
Using Program Synthesis to Make Your
Code Run Faster

Dr Elizabeth Polgreen

Lecturer, University of Edinburgh
Royal Academy of Engineering Research Fellow

1

Presenter
Presentation Notes
HiMy name is Elizabeth Polgreen, I am a royal academy of engineering research fellow and assistant professor at the unviersity of Edinburgh. I also had an Amazon Research Award this year, and I want ot talk to you about what I’ve been doing over the last yuear. More specifically want to talk to you about how program syhnthesis, my research on making program shnthsis faster, and, perhaps more importantly, how program shntehsis can be used to make your code faster.

2

• Previously all code worked on all hardware

• If the hardware got faster, your code got
faster automatically

• Hardware is now becoming more
specialized, with correspondings DSLs

• Using this specialized hardware gives
performance gains

• What about legacy code?
Moore’s Law is dead?

Presenter
Presentation Notes
Previously, all code worked on all hardware. The accepted contract between sotware and hardware was that hardware can change as mucha s it likes under the hood, but the code you ran on yesterdays machine will run exactly the same on tomorrows, but faster. The hardware can change but it has to look the same to the software, it has to speak the same lanauge. That means that you can invest in building software, decoupled from hardware devekopment, secure in the knowledge your code will work on whatever hardware you liie. THis worked because hardware manufacturers could basically rely on technology getting smaller and smaller and chips getting more and more powerful.THis scontract starts to fall apart as soon as we cant just rely on technology getting smaller and smaller. To get increased performance, hardware is starting to become more and more specialised.THis works great for new applications, you write your code in the new DSL for this new hardware and its super fast. But waht about your old code? Amd what about when your new applocation becomes old code?

3

• Machine learning workloads are dominated by tensor code

• Key to efficiency: highly parallelised dense algebra

• DSLs like TACO make this easy for new applications

• What about legacy code?

Presenter
Presentation Notes
So, to give you a concrete example. Tensor code dominates machine learningThe key to making this code efficient is to highly parallelisBut what about the legacy code? How much time would we have to spend manually rewriting that code into the new DSLs? Could we do that automatically?

4

C2TACO: Lifting Tensor Code to TACO - José Wesley de Souza Magalhães,
Jackson Woodruff, Elizabeth Polgreen, Michael O’Boyle

C2TACO

Presenter
Presentation Notes
And that’s what I’m going to tell you about. Our approach to lifting code automatically from low level lanugages into high level tensor DSLs, using program synthesis. Specifically, I’m going to tell you about lifting C code to TACO code, and our work that was oublicsed at GPCE last year. You can see this messy blokc of C code here in the purple. Our aim is to lift this into simple expression like this green einsum notation

5

• API matching/rewriting

• Neural machine translation

Existing approaches:

Brittle!

Needs too much data!

Presenter
Presentation Notes
There are existing approaches for this: we could use API matching/rewriting, which people have done but this is very brittle, and its very hard to not overfit to your benchmarksOr we could use enural machine transaltion. But the issue here is the amount of data you need. We tried this, and with the available data we had, we couldn’t get good enough results.

How? Program synthesis!

6

Presenter
Presentation Notes
So, instead, were going to use program synthesis

Formal Program Synthesis

∃𝑃𝑃∀𝑥𝑥.𝜎𝜎(𝑃𝑃, 𝑥𝑥)
Does there exist a function 𝑃𝑃 such that, for all possible
inputs 𝑥𝑥, the specification 𝜎𝜎 will evaluate to true for 𝑃𝑃 and
𝑥𝑥.

7

Presenter
Presentation Notes
What is program syntehsis? I’m going to dive into the formal world for a bit so bear with me. We’ll come back to compiler land in a few slidesWell, formal synthesis is solving this second order logic formula. Wr want to ginf a ptogram P such that, for all possible inputs x, the specification sigma evaluates to true for P and X.

Formal Program Synthesis

∃𝑃𝑃∀𝑥𝑥.𝜎𝜎(𝑃𝑃, 𝑥𝑥)
Does there exist a function 𝑃𝑃 such that, for all possible
inputs 𝑥𝑥, the specification 𝜎𝜎 will evaluate to true for 𝑃𝑃 and
𝑥𝑥.

𝜎𝜎 is a quantifier free formula in a background theory,
e.g., Linear Integer Arithmetic

8

NB: we can write specs with input-output
examples as quantifier free formula

Presenter
Presentation Notes
Sigma is a quantifier free formula, and in a background theory (e.g., bitvectors, linear integer arityhmetic)Also worth noting that these specs ca be input-output examples.

