Using Program Synthesis to Make Your Code Run Faster

Dr Elizabeth Polgreen

Lecturer, University of Edinburgh Royal Academy of Engineering Research Fellow

- Previously all code worked on all hardware
- If the hardware got faster, your code got faster automatically
- Hardware is now becoming more specialized, with correspondings DSLs
- Using this specialized hardware gives performance gains
- What about legacy code?

- Machine learning workloads are dominated by tensor code
- Key to efficiency: highly parallelised dense algebra
- DSLs like TACO make this easy for new applications
- What about legacy code?

C2TACO

C2TACO: Lifting Tensor Code to TACO - José Wesley de Souza Magalhães, Jackson Woodruff, Elizabeth Polgreen, Michael O'Boyle

Existing approaches:

Neural machine translation Needs too much data!

Brittle!

How? Program synthesis!

$\exists P \forall x. \sigma(P, x)$

Does there exist a function P such that, for all possible inputs x, the specification σ will evaluate to true for P and χ .

$\exists P \forall x. \sigma(P, x)$

Does there exist a function P such that, for all possible inputs x, the specification σ will evaluate to true for P and χ .

 σ is a quantifier free formula in a background theory, e.g., Linear Integer Arithmetic

NB: we can write specs with input-output examples as quantifier free formula

int f(int x, int y) { ??? $\texttt{Gensures: } \texttt{@ret} \geq x \land \texttt{@ret} \geq y \land (\texttt{@ret} = x \land \texttt{@ret} = y)$

int f(int x, int y) { ??? $\texttt{densures: } \texttt{@ret} \geq x \land \texttt{@ret} \geq y \land (\texttt{@ret} = x \land \texttt{@ret} = y)$

$\exists f. \forall x, y. f(x, y) \ge y \land f(x, y) \ge x \land (f(x, y) = x \lor f(x, y) = y)$

Solution: f finds the max of x and y

Defining the search space

Syntax-Guided Synthesis

int f(int x, int y) ??? $\texttt{densures: } \texttt{@ret} \geq x \land \texttt{@ret} \geq y \land (\texttt{@ret} = x \land \texttt{@ret} = y)$

> A - > A + A | - A | x | y | 0 | 1 | ite (B, A, A) $B \rightarrow B \land B \mid \neg B \mid A = A \mid A \ge A \mid \bot$

Context Free Grammar

Oracle Guided Inductive Synthesis

and guesses candidates

Says if the candidate is correct, and guides the search if not

Oracle Guided Inductive Synthesis

and guesses candidates

correct, and guides the search if not

C2TACO - Specification

$\exists P_T \forall x. P_T(x) = P_C(x)$

Specification: randomly generated input-output examples

Does there exist a function P_T , in TACO, such that, for all possible inputs x, $P_T(x)$ gives the same result as the original source program $P_C(x)$ in C.

Oracle Guided Inductive Synthesis

and guesses candidates

Says if the candidate is correct, and guides the search if not

C2TACO - Specification

$\exists P_T \forall x. P_T(x) = P_C(x)$

Does there exist a function P_T , in TACO, such that, for all possible inputs x, $P_T(x)$ gives the same result as the original source program $P_C(x)$ in C.

Specification: randomly generated input-output examples

Correctness oracle: compile and execute on a small set of examples, then test on a much bigger set

Oracle Guided Inductive Synthesis

and guesses candidates

Says if the candidate is correct, and guides the search if not

C2TACO - Grammar

```
\langle PROGRAM \rangle ::= \langle TENSOR \rangle = \langle EXPR \rangle
\langle TENSOR \rangle ::= \langle ID \rangle (\langle INDEX-EXPR \rangle) | \langle ID \rangle
\langle INDEX-EXPR \rangle ::= \langle INDEX-VAR \rangle
           \langle INDEX-VAR \rangle, \langle INDEX-EXPR \rangle
\langle INDEX-VAR \rangle ::= i \mid j \mid k \mid l
\langle EXPR \rangle ::= \langle EXPR \rangle + \langle EXPR \rangle
          \langle EXPR \rangle - \langle EXPR \rangle
          \langle EXPR \rangle * \langle EXPR \rangle
          \langle EXPR \rangle / \langle EXPR \rangle
          \langle CONSTANT \rangle
           (TENSOR)
```

```
\langle ID \rangle ::= T_0 \mid T_1 \mid T_2 \mid \ldots
```

```
\langle CONSTANT \rangle ::= C_0 | C_1 | C_2 | \dots
```

$A \rightarrow A + A \mid -A \mid x \mid y \mid 0 \mid 1 \mid ite(B, A, A)$ $B \rightarrow B \land B \mid \neg B \mid A = A \mid A \ge A \mid \bot$

Programs so far

Programs of length 1: X Y 0 1 \perp

$A \rightarrow A + A \mid -A \mid x \mid y \mid 0 \mid 1 \mid ite(B, A, A)$ $B \rightarrow B \land B \mid -B \mid A = A \mid A \ge A \mid \bot$

Programs so far

. . .

