is detected if the connection
is established and encrypted data is transmitted. However, some unnecessary
input will be generated while applying a fully automated approach.

To address the limitations of dynamic analysis, some approaches use a hybrid
analysis (i.e., static and dynamic analysis) [16,25]. SMV-Hunter [25] simulates
user interactions and launches MITM attacks to detect SSL vulnerabilities. How-
ever, its detection performance relies on how well user inputs were created, and
some vulnerabilities cannot be identified since they are not triggered by the
MITM attacks.

Compared to these techniques, GLACIATE is a fully automated tool that does
not require any manual effort. Instead of summarizing detection rules manually,
we use machine learning to learn those rules automatically.

5.2 Attack-Based Techniques

Instead of using any rules/templates, some approaches launch attacks to locate
vulnerabilities [5,7,8,31]. AUTHScope [31] targets the vulnerabilities at the server
side. Since it is difficult to extract the source code running on the remote servers,
AUTHScope sends various network requests to the server and applies differential
traffic analysis to identify when the server does not provide proper token verifica-
tion. Instead of launching one attack, six different attack scenarios are launched
by AndroSSL [7], which provides an environment for developers to test their apps
against connection security flaws. The environment has an actual server that
accepts authentication requests and static and dynamic URLs without verifying
the hostnames and certificates.

5.3 Machine Learning Techniques

Manual effort involving is tedious, inefficient, and expensive. To address this
drawback, machine learning is proposed to construct a fully automated detection
approach.

Finding Flaws from Password Authentication Code in Android Apps 635

VulDeePecker [20] and SySeVr [19] detect vulnerabilities by using deep
learning, which can replace human expert effort while learning. By extracting
library/API function calls, VulDeePecker generates training vectors to represent
the invocations of these function calls. It then trains a BLSTM neural network
model with the training vectors. To improve the detection accuracy, SySeVr
collects more features, including function calls, array usage, pointer usage, and
arithmetic expressions for training. Although VulDeePecker and SySeVr can
detect many types of vulnerabilities without any manual effort, one important
requirement for the training dataset is that each code segment may include only
one vulnerability.

The above detection approaches that use machine learning algorithms have
the desirable property of working automatically and we investigated their appli-
cation to our problem. We extracted control flow graphs and used different
machine learning algorithms (i.e., CNN, decision tree, naive Bayes, SVM, and
logistic regression) to build detection models. However the detection results were
found to be poor.

6 Conclusion

In this paper, we proposed a novel end-to-end approach for the automatic detec-
tion of flaws in the implementation of authentication in mobile apps. The detec-
tion tool, GLACIATE, analyzes whether the secure password authentication proto-
cols are correctly implemented in apps. GLACIATE first uses clustering and pattern
mining techniques to learn rules automatically from a small training dataset, fol-
lowed by a program analysis technique which uses these rules to detect flaws.
GLACIATE automates the whole process so that it only needs few manual efforts
to build a small labeled dataset and achieves a better detection accuracy. We
assessed the detection accuracy of GLACIATE on a dataset of 16,387 real world
Android apps. GLACIATE identifies 5,667 apps with secure password authentica-
tion protocols, but only 28% of them implemented the protocols correctly. We
intend to make GLACIATE available as an open source tool that can contribute
to the development of secure Android apps.

Acknowledgments. This work was partially supported by the Key Program of
National Natural Science Foundation of China (Grant No. U1636217), the General
Program of National Natural Science Foundation of China (Grant No. 61872237),
the National Key Research and Development Program of China (Grant No.
2016YFB0801200).

References

1. Alghamdi, K., Alqazzaz, A., Liu, A., Ming, H.: IoTVerif: an automated tool to
verify SSL/TLS certificate validation in Android MQTT client applications. In:
Proceedings of the Eighth ACM Conference on Data and Application Security and
Privacy, pp. 95–102. ACM (2018)

636 S. Ma et al.

2. Barzilai, J.: Deriving weights from pairwise comparison matrices. J. Oper. Res.
Soc. 48(12), 1226–1232 (1997)

3. Burke, M., Cytron, R.: Interprocedural dependence analysis and parallelization,
vol. 21. ACM (1986)

4. Canvel, B., Hiltgen, A., Vaudenay, S., Vuagnoux, M.: Password interception in a
SSL/TLS channel. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 583–
599. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 34

5. Chen, J., Jiang, J., Duan, H., Weaver, N., Wan, T., Paxon, V.: Host of troubles:
multiple host ambiguities in http implementations. In: Proceedings of the 2016
ACM Conference on Computer and Communications Security (CCS), pp. 1516–
1527. ACM (2016)

6. Chen, J., et al.: IoTFuzzer: discovering memory corruptions in IoT through app-
based fuzzing. In: Proceedings of the 21st Annual Network and Distributed System
Security Symposium (NDSS). Citeseer (2018)

7. Gagnon, F., Ferland, M.-A., Fortier, M.-A., Desloges, S., Ouellet, J., Boileau, C.:
AndroSSL: a platform to test Android applications connection security. In: Garcia-
Alfaro, J., Kranakis, E., Bonfante, G. (eds.) FPS 2015. LNCS, vol. 9482, pp. 294–
302. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30303-1 20

8. D’Orazio, C.J., Choo, K.K.R.: A technique to circumvent SSL/TLS validations on
iOS devices. J. Future Gener. Comput. Syst. 74, 366–374 (2017)

9. Egele, M., Brumley, D., Fratantonio, Y., Kruegel, C.: An empirical study of crypto-
graphic misuse in Android applications. In: Proceedings of the 2013 ACM Confer-
ence on Computer and Communications Security (CCS), pp. 73–84. ACM (2013)

10. Fahl, S., Harbach, M., Muders, T., Baumgärtner, L., Freisleben, B., Smith, M.:
Why Eve and Mallory love Android: an analysis of Android SSL (in) security.
In: Proceedings of the 2012 ACM Conference on Computer and Communications
Security (CCS), pp. 50–61. ACM (2012)

11. Fleiss, J.L., Levin, B., Paik, M.C.: Statistical Methods for Rates and Proportions.
Wiley, New York (2013)

12. Hubbard, J., Weimer, K., Chen, Y.: A study of SSL proxy attacks on Android and
iOS mobile applications. In: Proceedings of IEEE 11th Consumer Communications
and Networking Conference (CCNC), pp. 86–91. IEEE (2014)

13. Liu, J., Ma, J., Zhou, W., Xiang, Y., Huang, X.: Dissemination of authenticated
tree-structured data with privacy protection and fine-grained control in outsourced
databases. In: Lopez, J., Zhou, J., Soriano, M. (eds.) ESORICS 2018. LNCS, vol.
11099, pp. 167–186. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
98989-1 9

14. Juels, A., Triandopoulos, N., Van Dijk, M.E., Rivest, R.: Methods and apparatus
for silent alarm channels using one-time passcode authentication tokens. US Patent
9,515,989 (2016)

15. Karypis, G., Han, E.H., Kumar, V.: Chameleon: hierarchical clustering using
dynamic modeling. J. Comput. 32(8), 68–75 (1999)

16. Koch, W., Chaabane, A., Egele, M., Robertson, W., Kirda, E.: Semi-automated
discovery of server-based information oversharing vulnerabilities in Android appli-
cations. In: Proceedings of the 26th ACM International Symposium on Software
Testing and Analysis (ISSTA), pp. 147–157. ACM (2017)

17. Kohavi, R., et al.: A study of cross-validation and bootstrap for accuracy estimation
and model selection. In: IJCAI, Montreal, Canada, vol. 14, pp. 1137–1145 (1995)

18. Lamport, L.: Password authentication with insecure communication. J. Commun.
ACM 24(11), 770–772 (1981)

https://doi.org/10.1007/978-3-540-45146-4_34
https://doi.org/10.1007/978-3-319-30303-1_20
https://doi.org/10.1007/978-3-319-98989-1_9
https://doi.org/10.1007/978-3-319-98989-1_9

Finding Flaws from Password Authentication Code in Android Apps 637

19. Li, Z., et al.: SySeVr: a framework for using deep learning to detect software vul-
nerabilities. arXiv preprint arXiv:1807.06756 (2018)

20. Li, Z., et al.: VulDeePecker: a deep learning-based system for vulnerability detec-
tion. arXiv preprint arXiv:1801.01681 (2018)

21. Linkola, S., et al.: A feature-based call graph distance measure for program simi-
larity analysis (2016)

22. Lo, D., Cheng, H., Han, J., Khoo, S.C., Sun, C.: Classification of software behaviors
for failure detection: a discriminative pattern mining approach. In: Proceedings of
the 15th ACM International Conference on Knowledge Discovery and Data Mining
(KDD), pp. 557–566. ACM (2009)

23. Ma, S., Thung, F., Lo, D., Sun, C., Deng, R.H.: VuRLE: automatic vulnerability
detection and repair by learning from examples. In: Foley, S.N., Gollmann, D.,
Snekkenes, E. (eds.) ESORICS 2017. LNCS, vol. 10493, pp. 229–246. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-66399-9 13

24. Sivakorn, S., Argyros, G., Pei, K., Keromytis, A.D., Jana, S.: HVLearn: automated
black-box analysis of hostname verification in SSL/TLS implementations. In: Pro-
ceedings of 2017 IEEE Symposium on Security and Privacy (SP), pp. 521–538.
IEEE (2017)

25. Sounthiraraj, D., Sahs, J., Greenwood, G., Lin, Z., Khan, L.: SMV-hunter:
large scale, automated detection of SSL/TLS man-in-the-middle vulnerabilities in
Android apps. In: Proceedings of the 21st Annual Network and Distributed System
Security Symposium (NDSS). Citeseer (2014)

26. Stone, C.M., Chothia, T., Garcia, F.D.: Spinner: semi-automatic detection of pin-
ning without hostname verification. In: Proceedings of the 33rd ACM Annual Com-
puter Security Applications Conference (ACSAC), pp. 176–188. ACM (2017)

27. Vallée-Rai, R. Co, P., Gagnon, E., Hendren, L., Lam, P., Sundaresan, V.: Soot: a
Java bytecode optimization framework. In: CASCON First Decade High Impact
Papers, pp. 214–224. IBM Corp. (2010)

28. Weiser, M.: Program slicing. In: Proceedings of the 5th International Conference
on Software Engineering (ICSE), pp. 439–449. IEEE Press (1981)

29. Xiong, B., Xiang, G., Du, T., He, J.S., Ji, S.: Static taint analysis method for intent
injection vulnerability in Android applications. In: Wen, S., Wu, W., Castiglione,
A. (eds.) CSS 2017. LNCS, vol. 10581, pp. 16–31. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-69471-9 2

30. Yang, C.C., Yang, H.W., Wang, R.C.: Cryptanalysis of security enhancement for
the timestamp-based password authentication scheme using smart cards. IEEE
Trans. Consum. Electron. 50(2), 578–579 (2004)

31. Zuo, C., Zhao, Q., Lin, Z.: AUTHScope: towards automatic discovery of vulnerable
authorizations in online services. In: Proceedings of the 2017 ACM Conference on
Computer and Communications Security (CCS), pp. 799–813. ACM (2017)

http://arxiv.org/abs/1807.06756
http://arxiv.org/abs/1801.01681
https://doi.org/10.1007/978-3-319-66399-9_13
https://doi.org/10.1007/978-3-319-69471-9_2
https://doi.org/10.1007/978-3-319-69471-9_2

Identifying Privilege Separation
Vulnerabilities in IoT Firmware

with Symbolic Execution

Yao Yao1,2, Wei Zhou2, Yan Jia1,2, Lipeng Zhu1,2, Peng Liu3,
and Yuqing Zhang1,2(B)

1 School of Cyber Engineering, Xidian University, Shaanxi, China
2 National Computer Network Intrusion Protection Center,
University of Chinese Academy of Sciences, Beijing, China

zhangyq@nipc.org.cn
3 College of Information Sciences and Technology, Pennsylvania State University,

State College, PA, USA

Abstract. With the rapid proliferation of IoT devices, we have wit-
nessed increasing security breaches targeting IoT devices. To address
this, considerable attention has been drawn to the vulnerability discov-
ery of IoT firmware. However, in contrast to the traditional firmware
bugs/vulnerabilities (e.g. memory corruption), the privilege separation
model in IoT firmware has not yet been systematically investigated. In
this paper, we conducted an in-depth security analysis of the privilege
separation model of IoT firmware and identified a previously unknown
vulnerability called privilege separation vulnerability. By combining load-
ing information extraction, library function recognition and symbolic
execution, we developed Gerbil, a firmware-analysis-specific extension
of the Angr framework for analyzing binaries to effectively identify priv-
ilege separation vulnerabilities in IoT firmware. So far, we have evalu-
ated Gerbil on 106 real-world IoT firmware images (100 of which are
bare-metal and RTOS-based device firmware. Gerbil have successfully
detected privilege separation vulnerabilities in 69 of them. We have also
verified and exploited the privilege separation vulnerabilities in several
popular smart devices including Xiaomi smart gateway, Changdi smart
oven and TP-Link smart WiFi plug. Our research demonstrates that an
attacker can leverage the privilege separation vulnerability to launch a
border spectrum of attacks such as malicious firmware replacement and
denial of service.

Keywords: Internet of Things · Firmware analysis ·
Privilege separation

1 Introduction

According to latest report [6], the IoT device has eclipsed the mobile phone as
the most common connected device by 2018, which means we have been living
c© Springer Nature Switzerland AG 2019
K. Sako et al. (Eds.): ESORICS 2019, LNCS 11735, pp. 638–657, 2019.
https://doi.org/10.1007/978-3-030-29959-0_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29959-0_31&domain=pdf
https://doi.org/10.1007/978-3-030-29959-0_31

Identifying Privilege Separation Vulnerabilities in IoT Firmware 639

in a world surrounding by IoT devices. Through interacting with IoT cloud,
mobile app, and other entities, IoT devices allow users to monitor and control
their living spaces from anywhere at any time. When the user is at home, he
can directly send a command to the devices to control it through his mobile
app. If he is not in the same LAN with the IoT devices, he still can monitor and
control the devices via the IoT cloud. The cloud will forward the command to the
devices. Meanwhile, we observe that some operations are performed only when
the IoT device is interacting with the IoT cloud, while some other operations are
performed only when the device is physically touched (e.g., pushing a button)
by a human user. Hence, whether an operation is legitimate (i.e., legal) depends
on whom the IoT device is interacting with. One goal of the attacker could be
maliciously “confusing” the firmware running on the device in such a way that
illegal operations get performed. For example, if a user wants to rebind a smart
cleaning robot to another account, the user has to physically press a button on
the robot to reset it into the initial state. However, if the rebind operation could
accidentally be carried out through commands sent by mobile app or cloud, this
would give an opportunity for attackers to bind the device with the attacker’s
account without physical access.

To understand why an operation triggered by physically pushing a button
could be accidentally carried out through commands sent by a mobile app or
cloud, we have conducted in-depth root cause analysis and found that the main
root cause is as follows. (a) We found that when an operation triggered by
physically pushing a button is being performed on an IoT device, one set of
functions in the firmware binaries will be executed. We denote this set as set
A. (b) We found that when a command sent by a mobile app, cloud or other
entities is being executed on the IoT device, other sets of functions will be
executed. According to sender entity of the command, we denote the set as
set B, C and so on. (c) We found that when the intersection of set A and set
B or C is not empty, the attacker could be provided with the above-mentioned
attacking opportunity. Since the IoT devices are interacting with various entities
such as mobile apps, IoT cloud, gateway, etc., if any two sets are overlapped,
it may cause potential risks. The root cause we found is essentially a privilege
separation vulnerability.

Although researchers have made great efforts in IoT security, we found they
still focus on the classic security issues in IoT research such as privacy leak [9,24],
authentication bypass [14,18] and memory corruption flaws [2]. To our knowl-
edge, few studies have been systematically conducted on privilege separation
vulnerabilities involved in IoT firmware. Furthermore, state-of-the-art dynamic
and static firmware analysis approaches [7,20,23,25] have limited ability to ana-
lyze the lightweight IoT firmware (i.e., RTOS-based or bare-metal firmware) in
large-scale, let alone identify logic privilege separation vulnerabilities due to fol-
lowing challenges. To begin with, converting a lightweight firmware image into an
object that can be statically or dynamically analyzed is an open problem [18]. It
is not clearly known how to identify the necessary loading information, e.g., load
base address architecture and segmentation information, due to the unknown
executable and linkable format of the lightweight firmware, which puts a

640 Y. Yao et al.

barrier to take advantage of current binary code analysis tools (e.g., IDA Pro [15]
and Angr [19]). Also, existing solutions for dynamical analysis of IoT firmware
are far from mature. They are usually designed only for a Linux-based operat-
ing system [23], or must be tightly coupled with real hardware environment [25].
However, a large number of real-world IoT devices run RTOSs or bare-metal sys-
tems. How to test a variety of lightweight firmware images without real devices
remains challenging. Furthermore, even if symbolically executing only a path of
IoT firmware, it might also get stuck with path explosion caused by the infinite
loops or complex calculation functions such as AES encryption.

To systematically detect the privilege separation vulnerabilities in a variety
of IoT firmware, we first collected and analyzed the popular IoT binary formats,
and implemented a tool to automatically extract the loading information from
IoT firmware. Since symbolically executing entire binary IoT firmware without
full-system emulation is not feasible, we developed an assistant tool to slice the
part of IoT firmware where most likely exist privilege separation vulnerabilities
and slice this portion of code for the symbolic execution. Next, we designed and
implemented a path exploration scheme on the top of symbolic execution. It
can skip complex library functions via library function recognition to mitigate
path explosion and is also able to restore indirect call to explore deeper paths.
Finally, we combined the above approaches together as a novel dynamic anal-
ysis framework called Gerbil for detecting privilege separation vulnerabilities
in large-scale IoT firmware. According to Gerbil output, we successfully iden-
tify privilege separation vulnerabilities in 60 real-world IoT firmware. Through
further verification, we found the most of them can be exploited.

In summary, our contributions are as follows:

1. We performed the first in-depth analysis of the privilege separation vulnera-
bility associated with IoT firmware to fill gaps in previous research.

2. We developed an extension of the Angr framework for IoT firmware analy-
sis including loading information extraction, library function recognition and
indirect control flow recovery.

3. We designed and implemented a path exploration scheme on the top of sym-
bolic execution to explore more paths, mitigate the path explosion and output
more meaning path constrains at same time.

4. We successfully discovered privilege separation vulnerabilities in 69 out of 106
real-world IoT firmware images and evaluated the hazards of the privilege
separation vulnerability with several real smart devices.

We are releasing Gerbil as an open-source tool in Github repo1 in the hope
that it will be used for further IoT firmware analysis research.

2 Background

In this section, we first introduce the general privilege separation model
involved in real-world IoT firmware. Then, we demonstrate the potential
1 https://github.com/daumbrella/Gerbil.

https://github.com/daumbrella/Gerbil

Identifying Privilege Separation Vulnerabilities in IoT Firmware 641

privilege separation vulnerability behind this model. Note that to clarify the
remainder of the presentation, we highlight the key terminologies in bold.

task_main

process_cmd_from_localprocess_cmd_from_cloud

func_0x442018func_0x4447B0ssl_recv

func_0x45498C

extract_cmds

cmd_unbind cmd_rebootcmd_readDID

func_0x441E18

func_0x51A97C func_0x51AC34 func_0x52E8C0 func_0x53CF98

func_0x440010

Function name Function name Function name Function name

Functions in neither sub-
graph U nor sub-graph R.

Functions in sub-graph U. Functions in sub-graph R. Shared functions.

...

func_0x4D5A34

...

tcp_recv

Fig. 1. A part of call graph of an IoT firmware image. (Color figure online)

2.1 Privilege Separation Model Involved in IoT Firmware

IoT devices are designed to interact with human beings via mobile app, cloud or
physical access (e.g., pushing a button), to perform a variety of operations. Thus,
the main logic of IoT firmware is to perform specific operations corresponding to
different commands sent by its interactive entities (e.g., the mobile app, the IoT
cloud, and the gateway). To be specific, after receiving messages from various
interactive entities, the device deciphers and parses the messages and performs
the specific tasks corresponding to the commands extracted from the messages.

Figure 1 shows the call graph of the major functions of task main (generated
by disassembling the firmware) which is responsible for processing all receiving
network data. Some library functions have been renamed according to their orig-
inal semantic. Section 3.2 details how we recognize library functions. Each node

642 Y. Yao et al.

denotes a function and each edge represents the calling relationship between two
functions. To finally finish the tasks corresponding to a specific command in the
interactive message, a sequence of functions will be invoked. Thus, the collec-
tion of functions in the execution path from receiving a message to executing
a specific command can be considered as an individual call sub-graph of the
whole call graph in IoT firmware. For instance, as shown in Fig. 1, to perform
a remote “unbind” command received from ssl recv function, the sub-graph U ,
which is indicated in red will be invoked, while the sub-graph R, which is used
to handle a local “reboot” command from tcp recv function is indicated in blue.
The functions shared by multiple sub-graph U and R are in green. We refer to
a function shared by two or more call sub-graphs as shared function.

There are two kinds of key function in a call sub-graph. The caller function
represents the highest node (i.e, start point) of a call sub-graph. For example,
function process cmd from cloud function and process cmd from local in Fig. 1
are the caller functions of sub-graph U and R respectively. We refer to the
caller function used to process commands from local interactive entities such as
a mobile app and a gateway as a local caller function. The caller function used
to process commands from a remote interactive entity (i.e., the IoT cloud) is
a remote caller function. The caller function used to process commands corre-
sponding to physical access is a physical caller function. The command func-
tion represents the nearest node to the last shared functions in a call sub-graph,
which is always the first function used to perform a specific command (e.g.,
cmd reboot and the cmd unbind in sub-graph U and R in Fig. 1). Similar to
caller function, generally the three most common kinds of command functions
in IoT firmware are local, remote and physical.

In addition, commands sent by different interactive entities usually serve
different purposes. For example, remote commands sent by the cloud are usually
responsible for device management services such as unbinding the device with
an owner and updating the firmware, while the device control commands (e.g.,
turn on/off the device) are usually sent by a mobile app locally. To this end, the
developer should implement a strict privilege separation model to divides a
firmware into parts and grant each part with different privileges to finish specific
tasks through letting the IoT device perform certain operations.

2.2 Privilege Separation Vulnerability

Ideally, if an IoT firmware image strictly implements the privilege separation
model, its call graph should have the following property: the two sub-graphs
of any two different caller functions should not have any common nodes unless
the common nodes have identical set of descendant (callee) nodes in the two
sub-graphs. For instance, the shared function func 0x442018 only calls shared
function func 0x441E18 function in sub-graph U or R. However, due to time-
to-market pressure and the limited storage space of IoT devices, we found that
developers usually implement some over-privileged shared functions which
can be reached from different caller functions but can also call different command
functions in real-world IoT firmware. Due to the over-privileged shared function,

Identifying Privilege Separation Vulnerabilities in IoT Firmware 643

Path1: caller1->FA
-> FV->CmdA
Constraints Of path1:

Back-end

Loading
Information
Extraction

Caller1

CmdA

Path2: caller2-> FV-
>CmdA
Constraints of path2:

Fore-end

...
Symbolic
Execution

Library Function
Recognition

Path Exploration
Scheme

User-defined Slice
Specification

Open SDKs

IoT
Firmware Over-privileged funtion:

FV in Path1 and Path 2

Caller2

CmdB

Fig. 2. Gerbil overview.

there will be an execution path from the caller function of one sub-graph to
the command function which belongs to another sub-graph with different caller
function. We call such an unexpected execution path as a privilege separation
vulnerability.

As an example, the extract cmds function in Fig. 1 can be reached from caller
function process cmd from cloud in sub-graph U , but it can also be reached from
process cmd from local in sub-graph R. Thus, extract cmds function is an over-
privileged shared function. Consequently, an unexpected execution path from the
process cmd from local function to the func unbind function can be triggered. In
this case, a local attacker has a chance to send a remote “unbind” command to
the device to unbind user’s device unconsciously. Other severe consequences can
happen when IoT firmware opens up other unexpected execution paths. We dis-
cuss further attack effects through exploiting privilege separation vulnerability
with real-world IoT firmware in Sect. 4.4.

3 Gerbil Framework Design and Implementation

In this section, we detail the design and implementation of core components
of Gerbil as shown in Fig. 2. Gerbil is a firmware-analysis-specific extension of
Angr [19], which is a python framework for analyzing binaries. Angr combines
both static and dynamic symbolic analysis; accordingly, the fore-end modules
of Gerbil are used to extract loading information and restore library function
semantic of IoT firmware. In the back-end, we propose a novel path exploration
scheme on top of the symbolic execution engine of Angr to mitigate the path
explosion and explore more promising paths for IoT firmware. Furthermore,
to effectively identify privilege separation vulnerabilities, the user-defined slice
specification could help the analyst to slice the firmware which parts is most
likely to contain privilege separation vulnerabilities for symbolic execution.

644 Y. Yao et al.

3.1 Loading Information Extraction

Before analyzing firmware, the analysis tools have to know the basic load-
ing information, including architecture, base address, entry point, segmenta-
tion information, etc. For Unix-based (e.g., Linux) firmware they usually adopt
the common standard executable and linkable format (ELF). Thus, their load-
ing information can be easily extracted from the ELF header of the firmware.
However, many lightweight firmware images (i.e., bare-metal and RTOS-based
firmware) do not have a common fixed binary format and it is generally unknown
for state-of-the-art binary analysis tools to properly initialize the loading envi-
ronment of these firmware.

0 1 2 3 0 1 2 3

|-+|

| Magic = ‘MRVL ’ | SDK version |

|-+|

| Creation time | Number of segments |

|-+|

| ELF version | Segment_i type=0x2 |

|-+|

| Segment_i Offset | Segment_i Size |

|-+|

| Segment_i Load_address | Segment_i CRC32 -checksum |

|-+|

| Segment Data |

|-+|

Listing 1. Binary Format of Marvell MW300/302 MCU (Byte Width)

We found that the lightweight firmware running on the same series of micro-
controllers (MCU) adopts a similar binary format, which can be easily found
in the corresponding public MCU datasheet. In addition, identifying the MCU
model of IoT firmware is also effortless, because it is common practice that devel-
opers hard-code the corresponding MCU model in the firmware. For instance, we
find “MRVL” and “MW300” string in XiaoMi plug firmware, which indicates it
runs on Marvell MW300 MCU. As an example, we show the binary format of the
firmware which runs on Marvell MW300/302 MCU in Listing 1. As indicated by
each field of the binary format, we can easily extract the corresponding loading
information such as load address and segmentation information.

Therefore, we maintained an up-to-date binary format database of popular
IoT MCUs2. Then we implemented a Python script to automatically search the
strings referring to the MCU model in the IoT firmware. If its MCU model
matches one MCU record in the database, the script extracts the loading infor-
mation according to the corresponding binary format. Otherwise, we will try to
find the binary format of this unknown MCU model and add it to our database.

In addition, some functions use absolutely-addressed memory accesses to call
the function pointers stored sequentially in device memory. In most cases, such

2 https://www.postscapes.com/iot-chips-modules/.

https://www.postscapes.com/iot-chips-modules/

Identifying Privilege Separation Vulnerabilities in IoT Firmware 645

memory pointers are hard-coded in the data segment of firmware and loaded to
the memory during booting. Thus, after identifying the data segment of firmware,
we also copy it to the memory map used beforehand by the symbolic execution.

3.2 Library Function Recognition

Typically, to protect the intellectual property of the company, IoT manufactur-
ers have stripped the symbols and most of debug strings. However, to reduce
the time to market and to be compatible with the central IoT cloud interfaces,
manufacturers usually implement the same system and communication libraries
and even common peripheral functions (e.g., FreeRTOS, lwIP and WiFi inter-
faces) in all their firmware. Since these library functions usually take charge of
the core functionality of IoT devices, restoring the original function context of
libraries can greatly minimize the manual work involved in the firmware anal-
ysis, particularly, for security analysis. For example, if we can follow the data
and control flow of specific encryption functions and we are able to locate the
cryptographic keys or the derived key for data encryption and decryption.

To address this challenge, we implemented a function matching algorithm
used by FLIRT [17] to recognize the library functions of IoT firmware. To be
specific, we collected widely used IoT libraries from official GitHub repos of
popular MCU manufacturers and IoT platform providers. Then we compiled
them to conduct a library function comparison with the tested firmware. If a
matching was found, we directly got its semantic and are able to restore it
during static and dynamic analysis.

3.3 Path Exploration Scheme

The original symbolic execution engine of Angr has some drawbacks for exploring
paths of IoT firmware, including overlooking indirect call and path explosion. In
the following, we detail how to solve them in practice. The overview of our path
exploration scheme is shown in Fig. 3.

Adding High-Level Constraints. The original path constraints generated
by Angr are directly based on the byte value of registers and memory, which
is obscure for analyst and inconvenient for further manual analysis. Thus, we
add library function context to the symbolic execution path constraints to pro-
vide more useful and meaning information for analyst. Specifically, if current
jump address is a library function address (line 4 in Fig. 3) we add library func-
tion name and parameters corresponding to the current register values of Sim-
State (which is used to synchronize execution context during symbolic execution
including register value, memory data, symbol variable constraints, etc.) as high-
level constraints to current path constraints.

Skipping Selected Library Function. Library functions are usually irrele-
vant to application-specific logic and most logic vulnerabilities such as our iden-
tified privilege separation vulnerability are associated with application scenar-
ios. Thus, to mitigate the well-known path explosion problem, Gerbil is able

646 Y. Yao et al.

Input: CS /*Current SimState*/
Input: ES /*End Set*/
1: if CS.addr in ES:
2: return CS
3: end if
4: if CS.addr is library function addr:
5: CS.add_high_level_constraints()
6: if library function needs to skip:
7: CS.regs.pc CS.regs.lr
8: CS.regs.r0 symbol value
9: end if
10: if CS.addr is indirect call function addr:
11: CS.regs.pc jump addr
12: end if
13: end if

SimState

User-defined Slice
Specification

Fig. 3. Path exploration scheme (Color figure online).

to exclude the complicated library functions selected by the analyst from sym-
bolic execution and assign a new symbol value as the return value for skipped
functions. Lines 6–9 in Fig. 3 clearly demonstrate this process.

Indirect Call Restoration. Through manual analysis, we found there are two
kinds of typical indirect call (i.e., callback and message queue) that cannot be
identified by Angr, but have been frequently used in IoT firmware.

A callback, also known as a “call-after” function, is any executable code
that is passed as an argument to other functions that are expected to call
execute the argument under a certain conditions. For instance, as shown in
Fig. 4a, the local/remote process function passes a callback function pointer
tcp/udp calback to tcp/udp register function to parse a network packet. When
the tcp/udp register function receives a network packet, it will automatically call
the callback function. Thus, we consider the function which registers a callback
function to have a call relationship with this callback function.

Message queues are frequently used to send data between functions, which
also implies a indirect call relationship. For example, handle msg function waits
for the data from message queue through recv msg from queue function and
data process function writes processed data to this queue as shown in Fig. 4b.
Therefore, the functions which send and receive the data from the same message
queue have an indirect call relationship.

To add the above indirect call paths to the original execution path, we first
record the address of all functions which have an indirect call relationship with
other functions. Then during symbolic execution, we check whether the current
jump address of the Angr SimState matches these addresses as shown in line 10 in
Fig. 3. If a match is found, we replace the jump address with the indirect function
address in line 11. For instance, when a symbolic execution engine complete the
right red circle function in Fig. 3 which has an indirect call relationship with the
left one, it will not stop exploring this path but continue to execute the left red
function.

Identifying Privilege Separation Vulnerabilities in IoT Firmware 647

tcp/udp_register

local/remote_process

tcp/udp_callback

packet_parse

callback
network
packet

data_process

send_msg_to_queue

handle_msgrecv_msg_from_queue

data

data

Message Queue

Fig. 4. Two typical modes of indirect call in IoT firmware

3.4 User-Defined Slice Specification

Since Gerbil is not a full system emulation, we have to let analysts set the start
and end points of symbolic execution. In this work, we carry out symbolic execu-
tion on the parts of the firmware may occur privilege separation vulnerabilities.
As we mentioned in Sect. 2.2, the privilege separation vulnerability is caused
by over-privileged shared functions involved in the paths from caller functions
to command functions. Thus, we need to set caller functions as start points
and command functions as end points. However, it is difficult to recognize the
call and command functions through manual analysis. We provide an assistant
tool, User-defined Slice Specification, based on the call graph to help analysts
locate the caller and command functions. To provide a more complete call graph
beforehand, we first improve the control flow graph generation tool CFGFast3

used by Angr. To be specific, we restore the indirect control flows as we did in
path exploration scheme implementation. In addition, we also found the func-
tion prologues used by CFGFast to identify the start point of functions were
incomplete, so we also added the missing function prologues for it.

Command Function. Although identifying all interactive commands by man-
ual analysis is impossible, it is simple to find several specific commands. For
example, we can easily find some strings such as “unbind” and “reset” which refer
to the names of specific commands in the firmware, then further identify which
functions use these strings. These functions are the command functions in most
cases. Next, we search the nearest shared parent node of any two command func-
tions, which is most likely to deal with other commands in the call graph. Then
we can use these functions to find more command functions. For instance, as
shown in Fig. 1, the cmd reboot and the cmd unbind functions use “unbind” and
“reset” strings respectively. Their nearest common parent node is extact cmds
and it is also used to call other command functions like cmd readDID. Therefore,
we only ask the analyst to input at least two command functions and our tool
is able to list most command functions in the firmware.

3 https://docs.angr.io/built-in-analyses/cfg.

https://docs.angr.io/built-in-analyses/cfg

648 Y. Yao et al.

Caller Function. In comparison to caller functions, it is much easier to find
functions which are used for receiving the network data at first, because IoT
firmware usually uses common library functions such as ssl recv and tcp recv
to receive network data. Therefore, instead of inputting all the caller function
address, we only ask analyst to input the name of these library functions. After
determining receiving network data functions and commands functions, we can
find all the paths between them. Then we can list all the highest nodes in every
path, which are the caller functions as mentioned in Sect. 2.1.

Note that in case we miss or choose the wrong caller or command functions,
we also provide an interface for analysts to override the output of caller and
command function sets.

3.5 Result Generation

After determining the caller and command function collection, we first input the
caller functions as the start point collection and command functions as the end
point collection to the symbolic execution engine. Then the symbolic execution
engine explores all possible paths based on the path exploration scheme and
outputs possible routes from the caller functions to command functions and
corresponding path constraints. Finally, we mark all the functions (except for
command functions) which can be reached from more than one caller function
as over-privileged shared functions according to our definition in Sect. 2.2. For
example, where the right side of Fig. 3 shows the output of Gerbil, the function
FV can be passed from different caller functions in path 1 and path 2, which is
an over-privileged function.

4 Evaluation

We first evaluate the performance of components of Gerbil and how their capabil-
ities of them benefit IoT firmware analysis. Then we show the result of using Ger-
bil to identify privilege separation vulnerabilities with real-world IoT firmware.
Finally, we elaborate three cases to show how to verify and exploit privilege sep-
aration vulnerabilities based on the Gerbil output results (i.e., identified over-
privileged shared functions).

Gerbil comprises over 1,000 lines Python in total. More specifically, the load-
ing information extraction module has 93 lines, the library function recognition
module (excluding FLIRT library functions) has 288 lines, the path exploration
scheme implement has 460 lines (excluding Angr SDK functions), the assistant
tool used to identify caller and command function collection for used-define pol-
icy has 110 lines and the result generation module has 70 lines. We run Gerbil
on a machine running GNU/Linux Ubuntu 16.04 LTS with a dual-core 3.6 GHz
CPU and 16 GB memory.

Identifying Privilege Separation Vulnerabilities in IoT Firmware 649

4.1 Lightweight Firmware Collection

To protect intellectual property (IP), most IoT device manufacturers do not
make their firmware public especially for the devices running RTOS or bare-
metal systems. Thus, to test how Gerbil deals with diverse lightweight IoT
firmware used in real-world, we first leveraged the phantom devices introduced by
research [22] to download and collect a total of 173 firmware images used by dif-
ferent kinds of IoT devices (e.g., gateways, cameras, air conditioners, etc.) from
cloud service of five popular IoT device vendors including Alibaba, JD, XiaoMi,
TP-Link, and iRobot. In this paper, we focus on the ARM-based and MIPS
microcontrollers which are most widely used in IoT device, thus the firmware
run on other architecture like Xtensa cannot support by most analysis tools such
as Angr are out of our evaluation. Note that the design of Gerbil is applicable
to other architectures as well. We also leave the encrypted firmware out of our
scope. Finally, we evaluated Gerbil on the rest 106 IoT firmware including 100
lightweight firmware images and 6 linux-based firmware images.

4.2 Performance Analysis of Gerbil

Loading Information Extraction. Except for six Linux-based firmware which
can be automatically loaded by Angr, we successfully identified the different
kinds of binary format of all tested lightweight firmware as shown in Table 1.
Then, we extracted all the loading information used by symbolic execution with
100% accuracy. We have shared our collection of all binary formats of lightweight
firmware at GitHub repo4.

Table 1. Accuracy of the loading information extraction

MCU model MW300 RTL8711B RTL8159A RTL8159A HF-MC101 STM32F4

Firmware 43 26 15 11 3 2

Accuracy rate 100% 100% 100% 100% 100% 100%

#: the number of

Library Function Recognition. The IoT library database we collected mostly
from two sources. One is MCU-related SDKs on the official GitHub repos of
popular MCU manufacturers (e.g., Marvell and STMicroelectronics) which are
usually implemented in the firmware running on corresponding MCUs, includ-
ing RTOS and common cryptographic functions and peripheral interfaces. The
another is platform-related SDKs implemented by device vendors to support
devices communicating with popular IoT platform such as Joylink, Alink, MIJIA,
and AWS IoT. Our database contains over 20,000 library functions including
2,893 functions of platform-related SDKs and 17,538 functions in MCU-related
SDKs.
4 https://github.com/daumbrella/LoadLightweightFirmware.

https://github.com/daumbrella/LoadLightweightFirmware

650 Y. Yao et al.

To measure the performance of our library function recognition, we calculated
the ratio of recognized library functions to total functions as shown in Table 2.
The lower rate is mainly due to our insufficient database rather than techni-
cal reasons. For example, we did not gather the MCU-related SDKs running
on RTL8711B, RTL8159A and STM32F4XX MCUs. In addition, the platform-
related SDKs used by tested firmware running on STM32F4XX are previous
versions of those we collected. The technical limitations of our library function
recognition are discussed in Sect. 5.1

Table 2. The recognition ratio of library function recognition

MCU model Platform # Firmware $ Function number Recognition ratio

MW300/302 MiJia 36 2084 21.81%

Joylink 1 1748 23.05%

Alink 2 1707 26.36%

AWS IoT 4 2246 26.97%

HF-MC3000 Alink 3 4957 30.57%

Joylink 8 4191 23.59%

HF-MC101 Joylink 3 2648 78.97%

RTL8711B Joylink 8 4169 2.72%

Alink 18 4156 2.74%

RTL8159A Alink 14 4330 2.76%

MiJia 1 3358 3.25%

STM32F4XX Alink 2 2247 1.29%

#: the number of $: the average of

Control Flow Graph Restoration. To identify caller and command functions
in IoT firmware, we first improve the CFG generation tool used by Angr as we
described in Sect. 3.4. Figure 5a and b show a visualized comparison between
the number of call graph nodes and edges generated by Gerbil and original Angr
with all tested firmware. We can clearly see that Gerbil’s restoration of control
graphs of most tested firmware was significantly improved compared to original
Angr.

4.3 Identifying the Privilege Separation Vulnerability

Gerbil run the 106 test firmware within ten minutes in average (including only
symbolic execution time). Since firmware which runs on devices fabricated by the
same vendor usually adopts the same privilege separation model, the results of
Gerbil’s output are categorized according to device vendor as shown in Table 3.
The results show that Gerbil identified 69 firmware images have one or more
over-privileged shared functions (i.e, privilege separation vulnerabilities). After
manual verification, we found that most privilege separation vulnerabilities can

Identifying Privilege Separation Vulnerabilities in IoT Firmware 651

0

20000

40000

60000

80000

100000

120000
Th

e
nu

m
be

r o
f C

FG
 n

od
es

 in
 e

ac
h

fir
m

w
ar

e Gerbil
Angr

0

20000

40000

60000

80000

100000

120000

140000

Th
e

nu
m

be
r o

f C
FG

 e
dg

es
 in

 e
ac

h
fir

m
w

ar
e Gerbil

Angr

Fig. 5. Comparison of CFG restoration between Angr and Gerbil

be exploited. In general, there are two or three caller functions of one firmware
corresponding to the three different interactive entities (local mobile app, remote
IoT cloud and physical user access). However, the Alibaba devices only sup-
port remote commands, which means there is only one caller function in their
firmware. Thus, their devices are immune to privilege separation vulnerabilities.

Table 3. Detection results of tested firmware

Detection results XiaoMi Alibaba JD TP-Link iRobot

firmware 37 39 20 6 4

vulnerable firmware 37 0 14 4 4

caller functions in each firmware 3 1 2 2 or 3 2

$ command functions in each firmware 36.5 31.3 26.2 21.3 13

#: the number of $: the average of

4.4 Impact Analysis of Privilege Separation Vulnerabilities
Exploitation

In this subsection, we use three vulnerable firmware, including the TP-Link
smart WiFi plug, Xiaomi Smart Gateway and JD smart oven with model
Changdi CRWF321ML, to demonstrate how to exploit our identified privilege
separation vulnerabilities and several attack effects.

TP-Link Smart WiFi Plug. We found one over-privileged shared function
can be reached by remote and local caller functions in the firmware of the TP-
Link smart WiFi plug and 52 command functions can be invoked by this over-
privileged shared function. Thus, we can send remote device control commands
locally. Next, we use an example of how to achieve an illegal device occupation
attack by taking advantage of this over-privileged function.

According to the user manual, we know only one legitimate user is allowed
to bind a TP-Link smart home device at a time. To this end, the TP-Link cloud

652 Y. Yao et al.

assigns a unique device ID (i.e, deviceId) to one device and binds it with one user
account. If other users request to bind the same device again, the cloud will refuse
this request unless the device has already been unbound by the original user. In
addition, we found the command function set device id is normally used by the
IoT cloud to assign deviceId to the device. However, leveraging our identified
over-privileged function, this command can also be performed locally. Therefore,
a local attacker can send a set device id command to change the deviceIdA of a
unsold device to the deviceIdB which has been bound with his account. When
consumers buy this device, they cannot bind it to their accounts, because the
deviceIdB is already bound to the attacker’s account. Worse still, the device
cannot be unbound, because the victim does not have the attacker’s account.
Thus, the attacker can illegally occupy this device forever.

Xiaomi Smart Gateway. Similar to the TP-Link smart plug, the XiaoMi smart
gateway firmware has one over-privileged function shared by local and remote
caller function. Furthermore, all command functions can be directly called by
this function. Therefore, all remote commands can be sent by a local interactive
entity. In addition to abusing the commands which used to complete simple tasks
like setting the device ID in above example, we show how to distribute malicious
firmware to the device through a complicated OTA update command function.

Normally, when new version firmware is available in a cloud, the cloud will
send the download URL to the corresponding device. Then the device downloads
the firmware from the URL. Due to over-privileged shared functions, we can
also trigger this command locally. However, simply invoking the OTA update
command function cannot successfully complete the whole process of updating
firmware. The OTA update function will further call a sequence of functions to
download, parse and verify the firmware. If one function cannot be completely
finished, the whole process will be fail.

To ensure the completion of all necessary functions, we can use Gerbil again
to identify the path constraints. Through manual analysis, we know if firmware
has been successfully updated, the device will reply with a finalization message.
Thus, we input the command function as the start point and functions which
send the finalization message as end point to the Gerbil. According to path
constraints of Gerbil, we can construct a firmware contrived to meet all the
constraints. For example, we found the device uses the MD5 message-digest
algorithm to verify the firmware, so we can calculate the MD5 value matching
our manipulated firmware.

JD Smart Oven with Model Changdi CRWF321ML. There are three
over-privileged shared functions in Changdi smart oven firmware. One of them
can be reached from all three caller functions and invoke most command func-
tions. We identify 22 command functions called by this shared function includ-
ing setting worktime and temperature etc. In contrast to vulnerabilities that
can be successfully exploited, We show some commands cannot be abused by
over-privileged function and explain the reason in this case.

Command function unbind and reset can only be invoked when user physi-
cally pushing the corresponding button on the oven in normal use. Due to the

Identifying Privilege Separation Vulnerabilities in IoT Firmware 653

over-privileged shared function, these functions can also be called by local caller
function. However, we found these two command functions are not successfully
completed if we invoke them from a local or remote caller function. After man-
ual reverse-engineering, we found the button peripheral value will be checked
after these two command functions invoked. Since the value of peripheral regis-
ter can only be changed through physically touching (e.g., pressing or releasing
the button), the oven cannot perform these two commands sent by mobile app
or cloud.

5 Discussion

In this section, we discuss the how to prevent privilege separation vulnerabilities.
At the same time, we also discuss the limitations of Gerbil and how to mitigate
them in our plan for future work.

5.1 Mitigation

Above all, developers should deploy a strict privilege separation model in IoT
firmware. To be specific, operations carried out by the device should be clearly
divided into several mutually independent sets based on interactive entity, e.g.,
cloud-set and local-set. Therefore, depending on which set a command belongs
to, each caller function should be granted appropriate privileges. More impor-
tantly, the control flow and data flow from the cloud caller function, local caller
function and physical caller function should be strictly separated. In addition, if
the developer has to use a shared function to handle commands from different
interactive entities, they should require an additional verification of the identity
of the caller function in the shared function.

As an alternative, the manufacturer can eliminate local interface to IoT
devices, as with Alibaba’s devices. In other words, every command must be
routed to the cloud and IoT devices only accept commands from the cloud. In
this case, even if the user is at home, the commands must go through the cloud,
resulting in a longer latency. However, we argue that latency is not a critical
metric in the smart home scenario, and sacrificing some performance for secu-
rity is worthwhile. In addition, smart devices should enhance authentication of
interactive entities. In the interaction scenarios, the lack of local authentication
makes the privilege separation vulnerability easier to exploit.

5.2 Limitation

First, the function recognition method used by Gerbil is based on the FLIRT
algorithm. However, FLIRT cannot handle the problem of signature conflicts.
Thus, if multiple functions generate the same code signature, only one of them
can be selected for identification. In order to solve the conflict problem, we plan
to integrate other function recognition methods such as the control flow based
method [16] and function semantic based method [12].

654 Y. Yao et al.

Second, using Gerbil to perform symbolic execution requires human inter-
vention. In this work, we have developed an assistant tool to help analyst easily
slice the portion of firmware which is most likely to have privilege separation
vulnerabilities for symbolic execution. However, Gerbil cannot perform symbolic
execution on entire binary firmware images if analysts want to use Gerbil to iden-
tify other kinds of vulnerabilities, they have to rely on manual analysis for the
slice specification. We will integrate other technology like taint track optimize
the Gerbil to minimize manual work.

Third, not all privilege separation vulnerabilities can be successfully exploited
and need to be further verified. Since it is hard to find the entire execution path
for successfully and completely performing one command in firmware, we use
command function which is the first individual function to perform a specific
command as the end point for symbolic execution to identify privilege separa-
tion vulnerabilities. In most cases, if the command functions are invoked, they
will automatically call all necessary program related to finishing the tasks indi-
cated by the corresponding command. However, for some commands associated
with complicated processes like updating the firmware, command function will
carry out some further additional checks to the parameters, as we mentioned in
Sect. 4.4. Thus, the analyst has to invoke target command functions to verify
whether the corresponding commands have actually carried out or not. If not,
the analyst need to do further manual analysis or reuse Gerbil to figure it out.

6 Related Work

We review related research on IoT security from two aspect: privilege manage-
ment and firmware analysis.

Privilege Management. Fernandes et al. [8] revealed that over 55% of Smar-
tApps in Samsung’s store are over-privileged because the privilege management
of capabilities implemented in the programming frameworks are too coarse-
grained. On the other hand, many IoT platforms support trigger-action services
such as IFTTT. Fernandes et al. [10] also found that the OAuth tokens for the
IFTTT services are over-privileged, which can be misused by attacker to invoke
API calls that are outside the capabilities of the trigger-action service itself. Some
corresponding mitigation [11,13,21] also has been proposed. Our work focuses
on the privilege separation model of involved in IoT firmware implementation,
instead of the privilege management problem in IoT cloud services

Firmware Analysis. Several approaches are proposed for detecting the vulner-
abilities in IoT firmware, including static analysis [4], dynamic analysis [1,3,25],
and fuzzing [5,23]. Costin et al. [4] carried out a large-scale analysis of IoT
firmware by coarse-grained comparison of files and modules. Chen et al. [1] pro-
posed and implemented a robust software-based full system emulation, FIR-
MADYNE, based on kernel instrumentation. However, their approaches only
work for Linux-based embedded firmware, whereas a large number of real-world
IoT devices run RTOS or bare-metal systems and have limit ability to find

Identifying Privilege Separation Vulnerabilities in IoT Firmware 655

logic vulnerabilities. Avatar [25] enables dynamic program analysis for embed-
ded firmware by access to the physical hardware, either through a debugging
interface, or by installing a custom proxy in the target environment. However,
such hardware requirements are usually unrealistic for real-world devices (e.g.,
in the presence of locked hardware), and not suitable for testing large-scale
firmware.

For combining static and dynamic analysis, and closest to our work, Firmal-
ice [18], an IoT binary analysis framework, utilizes symbolic execution on the
part of firmware binary to identify the authentication vulnerabilities. Compared
to Firmalice, Gerbil greatly enhances the capabilities for symbolic execution to
deal with unknown lightweight IoT firmware. For example, Gerbil can restore
the library function semantic information in IoT firmware thus it can output
function-level path constraints and skip complicated library functions to miti-
gate path exploration.

7 Conclusion

In this paper, we approached the vulnerability analysis of IoT firmware from a
new angle -the privilege separation model- and identified privilege separation vul-
nerability caused by over-privileged shared function abuse. Then, we presented
Gerbil, a firmware-analysis-specific extension of Angr to detect privilege separa-
tion vulnerabilities in IoT firmware with little manual analysis. The high-level
idea is to identify over-privileged shared functions based on path constraints of
symbolic execution. With the help of Gerbil, we show that privilege separation
vulnerabilities widely exist in real-world IoT firmware. We also demonstrated
how to verify and exploit privilege separation vulnerabilities with real-world
devices. Besides, our evaluation shows that all components of the Gerbil can effi-
ciently help IoT firmware analysis. Finally, we proposed several defensive design
suggestions to prevent the generation of privilege separation vulnerabilities in
the first place and our plan for Gerbil’s future improvement.

Acknowledgments. We would like to thank the anonymous reviewers for their help-
ful feedback. Wei Zhou and Yuqing Zhang were support by National Key R&D Pro-
gram China (2016YFB0800700), National Natural Science Foundation of China (No.
U1836210, No. 61572460) and in part by CSC scholarship. Peng Liu was supported
by NSF CNS-1505664 and NSF CNS-1814679. Note that any opinions, findings, and
conclusions or recommendations expressed in this material are those of the authors and
do not necessarily reflect the views of any funding agencies.

References

1. Chen, D.D., Woo, M., Brumley, D., Egele, M.: Towards automated dynamic anal-
ysis for linux-based embedded firmware. In: NDSS, pp. 1–16 (2016)

2. Chen, J., Diao, W., Zhao, Q., Zuo, C.: IoTFuzzer: discovering memory corrup-
tions in IoT through app-based fuzzing. In: 25th Annual Network and Distributed
System Security Symposium, NDSS 2018, San Diego, California, USA (2018)

656 Y. Yao et al.

3. Choi, Y.H., Park, M.W., Eom, J.H., Chung, T.M.: Dynamic binary analyzer for
scanning vulnerabilities with taint analysis. Multimedia Tools Appl. 74(7), 2301–
2320 (2015)

4. Costin, A., Zaddach, J., Francillon, A., Balzarotti, D.: A large-scale analysis of the
security of embedded firmwares. In: 23rd USENIX Security Symposium (USENIX
Security 2014), pp. 95–110 (2014)

5. Costin, A., Zarras, A., Francillon, A.: Automated dynamic firmware analysis at
scale: a case study on embedded web interfaces. In: Proceedings of the 11th ACM
on Asia Conference on Computer and Communications Security, pp. 437–448. ACM
(2016)

6. Ericson: The Ericsson Mobility Report (2019). https://www.ericsson.com/en/
mobility-report

7. Feng, Q., Zhou, R., Xu, C., Cheng, Y., Testa, B., Yin, H.: Scalable graph-based bug
search for firmware images. In: Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, pp. 480–491. ACM (2016)

8. Fernandes, E., Jung, J., Prakash, A.: Security analysis of emerging smart home
applications. In: 2016 IEEE symposium on security and privacy (SP), pp. 636–
654. IEEE (2016)

9. Fernandes, E., Paupore, J., Rahmati, A., Simionato, D., Conti, M., Prakash, A.:
FlowFence: practical data protection for emerging IoT application frameworks. In:
Proceedings of Usenix Security Symposium, pp. 531–548 (2016)

10. Fernandes, E., Rahmati, A., Jung, J., Prakash, A.: Decentralized action integrity
for trigger-action IoT platforms. In: Proceedings of Network and Distributed Sys-
tems Symposium (NDSS), pp. 18–21 (2018)

11. He, W., et al.: Rethinking access control and authentication for the home Internet
of Things (IoT). In: 27th USENIX Security Symposium (USENIX Security 2018),
pp. 255–272 (2018)

12. Jacobson, E.R., Rosenblum, N.E., Miller, B.P.: Labeling library functions in
stripped binaries. In: Proceedings of the 10th ACM SIGPLAN-SIGSOFT Work-
shop on Program Analysis for Software Tools, pp. 1–8. ACM (2011)

13. Jia, Y.J., et al.: ContexloT: towards providing contextual integrity to appified IoT
platforms. In: NDSS (2017)

14. Jiang, Y., Xie, W., Tang, Y.: Detecting authentication-bypass flaws in a large scale
of IoT embedded web servers. In: Proceedings of the 8th International Conference
on Communication and Network Security, pp. 56–63. ACM (2018)

15. Pro, I.: Fast library identification and recognition technology (2019). https://www.
hex-rays.com/products/ida/tech/flirt/in depth.shtml

16. Qiu, J., Su, X., Ma, P.: Using reduced execution flow graph to identify library
functions in binary code. IEEE Trans. Softw. Eng. 42(2), 187–202 (2016)

17. Rays, H.: Fast library identification and recognition technology (2015). https://
www.hex-rays.com/products/ida/tech/flirt/in depth.shtml

18. Shoshitaishvili, Y., Wang, R., Hauser, C., Kruegel, C., Vigna, G.: Firmalice-
automatic detection of authentication bypass vulnerabilities in binary firmware.
In: NDSS (2015)

19. Shoshitaishvili, Y., et al.: SoK: (State of) the art of war: offensive techniques in
binary analysis. In: IEEE Symposium on Security and Privacy (2016)

20. Stephens, N., et al.: Driller: augmenting fuzzing through selective symbolic execu-
tion. In: NDSS, pp. 1–16, no. 2016 in 16 (2016)

21. Tian, Y., et al.: Smartauth: user-centered authorization for the Internet of Things.
In: 26th USENIX Security Symposium (USENIX Security 2017), pp. 361–378
(2017)

https://www.ericsson.com/en/mobility-report
https://www.ericsson.com/en/mobility-report
https://www.hex-rays.com/products/ida/tech/flirt/in_depth.shtml
https://www.hex-rays.com/products/ida/tech/flirt/in_depth.shtml
https://www.hex-rays.com/products/ida/tech/flirt/in_depth.shtml
https://www.hex-rays.com/products/ida/tech/flirt/in_depth.shtml

Identifying Privilege Separation Vulnerabilities in IoT Firmware 657

22. Wei, Z., et al.: Discovering and understanding the security hazards in the inter-
actions between IoT devices, mobile apps, and clouds on smart home platforms.
In: 28th USENIX Security Symposium (USENIX Security 2019). USENIX Associ-
ation, Santa Clara (2019). https://www.usenix.org/conference/usenixsecurity19/
presentation/zhou

23. Yaowen, Z., Ali, D., Heng, Y., Chengyu, S., Hongsong, Z., Limin, S.: FIRM-AFL:
high-throughput greybox fuzzing of IoT firmware via augmented process emulation.
In: 28th USENIX Security Symposium (USENIX Security 2019). USENIX Associ-
ation, Santa Clara (2019). https://www.usenix.org/conference/usenixsecurity19/
presentation/zheng

24. Yu, H., Lim, J., Kim, K., Lee, S.B.: Pinto: enabling video privacy for commodity
IoT cameras. In: CCS, pp. 1089–1101. ACM (2018)

25. Zaddach, J., Bruno, L., Francillon, A., Balzarotti, D., et al.: AVATAR: a framework
to support dynamic security analysis of embedded systems’ firmwares. In: 21st
Annual Network and Distributed System Security Symposium, NDSS, pp. 1–16
(2014)

https://www.usenix.org/conference/usenixsecurity19/presentation/zhou
https://www.usenix.org/conference/usenixsecurity19/presentation/zhou
https://www.usenix.org/conference/usenixsecurity19/presentation/zheng
https://www.usenix.org/conference/usenixsecurity19/presentation/zheng

iCAT : An Interactive Customizable
Anonymization Tool

Momen Oqaily1(B), Yosr Jarraya2(B), Mengyuan Zhang2(B),
Lingyu Wang1(B), Makan Pourzandi2(B), and Mourad Debbabi1(B)

1 Concordia Institute for Information Systems Engineering,
Concordia University, Montreal, QC, Canada
{m oqaily,wang,debbabi}@encs.concordia.ca

2 Ericsson Security Research, Ericsson Canada, Montreal, QC, Canada
{yosr.jarraya,mengyuan.zhang,makan.pourzandi}@ericsson.com

Abstract. Today’s data owners usually resort to data anonymization
tools to ease their privacy and confidentiality concerns. However, those
tools are typically ready-made and inflexible, leaving a gap both between
the data owner and data users’ requirements, and between those require-
ments and a tool’s anonymization capabilities. In this paper, we pro-
pose an interactive customizable anonymization tool, namely iCAT, to
bridge the aforementioned gaps. To this end, we first define the novel con-
cept of anonymization space to model all combinations of per-attribute
anonymization primitives based on their levels of privacy and utility.
Second, we leverage NLP and ontology modeling to provide an auto-
mated way to translate data owners and data users’ textual require-
ments into appropriate anonymization primitives. Finally, we implement
iCAT and evaluate its efficiency and effectiveness with both real and
synthetic network data, and we assess the usability through a user-based
study involving participants from industry and research laboratories. Our
experiments show an effectiveness of about 96.5% for data owners and
92.6% for data users.