Formal Program Synthesis

9

Presenter
Presentation Notes
As an example. Consider this problem: find a body for f, such that the result is greater than x, greater than y and either equal to x or y.

∃𝑓𝑓.∀𝑥𝑥,𝑦𝑦. 𝑓𝑓(𝑥𝑥,𝑦𝑦) ≥ 𝑦𝑦 ∧ 𝑓𝑓(𝑥𝑥,𝑦𝑦) ≥ 𝑥𝑥 ∧ (𝑓𝑓(𝑥𝑥,𝑦𝑦) = 𝑥𝑥 ∨ 𝑓𝑓(𝑥𝑥,𝑦𝑦) = 𝑦𝑦)

Formal Program Synthesis

10

Solution: f finds the max of x and y

Presenter
Presentation Notes
Written as a logical formula this spec looks like this. Oh, and the solution is max

Defining the search space
Syntax-Guided Synthesis

Context Free Grammar

11

Presenter
Presentation Notes
Now, to make finding a solution like this tractable, we often augmetn the prpoblem with a context free grammar, like this one; This is called syntax-guided synthesis

LEARNER

ORACLE

12

Algorithms for formal synthesis
Oracle Guided Inductive Synthesis

∃𝑃𝑃∀𝑥𝑥.𝜎𝜎(𝑃𝑃, 𝑥𝑥)

Searches program space
and guesses candidates

Says if the candidate is
correct, and guides the
search if not

Presenter
Presentation Notes
Fprma; synthesis is solved by algorithms in the oracle guided inductive synthesis family. Algorithms that alternate between a learner, which searches the space of programs and guesss candidates, and an oracle which says if a candidate is correct and guides the search

SYNTHESIZE

VERIFY

𝑃𝑃∗ SA
T

UNSAT

13

Algorithms for formal synthesis
Counterexample Guided Inductive Synthesis

∃𝑃𝑃∀𝑥𝑥.𝜎𝜎(𝑃𝑃, 𝑥𝑥)

Presenter
Presentation Notes
As an example, the most common algorithm is called Counterexample guided inductive synthesis, because the oracle is a counterexample oracle. It

SYNTHESIZE

SA
T

UNSAT
VERIFY

14

∃𝑥𝑥. ¬𝜎𝜎(𝑃𝑃 ∗, 𝑥𝑥)

Algorithms for formal synthesis
Counterexample Guided Inductive Synthesis

∃𝑃𝑃∀𝑥𝑥.𝜎𝜎(𝑃𝑃, 𝑥𝑥)

Presenter
Presentation Notes
The verification phase then looks for a counterexample x, such that P* doesn’t satisfy the specification sigma. If none exists then we have the solution

SYNTHESIZE

CounterExample

SA
T

UNSAT
VERIFY

15

Algorithms for formal synthesis
Counterexample Guided Inductive Synthesis

∃𝑃𝑃∀𝑥𝑥.𝜎𝜎(𝑃𝑃, 𝑥𝑥)

Presenter
Presentation Notes
If one does exist, then we pass back a counterexample to the synthesis phase, which is appended to the x_i’s

VERIFY

∃𝑃𝑃.∀𝑥𝑥𝑖𝑖 .𝜎𝜎(𝑃𝑃, 𝑥𝑥)
SYNTHESIZE

SA
T

16

Algorithms for formal synthesis
Counterexample Guided Inductive Synthesis

∃𝑃𝑃∀𝑥𝑥.𝜎𝜎(𝑃𝑃, 𝑥𝑥)

Presenter
Presentation Notes
The synthesiser stores a list fo these conterexaplesAnd now the enxt time the syntesher guesses, it is looking or a program that satisfies the spec for all the counterexamples its seen so far

VERIFY

∃𝑃𝑃.∀𝑥𝑥𝑖𝑖 .𝜎𝜎(𝑃𝑃, 𝑥𝑥)
UNSAT

SYNTHESIZE

SA
T

17

Algorithms for formal synthesis
Counterexample Guided Inductive Synthesis

∃𝑃𝑃∀𝑥𝑥.𝜎𝜎(𝑃𝑃, 𝑥𝑥)

Presenter
Presentation Notes
(And if there isn’t one, it can obviously say unsat, and if there is one, the loop repeats)

LEARNER

ORACLE

18

Algorithms for formal synthesis
Oracle Guided Inductive Synthesis

∃𝑃𝑃∀𝑥𝑥.𝜎𝜎(𝑃𝑃, 𝑥𝑥)

