
Secure Smart Contracts with Isabelle/Solidity1

on 2024-05-21

Diego Marmsoler
Department of Computer Science

University of Exeter

d.marmsoler@exeter.ac.uk
www.marmsoler.com
@DiegoMarmsoler

Joint work with Asad Ahmed, Achim D. Brucker, Naipeng Dong, Horacio Mijail,
Billy Thornton, and Mark Utting

1Supported by the Engineering and Physical Sciences Research Council [EP/X027619/1]

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Introduction
Smart Contracts
Solidity

Isabelle/Solidity
Problem
Isabelle/Solidity

Conclusion
Applications
Summary

1

Smart Contracts

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Introduction
Smart Contracts
Solidity

Isabelle/Solidity
Problem
Isabelle/Solidity

Conclusion
Applications
Summary

1

Smart Contracts

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Introduction
Smart Contracts
Solidity

Isabelle/Solidity
Problem
Isabelle/Solidity

Conclusion
Applications
Summary

2

Solidity

Solidity
contract Bank {

mapping(address => uint256) balances;

function deposit() public payable {
balances[msg.sender] = balances[msg.sender] + msg.value;

}

function withdraw() public {
uint256 bal = balances[msg.sender];
balances[msg.sender] = 0;
msg.sender.transfer(bal);

}
}

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Introduction
Smart Contracts
Solidity

Isabelle/Solidity
Problem
Isabelle/Solidity

Conclusion
Applications
Summary

3

Fallback Methods

Solidity
contract Customer {

Bank bank;

constructor(Bank b) public {
bank = b;

}
function deposit(uint v) public {

bank.deposit.value(v)();
}
function withdraw() public {

bank.withdraw();
}
function() external payable {

//received some funds
}

}

Solidity
contract Bank {

mapping(address => uint256) balances;

function deposit() public payable {
balances[msg.sender] =
balances[msg.sender] + msg.value;

}

function withdraw() public {
uint256 bal = balances[msg.sender];
balances[msg.sender] = 0;
msg.sender.transfer(bal);

}
}

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Introduction
Smart Contracts
Solidity

Isabelle/Solidity
Problem
Isabelle/Solidity

Conclusion
Applications
Summary

4

Problems with Smart Contracts

It is estimated that since 2019,
more than $5B was stolen

due to vulnerabilities in smart contracts

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Introduction
Smart Contracts
Solidity

Isabelle/Solidity
Problem
Isabelle/Solidity

Conclusion
Applications
Summary

5

Isabelle/Solidity

Isabelle/Solidity is a deep empedding
of Solidity (v0.5.16) in Isabelle/HOL

• Fixed-size integer types
with and without overflow.

• Domain-specific primitives,
such as transfer or balance.

• Fallback methods which are
executed with monetary transfers.

• Different types of stores, such as
storage, memory, calldata, stack.

• Extendable Gas model to model
computational costs.

DM and A.D. Brucker. Isabelle/Solidity. AFP 2022.

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Introduction
Smart Contracts
Solidity

Isabelle/Solidity
Problem
Isabelle/Solidity

Conclusion
Applications
Summary

5

Isabelle/Solidity

Isabelle/Solidity is a deep empedding
of Solidity (v0.5.16) in Isabelle/HOL

• Fixed-size integer types
with and without overflow.

• Domain-specific primitives,
such as transfer or balance.

• Fallback methods which are
executed with monetary transfers.

• Different types of stores, such as
storage, memory, calldata, stack.

• Extendable Gas model to model
computational costs.

DM and A.D. Brucker. Isabelle/Solidity. AFP 2022.

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Introduction
Smart Contracts
Solidity

Isabelle/Solidity
Problem
Isabelle/Solidity

Conclusion
Applications
Summary

5

Isabelle/Solidity

Isabelle/Solidity is a deep empedding
of Solidity (v0.5.16) in Isabelle/HOL

• Fixed-size integer types
with and without overflow.

• Domain-specific primitives,
such as transfer or balance.

• Fallback methods which are
executed with monetary transfers.

• Different types of stores, such as
storage, memory, calldata, stack.

• Extendable Gas model to model
computational costs.

DM and A.D. Brucker. Isabelle/Solidity. AFP 2022.

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Introduction
Smart Contracts
Solidity

Isabelle/Solidity
Problem
Isabelle/Solidity

Conclusion
Applications
Summary

5

Isabelle/Solidity

Isabelle/Solidity is a deep empedding
of Solidity (v0.5.16) in Isabelle/HOL

• Fixed-size integer types
with and without overflow.

• Domain-specific primitives,
such as transfer or balance.

• Fallback methods which are
executed with monetary transfers.

• Different types of stores, such as
storage, memory, calldata, stack.

• Extendable Gas model to model
computational costs.

DM and A.D. Brucker. Isabelle/Solidity. AFP 2022.

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Introduction
Smart Contracts
Solidity

Isabelle/Solidity
Problem
Isabelle/Solidity

Conclusion
Applications
Summary

5

Isabelle/Solidity

Isabelle/Solidity is a deep empedding
of Solidity (v0.5.16) in Isabelle/HOL

• Fixed-size integer types
with and without overflow.