1 Introduction

Nowadays, network data has become a highly valuable resource for different
stakeholders as its analysis can serve many use-cases. However, data owners are
generally reluctant to share their data due to the risk of information disclosure
and potentially staggering financial fines imposed by privacy regulations such as
the European General Data Protection Regulation (GDPR) [19]. This reluctance
is worsened with the increase in the number of the publicly announced data
breach and misuse incidents1,2. To this end, data anonymization is a well-known
solution for easing data owners’ concerns. However, the effectiveness of sharing

1 https://www.wsj.com/articles/google-exposed-user-data-feared-repercussions-of-
disclosing-to-public-1539017194.

2 https://www.techworld.com/security/uks-most-infamous-data-breaches-3604586/.

c© Springer Nature Switzerland AG 2019
K. Sako et al. (Eds.): ESORICS 2019, LNCS 11735, pp. 658–680, 2019.
https://doi.org/10.1007/978-3-030-29959-0_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29959-0_32&domain=pdf
https://www.wsj.com/articles/google-exposed-user-data-feared-repercussions-of-disclosing-to-public-1539017194
https://www.wsj.com/articles/google-exposed-user-data-feared-repercussions-of-disclosing-to-public-1539017194
https://www.techworld.com/security/uks-most-infamous-data-breaches-3604586/
https://doi.org/10.1007/978-3-030-29959-0_32

iCAT : An Interactive Customizable Anonymization Tool 659

anonymized data critically depends on data owners to make the right choice of
anonymization approach, and to apply the approach properly to achieve the right
trade-off between utility and privacy. However, this can be a difficult task since
most data owners likely lack a systematic understanding of the search space (i.e.,
all possible anonymization approaches). To make things worse, most existing
anonymization tools only provide very limited choices, and manually translating
privacy/utility requirements into the tools’ anonymization capabilities is usually
tedious and error-prone, as demonstrated in the following.
Motivating Example. Figure 1 depicts how three data users translate their
different analysis needs into utility requirements (left), while the data owner
translates his/her levels of trust for those users into different privacy require-
ments (right). Four existing anonymization tools (top-center) are applied to the
four data attributes (middle-center) to show the limitations (bottom-center).

Bob: University Collaborator

Charlie: Security Administrator

Charlie is distrusted

Privacy Req. 3:
Hashing, Truncation,

Clustering

Alice is trusted

Privacy Req. 1: Prefix
preserving, Seq. numb

Random

Hashing

Prefix-Pres

Const-
Shifting

No-
Anon

Trunc

Clust

Hiding

Hashing

Permut

Partial Hiding

Hide

No-
Anon

Data Owner
Requirements satisfaction

Privacy

Attributes

Existing tools:

Bob: is semi-trusted

Privacy Req. 2:
Hashing, Shifting

Username

IP

Port

Canine [15]Anon[6] Flaim [21] CoralRef [17]

Analysis: ML time series

Utility Req. 2:
Timestamp, IP

Analysis: Network security

Utility Req. 3: Username,
IP, Port

Timestamp
Seq. NumbRand-

Shifting

Alice: External Auditor

Analysis: Reachability
verification

Utility Req. 1:
Timestamp, IP subnet

Fig. 1. The motivating example

– The existing anonymization approach assumes that each data user (e.g. Alice)
can easily understand what is needed for his/her analysis (e.g., verifying net-
work reachability) and translate that need into concrete utility requirements
(e.g., the timestamps and the subnet relationship of IPs need to be preserved).
This might not be the case in practice (as confirmed by our user-based experi-
ments in Sect. 5), which could lead to many iterations between the data owner
and the data user before finding the right answer.

– It is also expected that the data owner can easily understand his/her level of
trust for each data user and translate it into concrete privacy requirements
(e.g., Alice can only be given prefix-preserving and sequentially numbered
data), and he/she is willing to understand each user’s utility requirement
(since the user is not involved in selecting the tool), and reconcile them with

660 M. Oqaily et al.

his/her privacy requirements. However, real-world data owners are usually
not so considerate and might simply go with whatever provided by some
handy anonymization tools.

– As shown in the middle of Fig. 1, existing tools generally only implement
a small set of anonymization primitives suitable for a subset of the data
attributes. Theoretically, the data owner can resort to a collection of such
tools to cover all attributes. However, practically, this could be a difficult task
since most tools do not offer the needed customization, e.g., which attributes
to anonymize and to what privacy/utility levels, and the selected tools may
not be compatible with each other and such incompatibility can potentially
result in erroneous or inconsistent results.

In this paper, we propose an interactive customizable anonymization tool,
namely iCAT, to address the aforementioned challenges. Intuitively, iCAT is
designed to cover the entire “space” shown in the middle of Fig. 1 (instead of
a few points covered by each existing tool), and to help both the data owner
and data users by automating their requirements translation. Specifically, we
first propose the novel concept of anonymization space, which models all pos-
sible combinations of existing anonymization primitives (which are applicable
to the given data attributes) as a lattice based on their relationships in terms
of privacy and utility. Second, as an application of the anonymization space
concept, the privacy and utility requirements are jointly enforced through a
simple access control mechanism. Third, we develop an ontology-driven Natu-
ral Language Processing (NLP) approach to automatically translate the textual
requirements from both parties into combinations of anonymization primitives
inside the anonymization space. Therefore, our main contributions are threefold:

1. To the best of our knowledge, our notion of anonymization space is the
first systematic model of existing anonymization primitives that character-
izes their capabilities in terms of privacy and utility, as well as their relation-
ships. This model provides data owners with clearer understanding of possible
anonymization choices, and it also, for the first time, allows the data users to
be actively involved in the decision process.

2. To realize the potential of anonymization space, we design and implement an
automated tool, iCAT, by leveraging existing anonymization primitives and
a popular NLP engine [16]. In contrast to most of the existing anonymiza-
tion tools, iCAT provides more flexibility (by allowing access to the entire
anonymization space) and better usability (by automating requirements
translation). The interactive nature of iCAT also implies the potential of
a new paradigm for providing data anonymization as a service.

3. We evaluate the effectiveness and efficiency of iCAT using both synthetic
and real data, and assess its usability through a user-based study involving
participants from both industry and academia. Our results demonstrate the
effectiveness and efficiency of our solution.

The remainder of this paper is organized as follows. Section 2 defines our
anonymization space model and describes the privacy/utility access control.

iCAT : An Interactive Customizable Anonymization Tool 661

In Sect. 3, we describe the requirements translation process using NLP and ontol-
ogy modeling. Section 4 details the implementation. Section 5 gives experimental
results. Section 6 provides more discussions. Section 7 reviews related works and
Sect. 8 concludes this paper.

2 Anonymization Space

In this section, we first define our threat model, then we review existing
anonymization primitives and finally we define the anonymization space model
and privacy/utility access control mechanism.

2.1 Threat Model

We define the parties involved in the data anonymization process and their trust
relationships as the following:

– The data owner, who has useful datasets that can be used for different pur-
poses, is interested in protecting the privacy of his/her data to avoid any data
misuse. The data owner has different trust levels of the data users, which will
determine the amount of information that he/she is willing to outsource.

– The data users, who have different use-cases of the data (e.g., auditing,
research purposes, etc.), are interested in having the maximum data util-
ity, in order to achieve valid results. The data users trust the data owners
and are willing to share their use-cases with them.

In scope threats: We assume that both data owner and user will follow the
procedure to express their requirements, while the latter is interested in obtaining
output with higher utility if the tool provides him/her such an opportunity.

Out of scope threats: Our tool is not designed to mitigate any weakness or
vulnerability of the underlying anonymization primitives (e.g., frequency anal-
ysis, data injection attacks, or data linkage attacks). Whereas, those primitives
are used as a black box in our data anonymization module and can be replaced
by other, better primitives when available. Moreover, we consider the failure in
requirement translation by the NLP engine out of the scope.

2.2 Anonymization Primitives

There exist many data anonymization primitives in the literature even though
most existing tools only support a limited number of those primitives (a detailed
review of related work is provided in Sect. 7). To facilitate further discussions,
Table 1 provides a list of common anonymization primitives, examples of plain
data, and the corresponding anonymized data obtained using the primitives 3.

3 This list is not meant to be exhaustive, and our model and methodology can be
extended to include other anonymization primitives.

662 M. Oqaily et al.

2.3 Lattices-Based Anonymization Space

Following our motivating example shown in Fig. 1, suppose the data owner is
dissatisfied with those existing anonymization tools. Instead, he/she would like
to apply the anonymization primitives given in Table 1. Obviously, he/she would
find himself/herself facing a plethora of choices as follows:

Table 1. Anonymization primitives

Primitive Plain data example Corresponding anonymized data

Prefix-preserving IP1:12.8.3.4; IP2:12.8.3.5 IP1:51.22.7.33; IP1:51.22.7.19

Truncation IP1:12.8.3.4; IP2:12.8.3.5 IP1:12.8.X.X; IP2:12.8.X.X

Const. substitution Version:2.0.1 Version: VERSION

Const. shifting Time1: 2019-03-31; Time2: 2019-03-30 Time1: 2022-03-31; Time2: 2022-03-30

Random shifting Time1: 2019-03-31; Time2: 2019-03-30 Time1: 2003-03-31; Time2: 2015-03-30

Sequ. numbering Time1: 2019-03-31; Time2: 2019-03-30 Time1: T1; Time2: T2

Partial hiding Time1: 2019-03-31; Time2: 2019-03-30 Time1: 2019-X-X; Time2: 2019-X-X

Hashing ID:40018833 ID: H3%s2*D9

Clustering Port1:225; Port2: 277 Port1:200; Port2: 277

Permutation Port1:225; Port2: 277 Port1:277; Port2: 225

Randomization Port1: 225; Port2: 277 Port1:423; Port2: 29

– First, each data attribute may be anonymized using a different collection
of the anonymization primitives (e.g., IPs may work with prefix preserving,
truncation, hashing, etc., while IDs with clustering, hashing, etc., and both
can be either completely hidden or plainly given with no anonymization).

– Second, different anonymization primitives applied to an attribute may yield
different levels of, and sometimes incomparable, privacy and utility (e.g., for
IPs, hashing provides more privacy/less utility than prefix preserving, whereas
they are both incomparable to truncation or randomization).

– Finally, the data owner and data users’ requirements typically involve multiple
attributes, as demonstrated in Fig. 1, and sometime in a complex fashion, e.g.,
the data owner might say “I can only give you the data with the IPs hashed,
or with the IDs clustered, but not both”, while a data user asks “I know I
may not get the data with the IPs truncated and the IDs hashed, but what
would be my next best option?”

The above discussions clearly demonstrate a need for a systematic way to
represent and organize all the possible choices of anonymization primitives that
can be applied to a given dataset. For this purpose, we propose a novel concept,
namely anonymization space, by considering each data attribute as a dimen-
sion, and each combination of anonymization primitives that can cover all the
attributes as a point inside the anonymization space. Considering the fact that
anonymization primitives are not always comparable in terms of privacy/util-
ity, and inspired by the Denning’s Axioms [4,20], we consider the collection of
anonymization primitives applicable to each attribute to form a lattice based on
their relationships in terms of privacy and utility, and the product of all those

iCAT : An Interactive Customizable Anonymization Tool 663

lattices (which is also a lattice by lattice theory [5]) represents the anonymization
space. The following more formally defines those concepts.

Definition 1 (Anonymization Space). Given A = 〈a1, a2, . . . , an〉 as a
sequence of attributes to be anonymized, and given Fi = {f1, f2, . . . , fm} (1 ≤
i ≤ n) as the set of anonymization primitives that are applicable to ai, we define

– the attribute lattice Li(1 ≤ i ≤ n) as a lattice 〈Fi,≺〉 where for any f1, f2 ∈
Fi, we have f1 ≺ f2 iff f1 provides better utility and more stringent privacy
than f2 when both are applied to ai, and

– the anonymization space corresponding to A as
∏n

i=1 Li.

Example 1. Figure 2A (top) shows some examples of anonymization primitives
and Fig. 2B shows their applicability (using their indices) to six attributes.
Figure 2C shows the six attribute lattices. Due to space limitations, we omit
the anonymization space (which would have a size of 20, 736).

No
Anon

PPTrun
cRand

Hidin
g

Hash

1) IP Addresses lattice

No
Anon

Part.
HidiClustRand

Hidin
g

2) Integers\Decimals lattice

Cons.
Sub.

No
Anon

Clust.

Hidin
g

3) Identifiers lattice

Hash

No
Anon

Cons.
Shif.

Part.
HidiRand

Hidin
g

Seq.
Num.

4) Time\Dates lattice

No
Anon

Part.
HidiClustRand

Hidin
g

5) Strings lattice

Cons.
Sub.

No
Anon

Cons.
Shif.

Hidin
g

Cons.
Sub.

6) Constants lattice

No
Anon

Partial
Hiding Clust Rando HidingPrefix-

preser
Hashi

ng TruncCons
shifting

Seq
num PermutConst

subs
1 2 3 4 5 6 7 8 9 10 11 12

IP
Addr

ess

6
8

11

2

1 ID

9

12

6

1

12

Int/
Dec

7
9

11

3

1

12

Time
Dates

5
7

11

4

1

12

Strin
gs

7
9

11

3

1

12

Const
ants

5

12

1
4

A) Network data anonymization primitives

B) Attributes and their corresponding anonymization primitives

C) Per-attribute lattices

Fig. 2. An example anonymization space (A) Examples of anonymization primitives
with their indices, (B) Examples of data attributes and their applicable anonymization
primitives and (C) The attribute lattices.

By providing a clearer picture of the anonymization primitives and their
relationships, the anonymization space concept may have many use cases. For
our purpose, we show how the concept can be used to jointly enforce the privacy
and utility requirements through a simple access control mechanism (inspired
by the Bell–LaPadula (BLP) model [3]), while allowing the data user to be
actively involved in the anonymization process. Specifically, if we consider each
point (which is a collection of anonymization primitives) in the anonymization
space as a privacy/utility level, then the data owner’s privacy requirement can
be mapped to such a level (this mapping will be automated in Sect. 3), and

664 M. Oqaily et al.

everything above this level will also satisfy the privacy requirement since by
definition it will yield more privacy, namely the privacy-up rule. Conversely, a
data user’s requirement can also be mapped to a level below which any level
would also satisfy the utility requirement, namely the utility-down rule. This is
more formally stated in Definition 2.

Definition 2 (Privacy/Utility Access Control). Given the data attributes
A, the corresponding anonymization space AS =

∏n
i=1 Li, and the privacy

requirement Lp ∈ AS and utility requirement Lu ∈ AS (specified by the data
owner and data user, respectively), any L ∈ AS will satisfy both requirements iff
Lp ≺ L (privacy up) and L ≺ Lu (utility down) are both true.

Example 2. Figure 3 shows an example of anonymization space corresponding to
the IP and ID attributes. The data owner requires Ha (hashing) for IPs and NA
(no anonymization) for IDs. By the privacy-up rule, all levels inside the upper
shaded area will also satisfy privacy requirements. The following discusses two
data users’ utility requirements.

<Ha,Hi>

<Ha,Ha>

<Ha,NA>
<Ha,Cl>

<Hi,Hi>
<Hi,Ha>

<Hi,Cl>
<Hi,NA>

<PP,Hi>

<PP,Ha>

<PP,NA>
<PP,Cl>

<NA,Hi>
<NA,Ha>

<NA,NA>

<NA,Cl>

<Tr,Hi>

<Tr,Ha>

<Tr,NA>
<Tr,Cl>

Tags Map

HidingHi

HashingHa

Prefix-preservingPP

TruncationTr

ClusteringCl

No-AnonymizationNA

Data owner’s requirements: Hashed IPs, Plain ID

Alice’s requirements: IPs subnet

Charlie’s requirements: One to one mapping

The Intersection

Fig. 3. An example of anonymization space for attributes IP and ID, and the priva-
cy/utility access control for Alice and Charlie

1. Charlie requires to preserve the one-to-one mapping for both IPs and IDs.
Following the utility-down rule, the dark gray area highlights all the levels
that satisfy Charlie’s utility requirements. Also, the area with crossing lines
includes all levels that satisfy both the privacy and utility requirements, i.e.,
〈Ha, Ha〉 and 〈Ha, Na〉.

2. Alice requires to preserve the IP subnets. The light gray area highlights all
the levels that satisfy Alice’s utility requirement. Since there is no intersection
between the upper shaded area and the light gray area, no level can satisfy
both the privacy-up and utility-down rules, which means no anonymization
primitive can satisfy both the privacy and utility requirements for Alice. How-
ever, the anonymization space makes it easy to choose an alternative level that
will satisfy the privacy requirement while providing the best possible utility
to Alice, e.g., 〈Ha,Na〉.

iCAT : An Interactive Customizable Anonymization Tool 665

3 Requirements Translation

To ease the burden on both data owners and data users, iCAT accepts require-
ments expressed in a natural language (English in our case) and translate
them into anonymization primitives. In this section, we first discuss require-
ments translation using NLP and ontology modeling, and then explain ambiguity
resolution.
Requirements Processing Using NLP. The first step in translating the data
owner and data user’s requirements into combinations of anonymization primi-
tives in the anonymization space is to understand them linguistically. For this
purpose, iCAT leverages the Stanford Parser CoreNLP [16], which provides a set
of natural language processing tools. Initially, the CoreNLP parser separates the
English requirements into different sentences. Since CoreNLP can mark up the
structure of sentences in terms of phrases and syntactic dependencies and indi-
cate which noun phrases refer to the same entities, we can obtain the sentence
representing each requirement. After that, the Part-Of-Speech Tagger (POS Tag-
ger) tool from CoreNLP is leveraged to filter and prepare the requirements for
the ontology modeling step (c.f. Sect. 3). The POS tagger returns the sentences’
words as a pair consisting of tokens and their part of speech tags (the linguistic
type of the words, i.e., noun, verb, adjective, etc.). After that, unrelated words
(i.e., pronouns, symbols, adverbs, etc.) are filtered out from each requirement,
which will speed up the requirements translation.

Example 3. Figure 4 shows how a data owner’s requirement “Data stored based
on time occurrence” is processed to obtain the attribute data type timestamp
and the associated anonymization primitive shifting.

Requirment1:
data sorted based
on the occurrence

time

 Step1:
 Requirement Parsing

Token Dependency
Data Noun

sorted Verb
based Verb

on Preposition
the Article

occurrence Noun
time Noun

Token Dependency
Data Noun

sorted Verb
based Verb

on Preposition
the Article

occurrence Noun
time Noun

Anonym
Method Shifting

Data Type Timestamp
Anonym
Method

Data Type Timestamp
Shifting

Seq. Num

Type Token
Timestamp time

Type and Method Ontologies

…
Method Token

SortedSequntial
Numbering ...

SortedConstant
shifting ...

 Step2:
Requirement Filtering

 Step3:
Requirement

Mapping

Step4:
Ambiguity Solving

Parse user
requirement through

NLP
Remove irrelevant

tokens

Map the requirement to the
related attribute type and
anonymization primitive

Solve any resulted ambiguity
by communicating with user

Fig. 4. Example showing the requirement translation process

Ontology Modeling. We use ontology modeling to define the relationship
between requirements and data attributes/anonymization primitives as follows.
Ontology Learning. We first define the concepts for data owner and user as: (i)
anony-methods; (ii) method-func; (iii) attribute-types; (iv) attribute-synon.

666 M. Oqaily et al.

Based on our definitions, the instances of the anony-methods are the existing
anonymization primitives and the method-func instances are manually created
based on the functionality and unique properties that each anonymization prim-
itive can achieve. Moreover, the instances of the attribute-type concept are the
given attributes types and the attribute-synon instances are manually created
based on the use/synonymous of each attribute type. After that, we find the
relationships between those concepts’ instances by defining relations between
the anony-methods and the method-func concepts. Also, by defining relations
between the attribute-types and the attribute-synon instances. For example,
Fig. 5 shows the type-ontologies related to the time-stamp attribute type and
the method-ontology related to the constant shifting anonymization primitive.
After that, we store the resulted ontologies into two separate tables, namely the
type-ontology and the method-ontology.

Requirements Mapping. We apply the learned ontologies to the processed and
filtered requirements from the NLP in order to find the data attributes and the
anonymization primitives corresponding to the user’s requirements. This is done
by matching every tokenized word in the processed requirement with the type
and the method ontologies tables shown in Fig. 4 as follows.

Timesta
mp Calculates

Has
Finds

Measure
Calculates

Consists
from

Capture

Define

Sequ
ences

Wind
ow

Time
-out

Idle

Roun
d

Trip

Initia
tion

Time

Hour
Min
Sec

Const.
Shifting Preserves

Maintian Define
how

Maintain
Preserves

Consists
from

IS

Finds

Diffe
rence

Dura
tion

Far

Dista
nce

Sequ
ences

one-
to-
one

Disti
nct

Flow

A) Excerpt of the Timestamp type-ontology B) Excerpt of the Constant-Shifting method-ontology

Delay

Fig. 5. Ontologies of timestamp and constant shifting.

1. For each tokenized word in each annotated requirement, the tokenized word
is matched first with the type ontology and then with the method ontology.

2. If the tokenized words are mapped to only one record from the type ontology
table and one record from the method ontology table, then the requirement
is translated properly, and the mapper will pass to the second requirement.

3. If none of the tokenized words match any record in both type and method
ontologies tables, the word is dropped from the sentence annotations table.

4. If the user tokenized words fail to map to any record from the type and/or
method ontologies or if the tokenized words have multiple matching, then
the mapper will return an error message to the user reporting this issue and
forward this conflict to the ambiguity solving process as discussed next.

iCAT : An Interactive Customizable Anonymization Tool 667

Ambiguity Resolution. Ambiguity can occur for several reasons. We discuss
how iCAT handles it as follows.

– The sentences entered by the user are mistakenly parsed at requirement pars-
ing step (because of typos or NLP failures), which is not due to iCAT.

– The same requirements can be translated into different anonymization meth-
ods. For example, consider the following requirement; Req-1: each IP address
must be mapped to one IP address. Both IP hashing and prefix-preserving
can satisfy this requirement. In this case, the ambiguity solver of iCAT will
display a small multi-choice menu to the user, such that this ambiguity can
be resolved interactively.

– The same requirement can be expressed in different ways; For example, the
sequence of events is mandatory versus the order of logged records must be
preserved. This issue is discussed in Sect. 6.

– The data user’s requirement is mapped to anonymization primitives that
do not satisfy the data owner’s requirement. In this case, iCAT suggests
alternative anonymization primitives that offer the closest utility level to what
is specified by the data owner.

4 Implementation

Figure 6 illustrates the flowchart (left) and main architecture (right) of iCAT, as
detailed below.

Step1: Raw data loading
and pre-processing

Step 2: Data attributes’
types identification, and

anonymization space
generation

Step3: Data owner’s
requirements processing

using NLP into a privacy-
level for the data user

Step4: Data user’s
requirement processing
using NLP into utility-

level

Step 5: Determination of
the per-attribute

anonymization primitives

Requirements
Parser

Ambiguity
Solver

Requirements Interpreter (RI)

Data
Processing

Data
Filtering

Data filtering and Processing (DFP)

Method/Type
Ontology (MTO)

File storage and Databases

Access Control
(ACDB)

Data Anonymizer
(DA)

Anonymization
Mapper

Anonymization
Primitives

File Storage
(FS)

Requirements
Mapper

iCAT Manager

Identity Access
Management and

Permission Granter

I/O ManagerInteractive
Communicator

Anonymization
Space Builder

(ASB)

Anonymization
Controller

(AC)

Anonymization Space
 Manager (ASM)

A) iCAT Flowchart Diagram B) iCAT System Architecture

Step 6: Data anonymization
meeting all requirements

Fig. 6. Flowchart of iCAT.

iCAT Flowchart. As shown in Fig. 6A, raw data is loaded into iCAT and pre-
processed by the data owner where he can filter the attributes and clean the
records if necessary (step 1). Then, the data attribute types are identified and
used to build the anonymization space lattice and generate the privacy/utility
access control model (step 2). Third, the data owner interacts with iCAT to
input his privacy requirements (in natural languages) for a data user (step 3).

668 M. Oqaily et al.

These requirements are parsed and mapped to a privacy-level in the anonymiza-
tion space. After that, the data user inputs the utility requirements which are
also parsed and mapped to a utility-level in the anonymization space (step 4).
Based on the privacy and utility levels, iCAT identifies the right combination of
anonymization primitives (step 5). Finally, the data is anonymized and returned
to the data user (step 6).

iCAT Architecture. We provide a brief description of the main architecture
of iCAT, as shown in Fig. 6B, while leaving more details to the Appendix due to
space limitations. All the modules of iCAT are implemented in Java. The Data
Loading and Processing (DLP) module is used to load the data, and enables
filtering and cleansing operations. These operations allow performing statistical
disclosure control for balancing privacy risks and data utility. The Requirements
Interpreter (RI) module translates the data owner’s and data user’s requirements
into data attributes types and anonymization primitives. The iCAT Manager
module associates the data user identity with the privacy-level specified by the
data owner and interacts with the data owner or data user. The I/O Man-
ager module is responsible for configuring the data source and the loading the
actual data. The Anonymization Space Manager module is for generating the
anonymization space and implementing the access control mechanism. Finally,
the Data Anonymizer module is for anonymizing the data and it is designed in
a modular way to easily accommodate new anonymization primitives.

5 Experiments

In this section, we evaluate the effectiveness and usability of iCAT through a
user-based study with participants from both industry and academia working
on data analysis. Also, we evaluate the efficiency of iCAT using real data.

5.1 Experimental Settings

Datasets Selection. We used four datasets in our experiments as shown in
Table 2. The first is the Google cluster dataset [10], i.e., traces from requests pro-
cessed by Google cluster management system. The second is cloud logs collected
from different OpenStack Neutron services. The third dataset is a database dump
of the OpenStack Nova service. The fourth dataset is the BHP-OBS machine
learning dataset [23]. We select the aforementioned datasets for the following
reasons: (i) The privacy constraints and requirements are already known for
datasets from the industrial collaborator; (ii) The public datasets are widely
used in research labs and the structure and usability of the data (as implemen-
tations exist to validate) could be easily identified by the researcher participants.
Participants. We have two types of participants, i.e., data owner participants
and data user participants. To solicit participants, we have placed an advertise-
ment on the university campus and also sent it to our industrial collaborators.
The on-campus flyer requires that: (i) participants should be able to pose clear

iCAT : An Interactive Customizable Anonymization Tool 669

Table 2. Different datasets used in evaluating iCAT and their statistics

Datasets Format # of records # of attributes # of requirements

DS1: Google cluster CSV 2,000 9 56

DS2: OpenStack Neutron log 2,000 18 62

DS3: OpenStack Nova DB 2,000 22 44

DS4: BHPOBS ML text 1,027 22 43

requirements (e.g., how to use the data and what properties need to be pre-
served). (ii) participants should be able to evaluate the usefulness and usability
of the data after the experiments. The request sent to research collaborators
indicates that: (i) participants should be able to write their institutional pri-
vacy constraints and requirements that govern data sharing; (ii) participants
should be able to verify whether the final anonymized output of the data meets
those requirements/constraints. As a result, we have recruited nine researchers
from different research labs, and 14 participants from four industrial organiza-
tions. Table 3 summarizes the participants’ experience level in percentage, where
we categorize them based on their educational level and industrial experience.

Table 3. Distribution of participants over the user experience levels

Category Research Industry

Expertise level M.Sc. Ph.D. Junior Senior

Participants percentage 30.4% 8.6% 43.4% 17.6%

Overall percentage 39% 71%

Procedures. We divided our experiments into four main data anonymization
operations based on the used datasets and asked the participants to select one
of them corresponding to their domain. After that, the participants had to input
their requirements and interact with iCAT until the anonymization operation
finishes. Finally, we asked the participants to fill a post-experiment questionnaire
to report the correctness of data usefulness and the privacy constraints. Note
that, we recorded the requirements entered by the participants to evaluate the
effectiveness of iCAT as it will be explained next.

5.2 Effectiveness

The main goal of this experiment is to evaluate the quality of the requirements
translation. Since this is a multi-class problem, we evaluate the effectiveness of
our system as the percentage of the requirements that were correctly translated
by iCAT. To this end, we manually investigated the recorded user’s requirements
and categorized the failures as follows: (i) the privacy leakage/utility loss caused

670 M. Oqaily et al.

by both data owners/users through mistakenly choosing anonymized methods.
(ii) the failures caused by iCAT misrecognizing either the data owners or the
data user’s requirements. Fig. 7A and B demonstrate the effectiveness of the
translation process from both data owner and user sides. Figure 7C shows a
detailed analysis of the failed requirements.
Results. The overall effectiveness of translating data owners’ requirements is
relatively high as shown in Fig. 7A; the lowest percentage of correctly translated
results is 87.5%. This is justified as the ambiguity solver implemented by iCAT
reduces the error rate through interactive communication with the users, where
they can directly intervene in the case of uncertain requirements. On the other
hand, the two main reasons of translation’s failures are: (i) the correctness of
the ontology modeling; (ii) NLP fails to translate when the user’s input contains
typos. The percentage of failures for both Ontology and NLP are presented in
Fig. 7A in white and gray patterns. By comparing through the dataset, we also
observe that the number of attributes affects the success rate of the require-
ments translation in the opposite manner. Hence, users need to express their
requirements more precisely to differentiate between different attributes.

Similarly to the previous experiment, the ambiguity solver contributes to
the high accuracy in the translation of data users’ requirements as shown in
Fig. 7B. Besides the aforementioned two main reasons, we observed that data
user participants often fail to understand the mapping between anonymization
primitives suggested by iCAT ’s ambiguity solver and their utility requirements.
This lesson has led us to add a pop-up message showing an example of each
primitive in order to guide the user and avoid selecting the wrong suggestion.

Figure 7C shows our analysis results about the failed requirements. We can
only observe privacy loss from data owners’ side due to a miss in the ontology
modeling, which has been fixed afterward. Utility loss could be caused at both
data owners and data users’ sides due to an incorrect translation of data owners’
requirements and the misinterpreting of the anonymization methods by data
users. Some no-translation requirements are due to typos in the input require-
ments. We will discuss those issues and how to address them in the following
section.

5.3 Usability

The usability of iCAT is evaluated based on two questionnaires. The first follows
the standardized usability questionnaires [2] and consists of 19 questions. It
provides the evaluation of the users’ satisfaction towards the services provided by
the tool (e.g., whether this tool converges the views and bridges the gaps between
data owners and users). The second surveys the sensitivity of the attributes and
the trust-level in different actors used to propose privacy/utility access control
mechanism for different attributes anonymization.

iCAT : An Interactive Customizable Anonymization Tool 671

DS1 DS2 DS3 DS4
Data Sets

0

20

40

60

80

100

pe
re

ce
nt

ag
e

(%
)

iCAT Effectivness

DS1 DS2 DS3 DS4
Data sets

5

10

15

20

Pe
rc

en
ta

ge
 (%

)

Failed Requirements Evaluation
Utility-loss/owner side
Manual validation/owner side
No-translation/owner side
Utility-loss/user side
No-Translation/user side

DS1 DS2 DS3 DS4
Data Sets

0

20

40

60

80

100

Pe
re

ce
nt

ag
e

(%
)

Ontology Failure NLP failure Translated Requirements

B) Data user requirements translation effectiveness C) Failed requirements analysisA) Data owner requirements translation effectiveness

Fig. 7. The effectiveness of requirements translation

Results. Table 4 shows a summary of our main evaluation criteria and the aver-
age rating out of seven. The results show that the data users are extremely
positive by the fact that they are part of the anonymization process through
expressing their requirements. On the other hand, the data owner participants
from industry clearly show interests in this tool because they can have different
anonymization levels of the same input data instead of the encrypt/hide policy
which they currently use. Data users also report that the tool requires some
privacy expertise, especially when it comes to deal with the ambiguity solver. As
mentioned before, to this issue, we have revised our design by adding concrete
examples for the anonymization primitives to make them easier to understand.

Table 4. Usability results based on questionnaire designed following [2]

Category Question Score/7

Ease of use, interactivity and

user friendly

It was simple to use iCAT 6.3

I can effectively complete my work using iCAT 5.2

I am able to complete my work quickly using iCAT 4.8

I am able to efficiently complete my work using iCAT 5.45

I feel comfortable using iCAT 5.7

It was easy to learn to use iCAT 4.2

I believe I became productive quickly using this system 6.4

The interface of this system is pleasant 6.5

Like using the interface of this system 6.6

Errors detecting, reporting

and recovery

iCAT gives error messages to fix problems 5.7

I recover easily/quickly when I make a mistake 5.8

iCAT does not need

support/background to use

It is easy to find the information I needed 4.4

The information provided for iCAT is easy to understand 3.5

The information is effective in completing the tasks 3.6

The information organization on iCAT screens is clear 5.7

This system has all the functions and capabilities I expect it to have Comment 6.1

The information provided with this system is clear (e.g., online help and other documentation) NA

The overall satisfaction I am satisfied with how easy it is to use iCAT 5.3

I am satisfied with this system 6.2

672 M. Oqaily et al.

The second questionnaire is an online form and the results of this question-
naire are shown in the table of Fig. 8. We applied the marginal distribution and
drew the trend of each attribute and actor as shown in Figs. 8A and B. In gen-
eral, we can observe that the attributes and actors are associated with different
sensitivity levels. The attribute Time, ID, Constant and Numbers have similar
data sharing strategy; internal actors could have low privacy and high utility
results, while competitors would be only provided with high privacy and low
utility data. The main reason is those attributes are not as sensitive as per-
sonally identifiable information, but still can leak information that can be used
to stage security attacks. Attribute IP and Numbers (salary in our survey) are
considered to be sensitive attributes for all level actors who prefer to apply at
least level 2 anonymization on them. This can be due to sharing policies or cul-
tural background which makes them less willing to share the information carried
by those attributes. Figure 8B confirms the trust levels of the actors through
the levels of anonymization methods they are mostly assigned. Internal auditors
are mostly granted with level 1 anonymization only, while competitors could
only get level 6 anonymization results. External auditors and researchers (gener-
ally under NDA) share similar trusted levels. This shows the participants share

Attribute Actor Level1 Level2 Level3 Level4 Level5 Level6

Time

I 95% 5%

E 45% 38% 6% 6% 5%

R 25% 50% 10% 5% 10%

C 5% 5% 20% 70%

ID

I 80% 5% 5% 10%

E 5% 70% 20% 5%

R 50% 5% 5% 10% 20% 10%

C 10% 25% 65%

String

I 55% 5% 40%

E 70% 15% 15%

R 25% 60% 5% 10%

C 20% 25% 55%

IP

I 75% 20% 5%

E 35% 15% 20% 20% 5%

R 40% 40% 10% 10%

C 25% 75%

Constant

I 40% 40% 20%

E 55% 20% 10% 5% 10%

R 45% 10% 30% 5% 10%

C 25% 5% 15% 55%

Number

I 60% 30% 5% 5%

E 25% 50% 5% 20%

R 5% 50% 5% 20% 20%

C 5% 45% 55%

1 2 3 4 5 6
0

10

20

30

D
is

tri
bu

tio
n

Marginal distribution of different attributes and actors

Timestamps

1 2 3 4 5 6
0

10

20

30
D

is
tri

bu
tio

n
IDs

1 2 3 4 5 6
0

10

20

30

40

D
is

tri
bu

tio
n

Strings

1 2 3 4 5 6
0

5

10

15

20

D
is

tri
bu

tio
n

Anonymization levels

IPs

1 2 3 4 5 6
5

10

15

20

25

D
is

tri
bu

tio
n

Constants

1 2 3 4 5 6
0

10

20

30

D
is

tri
bu

tio
n

Anonymization levels

Numbers

1 2 3 4 5 6
Anonymization levels

0

20

40

60

80

D
is

tri
bu

tio
n

Internal Auditor
External Auditor
Researcher
Competitor

B) Sensitivity of different data actors

A) Sensitivity of different data attributes

Fig. 8. Sensitivity questionnaire and results analysis

iCAT : An Interactive Customizable Anonymization Tool 673

similar visions related to the internal auditor and competitors and consider the
external auditors and researchers harmless.

5.4 Efficiency

In order to evaluate the overhead from different modules of iCAT, we measure
the time, memory and CPU consumption.
Results. Figure 9 shows the time, memory and CPU consumption of the data
anonymization process according to the four datasets. We measure the afore-
mentioned resource consumption according to four different events: (i) E1: Data
loading and pre-processing; (ii) E2: Anonymization space and access control
matrix generation; (iii) E3: Ontology mapping; (iv) E4: NLP translation. We
also evaluate the resource consumption of anonymization. The first three results
in Fig. 9 are the overhead at the data owner side and the last two results are for
the data user. From data owner side, beside the onetime effort to load the data,
other operations have negligible consumptions. The overhead resulted from the
last two events at the data user side is related to the use of NLP server and the
anonymization primitives’ implementation, which are both out of our control.

DS1 DS2 DS3 DS4
Data Sets

0

10

20

30

40

M
em

or
y

(%
)

iCAT Resources Consumption
Data loading/processing AS/ACM generation Ontologies mapping NLP processing Anonymization

DS1 DS2 DS3 DS4
Data Sets

0

20

40

60

80

100

120

140

Ti
m

e
(s

ec
on

ds
)

Data loadind/processing

DS1 DS2 DS3 DS4
Data Sets

0

10

20

30

40

C
PU

 (%
)

Data loading/processing
AS/ACM generation
Ontologies mapping

B) CPU consumption of iCAT C) Memory consumption of iCATA) Time consumption of iCAT

Onetime
effort

At data owner
side only

Fig. 9. The resources consumption of iCAT

6 Discussions

Compositional Analysis. A well-known issue in anonymization is that releas-
ing multiple views of the same data may breach privacy since an adversary can
combine them. However, by the definition of our anonymization space lattice,
whatever levels inside its ‘privacy-up’ region can be safely released, because all
those views contain strictly less information than the specified privacy level (in
fact, those views may be derived from the latter) so combining them lends the
adversary no advantage. If, however, the data user is mistakenly assigned differ-
ent privacy levels at different time, then he/she can potentially combine those

674 M. Oqaily et al.

views to gain more information. However, the anonymization space lattice makes
it easy for the data owner to see exactly what he/she will gain (i.e., the GLB of
those levels) and take appropriate actions.
Business-Case. Nowadays data is becoming the most valuable asset and the
determiner of success in many aspects. We believe iCAT can be used to provide
“data anonymization as a service” in which the data owner sets the desired
privacy level for each (type of) data user, without worrying about their utility
requirements. Afterward, the data users can query the tool in an interactive
manner without any intervention from the data owner. The data owner can be
sure that the privacy is preserved, whereas the data users can obtain as many
anonymized views of the data as needed for different analyses.
Privacy Analysis. iCAT does not propose any new anonymization primitive,
but relies on the correctness of existing solutions. The privacy/utility level of
iCAT output will be exactly the same as that of the anonymization primitives
being used. However, it is possible that iCAT may mistakenly translate the data
owner requirements and map them to unsafe levels. Therefore, in our design, the
data owner-side requirement translation is only intended as a suggestion, which
requires further validation by the data owner.
Tricking iCAT. As the data user and owner requirements are enforced inde-
pendently by iCAT, the data user cannot influence iCAT to use a primitive that
breaches the data owner’s requirements. This is enforced as follows: (i) during
requirements translation, the ontologies for the data owner and user, respec-
tively, are stored and used separately; (ii) iCAT, by design, does not allow the
data owner to publish the dataset until a privacy level is assigned to each data
attribute (either by processing requirements through NLP or manually).
Data Linkage. We emphasize that such a limitation, de-anonymizing a given
dataset using publicly available data, is not due to iCAT as we mentioned earlier
in our threat model (Sect. 2.1). Nonetheless, using iCAT, the data owner will have
the flexibility to assign a privacy level for each data attribute and for each data
user. As a result, the data owner can always specify a higher privacy level that
is more resistant to linkage attacks (e.g., randomization) for less trusted users
or more sensitive attributes.
Ontologies Learning. As we mentioned in our experiments, we have reported
requirements translation failures due to missing ontologies matching. We believe
a major opportunity here is to add a feedback module that learns the new
ontologies from both data owners and data users’ responses. We consider this
feedback module as future work.

7 Related Work

This section reviews existing works and their limitations.

Cryptography-Based Anonymization Tools. Most of the existing tools in
this category use cryptography-based anonymization primitives, such as prefix-
preserving, hashing and permutation. Existing tools in this category are used

iCAT : An Interactive Customizable Anonymization Tool 675

Table 5. Comparing existing network data anonymization tools. The symbol � indi-
cates that the proposal offers the corresponding feature.

Tool Anonymized fields Anonymization primitive

Name NF fields IP Port Header Payload Pref-Pres Hiding Permutation Truncation Hashing Shifitng

AnonToo [8] � � � � � �
CANINE [15] � � � � � � � �
CoralReef [17] � � � � � �
Flaim [21] � � � � � � � �
IPsumdump [6] � � �
NFDump [12] � �
SCRUB [24] � � � � � �
TCPanon [9] � �
tcpdpriv [11] � � � � � � �
TCPmkpub [18] � � � � � �
TCPurify [7] � � � � �

to anonymize the network traces and mainly anonymize the TCP header. Some
of those tools support live interfaces anonymization. Table 5 compares those
tools according to the anonymized fields (e.g., IP, header, port, etc.) and the
anonymization primitives they use. As shown in the table, unlike iCAT, none of
those tools can support all the attributes or anonymization primitives (let alone
the flexibility for customization).

Replacement-Based Anonymization Tools. The existing tools in this cat-
egory deal mainly with log files and anonymize data by replacing the sensitive
attributes (e.g., passwords, IPs, paths) in the log with some values predefined
by the user in the so-called rule-file or generated using deterministic cryptog-
raphy algorithms. The rule file contains patterns used by the tool to perform
pattern matching and the conversion state of the anonymization can be stored
in a look-up table. Table 6 compares between these tools in terms of anonymized
fields, anonymization primitives used and how the mapping is achieved. This cat-
egory of anonymization provides a higher utility output, compared to the first
category, because it preserves some property of the original data (e.g., equality,
format, order, etc.). However, this also leaves the door open for de-anonymization
attacks, known as semantic attacks (e.g., frequency analysis, injection and shared
text matching attacks). Moreover, those tools are generally not user-friendly and
require knowledge about conducting tool-based search patterns and managing
the conversion state of the anonymized data.

676 M. Oqaily et al.

T
a
b
le

6
.
C

o
m

p
a
ri

n
g

d
iff

er
en

t
fe

a
tu

re
s

o
f
ex

is
ti

n
g

re
p
la

ce
m

en
t

a
n
o
n
y
m

iz
a
ti

o
n

to
o
ls

.
T

h
e

sy
m

b
o
l
�

in
d
ic

a
te

s
th

a
t

th
e

p
ro

p
o
sa

l
o
ff
er

s
th

e
co

rr
es

p
o
n
d
in

g
fe

a
tu

re
.

T
o
o
l

A
n
o
n
y
m
iz
e
d

fi
e
ld
s

A
n
o
n
y
m
iz
a
ti
o
n

p
ri
m
it
iv
e

M
a
p
p
in
g

N
a
m
e

N
u
m
b
e
r

P
a
th

ID
S
tr
in
g

IP
T
im

e
st
a
m
p

H
id
in
g

S
u
b
st
it
u
ti
o
n

R
a
n
d
o
m
iz
a
ti
o
n

H
a
sh

in
g

S
h
ifi
tn

g
L
o
o
k
-u

p
ta

b
le

A
lg
o
rt
h
im

C
a
m
o
u
fl
a
g
e
[1
3
]

�
�

�
�

�
�

�
�

�
�

�
L
o
g
a
n
o
n

[2
2
]

�
�

�
�

�
�

�
L
o
g
-a
n
o
n

[2
2
]

�
�

�
�

F
la
im

[2
1
]

�
�

�
�

�
�

�
�

�
N
L
M

[1
4
]

�
�

�
�

�
�

�
b
sm

p
se
u

[1
]

�
�

�
�

�
�

�
�

�
�

iCAT : An Interactive Customizable Anonymization Tool 677

8 Conclusion

We presented in this paper iCAT, a novel anonymization tool that brings cus-
tomization and interactivity to the data anonymization process to bridge the
existing gap between the data owners and the data users. Our tool leveraged
existing anonymization primitives in a systematic fashion based on the novel
concept of anonymization space. It also improved the usability by providing
users with the means to express their requirements using natural languages and
found for them the best-fit combination of anonymization primitives inside the
anonymization space using our ontology-driven NLP approach. Finally, iCAT
proposed a new privacy/utility access control model that allow involving the
data user in the anonymization process without compromising the data owner’s
privacy requirements. The main limitations of our work and the correspond-
ing future directions are as follows. First, we have mainly focused on the rela-
tional model in this paper and we believe our tool can be extended to handle
other data models. Second, currently the ontology modeling is done offline, and
implementing a feedback module that allow for ontologies learning from users’
requirements can further improve the performance and minimize the use of the
ambiguity solver. Third, we have focused on network data, and extending our
model to cover more applications is left as future work.

Acknowledgment. The authors thank the anonymous reviewers for their valuable
comments. This work is partially supported by the Natural Sciences and Engineering
Research Council of Canada and Ericsson Canada under CRD Grant N01823 and by
PROMPT Quebec.

Appendix

The following details each module of iCAT as shown in Fig. 6B.
(A) Data Loading and Processing (DLP). This module is used to load
the data, and enables filtering and cleansing operations. This module consists of
following sub-modules:
Data Processing: This sub-module enables performing data pre-processing and
adjustment operations. It can also automatically detect all data attributes and
their types, which are needed by the Anonymization Space Manager to build the
anonymization space lattice.
Data Filtering: This sub-module deploys several algorithms that can be auto-
matically and manually used to filter and remove records from data (e.g., column
deletion, row deletion, searched deletion and frequency deletion).
(B) Requirements Interpreter (RI). This module translates the data
owner’s and data user’s requirements into data attributes types and anonymiza-
tion primitives. It consists of the following three sub-modules:
Requirements Parser: It takes the English statement and transforms them into
a set of requirements using the Stanford CoreNLP. Then, it processes and filters
those requirements using the POS tool.

678 M. Oqaily et al.

Requirements Mapper: This sub-module takes the parsed requirements and com-
municates with the Method-Ontology and the Type-Ontology databases in order
to map each requirement into the related attribute type and then the correspond-
ing anonymization primitives.
Ambiguity Solver: This sub-module is mainly responsible of communicating with
the user (i.e. data owner or data user) through the Interactive Communicator
(IC) sub-module in order to solve any ambiguity that occurs at the Requirement
Mapper sub-module.
(C) iCAT Manager.
Identity Access Management and Permission Granter (IPG): This module asso-
ciates the data user identity with the privacy-level specified by the data owner,
which is needed to determine the anonymization sub-space assigned to him based
on privacy-up principle.
Interactive Communicator: This sub-module is mainly responsible for interacting
with the data owner or data user and handles the communications between them
and the RI module.
I/O Manager: This module is responsible for configuring the data source from
where the data is fetched (e.g. from a file system or a database) and the loading
of the actual data to be anonymized.
(D) Anonymization Space Manager. This module is mainly responsible of
generating the anonymization space and implementing the access control mech-
anism over the anonymization space for the data user. This module consists of
the following sub-modules:
Anonymization Space Builder (ASB): This sub-module automatically builds
the entire anonymization space, which consists of all available combination of
anonymization primitives for each data attribute based on its type. Building the
anonymization space lattice is detailed in Sect. 2.3. The resulting anonymization-
space lattice will be stored in the Access Control database.
Anonymization Controller: This module implements the access control mecha-
nism over the anonymization space for the data user. It receives the utility-level
from the data user and perform an intersection/masking operation between the
privacy level and utility level in order to determine the allowed combinations
of anonymization primitives. It also ensures that the Data Anonymizer only
accesses the allowed anonymization primitives for the user.
(E) Data Anonymizer. This module is mainly responsible for anonymizing the
data with the respect to the trust-level assigned to the users. It is designed in a
building-blocks manner such that if there exist new or more efficient anonymiza-
tion primitives they can be easily integrated into iCAT. This module holds the
following sub-modules:
Anonymization Primitives: This sub-module holds the implementation of all
existing anonymization algorithms corresponding to the 12 anonymization prim-
itives discussed in Sect. 2.

iCAT : An Interactive Customizable Anonymization Tool 679

Anonymization Mapper: This sub-module is responsible of creating a mapping
file that maps the plain-text data into their anonymized values for later recogni-
tion purposes (e.g., if hashing is used to anonymize IP addresses, a file contains
the original IP addresses and their hashes are created).

References

1. Rieck, K.: Pseudonymizer for solaris audit trails (2018). http://www.mlsec.org/
bsmpseu/bsmpseu.1

2. Assila, A., Ezzedine, H., et al.: Standardized usability questionnaires: features and
quality focus. Electron. J. Comput. Sci. Inf. Technol. eJCIST 6(1), 15–31 (2016)

3. Bell, E.D., La Padula, J.L.: Secure computer system: unified exposition and multics
interpretation (1976)

4. Denning, D.E.: A lattice model of secure information flow. Commun. ACM 19(5),
236–243 (1976)

5. Donnellan, T.: Lattice Theory. Pergamon Press, Oxford (1968)
6. Kohler, E.: Ipsumdump tool (2015). https://read.seas.harvard.edu/∼kohler/

ipsumdump/
7. Blanton, E.: Tcpurify tool (2019). https://web.archive.org/web/20140203210616/

irg.cs.ohiou.edu/∼eblanton/tcpurify/
8. Foukarakis, M., Antoniades, D., Antonatos, S., Markatos, E.P.: Flexible and high-

performance anonymization of NetFlow records using anontool. In: Third Interna-
tional Conference on Security and Privacy in Communications Networks and the
Workshops, SecureComm 2007, pp. 33–38. IEEE (2007)

9. Gringoli, F.: TCPanon tool (2019). http://netweb.ing.unibs.it/∼ntw/tools/
tcpanon/

10. Google: Traces from requests processed by Google cluster management system
(2019). https://github.com/google/cluster-data

11. Greg Minshall of Ipsilon Networks: Tcpdpriv (2005). http://ita.ee.lbl.gov/html/
contrib/tcpdpriv.html

12. Haag, P.: Nfdump (2010). World Wide Web. http://nfdump.sourceforge.net
13. IMPREVA: Camouflage data masking (2018). https://www.imperva.com/

products/data-security/data-masking/
14. Kayaalp, M., Sagan, P., Browne, A.C., McDonald, C.J.: NLM-scrubber (2018).

https://scrubber.nlm.nih.gov/files/
15. Li, Y., Slagell, A., Luo, K., Yurcik, W.: CANINE: a combined conversion and

anonymization tool for processing netflows for security. In: International Confer-
ence on Telecommunication Systems Modeling and Analysis, vol. 21 (2005)

16. Manning, C., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S., McClosky, D.: The
Stanford CoreNLP natural language processing toolkit. In: Proceedings of 52nd
Annual Meeting of the Association for Computational Linguistics: System Demon-
strations, pp. 55–60 (2014)

17. Moore, D., Keys, K., Koga, R., Lagache, E., Claffy, K.C.: The CoralReef software
suite as a tool for system and network administrators. In: Proceedings of the 15th
USENIX Conference on System Administration, pp. 133–144. USENIX Association
(2001)

18. Pang, R., Allman, M., Paxson, V., Lee, J.: The devil and packet trace anonymiza-
tion. ACM SIGCOMM Comput. Commun. Rev. 36(1), 29–38 (2006)

http://www.mlsec.org/bsmpseu/bsmpseu.1
http://www.mlsec.org/bsmpseu/bsmpseu.1
https://read.seas.harvard.edu/~kohler/ipsumdump/
https://read.seas.harvard.edu/~kohler/ipsumdump/
https://web.archive.org/web/20140203210616/irg.cs.ohiou.edu/~eblanton/tcpurify/
https://web.archive.org/web/20140203210616/irg.cs.ohiou.edu/~eblanton/tcpurify/
http://netweb.ing.unibs.it/~ntw/tools/tcpanon/
http://netweb.ing.unibs.it/~ntw/tools/tcpanon/
https://github.com/google/cluster-data
http://ita.ee.lbl.gov/html/contrib/tcpdpriv.html
http://ita.ee.lbl.gov/html/contrib/tcpdpriv.html
http://nfdump.sourceforge.net
https://www.imperva.com/products/data-security/data-masking/
https://www.imperva.com/products/data-security/data-masking/
https://scrubber.nlm.nih.gov/files/

680 M. Oqaily et al.

19. Rules for the protection of personal data inside and outside the EU. Gdpr (2018).
https://ec.europa.eu/info/law/law-topic/data-protection en

20. Sandhu, R.S.: Lattice-based access control models. Computer 26(11), 9–19 (1993)
21. Slagell, A.J., Lakkaraju, K., Luo, K.: FLAIM: a multi-level anonymization frame-

work for computer and network logs. LISA 6, 3–8 (2006)
22. Sys4 Consults: A generic log anonymizer (2018). https://github.com/sys4/loganon
23. UCIMLR: Burst Header Packet flooding attack on Optical Burst Switching Net-

work Data Set (2019). https://archive.ics.uci.edu/ml/datasets/
24. Yurcik, W., Woolam, C., Hellings, G., Khan, L., Thuraisingham, B.: SCRUB-

tcpdump: a multi-level packet anonymizer demonstrating privacy/analysis trade-
offs. In: 2007 Third International Conference on Security and Privacy in Com-
munications Networks and the Workshops-SecureComm 2007, pp. 49–56. IEEE
(2007)

https://ec.europa.eu/info/law/law-topic/data-protection_en
https://github.com/sys4/loganon
https://archive.ics.uci.edu/ml/datasets/

Monitoring the GDPR

Emma Arfelt1(B), David Basin2, and Søren Debois1

1 IT University of Copenhagen, Copenhagen, Denmark
{ekoc,debois}@itu.dk

2 ETH Zurich, Zurich, Switzerland
basin@inf.ethz.ch

Abstract. The General Data Protection Regulation (GDPR) has sub-
stantially strengthened the requirements for data processing systems,
requiring audits at scale. We show how and to what extent these audits
can be automated. We contribute an analysis of which parts of the GDPR
can be monitored, a formalisation of these parts in metric first-order
temporal logic, and an application of the MonPoly system to automat-
ically audit these parts. We validate our ideas on a case study using log
data from industry, detecting actual violations. Altogether, we demon-
strate both in theory and practice how to automate GDPR compliance
checking.

Keywords: Data protection · GDPR · Compliance checking ·
Monitoring

1 Introduction

Problem. The EU’s General Data Protection Regulation (GDPR) [24], which
came into force in May 2018, is one of the most important changes and strength-
ening of privacy regulations in decades. The GDPR constitutes a legal data pro-
tection regime imposed on organisations processing personally identifiable infor-
mation about EU citizens. The regulation is as comprehensive as it is severe:
failure to comply with the technical and organisational requirements it imposes
may result in fines up to the larger of 20 million Euro or 4% of the organisation’s
worldwide annual turnover.

