
Faster and Secure Memory
Management

M4Secure

1

Presenter
Presentation Notes
https://msrc.microsoft.com/blog/2022/09/whats-the-smallest-variety-of-cheri/

Jeremy Singer Alice Miller

Dejice Jacob

Zheng Wang

Xiaoyang Sun

Microsoft
Meta

Project Partners

2

Memory related bugs are serious issues

~70% of the vulnerabilities found by Microsoft and in Google Chrome web
browser are memory safety issues

Memory safety bugs

70%

https://www.chromium.org/Home/chromium-security/memory-safety3

Presenter
Presentation Notes
Many exploits are directly attributable to buggy malloc implementations, e.g. BadAlloc uncovered by Microsoft in 20214 Common Vulnerabilities and Exposures (CVEs) in 2021 alone were due to malloc bugs

Memory allocators must also be fast

Hundreds of millions of malloc calls per second in
typical data-intensive workloads

4.9 billions of malloc calls in 7.9 seconds for a
binary tree benchmark on M1 macbook

4

Presenter
Presentation Notes
Hundreds of millions of malloc calls per second in typical data-intensive workloads … (@jsinger stat)

Customised memory allocators for hardware and
applications

Oracle Silicon Secured
MemoryCHERI Capabilities

Intel Software Guard
ExtensionsArm memory tag

extension

5

But memory allocators are expensive to build

e.g. Jemalloc would cost £2.1m to develop
Estimate based David A. Wheeler’s SLOCCount estimation tool: https://dwheeler.com/sloccount/ and a
typical UK software engineer salary by Glassdoor

6

Presenter
Presentation Notes
Jemalloc is a high-performance C memory allocator Started out as FreeBSD system (libc) allocatorjemalloc is a userland memory allocator that is being increasingly adopted by software projects as a high performance heap manager. It is used in Mozilla Firefox for the Windows, Mac OS X and Linux platforms, and as the default system allocator on the FreeBSD and NetBSD operating systems. Facebook also uses jemalloc in various components to handle the load of its web servicesjemalloc recognizes that minimal page utilization is no longer the most critical feature. Instead it focuses on enhanced performance in retrieving data from the RAM. Based on the principle of locality which states that items that are allocated together are also used together, jemalloc tries to situate allocations contiguously in memory. Another fundamental design choice of jemalloc is its support for SMP systems and multi-threaded applications by trying to avoid lock contention problems between many simultaneously running threads.

https://dwheeler.com/sloccount/

M4Secure – making it easier to develop fast, correct
and secure memory management libraries

Basic memory
allocator code

Machine learning
for code synthesis
and optimisation

Improved code
to use hardware
security features

Model checker
for verification

Hardware and software
security properties and rules

Feedback

7

Machine learning for fast memory allocators

Basic memory
allocator

(C/C++ code)

LLVM Compiler

LLVM IR
(bitcode)

Super
optimisation for
code synthesis

Optimised
LLVM IR

Leeds is developing a super optimiser with mutation rules designed for Cheri (ARM Morello)
and LLVM IR

Code rewrite rules

8

Super optimisation examples

mov $8, %eax
sub %ecx, %eax
dec %eax

mov $7, %eax
sub %ecx, %eax

constant folding

sub %eax, %ecx
test %ecx, %ecx
je .END
mov %edx, %ebx

sub %eax, %ecx
cmovne %edx, %ebx

Branch elimination

%3:i1 = ult %0, 8:i8
result %3

%0:i8 = var
%1:i8 = lshr %0, 3:i8
%2:i1 = eq %1, 0:i8
infer %2

9

Presenter
Presentation Notes
Mostly, superoptimization searches inside a finite search space of the instruction set architecture (ISA), which means the input is machine language.a value shifted right 3 times can be zero only if it is smaller than 2^3 = 8

Super optimisation for LLaMA large language model

19.87

6.23

21.06

6.7

0

5

10

15

20

25

matmul (gFLOPs) #tokens/second

Cheri Morello

LLVM (CHERI-purecap) SuperOptimiser

5% performance improvement without changing the user code!

Hi
gh

er
 is

 b
et

te
r

10

Super optimisation

LLVM –O3

Reinforcement learning (RL) to drive super
optimisation

Super
Optimiser

Rewrite rules

Correctness
Checker

RL Agent

mul w8, w8, w9
ldr w9, [sp, #12]
mov w10, #3
sdiv w9, w9, w10
subs w0, w8, w9
add sp, sp, #16

subs w9, w9, #0
mul w0, w8, w9
add sp, sp, #16

Extend super optimisation to higher levels, e.g. C code, algorithms and allocation
strategies

11

Security properties for memory allocators

• e.g. Linear Temporal Logic (LTL) property:

• Where q is client_access_mem, p is malloc and r is free.
• "if in the future q will happen, then p must occur before q, and r must

occur eventually, but not before q "

12

Model checking to verify security properties
• Develop domain specific language to generate models on the fly
• Labels in code to mark the functionalities

• E.g. mem_allocate_start/end to trigger relevant flags

• Currently use SPIN or stripped-down version of nested depth-first
search for LTL model checking
o and support realtime verification of safety properties

13

Presenter
Presentation Notes
Follow approach of [Xu et al. MPLR 2022] for garbage collectors. Must be lightweight, fast and free of bugs

Cheri benchmarks for memory allocators
• 10 allocation-intensive C benchmarks
• Regular and irregular allocation

patterns
• https://github.com/glasgowPLI/alloc-

bench

14

https://github.com/glasgowPLI/alloc-bench
https://github.com/glasgowPLI/alloc-bench

Conclusions
•It is high time to make memory management
secure while high-performant and correct

•ML + Formal Verification for fast, secure, and
correct memory allocators
•Should generalise beyond CHERI

•Lots of opportunities for collaboration

15

	Slide Number 1
	Slide Number 2
	Memory related bugs are serious issues
	Memory allocators must also be fast
	Customised memory allocators for hardware and applications
	But memory allocators are expensive to build
	M4Secure – making it easier to develop fast, correct and secure memory management libraries
	Machine learning for fast memory allocators
	Super optimisation examples
	Super optimisation for LLaMA large language model
	Reinforcement learning (RL) to drive super optimisation
	Security properties for memory allocators
	Model checking to verify security properties
	Cheri benchmarks for memory allocators
	Conclusions