• Domain-specific primitives,
such as transfer or balance.

• Fallback methods which are
executed with monetary transfers.

• Different types of stores, such as
storage, memory, calldata, stack.

• Extendable Gas model to model
computational costs.

DM and A.D. Brucker. Isabelle/Solidity. AFP 2022.

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Introduction
Smart Contracts
Solidity

Isabelle/Solidity
Problem
Isabelle/Solidity

Conclusion
Applications
Summary

5

Isabelle/Solidity

Isabelle/Solidity is a deep empedding
of Solidity (v0.5.16) in Isabelle/HOL

• Fixed-size integer types
with and without overflow.

• Domain-specific primitives,
such as transfer or balance.

• Fallback methods which are
executed with monetary transfers.

• Different types of stores, such as
storage, memory, calldata, stack.

• Extendable Gas model to model
computational costs.

DM and A.D. Brucker. Isabelle/Solidity. AFP 2022.

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Introduction
Smart Contracts
Solidity

Isabelle/Solidity
Problem
Isabelle/Solidity

Conclusion
Applications
Summary

6

How to ensure compliance of the semantics

DM and A.D. Brucker.
Conformance Testing of Formal Semantics using Grammar-based Fuzzing. TAP 2022.

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Introduction
Smart Contracts
Solidity

Isabelle/Solidity
Problem
Isabelle/Solidity

Conclusion
Applications
Summary

7

Applications

• Verified Constant Solving

• Soundness of SSCalc
• Verified Banking

DM and A. Brucker. A Denotational Semantics of Solidity in Isabelle/HOL. SEFM 2021.

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Introduction
Smart Contracts
Solidity

Isabelle/Solidity
Problem
Isabelle/Solidity

Conclusion
Applications
Summary

7

Applications

• Verified Constant Solving
• Soundness of SSCalc

• Verified Banking

DM and B. Thornton. SSCalc: A calculus for Solidity smart contracts. SEFM 2023.

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Introduction
Smart Contracts
Solidity

Isabelle/Solidity
Problem
Isabelle/Solidity

Conclusion
Applications
Summary

7

Applications

• Verified Constant Solving
• Soundness of SSCalc
• Verified Banking

DM and A. Brucker. Isabelle/Solidity: A deep embedding of Solidity in Isabelle/HOL. TBP.

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Introduction
Smart Contracts
Solidity

Isabelle/Solidity
Problem
Isabelle/Solidity

Conclusion
Applications
Summary

8

Summary

λ
→

∀
=Is

ab
el
le

β

α

Solidity

What is achieved so far
• Formalisation of a subset of Solidity in Isabelle/HOL

• Conservative extension guarantees semantic consistency
• Deep embedding allows to reason about the language itself

• Used in several case studies to verify ...

• Gas-optimizer
• soundness of Solidity calculus
• concrete Solidity contracts

What are we currently working on

• Shallow embedding to improve automation for the verification of contracts
• First results are promising!

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Introduction
Smart Contracts
Solidity

Isabelle/Solidity
Problem
Isabelle/Solidity

Conclusion
Applications
Summary

8

Summary

λ
→

∀
=Is

ab
el
le

β

α

Solidity

What is achieved so far
• Formalisation of a subset of Solidity in Isabelle/HOL

• Conservative extension guarantees semantic consistency
• Deep embedding allows to reason about the language itself

• Used in several case studies to verify ...
• Gas-optimizer
• soundness of Solidity calculus
• concrete Solidity contracts

What are we currently working on

• Shallow embedding to improve automation for the verification of contracts
• First results are promising!

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Introduction
Smart Contracts
Solidity

Isabelle/Solidity
Problem
Isabelle/Solidity

Conclusion
Applications
Summary

8

Summary

λ
→

∀
=Is

ab
el
le

β

α

Solidity

What is achieved so far
• Formalisation of a subset of Solidity in Isabelle/HOL

• Conservative extension guarantees semantic consistency
• Deep embedding allows to reason about the language itself

• Used in several case studies to verify ...
• Gas-optimizer
• soundness of Solidity calculus
• concrete Solidity contracts

What are we currently working on
• Shallow embedding to improve automation for the verification of contracts

• First results are promising!

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Introduction
Smart Contracts
Solidity

Isabelle/Solidity
Problem
Isabelle/Solidity

Conclusion
Applications
Summary

8

Summary

λ
→

∀
=Is

ab
el
le

β

α

Solidity

What is achieved so far
• Formalisation of a subset of Solidity in Isabelle/HOL

• Conservative extension guarantees semantic consistency
• Deep embedding allows to reason about the language itself

• Used in several case studies to verify ...
• Gas-optimizer
• soundness of Solidity calculus
• concrete Solidity contracts

What are we currently working on
• Shallow embedding to improve automation for the verification of contracts
• First results are promising!