The GDPR requires extremely fine-grained control over an organisation’s
data processing activities. For example, every single use of a data subject’s per-
sonally identifiable data must have a documented legal basis. Data that is no
longer necessary or conforms to that basis must promptly be deleted. Moreover,
data subjects have certain rights concerning access to their data and imposing
restrictions on processing activities regarding them. To be compliant, organisa-
tions must not only meet these requirements, but document this in a way that
supports audits.

This work supported in part by Innovation Fund Denmark project EcoKnow (7050-
00034A). This paper does not constitute legal advice.

c© Springer Nature Switzerland AG 2019
K. Sako et al. (Eds.): ESORICS 2019, LNCS 11735, pp. 681–699, 2019.
https://doi.org/10.1007/978-3-030-29959-0_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29959-0_33&domain=pdf
https://doi.org/10.1007/978-3-030-29959-0_33

682 E. Arfelt et al.

The GDPR raises numerous technical challenges for data protection
researchers. Our focus in this paper is on tool-supported compliance checking:
how and to what extent can organisations automatically demonstrate compliance,
especially given that the GDPR’s requirements apply to all data processing activ-
ities?
This raises sub-questions including:

1. What does the GDPR specifically require of systems?
2. What observations must we make of systems to verify compliance with these

requirements?
3. To what extent can we automate compliance checking?

Approach Taken. For (1), we perform an in-depth analysis of the GDPR,
identifying all articles that pose specific requirements on systems; see Figs. 2, 3
and 4.

For (2), we identify among these articles those actions involving data process-
ing, data subjects’ rights, granting or revoking consent, or claiming a legal basis
for processing. To automate audits, we will require that these actions are logged.
We encounter two challenges here. First, GDPR relevant actions like “process
data” or “revoke consent” are unlikely to directly appear as events in actual
logs. We shall show that it is possible to transform logs so that this information
is explicitly represented, enabling automated audits. Second, we shall see that
automated audits cannot entirely replace human audits. For example, the GDPR
requires that “information about processing is communicated to the data sub-
ject.” While we can log information on the transmission of a message, we cannot
in general check that the message’s contents complies with the GDPR. Our work
provides a complementary approach to auditing: Human auditors must verify by
inspection and sampling that messages and documents have the proper contents.
Machines can in turn be used to verify that such messages, documents, and pro-
cessing activities happen when required. That is, human auditors are needed for
intelligence and understanding whereas machines serve to verify compliance at
scale.

For (3), we express the requirements in the articles identified in (1) as metric
first-order temporal logic (MFOTL) formulae [6] over the actions identified in (2).
MFOTL is a natural choice. The GDPR speaks about events, their associated
data, and their temporal relationships (both qualitative and quantitative); this
calls for a metric first-order temporal logic. Moreover, MFOTL is supported by
the MonPoly tool, which implements a monitoring algorithm efficient enough
for practical use [5,7].

As a simple example, consider GDPR Article 15(1), governing the Right to
Access, which requires that any data subject has the right to demand from the
controller access to all personal data concerning him that is processed by the
controller. A simplified form of this article expressed in MFOTL might be:

ds access request (dsid) IMPLIES EVENTUALLY[0,30d] grant access(dsid) .

Monitoring the GDPR 683

Here the universally quantified variable dsid ranges over distinct data sub-
jects, and the interval [0, 30d] expresses that the controller must respond
within 30 days.

MonPoly can be used on-line to monitor system events as they occur to
find violations of this formula in real time. Alternatively, it can be used off-line
to support a compliance audit, given the logged events. In either case, MonPoly
will either declare “No violations”, or “Violation of rule r found at time-point
t” for each violation found. In this way, we obtain an automated audit tool.

Contributions. The answers to our research questions lead to a methodology for
monitoring data protection requirements, in particular for auditing a system’s
compliance with the GDPR.

1. We identify GDPR clauses that can be verified by observing logged actions.
2. We encode in MFOTL key clauses of the GDPR, namely Articles 5(1c,1e),

6(1), 7(3), 13(1), 15(1), 17(1–2), 18(1–2), and 21(1).
3. We carry out a case study on an industry log and show how to extract GDPR-

specific actions, and use MonPoly to find violations.

Altogether, we show that our MFOTL formalisation enables the algorithmic
verification of essential parts of the GDPR. We note that the articles we verify
are among the ones subject to the highest administrative fines, hence verifying
compliance and non-compliance for these is particularly important.

Related work. Our paper is the first that provides running, automatic, com-
pliance verification for the GDPR. Alternative approaches have been proposed
based on design mechanisms or static analysis. In system design work, researchers
have investigated augmenting existing formalisms with the concepts needed for
reasoning about or enforcing the GDPR, e.g., adding relations between data and
users, or relations between processing activities and consent or legal basis [1,2].
On the analysis side, [10,11] proposes variations of taint analysis to track the
dispersal of personally identifiable information in GDPR-sensitive programs.
Moreover, [3] proposes a mechanism to statically audit GDPR compliance that
avoids directly analysing source code, extracting instead audit-relevant infor-
mation from requirements specifications. A similar idea is presented in [19],
which combines an ontology of GDPR concepts [20] with established methods
for analysing business processes for regulatory compliance [12,13].

Outside of work specifically targeting the GDPR, several proposals have
been made to use the “purpose of processing” as a factor in access control
decisions [9,17,18,21,26]. In particular, the use of information-flow analysis
(viz. taint analysis above) to support access control decisions was investigated
in [15]. Closer to the present work, [22] investigated comparing business process
models with information access logs to infer the legitimacy of processing for the
purposes of access control. This idea might be used to refine the logged action
representing a “legal basis” in the present paper from simply a claim that such
a basis exists to support for this claim by appeal to the underlying business
process (see also [3]).

684 E. Arfelt et al.

Both MFOTL and MonPoly have been previously applied to privacy poli-
cies. In [4], examples of data protection rules were formulated in MFOTL. More
recently, [14] investigated automatically rewriting data-flow programs to con-
form to privacy policies specified in MFOTL. The question arises whether the
MFOTL formulae identified in the present paper can be directly used as inputs
to that rewriting process. In general, the question of monitoring compliance for
business processes has received considerable interest [16]; the log we consider in
Sect. 6 is essentially the log of a business process execution.

Overview. In Sect. 2, we recall MFOTL’s syntax and semantics and the Mon-
Poly tool. Then, in Sect. 3, we analyse the GDPR and clarify which articles
can neither be formalised nor monitored. We proceed to formalise in Sect. 4
the remainder of the GDPR in MFOTL. In Sect. 5, we show how to use these
formulae for run-time monitoring with MonPoly. In Sect. 6, we apply our for-
malisation to an industry log and we draw conclusions in Sect. 7.

2 Background on MonPoly and MFOTL

We use Metric First-order Temporal Logic (MFOTL) [6] to formalise GDPR
requirements, and we use the MonPoly [5,7] monitoring tool to decide whether
a log conforms to a given MFOTL formula.

Metric First-order Temporal Logic (MFOTL) combines the two key properties
needed to capture GDPR data protection policies: (1) the ability to relate indi-
viduals via first-order predicates, primarily data subjects, data classes, and data
references, and (2) the ability to speak about events and data changing over
time. Below, we briefly recall MFOTL; for a comprehensive reference, see [6].

A signature S is a tuple (C,R, ι), where C is a finite set of constant symbols,
R is a finite set of predicate symbols disjoint from C, and the function ι :
R → N associates each predicate symbol r ∈ R with an arity ι(r) ∈ N. To
illustrate, the signature for the previously presented formula regarding access
defines two predicate symbols: ds access request(dsid) and grant access(dsid). Let
S = (C,R, ι) be a signature and V a countably infinite set of variables, assuming
V ∩ (C ∪ R) = ∅. The syntax of formulae over the signature S is given by the
grammar in Fig. 1. We present only a fragment of MFOTL, omitting equality,
ordering, and the PREVIOUS operators, which we shall not need.

A structure D over the signature S comprises a domain |D| �= ∅ and inter-
pretations cD ∈ |D| and rD ⊆ |D|ι(r), for each c ∈ C and r ∈ R. A temporal
structure over S is a pair (D̄, τ̄), where D̄ = (D0,D1, . . .) is a sequence of struc-
tures over S and τ̄ = (τ0, τ1, . . .) is a sequence of natural numbers, such that (1)
τ̄ is non-decreasing and has no constant suffix (“time always eventually advan-
ces”); (2) D̄ has constant domains, that is, |Di| = |Di+1|, for all i ≥ 0; and (3)
each constant symbol c ∈ C has a rigid interpretation, that is, cDi = cDi+1 , for
all i ≥ 0. We denote c’s interpretation by cD̄. There can be successive time points
with equal timestamps, and the relations rD0 , rD1 , . . . in a temporal structure

Monitoring the GDPR 685

Fig. 1. MFOTL syntax and semantics

(D̄, τ̄) corresponding to a predicate symbol r ∈ R may change over time. In
contrast, the interpretation of the constant symbols c ∈ C and the domain of
the Dis do not change over time.

A valuation is a mapping v : V → |D̄|. We abuse notation by applying a
valuation v also to constant symbols c ∈ C, with v(c) = cD̄. For a valuation v, a
variable x, and d ∈ |D̄|, v[x/d] is the valuation mapping x to d and leaving other
variables’ valuation unchanged. The semantics of MFOTL, (D̄, τ̄ , v, i) |= φ, is
given in Fig. 1, where (D̄, τ̄) is a temporal structure over the signature S, with
D̄ = (D0,D1, . . .), τ̄ = (τ0, τ1, . . .), v a valuation, i ∈ N, and φ a formula over S.

Terminology and notation We use the following standard syntactic sugar:

ONCE[I] φ :=
 SINCE[I] φ

EVENTUALLY[I] φ :=
 UNTIL[I] φ

ALWAYS[I] φ := NOT EVENTUALLY[I] NOT φ

We sometimes omit the interval I, understanding it to be [0,∞).

686 E. Arfelt et al.

Article(s) Description

1–4 General provisions
6(2–4) Member state restrictions on lawful processing
23 General member state restrictions

51–62 Supervisory authority
63–76 European data protection board
77–84 Remedies and penalties
92–99 Delegated acts and implementing acts

Fig. 2. Articles unrelated to the compliance of an individual organisation.

MonPoly [7] is a monitoring tool for deciding whether a log satisfies a
formula in metric first-order temporal logic. Operationally, MonPoly accepts as
inputs a signature, an MFOTL formula, and a log, and outputs the list of entries
in the log that violate the formula [7]. The log must consist of a sequence of
time-stamped system events ordered ascending by time. Technically, MonPoly
accepts a formula ϕ with free variables x̄ and checks ALWAYS FORALL x̄.ϕ. That
is, it checks that FORALL x̄.ϕ holds at every time point. As MonPoly must
report the time points at which this formula is violated, in practice, MonPoly
searches for and reports time points where the negated formula ¬ϕ is satisfied.

3 Limits to GDPR Monitoring

The GDPR [24] comprises 99 articles imposing specific rights and obligations
on entities processing the personally identifiable information of “data subjects.”
In this section, we briefly categorise those articles that are not amendable for
formalisation or are not suitable for automated compliance checking.

Articles Unrelated to Compliance. As with any legal document, part of the
GDPR is devoted to the legal framework surrounding the regulation: how EU
member states should integrate the regulation into their local laws, the legis-
lation’s territorial scope, etc. These articles have no bearing on the question
whether a particular organisation is in compliance, and as such, these are not
relevant for mechanised compliance checking. We list these articles in Fig. 2.

Articles Unrelated to System Behaviour. The GDPR also imposes requirements
unrelated to data processing or data subjects, regulating instead the form and
functioning of the data processing organisation itself [25]. For instance, such an
organisation must have a mechanism for notifying its local supervisory authority
in case of a data breach, it must appoint a data protection officer, and it must be
able to document that its systems comply with best IT-security practices. While
these are clearly rules that an organisation can follow or break, such actions do
not happen at scale.

Altogether, this class of articles, listed in Fig. 3, makes no requirements on
observable system actions, and so are irrelevant for compliance monitoring.

Monitoring the GDPR 687

Articles Brief explanation

24–29 Organisational requirements
31 Cooperation with supervisory authority
32 Security of the system

33–34 Notification upon data breach
35–39 DPIA and DPO
40–43 Codes of conduct and certificates
44–50 Transfers to third countries
85–91 Specific processing situations

Fig. 3. GDPR articles unrelated to system actions.

.cseD.trA.cseD.trA

5(1) a-b,d,f; (2) Principles of processing 14 Indirect collection
7(1–2,4) Conditions for consent 16 Right to rectification

8 Child’s consent 19 Requirement to notify
10 Processing of criminal records 20 Right to data portability
11 Processing w/o identification 22 Profiling
12 Transparency wrt. rights 30 Records of processing

13(3–4) Information upon collection

Fig. 4. GDPR articles which do not directly relate system actions or regulate content

Articles Requiring Interpretation. Many GDPR articles do not directly describe
system actions, but regulate the contents of communications, e.g., Article 13(1)
on information that controllers must provide, or Article 5(1d) requiring processed
data to be accurate and up to date. We list the articles that do not directly relate
to system actions (and not otherwise subject to auditing at scale) in Fig. 4.

We shall see in Sect. 4.2 that even when we cannot verify that communicated
contents satisfy the GDPR, we can at least monitor that communication took
place.

4 Formalisable Articles

We can formalise and monitor articles where controllers, processors, or data
subjects are required to take specific, observable actions in response to other
specific, observable actions.

Recall that formalisation in MFOTL comprises two things: (1) a signature,
specifying the actions and data we must be able to observe, and (2) a formula
over that signature, specifying how those actions and data should evolve over
time. We present below a signature of relevant actions, and a set of formulae
over that signature formalising articles of the GDPR.

The elements of this signature are given as typed predicates. The procedure to
formalise a requirement of the GDPR is as follows. First, identify both actions

688 E. Arfelt et al.

noitcAetaciderP

ds deletion request(data, dataid, dsid) Data subject requests deletion
ds access request(dsid) Data subject requests access
ds consent(dsid, data) Data subject gives consent
ds restrict(data, dataid, dsid) Data subject restricts processing of specific

data
ds repeal(data, dataid, dsid) Data subject lift their restriction on specific

data
ds object(dsid, data) Data subject objects to processing based on

Art. 6 (1e-f)
legal grounds(dsid, data) Organisation claims legal basis
ds revoke(dsid, data) Data subject revokes consent
delete(data, dataid, dsid) Controller deletes specified data
grant access(dsid) Controller grants access to specified data

subject
share with(processorid, dataid) Controller shares data with a particular pro-

cessor
inform(dsid) Controller informs data subject about col-

lection of data
notify proc(processorid, dataid) Controller notifies a processor of deletion
use(data, dataid, dsid) Controller processes data of specified data

subject
collect(data, dataid, dsid) Controller collects data of specified data sub-

ject

Fig. 5. MFOTL signature for the GDPR formalisation

that trigger a requirement, e.g., a data subject revokes his consent, and those
that are the required response, e.g., the data controller ends processing. Second,
model these actions as predicates in an MFOTL signature. Finally, express the
required causality as an MFOTL formula. In this section, we formalise GDPR
Articles 5(1c), 5(1e), 6(1), 7(3), 13(1), 15(1), 17(1–2), 18(1–2), and 21(1). The
corresponding signature and rules are given in Figs. 5 and 6 respectively. Note
that MonPoly imposes some syntactic restrictions; thus to run some of the
rules with MonPoly, we must negate them by hand. These are marked with ‘∗’
in Fig. 6.

We proceed by illustrating this analysis for the representative cases of Article
6(1) and 7(3) and we conclude by discussing outliers.

4.1 The Common Case: Articles 6(1) and 7(3)

Article 6 is at the GDPR’s core: it defines what is required for lawful processing.

Processing shall be lawful only if and to the extent that at least one of the
following applies:
(a) the data subject has given consent to the processing of his or her per-

sonal data for one or more specific purposes;

Monitoring the GDPR 689

(b) processing is necessary for the performance of a contract to which the
data subject is party or in order to take steps at the request of the data
subject prior to entering into a contract; [...]

To formalise this requirement, we must be able to observe both the processing
of data and the establishment of legal grounds for that processing. While we
cannot verify that a claim of legal grounds will hold up in court, we can, however,
verify whether there exists a claim of legal grounds at all. A legal ground is for
a specific class of data and a specific data subject. Thus we must be able to
observe from our system an action legal ground, represented as

legal ground(dsid, data),

which is a predicate we add to our signature. The first argument to legal ground
represents a class of data (e.g. “ADDRESS” or “TELEPHONE NUMBER”),
and the second is an identifier for a data subject. Note that MonPoly supports
types, but for reasons of space we omitted this from Sect. 2 and our account
here.

As the GDPR has special rules for consent-based processing (as we demon-
strate later), it is convenient to single-out consent from other legal bases men-
tioned in Article 6(1). For this, we need the predicate

ds consent(dsid, data).

When data is eventually used, we must know both which class of data is
being processed and which data subject that data concerns. We shall see later
(for erasure requirements) that we need a reference to the actual data as opposed
to just its class (i.e. “+1 451 451-0000” or “DATABASE ROW 2769” as opposed
to “TELEPHONE NUMBER”):

use(data, dataid, dsid).

This predicate takes a data class, an identifier for the actual data processed, and
an identifier for the data subject.

The GDPR in general conflates the use of data with collecting data into the
single term processing of data. To formalise some articles, we will however need
this distinction, so we add the following predicate to our signature:

collect(data, dataid, dsid).

We now formalise that a data controller must have either consent from data
subjects or another legal basis to process any data [[24], Article 6, sec. 1]. Oth-
erwise the processing of data is prohibited. We formalise this requirement as our
first MFOTL formula:

use(data, dataid, dsid) IMPLIES
ONCE (ds consent(dsid, data) OR legal ground(dsid, data)).

690 E. Arfelt et al.

Recall that we consider MFOTL formulae to be implicitly forall-quantified
over their free variables. Hence, the above formula states that for any class of
data data, any concrete reference dataid to such data, and any data subject dsid,
then: If at any point in time we observe processing of any data dataid of class
data for dsid, then there must be a point in the past where we observed either
consent from that dsid for processing data, or other legal grounds.

As a second, more subtle, example, consider Article 7(3), “Conditions for
consent.” It states that a data subject can revoke his consent at any time:

The data subject shall have the right to withdraw his or her consent at any
time. [...]

Absent other legal grounds, subsequent processing would then be illegal
(viz. Article 6). To model this, we add to our signature a predicate representing
a revocation of consent:

ds revoke(dsid, data),

and the formula:

use(data, dataid, dsid) IMPLIES (ONCE legal grounds(dsid, data))
OR (NOT ds revoke(dsid, data) SINCE ds consent(dsid, data)).

That is, if at some time point t we process data, then either we have legal
grounds (in which case the revocation does not affect the right to process the
data) or before that point t, consent was obtained and at no point between t
and the given consent do we have a revocation. Note that this formula also finds
violations in situations where Article 6 is violated.

4.2 Articles Requiring Content Interpretation

As discussed in Section 3, we can monitor whether a required action is taken,
and leave to a human auditor the question of whether the content complies
with requirements prescribed by the GDPR. Articles 13, 15, 17(1), 18, and 21,
describing the rights of the data subjects, has such conditions. These rights might
frequently be exercised, and thus it is impractical to rely solely on human audits
to determine if the company has responded as required. A human auditor could
decide if the company’s strategy for responding is compliant, whereas monitoring
can help ensure, at scale, that the company responds when appropriate.

As an example, consider Article 17(1) “Right to erasure.” This article defines
under what circumstances a data controller or processor must delete data:

The data subject shall have the right to obtain from the controller the
erasure of personal data concerning him or her without undue delay and
the controller shall have the obligation to erase personal data without undue
delay where one of the following grounds applies: [...]

We refrain from further specifying the data subject’s ground for deletion, refer-
encing them all under the single action “deletion requested” (ds deletion request).

Monitoring the GDPR 691

We similarly omit explicitly modelling the exceptions mentioned in 17(3). It
requires further human interpretation to determine the legality of a data sub-
ject’s claim, and whether the controller is obligated to delete the data.

At this point, we must distinguish between classes of data and individual
data items. There are two reasons: (1) the data subject may request some but
not all data in a class to be erased, e.g., a data subject may request that an
airline removes as an emergency contact his ex-wife but not his father. (2) To
properly verify compliance, we need a formula that identifies and specifies the
removal of every single data item processed for this data subject. Altogether,
the action for the deletion request is

ds deletion request(data, dataid, dsid).

Upon receiving such a request, the data controller must then respond and delete
the data. This action must also be observable:

delete(data, dataid, dsid).

The deletion in Article 17(1) is subsequently required to happen without
undue delay, which in Recital 59(3) is limited to “at most one month.” It is now
straightforward to model this rule:

ds deletion request (data, dataid, dsid)
IMPLIES EVENTUALLY[0,30d] delete(data, dataid, dsid).

That is, if at some time point t we are required to delete some particular data
then within 30 days after t, we must observe this data being deleted. Moreover,
it should be impossible to subsequently process deleted data:

use(data, dataid, dsid) IMPLIES
NOT ONCE ds deletion request(data, dataid, dsid).

4.3 Articles Not Monitorable

We conclude this section by considering Articles 5(1c,1e), “Data minimisation”
and “Storage limitation.” These articles require that:

Personal data shall be: [...]
(c) adequate, relevant and limited to what is necessary in relation to the

purposes for which they are processed (‘data minimisation’); [...]
(e) kept [...] for no longer than is necessary for the purposes for which the

personal data are processed; [...] (’storage limitation’);

That is, we can never collect or store data that we will not subsequently use for
a legitimate purpose (1c). Moreover, not only must we delete that data once it
has outlived its purpose, with some exceptions, perpetual storage is prohibited
outright (1e).

692 E. Arfelt et al.

Storage Limitation. Recall that when we write EVENTUALLY φ, we implicitly
intend the interval [0,∞), and thus formalising (1e) is straightforward:

collect (data,dataid,dsid) IMPLIES EVENTUALLY delete(data, dataid, dsid).

However, this formula is not finitely falsifiable and hence it cannot be mon-
itored. Because it uses the unbounded EVENTUALLY modality, it is a liveness
property, requiring something to eventually happen, without stipulating exactly
when.

Data minimisation Here is an attempt to specify Article (1c):

collect (data,dataid,dsid) IMPLIES EVENTUALLY use(data, dataid, dsid).

By the semantics of MFOTL, this formula requires that the collected data
must find use in every run of the system. This interpretation is likely too strong.
As an example, when customers book long-haul flights, they may provide an
emergency contact. However, the airline will only use this contact should an
accident occur, so in the majority of cases, this data will be collected, not used,
and then deleted.1 Moreover, this requirement is also not monitorable because it
is not finitely falsifiable, and requires some relaxation to be formulated precisely.

We formulate both data minimisation and storage limitation and include
them in the Fig. 6. However, as described above, neither are monitorable.

5 Run-Time Monitoring

We now turn to the question: Does our formalisation of GDPR requirements lend
itself to run-time monitoring? We show how to take logs of running systems and
use a tool to verify automatically that these logs conform to the given formulae.

5.1 Methodology

Having established that the formulae of Fig. 6, or equivalent formulations thereof,
are accepted as inputs to MonPoly, we turn to the question of how to obtain
a log containing the actions described in Fig. 5. System logs conventionally con-
tain information about which events happened and when they occurred [7]. For
example, the event that a data subject asks for access or that data was shared
with other processors, and the date and time this occurs.

It is not conventional (at least prior to the GDPR) to log whether an organisa-
tion has a legal ground for data processing (and which legal ground) or obtained
consent from a data subject. However, entries in a system log often reflect GDPR
actions such as establishing a legal basis. For instance, if a customer clicked “pur-
chase” in a web-shop, this establishes a legal basis for using the customer’s postal

1 In fact, in 2017, no commercial airline passengers died from plane crashes [23], and
thus presumably emergency contact data was unnecessary.

Monitoring the GDPR 693

Article MFOTL Formula

5(1)(c)
Data minimisation

collect (data,dataid , dsid) IMPLIES

EVENTUALLY use(data, dataid, dsid)

5(1)(e)
Storage limitation

collect (data, dataid , dsid) IMPLIES

EVENTUALLY delete(data, dataid , dsid)

6(1)
Lawful processing

use(data, dataid , dsid) IMPLIES ONCE

(ds consent(dsid , data) OR legal grounds (dsid , data))

7(3)
Consent

use(data, dataid , dsid) IMPLIES

(ONCE legal grounds(dsid , data)) OR

(NOT ds revoke(dsid , data) SINCE ds consent(dsid , data))

13(1)
Info. on collection

collect (data, dataid , dsid) IMPLIES

NEXT inform(dsid) OR ONCE inform(dsid)

15(1)
Right to access

ds access request (dsid) IMPLIES

EVENTUALLY[0,30d] grant access(dsid)

17(1)
Right to erasure

ds deletion request (data, dataid , dsid) IMPLIES

EVENTUALLY[0,30d] delete(data, dataid , dsid)

17(1)
Right to erasure

use(data, dataid , dsid) IMPLIES

NOT ONCE delete(data, dataid , dsid)

17(2)
Right to erasure∗

ds deletion request (data, dataid , dsid) AND ONCE

share with (processorid , dataid)
AND NOT EVENTUALLY[0,30d] notify proc(procid , dataid)

18(1-2)
Right to restriction
of processing∗

use(data, dataid , dsid) AND

(NOT ds repeal (data, dataid , dsid)
SINCE ds restrict (data, dataid , dsid))

21(1)
Right to object

use(data, dataid , dsid) IMPLIES

(NOT ds object (dsid , data)
SINCE legal grounds(dsid , data))

Fig. 6. MFOTL formulae expressing GDPR requirements

address for shipping. In general, we can infer GDPR actions from log entries by
having domain experts apply their knowledge of the system to log entries.

Altogether, we propose the following methodology for partially verifying a
system’s compliance with the GDPR using run-time monitoring:

1. Identify available logs.
2. Identify the types of records in each log and relate each type to GDPR actions

(Fig. 5). In general, this may require input from a domain expert and a sys-
tems expert, and possibly also a GDPR expert. Write a script or a program
to transform automatically logs entries to GDPR actions.

3. Run MonPoly on the transformed log, using the rules of Fig. 6.

694 E. Arfelt et al.

Dreyer log entry title GDPR action and description

Application received ds consent(“APPL”, i)
When submitting his application, an applicant must also
provide explicit consent for subsequent processing.

Complete delete(“APPL”, i) / delete(“ACCOUNT”, i)
The application has been approved and fully payed out.
There are no remaining purposes for storing collected data.

Approve legal grounds(i, “ACCOUNT”)
When an application is approved, we have legal grounds
for storing and using the account number of the applicant.

Retract application ds deletion request(“APPL”, i, i)
If the applicant retracts the application, we no longer have
legitimate purposes for storage or processing. We model
this by requiring application data to be deleted.

Notify (rejected) delete(“APPL”, i, i)
Once we have notified the applicant that his application
has been rejected, we delete the application.

Review (and others) use(“APPL”, i, i)
Along with various other actions, the application is re-
viewed processing the data inside it.

Round ends (and others) (no action)
Remaining records do not process data and thus are not
relevant for monitoring.

Fig. 7. Mapping of Dreyer log entries to GDPR actions. The i refers to the application
instance id available in the log.

Obviously, this methodology depends on being able to find or infer GDPR
relevant actions in the logs. We shall see in the next section how such inference
is possible from an otherwise unhelpful looking real-world log.

6 Case Study

We now apply the above methodology to a concrete, real-life industry log previ-
ously published in [8], which described the context of this log as follows:

The Dreyer Foundation awards grants to [...] activities [...] promoting the devel-
opment of the lawyer and architect professions [...]. Roughly, an application is
processed as follows. Applications are accepted in rounds. In each round, first, a
caseworker pre-screens applications, weeding out obvious rejects. The remaining
applications are independently reviewed by 2–4 reviewers, at least one of which
must be an architect or a lawyer, depending on the type of application. Once all
reviews are in, the Foundation’s board decides on which applications to accept at
a board meeting. Successful applications then have a running payout, until the
grant period expires and an end-report is produced.

Monitoring the GDPR 695

78 63;20140108 0955;Appl. received @1389171305 ds_consent("63", "APPL")

520 63;20140127 1802;Pass screening @1390842175 use("APPL", "63", "63")

1483 63;20140313 1027;Lawyer review @1394702823 use("APPL", "63", "63")

1505 63;20140313 1322;Review @1394713322 use("APPL", "63", "63")

1565 63;20140316 2336;Review @1395009396 use("APPL", "63", "63")

1861 63;20140323 2212;Arch. review @1395609120 use("APPL", "63", "63")

2130 63;20140327 0917;Record decision @1395908246 use("APPL", "63", "63")

2135 63;20140327 0918;Board meeting

2691 63;20140409 0300;Round ends

3071 63;20140415 1450;Round approved

3308 63;20140416 1036;Notify 1 @1397637397 use("APPL", "63", "63")

3544 63;20140416 1925;Round approved

3779 63;20140416 1925;Approve @1397669105 legal_grounds("63", "ACCOUNT")

4679 63;20140521 1141;Notify 2 @1400665291 use("APPL", "63", "63")

5378 63;20140626 1402;Payout 1 @1403784135 use("ACCOUNT", "63", "63")

5423 63;20140626 2054;Payment done @1403808852 use("ACCOUNT", "63", "63")

11224 63;20150503 2328;Final report @1430689888 use("ACCOUNT", "63", "63")

use("APPL", "63", "63")

11235 63;20150503 2352;Complete @1430689922 delete("APPL", "63", "63")

delete("ACCOUNT", "63", "63")

Fig. 8. Excerpt of Dreyer log (left) and corresponding transformed log (right).

Step 1: Define the log
The log itself is from an adaptive case-management system supporting this work;
it documents the processing steps taken. The log contains 12,151 events concern-
ing 587 individual applications processed in the period December 2013–June
2015. We present an excerpt of the log in Fig. 8. In the interest of presen-
tation, we have removed and shortened the individual fields within each line
of the log, re-ordered the remaining fields, and translated some log-entries to
English. Note that the excerpt is non-contiguous, with actual line numbers in
the log for each line given on the left. The excerpt describes a successful appli-
cation, going through initial submission (78), screening (520), reviews (1483–
1861), board meeting and eventual approval (2130–3779), payout (5378–5423),
and finally inclusion in the end report of the round (11224–11235). Along the
way, the applicant is notified about the application’s state (3308, 4679).

Step 2: Transform the log
Most importantly we must extract from this log the actions listed in Fig. 5
using domain knowledge of the meaning of the system actions underlying the
log entries. We give the full list of Dreyer log actions, their semantics, and the
corresponding GDPR actions in Fig. 7. We encourage the reader to carefully con-
sider the “Description” column, which explains exactly how domain knowledge
justifies the connection between a log entry and a GDPR action.

The opening “Appl(ication) received” entry signifies the applicant filling in
and submitting an electronic application form. This form includes a tick box
indicating consent to subsequent processing for the purpose of considering the

696 E. Arfelt et al.

application; the application cannot be submitted without ticking this box. Thus,
we can associate with this log entry the ds consent action for the application data.

The Dreyer log gives us little information about exactly what data is pro-
cessed. But we know that the application in its entirety is necessarily processed
in reviews and decision making, and that the (subsequently supplied) account
number of a successful applicant is used in payout steps. We note that by the
purpose limitation, there is no legal ground to request an account number for
payouts until a grant is awarded.

The data subject is not directly represented in the log; however, the log con-
tains (first field) a number uniquely identifying the application. As each appli-
cation conveniently has exactly one applicant, we conflate the application id
and the data-subject. Altogether, we interpret the first line (78) in Fig. 8 as the
GDPR action ds consent(“APPL”, 0063), that is, consent from the data subject
identified by 0063 to the processing of his application data.

Once we have established the mapping table in Fig. 7, it is straightforward to
automatically transform an input log into a MonPoly-compatible log of GDPR
actions. We have constructed such an automatic transformation; the result of
applying it to our log excerpt is also shown in Fig. 8. The lines of the original
and transformed log are aligned vertically, e.g., line 5378 of the input (left) yields
the transformed line @1403808852 use(...) (right).

Altogether, this demonstrates that we can extract GDPR-relevant actions
from a realistic industry log. Our coverage, however, is only partial: the mapping
of Dreyer log entries does not contain the actions necessary to monitor, e.g., the
right to access (Article 15(1)) or erasure of previously shared data (Article 17(2)).

Step 3: Verify compliance with monitoring
We can now provide the transformed log and the formulae capturing the GDPR
rules from Fig. 6 as inputs to MonPoly. We discover the following violations:

– 8 violations of lawful processing (Article 6(1)). Of these, 7 arise because an
account number was submitted before the application was approved, thus
processing that data without legal grounds. The remaining violation arose
because in a single instance, money was paid out even though the application
in question was never recorded as approved (or rejected) in the log. Hence
payment information was used without legal grounds.

– 8 violations of the Right to Erasure (Article 17(1)), part (i). These 8 were all
retracted shortly after being submitted; however, they were never deleted.

– 1 violation of the Right to Erasure (Article 17(1)), part (ii). In this instance,
the last payment of a successful application was acknowledged and recorded
in the log only after the entire application was recorded as completed.

These violations range from seemingly inconsequential mistakes (a payment being
recorded late) to a definite violation (not having a process for deleting no-longer
necessary data). We note that by the letter of the GDPR, there were no false
positives: inconsequential mistakes are still violations.

This log pre-dates the GDPR: When it was produced, the Dreyer foundation
was not obligated to be GDPR compliant.

Monitoring the GDPR 697

Summary
Altogether, we have demonstrated that our proposed method of using Mon-
Poly can in fact find instances of GDPR non-compliance in a real-life industry
log. Moreover, with the GDPR formulae (see Fig. 6) already in place, the only
significant work required to check the log is to map the log’s contents to GDPR
actions; that is, working out Fig. 7. This work required domain knowledge (e.g.,
you only need the account number once the application is approved) in com-
bination with an understanding of the GDPR (e.g., you need a legal ground
to store the account number). Once the mapping is established, it is trivial to
write a small program to automatically produce the transformed log suitable for
MonPoly. Subsequent processing by MonPoly is then automatic: the log in
question is processed nearly instantaneously.

7 Conclusion

Our analysis has shown that monitoring can be used to automate compliance
checking for significant parts of the GDPR. We explained why some parts of
the GDPR elude monitoring and require other auditing measures or other forms
of verification. We also identified and tackled challenges in extracting relevant
actions for monitoring from real-world logs. Finally, we showed the value of this in
a case study where we found violations ranging from apparently inconsequential
to almost certainly non-compliant.

We see this work as a beginning: providing automated support for compli-
ance checking for the GDPR and similar privacy regulations. As future work, we
would like to apply our ideas to larger case studies, to both help organisations
improve their handling of data and to verify their compliance. A research ques-
tion here concerns how best to instrument systems with logging functionality
to produce adequate logs at the right level of detail. Another question concerns
distinguishing between personally identifiable information and other kinds of
information, as we now only verify that the controller took the required actions.
Progress here could, for example, allow us to extend our approach to monitor
articles that impose requirements on content.

References

1. Antignac, T., Scandariato, R., Schneider, G.: A privacy-aware conceptual model
for handling personal data. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS,
vol. 9952, pp. 942–957. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
47166-2 65

2. Antignac, T., Scandariato, R., Schneider, G.: Privacy compliance via model trans-
formations. In: 2018 IEEE European Symposium on Security and Privacy Work-
shops (EuroS&PW), pp. 120–126. IEEE (2018)

3. Basin, D., Debois, S., Hildebrandt, T.: On purpose and by necessity: compliance
under the GDPR. In: Proceedings of the 22nd International Conference on Finan-
cial Cryptography and Data Security (FC 2018), Lecture Notes in Computer Sci-
ence, Nieuwpoort, Curaçao, February 2018. Springer. Accepted for publication

https://doi.org/10.1007/978-3-319-47166-2_65
https://doi.org/10.1007/978-3-319-47166-2_65

698 E. Arfelt et al.

4. Basin, D., Harvan, M., Klaedtke, F., Zalinescu, E.: Monitoring data usage in dis-
tributed systems. IEEE Trans. Softw. Eng. 39(10), 1403–1426 (2013)

5. Basin, D., Harvan, M., Klaedtke, F., Zălinescu, E.: MONPOLY: monitoring usage-
control policies. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp.
360–364. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29860-
8 27

6. Basin, D., Klaedtke, F., Müller, S.:. Monitoring security policies with metric first-
order temporal logic. In: Proceedings of the 15th ACM Symposium on Access
Control Models and Technologies, pp. 23–34. ACM (2010)

7. Basin, D., Klaedtke, F., Zalinescu, E.: The monpoly monitoring tool. In: RV-
CuBES 2017 An International Workshop on Competitions, Usability, Benchmarks,
Evaluation, and Standardisation for Runtime Verification Tools, vol. 3 of Kalpa
Publications in Computing, pp. 19–28. EasyChair (2017)

8. Debois, S., Slaats, T.: The analysis of a real life declarative process. In: IEEE
Symposium Series on Computational Intelligence, SSCI 2015, Cape Town, South
Africa, 7–10 December 2015, pp. 1374–1382. IEEE (2015)

9. Kabir, M.E., Wang, H., Bertino, E.: A conditional purpose-based access control
model with dynamic roles. Expert Syst. Appl. 38(3), 1482–1489 (2011)

10. Ferrara, P., Olivieri, L., Spoto, F.: Tailoring taint analysis to GDPR. In: Medina,
M., Mitrakas, A., Rannenberg, K., Schweighofer, E., Tsouroulas, N. (eds.) APF
2018. LNCS, vol. 11079, pp. 63–76. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-02547-2 4

11. Ferrara, P., Spoto, F.: Static analysis for GDPR compliance. In: Proceedings of
the Second Italian Conference on Cyber Security, Milan, Italy, 6th - 9th February
2018, vol. 2058 of CEUR Workshop Proceedings. CEUR-WS.org (2018)

12. Governatori, G.: Business process compliance: an abstract normative framework.
Inf. Technol. 55(6), 231–238 (2013)

13. Governatori, G., Sadiq, S.: The journey to business process compliance. Handbook
of Research on Business Process Modeling, pp. 426–454. IGI Global, Pennsylvania
(2009)

14. Guerriero, M., Tamburri, D.A., Nitto, E.D.: Defining, enforcing and checking pri-
vacy policies in data-intensive applications. In: Proceedings of the 13th Inter-
national Conference on Software Engineering for Adaptive and Self-Managing
Systems, SEAMS 2018, pp. 172–182, New York, NY, USA, ACM. event-place:
Gothenburg, Sweden (2018)

15. Kumar, N.V.N., Shyamasundar, R.K.: Realizing purpose-based privacy policies
succinctly via information-flow labels. In: 2014 IEEE Fourth International Confer-
ence on Big Data and Cloud Computing, pp. 753–760, December 2014

16. Thao Ly, L., Maggi, F.M., Montali, M., Aalst, W.M.P., van der Rinderle-Ma, S.:
Compliance monitoring in business processes: functionalities application and tool-
support. Inf. Syst. 54, 209–234 (2015)

17. Masoumzadeh, A., Joshi, J.B.D.: PuRBAC: purpose-aware role-based access con-
trol. In: Meersman, R., Tari, Z. (eds.) OTM 2008. LNCS, vol. 5332, pp. 1104–1121.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88873-4 12

18. Ni, Q., et al.: Privacy-aware role-based access control. ACM Trans. Inf. Syst. Secur.
13(3), 24:1–24:31 (2010)

https://doi.org/10.1007/978-3-642-29860-8_27
https://doi.org/10.1007/978-3-642-29860-8_27
https://doi.org/10.1007/978-3-030-02547-2_4
https://doi.org/10.1007/978-3-030-02547-2_4
https://doi.org/10.1007/978-3-540-88873-4_12

Monitoring the GDPR 699

19. Palmirani, M., Governatori, G.: Modelling legal knowledge for GDPR compliance
checking. Front. Artif. Intell. Appl. 313, 101–110 (2018)

20. Palmirani, M., Martoni, M., Rossi, A., Bartolini, C., Robaldo, L.: Legal ontology
for modelling GDPR concepts and norms. In: Legal Knowledge and Information
Systems: JURIX 2018: The Thirty-first Annual Conference, vol. 313, p. 91. IOS
Press (2018)

21. Peng, H., Gu, J., Ye, X.: Dynamic purpose-based access control. In: 2008 IEEE
International Symposium on Parallel and Distributed Processing with Applica-
tions, pp. 695–700, December 2008

22. Petković, M., Prandi, D., Zannone, N.: Purpose control: did you process the data
for the intended purpose? In: Jonker, W., Petković, M. (eds.) SDM 2011. LNCS,
vol. 6933, pp. 145–168. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-23556-6 10

23. Shepardson, D.: 2017 safest year on record for commercial passenger air travel
(2018). https://reut.rs/2CvBTEH

24. European Union. Regulation (eu) 2016/679 of the european parliament and of the
council of 27 April 2016 on the protection of natural persons with regard to the
processing of personal data and on the free movement of such data, and repealing
directive 95/46/ec (general data protection regulation) (2016)

25. Voigt, P., von dem Bussche, A.: The EU General Data Protection Regulation
(GDPR). Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57959-7

26. Yang, N., Barringer, H., Zhang, N.: A purpose-based access control model. In:
Third International Symposium on Information Assurance and Security, pp. 143–
148, August 2007

https://doi.org/10.1007/978-3-642-23556-6_10
https://doi.org/10.1007/978-3-642-23556-6_10
https://reut.rs/2CvBTEH
https://doi.org/10.1007/978-3-319-57959-7

Blockchain and Smart Contracts

Incentives for Harvesting Attack in Proof
of Work Mining Pools

Yevhen Zolotavkin(B) and Veronika Kuchta

Monash University, Clayton, Australia
{yevhen.zolotavkin,veronika.kuchta}@monash.edu

Abstract. PoW consensus largely depends on mining that mostly hap-
pens in the pools where Pay Per Share (PPS) and Pay Per Last N Shares
(PPLNS) are the most common reward schemes that are offered to the
affiliated miners by pool managers. In this paper, we demonstrate that
in the system consisting of PPS and PPLNS pools, manager who governs
the both pools may have incentive for a new type of “pool harvesting”
attack that is harmful for honest miners. In order to profit from the
attack on PPLNS pool manager declares that a non-existent miner A
joins that pool. She then collects the portion of reward that corresponds
to the mining power of the proclaimed miner A. We demonstrate that
for the mining community, such unfavorable outcome is worsened by the
manager incentives to misrepresent (or not report) the true power of PPS
pools, which complicates unified estimation of the level of decentraliza-
tion in blockchain.

1 Introduction

Being one of the massively adopted products of blockchain technology major
cryptocurrencies have been seen as the next advanced instrument for digital
transactions capable to comfortably assist ever growing global population in
their day to day needs. Since the very inception they enormously benefited from
permanent attention within research community which resulted in a number of
solid publications addressing different aspects of their use [8,15,22]. Proof of
Work (PoW) consensus in many ways pioneered the domain bringing to the aca-
demic test grounds vital debates about incentives to participate in the blockchain
and support its functionality [16].

Many of the challenges of PoW cryptocurrencies can be explained through
the phenomenon of pooled mining. In the pools, miners produce partial solu-
tions, shares, requiring significantly less computations in comparison to the full
solutions resulting in new blocks. This allows miners to submit shares with
the frequency that is proportional to their personal mining power, and, thus
demonstrating to the pool manager their constant involvement into mining pro-
cess. In the event of discovering full solution, manager re-distributes the reward
among miners depending on the reward principle in the pool. On one hand this
is demanded by the miners who wish to reduce variance in receiving reward.

c© Springer Nature Switzerland AG 2019
K. Sako et al. (Eds.): ESORICS 2019, LNCS 11735, pp. 703–725, 2019.
https://doi.org/10.1007/978-3-030-29959-0_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29959-0_34&domain=pdf
https://doi.org/10.1007/978-3-030-29959-0_34

704 Y. Zolotavkin and V. Kuchta

For providing pool infrastructure manager usually charges pool mining fee from
the miners. Regrettably, such convenience results in a compromise with decen-
tralization and independent governance [10].

It has been shown that dependency on the pools resulted in multiple
attacks and vulnerabilities including double spending [17–19,22], block withhold-
ing [4,7,12,27], selfish mining [13,26], and it’s generalization [23] among other
attacks [10,21,31]. In spite of the previous efforts to underpin issues related to
PoW mining and solve them, it should be noted that incentives arising from
intertemporal utilities for different pool participants have long been ignored
[14]. Here we provide arguments on why such aspect should be taken into
consideration.

Time preference is an essential component of financial analysis reflecting
present-time investing opportunities associated with holding funds, and, con-
versely the lack of opportunities in case of guaranty of monetary compensa-
tion in the future. In spite of the century-long history of incorporating time
discounting models into financial tools such as bank deposits and bonds, the
services that bring them into the domain of cryptocurrencies are relatively new
[6,9,28]. It can not, however, be ignored that corresponding changes are quickly
adopted by the customers and gaining popularity due to multiple reasons includ-
ing fast-paced development of cryptocurrency derivatives and marginal trades
segments of the market [5]. As a result of the wider adaptation of time discount-
ing models, infrastructures dependent on projections of cryptocurrency inflow
will indisputably employ them. Being one of such proxies PoW mining pools
represent an interesting object for detailed research focused on incentives to
deviate from mining protocols designed without considering time discounting.
Unfortunately, such deviation may result in attacks which severely distort ability
to support functionality of blockchain and, therefore, should be addressed by the
community.

In this paper, our attention is on the system of two mining pools with different
reward principles governed by the same manager. We demonstrate that collective
participation in mining process can be exploited by the malicious manager in
the environment of compensation mechanisms where reward is proportionally
distributed among pool miners in one of the pools. Under honest operation,
accepting new miners in the pool that shares reward may cause a temporal
reduction in compensations of other permanent members. This fact is tolerated
(and in many cases is welcomed) by the steady miners in anticipation of boosted
productivity of the pool in the near future. Here, we question on how such time-
tolerance can be exploited by a dishonest pool manager seeking to benefit from
interest-earning on the compensations that she deliberately delays.

Mining conglomerates offering miners a choice between two or more reward
approaches are broadly represented across majority of popular PoW cryptocur-
rencies [2,27]. In such structures, Pay Per Share (PPS) and Pay Per Last N
Shares (PPLNS) are the most popular remuneration schemes in use which prin-
ciples, however, differ significantly. Being one of the oldest reward schemes, PPS
provides instant compensation for every submitted share. For the miners, this

Incentives for Harvesting Attack in Proof of Work Mining Pools 705

comes at the price of charging higher mining fee (usually around 2%) due to
the requirement for financial stability for the manager during the periods of bad
luck when expected number of submitted shares does not result in finding a full
solution.

On the other hand, PPLNS charges lower fee (near 1%) while sharing the
rewards among the most recent N shares only at the moments when full block
solutions are found in the pool. This principle of mining reward is illustrated
on Fig. 1 with a window size of N = 20 shares. For simplicity’s sake we assume
existence of 2 miners A and B with mining powers of 40% and 60%, respec-
tively. In the event of finding a full solution, both miners receive payments that
are proportional to the number their submitted shares within the most recent
reward window. For example, the latest payment on this scheme is proportion-
ally distributed among A and B according to their contributions, i.e. miner A
receives 8

20 of total reward, while miner B receives 12
20 of total reward.

Unfortunately, in the majority of PPLNS pools managers are the sole author-
ity performing allocation of the reward to the miners. As we demonstrate further,
this imperfection is to be blamed for the new pool harvesting attack.

We proceed as follows. In Sect. (2) we employ time discounting and the the-
ory of expected utility (EUT) to model incentives of the manager. We develop
sufficient condition for the profitability of pool harvesting attack, propose a new
method to implement attack on practice, and prove that the method provides
non-negative incentive at any moment during attack. In Sect. (3) address aspects
related to attack simulation and detection of malicious manipulations by honest
miners in PPLNS pool. Finally, in Sect. (4) we discuss our results, experimental
limitations, possible effect on the community, and directions for further research.

Fig. 1. PPLNS pool with two miners

2 Pool Harvesting Attack

We start by providing a high level idea of the attack (see Fig. 2) followed by
the formal representation of the model and the method. In order to increase
her personal utility, malicious manager M who is in charge of PPS pool and
PPLNS pool declares that a non-existent miner A with mining power pA joins
PPLNS pool at time t0. Despite the fact that other honest miners in PPLNS
may monitor performance of A and demand that full solutions are submitted by
that miner, fractional rewards can be collected by A prior to that. Such form of
compensation is favorable for M due to: (i) the properties of time discounting,

706 Y. Zolotavkin and V. Kuchta

and (ii) ability to select which blocks (possibly yielding lower rewards) will be
submitted to PPLNS pool.

We will demonstrate that early fractional compensations received from
PPLNS pool indeed outweigh reward for the full solution. In the case of attack,
manager receives fractions FA(t) of every block reward obtained by PPLNS pool.
These fractions are proportional to the declared power pA and are non-decreasing
in time. Since the manager does not need to report to the honest miners about
the shares received from miner A, they are unable to verify such claim imme-
diately. However, in the long run manager needs to hide her malicious behavior
which requires simulation of mining process by miner A who delivers blocks to
the PPLNS pool (see Fig. 2).

Fig. 2. Generalized scheme of pool harvesting attack.

Assuming that all the honest miners uninterruptedly work in PPLNS pool,
over period of time [t0, t] they are able to test the validity of the claim made
by miner A as follows: by conducting One Poisson Mean Test (OPMT), they
compare the declared power pA with the actual number of blocks λ submitted
by miner A during that time period [30]. Further in the text, we will call this
requirement detection constraint. In order to satisfy such detection constraint
the manager needs to submit to PPLNS pool some of the blocks mined in the
other pool with PPS reward system. These blocks are declared in PPLNS pool
as the blocks that were mined by miner A.

2.1 Preliminaries

Starting from moment t0, we register events of mining new blocks in the system
consisting of PPS and PPLNS pools controlled by the manager M . We presume
that the system is closed meaning that neither new miners join these pools nor
any of the miners who are already affiliated with one of the pools ever leaves it.
Mining power of the pools are P1 and P2 for PPS and PPLNS pools, respectively.
We will further define three mutually exclusive sets of natural numbers that form
the set of all events S: (1) set L of events in PPS pool that are not manipulated;
(2) set M of event in PPLNS pool that are not manipulated; (3) set A of event

Incentives for Harvesting Attack in Proof of Work Mining Pools 707

that originate in PPS pool and can be introduced into PPLNS pool during the
attack (see Table 1). The following relations hold:

S = A ∪ L ∪ M; A ∩ L = ∅; A ∩ M = ∅; L ∩ M = ∅.

We define “no attack” scenario as such where all the events in PPS and PPLNS
pools can be indexed using A ∪ L and M, respectively. In contrast, “attack”
scenario is such where manager M declares events in PPS pool using indices
from L and events in PPLNS pool using indices from A ∪ M. The case when
A �= ∅ is of particular interest and further in the paper we assume that such
quality is preserved.

Every block that is mined in the system is indexed in one of the sets A,
L, M only once. A pair of similarly indexed attributes describe each block. For
instance, block Bi, i ∈ L is attributed with

{
ti, Ri

}
meaning that it is mined

at time ti and yields reward Ri. We will use definition of “time of termination”
tT in order to specify all the events S

tT in the system that happen prior to tT .

Table 1. Notations for the Model

Notation Description

M Set of non-manipulated blocks in PPLNS pool

L Set of non-manipulated blocks in PPS pool

A Set of the manipulated blocks from PPS pool

S Set of all blocks in the system of two pools controlled by
manager M

WM Wealth of non-malicious manager

WM∗ Wealth of (malicious) manager during Harvesting attack

t time in the system of two pools

t0 moment of the start of the attack

tT time of termination of mining

f(·) time-discounting function

P1 mining power of PPS pool

P2 mining power of PPLNS pool

pA mining power of non-existent miner A whose presence is declared
in PPLNS by pool manager

EB mining energy needed to mine a block

EN mining energy to Produce N shares forming reward window in
PPLNS pool

R̃ Standard block reward excluding transaction fees

R total block reward distributed according to N (
μR, σR

)

φ1 Mining fee in PPS pool

φ2 Mining fee in PPLNS pool

708 Y. Zolotavkin and V. Kuchta

The following hold: (i) ∀i (ti+1 ≥ ti ≥ t0); (ii) ∀i
(
Ri ≥ R̃

)
, where R̃ is the stan-

dard block reward excluding transaction fees (for example, in BitCoin network
such reward is worth 12.5 BTC). We note that the discrete random variables ti
and Ri are mutually independent.

Every reward Rj for the block Bj (j ∈ M in case of “no attack”, j ∈ {
M∪A

}

in case of “attack”) should be distributed at time tj among the miners of PPLNS
pool according to the PPLNS reward mechanism.

2.2 Model for Manager Incentives

Here we discuss attack incentives by comparing utilities for honest and malicious
managers that we obtain using Expected Utility Theory (EUT) which is an
essential component of economical and statistical models supporting decision-
making processes [24].

We begin with the discussion of wealth acquired during the time
[
t0, tT

]
by

non-malicious and malicious managers, denoted WM

(
tT

)
and WM∗

(
tT

)
, respec-

tively. These values will be used further to compare utilities U
(
WM

(
tT

))
and

U
(
WM∗

(
tT

))
. In particular, we question sufficient conditions for the case where

expected utility denoted E[U(·)] of malicious manager in an ’attack’ scenario is
greater than expected utility of honest manager in a ’no attack’ scenario.

Sufficient Condition for the Profitability of “attack” Scenario. We resort
to EUT to demonstrate the following result (for the proof see Appendix (A)).

Theorem 1. Let M∗ denote a malicious manager of PPS and PPLNS pools. If
WM∗(tT) > WM (tT) then the manager is incentivized to perform a harvesting
attack over her pools.

Hence, our further task is to define wealth WM (tT) and WM∗(tT) and discuss
conditions providing

WM∗(tT) > WM (tT) . (1)

Wealth of the Manager Under “no attack” Scenario. Wealth WM

(
tT

)
is

received as a result of compensations associated with events L
tT ∪ A

tT and
M

tT that are registered in PPS and PPLNS pools, respectively. The corre-
sponding components of wealth will be denoted W 1

M

(
tT

)
for PPS pool and

W 2
M

(
tT

)
for PPLNS pool. Let us analyze the wealth that the manager acquires

from PPS pool during
[
t0, tT

]
. During this time, manager collects rewards

{
Ri

}
, i ∈

{
L

tT ∪A
tT

}
that should be discounted using time discounting function

f(·). This will sum up to the component
∑

i∈{LtT ∪AtT }
Rif

(
ti − t0

)
. The manager

is obliged to compensate mining activity to the miners of PPS pool. In contrast
to the mining block Bi which is an event that is discrete in time, compensation of
the mining shares can be represented as a continuous process. This is explained
by the small amount of computations that are required to obtain a share, and,

Incentives for Harvesting Attack in Proof of Work Mining Pools 709

hence, high frequency of their submissions. During time Δt → 0 pool miners
spends energy P1Δt. This effort constitutes P1Δt

EB
of the total effort to mine a

block, which in expectation requires energy EB . Any such contribution at time
t is immediately compensated with

(
1 − φ1

)
R̃P1Δt

EB
which is discounted with

f
(
t − t0

)
, where φ1 is the mining fee withheld by the manager. Total wealth

effect associated with compensation paid by the manager M to the miners is

−(
1−φ1

)
R̃

EB

tT∫

t0

P1f
(
t − t0

)
dt. Hence, the total wealth of M collected from PPS

pool is:

W 1
M

(
tT

)
=

∑

i∈{LtT ∪AtT }
Rif

(
ti − t0

) − (
1 − φ1

) R̃

EB

tT∫

t0

P1f
(
t − t0

)
dt . (2)

Let us discuss the wealth collected by the manager from PPLNS pool. The only
possible income of the honest manger is created by withholding mining fee φ2

from the set
{
Rj

}
, j ∈ M

tT of rewards received by PPLNS pool. Therefore,
total wealth from PPLNS pool is

W 2
M

(
tT

)
= φ2

∑

j∈MtT

Rjf
(
tj − t0

)
. (3)

For the manager M , the total wealth acquired from PPS and PPLNS pools is
defined as:

WM

(
tT

)
= W 1

M

(
tT

)
+ W 2

M

(
tT

)

=
∑

i∈{LtT ∪AtT }
Rif

(
ti − t0

) − (
1 − φ1

) R̃

EB

tT∫

t0

P1f
(
t − t0

)
dt

+ φ2

∑

j∈MtT

Rjf
(
tj − t0

)
. (4)

Wealth of the Manager Under “attack” Scenario. In pool harvesting
attack that happens during

[
t0, tT

]
, manager M declares that events L

tT occur
in PPS pool while events M

tT ∪ A
tT occur in PPLNS pool. The total wealth

WM∗
(
tT

)
is therefore composed out of the “declared” wealth WM̂

(
tT

)
of the

manager and wealth WA

(
tT

)
of miner A.