Searches program space
and guesses candidates

Says if the candidate is
correct, and guides the
search if not

Presenter
Presentation Notes
Fprma; synthesis is solved by algorithms in the oracle guided inductive synthesis family. Algorithms that alternate between a learner, which searches the space of programs and guesss candidates, and an oracle which says if a candidate is correct and guides the search

C2TACO - Specification

19

∃𝑃𝑃𝑇𝑇∀𝑥𝑥.𝑃𝑃𝑇𝑇(𝑥𝑥) = 𝑃𝑃𝐶𝐶(𝑥𝑥)
Does there exist a function 𝑃𝑃𝑇𝑇, in TACO, such that, for all

possible inputs 𝑥𝑥, 𝑃𝑃𝑇𝑇(𝑥𝑥) gives the same result as the original
source program 𝑃𝑃𝐶𝐶(𝑥𝑥) in C.

Specification: randomly generated input-output examples

Presenter
Presentation Notes
Formally, the problem we want to solve is does there eixst a program PT, in TACO, such that, for all possible inputs, PT gives the same results as the original source program PC in C.

LEARNER

ORACLE

20

Algorithms for formal synthesis
Oracle Guided Inductive Synthesis

∃𝑃𝑃∀𝑥𝑥.𝜎𝜎(𝑃𝑃, 𝑥𝑥)

Searches program space
and guesses candidates

Says if the candidate is
correct, and guides the
search if not

Presenter
Presentation Notes
You can think of CEGIS as alternativn etween a learner and an oracle. The learner makes guesses at what the program might be, and the oracle provides feedback to the learner about whetner it was correc tor not.

∃𝑃𝑃𝑇𝑇∀𝑥𝑥.𝑃𝑃𝑇𝑇(𝑥𝑥) = 𝑃𝑃𝐶𝐶(𝑥𝑥)
Does there exist a function 𝑃𝑃𝑇𝑇, in TACO, such that, for all

possible inputs 𝑥𝑥, 𝑃𝑃𝑇𝑇(𝑥𝑥) gives the same result as the original
source program 𝑃𝑃𝐶𝐶(𝑥𝑥) in C.

C2TACO - Specification

21

Correctness oracle: compile and execute on a
small set of examples, then test on a much

bigger set

Specification: randomly generated input-output examples

Presenter
Presentation Notes
Formally, the problem we want to solve is does there eixst a program PT, in TACO, such that, for all possible inputs, PT gives the same results as the original source program PC in C.

LEARNER

ORACLE

22

Algorithms for formal synthesis
Oracle Guided Inductive Synthesis

∃𝑃𝑃∀𝑥𝑥.𝜎𝜎(𝑃𝑃, 𝑥𝑥)

Searches program space
and guesses candidates

Says if the candidate is
correct, and guides the
search if not

Presenter
Presentation Notes
You can think of CEGIS as alternativn etween a learner and an oracle. The learner makes guesses at what the program might be, and the oracle provides feedback to the learner about whetner it was correc tor not.

C2TACO - Grammar

23

Presenter
Presentation Notes
Formally, the problem we want to solve is does there eixst a program PT, in TACO, such that, for all possible inputs, PT gives the same results as the original source program PC in C.

Bottom up enumeration

24

Programs so far
Programs of length 1:

X Y 0 1 ⊥

Presenter
Presentation Notes
And the loop repeats.

Programs so far
Programs of length 2:

X Y 0 1 ⊥ X+X Y+Y X+0 X+1 Y+0 Y+1 X+Y

-X -Y -0 -1

ite(⊥, X, X) ite(⊥, X, Y) ite(⊥, X, 0). …

X=X X=Y Y=Y Y=0 Y=1 X=1 X=0

…
25

Bottom up enumeration

Presenter
Presentation Notes
And the loop repeats.

Programs so far
Programs of length 3:X Y 0 1 ⊥

X+X Y+Y X+0
X+1 Y+0 Y+1 X+Y
-X -Y -0 -1

ite(⊥, X, X) ite(⊥,
X, Y) ite(⊥, X, 0).
…

X=X
X=Y
Y=Y
Y=0
Y=1
X=1
X=0

…
26

Bottom up enumeration

Presenter
Presentation Notes
And the loop repeats.

Programs so far
Programs of length 3:X Y 0 1 ⊥

X+X Y+Y X+0
X+1 Y+0 Y+1 X+Y
-X -Y -0 -1

ite(⊥, X, X) ite(⊥,
X, Y) ite(⊥, X, 0).
…

X=X
X=Y
Y=Y
Y=0
Y=1
X=1
X=0

…
27

Bottom up enumeration

Problem: exponential
search space!

Presenter
Presentation Notes
And the loop repeats.

