M4secure

Faster and Secure Memory
Management

#ta| Unaversity

)

UNIVERSITY OF LEED

Engineering and
Physical Sciences
Research Council

1

Presenter
Presentation Notes
https://msrc.microsoft.com/blog/2022/09/whats-the-smallest-variety-of-cheri/

Zheng Wang

Project Partners

Dejice Jacob Xiaoyang Sun

Memory related bugs are serious issues

% of CVEs

Memory safety bugs

2000 2007 2000 2009 2010 2011 2012 2013 2014 2015 2016 2017 2010
Patch Yeor

B Momory safoty B Not momory saloty

~70% of the vulnerabilities found by Microsoft and in Google Chrome web
browser are memory safety issues

3

Presenter
Presentation Notes
Many exploits are directly attributable to buggy malloc implementations, e.g. BadAlloc uncovered by Microsoft in 202

14 Common Vulnerabilities and Exposures (CVEs) in 2021 alone were due to malloc bugs

Memory allocators must also be fast

4 rﬂ[‘l."?-.""’ ;

o
,sunﬂ_tdl_frﬁn.tailﬁd

' Y il

void ond_tn_init(void)
{
end_add(name
end_ d1(
w0 (IMe “m Senc staroo ',
emd_add(name: "tm_send_var", tm_send_var,
¢pd_add nar get_last”. tm_¢et_last,
11 IVIL 11TIAUMNUUDN
cmd_add(name: "tm_send_last"

nd_last", tm_send_last,
cmd_add(| end_all”, tm_send_all,
emd_add(

end_add(
end_add(

o tm_set_ack, fmt =wy,

"o th_send_cmds.

Presenter
Presentation Notes
Hundreds of millions of malloc calls per second in typical data-intensive workloads … (@jsinger stat)

Customised memory allocators for hardware and
applications

Coherency Logic

SGX

Tag Check/Split Logic
Tag Cache Logic

DRAM Interface

Intel Software Guard e Sili | -
CHERI Capabilities Arm memory tag C tenSIONS Oracle Silicon Secured

extension Memory

APACHE

HTTP SERVER PROJECT - - Firefox OS

But memory allocators are expensive to build

e.8. Jemalloc would cost £2.1mM to develop

Estimate based David A. Wheeler’s SLOCCount estimation tool: https://dwheeler.com/sloccount/ and a
typical UK software engineer salary by Glassdoor

Android
¢ o Gredis m

FreeBSD MariaDB

Presenter
Presentation Notes
Jemalloc is a high-performance C memory allocator Started out as FreeBSD system (libc) allocator

jemalloc is a userland memory allocator that is being increasingly adopted by software projects as a high performance heap manager. It is used in Mozilla Firefox for the Windows, Mac OS X and Linux platforms, and as the default system allocator on the FreeBSD and NetBSD operating systems. Facebook also uses jemalloc in various components to handle the load of its web services

jemalloc recognizes that minimal page utilization is no longer the most critical feature. Instead it focuses on enhanced performance in retrieving data from the RAM. Based on the principle of locality which states that items that are allocated together are also used together, jemalloc tries to situate allocations contiguously in memory. Another fundamental design choice of jemalloc is its support for SMP systems and multi-threaded applications by trying to avoid lock contention problems between many simultaneously running threads.

https://dwheeler.com/sloccount/

MASecure — making it easier to develop fast, correct
and secure memory management libraries

Hardware and software
security properties and rules

#1a| University
=7 of Glasgow

’
UNIVERSITY OF LEED

1 —

—

Improved code
to use hardware Model checker
‘ security features for verification

‘Machine learning

Basic memory E— for code synthesis

allocator code ‘and optimisation

L —

Feedback

Machine learning for fast memory allocators

Code rewrite rules

Super

Basic memory LLVM IR i Optimised
allocator (bitcode) optimisation f)r VM IR
(C/C++ code) , code synthesis

Alfred V. Aho
Ravi Sethi :
Jeffrey D. Ullman

LLVM Compiler

Leeds is developing a super optimiser with mutation rules designed for Cheri (ARM Morello)
and LLVM IR