Declared Wealth of Manager = WM̂

(
tT

)
. This wealth is acquired from the

rewards
{
Ri

}
, i ∈ L

tT and from rewards
{
Rj

}
, j ∈ {

M
tT ∪A

tT
}
. Corresponding

components of wealth from PPS and PPLNS pools will be denoted as W 1
M̂

(
tT

)

and W 2
M̂

(
tT

)
, respectively. Wealth W 1

M̂

(
tT

)
is defined as:

W 1
M̂

(
tT

)
=

∑

i∈LtT

Rif
(
ti − t0

) − (
1 − φ1

) R̃

EB

tT∫

t0

P1f
(
t − t0

)
dt. (5)

710 Y. Zolotavkin and V. Kuchta

Wealth W 2
M̂

obtained as a result of collecting mining fee φ2 in PPLNS pool is
defined as:

W 2
M̂

(
tT

)
= φ2

∑

j∈
{
MtT ∪AtT

}
Rjf

(
tj − t0

)
. (6)

Total declared wealth of manager M is WM̂ (tT) = W 1
M̂

(tT)+W 2
M̂

(tT). Replacing
W 1

M̂
,W 2

M̂
by (5), (6) yields

WM̂

(
tT

)
=

∑

i∈L
tT

Rif
(
ti − t0

)
−

(
1 − φ1

) R̃

EB

tT∫

t0

P1f
(
t − t0

)
dt + φ2

∑

j∈
{
M

tT ∪A
tT

}
Rjf

(
tj − t0

)
.

Wealth of miner A = WA(tT). Let us calculate the wealth WA

(
tT

)
of miner A

in PPLNS pool. The compensation paid to the miner A is determined by the
effort that she contributed to the mining in the most recent reward window N .
Further, instead of discrete number of shares N we will measure that window
as equivalent of energy EN that is required to mine N shares. At any moment
in time tj , j ∈ {

M
tT ∪ A

tT
}

the miner is ought to be compensated according to
the fraction FA

(
tj

)
of her mining contribution within EN .

Fig. 3. Mining power diagram for PPLNS pool and corresponding reward fraction for
miner A.

We assume steady mining where none of the miners changes her pool. Starting
from the moment t0 contribution of miner A increases linearly in tj until it
reaches value pA

P2+pA
at t = t0 + EN

P2+pA
, and, remains further constant (see

Fig. 3):

FA

(
tj

)
=

{
(tj−t0)pA

EN
, if tj ≤ t0 + EN

P2+pA
;

pA

P2+pA
, else.

(7)

For example, from Fig. 3 it can be observed that t0 < t∗ < t0 + EN

P2+pA
< t∗∗

meaning that 0 < FA

(
t∗

)
< FA

(
t∗∗). Indeed, by the moment t∗, the amount

of energy that has been spent on mining in PPLNS pool by miner A equals to
pA

(
t∗ − t0

)
which determines the ratio of her contribution inside PPLNS reward

window of size EN as pA
t∗−t0
EN

. On the other hand, by the moment t∗∗ that sliding

window contains only mining contributions produced during
[
t∗∗ − EN

P2+pA
, t∗∗

]
.

Incentives for Harvesting Attack in Proof of Work Mining Pools 711

Hence, energy consumed by A inside that window equals to pAEN

P2+pA
and her ratio

is pA

P2+pA
.

Total wealth of miner A over the whole period of mining is

WA

(
tT

)
=

(
1 − φ2

) ∑

j∈
{
MtT ∪AtT

}
RjFA

(
tj

)
f
(
tj − t0

)
.

Finally, the total wealth of the malicious manager is expressed as:

WM∗
(
tT

)
= WM̂

(
tT

)
+ WA

(
tT

)
=

∑

i∈L
tT

Rif
(
ti − t0

)
−

(
1 − φ1

) R̃

EB

tT∫

t0

P1f
(
t − t0

)
dt

+ φ2 ·
∑

j∈
{
M

tT ∪A
tT

}
Rjf

(
tj − t0

)
+

(
1 − φ2

)
·

∑

j∈
{
M

tT ∪A
tT

}
RjFA

(
tj

)
f

(
tj − t0

)
.

(8)
Re-defined Sufficient Condition for Attack. The condition in (1) is equiva-
lent to WM∗

(
tT

) − WM

(
tT

)
> 0. We substitute WM∗(tT) and WM (tT) by their

definitions in (8) and (4), respectively and obtain:

WM∗
(
tT

)
− WM

(
tT

)
=

(
1 − φ2

)
(

∑

j∈
{
M

tT ∪A
tT

}
RjFA

(
tj

)
f

(
tj − t0

)
−

∑

k∈A
tT

Rkf
(
tk − t0

)
)

> 0.

This inequality can be reduced to
∑

j∈MtT

RjFA

(
tj

)
f
(
tj − t0

)
+

∑

j∈AtT

RjFA

(
tj

)
f
(
tj − t0

) −
∑

k∈AtT

Rkf
(
tk − t0

)
> 0,

which is guaranteed if and only if the following condition is satisfied:
∑

j∈MtT

RjFA

(
tj

)
f
(
tj − t0

)
>

∑

k∈AtT

Rk

(
1 − FA

(
tk

))
f
(
tk − t0

)
. (9)

It is remarkable that, for example, such sufficient condition is independent from
mining fees φ1, φ2 in PPS and PPLNS pools, respectively.

Honest Miners in PPLNS Pool. We show that the achieved condition (9)
will have significant implications for the utility of mining for honest miners in
PPLNS pool. Assuming that these miners use the same function f

(
t − t0

)
to

discount their future earnings, we add the discounted rewards of honest miners
in PPS pool

∑

j∈MtT
Rjf

(
tj − t0

)
to the left-and-right-hand sides of the inequality

in (9), multiply it by
(
1 − φ2

)
, and obtain the following condition:

(
1−φ2

) ∑

j∈MtT

Rjf
(
tj − t0

)
>

(
1−φ2

) ∑

i∈{MtT ∪AtT }
Ri

(
1 − FA

(
ti

))
f
(
ti − t0

)
. (10)

Left-hand side of (10) expresses wealth WH

(
tT

)
of the honest miner in “no

attack” scenario while the right-hand side represents the wealth WH∗
(
tT

)
of

712 Y. Zolotavkin and V. Kuchta

honest miners during pool harvesting attack. It can be observed that in the first
instance miners share the whole reward Rj in each of the events in M

tT . In
the second instance, due to the presence of miner A in the pool, honest miners
receive fractional reward Ri

(
1 − FA

(
ti

))
while the set of events M

tT ∪ A
tT is

larger. As a result of (10), E

[
U

(
WH

(
tT

))
]

> E

[
U

(
WH∗

(
tT

))
]

meaning that

attack is harmful for honest miners in PPLNS pool.

Method of Attack. Further we will discuss a heuristic method for attack which
guarantees condition (9) and (in many cases) satisfies the detection constraint.

Definition 1. (Net Charge vs. Net Delivery). The left-hand-side of (9)
describes a wealth component “net charge” that miner A charges from honest
miners in PPLNS pool:

CL

(
M

t
)

: =
∑

j∈MtT

RjFA

(
tj

)
f
(
tj − t0

)
. (11)

The right-hand-side of (9) describes a component “net delivery” that miner A
delivers to the honest miners in PPLNS pool:

CR

(
A

t
)

: =
∑

k∈AtT

Rk

(
1 − FA

(
tk

))
f
(
tk − t0

)
. (12)

The following method determines a set A
t consisting of manipulated blocks from

PPS pool at moment t ∈ [
t0, tT

]
:

1. at time t0 declare non-existent miner A with power pA in PPLNS pool;
2. monitor for the next event in the system at moment t:

(a) if t ≤ tT proceed to (3);
(b) else terminate;

3. modify one of the sets:
(a) if event x in PPS pool, add x to A

t− iff CL

(
M

t
)

> CR

(
A

t− ∪ x
)
1;

(b) if event y in PPLNS pool, add y to M
t;

(c) else, add x to L
t;

4. go to (2).

From (9) it should, however, be noticed that incentive to attack is present at
the moments for events in the sets A and M only. Let us further extend our
discussion by considering continuous domain for t in (9). As a result, we will
take into account continuous nature of functions FA

(
t
)

and f
(
t − t0

)
. This is

summarized in the next theorem and addressed in the experimental section (for
the proof see Appendix (A)).

1 Moment t− is defined as t− = lim
Δt→0

(t − Δt).

Incentives for Harvesting Attack in Proof of Work Mining Pools 713

Theorem 2. At any continuous time t ≤ tT proposed method for attack guar-
antees validity of condition

∑

j∈Mt

RjFA

(
tj

)
f
(
t − t0

)
>

∑

k∈At

Rk

(
1 − FA

(
t
))

f
(
t − t0

)

under exponential discounting function f
(
t − t0

)
= e−k(t−t0).

As a result of Theorem (2) malicious manager M who follows the attack method
always has an incentive for attack.

2.3 Manager Incentives to Operate PPS Pool

Productivity of PPS pool does not affect the way its miners are rewarded. Hence,
manager is not obliged to report about the true power and productivity (num-
ber of the blocks found) in PPS pool. Without such information, any theorizing
about blockchain decentralization is incomplete. For example, significant pro-
portion of the blocks on BitCoin blockchain are anonymized meaning that they
are either produced by solo miners, or in the pools with reward system(s) where
productivity does not affect the payoff of the miners [11,27].

If, however, manager reports about productivity of PPS pool, it is impor-
tant to model her incentives based on the data she provides. We assume that
decision to run a pool should be rational and manager must profit from it. The
lack of such incentive may indicate that manager benefits from unlawful sources
including pool harvesting attack. Here we demonstrate that incentives to run
PPS pool depend on several parameters including power of the pool, mining fee
φ1 and statistical distribution of R. Further, we examine special condition of
pool harvesting attack. For this result we use relation that exists between EUT
and Mean Variance (MV) analysis (for the proof see Appendix (B)).

Lemma 1. Under exponential discounting, manager reveals set L only if
condition (

μR(
1 − φ1

)
R̃

− 1

)
∣
∣LtT

∣
∣ >

∣
∣AtT

∣
∣ (13)

is satisfied.

In case when this condition is not satisfied manager is unable to reveal the
true data about the set L of non-manipulated blocks because economical incen-
tives to run such pool in an honest way are absent. This will further complicate
evaluations of the level of decentralization in the blockchain.

3 Experimental Evaluation

We ponder on whether the attacker who follows the method remains undetected
by honest miners in PPLNS pool. To answer this question, we conduct exper-
iment and discuss details such as the range of input parameters, generation of

714 Y. Zolotavkin and V. Kuchta

Fig. 4. Detailed diagram of the experiment.

random variables that characterize mining outcomes, and statistical tests which
represent detection constraint (see Fig. 4). In order to keep attack undetected,
miner A should produce full solutions at the rate which is determined by energy
required to mine a block and her mining power, i.e.

{
EB , pA

}
. The actual rate

of block submissions can be derived from the time array TA which is obtained
by recording the moments of submission of full solutions from PPS to PPLNS
pool (Fig. 4). On the diagram, we denote C ′

R(At) a challenge value which is not
approved yet. Each event is characterized by time, reward and origin which are
denoted using triplet

{
t, R, b

}
where b is a binary value indicating either PPS

(0) or PPLNS (1) pool. The triplet is generated using random generator G(·) on
inputs EB , P1, P2 governing time and origin of the next event, and inputs μR, σR

denoting mean and standard deviation of normal distribution N (μR, σR) which
determines random monetary value of the block reward. Parameter k determines
intensity of time discounting for the function f

(
t − t0

)
= e−k(t−t0) which affects

values of CL and C′

R. Such exponential function is popular for the studies con-
ducted in behavioral economics and game theory [1].

3.1 Wealth and Utility of the Attacker

With the aim to better understand differences between the wealth functions for
the honest and malicious managers we refer to Fig. 5. These results were obtained
for the condition EB = 1. With total mining power of the whole blockchain net-
work equal 1 we presume that on average, a block is mined at every single unit of
time. For example, the full timespan of mining simulation depicted on Fig. 5a can
represent a system of PPS and PPLNS pools on BitCoin network where wealth
is compared during the period of nearly 417 days. Because of the obligation to
compensate shares for PPS miners on a regular basis, the both functions may
experience periods of negative wealth growth which are explained by bad luck
in finding full block solutions. It can be observed that the both functions WM (t)

Incentives for Harvesting Attack in Proof of Work Mining Pools 715

and WM∗(t) are asymptotically converging in the second half of the experiment
to the value of Wc ≈ 158.4. This is due to time discounting that is incorpo-
rated in the wealth function. Irrespective of the behavior of WM (t) of honest
manager the method of attack guarantees that WM∗(t) of malicious manager
is always above it (see Theorem (2)). However, in order to remain undetected
by the honest miners in PPLNS pool, the attacker needs to sacrifice her wealth
which happens every time when an event is added to A

t at time t (see Fig. 5b).
It can be observed that near such moments wealth WM (t) is growing faster than
WM∗(t), and as a result, the gap between the graphs shrinks.

Fig. 5. Wealth of honest and malicious managers during the experiment, P1 = 6×10−3,
P2 = 10−2, φ1 = 0.02, φ2 = 0.01, k = 10−4, pA = 1.2 × 10−3, EB = 1, EN = 2 × EB .

Utility Function. There is a wide selection of functions that may be used
to express utility of the manager [24]. We resort to quadratic utility U

(
W

)
=

W − bW 2 due to its simplicity. Because U ′(W) = 1 − 2bW maximal utility
is reached at W = 1

2b . The parameters of the utility should be selected in a
way that it is non-decreasing on wealth W ∈ [0,Wmax], which requires that
b ∈

[
0, 1

2Wmax

]
. For the lowest value b = 0, utility is equal to wealth, U

(
W

)
= W ,

and represents risk-neutral manager. On the other hand, due to the convergence
of the wealth (see Fig. 5a), the upper limit of b converges to a small value that
is always greater than zero. This can be used to represent risk-averse manager
who has concave utility function. On Fig. 6 we display differences between the
utilities, ΔU(t) = U

(
WM∗

(
t
))−U

(
WM

(
t
))

of malicious and honest managers,
respectively. Case b = 0 Fig. 6a reflects difference between the wealth. The results
for a higher b = 1

2×1.05×Wc
, are provided on Fig. 6b. For the both illustrations on

Fig. 6 ΔU(t) ≈ 0 for tZ > 5 × 104, but incentive to attack is significant for the
early stage of mining. Parameter k may have several interpretations including
those related to investment decisions, where it expresses the opportunities to
earn interest that are lost due to postponing payments in time [1]. For example,

716 Y. Zolotavkin and V. Kuchta

rate k = 10−4 implies discount e−0.0001 for a reward deferred for a unit of time
in our experiment. Due to the difference in block mining rate in our simulated
environment and real settings, such discount may be assumed happening every 10
minutes in BitCoin network. This further requires opportunity to invest BitCoin
with an interest surpassing 54% for a month – the rate which rarely happens on
practice even in a very speculative economic environment. On the other hand,
k = 10−6 in our experiment is equivalent to a moderate rate of 5.4% for a year –
the financial opportunity that can be easily found among many cryptocurrency
brokers who practice margin lending [5,6,9].

Fig. 6. Difference between utilities of malicious and honest managers, computed using
wealth from Fig. 5.

3.2 Test Results and Their Interpretation

We studied how efficiently the malicious manager can hide the fact of attack
under different intensity of time discounting, k, and different degree of involve-
ment in the attack, pA/P1. For the details about detection constraint see [20].

Organization of Simulation. The experiments were organized in two pairs
with 102 trials in each experiment. The first experiment in each pair was accom-
plished with k = 10−4 and the second with k = 10−6. Attack involvement was
set to 20% for the first and 90% for the second pair resulting in pA = 1.2× 10−3

and pA = 5.4 × 10−3, respectively (see Figs. 7 and 8). For each of the trials, the
mining in PPS and PPLNS pools and actions of the malicious manager were
simulated according to the diagram on Fig. 4 with the following values: expected
energy to find a block EB = 1, contribution considered for compensation by
PPLNS window EN = 2 × EB , total power of PPS and PPLNS pools equal to
P1 = 6 × 10−3, P2 = 10−2, respectively; standard reward for the block (exclud-
ing transaction fees) R̃ = 12.5, distribution of the total reward (including fees)
R := N (

μR = 13.7, σR = 0.4
)
. Without loss of generality, we set t0 = 0. Array

TA was analyzed to calculate the number of events λ(t) for time intervals [t0, t],
t ≤ tT .

Incentives for Harvesting Attack in Proof of Work Mining Pools 717

Fig. 7. Test results for pool harvesting attack, pA = 1.2 × 10−3

Visualized Data. The expected number of events produced by the miner on[
t0, t

]
is λA(t) = pA

t−t0
EB

which changes linearly in time. We use λA to calculate
λmin in OPMT with α = 0.05 [30]. Because of the fact that the both λA and λmin

depend on pA and time only, they are identical for Figs. 7a and b and for Figs. 8a
and b. On the other hand, value of k affects decisions of malicious manager M
and, consequently, defines values λ from each of the 102 trials, for every moment
in time. We depict range for λ, estimate its mean λ̂, and corresponding confidence
intervals λX 2 for α = 0.05.

Results of the Tests. It can be seen that OPMT is passed in all the tri-
als of the both experiments depicted on Fig. 7 as the ranges for λ are placed
notably above the λmin. For the experimental results on Fig. 8, however, there
are moments when OPMT is not passed in all trials. At the initial stages of the
attack on Fig. 8a H0 can be rejected for some of the trials, while on Fig. 8b H0

can be rejected for some trials at any moment. For the χ2-Goodness of fit test,
λA is within confidence interval at any moment for Fig. 7b only which means that
these are the sole experimental settings where expected performance is matched.
Results from Fig. 7a demonstrate that the declared λA is outperformed in most
cases. Mixed data about that test can be obtained from Fig. 8a where λA is above
and below the confidence interval at different attack moments. Finally, we wit-
ness under-performance of λ̂ (including the confidence interval area) compared
to the required λA on the whole duration of the attack in the last experiment
(Fig. 8b).

Summary of the Experiments. With higher value of k wealth of malicious
manager faster outweighs the wealth of honest manager which, in turn, allows
the attacker to create more submissions to PPLNS pool. This increases chances
to pass the tests because λ in trials is increasing. On the other hand, the main
challenge of higher involvement into attack is due to higher expectations for
the performance of the miner A, λA. Since PPS pool is the only source of the
blocks that is available for manipulation, it is more difficult to guarantee such

718 Y. Zolotavkin and V. Kuchta

Fig. 8. Test results for pool harvesting attack, pA = 5.4 × 10−3

exceptional statistical property due to the aspect of luck that is associated with
mining.

Lastly, if the attack remains hidden from the honest miners in PPLNS pool,
manager may either reveal or hide the origin of the blocks in L. Her decision
is governed by the condition (13). For instance, for φ1 = 0.02 we obtain value

μR(
1−φ1

)
R̃

−1 ≈ 0.1216 which remains the same for all the experiments and should

be compared with |AtT |
|LtT | in order to understand the decision of the manager. As

a result of this ratio being higher than 0.1216 across our simulations, man-
ager will not disclose the origin of the blocks in any of the experiments (Figs. 7
and 8).

4 Discussion

In this paper, we investigated a new type of incentive for malicious behavior for
a manager who governs PPS and PPLNS mining pools. It arises due to prefer-
ence in receiving monetary compensations earlier in time. The attack requires
introducing a non-existent miner A to PPLNS pool whose actions are totally
controlled by the manager. The miner will then demand from the pool a reward
proportional to the mining power pA declared by her (see Fig. 2).

Three main questions that we analyze in regards to the attack are:
(i) what is the technique that guarantees its profitability to the malicious man-
ager?
(ii) how successful is such technique in hiding the statistical evidence of the
attack?
(iii) how the attack may hamper blockchain decentralization and related studies?

We deploy EUT to compare incentives of the honest and malicious managers
by representing their utilities as functions of the wealth acquired from governing

Incentives for Harvesting Attack in Proof of Work Mining Pools 719

PPS and PPLNS pools. Sufficient condition for the incentive to attack is pre-
sented in (1) and developed further in (9) for the framework with three exclusive
subsets A, L and M (see Table 1). We next reason on whether such sufficient
condition can be satisfied at any given moment starting from t0 if the manager
utilizes the proposed method for attack under exponential time discounting (see
Theorem (2)). The manager makes the decision on whether to attack or not at
moment t0 when the events in the system of the two pools are not known to
her yet. In order to support such decision we run computer simulation demon-
strating that the utility of the attacker can be substantially higher than the
utility of a honest manager at the beginning of attack (Fig. 5). We presume
that disruptions of mining process of different kinds can happen in the real set-
tings in future where chances of interruption increase over time. This aspect
requires additional investigation while going beyond our model of incentives in
this paper [3,29]. We, however, speculate that higher profitability of attack in
the near future horizon emphasizes practicality of the proposed method when
compared to the approaches with linear wealth accumulation in time. On the
other hand, the method does not necessary maximize the utility of attacker over
the set of possible events. The attack incentives diminish in the distant future
while, nevertheless, remaining positive (see Theorem (2)).

The heuristic nature of the proposed method, however, does not guarantee
concealing of the statistical evidence in all the attack cases. In order to verify
manager’s ability to hide the attack we conducted several series of experiments
with different intensities of time discounting and different values of declared
mining power pA. As a result of simulation (diagram presented on Fig. 4) we col-
lected the array TA of block submission moments. Honest miners in PPLNS pool
expect from miner A producing full block solutions which are distributed in time
according to Poisson distribution with parameter λA ∼ pA. The test hypotheses
that compare data in TA with declared parameter λA were verified by us in
One Poisson Mean Test (OPMT) and χ2-Goodness of fit test [30]. We conclude
that the harvesting attacks under lower k and higher pA are more likely to be
detected by honest miners. This makes the proposed statistical tests a useful
mean to safeguard miners in PPLNS pools from severe malicious manipulations.
On the other hand, less severe attacks with lower pA and under higher intensity
of time discounting k were not detected during the experiment. This fact leaves
a room for further research including development of multivariate statistical test
that allow to work with hypotheses combining occurrence of events with the
reward value R.

Correct estimation for the degree of decentralization in PoW cryptocurrencies
requires information on how mining power is governed by independent managers.
In some reward systems like, for instance, PPLNS such information is inevitably
revealed due to the specifics of reward process occurring only upon discovery of
a new block. Due to such openness, in most cases, blocks mined in PPLNS pools
appear identified on blockchain explorer [11]. Thus, power of the pool can be
estimated based on the number of blocks mined in a unit of time. In contrast to
that, other reward system like, for example, PPS compensate miners on a regular

720 Y. Zolotavkin and V. Kuchta

basis which is independent from pool productivity. Information about power
of such pools may either be provided by their managers, or restored from the
testimonies about personal power of the miners affiliated with the pools. With
the latter source being inherently unreliable we ponder at the manager incentives
to report blocks under pool harvesting attack. For the necessary condition (13)
to reveal pool productivity (set L) developed in Lemma (1) we assume that such
pool should be profitable for the manager. If, for instance, revealed L does not
show incentive to run such PPS pool in a honest manner, mining community
may distrust such manager. In order to avoid damage to her reputation she may
either not associate the both PPS and PPLNS with her, or not reveal L (for
example, on blockchain explorer the source of such anonymous blocks appears as
“unknown”). Each of these manager decisions will distort the comprehension of
distribution of mining power in the network. For example, during our experiment,
we confirmed mismatch with necessary condition for the profitability of PPS
pool. Consequently, pool harvesting attack with such settings can be considered
as a disorienting factor for studies of blockchain decentralization.

Block reward R := N (
μR, σR

)
and the size of PPLNS compensation window

EN play important role in understanding pool harvesting attack and should be
studied in the future. For example, our intuitive reasoning is that for higher
EN detection will become an easier task because of a slower rising fraction FA.
According to the method, slower growth in profitability of attack will cause
longer delays in submitting blocks which may be detected by OPMT.

A number of assumptions was made for the paper. First, we consider that
miners in PPLNS pool submit shares to the manager but are unable to verify
submissions of the others, which allows claiming of reward fraction by miner A
without the need to regularly submit shares. This may, for instance, contradict
with sharechain realization of PPLNS that is practiced in some mining pools
[25]. However, due to stricter requirements to time-synchronization (demand-
ing lower network latency) for the submitted shares, broader developments for
such pools are constrained on practice. Second, information about authorship for
each block (produced in the pool) is available on the web-portal of PPLNS pool.
Hence, miners are able to analyze mining productivity of each identity registered
with the pool. In the pools that do not reveal this information statistical test
for compliance of miner A is impossible, which significantly simplifies the task of
attacker. Third, we presume that honest miners do not leave PPS and PPLNS
pools and new miners do not join them which represents a closed system. Model-
ing of attack incentives, as well as conducting corresponding statistical tests for
an open system would require a set of additional assumptions that go beyond our
scope, but will be considered in the future research. Fourth, we do not analyze
consequences for unsuccessful harvesting attack that is detected by honest min-
ers in PPLNS. As a result, we do not inquire possible reaction of honest miners
to the unfavorable changes in pool settings. In the presence of alternative pools
this topic, however, may be of interest for game-theoretical research.

Incentives for Harvesting Attack in Proof of Work Mining Pools 721

A Theorems

Theorem 1. Let M∗ denote a malicious manager of PPS and PPLNS pools. If
WM∗(tT) > WM (tT) then the manager is incentivized to perform a harvesting
attack over her pools.

Proof. Because of the requirement U ′(W
)

> 0 we state that under WM∗(tT) >

WM (tT) we have U
(
WM∗(tT)

)
> U

(
WM (tT)

)
. Finally, we state that

E

[
U

(
WM∗

(
t
))

]
> E

[
U

(
WM

(
t
))

]
.

�

Theorem 2. At any continuous time t ≤ tT proposed method for attack guar-
antees validity of condition

∑

j∈Mt

RjFA

(
tj

)
f
(
t − t0

)
>

∑

k∈At

Rk

(
1 − FA

(
t
))

f
(
t − t0

)

under exponential discounting function f
(
t − t0

)
= e−k(t−t0).

Proof. The proposed method of attack always guarantees validity of (9). We per-
form the proof of this theorem using induction proof technique. Let us denote the
last event that happened in A ∪ M prior t as te. We then express the questioned
inequality as

∑

j∈Mt

RjFA

(
t
)
f
(
t − te + te − t0

)
>

∑

k∈At

Rk

(
1 − FA

(
t
))

f
(
t − te + te − t0

)
.

(14)

Since FA

(
t
)

is non-decreasing it is sufficient to demonstrate that
∑

j∈Mt

RjFA

(
te

)
f
(
t − te + te − t0

)
>

∑

k∈At

Rk

(
1 − FA

(
te

))
f
(
t − te + te − t0

)
.

(15)

Claim: There exists a homomorphic function which satisfies the following
relation:

f(t − te + te − t0) = f(t − te) � f(te − t0),

where � denotes a homomorphic operation. This claim is true if we chose
f(t− t0) = e−k(t−t0) and � be a multiplicative operation. Then the condition in
(16) is equivalent to

f(te − t0) �
∑

j∈Mt

RjFA

(
te

)
f
(
t − te

)
> f(te − t0) �

∑

k∈At

Rk

(
1 − FA

(
te

))
f
(
t − te

)
. (16)

Canceling out f(te − t0) yields
∑

j∈Mt

RjFA

(
te

)
f
(
t − te

)
>

∑

k∈At

Rk

(
1 − FA

(
te

))

f
(
t − te

)
. �

722 Y. Zolotavkin and V. Kuchta

B Lemma

Lemma 1. Under exponential discounting, manager reveals set L only if
condition (

μR(
1 − φ1

)
R̃

− 1

)
∣
∣LtT

∣
∣ >

∣
∣AtT

∣
∣ (13)

is satisfied.

Proof. In the system of PPS and PPLNS pools, manager makes a binary decision

B ∈ {0, 1} that maximizes E

[
U

(
B · W 1

M

(
tT

)
+ W 2

M

(
tT

))
]
. First, B = 1 only

if E
[
W 1

M

(
tT

)]
> 0. In acc. to M-V analysis E

[
U

(
W 1

M

(
tT

)
+ W 2

M

(
tT

))
]

≥

E
[
W 2

M

(
tT

)]
requires that either :

E
[
W 1

M

(
tT

)
+ W 2

M

(
tT

)] ≥ E
[
W 2

M

(
tT

)]
OR var

(
W 1

M

(
tT

)
+ W 2

M

(
tT

)) ≤ var
(
W 2

M

(
tT

))
.

Further, we consider the first cond. since the second inequality is impossi-
ble to satisfy. Because W 1

M

(
tT

)
and W 2

M

(
tT

)
are independent, we demand

E
[
W 1

M

(
tT

)]
> 0 . Let us substitute2 expression for W 1

M

(
tT

)
from Eq. (5):

E
[
W 1

M (tT)
]

= E

[
∑

i∈PPS

Rif
(
ti − t0

) − (
1 − φ1

) R̃P ∗
1

EB

tT∫

t0

f
(
t − t0

)
dt

]

> 0 ⇒

⇒ E

[
∑

i∈PPS

Rif
(
ti − t0

)
]

>
(
1 − φ1

) R̃P ∗
1

EB

tT∫

t0

f
(
t − t0

)
dt .

(17)
with the right-hand side of this inequality being constant. In the left-hand side
of (17) we observe that

E

[
∑

i∈PPS

Rif
(
ti − t0

)
]

=
∑

i∈PPS

E
[
Rif

(
ti − t0

)]
=μR

∑

i∈PPS

E
[
e−k(ti−t0)

]
(18)

because variables Ri and ti, i ∈ PPS, are mutually independent and E[Ri] = μR.
We introduce

{
zj

}
:=

{
tij

− tij−1

}
, 2 ≤ j ≤ n. We further notice that

∑

i∈PPS

E
[
e−k(ti−t0)

]
=

n∑

j=2

E

[
j∏

l=2

e−kzl

]

. (19)

2 We use notations P ∗
1 and PPS, |PPS| = n to designate the power and the set of

events in PPS pool that are declared by the manager.

Incentives for Harvesting Attack in Proof of Work Mining Pools 723

According to PoW mining principle, variable z is i.i.d and, hence, Eq. (19) yields

n∑

j=2

E

[
j∏

l=2

e−kzl

]

=
n∑

j=2

j∏

l=2

E
[
e−kz(l−1)

]
=

1 −
(

E
[
e−kz

])n

1 − E
[
e−kz

] E
[
e−kz

]
, (20)

where the last equation on the right side of the Eq. (20) follows from geometric
series (

∑n
i=1 qi = 1−qn

1−q q if we set q = e−kz < 1). Random variable z can be
described by it’s density function d(z) = λme−λmz. Then

E
[
e−kz

]
=

∞∫

0

f(z)d(z)d(z) = λm

∞∫

0

e−z
(
k+λm

)
dz =

λm

k + λm
. (21)

Now, using result from (19)–(21), the last expression in Eq. (18) is:

μR

∑

i∈PPS

E
[
e−k(ti−t0)

]
= μR

1 −
(

λm
k+λm

)n

1 − λm
k+λm

λm

k + λm
= μR

λm

k

(
1 −

(
λm

k + λm

)n)
. (22)

For the right-hand side of (17) and the exponential time-discounting f(t− t0) =
e−k(t−t0) we have

(
1 − φ1

) R̃P ∗
1

EB

tT∫

t0

f
(
t − t0

)
dt =

(
1 − φ1

) R̃P ∗
1

kEB

(

1 − e−k
(
tT −t0

))

. (23)

Without loss of generality we note that λm = n
tT −t0

. As a result, we rewrite
Eq. (17) as

μR
λm

k

(

1 −
(

λm

k + λm

)n
)

?
> (1 − φ1)

R̃P ∗
1

kEB

(

1 − e−k n
λm

)

. (24)

Let us compare components 1−
(

λm

k+λm

)n

and 1− e−k n
λm in the expressions for

the left-and-right-hand sides of Eq. (24), respectively. We apply Taylor expansion
to the function ek/λm and derive that e

k
λm > 1 + k

λm
, meaning that

1 −
(

λm

k + λm

)n

< 1 − e−k n
λm , (25)

which dictates the following necessary condition:

μR
λm

k
> (1 − φ1)

R̃P ∗
1

kEB
. (26)

724 Y. Zolotavkin and V. Kuchta

Alternatively, replacing λm = n
tT −t0

we obtain necessary condition for (17):

nEB(
tT − t0

)
P ∗
1

>
(
1 − φ1

) R̃

μR
. (27)

In the left side of (27), numerator represents expected amount of energy that
is required to produce set of events PPS. Denominator expresses the actual
energy that is spent in PPS pool by its miners. An obvious observation from the
right-hand side of (27) is that inequality can be easier satisfied for larger mining
fee φ1 and higher transaction fees (which define μR) in BitCoin network.

In case of pool harvesting attack manager can only report PPS = L
tT events

versus L
tT ∪ A

tT that can be reported by honest manager. We assume that
miners of PPS pool communicate with each other and collectively estimate the

total power of PPS pool as P ∗
1 = EB

∣
∣LtT

∣
∣+

∣
∣AtT

∣
∣

tT −t0
. Substituting this into (27)

produces (
μR(

1 − φ1

)
R̃

− 1

)
∣
∣LtT

∣
∣ >

∣
∣AtT

∣
∣ . �

References

1. Angner, E.: A Course in Behavioral Economics. Palgrave Macmillan, New York
(2012)

2. Antpool: Statistics (2019). https://www.antpool.com/poolStats.htm
3. Arnold, F., Hermanns, H., Pulungan, R., Stoelinga, M.: Time-dependent analysis

of attacks. In: Abadi, M., Kremer, S. (eds.) POST 2014. LNCS, vol. 8414, pp.
285–305. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54792-
8 16

4. Bag, S., Ruj, S., Sakurai, K.: Bitcoin block withholding attack: analysis and miti-
gation. IEEE Trans. Inf. Forensics Secur. 12(8), 1967–1978 (2017)

5. BITMEX: Trading on BitMEX (2019). https://www.bitmex.com/app/
tradingOverview

6. BlockFi: Earn a 6.2% Annual Yield on Your Crypto (2019). https://blockfi.com/
crypto-interestaccount/

7. Chatterjee, K., Goharshady, A.K., Ibsen-Jensen, R., Velner, Y.: Ergodic mean-
payoff games for the analysis of attacks in crypto-currencies. In: 29th International
Conference on Concurrency Theory (CONCUR 2018), pp. 11:1–11:17. Schloss
Dagstuhl. Leibniz-Zentrum fuer Informatik (2018)

8. Chávez, J.J.G., Silva Rodrigues, C.K. da: Automatic hopping among pools and
distributed applications in the Bitcoin network. In: 2016 XXI Symposium on Signal
Processing, Images and Artificial Vision (STSIVA), pp. 1–7 (2016)

9. Coinlend: Automated Margin Lending: A Possibility for Passive Income with Cryp-
tocurrencies. Press Release (2018)

10. Courtois, N.T., Emirdag, P., and Wang, Z.: On detection of Bitcoin mining redi-
rection attacks. In: ICISSP 2015 - Proceedings, pp. 98–105. SciTePress (2015)

11. Explorer, B.: Block Explorer (2019). https://www.blockchain.com/explorer
12. Eyal, I.: The miner’s dilemma. In: 2015 IEEE Symposium on Security and Privacy,

pp. 89–103 (2015)

https://www.antpool.com/poolStats.htm
https://doi.org/10.1007/978-3-642-54792-8_16
https://doi.org/10.1007/978-3-642-54792-8_16
https://www.bitmex.com/app/tradingOverview
https://www.bitmex.com/app/tradingOverview
https://blockfi.com/crypto-interestaccount/
https://blockfi.com/crypto-interestaccount/
https://www.blockchain.com/explorer

Incentives for Harvesting Attack in Proof of Work Mining Pools 725

13. Eyal, I., Sirer, E.G.: Majority is not enough: Bitcoin mining is vulnerable. Commun.
ACM 61(7), 95–102 (2018)

14. Fisch, B., Pass, R., Shelat, A.: Socially optimal mining pools. In: Devanur, N.R.,
Lu, P. (eds.) WINE 2017. LNCS, vol. 10660, pp. 205–218. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-71924-5 15

15. Garay, J., Kiayias, A., Leonardos, N.: The Bitcoin backbone protocol with chains
of variable difficulty. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol.
10401, pp. 291–323. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63688-7 10

16. Gervais, A., Karame, G.O., WüNust, K., Glykantzis, V., Ritzdorf, H., Capkun, S.:
On the security and performance of proof of work blockchains. In: Proceedings of
the 2016 ACM SIGSAC Conference, CCS ’16, pp. 3–16. ACM (2016)

17. Karame, G.O., Androulaki, E., Capkun, S.: Double-spending fast payments in Bit-
coin. In: ACM CCS 2012 - Proceedings, pp. 906–917. ACM (2012)

18. Karame, G.O., Androulaki, E., Roeschlin, M., Gervais, A., Čapkun, S.: Misbehavior
in Bitcoin: a study of double-spending and accountability. ACM Trans. Inf. Syst.
Secur. 18(1), 2:1–2:32 (2015)

19. Kroll, J.A., Davey, I.C., Felten, E.W.: The economics of Bitcoin mining, or Bitcoin
in the presence of adversaries. In: Proceedings of WEIS, p. 11 (2013)

20. Kuchta, V., Zolotavkin, Y.: Detection constraint for Harvesting Attack in Proof of
Work mining pools (2019). https://doi.org/10.26180/5d2464e40a00d

21. Liu, H., Ruan, N., Du, R., Jia, W.: On the strategy and behavior of Bitcoin mining
with N-attackers. In: ASIACCS 2018, Proceedings, pp. 357–368. ACM (2018)

22. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)
23. Nayak, K., Kumar, S., Miller, A., Shi, E.: Stubborn mining: generalizing selfish

mining and combining with an eclipse attack. In: 2016 IEEE European Symposium
on Security and Privacy (EuroS P), pp. 305–320 (2016)

24. von Neumann, J., Morgenstern, O., Kuhn, H., Rubinstein, A.: Theory of Games
and Economic Behavior: 60th Anniversary, Commemorative edn. Princeton Uni-
versity Press (2007)

25. P2Pool: P2Pool Bitcoin Mining Pool Global Statistics (2018). http://p2pool.org/
stats/index.php. Accessed 19 March 2018

26. Qin, R., Yuan, Y., Wang, S., Wang, F.: Economic issues in Bitcoin mining and
blockchain research. In: 2018 IEEE Intelligent Vehicles Symposium (IV), pp. 268–
273 (2018)

27. Rosenfeld, M.: Analysis of Bitcoin Pooled Mining Reward Systems. arXiv preprint
arXiv:1112.4980 (2011)

28. Smith, A.: An Inquiry Into the Nature and Causes of the Wealth of Nations. Simon
& Brown, New York (2011)

29. Smith, D.: Reliability, Maintainability and Risk: Practical Methods for Engineers
including Reliability Centred Maintenance and Safety-Related Systems. Elsevier
Science, New York (2011)

30. Weerahandi, S.: Exact Statistical Methods for Data Analysis. Springer, New York
(2003)

31. Zolotavkin, Y., Garćıa, J., Rudolph, C.: Incentive compatibility of pay per last
n shares in Bitcoin mining pools. In: Rass, S., An, B., Kiekintveld, C., Fang, F.,
Schauer, S. (eds.) Decision and Game Theory for Security, vol. 10575, pp. 21–39.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68711-7 2

https://doi.org/10.1007/978-3-319-71924-5_15
https://doi.org/10.1007/978-3-319-63688-7_10
https://doi.org/10.1007/978-3-319-63688-7_10
https://doi.org/10.26180/5d2464e40a00d
http://p2pool.org/stats/index.php
http://p2pool.org/stats/index.php
http://arxiv.org/abs/1112.4980
https://doi.org/10.1007/978-3-319-68711-7_2

A Lattice-Based Linkable Ring Signature
Supporting Stealth Addresses

Zhen Liu1(B), Khoa Nguyen2, Guomin Yang3, Huaxiong Wang2,
and Duncan S. Wong4

1 Shanghai Jiao Tong University, Shanghai, China
liuzhen@sjtu.edu.cn

2 School of Physical and Mathematical Sciences,
Nanyang Technological University, Jurong East, Singapore

{khoantt,HXWang}@ntu.edu.sg
3 University of Wollongong, Wollongong, Australia

gyang@uow.edu.au
4 CryptoBLK and Abelian Foundation, Kowloon, China

duncanwong@cryptoblk.io

Abstract. First proposed in CryptoNote, a collection of popular
privacy-centric cryptocurrencies have employed Linkable Ring Signature
and a corresponding Key Derivation Mechanism (KeyDerM) for keep-
ing the payer and payee of a transaction anonymous and unlinkable. The
KeyDerM is used for generating a fresh signing key and the corresponding
public key, referred to as a stealth address, for the transaction payee. The
stealth address will then be used in the linkable ring signature next time
when the payee spends the coin. However, in all existing works, including
Monero, the privacy model only considers the two cryptographic primi-
tives separately. In addition, to be applied to cryptocurrencies, the secu-
rity and privacy models for Linkable Ring Signature should capture the
situation that the public key ring of a signature may contain keys created
by an adversary (referred to as adversarially-chosen-key attack), since in
cryptocurrencies, it is normal for a user (adversary) to create self-paying
transactions so that some maliciously created public keys can get into
the system without being detected .

In this paper, we propose a new cryptographic primitive, referred to
as Linkable Ring Signature Scheme with Stealth Addresses (SALRS),
which comprehensively and strictly captures the security and privacy
requirements of hiding the payer and payee of a transaction in cryptocur-
rencies, especially the adversarially-chosen-key attacks. We also propose
a lattice-based SALRS construction and prove its security and privacy
in the random oracle model. In other words, our construction provides

The work was supported by the National Natural Science Foundation of China
(No. 61672339), the National Cryptography Development Fund (No. MMJJ20170111),
the Gopalakrishnan - NTU Presidential Postdoctoral Fellowship 2018, the National
Research Foundation, Prime Minister’s Office, Singapore under its Strategic Capabil-
ity Research Centres Funding Initiative, the Singapore Ministry of Education under
Research Grant MOE2016-T2-2-014(S), and the Abelian Foundation.

c© Springer Nature Switzerland AG 2019
K. Sako et al. (Eds.): ESORICS 2019, LNCS 11735, pp. 726–746, 2019.
https://doi.org/10.1007/978-3-030-29959-0_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29959-0_35&domain=pdf
https://doi.org/10.1007/978-3-030-29959-0_35

A Lattice-Based Linkable Ring Signature Supporting Stealth Addresses 727

strong confidence on security and privacy in twofolds, i.e., being proved
under strong models which capture the practical scenarios of cryptocur-
rencies, and being potentially quantum-resistant. The efficiency analysis
also shows that our lattice-based SALRS scheme is practical for real
implementations.

Keywords: Lattice-Based · Linkable ring signature ·
Stealth Address · Cryptocurrency · Privacy

1 Introduction

Conventional cryptocurrencies such as Bitcoin or Ethereum support the
pseudonym level of anonymity, namely, the wallet addresses and the real identi-
ties are delinked while transactions are linked. For privacy coins, such as Monero
or Zcash, one of the objectives in terms of anonymity is to keep both the payer
and payee of a transaction anonymous and unlinkable.

For example, in CryptoNote [25], Linkable Ring Signature (LRS) [20] and Key
Derivation Mechanism [25] (KeyDerM) are employed. When a payer, say Alice,
wants to pay Bob (the payee) through a transaction, Alice uses KeyDerM to
generate a derived public key DPK from Bob’s master public key MPK, and uses
DPK as Bob’s address in the transaction. As MPK never appears, transactions
involving Bob as the receiver cannot be identified. KeyDerM is also referred
to as the Stealth Address (SA) [27] mechanism. When Bob wants to spend his
coins on the derived public key DPK, i.e. acting as the payer of a transaction
TX, he generates a linkable ring signature σ on the transaction TX (as the
message) under a set (referred to as a ‘ring’) of derived public keys R such that
DPK ∈ R. Anyone can verify σ without being able to find out the actual signer is
corresponding to DPK. The linkability is used for detecting any double-spending
attempt, namely if two signatures are generated by Bob corresponding to DPK,
they will be detected as linked as the coin corresponding to DPK is supposed to
be used only once.

LRS and SA have attracted much attention recently in the community, for
example, [5,8,9,11,21,22,26,28], and in cryptocurrencies, for example, Monero
[24], which uses LRS and CryptoNote’s KeyDerM as its underlying building
blocks, and has a market capitalization valued at more than 1 billion USD [10].
However, as shown in Table 1, all the existing works [1–3,14–16,19,20,29–31]
either only consider LRS or SA in the setting of standard signature schemes
[11,21] rather than both of these primitives. Even in CrypotNote [25] and Monero
[24], LRS and SA are both considered, but still separately rather than being
analyzed under a unified security model, despite that LRS and SA are used in
a tightly-coupled fashion in both CryptoNote and Monero. In particular, the
signing keys and public keys used in LRS are generated by the SA mechanism.
It is not known whether the security and privacy properties still hold when keys
used by LRS are generated by the SA mechanism, while the SA mechanism does
not generate keys independently.

728 Z. Liu et al.

The linkability of LRS requires that if two signatures are generated under
the same key pair, these signatures can be linked publicly. Another feature of
LRS, referred to as non-slanderability, requires that an adversary cannot frame a
user by creating a signature that is linked to a signature of the user. Anonymity
requires that for a signature with respect to ring R, no one can identify the
real signer’s public key out of R. When considering these security and privacy
requirements of LRS, we investigate under the assumption that each key pair is
generated independently. However, this is no longer the fact when LRS is used in
CryptoNote or Monero as keys are generated using the SA mechanism. For SA,
the master-public-key-unlinkability [21] property requires that given a derived
public key and the corresponding (standard) signatures, an adversary cannot tell
the master public key, from which the derived public key is generated, out of a
set of known master public keys. Another requirement called derived-public-key-
unlinkability [21] captures that given two derived public keys and corresponding
(standard) signatures, an adversary cannot tell whether the two derived public
keys are from the same master public key.

As Linkable Ring Signature and Stealth Address are used in practical scenar-
ios, i.e., cryptocurrencies, another concern is whether the security and privacy
models, under which they are analyzed, capture the scenarios well. In particu-
lar, in cryptocurrencies, an attacker may create some public keys maliciously
and issue transactions using these public keys as payee’s addresses. As long as
these malicious created keys are well-formed, they will get into the blockchain
as the normal ones and a user may include these malicious created keys in their
rings to sign their transactions. As a result, to be practical, the security and
privacy models must consider the attacks in such a scenario, which referred to
as adversarially-chosen-key attacks. However, as shown in Table 1, the existing
linkability models either do not consider the adversarially-chosen-key attacks or
consider them but do not capture the application scenarios of cryptocurrencies.

1.1 Our Results

To address the above concerns, in this paper, we propose a new cryptographic
primitive, named Linkable Ring Signature Scheme with Stealth Addresses
(SALRS), which comprehensively and strictly captures the security and pri-
vacy requirements of hiding the payer and payee of a transaction in cryp-
tocurrencies. Particularly, all the security models (namely strong unforge-
ability, signer-linkability, and signer-non-slanderability) and privacy models
(namely signer-anonymity, master-public-key-unlinkability, and derived-public-
key-unlinkability) are defined under SALRS, rather than under Linkable Ring
Signature or Stealth Address separately. Also, all the models strictly capture the
practical requirements of cryptocurrencies, especially the adversarially-chosen-
key attacks.

We also propose a lattice-based SALRS construction and prove its secu-
rity and privacy in the random oracle model. In other words, our construction
provides strong confidence on security and privacy in twofolds: being proved
under strong models which capture the practical scenarios of cryptocurrencies,

A Lattice-Based Linkable Ring Signature Supporting Stealth Addresses 729

Table 1. Comparison with existing LRS and SA schemes

Consider LRS and SA
together

Capture adversarially
chosen-key attacks in
linkability model

Potentially quantum
resistant

[1,29,30] ×, only LRS ×, have flawsa ×
[2,3,8,19,20,26,31] ×, only LRS × ×
[14–16] ×, only LRSb √b ×
[24,25] ×, LRS and SA

separately
× ×

[32] ×, only LRSc × √

[5,9,28] ×, only LRS × √

[22] ×, only LRS ×, have flaws a √

[11,21] ×, only SA NA ×
this work

√ √ √
aThe linkability models of [1,22,29,30] have flaws, as an adversary can trivially succeed, by
outputting two signatures which are obtained by querying the signing oracle on two different
public keys.

b[14–16] proposed Traceable Ring Signature, which is similar to Linkable Ring Signature.
The linkability model in [14–16] captures the adversarially-chosen-key attacks, but requires
that all the signatures use the same ring.

cIn [32], a key derivation mechanism for generating one-time public keys for the payees is
proposed, but the derived public keys’ anonymity (unlinkability to the payee’s long-term
key) is not considered.

and being potentially quantum-resistant. The efficiency analysis also shows that
our lattice-based SALRS scheme is practical for real implementations. Table 1
shows a comparison between our results in this work and the existing works on
Linkable Ring Signature and Stealth Address. It is worth noting that although
lattice-based Linkable Ring Signature schemes [5,22,28,32] have been proposed
recently, to the best of our knowledge, no lattice-based Stealth Address scheme
has been introduced so far. Also, although some lattice-based ring signature
schemes [13,18] can achieve logarithmic signature size in terms of the number of
signers in the ring, these schemes are mainly of theoretical interest since they will
produce much larger signatures for a normal ring size in real scenarios. In other
words, our construction is the first practical and potentially quantum-resistant
solution that hides the payers and payees of transactions in cryptocurrencies.

1.2 Outline

In Sect. 2 we propose and formalize the primitive Linkable Ring Signature
Scheme with Stealth Addresses (SALRS), including the algorithm definitions and
the security and privacy models. In Sect. 3 we propose a lattice-based SALRS
construction, and prove its security and privacy in Sect. 4. The paper is con-
cluded in Sect. 5.

730 Z. Liu et al.

2 Definitions of SALRS

In this section, we first define the SALRS system, which captures the cryp-
tographic functionalities that a cryptocurrency needs to hide the payers and
payees of the transactions. Then we formalize the security and privacy models
that strictly capture the practical scenarios in cryptocurrencies.

2.1 Algorithm Definition

A Linkable Ring Signature Scheme with Stealth Addresses (SALRS) consists of
the following algorithms:

– Setup(λ) → PP. This is a probabilistic algorithm. On input a security param-
eter λ, the algorithm outputs system public parameters PP.
The system public parameters PP are common parameters used by all partic-
ipants in the system, for example, the message space M, the hash functions,
etc. In the following, λ and PP are implicit input parameters to every algorithm.

– MasterKeyGen() → (MPK,MSK). This is a probabilistic algorithm. The algo-
rithm outputs a (master public key, master secret key) pair (MPK,MSK).
Each user runs MasterKeyGen algorithm to generate his (master public key,
master secret key) pair.

– DerivedPublicKeyGen(MPK) → DPK. This is a probabilistic algorithm. On
input a master public key MPK, the algorithm outputs a derived public key
DPK.
Anyone can run this algorithm to generate a fresh derived public key from a
master public key.

– DerivedPublicKeyOwnerCheck(DPK,MPK,MSK) → 1/0. This is a determinis-
tic algorithm. On input a derived public key DPK and a (master public key,
master secret key) pair (MPK,MSK), the algorithm outputs a bit b ∈ {0, 1},
with b = 1 meaning that DPK is a valid derived public key generated from
MPK and b = 0 otherwise.
The owner of a master public key can use this algorithm to check whether a
public key is derived from his master public key. In a cryptocurrency, a payee
can use this algorithm to check whether he is the intended receiver of a coin
on the public key.

– DerivedPublicKeyPublicCheck(DPK) → 1/0. This is a deterministic algorithm.
On input a derived public key DPK, the algorithm outputs a bit b ∈ {0, 1},
with b = 1 meaning that DPK is a well-formed derived public key and b = 0
otherwise.
Anyone can use this algorithm to check whether a derived public key is well-
formed. In a cryptocurrency, a payer can use this algorithm to check whether
the derived public keys owned by others are well-formed so that he can use
them as ring numbers for his ring signature generation.

A Lattice-Based Linkable Ring Signature Supporting Stealth Addresses 731

– Sign(M,R,DPK, (MPK,MSK)) → σ. On input a message M , a ring of well-
formed derived public keys R = (DPK1, . . . ,DPKr)1, a derived public key
DPK ∈ R, and the master key pair (MPK,MSK) for DPK, the algorithm out-
puts a signature σ on the message M with respect to the ring R.
The derived public keys DPK1, . . . ,DPKr may be generated from different mas-
ter public keys.

– Verify(M,R, σ) → 1/0. This is a deterministic algorithm. On input a message
M , a ring of well-formed derived public keys R, and a purported signature
σ on the message M with respect to the ring R, the algorithm outputs a bit
b ∈ {0, 1}, with b = 1 meaning valid and b = 0 otherwise.

– Link(M0, R0, σ0,M1, R1, σ1) → 1/0. This is a deterministic algorithm. On
input two valid signatures (M0, R0, σ0), (M1, R1, σ1), the algorithm outputs
a bit b ∈ {0, 1}, with b = 1 meaning linked and b = 0 meaning unlinked.

Correctness. The scheme must satisfy the following correctness property: Let
PP ← Setup(λ),

– for any (MPK,MSK) ← MasterKeyGen(), DPK ← DerivedPublicKeyGen
(MPK), it holds that DerivedPublicKeyOwnerCheck(DPK,MPK,MSK) = 1 and
DerivedPublicKeyPublicCheck(DPK) = 1.

– for any message M ∈ M, any ring of well-formed derived public keys R,
and any DPKs ∈ R such that DerivedPublicKeyOwnerCheck(DPKs,MPK,
MSK) = 1 for some master key (MPK,MSK), it holds that
Verify(M,R,Sign(M,R,DPKs, MPK,MSK)) = 1.

– for any messages M0,M1 ∈ M, any well-formed derived public key rings
R0, R1, and any DPKs0 ∈ R0,DPKs1 ∈ R1 such that
DerivedPublicKeyOwnerCheck(DPKsi

,MPKi, MSKi) = 1 for some master key
(MPKi, MSKi) (i = 0, 1), let σi ← Sign(Mi, Ri,DPKsi

, MPKi,MSKi) (i =
0, 1). It holds that Link(M0, R0, σ0,M1, R1, σ1) = 1 if DPKs0 = DPKs1 , and
Pr[Link(M0, R0, σ0,M1, R1, σ1) = 0] ≥ 1 − negl(λ) if DPKs0 �= DPKs1 , where
negl is a negligible function.

Remark: Note that it is open on whether the Sign algorithm is probabilistic or
deterministic, which may depend on the concrete constructions.

2.2 Security and Privacy Models of SALRS

Below we define the security and privacy for SALRS. The security includes
unforgeability, signer-linkability, and signer-non-slanderability, while the privacy
includes signer-anonymity, master-public-key-unlinkability and derived-public-
key-unlinkability. Unforgeability captures that only the user knowing the secret
key for some public key in a ring can generate a valid signature with respect

1 Below, we regard the public key ring as an ordered set, namely, it consists of a set
of public keys, and when it is used in Sign and Verify algorithms, the public keys are
ordered and each one has an index.

732 Z. Liu et al.

to the ring. Signer-linkability captures that with respect to one derived public
key, if the key owner generates two or multiple valid signatures, these signatures
will be detected to be linked, and this captures the security requirement of pre-
venting double-spending in cryptocurrencies. Signer-non-slanderability captures
that no one can frame other users by creating a signature that is linked to a
signature of the target user. Signer-anonymity captures that given a valid sig-
nature with respect to a ring of derived public keys, no one can identify the
signer’s derived public key out of the ring. Master-public-key-unlinkability cap-
tures that given a derived public key and the corresponding signatures, no one
can tell which master public key, out of a set of known master public keys,
is the one from which it was derived. Derived-public-key-unlinkability captures
that given two derived public keys and the corresponding signatures, no one
can tell whether they are derived from the same master public key. Signer-
anonymity captures the privacy-protection requirement in cryptocurrency of
hiding the payer, while master-public-key-unlinkability and derived-public-key-
unlinkability captures the privacy-protection requirements of hiding the payee
and cutting the link between the payees of different transactions, respectively.

With these security and privacy models, SALRS captures the security and
privacy-protection requirements of cryptocurrencies in the most practical set-
ting. Especially, the rings are allowed to contain the derived public keys that
an adversary generated from his own master public keys. This reflects the sit-
uations in practice that, an attacker may generate some derived public keys
from his own master public keys, and issue transactions among these keys,
attempting to launch some attacks, such as double-spending, or to compromise
other users’ security and/or privacy. On the other side, we show that signer-
linkability and signer-non-slanderability together implies unforgeability, and
master-public-key-unlinkability implies derived-public-key-unlinkability. Thus,
for a SALRS construction, we only needs to focus on its signer-linkability, signer-
non-slanderability, signer-anonymity, and master-public-key-unlinkability.