X+X Y+Y X+0 X+1 Y+0 Y+1 X+Y -X -Y -0 -1 ite(\bot , X, X) ite(\bot , X, Y) ite(\bot , X, 0). ... X=X X=Y Y=Y Y=0 Y=1 X=1 X=0

Programs of length 2:

$A \rightarrow A + A \mid -A \mid x \mid y \mid 0 \mid 1 \mid ite(B, A, A)$ $B \rightarrow B \land B \mid \neg B \mid A = A \mid A \ge A \mid \bot$

Programs so far $X Y 0 1 \bot$ X+X Y+Y X+0 X+1 Y+0 Y+1 X+Y X=X X+1 Y+0 Y+1 X+Y X=Y -X -Y -0 -1 Y=Y $ite(\bot, X, X) ite(\bot, Y=1)$ $X, Y) ite(\bot, X, 0). X=1$ $\dots X=0$

. . .

Programs of length 3:

$A \rightarrow A + A \mid -A \mid x \mid y \mid 0 \mid 1 \mid ite(B, A, A)$ $B \rightarrow B \land B \mid \neg B \mid A = A \mid A \ge A \mid \bot$

Programs so far $X Y 0 1 \bot$ X+X Y+Y X+0 X+1 Y+0 Y+1 X+Y X=X X+1 Y+0 Y+1 X+Y X=Y X-Y -0 -1 Y=Y $ite(\bot, X, X) ite(\bot, Y=0$ $X, Y) ite(\bot, X, 0). X=1$ $\dots X=0$

. . .

Programs of length 3:

Problem: exponential search space!

Bottom up enumeration of templates

```
\langle PROGRAM \rangle ::= \langle TENSOR \rangle = \langle EXPR \rangle
\langle TENSOR \rangle ::= \langle ID \rangle (\langle INDEX-EXPR \rangle) | \langle ID \rangle
\langle INDEX-EXPR \rangle ::= \langle INDEX-VAR \rangle
           \langle INDEX-VAR \rangle, \langle INDEX-EXPR \rangle
\langle INDEX-VAR \rangle ::= i \mid j \mid k \mid l
\langle EXPR \rangle ::= \langle EXPR \rangle + \langle EXPR \rangle
           \langle EXPR \rangle - \langle EXPR \rangle
           \langle EXPR \rangle * \langle EXPR \rangle
           \langle EXPR \rangle / \langle EXPR \rangle
           (CONSTANT)
           (TENSOR)
```

```
\langle ID \rangle ::= T_0 | T_1 | T_2 | \dots
```

```
\langle CONSTANT \rangle ::= C_0 | C_1 | C_2 | \dots
```

- Instead of enumerating complete programs, enumerate programs with holes in place of arguments
- Extend the correctness oracle to check all possible combinations of asignments to the holes

Observational Equivalence

- If multiple candidate programs behave the same on all the inputs, we can discard all but one
- Tames exponential growth.. a bit

Oracle Guided Inductive Synthesis

and guesses candidates

Says if the candidate is correct, and guides the search if not

C2TACO - Overview

C2TACO - Performance

- **Better than NMT**

Benchmark

C2TACO - Performance

GPU

Speedup obtained by the synthesized TACO programs on different hardware platforms. The baseline is the average running time of the original implementations when compiled with gcc -03

Average speedup 1.79x on a multicore platform and 24.1x on a GPU

CPU

mlirSynth

- MLIR = extensible high-level representation within LLVM

mlirSynth: Automatic, Retargetable Program Raising in Multi-Level IR using Program Synthesis - Alexander Brauckmann, Elizabeth Polgreen, Tobias Grosser, Michael O'Boyle

Vendors develop compilations paths for different MLIR dialects

mlirSynth

35

mlirSynth - Overview

Source Program

Specification

Generate Input/Output example

Bottom-up enumerative search

- Progressively grow a candidate set by combining simpler to more complex ones
- Initialization: Basic programs (returning arguments, constants)
- Terminate when specification matched

Optimization techniques

- Type correct by construction
- Identify classes of observationally equivalent candidates
- Polyhedral-based heuristics for guiding synthesis

Equivalent for all inputs?

Bounded Model Checking

Equivalence Guarantees

- Float arithmetic a)
- b) Float arithmetic, permitting small δ
- Integer arithmetic C)

Testing I/O equivalence

mlirSynth - Performance

mlirSynth - Performance

Challenges

- Taking simple techniques from formal synthesis gave us big performance speed-ups
- Limitations:
 - Hand-writing heuristics
 - Correctness guarantees

Current work:

- Learning heuristics for formal synthesis:
 - Using reinforcement learning [1]
 - Using Large Language Models [2]
- Can we learn heuristics for "real-world" problems?
- Can we provide stronger guarantees of correctness?

[1] Data-Generation and Reinforcement Learning for Syntax-Guided Synthesis – Julian Parsert and Elizabeth Polgreen. AAAI 2024

[2] Guiding Enumerative Synthesis with Large Language Models – Yixuan Li, Julian Parsert and Elizabeth Polgreen. CAV 2024

Conclusions

- Taking simple techniques from formal synthesis gave us big performance speed-ups
- But there's still lots of work to do...!

Currently recruiting for PhD students (international or home fees)

elizabeth.polgreen@ed.ac.uk