Super optimisation examples

%0:18 = var

infer %2

%1:i8 = Ishr %0, 3:i8
%2:i11 = eq %1, 0:i8

%3:i1 = ult %0, 8:i8
result %3

4

mov S8, %eax
sub %ecx, %eax
dec %eax

7

mov S7, %eax
sub %ecx, %eax

4

constant folding

7

sub %eax, %ecx
test %ecx, %ecx
je .END

mov %edx, %ebx

4

=)

sub %eax, %ecx
cmovne %edx, %ebx

7

Branch elimination

Presenter
Presentation Notes
Mostly, superoptimization searches inside a finite search space of the instruction set architecture (ISA), which means the input is machine language.

a value shifted right 3 times can be zero only if it is smaller than 2^3 = 8

Super optimisation for LLaMA large language model

Cheri Morello

25
C 1987 21.06 Super optimisation
v 20
.
Q
0O 15
D
E 10 .
23
o0
T 5 LLVM -03 .
O .
matmul (gFLOPs) #tokens/second

B LLVM (CHERI-purecap) ® SuperOptimiser

5% performance improvement without changing the user code! 10

Reinforcement learning (RL) to drive super
optimisation

/

mul w8, w8, w9

ldr w9, [sp, #12] Super

mov wlO, #3
sdiv w9, w9, wle . .
cUbS WO, W8, WS Optimiser N

add sp, sp, #16

Rewrite rules

— S
| Cl

RL Agent
subs w9, w9, #0 - COrreCtHESS / g

mul wo, w8, w9 ChECker
add sp, sp, #16

Extend super optimisation to higher levels, e.g. C code, algorithms and allocation
strategies

11

Security properties for memory allocators

* e.g. Linear Temporal Logic (LTL) property:

O((0q) — ((!qUp)&&(IrUq)&&(or)))

* Wheregisclient access mem, pismalloc andris free.

* “if in the future q will happen, then p must occur before q, and r must
occur eventually, but not before g "

12

Model checking to verity security properties

* Develop domain specific language to generate models on the fly

* Labels in code to mark the functionalities
* E.g. mem allocate start/end to trigger relevant flags

* Currently use SPIN or stripped-down version of nested depth-first
search for LTL model checking
o and support realtime verification of safety properties

13

Presenter
Presentation Notes
Follow approach of [Xu et al. MPLR 2022] for garbage collectors.

Must be lightweight, fast and free of bugs

Cheri benchmarks for memory allocators

o e o 130 struct batch*® dequeue batch() {
* 10 allocation-intensive C benchmarks = oo
132 while (batches == NULL && l!atomic load(&done flag)) {
133 pthread cond wait(&empty cv, &lock);
® ® 134 1
* Regular and irregular allocation s
136 if (result) {
137 batches = result-»>next batch;
p atte r n S 138 batch count--;
139 pthread cond signal(&full cv);
140 1
® 141 pthread mutex unlock(&lock);
* https://github.com/glasgowPLI/alloc- = ===
® o 143 }
144
b e n C h 145 void *mem_allocator (void *arg) {
146 int thread id = *(int *)arg;
147 struct lran2 st lr;
148 Iran2 init(&lr, thread id);
149
150 while (!atomic load(&done flag)) {
151 struct batch *b = xmalloc(sizeof(*b));
152 for (int i = @; 1 < OBJECTS_PER BATCH; i++) {
153 size t siz = object size > ® ? object size : possible sizes[lran2(&lr)%n sizes];
154 b->objects[i] = xmalloc(siz);
155 memset(b->objects[1],1%256,(siz > 128 ¢ 128 : siz));
156 1
157 enqueue batch(b);
158 1
159 return NULL;
160)

14

https://github.com/glasgowPLI/alloc-bench
https://github.com/glasgowPLI/alloc-bench

Conclusions

|t is high time to make memory management
secure while high-performant and correct

ML + Formal Verification for fast, secure, and
correct memory allocators

*Should generalise beyond CHERI
*Lots of opportunities for collaboration

1/alloc- T

cm

	Slide Number 1
	Slide Number 2
	Memory related bugs are serious issues
	Memory allocators must also be fast
	Customised memory allocators for hardware and applications
	But memory allocators are expensive to build
	M4Secure – making it easier to develop fast, correct and secure memory management libraries
	Machine learning for fast memory allocators
	Super optimisation examples
	Super optimisation for LLaMA large language model
	Reinforcement learning (RL) to drive super optimisation
	Security properties for memory allocators
	Model checking to verify security properties
	Cheri benchmarks for memory allocators
	Conclusions