Definition 1 (Strong Unforgeability). A SALRS scheme is strongly
unforgeable if for any probabilistic polynomial time (PPT) adversary A and for
any polynomial n(·), the advantage of A in the following game Gameeuf , denoted
by Adveuf

A , is negligible.

1. Setup. PP ← Setup(λ;ω) is run, where ω is the randomness used in Setup().
PP and ω are given to A.
{(MPKi,MSKi) ← MasterKeyGen()}n(λ)

i=1 are run and {MPKi}n(λ)
i=1 are given

to A.
An empty set Ldpk = ∅ is initialized, which will be used to store the valid
derived public keys derived from the target master public keys. Note that Ldpk

captures the scenarios that the valid derived public keys are stored on the
blockchain and are publicly accessible.
Note that giving to A the randomness ω, which is used by the Setup algorithm,
implies the setup is public. This is to capture that the security does not rely on
a trusted setup which may incur concerns on the existing of trapdoors.

A Lattice-Based Linkable Ring Signature Supporting Stealth Addresses 733

2. Probing Phase. A can adaptively query the following oracles:
– Derived Public Key Adding Oracle ODPKAdd(·, ·):

On input a derived public key DPK and a master public key MPKi, this
oracle returns b ← DerivedPublicKeyOwnerCheck(DPK,MPKi, MSKi) to
A. If b = 1, set Ldpk = Ldpk ∪ {DPK}.
This captures that A can try and test whether the derived public keys gen-
erated by him are accepted by the owner of the corresponding master public
key.

– Signing Oracle OSign(·, ·, ·):
On input a message M ∈ M, a ring of well-formed derived public keys
R, and a derived public key DPK ∈ R ∩ Ldpk, this oracle returns σ ←
Sign(M,R,DPK, MPKi,MSKi) to A, where (MPKi,MSKi) is the master
key pair for DPK.
Note that it only requires that the derived public key DPK is in Ldpk, i.e.,
the attacking targets for which the master secret keys are unknown to the
adversary, without requiring R ⊆ Ldpk. This captures that A can obtain the
signatures for messages, derived public key ring, and derived public key of
its choice, where the ring may contain deprived public keys which are
created by the adversary even from the master public keys which are
also created by the adversary (referred to as adversarially-chosen-key
attack).

3. Output Phase. A outputs a message M∗ ∈ M, a ring of well-formed derived
public keys R∗, and a signature σ∗.

Let Sso = {(M,R,DPK, σ)} be the query-answer tuples for OSign(·, ·, ·). A suc-
ceeds if (1) Verify(M∗, R∗, σ∗) = 1, and (2) R∗ ⊆ Ldpk, and (3) (M∗, R∗, ?, σ∗) /∈
Sso, where ‘?’ means wildcard, i.e. (M∗, R∗, σ∗) is not a (message, derived public
key ring, signature) tuple obtained by querying OSign(·, ·, ·). The advantage of A
is Adveuf

A = Pr[A succeeds].

Remark : In the above model, as the adversarially-chosen-key attacks are con-
sidered, i.e., the adversary is allowed to specify the derived public key ring to
contain well-formed derived public keys generated from the master public keys
created by himself, it is not necessary to provide an oracle of corrupting the
master secret keys in {MSK}n(λ)i=1 . The situations for the following models are
similar.

Definition 2 (Signer-linkability). A SALRS scheme is signer-linkable if for
any PPT adversary A, the advantage of A in the following game Gamesnlink,
denoted by Advsnlink

A , is negligible.

1. Setup. PP ← Setup(λ;ω) is run, where ω is the randomness used in Setup().
PP and ω are given to A.

2. Output Phase. A outputs k(≥ 2) (message, ring of well-formed derived
public keys, signature) tuples (M∗

i , R∗
i , σ

∗
i) (i = 1, . . . , k).

734 Z. Liu et al.

A succeeds if (1) Verify(M∗
i , R∗

i , σ
∗
i) = 1 (i = 1, 2, . . . , k),

and (2) Link(M∗
i , R∗

i , σ
∗
i ,M∗

j , R∗
j , σ

∗
j) = 0 ∀i, j ∈ [1, k] s.t. i �= j, and (3) | ∪k

i=1

R∗
i | < k. The advantage of A is Advsnlink

A = Pr[A succeeds].

Remark: Note that the adversary’s target is to attack the linkability property of
the system, rather than attacking other users, thus we do not need to consider
the target master public keys or derived public keys. Also, as the adversary is
allowed to create the master public keys and derived public keys of its choice,
we do not need to consider the signing oracles, corruption oracles, etc.

Definition 3 (Signer-non-slanderability). A SALRS scheme is signer-non-
slanderable if for any PPT adversary A and for any polynomial n(·), the advan-
tage of A in the following game Gamesnnsl, denoted by Advsnnsl

A , is negligible.

1. Setup. Same as that of Gameeuf in Def. 1.
2. Probing Phase. Same as that of Gameeuf in Def. 1.
3. Output Phase. A outputs two (message, ring of well-formed derived public

keys, signature) tuples (M̂, R̂, σ̂) and (M∗, R∗, σ∗).

Let Sso = {(M,R,DPK, σ)} be the query-answer tuples for OSign(·, ·, ·).
A succeeds if (1) Verify(M∗, R∗, σ∗) = 1, and (2) (M̂, R̂, ˆDPK, σ̂) ∈
Sso for some ˆDPK ∈ R̂ ∩ Ldpk, and (3) (M∗, R∗, ˆDPK, σ∗) /∈ Sso, and
(4) Link(M∗, R∗, σ∗, M̂ , R̂, σ̂) = 1. The advantage of A is Advsnnsl

A =
Pr[A succeeds].

Definition 4 (Signer-Anonymity). A SALRS scheme is signer-anonymous
if for any PPT adversary A and for any polynomial n(·), the advantage of A in
the following game Gamesnano, denoted by Advsnano

A , is negligible.

1. Setup. Same as that of Gameeuf in Def. 1.
2. Probing Phase 1. Same as the Probing Phase of Gameeuf in Def. 1.
3. Challenge Phase. A outputs a message M∗, a ring of well-formed derived

public keys R∗, and two distinct indices 1 ≤ i0, i1 ≤ n(λ), such that
(1) DPKi0 ,DPKi1 ∈ R∗ ∩ Ldpk, and
(2) none of OSign(·, ·,DPKi0), OSign(·, ·,DPKi1) was queried. A random bit
b ∈ {0, 1} is chosen, and A is given the signature σ ← Sign(M∗, R∗,
DPKib ,MPK,MSK), where (MPK,MSK) is the master key pair for DPKib .

4. Probing Phase 2. Same as the Probing Phase 1, but with the restriction
that none of OSign(·, ·,DPKi0), OSign(·, ·,DPKi1) is queried.

5. Output Phase. A outputs a bit b′ as its guess to b.

The advantage of A is Advsnano
A = |Pr[b′ = b] − 1

2 |.
Definition 5 (Master-Public-Key-Unlinkability). A SALRS scheme is
Master Public-Key-Unlinkable if for any PPT adversary A and for any poly-
nomial n(·), the advantage of A in the following game Gamempkunl, denoted by
Advmpkunl

A , is negligible.

A Lattice-Based Linkable Ring Signature Supporting Stealth Addresses 735

1. Setup. Same as that of Gameeuf in Def. 1.
2. Probing Phase 1. Same as the Probing Phase of Gameeuf in Def. 1.
3. Challenge. A outputs two distinct indices 1 ≤ i0, i1 ≤ n(λ). A random bit

b ∈ {0, 1} is chosen, and DPK∗ ← DerivedPublicKeyGen(MPKib) is given to
A. Set Ldpk = Ldpk ∪ {DPK∗}.

4. Probing Phase 2. Same as Phase 1, except that ODPKAdd(DPK∗,MPKij)
(for j ∈ {0, 1}) cannot be queried.

5. Guess. A outputs a bit b′ ∈ {0, 1} as its guess to b.

The advantage of A is Advmpkunl
A = |Pr[b′ = b] − 1

2 |.

Remark: Note that OSign(·, ·,DPK∗) can be queried. This captures that neither
the derived public key or the signatures leak the corresponding master public
key.

Definition 6 (Derived-Public-Key-Unlinkability). A SALRS scheme is
Derived Public-Key-Unlinkable if for any PPT adversary A and for any poly-
nomial n(·), the advantage of A in the following game Gamedpkunl, denoted by
Advdpkunl

A , is negligible.

1. Setup. Same as that of Gameeuf in Def. 1.
2. Probing Phase 1. Same as the Probing Phase of Gameeuf in Def. 1.
3. Challenge. A outputs two distinct indices 1 ≤ i0, i1 ≤ n(λ).

A random bit c ∈ {0, 1} is chosen.
Compute DPK∗

0 ← DerivedPublicKeyGen(MPKic).
A random bit b ∈ {0, 1} is chosen.
If b = 0, compute DPK∗

1 ← DerivedPublicKeyGen(MPKic),
otherwise, compute DPK∗

1 ← DerivedPublicKeyGen(MPKi1−c
).

(DPK∗
0,DPK

∗
1) are given to A. Set Ldpk = Ldpk ∪ {DPK∗

0,DPK
∗
1}.

4. Probing Phase 2. Same as Probing Phase 1, except that
ODPKAdd(DPK∗

j , MPKik) (for j, k ∈ {0, 1}) can be queried on at most one
j ∈ {0, 1}.

5. Guess. A outputs a bit b′ ∈ {0, 1} as its guess to b, i.e., guess whether DPK∗
0

and DPK∗
1 are from the same master public key.

The advantage of A is Advdpkunl
A = |Pr[b′ = b] − 1

2 |.

Remark : Note that OSign(·, ·,DPK∗
j) (for j = 0, 1) can be queried, and this

captures that neither the derived public keys or the corresponding signatures
leak whether they are from the same master public key.

As the above models captures the security and privacy requirements that the
practice imposes on SALRS, the following two theorems show that for a SALRS
scheme, we only need to consider its signer-linkability, signer-non-slanderability,
signer-anonymity, and master-public-key-unlinkability.

Theorem 1. If a SALRS scheme is signer-linkable and siner-non-slanderable,
then it is strongly unforgeable.

736 Z. Liu et al.

Proof. The proof resembles that for a similar conclusion in the setting of Trace-
able Ring Signature in [16]. We give the proof in Appendix A.

Theorem 2. If a SALRS scheme is master-public-key-unlinkable, then it is
derived-public-key-unlinkable.

Proof. Observe Gamempkunl and Gamedpkunl, it is easy to see that, if there exists
an adversary A that wins Gamedpknul with non-negligible advantage, we can con-
struct an algorithm B that interacts with A for game Gamedpknul, and makes use
of A’s output to win Gamempkunl with non-negligible advantage. We defer the
proof details to the full version.

3 Our Construction

In this section, we first present some preliminaries in Sect. 3.1, including the
concept of key-privacy in Key-Encapsulation Mechanism (KEM), which we will
use as a building block for our SALRS construction, and some background of
lattice. Then we propose a lattice-based SALRS construction in Sect. 3.2 and
give the concrete parameters and building blocks in Sect. 3.3.

3.1 Preliminaries

3.1.1 Key-Privacy in KEM
Our construction will use KEM as a building block, but requires the underlying
KEM to have an additional property, referred to as key-privacy, which asks that
an adversary in possession of a ciphertext not be able to tell which specific public
key, out of a set of known public keys, is the one under which the ciphertext
was created, meaning the receiver is anonymous from the point of view of the
adversary. It is worth mentioning that Bellare et al. [6] considered a similar
concept on the setting of Public Key Encryption (PKE). Below we extend the
usual KEM and formalize the concept of KEM with key-privacy.

Syntax. To capture the practice better, we augment the usual formalization of
KEM to cover the cases that users may share some fixed “global” information.

A key-encapsulation mechanism (KEM) scheme is a tuple of probabilistic
polynomial-time algorithms (Setup,KeyGen,Encaps,Decaps) such that:

– Setup(λ) → GP. On input a security parameter λ, the algorithm outputs sys-
tem global parameters GP.
The system global parameters GP are common parameters used by all partic-
ipants in the system, which may be just the security parameter λ, or include
some additional information, for example, the key space, the ciphertext space,
the hash functions, etc. As we will consider the key-privacy, here we require
that GP include the key space K and ciphertext space C.

– KeyGen(GP) → (PK,SK). This is a probabilistic algorithm. On input GP, the
algorithm outputs a (public key, secret key) pair (PK,SK).

A Lattice-Based Linkable Ring Signature Supporting Stealth Addresses 737

– Encaps(GP,PK) → (C, κ). This is a probabilistic algorithm. On input GP and
a public key PK, the algorithm outputs a ciphertext C ∈ C and a key κ ∈ K.

– Decaps(GP, C,PK,SK) → κ/⊥. This is a deterministic algorithm. On input
GP, a ciphertext C ∈ C, and a (public key, secret key) pair (PK,SK), the
algorithm outputs a key κ ∈ K or a special symbol ⊥ to indicate rejection.

Correctness. It is required that with all but negligible probability over
GP ← Setup(1λ), (PK,SK) ← KeyGen(GP), and the random coins of Encaps,
if Encaps(GP, PK) outputs (C, κ), then Decaps(GP, C, PK,SK) outputs κ.

Security and Key-Privacy. Below we formalize the security and key-privacy
models.

Definition 7 (CCA-Security of KEM). A KEM scheme is CCA-secure if
for any PPT adversary A, the advantage of A in the following game Gameccasec,
denoted by Advccasec

A , is negligible.

1. Setup. GP ← Setup(λ;ω) is run, where ω is the randomness used in Setup().
GP and ω are given to A. (PK,SK) ← KeyGen(GP) is run and PK is given
to A.
Note that giving to A the randomness ω, which is used by the Setup algorithm,
implies the setup is public. This is to capture that the security does not rely on
a trusted setup which may incur the concerns on the existing of trapdoors.

2. Challenge Phase. (C∗, κ) ← Encaps(GP,PK) is run. A random bit b is
chosen. If b = 0, set κ∗ := κ, otherwise choose a uniformly random κ∗ R← K.
A is given (C∗, κ∗).

3. Probing Phase. A can adaptively query an oracle ODecaps(·), which takes
a ciphertext C ∈ C and returns κ ← Decaps(GP, C,PK,SK) to A, with the
restriction that A cannot query ODecaps(·) on the challenge C∗.

4. Output Phase. A outputs a bit b′.

The advantage of A is Advccasec
A = |Pr[b′ = b] − 1

2 |.
Definition 8 (CCA-Key-Indistinguishability of KEM). A KEM scheme
is CCA-key-indistinguishable if for any PPT adversary A, the advantage of A
in the following game Gameccaki, denoted by Advccaki

A , is negligible.

1. Setup. Same as that of Gameccasec.
2. Challenge Phase. (C, κ∗) ← Encaps(GP,PK) is run. A random bit b is

chosen. If b = 0, set C∗ := C, otherwise choose a uniformly random C∗ R← C.
A is given (C∗, κ∗).

3. Probing Phase. Same as that of Gameccasec.
4. Output Phase. A outputs a bit b′.

The advantage of A is Advccaki
A = |Pr[b′ = b] − 1

2 |.

738 Z. Liu et al.

3.1.2 Lattice Background
Rings, Norms and Invertible Ring Elements. Let q be an even (resp.
odd) positive integer, and denote by Zq the integers modulo q, which will be
represented in the range (− q

2 , q
2] (resp. [− q−1

2 , q−1
2]). Let n be an positive integer,

and let R and Rq be the rings Z[X]/(Xn +1) and Zq[X]/(Xn +1), respectively.
For w = a0 + a1X + . . . + an−1X

n−1 ∈ R, define the l∞, l1 and l2 norms of w as
follows:

‖w‖∞ = max
i

|ai|, ‖w‖1 =
∑

i

|ai|, ‖w‖2 =
√

|a0|2 + . . . + |an−1|2.

Similarly, for w = (w1, . . . , wk) ∈ Rk, define:

‖w‖∞ = max
i

‖wi‖∞, ‖w‖1 =
∑

i

‖wi‖1, ‖w‖2 =
√

‖w1‖22 + . . . + ‖wk‖22.

Let Sη denote the set of all elements w ∈ R such that ‖w‖∞ ≤ η. As shown
in [23], for prime q > 220 such that q = 17 mod 32, and for η < 1√

8
· q1/8, all

non-zero elements of Sη are invertible in Rq.
Let Bθ denote the set of all elements in Rq such that have θ coefficients

that are either −1 or 1 and the rest are 0. Again, for prime q > 220 such that
q = 17 mod 32, all elements of Bθ are invertible and the difference of any two
distinct elements from Bθ is also invertible in Rq.

(Inhomogeneous) Module-SIS. The Inhomogeneous Module-SIS problem
with parameters (n, q, k, �, β) consists in finding x ∈ Rk+� such that ‖x‖2 ≤ β
and [A | I] · x = t, for uniformly random A ∈ Rk×�

q , t ∈ Rk
q and k × k identity

matrix I. The problem can be adapted straightforwardly into its infinity-norm
version, where x must satisfy ‖x‖∞ ≤ β. The homogeneous version is defined
with t = 0 and x �= 0.
Module-LWE. The Module-LWE problem with parameters (n, q, k, �, η) is as
follows. Let A ∈ Rk×�

q be a uniformly random matrix. Let b = As + e ∈
Rk

q , where s ∈ S�
η, e ∈ Sk

η have entries chosen according to some distribution
over Sη (e.g., the uniform distribution or a Gaussian distribution). The search
variant of Module-LWE asks to recover s given (A,b). The decision variant
(decision-Module-LWE) asks to distinguish (A,b) from a uniformly random pair
over Rk×�

q × Rk
q . In this paper, similar to [5], we use a transformed version of

the decision-Module-LWE problem, which is to distinguish (A,As) from (A, r)
where A ← Rk×l

q , s ← Sl
η and r ← Rk

q .
As shown in [17], the Module-SIS and Module-LWE problems enjoy worst-

case to average-case reductions from hard problems in module lattices. Concrete
parameters of these problems that provide high post-quantum security against
the best known attacks are given in Dilithium [12] and Kyber [7].

A Lattice-Based Linkable Ring Signature Supporting Stealth Addresses 739

3.2 Construction

– Setup(1λ) → PP. On input a security parameter λ, the algorithm sets the
parameters n, q, k, l,m, η, γ, θ as specified in Sect. 3.3 below. Let Πkem be
a lattice-based KEM scheme which is CCA-secure and CCA-key indistin-
guishable, and let Ckem and Kkem denote Πkem’s ciphertext space and key
space, respectively. Let HA : {0, 1}∗ �→ Rk×l

q , ExpandV : Kkem �→ Sl
η,

Hθ : {0, 1}∗ �→ Bθ, and Hm : Rk
q �→ Rm×l

q be functions that will be viewed as
random oracles in the analyses. The algorithm does:
1. Choose a random string cstr ∈ {0, 1}∗, and set A := HA(cstr).
2. Run GPkem ← Πkem.Setup(1λ;ω), where ω is the randomness used in

Πkem.Setup().
3. Output the public parameters

PP =
(
n, q, k, l,m, η, γ, θ, (HA, cstr,A), (Πkem, ω,GPkem),

ExpandV,Hθ,Hm

)
.

Note that including (HA, cstr) and ω in PP is to ensure that no one knows
any trapdoor for matrix A and GPkem respectively.
In the following, PP are implicit input parameters to every algorithm.

– MasterKeyGen() → (MPK,MSK). On input the implicit inputs, namely, the
public parameters PP, the algorithm does:
1. Run (PKkem,SKkem) ← Πkem.KeyGen(GPkem).
2. Choose a uniformly random s R← Sl

η, and set t ← As.
3. Output master public key MPK and master secret key MSK

MPK :=
(
PKkem, t

)
, MSK :=

(
SKkem, s

)
.

– DerivedPublicKeyGen(MPK) → DPK. On input a master public key MPK =(
PKkem, t

)
, the algorithm does:

1. Run (C, κ) ← Πkem.Encaps(PKkem).
2. Set s′ := ExpandV(κ) ∈ Sl

η, t′ ← As′, and set t̂ ← t + t′.
3. Output a derived public key DPK := (C, t̂).

– DerivedPublicKeyOwnerCheck(DPK,MPK,MSK) → 1/0. On input a derived
public key DPK and a (master public key, master secret key) pair (MPK,MSK)
with MPK = (PKkem, t), and MSK = (SKkem, s), the algorithm does:
1. Check whether DPK ∈ Ckem × Rk

q holds. If it does not hold, return 0,
otherwise, parse DPK to DPK := (C, t̂) ∈ Ckem × Rk

q .
2. Run κ ← Πkem.Decaps(C,PKkem,SKkem).
3. Set s′ := ExpandV(κ) and t′ ← As′.
4. If t̂ ?= t + t′ holds, return 1, otherwise return 0.

– DerivedPublicKeyPublicCheck(DPK) → 1/0. On input a derived public key
DPK, the algorithm checks whether DPK ∈ Ckem × Rk

q holds. If it holds,
return 1, otherwise return 0.

740 Z. Liu et al.

– Sign(M,R,DPK, (MPK,MSK)) → σ. On input a message M , a ring of well-
formed derived public keys R = (DPK1, . . . ,DPKr), a derived public key
DPK ∈ R, and the master key pair (MPK,MSK) for DPK where MPK =
(PKkem, t) and MSK = (SKkem, s), the algorithm does:
1. For i = 1 to r, parse DPKi := (Ci, t̂i) ∈ Ckem ×Rk

q and set Hi := Hm(t̂i).
2. Let ī be the index of DPK in R, i.e. DPK = DPKī = (Cī, t̂ī).

Run κ ← Πkem.Decaps(Cī,PKkem, SKkem). Set s′̄
i

:= ExpandV(κ) and
ŝī ← s + s′̄

i
. Note that it holds that t̂ī = Aŝī.

3. Set I ← Hīŝī.
4. Choose a uniformly random y R← Sl

γ .
5. Set wī ← Ay, vī ← Hīy.
6. For i = ī + 1, . . . , r, 1, . . . , ī − 1, do

(a) Set ci ← Hθ(M,R,wi−1,vi−1, I).2

(b) Choose a uniformly random zi ← Sl
γ−2θη.

(c) Set wi ← Azi − cit̂i, vi ← Hizi − ciI.
7. Set cī ← Hθ(M,R,wī−1,vī−1, I).
8. Set zī ← y + cīŝī.
9. If zī ∈ Sl

γ−2θη, output σ := (c1, {zi}r
i=1, I) ∈ Bθ × (Sl

γ−2ηθ)
r × Rm

q ,
otherwise go to Step 4.

– Verify(M,R, σ) → 1/0. On input a message M , a ring of well-formed derived
public keys R = (DPK1, . . . ,DPKr), and a signature σ = (c1, {zi}r

i=1, I), the
algorithm does:
1. If (c1 /∈ Bθ) ∨ (∃i ∈ {1, . . . , r} s.t. zi /∈ Sl

γ−2θη), then return 0.
2. For i = 1, 2, . . . , r, do

(a) Parse DPKi to DPKi := (Ci, t̂i) ∈ Ckem × Rk
q and set Hi := Hm(t̂i).

(b) Set wi ← Azi − cit̂i,vi ← Hizi − ciI.
(c) Set ci+1 ← Hθ(M,R,wi,vi, I).

3. If cr+1
?= c1 holds, return 1, otherwise return 0.

– Link(M0, R0, σ0,M1, R1, σ1) → 1/0. On input two valid (message, derived
public key ring, signature) tuples (M0, R0, σ0), (M1, R1, σ1) where σ0 =
(c(0)1 , {z(0)i }r0

i=1, I
(0)), σ1 = (c(1)1 , {z(1)i }r1

i=1, I
(1)), if I(0) ?= I(1) holds, the algo-

rithm returns 1, otherwise returns 0.

3.3 Correctness and Concrete Parameters

This section analyzes the correctness of the proposed lattice-based SALRS
scheme, specifies the parameters achieving 128 bits of security and evaluates
the efficiency of the scheme.
Correctness. We first note that, the validity and well-formedness of a derived
public key DPK, as verified by algorithms DerivedPublicKeyOwnerCheck and
DerivedPublicKeyPublicCheck respectively, follows directly from the construction
of DPK, the correctness of the underlying KEM scheme Πkem and the fact
that t̂ = t + As′ = t + t′ ∈ Rk

q . Next, for an honestly generated signature

2 Note that 1 is regarded as r + 1, i.e., c1 ← Hθ(M, R,wr,vr, I).

A Lattice-Based Linkable Ring Signature Supporting Stealth Addresses 741

σ = (c1, {zi}r
i=1, I), it holds that c1 ∈ Bθ and zi ∈ Sl

γ−2θη for all i ∈ {1, . . . , r}.
Furthermore, by construction, the value cr+1 computed at Step 2 of algorithm
Verify satisfies cr+1 = c1. Therefore, σ is accepted by Verify.

We next analyze the correctness of algorithm Link. Let σ0 =
(c(0)1 , {z(0)i }r0

i=1, I
(0)) and σ1 = (c(1)1 , {z(1)i }r1

i=1, I
(1)) be generated by Sign(M0,

R0,DPK0, (MPK0,MSK0)) and Sign(M1, R1,DPK1, (MPK1,MSK1)), respec-
tively. For i = 0, 1, let DPKi = (Ci, t̂i) and note that I(i) = Hm(t̂i)ŝi, where
ŝi = si + s′

i and si, s′
i are generated as specified by the scheme. Note that, if

DPK0 = DPK1, then we have ŝ0 = ŝ1 and thus, I(0) = I(1). In this case, algo-
rithm Link outputs 1.

In the case DPK0 �= DPK1, we will demonstrate that, with overwhelming
probability, algorithm Link outputs 0. Indeed, if t̂0 �= t̂1, then Hm(t̂0),Hm(t̂1)
are uniformly random and distinct, ŝ0 and ŝ1 are also distinct. Hence, the prob-
ability that I(0) = Hm(t̂0)ŝ0 = Hm(t̂1)ŝ1 = I(1) is negligible (this is true if small
elements of Rq are invertible). Now, suppose that t̂0 = t̂1 and C0 �= C1. Then,
unless one accidentally finds a collision where ŝ0 �= ŝ1 and Aŝ0 = Aŝ1 (which
happens only with negligible probability), we must have ŝ0 = ŝ1. The latter may
occur in two scenarios:

– s0 �= s1 and s′
0 �= s′

1, but s0 + s′
0 = s1 + s′

1. Due to the randomness of
the generations of s0, s1, s′

0, s
′
1, this scenario only happens with negligible

probability.
– s0 = s1 and s′

0 = s′
1. Note that, if s0, s1 are obtained by two different execu-

tions of algorithm MasterKeyGen, then s0 = s1 only happens with negligible
probability. Furthermore, two different executions of algorithm DerivePub-
licKeyGen with C0 �= C1 should produce distinct s′0, s

′
1 with overwhelming

probability.

The above analysis shows that the given SALRS scheme is correct with over-
whelming probability.
Lattice-Based Instantiation of the KEM Scheme Πkem. We employ
Kyber [7] to instantiate Πkem, by setting GPkem contains only the parame-
ters (n, k, q, η, du, dv, dt) and the hash function. Note that, the ciphertext in the
CPA version of Kyber is pseudorandom based on the Decision Module-LWE
(D-MLWE) assumption, and it hides not only the plaintext but also the public
key. The CCA version of Kyber thus can be easily shown to satisfy not only
CCA-security but also CCA-key-indistinguishability. For concreteness, we will
use the Kyber variant Kyber768, which features public key size 1184 bytes and
ciphertext size 1088 bytes.
Signing Trials. At Step 9 of the signing algorithm, if zī = y + cīŝī �∈ Sl

γ−2θη,
then the signer has to go back to Step 4. Let us compute the probability of such
restarting for uniformly random y R← Sl

γ , cī ∈ Bθ and ŝī = s + s′̄
i
∈ Sl

2η. First,

we have x := cīŝī ∈ Sl
2θη. For each entry yj

R← [−γ, γ] of y, and each entry
xj ∈ [−2θη, 2θη] of x, the probability that yj + xj falls into the “safe zone”

742 Z. Liu et al.

[−(γ − 2θη), γ − 2θη] is exactly the ratio between the cardinalities of the range
[−(γ − 2θη), γ − 2θη] and the range [−γ, γ]. Therefore, we have:

Pr
[
zī ∈ Sl

γ−2θη

]
=

|Sl
γ−2θη|
|Sl

γ | =
(
1 − 2θη

γ + 1/2
) ≈ e−2nlθη/γ ,

where we use the fact that parameter γ is set to be large compared to 1/2. As
a result, the probability of restarting is approximately close to 1 − e−2nlθη/γ . In
particular, if we set parameters n, l, θ, η, γ so that 2nlθη/γ < loge(3) (see below),
then, on average, the signer has to run Step 4-Step 9 of the signing algorithm
less than 3 times.
Concrete Parameters and Efficiency. To set parameters that yield a scheme
with at least 128 bits of security, we rely on the parameters and analyses of
Dilithium [12], Kyber [7,23] and [4]. In particular, modulus q is set so that every
element of Rq with infinity norm less than 1√

8
·235/8 is invertible, and parameters

n, l, θ, η, γ are set so that the number of signing trials is less than 3 on average.
Similar to [12], we can use SHAKE-256 to implement the functions HA,ExpandV,
and Hm, and use the SampleInBall algorithm in [12, Fig. 2] to implement Hθ.
Table 2 shows the concrete parameters and efficiency of the proposed lattice-
based SALRS.

Table 2. Concrete parameters and efficiency of the proposed lattice-based SALRS.

Parameter Value

Dimension n 256

Modulus q Prime q ≈ 235 and q = 17 mod 32

Module SIS/LWE parameters (k, l, m) (3, 5, 1)

Bounds (θ, η, γ, γ − 2θη) (60, 3, 699453, 699093)

Master public key (MPK) size 4.44 KB

Master secret key (MSK) size 2.97 KB

Derived public key (DPK) size 4.34 KB

Signature size (r = 8) 27.4 KB

Signature size (r = 16) 53.6 KB

Signature size (r = 32) 106.1 KB

Signature size (r = 64) 211.1 KB

4 Proofs of Security and Privacy

Theorem 3. The SALRS scheme is signer-linkable in the random oracle model.

Proof. We prove that the SALRS scheme is signer-linkable under the Module-
SIS (MSIS) assumption. Due to space limitation, we defer the proof details to
the full version.

A Lattice-Based Linkable Ring Signature Supporting Stealth Addresses 743

Theorem 4. The SALRS scheme is signer-anonymous in the random oracle
model.

Proof. We prove that the SALRS scheme has signer-anonymity under the Deci-
sion Module-LWE (D-MLWE) assumption. Due to space limitation, we defer the
proof details to the full version.

Theorem 5. The SALRS scheme is signer-non-slanderable in the random ora-
cle model.

Proof. We prove that the SALRS scheme is signer-non-slanderable under the
Module-SIS (MSIS) and Decision Module-LWE (D-MLWE) assumptions. Due
to space limitation, we defer the proof details to the full version.

Theorem 6. The SALRS scheme is master-public-key-unlinkable in the random
oracle model.

Proof. Suppose the underlying KEM scheme is CCA secure and CCA Key Indis-
tinguishable, we prove that the SALRS scheme is master-public-key-unlinkable
under the Decision Module-LWE (D-MLWE) assumption. Due to space limita-
tion, we defer the proof details to the full version.

5 Conclusion

In this paper, we proposed a new cryptographic primitive, referred to as Linkable
Ring Signature Scheme with Stealth Addresses (SALRS), which comprehensively
and strictly captures the security and privacy requirements of hiding the payer
and payee of the transactions in cryptocurrencies. We also proposed a lattice-
based SALRS construction and proved its security and privacy in the random
oracle model. As a result, our construction provides strong confidence on security
and privacy in twofolds, being proved under strong models which capture the
practical scenarios of cryptocurrencies, and being potentially quantum-resistant.
The efficiency analysis also shows that our lattice-based SALRS scheme is prac-
tical for real implementations.

A A Proof of Theorem 1

Proof (Sketch). Due to page limitation, below we give the proof sketch and defer
the proof details to the full version.

Suppose there exists an adversary A that breaks the strong unforgeability,
i.e. succeeds in Gameeuf with non-negligible advantage. We can construct an
algorithm B that either succeeds Gamesnlink with non-negligible advantage or
succeeds Gamesnnsl with non-negligible advantage.

B is offered two challengers C0 and C1, which will interact with B for Gamesnlink
and Gamesnnsl respectively. On the other side, B interacts with A for Gameeuf ,
making use of C0 or C1 behind, while it is indistinguishable from the view of A.

744 Z. Liu et al.

At the Output Phase of Gameeuf , A outputs a (message, derived public key
ring, signature) tuple (M∗, R∗, σ∗), such that (1) Verify(M∗, R∗, σ∗) = 1, and
(2) R∗ ⊆ Ldpk, and (3) (M∗, R∗, σ∗) is not returned by OSign(·, ·, ·).

Wlog., let R∗ = (DPK∗
1, . . . ,DPK

∗
k), B can obtain k (message, derived public

key ring, signature) tuples {(Mi, R
∗, σi)}k

i=1 by making use of C0 or C1, such that
(1) Verify(Mi, R

∗, σi) = 1 (i = 1, 2, . . . , k), and (2) Link(Mi, R
∗, σi,Mj , R

∗
j , σj) =

0 ∀i, j ∈ [1, k] s.t. i �= j, where σi corresponds to DPK∗
i . Consider these k + 1

signatures, we have that either the following Case I or the Case II happens:

– Case I: Link(M∗, R∗, σ∗,Mj , R
∗, σj) = 0 ∀j ∈ {1, . . . , k},

– Case II: ∃î ∈ {1, . . . , k} s.t. Link(M∗, R∗, σ∗,Mî, R
∗, σî) = 1.

If Case I happens, these k+1 signatures can be used to win Gamesnlink, otherwise,
the two signatures (M∗, R∗, σ∗), (Mî, R

∗, σî) can be used to win Gamesnnsl.

References

1. Au, M.H., Chow, S.S.M., Susilo, W., Tsang, P.P.: Short linkable ring signatures
revisited. EuroPKI 2006, 101–115 (2006). https://doi.org/10.1007/11774716 9

2. Au, M.H., Liu, J.K., Susilo, W., Yuen, T.H.: Constant-size id-based linkable and
revocable-iff-linked ring signature. INDOCRYPT 2006, 364–378 (2006). https://
doi.org/10.1007/11941378 26

3. Au, M.H., Liu, J.K., Susilo, W., Yuen, T.H.: Secure id-based linkable and revocable-
iff-linked ring signature with constant-size construction. Theor. Comput. Sci. 469,
1–14 (2013). https://doi.org/10.1016/j.tcs.2012.10.031

4. Baum, C., Damg̊ard, I., Lyubashevsky, V., Oechsner, S., Peikert, C.: More efficient
commitments from structured lattice assumptions. SCN 2018, 368–385 (2018).
https://doi.org/10.1007/978-3-319-98113-0 20

5. Baum, C., Lin, H., Oechsner, S.: Towards practical lattice-based one-time linkable
ring signatures. ICICS 2018, 303–322 (2018). https://doi.org/10.1007/978-3-030-
01950-1 18

6. Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-privacy in public-key
encryption. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 566–582.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1 33

7. Bos, J.W., et al.: CRYSTALS - kyber: a CCA-secure module-lattice-based KEM.
In: EuroS&P 2018. pp. 353–367 (2018). DOI: https://doi.org/10.1109/EuroSP.
2018.00032

8. Boyen, X., Haines, T.: Forward-secure linkable ring signatures from bilinear maps.
Cryptography 2(4), 35 (2018). https://doi.org/10.3390/cryptography2040035

9. Branco, P., Mateus, P.: A code-based linkable ring signature scheme. ProvSec 2018,
203–219 (2018). https://doi.org/10.1007/978-3-030-01446-9 12

10. CoinMarketCap: Top 100 cryptocurrencies by market capitalization. https://
coinmarketcap.com. Accessed 27 Apr 2019

11. Courtois, N.T., Mercer, R.: Stealth address and key management techniques
in blockchain systems. ICISSP 2017, 559–566 (2017). https://doi.org/10.5220/
0006270005590566

12. Ducas, L., et al.: Crystals-dilithium: a lattice-based digital signature scheme. IACR
Trans. Cryptogr. Hardw. Embed. Syst. 2018(1), 238–268 (2018). https://doi.org/
10.13154/tches.v2018.i1.238-268

https://doi.org/10.1007/11774716_9
https://doi.org/10.1007/11941378_26
https://doi.org/10.1007/11941378_26
https://doi.org/10.1016/j.tcs.2012.10.031
https://doi.org/10.1007/978-3-319-98113-0_20
https://doi.org/10.1007/978-3-030-01950-1_18
https://doi.org/10.1007/978-3-030-01950-1_18
https://doi.org/10.1007/3-540-45682-1_33
https://doi.org/10.1109/EuroSP.2018.00032
https://doi.org/10.1109/EuroSP.2018.00032
https://doi.org/10.3390/cryptography2040035
https://doi.org/10.1007/978-3-030-01446-9_12
https://coinmarketcap.com
https://coinmarketcap.com
https://doi.org/10.5220/0006270005590566
https://doi.org/10.5220/0006270005590566
https://doi.org/10.13154/tches.v2018.i1.238-268
https://doi.org/10.13154/tches.v2018.i1.238-268

A Lattice-Based Linkable Ring Signature Supporting Stealth Addresses 745

13. Esgin, M.F., Steinfeld, R., Sakzad, A., Liu, J.K., Liu, D.: Short lattice-based one-
out-of-many proofs and applications to ring signatures. IACR Cryptol. ePrint Arch.
2018, 773 (2018)

14. Fujisaki, E.: Sub-linear size traceable ring signatures without random oracles. CT-
RSA 2011, 393–415 (2011). https://doi.org/10.1007/978-3-642-19074-2 25

15. Fujisaki, E.: Sub-linear size traceable ring signatures without random oracles.
IEICE Trans. 95–A(1), 151–166 (2012). https://doi.org/10.1587/transfun.E95.A.
151

16. Fujisaki, E., Suzuki, K.: Traceable ring signature. PKC 2007, 181–200 (2007).
https://doi.org/10.1007/978-3-540-71677-8 13

17. Langlois, A., Stehle, D.: Worst-case to average-case reductions for module lat-
tices. Des. Codes Crypt. 75(3), 565–599 (2015). https://doi.org/10.1007/s10623-
014-9938-4

18. Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments for lattice-
based accumulators: logarithmic-size ring signatures and group signatures without
trapdoors. In: EUROCRYPT 2016 Part II. pp. 1–31 (2016). DOI: https://doi.org/
10.1007/978-3-662-49896-5 1

19. Liu, J.K., Au, M.H., Susilo, W., Zhou, J.: Linkable ring signature with uncondi-
tional anonymity. IEEE Trans. Knowl. Data Eng. 26(1), 157–165 (2014). https://
doi.org/10.1109/TKDE.2013.17

20. Liu, J.K., Wei, V.K., Wong, D.S.: Linkable spontaneous anonymous group signa-
ture for ad hoc groups (extended abstract). ACISP 2004, 325–335 (2004). https://
doi.org/10.1007/978-3-540-27800-9 28

21. Liu, Z., Yang, G., Wong, D.S., Nguyen, K., Wang, H.: Key-insulated and privacy-
preserving signature scheme with publicly derived public key. EuroS&P 2019, to
appear https://eprint.iacr.org/2018/956

22. Lu, X., Au, M.H., Zhang, Z.: Raptor: a practical lattice-based (link-
able) ring signature. IACR Cryptol. ePrint Archive 2018, 857 (2018).
https://eprint.iacr.org/2018/857

23. Lyubashevsky, V., Seiler, G.: Short, invertible elements in partially splitting cyclo-
tomic rings and applications to lattice-based zero-knowledge proofs. In: EURO-
CRYPT 2018 Part I. pp. 204–224 (2018). DOI: 10.1007/978-3-319-78381-9 8

24. Noether, S., Mackenzie, A.: Ring confidential transactions. Ledger 1, 1–18 (2016)
25. van Saberhagen, N.: Cryptonote v 2.0 (2013). https://cryptonote.org/whitepaper.

pdf
26. Sun, S., Au, M.H., Liu, J.K., Yuen, T.H.: Ringct 2.0: A compact accumulator-

based (linkable ring signature) protocol for blockchain cryptocurrency monero. In:
ESORICS 2017 Part II. pp. 456–474 (2017). DOI: https://doi.org/10.1007/978-3-
319-66399-9 25

27. Todd, P.: Stealth addresses. https://lists.linuxfoundation.org/pipermail/bitcoin-
dev/2014-January/004020.html

28. Torres, W.A.A., et al.: Post-quantum one-time linkable ring signature and applica-
tion to ring confidential transactions in blockchain (lattice ringct v1.0). In: ACISP
2018. pp. 558–576 (2018). DOI: https://doi.org/10.1007/978-3-319-93638-3 32

29. Tsang, P.P., Wei, V.K.: Short linkable ring signatures for e-voting, e-cash and
attestation. ISPEC 2005, 48–60 (2005). https://doi.org/10.1007/978-3-540-31979-
5 5

30. Tsang, P.P., Wei, V.K., Chan, T.K., Au, M.H., Liu, J.K., Wong, D.S.: Separable
linkable threshold ring signatures. INDOCRYPT 2004, 384–398 (2004). https://
doi.org/10.1007/978-3-540-30556-9 30

https://doi.org/10.1007/978-3-642-19074-2_25
https://doi.org/10.1587/transfun.E95.A.151
https://doi.org/10.1587/transfun.E95.A.151
https://doi.org/10.1007/978-3-540-71677-8_13
https://doi.org/10.1007/s10623-014-9938-4
https://doi.org/10.1007/s10623-014-9938-4
https://doi.org/10.1007/978-3-662-49896-5_1
https://doi.org/10.1007/978-3-662-49896-5_1
https://doi.org/10.1109/TKDE.2013.17
https://doi.org/10.1109/TKDE.2013.17
https://doi.org/10.1007/978-3-540-27800-9_28
https://doi.org/10.1007/978-3-540-27800-9_28
https://eprint.iacr.org/2018/956
https://eprint.iacr.org/2018/857
https://cryptonote.org/whitepaper.pdf
https://cryptonote.org/whitepaper.pdf
https://doi.org/10.1007/978-3-319-66399-9_25
https://doi.org/10.1007/978-3-319-66399-9_25
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2014-January/004020.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2014-January/004020.html
https://doi.org/10.1007/978-3-319-93638-3_32
https://doi.org/10.1007/978-3-540-31979-5_5
https://doi.org/10.1007/978-3-540-31979-5_5
https://doi.org/10.1007/978-3-540-30556-9_30
https://doi.org/10.1007/978-3-540-30556-9_30

746 Z. Liu et al.

31. Yuen, T.H., Liu, J.K., Au, M.H., Susilo, W., Zhou, J.: Efficient linkable and/or
threshold ring signature without random oracles. Comput. J. 56(4), 407–421
(2013). https://doi.org/10.1093/comjnl/bxs115

32. Zhang, H., Zhang, F., Tian, H., Au, M.H.: Anonymous post-quantum cryptocash.
IACR Cryptol. ePrint Archive 2017, 716 (2017). http://eprint.iacr.org/2017/716

https://doi.org/10.1093/comjnl/bxs115
http://eprint.iacr.org/2017/716

Annotary: A Concolic Execution System
for Developing Secure Smart Contracts

Konrad Weiss(B) and Julian Schütte

Fraunhofer AISEC, Garching near Munich, Germany
{konrad.weiss,julian.schuette}@aisec.fraunhofer.de

https://www.aisec.fraunhofer.de

Abstract. Ethereum smart contracts are executable programs,
deployed on a peer-to-peer network and executed in a consensus-based
fashion. Their bytecode is public, immutable and once deployed to the
blockchain, cannot be patched anymore. As smart contracts may hold
Ether worth of several million dollars, they are attractive targets for
attackers and indeed some contracts have successfully been exploited in
the recent past, resulting in tremendous financial losses. The correctness
of smart contracts is thus of utmost importance. While first approaches
on formal verification exist, they demand users to be well-versed in formal
methods which are alien to many developers and are only able to analyze
individual contracts, without considering their execution environment,
i.e., calls to external contracts, sequences of transaction, and values from
the actual blockchain storage. In this paper, we present Annotary, a con-
colic execution framework to analyze smart contracts for vulnerabilities,
supported by annotations which developers write directly in the Solidity
source code. In contrast to existing work, Annotary supports analysis of
inter-transactional, inter-contract control flows and combines symbolic
execution of EVM bytecode with a resolution of concrete values from
the public Ethereum blockchain. While the analysis of Annotary tends
to weight precision higher than soundness, we analyze inter-transactional
call chains to eliminate false positives from unreachable states that tra-
ditional symbolic execution would not be able to handle. We present the
annotation and analysis concepts of Annotary, explain its implementa-
tion on top of the Laser symbolic virtual machine, and demonstrate its
usage as a plugin for the Sublime Text editor.

Keywords: Smart contracts · EVM · Ethereum · Concolic execution ·
Program analysis

1 Introduction

Smart contracts are small programs, executed by all verifying nodes of a
blockchain as part of a consensus protocol. The idea of smart contracts is to
distribute not only data but also computation to a set of potentially untrusted

c© Springer Nature Switzerland AG 2019
K. Sako et al. (Eds.): ESORICS 2019, LNCS 11735, pp. 747–766, 2019.
https://doi.org/10.1007/978-3-030-29959-0_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29959-0_36&domain=pdf
http://orcid.org/0000-0002-1282-2162
http://orcid.org/0000-0002-3007-6538
https://doi.org/10.1007/978-3-030-29959-0_36

748 K. Weiss and J. Schütte

peers, in order to create distributed applications (“DApps”) that are not gov-
erned by a single party and operate correctly and reliably, as long as the majority
of the blockchain network sticks to the protocol. In that sense, smart contracts
implement the core business logic of DApps and are responsible for moving dig-
ital currency from one account (i.e., user) to another.

Ethereum, the most popular public implementation of the concept of smart
contracts, is a permissionless public blockchain that uses the above concepts to
create a digital currency called Ether, as well as a general-purpose distributed
computing engine with a quasi-Turing complete execution model. [12]. Ether is
publicly tradable similar to Bitcoin but also serves as the payment method for
code execution of smart contracts in the Ethereum Virtual Machine (EVM),
typically written in the programming language Solidity [13] and compiled into
the EVM bytecode format which is then deployed to the peer-to-peer network.

In some applications, the amount of Ether controlled by a smart contract is
enormous. From a security perspective, smart contract code can thus be regarded
similar to code of smart card applets: the code implements simple functionality
in a well-defined and constrained environment and is thus easy to verify, but
errors in that code are not tolerable as extremely high values are at stake. At
the same time, once deployed to the public, it is almost impossible to roll out
security patches. Blockchains and DApps are created in a rapidly evolving indus-
try where time-to-market is crucial, and smart contract developers rarely have a
background in writing highly critical code or experience with formal verification
methods. Various severe incidents have happened in the past, where vulnera-
bilities in smart contracts allowed to lock in or withdraw significant amounts
of Ether from popular DApps. To name only a few, this includes the PoWH-
Coin bug, the first Parity bug (153,037 ETH stolen) [3], the second Parity bug
(513,774.16 ETH frozen) [5], and the DAO hack (3.6 mio. ETH stolen) [1] which
finally lead to a hard fork of the Ethereum blockchain. These incidents suggest
that writing secure smart contracts is challenging and effectively supporting
developers in avoiding vulnerabilities is a necessity. Rigid formal verification
methods have been proposed in the past [2] but later dismissed, as they put
too high demands on developers who are no experts in this field. Simple static
analysis approaches, on the other hand, help to avoid simple programming errors
but are far from being precise enough to discover subtle flaws – especially those
manifesting in the interaction between multiple contracts.

In this paper, we introduce Annotary, a concolic execution tool that sup-
ports Solidity developers in writing error-free smart contracts. In contrast to
other tools which focus on searching predefined vulnerability patterns, we take a
developer-centric perspective and allow developers to express their expectations
in the form of annotations directly in the Solidity code. Annotary then con-
ducts a concolic execution analysis of the compiled EVM bytecode against these
annotations and informs the developer about potential violations – currently in
the form of a plugin for the Sublime editor. We advance the state of the art in
EVM analysis by including interactions between contracts and along chains of
transactions in the analysis and make the following contributions.

Annotary: Developing Secure Smart Contracts 749

1. extend concolic analysis of EVM bytecode to properly span contract interac-
tions and sequences of transactions.

2. a backward-compatible extension of the Solidity language by annotations
which allows developers to state verifiable properties

3. a proof-of-concept implementation of Annotary, including a Sublime Text
plugin

2 Background

Although at a syntactical level, Solidity resembles C or JavaScript, its execu-
tion model has some peculiarities that require further discussion. Furthermore,
we will provide some background on Mythril, a vulnerability scanning tool for
Ethereum smart contracts, that we significantly extended in the process of devel-
oping Annotary.

2.1 Solidity and Smart Contracts

Solidity is a high-level language for implementing smart contracts and targets
the Ethereum Virtual Machine (EVM) platform. It is statically typed, supports
multiple inheritance, libraries, complex user-defined types, contracts as mem-
bers, overloading and overwriting, abstraction and interfaces, as well as encap-
sulation through visibility modifiers. Solidity’s contract-orientation appears sim-
ilar to object-oriented languages, using the contract keyword instead of class.
However, in contrast, to truly object-oriented languages, such type definitions
do not end up in the actual bytecode which consequently only includes instantia-
tions of contracts and their respective functions [13]. A special contract-creation
transaction is used to invoke the “constructor” and as a result, the contract is
instantiated and assigned a public address which only holds the code that can be
called by transactions. It is also important to note that contracts created from
the same code basis do not share any data or (static) functions.

Listing 1.1 illustrates some typical concepts of the Solidity language, includ-
ing inheritance and two different ways to declare constructors. The constructor
in 2 is declared by naming the function equal to its contract (analog to lan-
guages like Java), while 3 uses the newer constructor keyword (analog to
JavaScript, albeit Solidity merely treats constructor as a function modifier),
which became mandatory in version 5.0 [7] of Solidity to avoid vulnerabilities
related to simply misspelling function names. The example also shows two pat-
terns which are common in smart contracts: first, the constructor keeps track
of the owner who originally deployed the contract by assigning the associated
20-byte address 1 passed to the constructor to the owner field. This allows the
contract to later distinguish between calls that are made by its original owner or
by anyone else. Second, the contracts defines a nameless default function 4 that
is called when callers invoke the contract without referring to a specific function.
In this case, the require-statement will roll back the transaction if the sender
attempts to send any Ether (msg.value) to a non-existing function. To address

750 K. Weiss and J. Schütte

a specific function in a transaction, it must include the function identifier, which
is computed as the first four most significant bytes of the keccak256 hash of the
function signature.

1 contract A {

2 address owner;

3 function A(){ owner = msg.sender; 1 } 2

4 }

5 contract B is A{

6 uint variable;

7 function constructor (){ variable = 1;} 3

8 function setVar(uint var1){ ... }

9 function () payable { require(msg.value == 0);} 4

10 }

Listing 1.1. Solidity smart contract example

Entities and Interactions. Ethereum is a distributed system building a single-
ton computer with accounts as entities and transactions referring to accounts as
the smallest units of computation. Accounts are identified by a 160-bit address,
have a balance of Ether, a transaction counter, and two possibly empty fields: the
associated bytecode and storage state. Wallets are contracts with empty byte-
code and their 160-bit address is the hash of their public key. The holder of the
private key signs transactions proving its origin to be the Wallet. Transactions to
these accounts can only transfer Ether. Accounts with associated bytecode are
contract accounts and receive their address in a deterministic process when a
contract creation transaction is sent to the network. The construction-bytecode
is run, and the resulting state of the contract is some possibly non-empty storage
state and the runtime-bytecode.
Transactions are signed data packets that represent a message to an account
by specifying its address in the to-field or a contract-creation transaction if the
content is 0. Messages can be the result of a transaction or of subsequent deter-
ministic calls between contracts when bytecode is executed. They are unsigned
blocks of data sent from one account to another still associated with the verified
initial sender of the transaction. If an account with non-empty bytecode receives
a message, an instance of the EVM is started with the target account’s bytecode
and the message data as input. Returned data is passed to the calling EVM
context or returned as transaction result.

2.2 EVM and Bytecode

EVM has a simple stack-based architecture with a word size of 256 bit that allows
to directly map keccak-256 hashes to addresses. A predefined finite resource
called gas must be assigned to each transaction and serves as the unit for compu-
tational effort that is consumed by each EVM instruction. It thus helps to prevent
Denial-of-Service (DoS) attacks by stopping the execution when it is depleted,
making the EVM a quasi -Turing-complete machine that has a Turing-complete
instruction set but can only execute a limited number of statements [24].

Annotary: Developing Secure Smart Contracts 751

The simplicity of the EVM bytecode with its 70 main instructions made the
EVM a popular target for formal verification projects [10,15,22]. During execu-
tion the EVM maintains three main types of memory that are also relevant for
the analysis by Annotary :

The world state σ is a mapping from 160-bit addresses a to account states
and is kept in a Merkle Patricia tree that represents the result of executing all
transactions saved on the Ethereum blockchain. A mapped account state σ[a]
contains the balance σ[a]b in Wei, the smallest sub-unit of Ether (1018 Wei
= 1 Ether), the storage σ[a]s as mapping from 256-bit integer values to 256-
bit integer values σ[a]s : 2256 → 2256, and the immutable runtime bytecode
σ[a]c of an account that is executed in the case of message receipt.

The execution environment I contains data that is fixed during message
processing, including the address of the current message recipient Ia whose code
is executed, and the sender of the message Is . Io is the account associated with
the original transaction and may differ from Is for inter-contract messages. Id

contains the input data for the current execution, such as function parameters.
Iv contains the value of Ether in Wei transfered from the sender Is to the
recipient Ia . Ib contains the runtime bytecode of Ia that is executed and IH

stores the header of the block that the current transaction will be mined in.
The machine state μ contains the variable and volatile part of the compu-

tation held only during message processing. These include the volatile operand
LIFO stack μs with 256-bit words and a byte-addressable heap memory μm used
for more complicated computation or larger chunks of data. It further holds the
program counter μpc and the output byte-array μo of the execution. Changes
of the execution are not persisted if not send or returned to a different account
or stored in σ[a].

2.3 Mythril and the Laser-SVM

Mythril [20] is an open-source security analysis tool for Ethereum smart contracts
and serves as the foundation for Annotary.1

It uses Laser-SVM, an internal symbolic virtual machine, to explore smart
contract bytecode in a depth-first search fashion over the control flow graph
(CFG). For this, it operates on a representation of σ, I and μ. Values that
are unknown during execution are represented as symbolic variables, and the
explored execution paths are transformed into path conditions, i.e., constraint
systems over the symbolic variables along the respective execution path. Mythril
runs vulnerability detection modules that inspect the explored executions states
for known vulnerability patterns and attempts to compute concrete input values
leading to the execution of the vulnerability by solving the respective constraint
system using the Z3 SMT solver [19]. As the EVM uses 256-bit operands for
computation, Mythril uses a bit-vector algebra at a fixed size of 256 bits to

1 As Mythril is under active development, this paper refers to the commit hash
github.com/ConsenSys/mythril-classic/commit/b5afa9ff1aa2b5dc8863d29aa9e0a24
b34eb4747 of the project.

http://github.com/ConsenSys/mythril-classic/commit/b5afa9ff1aa2b5dc8863d29aa9e0a24b34eb4747
http://github.com/ConsenSys/mythril-classic/commit/b5afa9ff1aa2b5dc8863d29aa9e0a24b34eb4747

752 K. Weiss and J. Schütte

model arithmetic operations and boolean algebra. While Mythril and especially
its Laser-SVM provide a good basis of concolic/symbolic execution for EVM
bytecode, Mythril’s goal is not to allow analysis of specifiable properties. Mythril
lacks the following capabilities which Annotary aims to provide:

– The ability to let developers specify invariants and assertions in the contract
and the ability to verify them before the potentially vulnerable contract is
irrevocably deployed.

– A model of EVM instructions and execution semantics for inter-contract- and
inter-transactional control flows.

– Reachability analysis of transaction sequences to reduce false positives.
– Symbolic execution of contract constructors with parameters.

3 Annotation Driven Concolic Analysis

Rather than exploitation, Annotary aims at secure development while expanding
the analysis scope to inter-contract and inter-transactional analyses. We begin
this section by outlining the overall system and then detailing the main aspects
of the analysis. Figure 1 shows how Annotary’s editor plugin passes source and
configuration files to the analysis component and receives found annotation vio-
lations for visualization.

E
di
to
r
P
lu
gi
n @

fil
e.
so
l

co
nfi

g

Analysis Module

P
ar
se

&
R
ew

ri
te

C
on

co
lic

E
xe
cu

ti
on

V
io
la
ti
on

Se
ar
ch

@
A
nn

ot
’s

V
io
la
ti
on

s

E
di
to
r
P
lu
gi
n

Fig. 1. Annotary’s architecture with Solidity files undergoing analysis and violations
reported to the editor plugin.