28

Bottom up enumeration of templates

• Instead of enumerating complete programs,
enumerate programs with holes in place of
arguments

• Extend the correctness oracle to check all
possible combinations of asignments to the
holes

Presenter
Presentation Notes
And the loop repeats.

29

Observational Equivalence

• If multiple candidate programs behave the
same on all the inputs, we can discard all but
one

• Tames exponential growth.. a bit

Programs so far

X Y 0 1 ⊥
X+X Y+Y X+0 X+1 Y+0
Y+1 X+Y
-X -Y -0 -1

ite(⊥, X, X)
ite(⊥, X, Y)
ite(⊥, X, 0). …

X=X
X=Y
Y=Y
Y=0
Y=1
X=1
X=0

…

Presenter
Presentation Notes
And the loop repeats.

LEARNER

ORACLE

30

Algorithms for formal synthesis
Oracle Guided Inductive Synthesis

∃𝑃𝑃∀𝑥𝑥.𝜎𝜎(𝑃𝑃, 𝑥𝑥)

Searches program space
and guesses candidates

Says if the candidate is
correct, and guides the
search if not

Presenter
Presentation Notes
You can think of CEGIS as alternativn etween a learner and an oracle. The learner makes guesses at what the program might be, and the oracle provides feedback to the learner about whetner it was correc tor not.

C2TACO - Overview

31

Presenter
Presentation Notes
Here’s an overview of our whole pipeline and how C2TACO is deployed. We take in a program P, written in C. We use a program classifier to identify a fragment of this program, k, that can possibly be lifted to TACO. C2TACO deploys an enumeratie synthesis engine to geerate an equivalent program in taco.Once we have synthesized an equivalent program in taco, this is inserted into the original code base in the place of the program fragment k.

32

C2TACO - Performance

• Better than NMT
and chatGPT

• 5.6s average
synthesis time

Presenter
Presentation Notes
We compare theperformance to neural machine translation model that we train up on artificially generated data, and to ChatGPT, TF-Coder which is another enumerative synthesis tool from the literatyre, and to our own enumeratigve search wtihout the code analysis heuristics (ETS). \This is a standard set of benchamrks from the literatre, and C2TACO outperforms all of these technqiues. The grapha t the bottom shows synthesis time across all these benchamrks (in no particular order). You can see that NMT and CHatGPT are very fast and consistent (but get wrong answers a lot of the time). C2TACO is pretty consistently under 10s, and the heuristics clearly manage to level off the results of the enumerative solver quite well. 5.6s is really quite a reasonable synthesis time.

33

GPU CPU

Speedup obtained by the synthesized TACO programs on different hardware
platforms. The baseline is the average running time of the original
implementations when compiled with gcc -O3

Average speedup 1.79x on a multi-
core platform and 24.1x on a GPU

C2TACO - Performance

Presenter
Presentation Notes
We also looked at the speedup we ge ton these benchmarks, on CPU and GPU. On CPU our code is, on average, nearly twice as fast, but The speed up on GPUs is 24.1x faster.

• MLIR = extensible high-level representation within LLVM

• Vendors develop compilations paths for different MLIR dialects

mlirSynth

34

mlirSynth: Automatic, Retargetable Program Raising in Multi-Level IR using Program
Synthesis - Alexander Brauckmann, Elizabeth Polgreen, Tobias Grosser, Michael O’Boyle

Presenter
Presentation Notes
I will briefly tlak about another piece of work we have done this year, which is a similar vibe: lifting between MLIR dialects. MLIR is an extneible high lievel representatio wtihin LLVM. MLIR dialects are high level domain specific languages, and Vendors can then develop compilation paths for different MLIR dialects

35

mlirSynth

Presenter
Presentation Notes
As an example, heres a c program, the equivalent in LLVM, then the affine IR, the Linalg IR, HLOR IR. HLO thena llows you to depliy your code on a tensor processing unit. The only way to get to Linalg, and HLO is via mlirSynth, ad these give the biggest speed ups over standard LLVM, giving a speed up of over 800x on the TPU.

Preprocessing Synthesis Postprocessing Validation

Source
Program

Target Dialects

Program
(in Target
Dialects)

We get the grammar for free!

mlirSynth - Overview

36

Presenter
Presentation Notes
Again, here’s the overview. One thing I want to highlight here is that mlir dialects come with a dialect definition, and so we get the grammar for free here. We can simply infer the grammar from this dialect definition. So, if you define a new mlirDialect with a new dialect definition, extending mlirSynth to support that dialect should be really straight forward.