3.1 Annotations

Annotary specifies a set of annotations which developers can use to express
invariants and restrictions directly in the Solidity source code. These annota-
tions will then be translated into constraints or injected as asserts and analyzed
to become part of the constraint system for an execution path. As annotations
may include expressions, as well as references to Solidity functions and members,

Annotary: Developing Secure Smart Contracts 753

they require a separate compilation pass in addition to compilation of the actual
source code. This is done by the annotation processor which takes annotations
as input and translates them into EVM instructions by rewriting the original
contract code. The purpose of the so added instructions is only to create addi-
tional constraints. To not alter the semantics such as state or control flow of the
actual contract the execution of inserted code is isolated from the rest. When
the symbolic execution reaches a state that violates any constraint derived from
an annotation, the contract is considered to violate the developer’s expectations,
and the violation is reported to the developer. Annotary implements three types
of annotations:

1. Inline checks: The annotation "@check("BoolExpr")" and its negation
"@never("BoolExpr")" specify properties inside a contract function that are
checks whether or not the specified condition holds. The condition can hold
any boolean expression valid in solidity including calls to other functions and
contracts.

2. Contract invariants: The annotation "@invariant("BoolExpr")" defines a
contract wide condition that has to hold whenever a transaction persists its
state.

3. Set restrictions: restricts writing to a member variable from outside of
explicitly allowed functions. A state at a SSTORE instruction is reported a
violation if the SSTORE writes to the protected variable and the function is
not explicitly allowed to. Users can specify these restrictions with the follow-
ing annotation:
"@set_restricted("["var="{[ContractName "."] MemberName[","]} ";"]}

↪→ ["func="]{"constructor"|FunctionName|FunctionSignature}")"

3.2 Modeling Transaction Execution

Depending on the type of data, Annotary uses different strategies to treat mem-
ory locations either as concrete or as symbolic values. Concrete values will be
initialized according to the EVM’s actual behavior, i.e., storage on contract cre-
ation will be initialized by 0. Symbolic values refer to variables of the SMT
constraint system which refer to specific memory locations. For instance, we
write σ[Ia]s[key] → BitV ecRef(storage[key], 256) to denote the allocation of a
variable key in storage. In general, when writing data to some memory location,
Annotary supports both concrete and symbolic values and propagates data of
the respective type to the memory location. When data is read from a previously
unused location, however, it depends on the data type whether Annotary will
treat it as symbolic or concrete.

Call data is modeled symbolically to represent all possible user interac-
tions with the contract. Memory is treated concretely and reinitialized with
the default value 0 for constructor and transaction execution. The creation
code itself is known, but the appended initialization parameters are unknown
at analysis time and thus handled symbolically. Reads after the end of the known
instructions default to return symbolic variables.

754 K. Weiss and J. Schütte

Storage is set to the concrete type when the constructor is executed. On this
first transaction, the content of storage is known and defaults to returning 0
when reading from unwritten locations.

Then, storage is reset to be empty and treated symbolically henceforth to
represent the most generic state space and account for all unknown transactions
that might have happened between construction and invocation of the smart
contract.

3.3 Inter-contract Analysis

Annotary can correctly handle dependencies between contracts, including those
which manifest only at Solidity but not at bytecode level.

Contract Inheritance: is the only relation that is not directly visible in byte-
code and requires Annotary to pre- and post-processes Solidity code. It uses the
C3-linearization of the inheritance hierarchy to identify transaction implemen-
tations defined by a parent contract that are callable once the child contract
is deployed. Asserts referencing member variables of a child contract cannot be
directly injected into the transaction function of the parent contract, as the
member variable is not in the parent’s scope. To solve this, Annotary generates
a proxy function with the same signature in the child contract that delegates
the call through the super keyword and injects the assert.

Nested Contract Creation: Contracts can create other contracts by piggy-
backing the necessary constructor bytecode in their runtime bytecode. Annotary
spawns a new symbolic execution with the creation bytecode extracted from the
current transaction execution.

Inter-Contract Interactions: happen when the analyzed contract performs
a message call or executes foreign contract code on their storage. Symboli-
cally executing these interactions allows to resolve potentially returned values
and to understand changes on the analyzed contracts state. Annotary imple-
ments symbolic execution for several EVM instructions for inter-contract inter-
action, lacking by Mythril, including CREATE, STATICCALL, RETURNDATACOPY,
RETURNDATASIZE, and EXTCODECOPY. All instructions that trigger inter-contract
interactions are executed with the appropriate concrete or symbolic persisting
data type:
CALLCODE and DELEGATECALL execute external contract code referenced by the
address of the external contract in the context of the current contract and can,
therefore, change the contracts persistent storage. If address and code can be
resolved, symbolic execution can account for these calls effects. If they cannot
be resolved, storage has to be reset to be empty and symbolic, and the variables
in the constraints are renamed to avoid collisions.
CALL and STATICCALL are executed with empty symbolic storage for the first
interaction and with the initialized symbolic storage on further interactions.
CREATE deploys a new contract and executes the contract creation with empty
concrete storage that is used for further interactions with the contract in the

Annotary: Developing Secure Smart Contracts 755

same transaction. In other transactions executions storage will be considered
empty and symbolic.

3.4 Inter-transactional Analysis

Annotary implements inter-transactional reachability analysis to eliminate false
positive violations that are not reachable considering the possible set of contract
transactions.

Extracting Transaction Traces. Annotary uses transaction traces
τ = {Δ,Φ} for inter-transactional analysis, information of a contract execution
that persists after the execution is finished:

– Δ is a mapping of symbolic state variables k in σ[Ia], e.g., storage slots or
balance, of the currently analyzed contract to SMT bit vector expressions δ,
representing the change that a transaction performs on the state.

– The trace constraints Φ are a set of conditions that have to hold such that the
transaction represented by τ can be executed on the contract. Φ is a subset
of the path constraints. Path constraints with no reference to the previous
state, e.g., only to input data, are not included in Φ and do not lower the
accuracy of reachability analysis.

Traces should represent state changing transactions that can appear amid a
transaction sequence. The global states at the persisting instructions STOP
and RETURN, are taken into consideration, while states at SELFDESTRUCT can-
not be followed by further transactions and are therefore ignored. States with
unchanged persisted values, e.g., in storage and balance, are filtered out due to
irrelevance for the sequence and states with unsatisfiable path constraints due
to inapplicability. Δ and Φ are extracted from global states that represent the
unmodified contract execution, reducing constraints by all that are not relevant
in an inter-transactional analysis.

Annotary differentiates between constructor transaction traces (τc) and mes-
sage transaction traces (τm) and brings states that may violate an annotation
into a transaction trace representation (τv) to allow reachability analysis.

Chain Transaction Traces. Annotary combines traces through expression
substitution to explore the possible persisted states of a contract instead of
iterative concolic execution. τ12 := τ1 ◦ τ2 represents the symbolic trace left onto
the contract state when τ1 is executed before τ2. Definition 1 shows how traces
are combined. The changes to the contract state Δ1 that trace τ1 applied exist
at the beginning of trace τ2. Therefore the changes Δ1 have to be applied to the
expressions used in Δ2 and Φ2.

τ1 := {Δ1, Φ1} τ2 := {Δ2, Φ2}
τ12 := {Δ12 := Δ1 ◦Δ Δ2, Φ12 := Φ1 ∪ (Δ1 ◦Φ Φ2)} (1)

756 K. Weiss and J. Schütte

◦Φ in Definition 2 and ◦Δ in Definition 3 are necessary operations to apply the
storage changes Δ1 to τ2. Φ is a list and Δ is a mapping of expressions. The pairs
(k′, δ′) in the mapping Δ can be used together with the SMT-solvers substitute
function to replace appearance of a value k′ in an expression e with δ′.

Δ ◦Φ Φ := [substitute(Δ, φ) : φ ∈ Φ] (2)

Δ1 ◦Δ Δ2 := [(k, substitute(Δ1, δ)) : (k, δ) ∈ Δ2] (3)

We further define two properties for traces, spanning one or more transactions: A
trace τ is valid if its constraints are satisfiable. An invalid trace means that the
constraints are not satisfiable and thus this sequence of instructions and calls
among transactions is not executable at runtime. In the following, we denote
satisfiability of a trace as sat(τ). A trace can further be state independent
if its constraints do not contain any symbolic variables k referencing the previ-
ous contract state. State independence means that execution of that trace does
not depend on the prior execution of any other contracts and is denoted by
svar(τ) = ∅.

Confidence Levels. By combining the properties of validity and state inde-
pendence, Annotary expresses the confidence with which found violations will
exist at runtime. Annotary supports the following confidence levels, from most
to least confident:

1. Single transaction violation: For the intra-transactionally verified violat-
ing trace τv, sat(τv)∧ svar(τv) = ∅ holds. In this case, the transaction violates
the annotation.

2. Chained transaction violation: For a valid and state independent trace
τm∗v of optionaly many applications2 of transactions from τm and finally τv

(i.e., sat(τm∗v)∧svar(τm∗v) = ∅ holds). In this case, the annotation is violated,
independent from which contract state the call is made.

3. Constructed violation: A sequence of traces starting from the construc-
tor was found that can trigger the annotation violation and is sat(τcm∗v) ∧
svar(τcm∗v) = ∅. The attacker requires to be the contract creator or find a
contract in the required state.

4. Unconfirmed violation: The chaining depth d was reached and there is at
least one τmdv that is sat(τmdv) ∧ svar(τmdv) �= ∅.

5. Violation avoiding context: A point in the analysis was reached where
the possibilities of chaining transactions to reach the violating state was
exhausted. This means that although sat(τv) ∧ svar(τv) �= ∅ it is also such
that ∃c ∈ N : c <= d : (�τmcv ∈ T : sat(τmcv)) ∧ ∀e ∈ N : e <= c : �τmev ∈
T : sat(τmev) ∧ svar(mev) = ∅.

6. Unsatisfiable violation: The violating transaction τv is not satisfiable. This
means !sat(execution constraintsτv).

2 Shorthand notation: τa ◦ τb := τab, application of d arbitrary set members τmd :=
τm1 ◦ ... ◦ τmd .

Annotary: Developing Secure Smart Contracts 757

Chaining Strategy. To check the validity of a found violation two high level
strategies can be used to explore transaction traces:
Forward: Starting from the set of constructor and transaction traces Tc ∪ Tm,
the current trace chains are applied to Tv ∪ Tm, and the new trace chain is
checked for satisfiability. If the chain is satisfiable, the violation is confirmed.
Backward: Starting from the violating traces τv ∈ Tv, the set of contract traces
Tc∪Tm are applied to the set of remaining transaction chains. If an explored trace
chain is valid and state independent, the violation is confirmed. If the form of the
sequence is τcm∗v the exploration attempts to find a more threatening sequence
τm∗v. Annotary uses this strategy depicted in Fig. 2 as it allows to differentiate
between violations with confidence level unconfirmed violation and violation
avoiding context. The size of initial traces is smaller if |Tc ∪Tm| > |Tv|. Trace
chaining scales better if |Tc ∪ Tm| < |Tv ∪ Tm| ⇐⇒ |Tc| < |Tv|.

τv1 τv2

... τm2 ◦ τv1 τm1 ◦ τv2 ...

τm1 ◦ τm2 ◦ τv1 ... τc1 ◦ τm1 ◦ τv2 ...

Fig. 2. Backward strategy finding state independent sequence for both violations.

4 Implementing Annotary

This section elaborates on the implementation of the Annotary, i.e., a Sublime
Text plugin and the inter-contract concolic analysis on top Mythrils Laser-SVM.

4.1 Preprocessing of Solidity Contracts

In a first preprocessing step, Annotary parses Solidity source files and extracts
the annotations stating the conditions that will be analyzed. The input files
are then parsed with the solidity compiler solc to gain the construction (bin)
and runtime binaries (bin-runtime) of the contracts, the source code mappings
(srcmap), that link the symbolically executed instructions to the code segments
they were compiled from, the contracts application binary interface (ABI), which
describes the transactions that can be executed and the expected input parame-
ters, and finally the contract’s abstract syntax tree (AST) to identify transaction
endpoints, retrieve inheritance structures, functions and member variables.

Annotary adds a rewriting pass to the compilation process that converts
@check and @invariant annotations into corresponding sets of assert state-
ments, as in Appendix A.2. Furthermore, Annotary modifies the Laser-SVM
to isolate the execution of rewritten code from affecting the rest of the symbolic
execution. We extended the Laser-SVM by a state processor that keeps track
of instructions, result of the rewrite pass, excluding the resulting states from the
set of unmodified contract states.

758 K. Weiss and J. Schütte

4.2 Concolic Execution

Annotary builds upon the Laser-SVM to extend inter-contract and adds inter-
transactional analysis. We now guide the reader through the most significant
building blocks that Annotary adds to Laser-SVM.

Symbolic Handling of Inter-contract Calls. Annotary extends Laser-
SVM by adding handlers for instructions that were not supported, in order to
close the semantic gap between Laser-SVM and EVM. The CREATE instruction
is implemented by executing a contract creation transaction with the nested con-
tract code extracted from the current contract. The prior transaction execution
is resumed with the newly created contract in σ. Support for the STATICCALL
instruction is added, analog to the CALL instruction with msg.value set to
0, as no funds are transferred, and a flag that prevents SSTORE-instruction in
nested calls to write persistent storage. RETURNDATASIZE and RETURNDATACOPY
are implemented by extracting size and data from the global state and copying
them to stack and memory, respectively. If Annotary successfully resolves the
concrete address that is given to EXTCODECOPY, the retrieved external code is
copied to memory and treated concretely.

Pre-, and Post-processing and Filtering of States. Annotary modifies
how the Laser-SVM processes instructions in its worklist to handle instructions
differently that have been added to the unmodified contract code.

For instance, the ASSERT FAIL instruction, would immediately terminate the
execution when a given condition is not fulfilled. If that instruction has been
inserted into the bytecode as a consequence of an @check annotation, however,
we need a different semantic, as we want to detect the violation of the annotation,
but not necessarily terminate the symbolic execution at that state. We thus
extend Laser-SVM by state labels that mark individual states in the explored
symbolic state space as Violating and/or Ignore to indicate that this state was
the result of code modification to identify violations and shall be saved and/or
isolated from the set of states representing the execution of the unmodified code.

4.3 Violation Identification and Classification

After the concolic execution, Annotary has access to the state space of the
unmodified contract and a set of states violating the @check or @invariant
annotations. We can map these directly to warnings that will be displayed to the
developer at the corresponding line of code. The @set restricted annotation
limits write operations to a member variable to a set of valid functions and thus
needs to search for violating states at SSTORE instructions. The writing function
is identified over the instruction association to code and the saved path constraint
that stems from the selected function identifier. The written Solidity member
is identified through the storage index according to the computed outline in
storage, which requires Annotary to keep track of relevant keccak256 results,

Annotary: Developing Secure Smart Contracts 759

depicted in Appendix A.3. Annotary searches through the state space for a path
that starts at a violating location and ends in a state at a STOP or RETURN that
would effectively persist the violating transaction to storage.

Chaining Transactions. Annotary chains transactions by merging selected
states from the symbolic state space of one transaction into the state space of
the previous transaction. The selection includes only relevant states, i.e. only
those which have inter-transactional effects (e.g., write to storage).

When creating execution traces of transaction sequences, Annotary main-
tains meta-data that is assigned to the sequence and presents users more qual-
ified information such as the transaction depth and the sequence of contract
functions, as well as data to optimize the trace chaining operation, such as
the set of symbolic state variables that references prior contract states and
the set of transaction variables. Both sets allow to keep track of variables that
have to be substituted or renamed when combining transactions and allows for
an efficient implementation using the Z3 expression substitution functionality.
However, chaining transactions will lead to an explosion of possible chains and
thus explored states, limiting the depth of transaction sequences that can be
analyzed. We illustrate this effect with real-world contracts in Sect. 5.

Annotary analyzes transactions preceeding a violating trace for two purposes.
A valid chain confirms the inter-transactional validity of the violation and the
resulting confidence level gives a more nuanced judgment of the violation. Algo-
rithm 1.4 in Subsect. A.3 shows how the sequence of preceeding transactions with
the highest confidence level that leads to a given violation is found. When the vio-
lating transaction sequence contains no symbolic state variables in the constraint
expressions, a state independent chain of length one is found, it is assigned the
confidence level single transaction violation. At every iteration step, all traces
in τc ∪ τm are applied to the violating sequences of depth n − 1, which in the
beginning is only the violating trace. Traces are only applied to a sequence if
they overwrite a symbolic state variable and the set of constraints are checked
for satisfiability before they are added to the set of violating sequences of length
n. If a transaction sequence ends in a constructor trace τc, the chain is saved
with the confidence level Constructed violation but the search for a more severe
violating sequence is continued. If the trace is from the set τm and chained trace
is state independent, the search is terminated with a sequence of confidence
Chained transaction violation. If the set of new sequences is empty because all
trace applications resulted in sequences with unsatisfiable constraints, the ini-
tial violation gets the confidence level Violation avoiding context. If the maximal
depth is reached the violating trace is of confidence level Unconfirmed violation.
After all violations are categorized, the annotation’s violation confidence level
is set to the highest level of the found sequences. Finally, all annotations with
their violations are returned in JSON-format to the Sublime Text plugin.

760 K. Weiss and J. Schütte

4.4 Annotary Plugin

The Annotary plugin bridges the gap to concolic execution from within the
Sublime Text editor. Annotations are written inside of Solidity files, and a con-
text menu allows to run the search for violations. Annotations and violating
code pieces are visualized inside of the documents, e.g., in Fig. 3 in Subsect. A.1.
Hovering over them shows the confidence level, the violating transactions, and
informative description. A config allows disabling trace chaining, set the depth
of chained traces and followed jumps during concolic execution.

5 Discussion

We evaluated Annotary with respect to its effectiveness and efficiency. First, we
assessed how Annotary performs with vulnerable contracts and if it would detect
all vulnerabilities as expected. We thus created a sample set of 11 small contracts
with known programming mistakes that have led to severe vulnerabilities in the
past and added annotations that would have made Annotary detect the flaw.
Among others, this set includes the following mistakes: one of the Parity bugs
[5] allowed execution of an initialization function because of the unset member
variable initialized. By adding an @invariant(initialized==true) anno-
tation, Annotary was able to spot this vulnerability. This mistake is especially
hard to spot for humans if non-obvious call paths over library functions allow
the execution of the initialization function [3] or if typos such as state =+ 1
(which evaluates to state = 1) instead of state += 1 are present. A further
included mistake is to erroneously expose functions that allow writing to some
member variable by incorrectly setting (or omitting) one of Solidity’s four visibil-
ity modifiers for functions. Annotary catches this error, if the member variable is
annotated with @set restricted. Another, especially subtle mistake is writing
to uninitialized structs. Structs can be persisted in either memory or storage and
if declared in “C style” and not marked otherwise, default to storage. If fields of a
struct are written without prior initialization, the write operation will overwrite
the first storage slots, which can lead to disastrous consequences. Consider this
snippet, which overwrites the owner address by calling doSth().
1 contract t e s t {
2 struct MyStruct { uint myField ; }
3 address owner ; // Keeps track of privileged owner

4
5 function doSth () {
6 MyStruct s ;

7 s . myField = uint (msg . sender) ; // Overwrites owner

8 } }

Annotary detects this vulnerability, if owner is annotated with @set restricted
(cf. Figure 3), even taking delegated calls into account.Annotary detects all pro-
gramming mistakes in the “small” sample set. Table 2 lists the mistakes and used
annotation types.

In a second step, we were interested in the performance of Annotary with
real-world contracts and created a second sample set of 24 large contracts with

Annotary: Developing Secure Smart Contracts 761

the highest balance of Ether and available source code in the public Ethereum
network. These contracts were not annotated and are not known to contain vul-
nerabilities, it is therefore not possible to create data underpinning the soundness
and completeness of Annotary. Nevertheless, we evaluated the coverage of the
symbolic execution, the runtime, and scalability with respect to the depth of
chained execution traces to give an impression on Annotary’s runtime. As can
be seen from Table 1, the coverage of the “large” sample set is 80%, while the
coverage of the small set is 88%. The average runtime for the “small” set is
4 seconds, which we consider well-suited for IDE integration, especially when
considering that no performance optimizations have been done so far. For the
real-world contracts from the “large” sets, the average runtime is with 700 s sig-
nificantly higher due to larger code sizes. Columns d<n> in Table 1 illustrate
how increasing the depth of the analyzed call chains adds significant runtime
overhead. A feasible mode of operation might thus be to configure the depth of
analysis in the IDE to be lower and to run a full analysis in a CI server.

Table 1. Average runtime of Annotary’s analysis of the “small” and “large” sample

Type Sample size Coverage[%] Sym. Exe.[s] d1[s] d2[s] d3[s] d4[s] d5[s] d6[s]

Small 11 88 1.3 0.07 0.13 0.34 0.82 1.9 4.1

Large 24 80 54.2 12.9 17.8 606 - - -

6 Related Work

Symbolic execution approaches with the pioneer Oyente [18] by Luu et al., the
extension Osiris [23] by Torres et al., and Mythril [20] by Bernhard Mueller
et al. use the results of symbolic execution and SMT-solving to find known
vulnerabilities in an intra-transactional context. MAIAN [21] by Nikolic et al.
extends this approach to an inter-transactional context and finds vulnerabil-
ity patterns defined over multiple transactions. Annotary builds upon Mythril’s
Laser-SVM and extends it to support inter-contract analysis. Our work further
differs from the aforementioned tools in that it supports inter-transactional exe-
cutions chains. To the best of our knowledge, Teether [17] by Krupp and Rossow
is the only publication that also considers transaction traces. However, Teether
does not allow customizable checking of properties but rather searches already
deployed contract for a single vulnerability pattern. Our contribution is thus
the first customizable development framework for smart contract developers,
supporting inter-contract and inter-transactional analyses. Further work related
to our is Zeus [16] by Kalra et al., which translates Solidity into LLVM and
performs model checking against policies. Vandal [11] by Brent et al. converts
EVM bytecode to abstract semantic logic relations and analyzes logic constraints
over them. Formal verification in the form of Why3 [14] was already integrated
into the Solidity online IDE Remix, requiring developers to create semi-assisted

762 K. Weiss and J. Schütte

proofs, but the support was later removed [6]. Other attempts include the for-
malization of contracts and EVM in F* [10] by Bargavan et al. and in the formal
verification framework Lem [4], that do not precisely capture inter-contract anal-
ysis and do not support inter-transactional analysis. Ahrendt et al. propose to
translate Solidity into Java to make use of KeY, a well-approved theorem proving
framework for Java programs [9]. Hildenbrandt et al. introduced the KEVM [15],
an executable formal specification of the EVM in the K framework which pro-
vides inter-contract and inter-transactional provability of claims by formulating
all-path reachability statements. All these approaches require users to formu-
late desired properties in a formal language understood by the verifier, e.g., K’s
XML-style language or Why3’s WhyML.

7 Conclusions

The field of secure development of smart contracts is still in its infancy and some
of its challenges are fundamentally different from traditional software develop-
ment due to the distributed computation model and the immutability of code. We
contribute Annotary to this field, an approach that strikes a balance between
rigid but hard-to-use formal methods and static source code analyzers which
have no knowledge of intent, thus producing too many false positives. Our three
main conclusions from this work are that first, annotations are a feasible way
for developers to express their expectations and check their contracts for cor-
rectness in a language and environment they are comfortable with. Earlier work
on integrating formal verification methods into Solidity has been dismissed for
that reason, while the SMT-checking based approach that also Annotary adopts
seems to be well received by the community (cf. [8,20]). Second, inter-contract
and inter-transactional analysis are required to make sound statements about
the security of a contract. Analysis of a single contract captures only a fraction of
an actual Ethereum transaction and will not be able to create sound statements
about safety and security guarantees. Third, the use of concrete values helps
to increase precision and at the same time limit the complexity of the analysis.
In contrast to traditional programs, where the specific execution environment is
not known at the time of analysis, we can resolve concrete addresses referring to
the Ethereum network and retrieve actual values from there.

The different confidence levels of Annotary allow for a more nuanced inter-
pretation of findings by the developer, as opposed to traditional source code
analyzers which rank all findings equally relevant. As part of our prototype eval-
uation, we have shown how Annotary detects common programming pitfalls and
is able to detect cross-transaction vulnerabilities. The runtime analysis suggests
its applicability in an IDE for smaller contracts and acceptable runtimes for
larger contracts when integrated into continuous integration (CI) processes.

Acknowledgements. This work was partially funded by the Bavarian Ministry of
Economics as part of the initiative Bayern Digital as well as the Fraunhofer Cluster of
Excellence “Cognitive Internet Technologies”.

Annotary: Developing Secure Smart Contracts 763

A Appendix

A.1 Annotary IDE Plugin

Fig. 3. Annotary marks violated annotations and violating code.

A.2 Code Rewritings

Inline Checks at annotation position: @check(condition) −→ assert(condition);

Asserting Invariants - at empty block end: ∅ −→ assert(condition);.
- before empty return statement: return; −→ assert(condition); return;.
- before return with value: return (exp1, ...); −→ var (v <nonce1>,...)
= (exp1, ...; assert(condition); return (v <nonce1>, ...);.

Proxy Asserts to inherited Functions that - do not return values: ∅ −→ function

↪→ f_name(param1, ...)... { super.f_name(param1, ...); assert(condition);}

- do return values: ∅ −→ function f_name(param1, ...)...{

var (v_<nonce1>,...)= super.f_name(param1, ...);

assert(condition); return (v_<nonce1>, ...); }

A.3 Algorithms

1 if o1 in keccakMap or o2 in keccakMap:
2 keccakMap[simplify(o1 + o2)] = get(keccakMap ,

↪→ o1) + get(keccakMap , o2)

Listing 1.2. Code added to the ADD-instruction to keep track of expression involved in
index and mapping key computations.

764 K. Weiss and J. Schütte

1 for word in input:
2 if word in keccakMap: word = keccakMap[word]
3 if result in keccakMap: keccakMap[result] =

↪→ Concat(keccakMap[result], word)
4 else: keccakMap[result] = word

Listing 1.3. Code added to the SHA3-instruction to keep track of expression involved
in index and mapping key computations.

1 check_severity(v, Tc, Tm, max_d , pref_ind):

2 T, τcv := Tc ∪ Tm, ⊥
3 if v.status == VSINGLE:

4 return v, VSINGLE

5 V S := Queue(v)

6 for d in {1.. max_d }: � run until max depth

7 V Snew := Queue(v)

8 while V S != ∅:
9 vs := V S.pop()

10 for τ ∈ T
11 if τcv! =⊥ ∧τ ∈ Tc:

12 continue � skip construction traces

13 if τ.storage.keys ∩ v.storage vars != ∅:
14 vt = τ ◦ vs � apply trace

15 if vt ==⊥:

16 continue � Chain not satisfiable

17 if τ ∈ Tc:

18 zeroize_storage_vars(vt)

19 if not satisfiable(vt.constraints)

20 continue � zeroize and check const. trace

21 if sym_storage_vars (vt.constraint) == ∅:
22 if not pref_ind ∧ τ ∈ Tc:

23 τcv := vt, VCHAIN � save found const. trace

24 else:

25 return vt , VCHAIN � found violating chain

26 else:

27 V Snew.push(vt) � save open state

28 if V Snew == ∅: � trace chain space

↪→ exhausted

29 if τcv != ⊥:

30 return τcv
31 else:

32 return ⊥, HOLDS

33 else:

34 V S := V Snew

35 if τcv != ⊥: � max depth reached

36 return τcv
37 else:

38 return V S.pop() , VDEPTH

Listing 1.4. Algorithm to determine the severity level in a violating trace by analyzing
the inter-transaction reachability.

Annotary: Developing Secure Smart Contracts 765

Table 2. Uncovered implementation mistakes in “small” sample with annotation types.

Mistake Uncovering annotation type

Over-/Underflow @invariant

Struct cast to storage @set restricted

Misspelled constructor name @set restricted

Missing visibility modifier @invariant & @set restricted

Memory layout missmatch with delgation @set restricted & @check

Unmatched call forwarded to delegate @set restricted

Unset state (instanciated) @invariant

Unchecked send return @check

Arithmetic mistace (=+) @check

Trick transaction origin @invariant

Unreachable state/code @invariant

References

1. Analysis of the dao exploit. http://hackingdistributed.com/2016/06/18/analysis-
of-the-dao-exploit/. Accessed on 18 Nov 2018

2. Formal verification for solidity contracts - ethereum community forum. https://
forum.ethereum.org/discussion/3779/formal-verification-for-solidity-contracts.
Accessed on 18 Nov 2018

3. An in-depth look at the parity multisig bug. http://hackingdistributed.com/2017/
07/22/deep-dive-parity-bug/. Accessed on 18 Nov 2018

4. pirapira/eth-isabelle: A lem formalization of evm and some isabelle/hol proofs.
https://github.com/pirapira/eth-isabelle. Accessed on 25 Nov 2018

5. A postmortem on the parity multi-sig library self-destruct. https://www.parity.io/
a-postmortem-on-the-parity-multi-sig-library-self-destruct/. Accessed on 18 Nov
2018

6. Remove why3 output - issue #543 - ethereum/remix-ide. https://github.com/
ethereum/remix-ide/issues/543. Accessed on 25 Nov 2018

7. Solidity v0.5.0 breaking changes - solidity 0.5.1 documentation. https://solidity.
readthedocs.io/en/develop/050-breaking-changes.html. Accessed on 20 Nov 2018

8. Smt checker poc 1 (2017), https://github.com/ethereum/solidity/projects/8
9. Ahrendt, W., et al.: Verification of smart contract business logic exploiting a java

source code verifier. Fundamentals of Software Engineering (FSEN) (2019). https://
git.io/fx6cn

10. Karthikeyan, B., et al.: Formal verification of smart contracts. In: Proceedings of
the 2016 ACM Workshop on Programming Languages and Analysis for Security -
PLAS 2016 (2016). DOI: https://doi.org/10.1145/2993600.2993611

11. Brent, L., et al.: Vandal: a scalable security analysis framework for smart contracts.
arXiv preprint arXiv:1809.03981 (2018)

12. Buterin, V., et al.: Ethereum white paper (2014). https://github.com/ethereum/
wiki/wiki/White-Paper (2013)

13. Ethereum: Solidity - solidity 0.4.24 documentation. https://solidity.readthedocs.io/
en/v0.4.24/. Accessed on 20 Nov 2018

http://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
http://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
https://forum.ethereum.org/discussion/3779/formal-verification-for-solidity-contracts
https://forum.ethereum.org/discussion/3779/formal-verification-for-solidity-contracts
http://hackingdistributed.com/2017/07/22/deep-dive-parity-bug/
http://hackingdistributed.com/2017/07/22/deep-dive-parity-bug/
https://github.com/pirapira/eth-isabelle
https://www.parity.io/a-postmortem-on-the-parity-multi-sig-library-self-destruct/
https://www.parity.io/a-postmortem-on-the-parity-multi-sig-library-self-destruct/
https://github.com/ethereum/remix-ide/issues/543
https://github.com/ethereum/remix-ide/issues/543
https://solidity.readthedocs.io/en/develop/050-breaking-changes.html
https://solidity.readthedocs.io/en/develop/050-breaking-changes.html
https://github.com/ethereum/solidity/projects/8
https://git.io/fx6cn
https://git.io/fx6cn
https://doi.org/10.1145/2993600.2993611
http://arxiv.org/abs/1809.03981
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://solidity.readthedocs.io/en/v0.4.24/
https://solidity.readthedocs.io/en/v0.4.24/

766 K. Weiss and J. Schütte

14. Filliâtre, J.-C., Paskevich, A.: Why3 — where programs meet provers. In: Felleisen,
M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 125–128. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-37036-6 8

15. Hildenbrandt, E., et al.: Kevm: a complete formal semantics of the ethereum virtual
machine. In: 2018 IEEE 31st Computer Security Foundations Symposium (CSF).
pp. 204–217. July 2018. DOI: https://doi.org/10.1109/CSF.2018.00022

16. Kalra, S., Goel, S., Dhawan, M., Sharma, S.: ZEUS: Analyzing Safety of Smart Con-
tracts (2018). 10.14722/ndss.2018.23082

17. Krupp, J., Rossow, C.: teether: Gnawing at ethereum to automatically exploit smart
contracts. In: 27th USENIX Security Symposium (USENIX Security 18). pp. 1317–
1333 (2018)

18. Luu, L., Chu, D.H., Olickel, H., Saxena, P., Hobor, A.: Making smart con-
tracts smarter. In: Proceedings of the 2016 ACM SIGSAC Conference on Com-
puter and Communications Security. pp. 254–269. CCS 2016, ACM, New York,
NY, USA (2016). https://doi.org/10.1145/2976749.2978309, http://doi.acm.org/
10.1145/2976749.2978309

19. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

20. Mueller, B.: Smashing ethereum smart contracts for fun and real profit. HITB SEC-
CONF Amsterdam (2018)

21. Nikolić, I., Kolluri, A., Sergey, I., Saxena, P., Hobor, A.: Finding the greedy, prodi-
gal, and suicidal contracts at scale. In: Proceedings of the 34th Annual Computer
Security Applications Conference. pp. 653–663. ACSAC 2018, ACM, New York,
NY, USA (2018). DOI: https://doi.org/10.1145/3274694.3274743,http://doi.acm.
org/10.1145/3274694.3274743

22. Park, D., Zhang, Y., Saxena, M., Daian, P., Roşu, G.: A formal verification tool for
Ethereum VM bytecode. In: Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering - ESEC/FSE 2018 (2018). https://doi.org/10.1145/3236024.
3264591

23. Torres, C.F., Schütte, J., State, R.: Osiris: Hunting for integer bugs in ethereum
smart contracts. In: Proceedings of the 34th Annual Computer Security Applica-
tions Conference, ACSAC 2018, pp. 664–676. ACM, New York (2018). https://doi.
org/10.1145/3274694.3274737, http://doi.acm.org/10.1145/3274694.3274737

24. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger.
ethereum project yellow paper 151 (2014)

https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1109/CSF.2018.00022
https://doi.org/10.1145/2976749.2978309
http://doi.acm.org/10.1145/2976749.2978309
http://doi.acm.org/10.1145/2976749.2978309
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/3274694.3274743,
http://doi.acm.org/10.1145/3274694.3274743
http://doi.acm.org/10.1145/3274694.3274743
https://doi.org/10.1145/3236024.3264591
https://doi.org/10.1145/3236024.3264591
https://doi.org/10.1145/3274694.3274737
https://doi.org/10.1145/3274694.3274737
http://doi.acm.org/10.1145/3274694.3274737

PDFS: Practical Data Feed Service
for Smart Contracts

Juan Guarnizo(B) and Pawel Szalachowski(B)

Singapore University of Technology and Design, Singapore, Singapore
juan guarnizo@mymail.sutd.edu.sg, pawel@sutd.edu.sg

Abstract. Smart contracts allow untrusting parties to arrange agree-
ments encoded as code deployed on a blockchain platform. To release
their potential, it is necessary to connect the contracts with the outside
world, such that they can understand and use information from other
infrastructures. However, there are many challenges associated with real-
izing such a system, and despite the existence of many proposals, no
solution is secure, provides easily-parsable data, introduces small over-
heads, and is easy to deploy.

In this paper, we propose Practical Data Feed Service (PDFS), a sys-
tem that combines the advantages of the previous schemes and introduces
new functionalities. PDFS extends content providers by including new
features for data transparency and consistency validations. This combi-
nation provides multiple benefits like content which is easy to parse and
efficient authenticity verification without breaking natural trust chains.
PDFS keeps content providers auditable and mitigates their malicious
activities (like data modification or censorship) and allows them to cre-
ate a new business model. We show how PDFS is integrated with content
providers, report on a PDFS implementation and present results from
conducted experimental evaluations.

Keywords: Blockchain · Smart contract · Data feed

1 Introduction

The concept of smart contracts was introduced by Szabo [13,26,27]. They allow
mutually untrusting parties to arrange and execute agreements without involv-
ing any third trusted party. These agreements are expressed in a programming
language, hence can encode any processing logic possible to express in the used
language in a precise and unambiguous way. The concept has been unexplored
for decades; however, with the rise of Bitcoin [23], distributed consensus, and
blockchain platforms in general, smart contracts can finally be implemented in
a practical way. Smart contracts deployed solely on a blockchain platform have
some fundamental limitations. One problem is that a smart contract can only
use resources available on the blockchain. This issue limits them from using
external data provided by other infrastructures, like HTTP(S) data feeds. Ide-
ally, smart contracts could process data provided by other infrastructures and
c© Springer Nature Switzerland AG 2019
K. Sako et al. (Eds.): ESORICS 2019, LNCS 11735, pp. 767–789, 2019.
https://doi.org/10.1007/978-3-030-29959-0_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29959-0_37&domain=pdf
https://doi.org/10.1007/978-3-030-29959-0_37

768 J. Guarnizo and P. Szalachowski

use that to encode processing logic. Unfortunately, there are many challenges
associated with that.

One such challenge is the authenticity of data feeds. Data provided to a
smart contract should be authentic, so that the smart contract can verify its
origin and execute accordingly. Unfortunately, the widely deployed Transport
Layer Security (TLS) protocol [24] is inoperable in such a setting. Secure web
servers that deploy it (i.e., running HTTP over TLS – HTTPS), cannot provide
data authenticity to third parties like smart contracts. First approaches to make
this data accessible to smart contracts were centralized oracles [6,9,18,31]. This
introduced new trusted third parties which fetch HTTPS websites, parse them,
and provide the data to smart contracts (which finally process it). These solu-
tions present strong trust assumptions (i.e., a new trusted party). To relax it,
a concept of oracles based on trust computing was proposed [31]. These ora-
cles work similarly, however, the code run by them is executed with the Intel’s
Software Guard Extensions (SGX) [15] framework, which allows proving attes-
tation of the code executed by the oracles. A disadvantage of this approach is to
position Intel as a centralized trusted entity, and SGX as a trusted technology.
In contrast to these approaches, TLS-N [25] enhances the TLS protocol by pro-
viding non-repudiation. TLS-N authenticates TLS records sent to clients during
client-server TLS sessions. TLS-N requires TLS stack modifications and provides
hard-to-process data feeds, but it does not introduce any new trusted entities.

In this paper, we propose PDFS, a practical data feed service for smart
contracts that aims to fill the gap between oracle solutions and transport-layer
authentication. Our architecture allows content providers to link their web enti-
ties with their blockchain entities. This design provides many benefits like secu-
rity, efficiency, and possible new features. In PDFS, data is authenticated over
blockchain but without breaking TLS trust chains or modifying TLS stacks.
Moreover, content providers can specify data formats they would like to use
freely; thus data can be easily-parsable and tailored for smart contracts. Besides
that, PDFS provides content providers with a payment framework, but it does
not allow content providers to misbehave by equivocating or censoring queries.

2 Background

2.1 Blockchain and Smart Contracts

Bitcoin [23] introduced the concept of open and decentralized consensus which,
in combination with an append-only data structure, leaded to the existence of
cryptocurrency without trusted parties. This combination and its variants are
usually referred to as a blockchain. Bitcoin has inspired other systems (e.g.,
Litecoin [4] and Namecoin [5]). Interesting and promising platforms leverage
blockchain to implement smart contracts. These systems rely on the append-
only property provided by blockchain platforms that allow realizing smart con-
tracts by a replicated execution (i.e., all participants execute the same code for
the same inputs, thus maintaining the same state). Those platforms introduce

PDFS: Practical Data Feed Service for Smart Contracts 769

high-level languages that allow to specify agreements by any parties and execute
these agreements on top of the blockchain.

The most prominent smart contract platform is Ethereum [30]. It follows the
replicated execution model, and it provides smart contract oriented high-level
languages. In Ethereum, anyone can specify a smart contract (i.e., an object
with a set of methods and an associated state) and deploy it on the blockchain
(each smart contract gets a unique blockchain address). From this point, anyone
can interact with the contract by sending transactions to its address and calling
its method(s). Smart contracts can implement almost arbitrary logic, including
monetary transfers, thus making this technology appealing to financial related
services and other businesses.

2.2 Transport Layer Security

The Transport Layer Security (TLS) protocol [24] is one of the most widely
deployed security protocols on the Internet. The protocol is designed for the
client-server architecture. TLS aims to provide data confidentiality and integrity
and authentication of protocol participants, but it was not designed to provide
non-repudiation. Therefore, a communicating party (i.e., a client or a server)
cannot prove to any third party that a given content was produced during the
TLS connection. The TLS is prominently deployed for securing web traffic (i.e.,
HTTPS).

Authentication in TLS is based on the X.509 public-key infrastructure
(PKI) [14]. Every entity that wishes to get its identity authenticated has to
obtain a digital certificate asserting the identity and its public key. Certificates
are issued by trusted entities called certification authorities, which are obligated
to verify the identity of a requester and issue a certificate correspondingly. Dur-
ing a TLS connection establishment, a server presents its certificate to the client
which verifies the certificate and the server’s identity and then uses the corre-
sponding public key to continue an agreement of a shared secret key. This key
is used for protecting the subsequent communication.

2.3 Tamper-Evident Data Structure

A Tamper-evident Data Structure (henceforth as TDS) is a data structure that
allows building log systems where an untrusted logger records clients’ entries
in an append-only log. The logger must be able to prove to auditors that: (a)
every logged entry is still present in the log, and (b) one snapshot of the log is
consistent with any its previous version.

Many early proposals aimed to achieve similar properties, mainly in the con-
text of building a digital notary [11,19,20]. However, the semantics of TDS
and multiple efficient constructions to achieve it were proposed by Crosby and
Wallach [16]. In their system TDS is based on a Merkle tree [22] (also called a
hash tree). A Merkle tree is a binary tree where leaf nodes are labeled with the
hash of entries and non-leaf nodes are labeled with the hash of the concatenated

770 J. Guarnizo and P. Szalachowski

labels of its child nodes. Therefore, the root of the tree is an aggregated integrity
information about all its leaves.

In the Crosby-Wallach construction, the log structure is a Merkle hash tree
with submitted entries as the leaves. The log is append-only, i.e., the entries
are sorted in chronological order of their submission, and no leaf can be retro-
spectively removed or modified. The log supports the following history-related
operations (we give examples of these operations in Sect. 4.3):

Addition of an entry. Whenever a new entry is added to a log, a new leaf is
added to the tree, and the tree is re-computed (entries can be added in batches,
so that the tree need not re-compute for every single entry). Adding new data
entries requires re-computing O(log n) nodes, where n is the number of log
entries.

Membership Proof Generation for an entry produces a membership proof
that proves that it is part of the log. The membership proof of an entry is the
minimal set of tree nodes (i.e., hashes) required to reconstruct the root. In the
described construction, a membership proof requires O(log n) nodes.

Membership Verification for a given entry verifies whether the entry is
part of the given log snapshot. It takes an entry, a membership proof, and a root
value as input and verifies whether the entry matches the proof and whether
the proof terminates at the given root (i.e., the computed path has the root at
the end). The operation returns True if the verification is successful and False
otherwise. It is efficient since it only requires O(log n) hash operations.

Consistency Proof Generation for two different snapshots of the log, a
newer and an older, provides a short proof (i.e., O(log n) nodes) that the newer
snapshot is an extension of the older one, i.e., the newer snapshot was produced
by only appending entries to the older snapshot.

Consistency Verification takes as an input a consistency proof between
two snapshots and verifies whether the consistency proof is correct, i.e., whether
indeed the new version of the log was obtained by appending new entries. The
verification procedure is also efficient (i.e., logarithmic in time and space) with
respect to the log’s size.

3 Architecture Overview

3.1 System Model

There are the following parties in a PDFS system:
Content Providers are entities that provide content. For a simple and

intuitive description, we assume that the content is provided through the secure
web (HTTPS); however, such a setting is not mandatory, and content providers
do not have to run web services. Domain names identify content providers, and
their content is accessed through URL addresses. Each content provider has a
valid TLS certificate. In essence, content providers are not different from today’s
websites.

Contract Parties are mutually untrusting parties that would like to arrange
a smart-contract-based agreement which requires data from a content provider.

PDFS: Practical Data Feed Service for Smart Contracts 771

Contract parties have to agree on who can act as the content provider for their
relying contract. Therefore, content providers are trusted only locally by parties
that want to trust them. We assume that the protocol parties have access to a
blockchain platform with smart contracts enabled (e.g., Ethereum).

We assume an adversary whose goal is to produce fake data on behalf of a
content provider. The adversary can eavesdrop, modify, and inject any protocol
messages. She can also interact freely with protocol parties and the blockchain
platform. We assume that the adversary cannot compromise underlying crypto-
graphic primitives and protocols (i.e., TLS), and cannot violate properties of the
deployed blockchain platform. Moreover, we assume that the adversary cannot
compromise content providers’ secret keys (i.e., the one used to interact with the
blockchain, also known as wallet private key) and cannot obtain a malicious cer-
tificate for a content provider (i.e., cannot compromise the TLS PKI). However,
we discuss such strong adversaries in Sect. 5.

We also assume a content provider trying to misbehave by launching an
equivocation attack [28] or by censoring queries for its content. In the former
case, the content provider should not be able to modify or delete any published
content retrospectively. For the latter case, censorship is especially important
in the context of the smart contract, as a content provider could influence a
contract execution by censoring some required content. Thus for this attack,
censorship attempts should be at least visible.

3.2 Desired Properties and Design Space

Below we list the desired properties of a data feeds service for smart contracts.
Easily parsable data feeds: data feeds should be easily parsable by smart

contracts which use them. Besides practical implications like a more straightfor-
ward code base, this property improves the cost-effectiveness of smart contracts
deployment, as smart contract platforms usually charge contract executions per
number of operations.

Authenticity of data feeds: the high evidence that data feeds are authen-
tic (i.e., were produced by a content provider trusted by contract parties) should
be provided. Ideally, authenticity verification should follow a direct and natu-
ral trust chain (i.e., contract parties trusting example.com can specify in their
contract that the contract can rely only on data provided by example.com).

Easy to adopt and deploy: all protocol parties (including content
providers) should be able to start using the data feed system without major
changes like requiring new infrastructure or non-backward compatible changes
to lower-layer protocols. Ideally, the system should be implementable and deploy-
able in today’s setting with existing protocols and infrastructures.

Non-equivocation: Data feeds should be unable to modify or delete con-
tent retrospectively once data are committed and published. It enforces a con-
tent provider to verify and guarantees the correctness of data before performing
publications. Preferably, providers should implement data structures that are
append-only for their publications database.

http://example.com
http://example.com

772 J. Guarnizo and P. Szalachowski

3.3 High-Level Overview

Design decisions behind PDFS try to achieve all stated properties above. First
of all, in our system non-repudiation is provided directly by content providers.
This is similar to the approaches that modify the TLS protocol; however, the
authentication is not conducted at the TLS layer. Instead, we introduce a layer
of indirection that allows authenticating content on the blockchain.

Blockchain

Relying
Contract

Create and
interact with

Authoritative
Contract

Contract Parties

Create and
update

Content provider

Trust and get data from

Censorship-evident query

Verify data authenticity

Fig. 1. High-level overview of PDFS.

In our design, content providers link
their TLS identities with their blockchain
identities and the locations of special smart
contracts used for authenticating and veri-
fying their content. Such a design provides
multiple benefits. Firstly, it enables verify-
ing blockchain identities, directly through
the existing TLS PKI. Secondly, it allows
relying contracts to validate the authen-
ticity of data as simple as calling another
smart contract’s method (without involving
any in-contract expensive public-key opera-
tions). Lastly, integrating content providers
with blockchain enables new features like keeping the providers accountable,
proving their unavailability or providing a payment framework that can incen-
tivize them to initiate the service. A high-level overview of our system is shown
in Fig. 1, and in this section, we describe its steps and the main components.

The first step in our protocol is to create a authoritative contract by a con-
tent provider who wishes to participate in PDFS. The main aim of authoritative
contracts is to enable other contracts to verify the authenticity of the content
produced by content providers. Authoritative contracts provide additional func-
tionalities by ensuring that content providers do not misbehave: (a) by retro-
spectively tampering with their data, or (b) by censoring queries sent to them.

Every authoritative contract provides an API that allows: (a) its owner (i.e.,
the content provider) to update it, (b) other contracts to verify that the content
provider indeed produced given data, (c) contract parties to make censorship-
evident queries to the content provider for the specific content (this option is
used when the content provider seems unavailable or is censoring some queries).

In the second step, the content providers create a signed manifest that con-
tains the following elements: (a) a location (i.e., a blockchain address) and inter-
face structure of its authoritative contract, (b) metadata specifying details of
provided content. The manifest is signed, and the manifest’s signature is com-
puted using the private key corresponding to the public key from the content
provider’s TLS certificate. Such a setting follows the natural trust chain; there-
fore, it allows contract parties to verify the authenticity of manifests directly,
using the TLS PKI, and without breaking existing trust chains.

The content provider creates a TDS that will store data entries that the
content provider wants to serve. The first entry of this data structure is the
manifest. Although PDFS data may be published using HTTPS services, those

PDFS: Practical Data Feed Service for Smart Contracts 773

services focus on data privacy and integrity. We define that the manifest must
be signed and added into the TDS to extend security properties including non-
repudiation and non-equivocation to it.

For every update, the content provider adds new data entries to its TDS,
re-computes the data structure, and sends the new root and its corresponding
consistency proof to the authoritative contract (they do not store any actual
content, but only TDS roots — the short authentication information about the
content.) The authoritative contract validates the sent information enforcing the
append-only property (i.e., it makes sure that the content provider is appending
data only – not modifying nor removing any entries). The data entries with their
corresponding membership proofs are published at a pre-defined URL location,
so that everyone can locate and access it.

Contract parties that would like to deploy a relying contract (i.e., a smart
contract which depends on a data feed from an external website) have to find
and agree on a content provider (this process is realized out of band). When
contract parties find the content provider they would like to use, they locate
and verify its manifest and authoritative contract, and associate the location of
the authoritative contract as an oracle in their relying contract.

Whenever one contract party would like to call a method that uses content
provider’s data, it accesses the required data entry and its membership proof
from the content provider and then calls this method with this pair (and a fee
for content provider) as the arguments. Now, the method needs to verify whether
the content provider indeed produced the data entry and to do so, the relying
contract only requires to call the authoritative contract’s membership verification
method. When the data entry is verified, the relying contract’s method can
continue with its processing logic.

4 Details

In this section, we describe components of the PDFS architecture and explain
its different steps from a content provider establishing its PDFS service until
contract parties using the provider’s data to make a transaction within their
smart contract. We also discuss how the content provider maintains the service.
As shown in Fig. 2, a PDFS service consists of an authoritative contract, a web
service whose entries are kept within a TDS, and a manifest. We provide details
of these components and their functionality in this section.

4.1 Service Initialization

In the first step, the content provider initializes a PDFS service by deploying
an authoritative contract in the blockchain. This contract is designed to inter-
act with the content provider’s back-end service, relying contracts, and contract
parties. Initially, the authoritative contract has empty storage; however, it will
store root hashes of the deployed TDS. These root hashes will enable the con-
tract to check on demand the consistency between two TDS snapshots (i.e.,

774 J. Guarnizo and P. Szalachowski

ensuring that the content provider updates its TDS correctly) and to conduct a
membership verification (i.e., verifying for relying parties that an entry is part
of the content provider’s TDS). Further details of authoritative contracts are
discussed in Sect. 4.2. Once it is deployed, the content provider gets an address
of the authoritative contract instance.

Content
Provider
Private

TLS Key

Signs Locates

Authoritative
Contract

Blockchain

Authenticates

TLS certificate

Root CA

Int. CA

Content
Provider

Certificate

The manifest

Web service
supporting PDFS

TDS

Content Provider

Relying
Contract

Verifies

Contract Parties

Adds

Query

FeedSubmits

Fig. 2. Details of the PDFS architecture and
parties interactions.

Then, the content provider cre-
ates a manifest. The manifest is
a file that describes details of the
PDFS service. It is necessary for
contract parties, since based on the
manifest, they can create a work-
able relying contract. The mani-
fest has to be authentic. There-
fore, the content provider signs it.
As TLS certificates issued by CA
are widely trusted parties on the
Internet, the content provider can
sign the manifest using the private
key corresponding to its TLS cer-
tificate for supporting HTTPS web traffic. Such a design choice has multiple
benefits. Firstly, it simplifies the signature creation and verification process
since contract parties can obtain the required certificate by visiting the content
provider’s website. Secondly, the manifest is authenticated following an already
existing trust chain. When the manifest is signed, it is added as the first element
to the content provider’s TDS. We define and describe the fields that a manifest
contains:

URL corresponds to the URL address used by the content provider to publish
data, and it indicates where contract parties can access data entries.

Authoritative Contract Address is the address in the blockchain asso-
ciated with the deployed authoritative contract. Contract parties preload their
relying contract with the value of this field (to allow them calling procedures or
functions on the authoritative contract instance).

Authoritative Contract Interface is an abstract structural descriptor of
the authoritative contract. It includes definitions of functions, access method,
and parameters. Likewise the authoritative contract address, data contained in
this field has to be embedded in the relying contracts as an object interface. This
field is platform dependent (e.g., the ABI in Ethereum).

Data Structure describes the encoding or structure of data entries that
the content provider stores in its TDS. Typically, content providers use widely
adopted data encodings, such as JSON or XML. Thus, the content provider
presents here which values and data types are expected to be found within
every data entry. This field is necessary for contract parties to understand the
semantics of data entries and to create their relying contracts able to parse data
entries and implement their processing logic correctly.

PDFS: Practical Data Feed Service for Smart Contracts 775

Signature is a field that authenticates all values contained in the manifest.
As described above, the signature is computed using the private key associated
with the content provider’s TLS certificate.

If the TLS certificate expires, the PDFS service is not affected for relying
contracts already deployed. It is because contract parties use the certificate to
verify the manifest signature before they create relying contracts. Furthermore,
neither the authoritative contract nor relying contracts perform any signature
verification later. Also, the content provider does not require to terminate the
PDFS service if the TLS certificate is reissued using the same private-public key
pair that was used in the manifest creation.

4.2 Authoritative Contract

The authoritative contract is a central point in the PDFS architecture. It inter-
acts with the content provider back-end, relying contracts, and contract parties.
Its primary goal is to ensure that the content provider indeed published a spe-
cific data entry. A detailed pseudo-code of the authoritative contract is shown
in Algorithm 1. An authoritative contract consists of the functions that allow:

– The content provider to store root hashes once the consistency is verified.
This procedure is executed by calling the update function (details about the
consistency verification in Sect. 4.3). The update function can be executed
only by the content provider. For efficient storage management and time
delays or race conditions avoidance, the authoritative contract only stores an
array of the last K root hash values committed (K is defined by the content
provider).

– Relying contracts to make trustworthy transactions based on data entries
whose origin and integrity are verified by calling the membership function.
This function checks whether a data entry and its membership proof is valid
comparing to stored roots.

– Contract parties to make censorship-evident queries using the query function
and get responses by calling the get response function. These queries and
responses are sent over the blockchain, therefore they are publicly visible.

Functionalities offered to contract parties are designed to require payments
for their executions. It allows content providers to adopt a new business model
receiving payments for providing data over a PDFS service.1

1 Fees for executing PDFS functions are different from fees for executing transactions
on the blockchain (e.g., Ethereum gas cost).

776 J. Guarnizo and P. Szalachowski

Algorithm 1. Authoritative Contract Pseudo-Code.

FEEmem: the cost for membership verification,
FEEquery : the cost for making a censorship-

evident query,
locked: boolean value that indicates whether the

authoritative contract can be updated,
roots: a map of roots hashes; it uses a timestamp as

the key,
time: a value that indicates the last updating time,
queries: a map of censorship-evidence query made;

it uses a number as the key,
responses: a map of responses for queries made; the

key is associated to existing identifiers in the
queries map,

counter: an incremental number used as the identi-
fier for the queries made,

NOW(): the current block timestamp,
HASH(): a cryptographic hash function.

1: procedure init

2: roots ← ∅
3: time ← 0
4: locked ← False

5: end procedure

6: procedure update(root, proofcons)
7: assert(sender = owner)
8: assert(locked = False)
9: if CONSISTENCY(root, proofcons) then

10: time ← NOW()
11: roots[time] ← root

12: end if

13: end procedure

14: procedure lock

15: assert(sender = owner)
16: locked ← True

17: end procedure

18: procedure consistency(root, proofcons)
19: if time = 0 then

20: return true
21: end if

22: (rootnew, rootold) ← MTH(proofcons, ∅)
23: return (rootnew = root & rootold =

roots[time])
24: end procedure

25: procedure membership(data, proofmem, fee)
26: assert(fee = FEEmem)
27: leaf ← HASH(data)
28: (rootmem,) ← MTH(proofmem, leaf)
29: return rootmem ∈ roots

30: end procedure

31: procedure mth(proof, leaf)
32: i ← 0
33: hashx ← hashy ← leaf

34: if leaf = ∅ then

35: i ← 1
36: hashx ← hashy ← proof(0).hash

37: end if

38: for i < len(proof) do

39: if proof(i).side = RIGHT then

40: hashx ← HASH(hashx||proof(i).hash)

41: else

42: hashx ← HASH(proof(i).hash||hashx)

43: hashy ← HASH(proof(i).hash||hashy)

44: end if

45: i ← i + 1
46: end for

47: return (hashx, hashy)
48: end procedure

49: // Censorship Evidence functions
50: procedure query(filter, fee)
51: assert(fee = FEEquery)
52: counter ← counter + 1
53: queries[counter] ← filter

54: return counter

55: end procedure

56: procedure store response(id, data)
57: assert(sender = owner)
58: assert(id ≤ counter)
59: responses[id] ← data

60: end procedure

61: procedure get response(id)
62: assert(id ≤ counter)
63: return responses[id]
64: end procedure

4.3 Data Update

Adding new data entries to the TDS requires re-computing the root. To run
PDFS service properly, it also requires synchronization of changes between the
content provider back-end (maintaining the TDS) and the authoritative con-
tract which has to be updated to enable the membership verification of any
newly added entry. To synchronize, the content provider submits the new root
hash value along with a corresponding proof for the consistency verification.
This verification uses the provided proof to re-calculate two hash values. and
then, it compares those calculated hashes checking whether they are equal to
the new root value to store and the last one stored in the authoritative contract
accordingly. This guarantees that the new TDS is an extension of the last one
committed confirming that no previous data entry has been altered or removed.
If there is an error, the authoritative contract ignores the submitted data and

PDFS: Practical Data Feed Service for Smart Contracts 777

Fig. 3. An example of maintaining a TDS. It is a representation of information provided
for the consistency verification when a new snapshot of the TDS is updated to the
authoritative contract. Each element of the proofcons indicates the hash value and the
corresponding side (hxL refers left position and hxR refers right position).

remains in the current state. Once the new root is accepted by the authorita-
tive contract, the content provider can make the updated TDS accessible over
HTTPS.

In Fig. 3, we show an example of how a TDS evolves when data entries
are added, and what values are sent for submitting roots to the authoritative
contract. In case (a), the new root is directly stored with no previous validation
as it is the first one, and there is no consistency to evaluate. In case (b), the new
root is submitted along with the following consistency proof (proofcons). The
authoritative contract uses the provided data to evaluate the TDS consistency.
In this case, the consistency verification is easy to deduce since the previous root
(h0) is contained in the provided proof. Similarly in the case (c), the previous
root (h123) is contained in the proofcons array.

However, the case (c) shows a particular situation due to the TDS is unbal-
anced. It changes how the consistency verification works for the next root sub-
mission, the case (d). For it, the consistency proof provided is: proofcons =
{h4L , h5R , h67R , h123L}. Because of the unbalanced TDS, the consistency verifica-
tion re-calculates both roots, the previous one (h1234) and the new one (h1234567)
by using the same provided proof. To calculate the previous root, the consistency
verification only needs the contained elements {h4L , h123L}. Furthermore, the
complete array is used to re-calculate the new root. Therefore, the procedure
can confirm the consistency of the new TDS.

4.4 Relying Contracts

A relying contract is a smart contract which is created by contract parties and
needs content providers data to validate conditions and perform transactions.
Before it is created, contracts parties agree on a content provider they trust
which provides a PDFS service. After validating its manifest signature, contract
parties extract the information contained in the manifest and use it to prepare
and deploy a relying contract. In that way, the relying contract will interact with
the correct authoritative contract and be able to: (a) execute the membership

778 J. Guarnizo and P. Szalachowski

verification procedure, (b) get the response for a censorship-evident query, and
(c) parse data entries and execute a processing logic depending on data entry
fields. We provide a pseudo-code example of a relying contract in Algorithm2.

When needed, contract parties request a specific data entry to the content
provider, which responses a data entry along with its respective membership
proof. Considering case (c) in Fig. 3, let us assume the content provider is queried
for the data entry d2, so its response will contain the asked data entry d2 along
with a membership proof proofmem = {h3R , h01L , h4R}. Once that data is sub-
mitted to the relying contract, it will execute the membership verification intreat-
ing with the authoritative contract. As we see in this example, the provided proof
and the data entry’s hash value lead to re-calculate the root h1234 which is stored
in the authoritative contract and it confirms data authenticity. If any value is
modified, either the data or the proof, the membership verification re-calculates
a different hash value which does not correspond to any stored root, so the
verification fails.

Algorithm 2. Relying Contract Template.

cc: authoritative contract object interface.

1: procedure init(addr)
2: cc ← Authoritative Contract(addr)
3: end procedure

4: procedure submit data(data, proofmem, feemem)
5: v ← False

6: v ← cc.membership(data, proofmem, feemem)
7: if v = True then

8: . . . Decode data input
9: . . . Decide and make transaction
10: end if

11: end procedure

12: procedure if censorship(id)
13: data ← cc.get response(id)
14: if data �= ∅ then

15: . . . Decode data input
16: . . . Decide and make transaction
17: end if

18: end procedure

19: interface Authoritative Contract:

20: procedure membership(data, proof, fee)
21: procedure get response(id)
22: . . . Any additional procedure defined

4.5 Censorship Evidence

Censorship is an especially challenging threat since a content provider censor-
ing queries can influence executions of agreements based on smart contracts, and
censorship is difficult to prove. However, PDFS extends the authoritative and the
relying contract with functions to allow censorship-evident queries. So contract
parties can query a content provider over the blockchain whenever they cannot
obtain data directly through conventional channels (e.g., like HTTPS). All inter-
actions, contract parties’ query and content provider’s response, are recorded as
transactions in the blockchain. Therefore, they are visible for anyone, and any
censorship attempt is publicly observable. We discuss censorship attacks further
in Sect. 5.2.

4.6 PDFS Service Termination

Content providers might need to terminate a PDFS service due to operational
management or security reasons. To do so, they can execute the lock function

PDFS: Practical Data Feed Service for Smart Contracts 779

which disallows any future update attempt of the authoritative contract. Locking
authoritative contracts does not introduce collateral damage to already-deployed
relying contracts. A locked authoritative contract can be used for membership
verifications as long as the corresponding root value is stored. In particular, the
locking function might be useful in the case of a security breach (like a stolen
blockchain private key), to prevent an adversary from submitting malicious root
values (we discuss details in Sect. 5.1).

5 Security Discussion

In this section, we discuss different attacks and their implications over PDFS.
However, this discussion is extended in Sect. A in the appendix which also
addresses issues and disagreements that one might argue against our proposed
solution.

5.1 PKI and Key Compromise

An adversary able to compromise the TLS PKI can create a malicious mani-
fest and an authoritative contract, and can impersonate the content provider by
creating arbitrary content. Interestingly, even if successful, such an adversary
cannot undermine the security of the relying contracts already deployed since
these contracts use the correct authoritative contract instance for data verifi-
cation. Moreover, by deploying a new (malicious) authoritative contract, the
adversary needs to deploy it over the blockchain, which makes the attack visible
and detectable.

A more severe attack is a compromise of the private key used for the inter-
actions between the content provider and the blockchain platform. In such a
case, the adversary can add to the existing TDS malicious entries, re-compute
the structure, and update the authoritative contract with a new root. Then,
these malicious entries can be used by relying smart contracts for processing.
However, even in that case the attack is visible since the authoritative contract
is updated publicly, on the blockchain. Thus, the content provider will notice it
and terminate its service (see Sect. 4.6).

5.2 Malicious Content Provider

PDFS prevents and mitigates some attacks conducted by a malicious content
provider. The design of authoritative contracts in PDFS does not allow the con-
tent provider (or an adversary with the content provider’s blockchain key) to
retrospectively modify or remove content. The authoritative contract enforces
the consistency of the TDS for every update (see Fig. 3). This property is also
crucial for thwarting equivocation attacks [28]. A manifest file identifies the
authoritative contract that guarantees that the content provider cannot equivo-
cate as long as the blockchain platform is secure (see Sect. A.2 in the appendix).

780 J. Guarnizo and P. Szalachowski

The content provider can create multiple manifest files and authoritative con-
tract, however, (a) it does not influence already deployed contracts, (b) is not
necessarily a malicious activity, and (c) is visible over the blockchain; thus, it
can be monitored.

PDFS provides non-equivocation by ensuring that content providers’
database is append-only. However, it does not prevent a content provider from
adding two semantically conflicting entries to their databases (e.g., two different
results for a same football game). Conflicting entries can be harmful to relying
contracts as they may lead to completely different execution paths. Since PDFS
does not allow content providers to “overwrite” their entries, we suggest that
such conflicts should be handled by relying contracts themselves. More precisely,
using agreement protocols like implementing grace periods or submitting data
from multiple content providers before making final decisions, such that any
conflicting entry submitted can reverse contracts agreements.

A subtler attack is a content provider censoring queries. That risk is espe-
cially important, when a malicious content provider ignores contract parties’
queries, pretending unavailability or displaying incorrect data that cannot be
successfully verified by relying contracts. In such a case, PDFS allows contract
parties to query the content provider over the blockchain for a required query
(see Sect. 4.5). The content provider is obligated to response due to the query
and content provider’s response are publicly visible.

6 Realization in Practice

In this section, we demonstrate that PDFS fulfills the desired properties
explained in Sect. 3.2. We fully implemented a proof of concept which involved
both parties of a PDFS architecture (the content provider and contract par-
ties). Although we tested PDFS under a generic scenario (see Sect. B.1 in the
appendix), PDFS can be integrated into any context where smart contracts need
to make decisions based on external data. Our solution allows content providers,
regardless of the content and data type, to become a trustworthy data feed for
smart contracts.

6.1 Implementation

To approach our implementation of PDFS, we developed a web service for the
content provider using Go v1.10.1 as the programming language. It is a REST-
Ful API which offers data entries encoded in JSON format. This application is
configured to support HTTPS, and we deployed a private PKI infrastructure
and TLS certificates using OpenSSL v1.1. For contract parties, we implemented
a client in Python v3.6.5 which is able to request data entries to the created web
service. Smart contracts, the authoritative and the relying contract are coded
in Solidity v0.4.21 and deployed in an Ethereum blockchain. To allow repro-
ducibility of our experiments and evaluations, we publish our implementation
at https://gitlab.com/juan794/pdfs.

https://gitlab.com/juan794/pdfs

PDFS: Practical Data Feed Service for Smart Contracts 781

6.2 Evaluation

In this section, we discuss results obtained from a series of experiments we per-
formed. To evaluate PDFS, we used a computer which has 16 GB of RAM and
a CPU Intel Core i7 7700H. We performed measurements regarding the execu-
tion cost which is expressed in Ethereum gas units, and then, converted to US
dollars.

We analyzed the cost growth according to the number of data entries in the
TDS. As shown in Fig. 4, we observe that the cost for the consistency and mem-
bership verification grows on a logarithmic scale as expected since we deployed
a TDS using binary Merkle trees. In the case of the JSON parsing, the cost is
constant and does not change with the TDS size. We also disaggregate total costs
to investigate the details for executing PDFS procedures (see details in Table 1).
In the case of having a data feed with more than 1 million (220) data entries,
we observe that the consistency verification has a gas cost of 86,642 on average,
where only 4% of this cost is related to the hash calculations. The remain-
ing percentage corresponds to miscellaneous code, including storage and control
statements, such as asserts. Moreover, we also measured the cost of executing
a membership verification, and we observe that it has an average gas cost of
204,242. However, as JSON parsing is not natively supported in Ethereum, 55%
of the total cost is spent on performing this task. On the other hand, the gas con-
sumptions are 813,111 and 4,355,638 respectively for the authoritative contract
and the relying contract deployment.

Next, we show in Fig. 4 what would be the maximum cost considering the
two prices involved. For our measures, we assumed a price of 5 Gwei per gas
unit and a price of US$105.05 per ether; those are maximum conversion rates
presented at the writing time. As a result, the consistency verification costs
around US $0.048 in a PDFS service that contains more than 1 million data
entries. This means a cost of US $1.7x10−7 per data entry. On the other hand,
the membership verification of one data entry in a TDS of that size (220) costs
around US $0.11. We recall that it is including the JSON parsing which is a
costly task on smart contracts. Therefore, we show that PDFS is costly viable
to create and deploy a trustworthy data feed for a smart contract. The cost
can decrease if Ethereum starts supporting JSON parsing natively or if content
providers use a more efficient data entry encoding.

Fig. 4. Ethereum gas consumption and price variation analysis converted to US dol-
lars. (a) Gas cost of PDFS operations (b) membership verification cost (c) consistency
verification cost.

782 J. Guarnizo and P. Szalachowski

Table 1. Cost analysis for membership and consistency verification considering mul-
tiple sizes of the TDS.

TDS size 21 25 210 215 220

Membership verification cost

JSON Parsing 113,349 (74%) 113,325 (69%) 113,293 (63%) 113,273 (59%) 113,298 (55%)

Hash calculation 447 (1%) 1,107 (1%) 1,933 (2%) 2,757 (2%) 3,583 (3%)

Miscellaneous 39,253 (25%) 49,369 (30%) 61,905 (35%) 74,633 (39%) 87,361 (42%)

Total 153,049 163,801 177,131 190,663 204,242

Consistency verification cost

Hash calculation 149 (1%) 809 (2%) 1,634 (3%) 2,294 (3%) 3,284 (4%)

Miscellaneous 38,419 (99%) 48,551 (98%) 60,961 (97%) 71,158 (97%) 86,358 (96%)

Total 38,568 49,360 62,595 73,452 89,642

Table 2. Ethereum gas consumption of
PDFS compared to signature verifications.

PDFS secp256r1 RSA ECRecover

87,361 1,854,634 596,287 38,887

In Table 2, we show the gas con-
sumption comparing PDFS against
signature verification algorithms, such
as ECRecover [2] (native in Ethereum),
TLS-N implementation of secp256r1
[10] and RSA [7]. We observe that the
Ethereum native function for signature verification is cheaper than PDFS. On
the other hand, PDFS is significantly cheaper that implementations coded on
Solidity programming language. Although those alternatives allow contract par-
ties to verify integrity and provenance, they do not provide accountability or
non-equivocation properties from content providers.

Table 3. The gas cost of the query and response
operations.

Oper. 50B 150B 500B 1KB 2KB 5KB

Query 25,597 32,399 56,337 90,483 158,644 363,282

Resp. 25,804 32,606 56,544 90,690 158,851 363,489

Lastly, we investigated the
cost of censorship-evident
queries and responses (see
Sect. 4.5). As storing data
in Ethereum smart contracts
is expensive [30], we imple-
mented this functionality with-
out involving smart contract storage. Instead, queries and responses are pub-
lished as blockchain transactions (as calls to the corresponding functions), but
without storing them in authoritative contracts. That improves the cost effi-
ciency greatly while providing the same functionality i.e., queries and responses
can be read (as they are part of the blockchain) and responses are authentic (as
they are sent within blockchain transactions signed by content providers). The
gas cost of these operations depending on a size of a query and response are
shown in Table 3. As presented, the cost grows linearly with query/response’s
size, but queries and responses of the same size have roughly the same cost.

7 Related Work

TLSNotary [9] is a service that introduces a third-party auditor which attests
TLS session data exchanged between a client and a server. To provide this

PDFS: Practical Data Feed Service for Smart Contracts 783

functionality, the protocol requires changes to the TLS protocol like an intro-
duction of a dedicated client-auditor protocol. TLSNotary has many drawbacks.
For instance, it is only compatible with TLS 1.0 and 1.1, while TLS 1.2 is widely
deployed and recommended as default [8]. TLSNotary is specified with obsolete
cryptography algorithms, and it supports only cipher suites with the RSA algo-
rithm for a secret key establishment. As TLS records are being authenticated,
the output obtained from TLSNotary is hard to parse and process by smart
contracts. Although, the protocol has many disadvantages, it got adopted by
other solutions, like Oraclize [6], which integrates multiple data feed systems.
However, as combined with TLSNotary, it introduced a trusted third-party that
holds secret keys used for auditing TLS sessions.

An alternative approach proposed is to use prediction markets for providing
data feeds, such as [1] and [3]. In such systems, users try to predict real-world
events by betting or voting for them. Usually, these systems are implemented on
top of blockchain platforms, hence they could be easily integrated with smart
contracts. Unfortunately, they have many drawbacks as in the case of disputes
there is no responsible party (i.e., responsibility is distributed). Moreover, data
feeds depend on human inputs which can be biased, slow, or incomplete.

Town Crier (TC) [31] takes a different approach to instantiate data feeds
for smart contracts. TC deploys trusted computing (i.e., the Intel SGX technol-
ogy [15]) to allow special applications to interact with HTTPS-enabled websites.
In order to provide authentic data feeds, such an application, is executed within
an SGX enclave. Thus, it is possible to conduct a remote attestation that the
correct code was executed. The application establishes a secure TLS connec-
tion with a website and parses its content, which then can be used as an input
to smart contracts. In contrast to TLSNotary, TC can provide easy-to-parse
data and is flexible since there can be many applications. With the assumption
that the contract parties have verified an attestation of the used enclave, TC
allows relying contracts to avoid expensive public-key verifications by making
assertions between enclaves and their blockchain identities (this is a similar con-
cept as in PDFS). However, TC has some significant limitations. First of all,
it positions Intel as a trusted party required to execute a remote attestation.
Secondly, its security relies on the security of the SGX framework (undermined
by recent severe attacks [29]) and the security of its attestation infrastructure,
which is especially undesired as the SGX attestation infrastructure is a weakest-
link-security system (i.e., one leaked attestation private key allows an adversary
to attest any application). TC has inspired other systems, like ChainLink [18],
which aims to decentralize TC applications by forming a network of them (to
detect and deal with possible inconsistencies). Unfortunately, this design does
not solve the main drawbacks of TC.

TLS-N [25] is a more generic approach to provide non-repudiation to the
TLS protocol. In order to realize it, TLS-N modifies the TLS stack such that
TLS records sent by a server are authenticated (in batches). Therefore, TLS-
N clients can present received TLS-N records to third parties which can verify
it, just trusting the server (without any other third trusted parties). The main

784 J. Guarnizo and P. Szalachowski

drawbacks of TLS-N are in its deployability. It requires significant changes to the
TLS protocol and as learnt from the previous deployments the TLS standard-
ization and adoption processes are very slow. Because of the TLS-N’s layer of
authentication, TLS records are being authenticated which is inconvenient and
expensive to process by smart contracts. Furthermore, the TLS layer is uncon-
trollable by web developers, and thus, most of their applications would need to
be rewritten for TLS-N. Besides that, TLS-N relying contracts have to conduct
an authentication verification which is a costly operation.

Table 4. Comparison to most related works.

No third
trusted party

Easy content
parsing

Required
changes on

TLSNotary [9] — — TLS
Protocol

TLS-N [25] � — TLS
Protocol

Town Crier [31] — � —

PDFS � � App

In Table 4 we compare
PDFS with the competing
schemes. As shown, PDFS
makes data feeds authen-
tic and easy to parse with-
out major changes. It is
easy to implement, and it
does not require modifica-
tions beyond adding new
functionalities in the con-
tent provider web service.
It is an advantages compared to the solutions which require changes on the
TLS protocol for operating. Additionally, PDFS does not require an additional
trusted party besides the content provider itself.

Moreover, we believe that the adoption of PDFS is much more likely than
the adoption of competing schemes. In contrast to transport-layer authentica-
tion systems, PDFS requires changes only on the application layer. It also does
not require trusted hardware or relies on ubiquitous TLS certificates following
natural for HTTPS trust relationships. Last but not least, content providers are
motivated by economic incentives as PDFS allows them to be paid for authen-
ticating content which usually they publish for free.

8 Conclusions

In this paper, we proposed PDFS, a practical system that provides authenticated
data feeds for smart contracts. In contrast to the previous work, PDFS seamlessly
integrates content providers with the blockchain platform. This combination
provides multiple benefits like efficient and easy data verification without any
new trusted parties, and new interesting features that the previous platforms do
not provide. Thanks to the deployed tamper-evident data structure (TDS) that is
monitored by a smart contract, content providers cannot equivocate. To mitigate
censorship, our scheme provides a blockchain based API for querying content
providers. Besides that, native to blockchain platforms monetary transfers allow
content providers to explore new business models, where relying contracts would
pay a fee for the content verification. Last but not least, PDFS can be easily
deployed today in the application layer without any modifications to underlying
protocols.

PDFS: Practical Data Feed Service for Smart Contracts 785

We plan to investigate PDFS and its components in other applications. One
particularly interesting example is a non-equivocation scheme for lightweight
clients. Due to placing validation logic in smart contracts, it should be more
efficient than, for instance, Catena [28], where clients have to collect and validate
all related transactions by themselves. We believe PDFS could achieve the same
property with much shorter proofs.

Acknowledgment. This research was supported by ST Electronics and National
Research Foundation (NRF), Prime Minister’s Office Singapore, under Corporate Lab-
oratory @ University Scheme (Programme Title: STEE Infosec - SUTD Corporate
Laboratory).

A Extended Security Discussion

A.1 Data Authentication

Our first claim is that an adversary cannot create a content on behalf of a content
provider. To achieve that, the adversary need to either: (a) tamper authenticated
proofs generated by the content providers, or (b) update the authoritative con-
tract on behalf of the content provider, or (c) forge the manifest binding the
authoritative contract and identity of the content provider. All these attacks are
out of scope our adversary model.

The first attack is infeasible due to the security of the tamper-evident data
structured used [16]. More specifically, generating a membership proof for a non-
element of the data structure is equivalent to breaking a deployed hash function.
Therefore, the adversary to create such a proof for a malicious element has to
extend the data structure by adding the element and updating the authoritative
contract by a new root. However, in this attack, the adversary cannot update
the authoritative contract as it enforces the update procedure (see Sect. 4.3).
The update procedure allows only the contract’s owner to update it. Therefore,
without the content provider’s blockchain key, the adversary cannot update the
legitimate authoritative contract and prove on the malicious content.

For the last attack, the manifest’s digital signature is verified using the TLS
PKI. Thus, without the ability to (a) use a TLS private key of the content
provider, or (b) obtain a digital certificate of the content provider, the adversary
cannot create a malicious manifest on behalf of the content provider. These
attacks are out of the scope of our adversary model, but we discuss them and
their implications in the next section.

A.2 51%-Blockchain Attack

In this section we discuss how adversaries able to undermine the blockchain
properties (although they are outside our adversary model) can impact PDFS.
In particular, we focus on the 51%-attack [23] where an adversary possesses more
than 50% of the total mining power of the blockchain network, which would allow
her to rewrite the blockchain history. Such an adversary, could attack availability

786 J. Guarnizo and P. Szalachowski

of PDFS (and any other blockchain application) by reverting or denying arbitrary
transactions (or even authoritative contract creations).

An interesting scenario is an adversary colluding with a content provider.
Besides availability attacks, the adversary could allow the content provider to
equivocate by creating two conflicting TDS versions. One version would be main-
tained on the “main” blockchain, while the second one would exist only on the
“malicious” blockchain mined by the adversary. Such an attack violates the
desired property of keeping content providers consistent, and enables attacks
similar as double-spending attacks [21].

Another interesting scenario is an adversary colluding with one of the con-
tract parties to attack another contract party. Such an adversary cannot forge
data entries or an outcome of the membership verification. However, it is a com-
mon practice that smart contracts define a timeout for inaction, after which
deposits of the contract parties are sent back to them. In that case, the adver-
sary could reverse a genuine transaction of the victim, causing the timeout from
which the colluding party would benefit.

A.3 General Discussion

By analyzing the implications and costs of adopting it, we present PDFS as a
viable alternative for smart contracts to receive authenticated data from content
providers. In this paper, we focus on design a system with desired properties
explained in Sect. 3.2. However, we are aware of issues and disagreements that
one might argue against our proposed solution.

Firstly, one might claim that signature verification solutions would requires
less effort for contract providers, and further, it provides properties of authen-
ticity and provenance of data. Nevetherless, as observed in Sect. 6.2, PDFS is
cheaper regarding gas cost and extends security properties to include account-
ability and non-equivocation for content providers. On the other hand, a naive
solution would be to publish data hashes itself in a smart contract, however,
that would be prohibitively expensive due to smart contract storage fees.

Secondly, we aimed a design for smart contracts data feed that avoids the
complexity of alternative solutions and related works. We consider that mod-
ifying a protocol extensively used or including special hardware and network
specifications makes a solution highly difficult to deploy; such as modifying the
TLS protocol or including oracles using SGX. By contrast, PDFS offers as a
simplier alternative that only requires changes on the application layer for con-
tent providers and contract-to-contract communication for contract parties. We
consider it makes PDFS more practical and easy to adopt, even without taking
the new business model that a content providers might get by providing data in
a PDFS service.

Lastly, our current approach keeps the common trust chain with only includes
contract parties who want to stablish an agreements and a content provider who
is an autoritative entity who defines trustworthy data, also known as the truth.

PDFS: Practical Data Feed Service for Smart Contracts 787

Although the content provider may be able to misbahave, PDFS is not able to
detect such actions due to data content is not analyzed, but that issue also affects
the related works. However, it can be solved by including agreement protocols.
For instance, the relying contract might revoke any agreement if two conflicting
data are submitted within a time gap.

B Case Study and Implementation Details

B.1 Case Study

In our proof of concept, we considered a scenario where contract parties decide
to settle gambling agreement creating and deploying a smart contract which uses
trusted data from a content provider who adopts PDFS in its service.

Content Provider. Following specifications in Sect. 4 and templates provided
in Sect. B.2, our implementation of the content provider is a web service which
offers data of football matches in JSON format. We configured it to support
HTTPS, and we obtained a free dataset from https://www.football-data.org/.
We implemented the TDS using Keccak-256 [12] as a cryptographic hash func-
tion. We chose Keccak as it is a state-of-the-art hash function (the current stan-
dard SHA-3 [17] is an instance of Keccak) and it allows us to reduce the cost
of membership and consistency verifications due to its native support in the
Ethereum platform.

Contract parties. It is an HTTP client application able to interact with the
content provider and a relying contract. It is capable to get and validate the
authenticity of the manifest, and it is able to submit data obtained from the
content provider to the relying contract which executes the membership veri-
fication, interacting with the authoritative contract, and proceeds to parse the
JSON data. In this case, we use a JSON parser coded in Solidity since it is not
supported natively in Ethereum platform.

B.2 Implementations

In this section, we show examples of how JSON data look like in our imple-
mentation and experiments. The JSON examples are related to the case study
explained in Sect. B.1.

https://www.football-data.org/

788 J. Guarnizo and P. Szalachowski

{
” s igned ” :{

” u r l ” : ” https : // example . com/
soc c e r ” ,
” s c add r e s s ” :”0 x539c94cb89E127
. . . ” ,
” s c i n t e r f a c e ” :

” [{” constant ” : true ,
” inputs ” : [{ ” name” :” j son ” ,

” type ” :” s t r i n g
”}] ,

”name” :” parseJSONdata ” ,
” outputs ” : [{ ” name” :”” ,

” type ” :” bool
”}] ,

. . . }] ” ,
” da t a s t ru c tu r e ” :

”{ id : s t r i ng , l o c a l : s t r i ng ,
v i s i t o r : s t r i ng , l o ca lGoa l s :

int ,
v i s i t o rGoa l s : i n t }”

} ,
” s i gna tu r e ” :”63

cc6a76 fd07252 f f 4a f 4 c . . . ”
}

Listing 1.1. A manifest example.

{
” content ” :{

” id ” :”341576” ,
” date ”:”2018−07−15T18 : 0 0 : 0 0Z”
” l o c a l ” : ” France ” ,
” v i s i t o r ” :” Croat ia ” ,
” l o ca lGoa l s ” : 4 ,
” v i s i t o rGoa l s ” :2

} ,
” p roo f s ” : [

{” s i d e ” : 0 , ”hash ” :”5 e41 f . . . ” } ,
{” s i d e ” : 1 , ”hash ” : ” 0 1 9 5 0 . . . ” } ,
. . . more items]

}

Listing 1.2. A PDFS data entry example.
It consist of the data content itself and
its membership proof which is an array
of elements containing a hash value and
a side (0 indicates left side and 1 indicates
right one).

References

1. Augur. http://docs.augur.net/. Accessed 22 Jan 2019
2. Ethereum json rpc - eth sign. https://github.com/ethereum/wiki/wiki/JSON-

RPC. Accessed 22 Jan 2019
3. Gnosis. https://gnosis.pm/resources/default/pdf/gnosis-whitepaper-DEC2017.

pdf. Accessed 22 Jan 2019
4. Litecoin. https://litecoin.com. Accessed 22 Jan 2019
5. Namecoin. https://namecoin.org/. Accessed 22 Jan 2019
6. Oraclize. http://www.oraclize.it. Accessed 22 Jan 2019
7. Solrsaverify. https://github.com/adriamb/SolRsaVerify. Accessed 22 Jan 2019
8. Ssl pulse. https://www.ssllabs.com/ssl-pulse. Accessed 22 Jan 2019
9. Tlsnotary. https://tlsnotary.org/TLSNotary.pdf. Accessed 22 Jan 2019

10. tlsnutils. https://github.com/tls-n/tlsnutils. Accessed 22 Jan 2019
11. Bayer, D., Haber, S., Stornetta, W.S.: Improving the efficiency and reliability of

digital time-stamping. Sequences II. Springer, New York (1993). https://doi.org/
10.1007/978-1-4613-9323-8 24

12. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak sponge function
family main document. Submission to NIST (Round 2) 3(30), 320–337 (2009)

13. Bhargavan, K., et al.: Formal verification of smart contracts: short paper, pp. 91–96
(2016)

14. Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., Polk, W.: Internet
x. 509 public key infrastructure certificate and certificate revocation list (CRL)
profile. Technical report (2008)

15. Costan, V., Devadas, S.: Intel SGX explained. IACR Cryptol. ePrint Archive
2016(086), 1–118 (2016)

http://docs.augur.net/
https://github.com/ethereum/wiki/wiki/JSON-RPC
https://github.com/ethereum/wiki/wiki/JSON-RPC
https://gnosis.pm/resources/default/pdf/gnosis-whitepaper-DEC2017.pdf
https://gnosis.pm/resources/default/pdf/gnosis-whitepaper-DEC2017.pdf
https://litecoin.com
https://namecoin.org/
http://www.oraclize.it
https://github.com/adriamb/SolRsaVerify
https://www.ssllabs.com/ssl-pulse
https://tlsnotary.org/TLSNotary.pdf
https://github.com/tls-n/tlsnutils
https://doi.org/10.1007/978-1-4613-9323-8_24
https://doi.org/10.1007/978-1-4613-9323-8_24

PDFS: Practical Data Feed Service for Smart Contracts 789

16. Crosby, S.A., Wallach, D.S.: Efficient data structures for tamper-evident logging.
In: USENIX Security Symposium, pp. 317–334 (2009)

17. Dworkin, M.J.: Sha-3 standard: Permutation-based hash and extendable-output
functions. Technical report (2015)

18. Ellis, S., Juels, A., Nazarov, S.: Chainlink a decentralized oracle network. Retrieved
11 March 2018 (2017)

19. Goodrich, M.T.: Efficient verification of web-content searching through authenti-
cated web crawlers. Proc. VLDB Endow. 5(10), 920–931 (2012)

20. Haber, S., Stornetta, W.S.: How to time-stamp a digital document. In: Menezes,
A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 437–455. Springer,
Heidelberg (1991). https://doi.org/10.1007/3-540-38424-3 32

21. Karame, G.O., Androulaki, E., Roeschlin, M., Gervais, A., Čapkun, S.: Misbehavior
in bitcoin: a study of double-spending and accountability. ACM Trans. Inf. Syst.
Secur. (TISSEC) 18(1), 2 (2015)

22. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, New York (1990). https://doi.org/10.1007/
0-387-34805-0 21

23. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)
24. Rescorla, E.: The transport layer security (TLS) protocol version 1.3. Technical

report (2018)
25. Ritzdorf, H., Wüst, K., Gervais, A., Felley, G., et al.: TLS-N: non-repudiation over

TLS enabling ubiquitous content signing. In: Network and Distributed System
Security Symposium (NDSS) (2018)

26. Szabo, N.: Smart contracts: building blocks for digital markets. EXTROPY: The
Journal of Transhumanist Thought, (16) 18 (1996)

27. Szabo, N.: Formalizing and securing relationships on public networks. First Monday
2(9), (1997)

28. Tomescu, A., Devadas, S.: Catena: Efficient non-equivocation via bitcoin. In: 2017
IEEE Symposium on Security and Privacy (SP), pp. 393–409. IEEE (2017)

29. Van Bulck, J., et al.: Foreshadow: extracting the keys to the intel SGX kingdom
with transient out-of-order execution. In: USENIX Security Symposium, pp. 991–
1008 (2018)

30. Wood, G., et al.: Ethereum: a secure decentralised generalised transaction ledger.
Ethereum Proj. Yellow Paper 151, 1–32 (2014)

31. Zhang, F., Cecchetti, E., Croman, K., Juels, A., Shi, E.: Town crier: an authen-
ticated data feed for smart contracts. In: Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pp. 270–282. ACM (2016)

https://doi.org/10.1007/3-540-38424-3_32
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/0-387-34805-0_21

Towards a Marketplace for Secure
Outsourced Computations

Hung Dang1(B), Dat Le Tien2, and Ee-Chien Chang1

1 National University of Singapore, Singapore, Singapore
{hungdang,changec}@comp.nus.edu.sg

2 University of Oslo, Oslo, Norway
dattl@ifi.uio.no

Abstract. This paper presents Kosto – a framework that provisions
a marketplace for secure outsourced computations, wherein the pool of
computing resources aggregates that which are offered by a large cohort
of independent compute nodes. Kosto protects the confidentiality of
clients’ inputs and the integrity of the outsourced computations using
trusted hardware’s enclave execution (e.g., Intel SGX). Furthermore,
Kosto mediates exchanges between the clients’ payments and the com-
pute nodes’ work in servicing the clients’ requests without relying on a
trusted third party. Empirical evaluation on the prototype implemen-
tation of Kosto shows that performance overhead incurred by enclave
execution is as small as 3% for computation-intensive operations, and
1.5× for I/O-intensive operations.

1 Introduction

Recent years have witnessed an emergence of online marketplaces that offer
alternatives to traditional vendor-specific service providers. Examples include
Airbnb [1] in lodging, Uber [13] in transportation. In such marketplaces, the
shared pool of resources is neither owned, provisioned nor controlled by a single
party. Instead, it aggregates that which are offered by a large cohort of indepen-
dent individuals. Designing a marketplace for secure outsourced computations,
however, faces various technical challenges.

The first technical challenge is in protecting the confidentiality of the clients’
data and the integrity of the outsourced computations, for the resource providers
(or compute nodes) may be untrustworthy. Solutions to protect the confiden-
tiality and integrity of outsourced computations have been studied in the lit-
erature [25–27,46]. For examples, homomorphic encryption [26,46] and secure
multi-party computation [27] are designed to protect data confidentiality, while
verification by replications [2,11] and verifiable computation [25] aim to protect
computation integrity. Nevertheless, these approaches either incur high over-
heads, or support only a limited range of applications. These limitations hinder
their adoption in practical systems.

H. Dang and D. Le Tien—Lead authors are alphabetically ordered.

c© Springer Nature Switzerland AG 2019
K. Sako et al. (Eds.): ESORICS 2019, LNCS 11735, pp. 790–808, 2019.
https://doi.org/10.1007/978-3-030-29959-0_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29959-0_38&domain=pdf
https://doi.org/10.1007/978-3-030-29959-0_38

Towards a Marketplace for Secure Outsourced Computations 791

Another technical challenge is in mediating exchanges between clients’ pay-
ments and compute nodes’ work in servicing the clients’ requests without relying
on a trusted third party. One approach is to commits a remuneration for a task
into an escrow which shall autonomously release the payment to the compute
node upon successful task completion. This approach, however, does not general-
ize. For micro tasks that yield small remunerations, the transaction fee (i.e., the
cost to conduct the payment transaction) becomes an overhead. On the other
hand, compute nodes may inadvertently abort macro or complex tasks midway,
exerting computational work but could not claim the reward. We believe that an
ideal solution to mediate fair exchanges between clients’ payments and compute
nodes’ work would require trusted metering of the compute nodes’ work and a
self-enforcing, autonomous agent (e.g., smart contract) responsible for settling
payments based on the aforementioned metering.

In this paper, we present a framework that enables a marketplace for secure
outsourced computations, which we name Kosto. Under our framework, the
shared pool of computing resources is contributed to by a cohort of indepen-
dent compute nodes. Clients in Kosto can request computational services from
the compute nodes, while enjoying confidentiality protection on their data and
integrity assurance on their outsourced computations. This is achieved by the
use of Trusted Execution Environments (TEEs). In particular, each compute
node in Kosto is capable of provisioning a TEE such as Intel SGX enclave for
outsourced computations. The enclave prevents other processes, the operating
system and even the owner of the compute node from tampering with the exe-
cution of the code loaded inside the enclave or observing its state. A compute
node services a client’ request by executing the outsourced computation inside
an enclave that is attested to be correctly instantiated. The attestation allows
secrets to be provisioned to the enclave only after it is instantiated.

Kosto mediates exchange of the clients’ payment and compute nodes’ work
via a hybrid architecture that combines TEE-based metering with blockchain
micro payment channel [10,37]. Our framework incorporates in each enclave an
accounting logic that meters the compute node’s work. Such metering is then
translated to a payment promise with which the compute node can settle the pay-
ment escrow and claim the corresponding reward. This approach facilitates the
exchange between the client and the compute node without incurring excessive
transaction fee or involving a trusted third party.

Our experiments reveal that the overhead incurred by enclave execution and
the trusted metering is as small as 3% for computation-intensive operations, and
1.5× for I/O-intensive operations. We expect these overheads can be further
reduced by incorporating optimizations that enhance the efficiency of enclave
execution [36,44,47], thereby allowing Kosto to attain better efficiency.

In summary, this paper makes the following contributions.

– We propose a framework, called Kosto, which facilitates a marketplace for
secure outsourced computations. Under our framework, both confidentiality
of clients’ inputs and integrity of the outsourced computations are protected
through the use of TEEs. In addition, Kosto mediates fair exchanges between

792 H. Dang et al.

clients’ payments for the execution of the outsourced computations and com-
pute nodes’ work in servicing the clients’ requests via a hybrid architecture
that combines TEE-based metering with blockchain micro payment channel.

– We implement a prototype of Kosto and evaluate the overhead incurred by
enclave execution and the TEE-based metering. The experiments shows that
performance overhead incurred by enclave execution and trusted metering
is as small as 3% for computation-intensive operations, and 1.5× for I/O-
intensive operations.

2 Preliminaries

Intel SGX. Intel SGX [33] is a set of CPU extensions capable of providing
hardware-protected TEE (or enclave). Each enclave is associated with a pro-
tected address space. The processor blocks any non-enclave code’s attempt to
access the enclave memory. Memory pages are encrypted using the processor’s
key prior to leaving the enclave. Intel SGX provides attestation mechanisms
allowing an attesting enclave to demonstrate to a validator that it has been cor-
rectly instantiated [15], and to establish a secure, authenticated connection via
which they can securely communicate sensitive data.

Ethereum Smart Contract. Ethereum enables smart contract which is an
“autonomous agent” associated with a predefined executable code. Incentive and
security mechanisms of the Ethereum ecosystem encourage miners to execute the
contract’s code faithfully [18]. A smart contract could be used to implement an
escrow that enforces a payment from a payer to a payee once the payee has
delivered some service to the payer, while keeping the payment inaccessible to
the payee before such condition is met. The transaction fee to settle the escrow
does not depend on the monetary value that the escrow holds. Consequently,
should the payment value is too small (i.e., micro transaction), the transaction
fee becomes a significant overhead.

Payment Channel. Payment channel enables two parties to transact a large
number of micro payments without incurring high transaction fee or overload-
ing the blockchain with excessive number of transactions [10,37]. A channel is
established after a deposit is made on the blockchain (on-chain). A payer makes
a micro payment to the payee by issuing a digitally signed and hash-locked trans-
fer, called payment promise, and sending it off-chain to the payee. The payee can
use such payment promise to close the channel and claim the payment she has
been promised so far at any time. The value of the payment promises should not
exceed the on-chain deposit, otherwise it cannot be fully collateralized.

3 The Problem

3.1 System Model

We study a marketplace for secure outsourced general-purposed computations.
Unlike vendor-specific cloud services, the pool of computing resources in such a

Towards a Marketplace for Secure Outsourced Computations 793

marketplace aggregates that which are offered by a large cohort of independent
compute nodes (discussed below). More specifically, we consider a system model
that comprises the following three main parties: clients, compute nodes and
brokers.

Program
Standardized

Instrumentation
Procedure

ProgKT

Input

Output

Input

OutputPoW

Fig. 1. The standardized instrumentation procedure that converts Program into
ProgKT. PoW reflects the compute node’s work in executing Program on Input.

– Clients are the system’s end users. A client would like to execute a program
Program on an input Input, obtaining an computation outcome Output. The
program Program can be written by the client, or an open-source software
provided by a third party. In either case, the client outsources such compu-
tational task to a compute node (which we shall define in the following). The
clients are not expected to maintain constant connection with the compute
node over the course of the outsourced computation. While the clients can
discover the compute nodes and initiate the outsourced computation on their
own, this approach is unlikely to scale. Instead, we propose to delegate such
tasks to a broker.

– Compute nodes are machines equipped with commodity trusted processors
(e.g., Intel SGX processors) capable of provisioning TEEs (or enclaves). A
compute node services a client request by running its code in an enclave,
and generating an attestation that proves the correctness of the code execu-
tion (and thus the result). In return, the compute node receives remuneration
v proportional to computational work it has asserted in executing the out-
sourced task.

– Brokers facilitate node discovery and load balancing, and assist the clients
in attesting correct instantiation of the enclaves housing the outsourced com-
putations on the compute nodes. Brokers may charge clients and/or compute
nodes certain commission fee in return to their services. To eliminate broker
monopoly and single-point-of-failure, we allow multiple brokers to co-exist,
thus enabling better brokering service for both clients and compute nodes.

Hereafter, we denote by P a client, by C a compute node, and by B a bro-
ker. The program to be executed on the compute node incorporates logic that
meters the compute node’s work in a fine-grained and tamper-proof fashion.
For simplicity, let us assume that such logic is defined in the system configu-
ration, and agreed upon by all clients and compute nodes. We further assume
that there exists a standardized instrumentation procedure that converts the

794 H. Dang et al.

client’s program Program into a program ProgKT that adheres to the metering
logic requirements. Figure 1 illustrates an overview of the instrumentation, and
the relation between ProgKT and Program.

3.2 System Goals

We now formalize the security guarantees that a marketplace for outsourced com-
putations should offer. The guarantees motivate and justify our design choices.

– Correct and attested execution requires that the output Output obtained by
the client correctly reflects the faithful execution of Program on Input.

– Data confidentiality requires that Input, and secret states of Program from a
client remain encrypted outside the enclave memory, and thus are not known
to any other party, including the compute node (e.g., its OS and its owner).
The key to decrypt them resides only inside the enclave.

– Fair exchange requires that the work a compute node exhausts in executing
the outsourced task is accurately metered and remunerated in fine granularity.
At the same time, it dictates that a compute node gets the full reward for the
outsourced computation if and only if a client gets a correct result of such
computation.

Besides the security guarantees, for practical usability reason, we also wish
to limit the required interaction between client and compute node and optimize
assignment of clients’ request to compute nodes. The former unburdens clients
from constantly maintaining a connection with their assigned compute nodes
prior to and during execution of the outsourced computations, while the latter
maximizes the resource utilization in the marketplace.

3.3 Threat Model

Trust Assumptions. We study a threat model in which the parties (namely
C,B and P) are mutually distrustful. We assume that a standardized instru-
mentation procedure that converts the client’s program Program into a program
ProgKT that meters the compute node’s work in a fine-grained and tamper-proof
fashion (Fig. 1) can be formally verified and therefore is trusted. We further
assume that commodity trusted processors provisioning TEEs on the compute
nodes, in particular Intel SGX processors, are implemented correctly and their
protection mechanisms are not compromised. Finally, we make an assumption
that the Ethereum blockchain is decentralised and trusted (i.e., it is publicly
accessible, and its underlying consensus and smart contract execution mecha-
nisms are intact).

Adversary. We consider a party who deliberately deviates from a prescribed
protocol an adversary. The adversarial goal is to violate the system guarantees
described earlier in Sect. 3.2, namely confidentiality of client’s data, integrity of
the outsourced computations, and the fair exchange between P’s payment and
C’s work in servicing the former’s request.

Towards a Marketplace for Secure Outsourced Computations 795

B CP
Escrow

(1a) Request (1b) Resource offer

(2b) pkg = 〈ProgKT, Enc(kP , Input), AuxData〉
(4a) Enc(kCP , Output)

(3) ProgKT enclave attestation & provision of kP

(2a) v (4b) v

Fig. 2. Kosto overview. kCP is derived from a secret chosen by C and kP .

We assume the adversary is computationally bounded, and that the cryp-
tographic primitives employed in the system (e.g., encryption scheme or hash
function) are secure. Adversarial clients and brokers can deviate arbitrarily from
the prescribed protocol, but they can neither control the compute node’s oper-
ating system (OS) nor its enclaves’ execution. An adversarial compute node can
control its operating system, schedule its processes, reorder and tamper with its
network messages. Nonetheless, it cannot tamper with the enclaves’ execution,
nor observe theirs internal state.

We do not consider side-channel attacks against the hardware and the enclave
execution [45,48]. Besides, denial of service attack wherein an adversary denies
service to honest clients, or blocks honest compute nodes from the system are
beyond scope. Consequently, we require some compute nodes to behave correctly
so as to guarantee the system’s availability. As mentioned earlier, since the clients
can serve as their own broker, handling compute node discovery and connecting
to the compute nodes directly, there will always be honest self-serving brokers
in the system, which eliminates the broker’s single-point-of-failure problem.

4 Kosto Design

4.1 Workflow

P and C can post their requests and available resource offers to a broker B of their
choice, perhaps based on B’s reputation or quality of service. B then evaluates
among all requests and offers it has received a suitable assignments of requests
to compute nodes. Alternatively, the clients and the compute nodes can directly
discover and connect to each other. In such case, they play an additional role of
self-serving broker.

Let v be the remuneration that P pays to C in exchange for executing
Program on Input and delivering the result Output. Kosto requires Program
to be instrumented into ProgKT which incorporates trustworthy metering of the
compute node’s work. To guarantee payment to C upon its completion of the
computational task, Kosto requires P to maintain a deposit worth at least v
on an on-chain escrow. P sends pkg = 〈ProgKT, Enc(kP , Input), AuxData〉 to C,
wherein Enc() is a symantically secure symmetric-key encryption scheme [29],

796 H. Dang et al.

and AuxData contains auxiliary data needed for the execution. C instantiates the
ProgKT enclave, and attests to P that the enclave has been instantiated correctly.
Upon successful attestation, a secret key kP is provisioned to the ProgKT enclave,
allowing it to process and compute on Input. Finally, the output Output of the
computation is sent to P. Output is encrypted in such a way that its decryption
by P ensures full payment of v to C. Figure 2 depicts the workflow in Kosto.

4.2 Enclave Execution

Kosto relies on Intel SGX [33] to offer attested execution and data confidential-
ity to the outsourced computations. The outsourced program Program should
be SGX-compliant (i.e., it inherently supports SGX enclave execution). Tech-
niques that enable enclave executions for unmodified legacy applications, such
as Haven [16] and Panoply [41] are orthogonal to Kosto.

A compute node services the client’s request by first instantiating the ProgKT
enclave, and generating an attestation proving that the enclave has been instanti-
ated correctly. The attestation mechanism allows P to establish a secure, authen-
ticated connection to the enclave, via which the secret key kP is communicated.
The compute node then invokes the enclave execution on Input to collect the
output Output. In addition to Output, the enclave also returns a “proof of work”
indicating a computational effort that C has asserted thus far, which C can use
to claim the remuneration. We elaborate on this in Sect. 4.3.

4.3 Fair Exchange

Kosto splits the reward v of the outsourced computation into two portions,
namely vc = αv and vd = (1 − α)v, where α is a parameter set by the client
P, and agreed upon by C. The first portion (i.e., vc) remunerates C for its work
on a fine-grained basis, while the second portion (i.e., vd) rewards the delivery
of the result. The configuration of the parameter α, and by its extension, the
remuneration policy, is beyond Kosto’s scope.

C is entitled to vc upon the completion of the outsourced computation. In case
the computation is inadvertently aborted midway, C is still remunerated with
a fraction of vc according to its progress prior to the suspension. The remain-
ing portion of v, namely vd, is only payable to C when the computation output
is delivered to P. This discourages C from denying P of the result. Additional
mechanism that disincentivises result withholding (e.g., requiring C to make a
security deposit which is forfeited should they repeatedly abort the computa-
tion [17,30]) can also be incorporated into Kosto.

TEE-Based Metering. To enable an fair exchange described above, Kosto has
to meter the compute node’s work in a fine-grained and tamper-proof fashion.
We follow Zhang et al. [49] in implementing a reliable metering logic inside
the enclave. More specifically, Kosto requires the client’s program Program to be
instrumented into a wrapper program ProgKT (see Fig. 1). The wrapper program
reserves the logic of the original program (i.e., it executes Program’s logic on

Towards a Marketplace for Secure Outsourced Computations 797

Input), while keeping a counter of the number of instructions that has been
executed. This is then used as a measurement of the compute node’s work.

ProgKT maintains the instruction counter in a reserved register which is inac-
cessiable to any other process. To prevent a malicious Program from manipu-
lating the instruction counter, Kosto does not support Program that is multi-
threaded or contains writeable code pages [5,49]. When the ProgKT enclave halts
or exits, it returns a “proof of work” (i.e., the number of instruction executed)
based on which Kosto settles the payment of vc (or a fraction of it). We note that
if the compute node (i.e., its OS) intentionally kills the enclave process, ProgKT
does not return such proof of work, which eliminates a remuneration-draining
attack where a malicious compute node deliberately interrupts the enclave exe-
cution before it finishes, so as to drain vc without an intention of completing the
outsourced computation.

We remark that the restriction of single-threaded Program is not necessary
a severe limitation, for threading in SGX enclave is much different compared to
that of legacy software [3]. In particular, one cannot create or destroy an SGX
thread on the fly, and an SGX thread is mapped directly to a logical processor.
Consequently, a typical SGX-compliant program (i.e., a program that inherently
supports SGX-enclave execution) is often single-threaded.

On the Choice of Instruction Counting. One may argue that instructions
are not the most accurate metric for CPU effort. Alternative metrics include CPU
time and CPU cycles. Nevertheless, these metrics are subject to manipulation by
the malicious OS. Even if they were not manipulated, they are incremented even
when an enclave is swapped out [49]. Consequently, we believe that instruction
counting is the most appropriate method for securely measuring the compute
node’s effort using available tools in SGX.

Micro Payments with Off-Chain Payment Channel. One naive approach
to settle the proof of work is for C to send it to P, who then responds with
a transaction paying a corresponding amount of reward to C. This approach,
however, does not payment for C in case P neglects her outsourced computa-
tion. Another approach is to have P commit a number of equally-valued micro
transactions, each of which contains a fraction of vc, to a payment escrow on the
blockchain, and to structure the proof such that it can be used to autonomously
claim a subset or all of those micro transactions. Nonetheless, settling a large
number of micro transactions on the blockchain incurs high overhead.

Kosto sidesteps this challenge by leveraging payment channel [10], allowing
two parties to transact a large number of micro payments without incurring high
transaction fee or overloading the blockchain with transactions. It is assumed
that a payer and a payee maintain a payment channel (discussed in Sect. 2), and
each micro payment is represented by a payment promise to be communicated
off-chain (i.e., off the blockchain) between the payer and the payee. To settle
the payments, the payee posted the latest payment promise (accompanied by
settling-data such promise requires, if any) to the blockchain, thereby closing
the channel. However, establishing a new channel for each pair of client and

798 H. Dang et al.

B CP
Pick randB

hB = H(randB)
Pick 〈s1, s2, . . . sn〉, compute hi = H(si)
Pick randP , compute hP = H(randP)

h1

mB
1
. . .

hn

mB
n

hP hB
mB

d

Pick randC
hC = H(randC)

h1

mC
1
. . .

hn

mC
n

hP hC
mC

d

Collect Enc(kCP , Output) from ProgKT

Enc(kCP , Output)
randP

Fig. 3. An overview of the fair exchange in Kosto. mB
i and mC

i are hash-locked by hi,
mB

d by hP and hB, mC
d by hP and hC , and kCP = kP ⊕ randC .

compute node is inefficient. Kosto, instead, makes use of multi-hop channels1 to
better utilize the channel capacity, requiring fewer channels to be established.

To this end, Kosto assumes that each client P maintains a payment channel
with the broker B that, in turn, maintains a channel with each compute node
C. The payment from P to C does not require a direct channel; rather, it could
be securely routed via B, in a sense that once C collects a payment from B,
the latter is guaranteed of a corresponding payment from P2. We assume that
each payment channel has sufficiently large capacity (i.e., its on-chain deposit)
to accommodate the payment of various outsourced computations during its
lifetime.

Figure 3 summarizes the fair exchange of the reward v and the outsourced
computation of ProgKT. v is split over n+1 micro payments, n of which summing
up to vc, while the last one is worth vd. The protocol does not require any
communication between P and C prior to or during the computation, nor an on-
chain channel between them. It, however, requires an off-chain communication
between P and C in the final step to decrypt the output.

Payment of vc. Without loss of generality, let us assume that the payment of vc

is divided into n equally-valued payment promises, which are routed via B. That
is, P generates n payment promises to B, and B generates the corresponding n
payments promises to C with the same value and claiming condition.

To generate the n payment promises 〈mB
1 ,mB

2 , . . . mB
n〉 to B, P first picks

n random strings 〈s1, s2, . . . sn〉, and computes their hashes 〈h1, h2, . . . hn〉 (i.e.,
hi = H(si)). A digest hi is used to lock a promise mB

i , such that B can only use
mB

i to close the channel if it is aware of si such that H(si) = hi. The payment

1 While we discuss unidirectional channels, Kosto supports bidirectional channels.
2 While B could charge a service fee for the routing, for simplicity, we assume B offers

such routing free of charge. Extending Kosto to support such service fee is trivial.

Towards a Marketplace for Secure Outsourced Computations 799

promise mB
i is worth [debtP + (i × vc)/n] wherein debtP is the accumulated

amount of unsettled payment for P’s previous requests. Finally, P encrypts the
random strings 〈s1, s2, . . . sn〉 with kP , and attaches them as well as the payment
promises to AuxData.

Similarly, B generates the corresponding promises 〈mC
1 ,mC

2 , . . . mC
n〉 to C.

Each promise mC
i is locked by hi (i.e., the same hash-lock as mB

i), and worth
[credC + (i × vc)/n] wherein credC is the accumulated unsettled credit that C
is entitled to claim for its previous services. B includes these promises into the
AuxData before forwarding pkg to C.

Payment of vd Upon Output Delivery. To ensure that the remaining portion
of v, namely vd, can only be collected upon the delivery of the output to P,
ProgKT encrypts the output using a key kCP derived from kP and a secret randC
chosen and committed to by C. At the same time, the full payment of v is
encumbered until the disclosure of randC .

As shown in Fig. 3, besides the n payment promises above, P generates
another payment promise mB

d to B that is worth [debtP + v] and is hash-locked
by two digests hB and hP . Similarly, B also generate one more payment promise
mC

d to C that is worth [credC+v], and hash-locked by hP and hC . The three hash-
locks hP , hB and hC can be settled by three independent settling-data randP ,
randB and randC chosen independently at random by the three parties P,B and
C, respectively.

Dynamic Runtime Checks. The fair exchange requires the wrapper enclave
ProgKT to perform some dynamic checks at runtime prior to executing Program’s
logic. More specifically, besides Input and AuxData, ProgKT also consumes
the hash-lock hC and randC . It first verifies the validity of the settling-data
〈s1, s2, . . . sn〉 (i.e., hi = H(si)∀〈hi, si〉 ∈ AuxData). Next, it checks if hC =
H(randC). Only when the verification passes does it execute Program on Input,
obtaining Output. It then encrypts Output with kCP = kP ⊕randC , producing an
encrypted output Enc(kCP , Output). Finally, the enclave returns the appropriate
settling-data si based on the instruction counter and the encrypted output (if it
successfully completes the computation) to C.

Payment Settlement. The settling-data si renders the promise mC
i claimable,

enabling C to collect (a portion of) vc according to its work. In order to collect
a payment from a promise, one posts the corresponding settling-data to the
blockchain, thereby making it publicly available.