Bottom-up enumerative search

● Progressively grow a candidate set by
combining simpler to more complex ones

● Initialization: Basic programs (returning
arguments, constants)

● Terminate when specification matched
37

Preprocessing Synthesis Postprocessing Validation

Source Program

Target Dialects

Program
(in Target
Dialects)

Optimization techniques

● Type correct by construction
● Identify classes of observationally

equivalent candidates
● Polyhedral-based heuristics for guiding

synthesis

Specification

● Generate Input/Output example

Presenter
Presentation Notes
So our synthesis uses a specification made up of input output examples again We use bottom up search again, progressively growing our candidate setAnd this time the heuristics are type driven, as well as observational equivalent and polyhedral based heuristics for guiding synthesis

38

Source Program

Candidate
Program

Candidate
Program

(in Source
language)

Bounded Model
Checking

a) Float arithmetic
b) Float arithmetic, permitting

small δ
c) Integer arithmetic

Testing I/O equivalence

Equivalent for all inputs?
Equivalence Guarantees

Preprocessing Synthesis Postprocessing Validation

Source Program

Target Dialects

Program
(in Target
Dialects)

Presenter
Presentation Notes
We also add a post processing check that checks for equivalence on all inputs. We can give differing levels of guarantee depending on the benchmark,and we use CBMC for this.

mlirSynth - Performance

39

Presenter
Presentation Notes
Syntehsis time is in general very tractable, less than 10s for most benchmarks, and we can see the heuristics knock a reasonable amount of time of this search.

mlirSynth - Performance

40

Presenter
Presentation Notes
The performance gains we get by lifting to the highest level dialect are around 25x, or 85x if we run this on TPUs.

Challenges
• Taking simple techniques from formal synthesis gave us big performance

speed-ups

• Limitations:

• Hand-writing heuristics

• Correctness guarantees

41

Presenter
Presentation Notes
So, in conclusion, we have defined oracle interfaces, grouping responses from oracles into assumptions and cosntraints. This allowed us to present unifying algorithms for SMTO and SyMO, that mean standard solvers can perform synthesis with complex oracles

Current work:
• Learning heuristics for formal synthesis:

• Using reinforcement learning [1]

• Using Large Language Models [2]

• Can we learn heuristics for “real-world” problems?

• Can we provide stronger guarantees of correctness?

42

[1] Data-Generation and Reinforcement Learning for Syntax-Guided Synthesis –
Julian Parsert and Elizabeth Polgreen. AAAI 2024

[2] Guiding Enumerative Synthesis with Large Language Models – Yixuan Li,
Julian Parsert and Elizabeth Polgreen. CAV 2024

Presenter
Presentation Notes
So, in conclusion, we have defined oracle interfaces, grouping responses from oracles into assumptions and cosntraints. This allowed us to present unifying algorithms for SMTO and SyMO, that mean standard solvers can perform synthesis with complex oracles

Conclusions
• Taking simple techniques from formal synthesis gave us big performance

speed-ups

• But there’s still lots of work to do…!

• Currently recruiting for PhD students (international or home fees)

43

elizabeth.polgreen@ed.ac.uk

Presenter
Presentation Notes
So, in conclusion, we have defined oracle interfaces, grouping responses from oracles into assumptions and cosntraints. This allowed us to present unifying algorithms for SMTO and SyMO, that mean standard solvers can perform synthesis with complex oracles

	Using Program Synthesis to Make Your Code Run Faster
	Slide Number 2
	Slide Number 3
	C2TACO
	Slide Number 5
	Slide Number 6
	Formal Program Synthesis
	Formal Program Synthesis
	Formal Program Synthesis
	Formal Program Synthesis
	Defining the search space
	Algorithms for formal synthesis
	Algorithms for formal synthesis
	Algorithms for formal synthesis
	Algorithms for formal synthesis
	Algorithms for formal synthesis
	Algorithms for formal synthesis
	Algorithms for formal synthesis
	C2TACO - Specification
	Algorithms for formal synthesis
	C2TACO - Specification
	Algorithms for formal synthesis
	C2TACO - Grammar
	Bottom up enumeration
	Bottom up enumeration
	Bottom up enumeration
	Bottom up enumeration
	Bottom up enumeration of templates
	Observational Equivalence
	Algorithms for formal synthesis
	C2TACO - Overview
	C2TACO - Performance
	C2TACO - Performance
	mlirSynth
	mlirSynth
	mlirSynth - Overview
	Slide Number 37
	Slide Number 38
	mlirSynth - Performance
	mlirSynth - Performance
	Slide Number 41
	Slide Number 42
	Slide Number 43