To obtain the settling-data necessary to claim mC
d (i.e., the full reward v),

C has to send the encrypted output to P, who then responds with randP . If C
chooses to settle the payment thereby closes the channel between C and B, it has
to post both randP and randC on the blockchain. Since all data posted to the
blockchain are publicly available, P can now collect randC to compute kCP and
obtain Output, while B can collect randP to claim mB

d . Alternatively, should C
wish to maintain the channel, it back-propagates the settling-data to B and P so
that they can update credC , debtP , and P can decrypt the encrypted output. In
a situation where P’s response is invalid (i.e., its digest produced by the standard

800 H. Dang et al.

hash function H(·) does not match hP), C can check this invalidity locally and
use it as a evidence to accuse P of conducting mischief. In such situation, fair
exchange requirement is still guaranteed (i.e., C does not claim vd from B, who
in turn does not claim vd from P and P cannot decrypt Enc(kCP , Output) to
obtain Output).

4.4 Delegated Attestation

Kosto relieves P from conducting a remote attestation with C at the beginning
of every request execution by implementing a delegated attestation scheme. The
scheme requires each broker B to run an attestation manager enclave AM, and
each compute node C to run a key handler enclave KH. The execution of AM and
KH are protected by Intel SGX.

Without loss of generality, the delegated attestation builds a chain of trust
that comprises three links. The first and second links are established via remote
attestations between P as a validator and AM as an attesting enclave, and AM as a
validator and KH as an attesting enclave. The final link entails ProgKT enclave to
prove its correctness to KH via local attestation. Chaining all three links together,
P gains confidence that the ProgKT enclave has been properly instantiated on
the compute node C using the correct code, without contacting C or the IAS.

Each attestation manager enclave has its own (unique) public-private key
pair (pkAM, skAM) that are generated uniformly at random during the enclave
instantiation. Upon successfully instantiating AM, B requests the trusted proces-
sor for its remote attestation πAM = 〈MAM, pkAM〉σTEE

, where MAM is the enclave’s
measurement, and σTEE is a group signature signed by the processor’s private
key. The certificate πAM attests for the correctness of the AM enclave and its public
key. Nonetheless, the only party that can verify πAM is the IAS acting as group
manager [15]. Kosto converts πAM into a publicly verifiable certificate by hav-
ing B obtain and store the IAS response CertAM = 〈πAM, validity〉σIAS

where
σIAS is the IAS’s publicly verifiable signature on πAM and the validity flag. By
examining CertAM, any party can verify the correctness of and establish a secure
connection to the AM enclave.

Likewise, every compute node C runs a key handler enclave KH. C obtains
(from the IAS) and stores a publicly verifiable certificate CertKH =
〈πKH , valid〉σIAS

, where πKH is KH’s remote attestation containing its mea-
surement MKH and its unique public key pkKH. By examining CertKH, any party
can be assured of the correctness of KH and communicate securely with it.

Delegated Attestation Protocol. Fig. 4 depicts the workflow of Kosto’s
delegated attestation. After instrumenting Program into ProgKT and verify-
ing the correctness of the instrumentation, P initiates the delegated attes-
tation by obtaining CertAM from B and verifies its validity. It then estab-
lishes a secure and authenticated channel with AM using pkAM. P then sends
pkg = 〈ProgKT, Enc(kP , Input), AuxData〉 to B, and kP to AM via the secure
channel. Once B finds a compute node C that is willing to match P’s request, AM
obtains CertKH from C, verifies its validity, and establishes a secure and authen-
ticated connection with C’s KH to communicate kP . B then sends pkg to C.

Towards a Marketplace for Secure Outsourced Computations 801

P BAM

CKH ProgKT

(1) CertAM

(2b) kP

(2b) pkg

(3) CertKH
(4a

) kP (4b) pkg

(5) C instantiates
ProgKT enclave

(6) ψProgKT

(7) kP

Fig. 4. An overview of the delegated attestation scheme.

The compute node instantiates an enclave to execute ProgKT, and performs a
local attestation with KH to prove its correctness. Upon successfully attestation,
KH sends the key kP to the ProgKT enclave. Once the ProgKT enclave completes
the computation, it returns the encrypted output, which is then sent to P (per-
haps being routed through B).

This mechanism only invokes IAS to obtain attestation certificates for AM
and KH, instead of constantly involving IAS in every task execution. Further, it
allows P to post a request (along with the payment) and then go offline until
the time she wishes to collect the output, as opposed to remaining online till her
request is picked up by some computation node.

5 Security Arguments

5.1 Attested Execution and Data Confidentiality

Kosto’s relies on Intel SGX [33] to offer attested execution and data confiden-
tiality to outsourced computations. In particular, SGX enables isolated execu-
tion [43] ensuring that code loaded and running inside the enclaves cannot be
tampered with by any other processes including the operating system or hyper-
visor. This, in combination with attestation capabilities, allows Kosto to offer
attested execution in which the computation correctness is guaranteed. More-
over, data (i.e., input, output) and secret states of the enclave execution always
remain encrypted outside of the enclave memory, thus their confidentiality are
guaranteed. Furthermore, SGX memory encryption engine is capable of protect-
ing data integrity and preventing memory replay attacks [28,32].

Nonetheless, SGX’s attested execution does not inherently offer protections
against side-channel leakages [24,40,48]. The access pattern incurred by data
(or code page) moving between the enclave and the non-enclave environment
(e.g., page fault) could leak sensitive information about the code or data being
processed within the enclave. Such side-channel leakage could be mitigated by
ensuring that the enclave execution is data oblivious; i.e., the access pattern no
longer depends on the input data [21]. While Kosto does not explicitly eliminate

802 H. Dang et al.

side-channel leakage, it could benefit from a vast amount of research on defenses
against side-channel leakages [20,21,31,40,42], which we shall incorporate into
Kosto in future work.

5.2 Fair Exchange

TEE-Based Metering. To enable an fair exchange between client’s payment
and compute node’s computation, Kosto necessitates dynamic runtime checks
incorporated within the enclave that houses the outsourced computation. We
implement this by providing a compiler that instruments any SGX-compliant
program Program into a wrapper program ProgKT. We believe that these addi-
tional steps and the overall instrumentation are simple enough to lend themselves
to formal verification and vetting by Program writer, or by the client.

As we mentioned earlier, the original Program should not contain writable
code pages, for they would allow the program to rewrite itself at runtime and
thus evade the instrumentation. This could be enforced by requiring the code
page to have either write or executable permission exclusively (i.e., it cannot have
both permission at the same time). This practice has also been recommended
by Intel to the enclave writers [5].

In addition, Kosto requires Program to be single-threaded. While the instruc-
tion counter is maintained in a reserved register which is inaccessible to any other
processes (Sect. 4.3), it remains accessible by different threads of Program, should
it be multi-threaded. Thus, a malicious program that has multiple threads could
manipulate the instruction counter value by carefully crafting the interactions
of its threads.

Payment of vc. Kosto builds on payment channel [10] to enable efficient micro
payments and relies on the security of the Ethereum blockchain to ensure pay-
ment escrow is faithfully executed. To optimize for efficiency and avoid overload-
ing the blockchain, Kosto securely routes payment from P to C via the broker
B. A careful design of hash-lock payment promises, wherein promise from P to
B, and that of B to C could be settled using the same settling-data, guarantees
that B can always claim from P which he pays to C on behalf of P.

Ensuring Output Delivery. At the end of the computation, ProgKT enclave
encrypts the Output using key kCP = kP ⊕randC . Since mC

d is partially locked by
randC , the decryption of the output and the settling of mC

d are bound together. In
particular, in order to claim mC

d , C has to post randC to the blockchain, making it
publicly available. This enables P to compute kCP and obtain Output. Should P
deny C of randP after receiving the encrypted output, the latter does not reveal
randC , causing the output to remain encrypted. On the other hand, should C
wish to deny P of the output, it would have to forfeit vd. In sum, it is either the
case that P obtains the output and C is entitled to claim mC

d , or both of them
are denied of the exchange’s outcome (i.e., Output for P and vd for C).

Towards a Marketplace for Secure Outsourced Computations 803

5.3 Delegated Attestation

Kosto’s delegated attestation relies on AM and KH enclaves to attest correct
instantiation of ProgKT enclave. Therefore, their correct instantiations are of
utter importance. Fortunately, these enclave are fixed (as opposed to the ProgKT
enclave that houses client-defined program), and thus are easy to vet and verify.

Kosto’s delegated attestation requires minimal involvement of P (i.e., exam-
ine the publicly verifiable certificates CertAM = 〈πAM, validity〉σIAS

). By check-
ing that πAM indeed contains the expected measurement MAM, that its validity
flag indicates valid, and that the certificate has been properly certified (using
Intel’s published public key [9]), P can ascertain the correct instantiation of AM.
Moreover, using the public key pkAM included in πAM, P can establish a secure
and authenticated channel to AM via which the secret key kP is communicated.
Likewise, AM can verify the correct instantiation of KH and securely communicate
kP to the latter in the exact same manner. The security of the local attestation
and communication between KH and ProgKT enclave follows directly from Intel
SGX’s specifications [15]. Therefore, provided that cryptographic primitives in
use are secure, and SGX hardware protection mechanisms are not subverted,
Kosto’s delegated attestation is secure.

6 Evaluation

6.1 Experimental Setup

All experiments are conducted on a system that is equipped with Intel i7-6820HQ
2.70 GHz CPU, 16 GB RAM, 2TB hard drive, and running Ubuntu 16.04 Xenial
Xerus. We evaluate the overhead of Kosto’s enclave execution using a number
of computational tasks including five benchmarks (i.e., mcf, deepsjeng, leela,
exchang2, and xz) selected from SPEC CPU2017 [12], and two standard cryp-
tographic operations (i.e., SHA256 and AES Encryption). The enclave trusted
codebases are implemented using Intel SGX SDK [4]. To quantify the cost of
task matching in Kosto, we measure the runtime of the Mucha-Sankowski algo-
rithm [34] that we implemented in C. All experiments are repeated over 10 runs,
and the average results are reported.

6.2 Cost of Enclave Execution

Overhead in Execution Time. We evaluate the five SPEC CPU2017 bench-
marks in three different execution modes, namely baseline, SGX-compliant and
Kosto-compliant. The baseline mode compiles the benchmarks as-is and runs
them in untrusted execution environment. SGX-compliant mode requires port-
ing the benchmarks to support SGX-enclave execution. This entails replacing
standard system calls and libraries in the original code with SGX-compliant
ones supported in the SGX SDK [4]. Finally, the Kosto-compliant mode further
instruments SGX-compliant code with dynamic runtime checks and TEE-based
metering discussed in previous section.

804 H. Dang et al.

mc
f

dee
psj

eng lee
la xz

exc
han

ge
0

1

2

3

N
or
m
al
is
ed

ru
nn

in
g
ti
m
e

baseline
SGX-compliant
Kosto-compliant

Fig. 5. Kosto’s enclave execution overhead. The running time of each benchmark is
normalized against its own baseline mode’s.

28 212 216 220 224
0

100

200

300

400

Message Size (Bytes)

M
B
ps

OpenSSL
SGXSSL

(a) SHA256 throughput

28 212 216 220 224
0

1

2

3

4

5

Message Size (Bytes)

G
B
ps

OpenSSL
SGXSSL

(b) AES-GCM throughput

Fig. 6. Throughput of enclave and non-enclave based cryptographic operations.

Figure 5 compares the running time of the five benchmarks in three modes,
with the running time of each benchmark normalized against its own baseline.
We observe that the SGX-compliant mode incurs from 1.5× to 3.7× overhead
over the baseline. This overhead is mostly due to enclave’s control switching. The
instrumentations introduced in Kosto-compliant mode incur an extra 8%–14%
overhead relative to the SGX-compliant mode.

Various techniques have been proposed for minimizing the overhead of
enclave execution, typically by reducing the control switching between the
enclave code and the untrusted application that services OS-provided func-
tions [36,44,47]. We leave the incorporation of such optimization into Kosto
for future work.

Overhead in Throughput. Next, we measure the overhead in throughput
incurred by enclave execution on computation-intensive works. This set of exper-
iments measure performances of SHA256 and AES-GCM encryption operations
under OpenSSL [7] and Intel SGXSSL [6] implementations against exponentially

Towards a Marketplace for Secure Outsourced Computations 805

increasing input size (ranging from 256 B to 4 MB). OpenSSL implementation
runs in an untrusted non-enclave memory, whereas SGXSSL ports OpenSSL to
support SGX enclave execution.

Figure 6a shows a significant gap between the throughput of SGXSSL and
OpenSSL implementations of SHA256 when a message size is small (e.g.,
OpenSSL’s throughput is upto 5× for 1 KB message). Nonetheless, such a gap
reduces as the message size increases (e.g., as small as 1.5× for 4 MB message). A
similar trend is observed in throughput of AES-GCM encryption (the decryption
throughput is similar), with the throughput overhead incurred by enclave execu-
tion reduces from 6.3× for 1 KB message to 3% for 4 MB message. We attribute
this throughput gap to the I/O cost and context switching that enclave execution
incurs. Fortunately, this overhead is amortized as the input size increases.

7 Related Works

Decentralised Outsourced Computation. Golem [2] explores a marketplace
for outsourced computation. Unlike Kosto, it does not feature the attested execu-
tion environment. Consequently, Golem needs to redundantly execute the same
task on multiple compute nodes in order to verify the execution correctness.
Concurrent to our work, AirTNT [14] proposes the use of enclave execution
for outsourced computations, and devises a protocol that allows fair exchange
between the client and the compute nodes. Such protocol necessitates a separate
payment channel for every pair of client and compute node, and requires con-
stant communication between the two parties over the course of the outsourced
computation (i.e., highly interactive). Kosto, in contrast, alleviates the client
and the compute nodes from these inconveniences.

Reliable Resource Accounting. Early approaches to resource accounting
in the context of outsourced computations rely on nested virtualization and
TPMs, or place a trusted resource observer underneath the service provider’s
software [19,39]. Alternatively, REM [49] instruments the client’s program with
dynamic runtime checks that maintain an instruction counter to self account its
computational effort. The correctness and integrity of these runtime checks are
enforced by the trusted hardware. Kosto adopts REM’s approach in metering
the compute nodes’ work.

SGX-Based Systems. Trusted hardware, in particular Intel SGX processors,
have been used to enhance security in various application domains, including
data analytics [21,24,38], machine learning [35] and outsourced storage [20,23].
In addition, SGX has also been utilized to scale the blockchain [8,22]. To our
knowledge, Kosto is the first solution to provision a full-fledged marketplace for
secure outsourced computations using Intel SGX.

8 Conclusion

We have presented Kosto – a framework enabling a marketplace for secure out-
sourced computations. Kosto protects confidentiality of clients’ input, integrity of

806 H. Dang et al.

the computations, and ensures fair exchange between the clients and the compute
nodes. Our experiments show that Kosto is suitable for computation-intensive
operations, incurring an overhead as low as 3% over untrustworthy non-enclave
execution. I/O-intensive operations are also supported, albeit as a higher over-
head (e.g., 1.5×). We leave an incorporation of enclave execution optimizations
and defenses against side-channel leakages to future work.

Acknowledgement. This research has been supported by the National Research
Foundation, Prime Minister’s Office, Singapore under its Strategic Capability Research
Centres Funding Initiative. We thank the anonymous reviewers their helpful feedback
and insightful suggestions. Opinions and findings expressed in this work are those of
the authors and do not necessarily reflect the views of any of the sponsors.

References

1. Airbnb. https://www.airbnb.com
2. Golem. https://golem.network/
3. Intel SGX notes. https://intelsgx.blogspot.com/2016/06/great-notice-about-

basics-of-sgx.html
4. Intel SGX SDK for Linux. https://github.com/01org/linux-sgx
5. Intel Software Guard Extensions Enclave Writer’s Guide. https://software.intel.

com/sites/default/files/managed/ae/48/Software-Guard-Extensions-Enclave-
Writers-Guide.pdf

6. Intel Software Guard Extensions SSL. https://github.com/intel/intel-sgx-ssl
7. OpenSSL Cryptography and SSL/TLS Toolkit. https://www.openssl.org/
8. Proof of elapsted time. https://sawtooth.hyperledger.org
9. Public key for Intel attestation service. https://software.intel.com/en-us/sgx/

resource-library
10. Raiden network. http://raiden.network
11. SETI@home. https://setiathome.berkeley.edu/
12. SPEC CPU2017 Benchmarks. https://www.spec.org/cpu2017/Docs/overview.

html
13. Uber. https://www.uber.com
14. Al-Bassam, M., Sonnino, A., Król, M., Psaras, I.: Airtnt: fair exchange payment for

outsourced secure enclave computations. arXiv preprint arXiv:1805.06411 (2018)
15. Anati, I., Gueron, S., Johnson, S., Scarlata, V.: Innovative technology for CPU

based attestation and sealing. In: HASP (2013)
16. Baumann, A., Peinado, M., Hunt, G.: Shielding applications from an untrusted

cloud with haven. In: OSDI (2014)
17. Bentov, I., Kumaresan, R., Miller, A.: Instantaneous decentralized poker. In: Tak-

agi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 410–440.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9 15

18. Buterin, V.: Ethereum: a next-generation smart contract and decentralized appli-
cation platform (2014). https://github.com/ethereum/wiki/wiki/White-Paper

19. Chen, C., Maniatis, P., Perrig, A., Vasudevan, A., Sekar, V.: Towards verifi-
able resource accounting for outsourced computation. In: ACM SIGPLAN Notices
(2013)

20. Dang, H., Chang, E.C.: Privacy-preserving data deduplication on trusted proces-
sors. In: IEEE CLOUD (2017)

https://www.airbnb.com
https://golem.network/
https://intelsgx.blogspot.com/2016/06/great-notice-about-basics-of-sgx.html
https://intelsgx.blogspot.com/2016/06/great-notice-about-basics-of-sgx.html
https://github.com/01org/linux-sgx
https://software.intel.com/sites/default/files/managed/ae/48/Software-Guard-Extensions-Enclave-Writers-Guide.pdf
https://software.intel.com/sites/default/files/managed/ae/48/Software-Guard-Extensions-Enclave-Writers-Guide.pdf
https://software.intel.com/sites/default/files/managed/ae/48/Software-Guard-Extensions-Enclave-Writers-Guide.pdf
https://github.com/intel/intel-sgx-ssl
https://www.openssl.org/
https://sawtooth.hyperledger.org
https://software.intel.com/en-us/sgx/resource-library
https://software.intel.com/en-us/sgx/resource-library
http://raiden.network
https://setiathome.berkeley.edu/
https://www.spec.org/cpu2017/Docs/overview.html
https://www.spec.org/cpu2017/Docs/overview.html
https://www.uber.com
http://arxiv.org/abs/1805.06411
https://doi.org/10.1007/978-3-319-70697-9_15
https://github.com/ethereum/wiki/wiki/White-Paper

Towards a Marketplace for Secure Outsourced Computations 807

21. Dang, H., Dinh, T.T.A., Chang, E.C., Ooi, B.C.: Privacy-preserving computation
with trusted computing via scramble-then-compute. In: PETs (2017)

22. Dang, H., Dinh, T.T.A., Loghin, D., Chang, E.C., Lin, Q., Ooi, B.C.: Towards
scaling blockchain systems via sharding. In: SIGMOD (2019)

23. Dang, H., Purwanto, E., Chang, E.C.: Proofs of data residency: checking whether
your cloud files have been relocated. In: AsiaCCS (2017)

24. Dinh, T.T.A., Saxena, P., Chang, E.C., Ooi, B.C., Zhang, C.: M2R: enabling
stronger privacy in MapReduce computation. In: USENIX Security (2015)

25. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: outsourc-
ing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 465–482. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-14623-7 25

26. Gentry, C., et al.: Fully homomorphic encryption using ideal lattices. In: STOC
(2009)

27. Goldreich, O.: Secure multi-party computation. Manuscript, Preliminary version
(1998)

28. Gueron, S.: A memory encryption engine suitable for general purpose processors.
IACR Cryptology ePrint Archive (2016)

29. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. CRC Press, Boca
Raton (2014)

30. Kumaresan, R., Bentov, I.: Amortizing secure computation with penalties. In: CCS
(2016)

31. Liu, C., Wang, X.S., Nayak, K., Huang, Y., Shi, E.: ObliVM: a programming
framework for secure computation. In: IEEE S&P (2015)

32. Matetic, S., et al.: ROTE: rollback protection for trusted execution. In: USENIX
Security (2017)

33. McKeen, F., et al.: Innovative instructions and software model for isolated execu-
tion. In: HASP, Article no. 10 (2013)

34. Mucha, M., Sankowski, P.: Maximum matchings via Gaussian elimination. In:
FOCS (2004)

35. Ohrimenko, O., et al.: Oblivious multi-party machine learning on trusted proces-
sors. In: USENIX Security (2016)

36. Orenbach, M., Lifshits, P., Minkin, M., Silberstein, M.: Eleos: ExitLess OS services
for SGX enclaves. In: EuroSys (2017)

37. Poon, J., Dryja, T.: The Bitcoin lightning network: scalable off-chain instant pay-
ments (2016)

38. Schuster, F., et al.: VC3: trustworthy data analytics in the cloud using SGX. In:
IEEE S&P (2015)

39. Sekar, V., Maniatis, P.: Verifiable resource accounting for cloud computing services.
In: WSCC (2011)

40. Shinde, S., Chua, Z.L., Narayanan, V., Saxena, P.: Preventing page faults from
telling your secrets. In: AsiaCCS (2016)

41. Shinde, S., Le Tien, D., Tople, S., Saxena, P.: Panoply: low-TCB Linux applications
with SGX enclaves. In: NDSS (2017)

42. Stefanov, E., et al.: Path ORAM: an extremely simple oblivious RAM protocol.
In: CCS (2013)

43. Subramanyan, P., Sinha, R., Lebedev, I., Devadas, S., Seshia, S.A.: A formal foun-
dation for secure remote execution of enclaves. In: CCS (2017)

44. Taassori, M., Shafiee, A., Balasubramonian, R.: VAULT: reducing paging overheads
in SGX with efficient integrity verification structures. In: ASPLOS (2018)

https://doi.org/10.1007/978-3-642-14623-7_25
https://doi.org/10.1007/978-3-642-14623-7_25

808 H. Dang et al.

45. Van Bulck, J., et al.: Foreshadow: extracting the keys to the Intel SGX Kingdom
with transient out-of-order execution. In: USENIX Security (2018)

46. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic
encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 24–43. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-13190-5 2

47. Weisse, O., Bertacco, V., Austin, T.: Regaining lost cycles with HotCalls: a fast
interface for SGX secure enclaves. In: ISCA (2017)

48. Xu, Y., Cui, W., Peinado, M.: Controlled-channel attacks: deterministic side chan-
nels for untrusted operating systems. In: IEEE S&P (2015)

49. Zhang, F., Eyal, I., Escriva, R., Juels, A., Van Renesse, R.: REM: resource-efficient
mining for blockchains. In: USENIX Security (2017)

https://doi.org/10.1007/978-3-642-13190-5_2
https://doi.org/10.1007/978-3-642-13190-5_2

Author Index

Albrecht, Martin R. II-151
Alcaraz, Cristina II-263
Alrabaee, Saed II-47
Arfelt, Emma I-681
Argyros, George II-565
Avoine, Gildas II-463

Barthe, Gilles I-300
Basin, David I-681
Belaïd, Sonia I-300
Belkin, Alex II-545
Bertino, Elisa I-619, II-387
Bizjak, Manca I-3
Boldyreva, Alexandra I-404
Böttinger, Konstantin I-259
Brendel, Jacqueline II-521
Bugliesi, Michele II-606
Bursuc, Sergiu I-361
Buser, Maxime I-194

Cagnazzo, Matteo II-367
Calzavara, Stefano II-606
Canard, Sébastien II-463
Cassel, Darion II-26
Cassiers, Gaëtan I-300
Chaliasos, Stefanos II-565
Chang, Ee-Chien I-790
Chen, Keke I-41
Chen, Shan I-404
Chen, Xiaofeng II-134, II-304
Cheng, Chi II-504
Choo, Kim-Kwang Raymond I-493
Chu, Dawei II-412
Cidon, Israel II-545
Curran, Max I-556

Dang, Hung I-790
Das, Samir R. I-556
Davidsson, Nicolai II-88
de Guzman, Jaybie A. I-149
Debant, Alexandre I-383
Debbabi, Mourad I-658, II-47, II-239
Debois, Søren I-681

Delaune, Stéphanie I-383
Deng, Robert H. I-619
Ding, Jintai II-504
Duan, Huayi I-22

Emura, Keita II-113

Fang, Chengfang I-66
Ferreira, Loïc II-463
Filimonov, Ihor I-577
Fischlin, Marc II-521
Fleischhacker, Nils II-172
Fong, Philip W. L. II-195
Fouque, Pierre-Alain I-300
Fujioka, Atsushi II-484

Gabert, Stephan I-429
Garmany, Behrad II-68
Gawlik, Robert II-68
Gelernter, Nethanel II-545
Giechaskiel, Ilias I-512
Gondron, Sébastien I-535
Grassi, Lorenzo II-151
Grégoire, Benjamin I-300
Gruss, Daniel I-279
Guarnizo, Juan I-767
Günther, Felix II-521
Guo, Hui I-234
Gupta, Himanshu I-556

Hartman, Jan I-3
Haupert, Vincent I-429
Holz, Thorsten II-68, II-88, II-367
Horne, Ross I-577
Hu, Haibo I-66
Hu, Xuexian II-134
Huang, Yan II-26

Jagielski, Matthew I-404
Jarraya, Yosr I-658, II-239
Jero, Samuel I-404
Jha, Sanjay I-619
Jia, Limin II-26

Jia, Yan I-638
Jiang, Lijun I-493
Jing, Jiwu II-412
Jonker, Hugo II-586

Kamiya, Norifumi I-595
Karbab, ElMouatez Billah II-47
Kasra Kermanshahi, Shabnam II-322
Kate, Aniket I-173
Katsumata, Shuichi II-113
Kawamoto, Yusuke I-128
Kelkar, Mahimna I-173
Kerschbaum, Florian II-344
Kim, Jongkil I-215
Kinder, Johannes I-341
Kirchner, Matthias I-450
Kremer, Steve I-361
Krumnow, Benjamin II-586
Kuchta, Veronika I-703

Lam, Kwok-Yan II-387
Le Tien, Dat I-790
Le, Duc V. I-173
Leach, Kevin II-217
Lei, Lingguang II-412
Li, Juanru I-619
Li, Wenjuan I-493
Li, Yanchu II-412
Liang, Xiao I-556
Lipp, Moritz I-279
Liu, Dongxi I-215
Liu, Joseph K. I-194, II-283, II-322
Liu, Peng I-638
Liu, Xiaoning II-439
Liu, Zhen I-726
Lopez, Javier II-263
Lovisotto, Giulio I-471
Lu, Kangjie II-3

Ma, Jianfeng II-134
Ma, Siqi I-619
Majumdar, Suryadipta II-239
Malavolta, Giulio II-172
Manulis, Mark II-263
Marc, Tilen I-3
Martin, Jason I-87
Martinovic, Ivan I-471
Masters, Jon I-279
Mauw, Sjouke I-577
Meng, Weizhi I-493

Metaxopoulos, George II-565
Miller, Loïc I-107
Minematsu, Kazuhiko I-595
Mitchell, Duncan I-341
Mitropoulos, Dimitris II-565
Mödersheim, Sebastian I-535
Modic, Jolanda I-3
Mohammady, Meisam II-239
Murakami, Takao I-128

Nagai, Akira II-484
Nepal, Surya I-619, II-322
Nguyen, Khoa I-726
Nita-Rotaru, Cristina I-404
Novakovic, Chris I-319

Okhravi, Hamed I-87
Oqaily, Alaa II-239
Oqaily, Momen I-658
Ostry, Diethelm I-619

Pakki, Aditya II-3
Pandey, Omkant I-556
Parker, David I-319
Pawlowski, Andre II-88
Pelsser, Cristel I-107
Pereira, Henrique G. G. II-195
Perrin, Léo II-151
Phuong, Tran Viet Xuan I-215
Pieprzyk, Josef II-283
Pohlmann, Norbert II-367
Pourzandi, Makan I-658, II-239

Qin, Yue II-504
Quiring, Erwin I-450

Rabitti, Alvise II-606
Ragazzo, Alessio II-606
Ramacher, Sebastian II-151
Rao, Fang-Yu II-387
Rasmussen, Kasper B. I-512
Rechberger, Christian II-151
Rieck, Konrad I-450
Rotaru, Dragos II-151
Roy, Arnab II-151
Rubio, Juan E. II-263

Sakzad, Amin I-194
Schofnegger, Markus II-151

810 Author Index

Schröder, Dominique II-172
Schütte, Julian I-747
Schwarz, Michael I-279
Schwarzl, Martin I-279
Seneviratne, Aruna I-149
Shao, Jun II-283
Sharma, Sagar I-41
Shi, Jie I-66
Skowyra, Richard I-87
Smith, Zach I-577
Spensky, Chad I-87
Sperl, Philip I-259
Standaert, Francois-Xavier I-300
Steinfeld, Ron I-194, II-322
Stoffel, Martin II-68
Stopar, Miha I-3
Su, Chunhua I-493
Su, Yaping II-304
Sun, Kun II-412
Sun, Shi-Feng I-194, II-283
Susilo, Willy I-215
Suzuki, Koutarou II-484
Szalachowski, Pawel I-767

Tabiban, Azadeh II-239
Thilakarathna, Kanchana I-149
Tomida, Junichi II-484
Tueno, Anselme II-344
Turner, Henry I-471

Vlot, Gabry II-586

Wang, Cong I-22
Wang, Guojun II-217
Wang, Huaxiong I-726

Wang, Jianfeng II-134, II-304
Wang, Lingyu I-658, II-47, II-239
Wang, Yuewu II-412
Wang, Yunling II-304
Ward, Bryan C. I-87
Watanabe, Yohei II-113
Wei, Jianghong II-134
Weimer, Westley II-217
Weiss, Konrad I-747
Wiedling, Cyrille I-383
Wong, Duncan S. I-726
Wu, Qiushi II-3

Xia, Mingyuan I-234
Xiao, Jidong II-217
Xu, Jing I-234

Yang, Guomin I-215, I-726
Yao, Yao I-638
Ye, Qingqing I-66
Yi, Xun II-387, II-439

Zhang, Fengwei II-217
Zhang, Mengyuan I-658
Zhang, Youqian I-512
Zhang, Yuqing I-638
Zhang, Zhenfeng I-234
Zhang, Zhongjun II-304
Zheng, Huadi I-66
Zheng, Yifeng I-22
Zhou, Lei II-217
Zhou, Wei I-638
Zhu, Lipeng I-638
Zolotavkin, Yevhen I-703
Zuo, Cong II-283

Author Index 811

	Preface
	Organization
	Abstracts of Keynote Talks
	The Insecurity of Machine Learning: Problems and Solutions
	Electronic Voting: A Journey to Verifiability and Vote Privacy
	Cryptocurrencies and Distributed Consensus: Hype and Science
	Contents -- Part I
	Contents -- Part II
	Machine Learning
	Privacy-Enhanced Machine Learning with Functional Encryption
	1 Introduction
	2 Functional Encryption Libraries
	2.1 Implemented Schemes

	3 Implementation of Cryptographic Primitives
	3.1 Pairing Schemes
	3.2 Lattice Schemes
	3.3 ABE Schemes

	4 Benchmarks
	4.1 Inner-Product Schemes
	4.2 Decentralized Inner-Product Scheme
	4.3 Quadratic Scheme

	5 Privacy-Friendly Prediction of Cardiovascular Diseases
	6 London Underground Anonymous Heatmap
	7 Neural Networks on Encrypted MNIST Dataset
	8 Conclusions and Future Work
	References

	Towards Secure and Efficient Outsourcing of Machine Learning Classification
	1 Introduction
	2 Related Work
	3 Problem Statement
	3.1 Background on Decision Trees
	3.2 System Architecture
	3.3 Threat Model

	4 Design of Secure and Efficient Outsourcing of Decision Tree Based Classification
	4.1 Design Overview
	4.2 Protocol
	4.3 Security Guarantees

	5 Experiments
	5.1 Setup
	5.2 Evaluation

	6 Conclusion
	References

	Confidential Boosting with Random Linear Classifiers for Outsourced User-Generated Data
	1 Introduction
	1.1 Scope of Work and Contributions

	2 Preliminary
	3 Framework
	3.1 SecureBoost Learning Protocol
	3.2 Security Model

	4 Construction with HE and GC
	4.1 Technical Detail

	5 Construction with SecSh and GC
	5.1 Technical Detail

	6 Cost Analysis
	7 Security Analysis
	7.1 Implication of Revealing It to CSP

	8 Experiments
	8.1 Effectiveness of RLC Boosting
	8.2 Cost Distribution
	8.3 Comparing with Other Methods
	8.4 Effect of Releasing It

	9 Related Work
	10 Conclusion
	A Appendix
	A.1 Boosting Algorithm
	A.2 Confidential Decision Stump Learning
	A.3 Cloud and CSP Cost Breakdown and Scaling

	References

	BDPL: A Boundary Differentially Private Layer Against Machine Learning Model Extraction Attacks
	1 Introduction
	2 Preliminaries
	2.1 Supervised Machine Learning Model
	2.2 Model Extraction with only Labels

	3 Problem Definition
	3.1 Motivation and Threat Model
	3.2 Boundary-Sensitive Zone
	3.3 Boundary Differential Privacy

	4 Boundary Differentially Private Layer
	4.1 Identifying Sensitive Queries
	4.2 Perturbation Algorithm: Boundary Randomized Response
	4.3 Summary

	5 Experiments
	5.1 Setup
	5.2 Overall Evaluation
	5.3 BDPL vs. Uniform Perturbation
	5.4 Impact of and

	6 Related Works
	7 Conclusion and Future Work
	References

	Information Leakage
	The Leakage-Resilience Dilemma
	1 Introduction
	2 Randomization Granularity
	2.1 Virtual-Memory Randomization
	2.2 Physical-Memory Randomization

	3 Threat Model
	4 Relative ROP Attacks
	4.1 Partial Pointer Overwriting
	4.2 RelROP Chaining

	5 RelROP Prevalence Analysis
	5.1 Analysis-Tool Architecture
	5.2 Analysis of Real-World Binaries

	6 Real-World Exploit
	6.1 Exploit Details

	7 Impact on Defenses
	7.1 Randomization-Focused Defenses
	7.2 Randomization-Dependent Leakage-Resilient Defenses

	8 Discussion
	8.1 Implications of Physical-Memory Randomization
	8.2 RELRO

	9 Related Work
	10 Conclusion
	References

	A Taxonomy of Attacks Using BGP Blackholing
	1 Introduction
	2 Background
	2.1 BGP Routing Security

	3 Threat Model and Attack Taxonomy
	4 Routing Security Deployments
	4.1 Fully Deployed BGPsec
	4.2 Partially Deployed BGPsec
	4.3 Fully Deployed RPKI
	4.4 Partially Deployed RPKI
	4.5 No Security

	5 Good Practices
	5.1 Additional Verification Rules
	5.2 Additional Good Blackholing Practices
	5.3 A BGPsec Solution

	6 Related Work
	7 Conclusion
	References

	Local Obfuscation Mechanisms for Hiding Probability Distributions
	1 Introduction
	2 Preliminaries
	2.1 Notations for Probability Distributions
	2.2 Differential Privacy (DP)
	2.3 Differential Privacy Mechanisms and Sensitivity
	2.4 Extended Differential Privacy (XDP)
	2.5 Wasserstein Metric

	3 Privacy Notions for Probability Distributions
	3.1 Modeling the Privacy of User Attributes in Terms of DP
	3.2 Distribution Privacy and Extended Distribution Privacy
	3.3 Interpretation by Bayes Factor
	3.4 Privacy Guarantee for Attackers with Close Beliefs
	3.5 Difference from the Histogram Privacy

	4 Basic Properties of Distribution Privacy
	5 Distribution Obfuscation by Point Obfuscation
	5.1 Distribution Obfuscation by DP Mechanisms
	5.2 Distribution Obfuscation by XDP Mechanisms

	6 Distribution Obfuscation by Random Dummies
	6.1 Tupling Mechanism
	6.2 Privacy of the Tupling Mechanism
	6.3 Service Quality Loss and Cost of the Tupling Mechanism
	6.4 Improving the Worst-Case Quality Loss

	7 Application to Attribute Privacy in LBSs
	7.1 Experimental Setup
	7.2 Evaluation of the Tupling Mechanism
	7.3 Appropriate Parameters
	7.4 Comparison of Obfuscation Mechanisms

	8 Related Work
	9 Conclusion
	A Experimental Results
	References

	A First Look into Privacy Leakage in 3D Mixed Reality Data
	1 Introduction
	2 3D Privacy Problem
	2.1 Why 3D?
	2.2 Defining the 3D Privacy Problem
	2.3 Adversary Model

	3 3D Description and Inference
	3.1 3D MR Data
	3.2 Describing the 3D Space
	3.3 Inferring the 3D Space

	4 Evaluation Setup
	4.1 3D Information Reduction Strategies
	4.2 Successive Release of Partial Spaces

	5 Results and Discussion
	5.1 Inference of Partial Spaces
	5.2 Successive Release of Partial Spaces
	5.3 Inference Trends with Spatial Properties
	5.4 Computing Utility of Generalizations
	5.5 Memory Compactness of Descriptors and Inference Models

	6 Related Work
	7 Conclusion
	A 3D Spatial Definitions
	B Defining the Feature Matching Process Using Rotation-Invariant Descriptors
	C Plane Generalization
	References

	Signatures and Re-encryption
	Flexible Signatures: Making Authentication Suitable for Real-Time Environments
	1 Introduction
	2 Preliminaries
	3 Security Definition
	4 Flexible Lamport-Diffie One-Time Signature
	4.1 Construction
	4.2 Security Analysis

	5 Flexible Merkle Tree Signature
	5.1 Construction
	5.2 Security Analysis
	5.3 Other Signature Schemes

	6 Evaluation, Performance Analysis, and Discussion
	6.1 Security Level of Flexible Lamport-Diffie One-Time Signature
	6.2 Security Level of Flexible Merkle Tree Signature
	6.3 Implementation and Performance

	7 Conclusion
	A Proofs
	References

	DGM: A Dynamic and Revocable Group Merkle Signature
	1 Introduction
	1.1 Contributions
	1.2 Related Works

	2 Preliminaries
	2.1 Puncturable Pseudorandom Function
	2.2 Puncturable Encryption
	2.3 Group Signature (GS)

	3 G-Merkle (GM) el2018g
	4 DGM
	4.1 DGM Overview
	4.2 Detailed DGM Construction
	4.3 Correctness and Security Analysis

	5 Evaluation
	6 Conclusion
	A Security Games
	B Symmetric Primitives
	References

	Puncturable Proxy Re-Encryption Supporting to Group Messaging Service
	1 Introduction
	2 Preliminaries
	2.1 Bilinear Map
	2.2 The 3-Weak Decision Bilinear Diffie-Hellman Inversion (3-WDBDHI)
	2.3 One-Time Signatures
	2.4 Lagrange Polynomial and Interpolation

	3 Model and Security Notions
	3.1 Puncturable Proxy Re-Encryption

	4 Puncturable Proxy Re-Encryption Under Chosen Ciphertext Attack
	4.1 Description
	4.2 Security

	5 Conclusion
	A Proof of Theorem 2
	References

	Generic Traceable Proxy Re-encryption and Accountable Extension in Consensus Network
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work

	2 Preliminary
	2.1 Fingerprinting Codes

	3 Definition and Security Model
	3.1 Basic PRE
	3.2 CPA Security
	3.3 Traceable PRE
	3.4 Black Box Traceability

	4 Generic Traceable Construction
	5 Enforcing Accountability
	5.1 Security of Accountable PRE in Multi-proxies Setting
	5.2 Construction

	6 Instantiation and Discussion
	7 Conclusion
	A Asymmetric Fingerprinting Codes
	References

	Side Channels
	Side-Channel Aware Fuzzing
	1 Introduction
	2 Related Work
	3 Elements of Side-Channel Aware Fuzzing
	3.1 Feature Extraction Using the Power Side-Channel
	3.2 Control Flow Reconstruction
	3.3 Score Calculation
	3.4 Error Prevention and Trace Preprocessing
	3.5 Overall Side-Channel Driven Fuzzing Algorithm

	4 Experiments and Evaluation
	4.1 Evaluation Code
	4.2 Benchmark Metrics
	4.3 Implementation Decisions - Classification Approach
	4.4 Test Scenario and Power Traces
	4.5 Results
	4.6 Fuzzing an AES Implementation
	4.7 Transferability and Generalization

	5 Conclusion
	References

	NetSpectre: Read Arbitrary Memory over Network
	1 Introduction
	2 Background
	3 Attack Overview
	3.1 Gadget Location
	3.2 Gadget Type

	4 Remote Microarchitectural Covert Channels
	4.1 Remote Cache Covert Channel
	4.2 Remote AVX-Based Covert Channel

	5 Attack Variants
	5.1 Extracting Data from the Target
	5.2 Remotely Breaking ASLR on the Target

	6 Evaluation
	6.1 Leakage
	6.2 NetSpectre Performance

	7 Conclusion
	References

	maskVerif: Automated Verification of Higher-Order Masking in Presence of Physical Defaults
	1 Introduction
	2 Motivating Examples
	2.1 Glitches
	2.2 Transitions

	3 Programming Model and Security Definitions
	3.1 Syntax and Semantics of Programs
	3.2 Security Notions

	4 Algorithmic Verification
	5 Experiments
	6 Related Work
	7 Conclusions
	References

	Automated Formal Analysis of Side-Channel Attacks on Probabilistic Systems
	1 Introduction
	1.1 Related Work

	2 A Language for Formal Side-Channel Analysis
	2.1 The Sch-imp Language
	2.2 Resource Usage in Sch-imp Programs
	2.3 Semantics for the Sch-imp Language

	3 Automated Detection of Side-Channel Attacks
	3.1 POMDPs
	3.2 Detecting Side Channels Using POMDPs

	4 Experimental Results
	4.1 Implementation
	4.2 Traceability in Anonymous Communication Networks
	4.3 Covert Information Flows over a Unidirectional Network
	4.4 Power Consumption of Square-and-Multiply Algorithms
	4.5 Evaluation

	5 Conclusion
	A Appendix Sch@汥瑀瑯步渠-imp Model for Sect.4.2
	References

	Formal Modelling and Verification
	A Formal Model for Checking Cryptographic API Usage in JavaScript
	1 Introduction
	2 Background
	2.1 Security Annotations
	2.2 S5: A Semantics for JavaScript

	3 Overview
	3.1 Annotating APIs with Security Annotations
	3.2 Transparent Property Enforcement

	4 Security Annotations for S5
	4.1 Syntax
	4.2 Coercing Security Annotations
	4.3 Checking Security Annotations
	4.4 Completing S5 with Security Annotations

	5 Security Annotations for JavaScript
	5.1 Implementing Security Annotations in S5
	5.2 A Reference Interpreter for Security Annotations in JavaScript
	5.3 Using the Reference Interpreter

	6 Properties of Security Annotations
	6.1 Safety Guarantees
	6.2 Security Guarantees
	6.3 Security Guarantees in Practice

	7 Related Work
	8 Conclusions and Future Work
	A Syntax of S5
	References

	Contingent Payments on a Public Ledger: Models and Reductions for Automated Verification
	1 Introduction
	2 Preliminaries: Computation Model
	3 Public Ledgers: Facts, Rules, Coins
	4 Zero Knowledge Contingent Payments
	5 ZKCP Protocol on the Basecoin Ledger
	6 Homomorphism and Abelian Group Reduction
	7 Related and Future Work
	References

	Symbolic Analysis of Terrorist Fraud Resistance
	1 Introduction
	2 Model for Distance Bounding Protocols
	2.1 Messages
	2.2 Protocols

	3 Modelling Mafia and Terrorist Frauds
	3.1 Mafia Fraud
	3.2 Terrorist Fraud
	3.3 Related Works

	4 Reduction Results
	4.1 One Topology Is Enough
	4.2 One Semi-dishonest Prover Behaviour Is Enough
	4.3 Main Result

	5 Case Studies
	5.1 Analysing Terrorist-Fraud Resistance Using Proverif
	5.2 Our Results
	5.3 Limitations

	References

	Secure Communication Channel Establishment: TLS 1.3 (over TCP Fast Open) vs. QUIC
	1 Introduction
	2 Background
	3 Preliminaries
	4 msACCE Protocol and Its Security
	4.1 Protocol Syntax
	4.2 Security Models

	5 Provable Security Analysis
	5.1 TLS 1.3 over TFO
	5.2 QUIC over UDP

	6 Conclusion
	A TFO+TLS 1.3 and UDP+QUIC Protocol Definitions
	A.1 TFO+TLS 1.3 Protocol Definition
	A.2 UDP+QUIC Protocol Definition

	References

	Attacks
	Where to Look for What You See Is What You Sign? User Confusion in Transaction Security
	1 Introduction
	2 Related Work
	2.1 User Authentication
	2.2 Transaction Authentication

	3 Methodology
	3.1 Hypotheses
	3.2 Study Environment
	3.3 Study Procedure

	4 Attack Procedure
	4.1 Threat Model
	4.2 Course of Events

	5 Results
	5.1 Study Population
	5.2 Transaction Verification ([hypo:t1spst2]H1)
	5.3 Personal TAN Methods ([hypo:tanspsmethods]H2)
	5.4 Experience ([hypo:obspstime]H3, [hypo:nospsmethods]H4, [hypo:tech]H5)

	6 Discussion
	7 Limitations
	8 Conclusion
	References

	On the Security and Applicability of Fragile Camera Fingerprints
	1 Introduction
	2 Background
	2.1 Camera Identification from Sensor Noise Fingerprints
	2.2 Fingerprint-Copy Attack
	2.3 Triangle Test

	3 Fragile Camera Fingerprint
	4 Security Analysis
	4.1 Datasets and Experimental Setup
	4.2 (Q1) Analytical Quality of Fingerprint Estimation
	4.3 (Q1) Empirical Quality of Fingerprint Estimation
	4.4 (Q2) Independence Test
	4.5 (Q2) DCT Recovery
	4.6 (Q3) Fingerprint-Copy Attack

	5 Application Analysis
	5.1 Camera Identification
	5.2 Comparison with Triangle Test

	6 Conclusion
	A Sample Correlation Coefficient
	B Population Correlation Coefficient
	C Empirical Quality of Fingerprint Estimation
	References

	Attacking Speaker Recognition Systems with Phoneme Morphing
	1 Introduction
	2 Related Work
	2.1 Speech Recognition
	2.2 Speaker Recognition

	3 Threat Model
	4 Attack Method
	4.1 Formulation
	4.2 Attack Execution

	5 Experimental Design
	5.1 Data Collection
	5.2 Adversary Modelling
	5.3 Target Systems

	6 Experimental Evaluation
	6.1 Spear Toolkit
	6.2 Azure Speaker Verification
	6.3 Azure Speaker Identification
	6.4 Apple iPhone's Siri

	7 Discussion
	8 Conclusions
	A Audio Collected
	A.1 Commands
	A.2 Conference
	A.3 Cafe
	A.4 Enrolment

	References

	Practical Bayesian Poisoning Attacks on Challenge-Based Collaborative Intrusion Detection Networks
	1 Introduction
	2 Challenge-Based CIDNs
	3 Our Proposed Attack
	3.1 Threat Model and Assumption Analysis
	3.2 Bayesian Poisoning Attacks

	4 Evaluation
	4.1 CIDN Settings
	4.2 Experiment-1
	4.3 Experiment-2
	4.4 Discussion and Countermeasures
	4.5 Limitations

	5 Related Work
	6 Conclusion
	References

	A Framework for Evaluating Security in the Presence of Signal Injection Attacks
	1 Introduction
	2 System and Adversary Model
	2.1 Circuit Model
	2.2 Sampling Errors in the Absence of an Adversary
	2.3 Adversary Model

	3 Security Definitions
	3.1 Existential Injection, Universal Security
	3.2 Selective Injection and Security
	3.3 Universal Injection, Existential Security

	4 Security Evaluation of a Smartphone Microphone
	4.1 Algorithm for Selective Security Thresholds
	4.2 Existential and Selective Injections into a Smartphone
	4.3 Universal Injections on a Smartphone

	5 Commercial ADC Response HA to Malicious Signals
	6 Discussion
	7 Related Work
	8 Conclusion
	References

	Secure Protocols
	Formalizing and Proving Privacy Properties of Voting Protocols Using Alpha-Beta Privacy
	1 Introduction
	2 Preliminaries
	2.1 Herbrand Logic
	2.2 Encoding of Frames
	2.3 Alpha-Beta Privacy

	3 Verifying Voting Privacy
	3.1 The FOO'92 Voting Protocol in Alpha-Beta Privacy
	3.2 Voting Privacy Holds in S
	3.3 Voting Privacy Holds in S'

	4 Receipt-Freeness
	4.1 Formalizing Receipt-Freeness
	4.2 Receipt-Freeness in S
	4.3 Violation of Receipt-Freeness in FOO'92

	5 Related Work
	6 Conclusion
	A Proofs
	References

	ProCSA: Protecting Privacy in Crowdsourced Spectrum Allocation-10pt
	1 Introduction
	1.1 Spectrum Allocation Model, Security Challenges, Related Work
	1.2 Our Contributions

	2 Defining Semi-honest Secure Spectrum Allocation
	3 Secure Spectrum Allocation
	3.1 Plaintext Algorithm
	3.2 Secured Algorithm Using Two SMs
	3.3 Secure Allocation Using One SM and a Key Server

	4 Simulation Results
	5 Conclusions and Future Work
	A Security Proof
	References

	Breaking Unlinkability of the ICAO 9303 Standard for e-Passports Using Bisimilarity*-10pt
	1 Introduction
	2 An Investigation into Unlinkability Claims About BAC
	2.1 The Key Paper Defining Strong Unlinkability, but with a Flawed Claim
	2.2 Alternative Models of Unlinkability Based on Trace Equivalence

	3 Minimal Variant of the BAC Authentication Protocol
	3.1 An Illustrative Minimal Protocol for Mutual Authentication
	3.2 Modelling Our Minimal Authentication Protocol in the Applied -calculus
	3.3 Fixing Protocols to Achieve Strong Unlinkability

	4 Background on Bisimilarity for the Applied -Calculus
	5 Finding Attacks on Privacy Using Bisimilarity
	6 Lifting Our Attack to the Setting of Labelled Bisimilarity for the ICAO 9303 Standard BAC Protocol
	6.1 Describing the Attack Using a Modal Logic Formula
	6.2 Practical Steps to Implement a Discovered Attack

	7 Conclusions
	References

	Symmetric-Key Corruption Detection: When XOR-MACs Meet Combinatorial Group Testing
	1 Introduction
	2 Preliminaries
	2.1 Basic Notations
	2.2 Cryptographic Functions

	3 Previous Corruption Detectable MACs
	3.1 DirectGTM
	3.2 Constructions of Disjunct Matrix

	4 Our Proposal
	4.1 Breaking the Barrier of DirectGTM
	4.2 Syntax
	4.3 XOR-GTM

	5 Security Analysis
	5.1 Security Notions
	5.2 Provable Security Bounds
	5.3 Proof Sketch of Theorem3

	6 Instantiations of XOR-GTM
	6.1 Finding Useful Matrices
	6.2 Hadamard Matrix
	6.3 Matrix from Finite Geometry

	7 Comparison of XOR-GTM-PPI with DirectGTM
	8 Conclusions
	A Discussions on Decoder Unforgeability
	References

	Useful Tools
	Finding Flaws from Password Authentication Code in Android Apps
	1 Introduction
	2 Common Violations of Password Authentication Protocols
	2.1 Secure Password Authentication Protocol
	2.2 Authentication Flaws

	3 GLACIATE
	3.1 Rules Creation
	3.2 Detection Rules Mining
	3.3 Flaws Detection

	4 Evaluation
	4.1 Assessment of GLACIATE
	4.2 GLACIATE: Large Scale Analysis of Password Authentication

	5 Related Work
	5.1 Rule-Based Techniques
	5.2 Attack-Based Techniques
	5.3 Machine Learning Techniques

	6 Conclusion
	References

	Identifying Privilege Separation Vulnerabilities in IoT Firmware with Symbolic Execution
	1 Introduction
	2 Background
	2.1 Privilege Separation Model Involved in IoT Firmware
	2.2 Privilege Separation Vulnerability

	3 Gerbil Framework Design and Implementation
	3.1 Loading Information Extraction
	3.2 Library Function Recognition
	3.3 Path Exploration Scheme
	3.4 User-Defined Slice Specification
	3.5 Result Generation

	4 Evaluation
	4.1 Lightweight Firmware Collection
	4.2 Performance Analysis of Gerbil
	4.3 Identifying the Privilege Separation Vulnerability
	4.4 Impact Analysis of Privilege Separation Vulnerabilities Exploitation

	5 Discussion
	5.1 Mitigation
	5.2 Limitation

	6 Related Work
	7 Conclusion
	References

	iCAT: An Interactive Customizable Anonymization Tool
	1 Introduction
	2 Anonymization Space
	2.1 Threat Model
	2.2 Anonymization Primitives
	2.3 Lattices-Based Anonymization Space

	3 Requirements Translation
	4 Implementation
	5 Experiments
	5.1 Experimental Settings
	5.2 Effectiveness
	5.3 Usability
	5.4 Efficiency

	6 Discussions
	7 Related Work
	8 Conclusion
	References

	Monitoring the GDPR
	1 Introduction
	2 Background on MonPoly and MFOTL
	3 Limits to GDPR Monitoring
	4 Formalisable Articles
	4.1 The Common Case: Articles 6(1) and 7(3)
	4.2 Articles Requiring Content Interpretation
	4.3 Articles Not Monitorable

	5 Run-Time Monitoring
	5.1 Methodology

	6 Case Study
	7 Conclusion
	References

	Blockchain and Smart Contracts
	Incentives for Harvesting Attack in Proof of Work Mining Pools
	1 Introduction
	2 Pool Harvesting Attack
	2.1 Preliminaries
	2.2 Model for Manager Incentives
	2.3 Manager Incentives to Operate PPS Pool

	3 Experimental Evaluation
	3.1 Wealth and Utility of the Attacker
	3.2 Test Results and Their Interpretation

	4 Discussion
	A Theorems
	B Lemma
	References

	A Lattice-Based Linkable Ring Signature Supporting Stealth Addresses
	1 Introduction
	1.1 Our Results
	1.2 Outline

	2 Definitions of SALRS
	2.1 Algorithm Definition
	2.2 Security and Privacy Models of SALRS

	3 Our Construction
	3.1 Preliminaries
	3.2 Construction
	3.3 Correctness and Concrete Parameters

	4 Proofs of Security and Privacy
	5 Conclusion
	A A Proof of Theorem 1
	References

	Annotary: A Concolic Execution System for Developing Secure Smart Contracts
	1 Introduction
	2 Background
	2.1 Solidity and Smart Contracts
	2.2 EVM and Bytecode
	2.3 Mythril and the Laser-SVM

	3 Annotation Driven Concolic Analysis
	3.1 Annotations
	3.2 Modeling Transaction Execution
	3.3 Inter-contract Analysis
	3.4 Inter-transactional Analysis

	4 Implementing Annotary
	4.1 Preprocessing of Solidity Contracts
	4.2 Concolic Execution
	4.3 Violation Identification and Classification
	4.4 Annotary Plugin

	5 Discussion
	6 Related Work
	7 Conclusions
	A Appendix
	A.1 Annotary IDE Plugin
	A.2 Code Rewritings
	A.3 Algorithms

	References

	PDFS: Practical Data Feed Service for Smart Contracts
	1 Introduction
	2 Background
	2.1 Blockchain and Smart Contracts
	2.2 Transport Layer Security
	2.3 Tamper-Evident Data Structure

	3 Architecture Overview
	3.1 System Model
	3.2 Desired Properties and Design Space
	3.3 High-Level Overview

	4 Details
	4.1 Service Initialization
	4.2 Authoritative Contract
	4.3 Data Update
	4.4 Relying Contracts
	4.5 Censorship Evidence
	4.6 PDFS Service Termination

	5 Security Discussion
	5.1 PKI and Key Compromise
	5.2 Malicious Content Provider

	6 Realization in Practice
	6.1 Implementation
	6.2 Evaluation

	7 Related Work
	8 Conclusions
	A Extended Security Discussion
	A.1 Data Authentication
	A.2 51%-Blockchain Attack
	A.3 General Discussion

	B Case Study and Implementation Details
	B.1 Case Study
	B.2 Implementations

	References

	Towards a Marketplace for Secure Outsourced Computations
	1 Introduction
	2 Preliminaries
	3 The Problem
	3.1 System Model
	3.2 System Goals
	3.3 Threat Model

	4 Kosto Design
	4.1 Workflow
	4.2 Enclave Execution
	4.3 Fair Exchange
	4.4 Delegated Attestation

	5 Security Arguments
	5.1 Attested Execution and Data Confidentiality
	5.2 Fair Exchange
	5.3 Delegated Attestation

	6 Evaluation
	6.1 Experimental Setup
	6.2 Cost of Enclave Execution

	7 Related Works
	8 Conclusion
	References

	Author Index