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Introduction
Smart Contracts
Solidity

Isabelle/Solidity
Problem
Isabelle/Solidity

Conclusion
Applications
Summary

9

References I

Diego Marmsoler and Achim D. Brucker.
A Denotational Semantics of Solidity in Isabelle/HOL.
In Radu Calinescu and Corina S. Păsăreanu, editors, Software Engineering
and Formal Methods, pages 403–422, Cham, 2021. Springer International
Publishing.
Diego Marmsoler and Achim D. Brucker.
Conformance testing of formal semantics using grammar-based fuzzing.
In Laura Kovács and Karl Meinke, editors, Tests and Proofs, pages 106–125,
Cham, 2022. Springer International Publishing.
Diego Marmsoler and Achim D. Brucker.
Isabelle/solidity: A deep embedding of solidity in isabelle/hol.
Archive of Formal Proofs, July 2022.
https://isa-afp.org/entries/Solidity.html, Formal proof development.

https://isa-afp.org/entries/Solidity.html

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Introduction
Smart Contracts
Solidity

Isabelle/Solidity
Problem
Isabelle/Solidity

Conclusion
Applications
Summary

10

References II

Diego Marmsoler and Billy Thornton.
SSCalc: A Calculus for Solidity Smart Contracts.
In Carla Ferreira and Tim A. C. Willemse, editors, Software Engineering and
Formal Methods, pages 184–204, Cham, 2023. Springer Nature Switzerland.

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Language Features
Fixed-size Integer Types
Domain-specific Primitives
Gas Model
Method Calls
Complex Data Types
Assignments with Different
Semantics

Testing

Example
Applications
Verified Constant Solving
SSCalc
Banking Contract

10

4 Language Features
Fixed-size Integer Types
Domain-specific Primitives
Gas Model
Method Calls
Complex Data Types
Assignments with Different Semantics

5 Testing

6 Example Applications
Verified Constant Solving
SSCalc
Banking Contract

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Language Features
Fixed-size Integer Types
Domain-specific Primitives
Gas Model
Method Calls
Complex Data Types
Assignments with Different
Semantics

Testing

Example
Applications
Verified Constant Solving
SSCalc
Banking Contract

11

Fixed-size Integer Types

• Signed and unsigned integers from 8 . . . 256 bits (with steps of 8 bits)
• Signed integer types are only compatible with unsigned types of smaller size
• If a value is too large for a size a silent overflow will occur

Solidity
assert(int8(200) == int8(-56)); //true

assert(uint8(200) == uint8(-56)); //true

assert(uint8(200) + int16(32600) == int16(-32736)); //true

assert(uint16(100) + int16(32700)); //compiler error

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Language Features
Fixed-size Integer Types
Domain-specific Primitives
Gas Model
Method Calls
Complex Data Types
Assignments with Different
Semantics

Testing

Example
Applications
Verified Constant Solving
SSCalc
Banking Contract

11

Fixed-size Integer Types

• Signed and unsigned integers from 8 . . . 256 bits (with steps of 8 bits)
• Signed integer types are only compatible with unsigned types of smaller size
• If a value is too large for a size a silent overflow will occur

Solidity
assert(int8(200) == int8(-56));

//true

assert(uint8(200) == uint8(-56)); //true

assert(uint8(200) + int16(32600) == int16(-32736)); //true

assert(uint16(100) + int16(32700)); //compiler error

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Language Features
Fixed-size Integer Types
Domain-specific Primitives
Gas Model
Method Calls
Complex Data Types
Assignments with Different
Semantics

Testing

Example
Applications
Verified Constant Solving
SSCalc
Banking Contract

11

Fixed-size Integer Types

• Signed and unsigned integers from 8 . . . 256 bits (with steps of 8 bits)
• Signed integer types are only compatible with unsigned types of smaller size
• If a value is too large for a size a silent overflow will occur

Solidity
assert(int8(200) == int8(-56)); //true

assert(uint8(200) == uint8(-56)); //true

assert(uint8(200) + int16(32600) == int16(-32736)); //true

assert(uint16(100) + int16(32700)); //compiler error

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Language Features
Fixed-size Integer Types
Domain-specific Primitives
Gas Model
Method Calls
Complex Data Types
Assignments with Different
Semantics

Testing

Example
Applications
Verified Constant Solving
SSCalc
Banking Contract

11

Fixed-size Integer Types

• Signed and unsigned integers from 8 . . . 256 bits (with steps of 8 bits)
• Signed integer types are only compatible with unsigned types of smaller size
• If a value is too large for a size a silent overflow will occur

Solidity
assert(int8(200) == int8(-56)); //true

assert(uint8(200) == uint8(-56));

//true

assert(uint8(200) + int16(32600) == int16(-32736)); //true

assert(uint16(100) + int16(32700)); //compiler error

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Language Features
Fixed-size Integer Types
Domain-specific Primitives
Gas Model
Method Calls
Complex Data Types
Assignments with Different
Semantics

Testing

Example
Applications
Verified Constant Solving
SSCalc
Banking Contract

11

Fixed-size Integer Types

• Signed and unsigned integers from 8 . . . 256 bits (with steps of 8 bits)
• Signed integer types are only compatible with unsigned types of smaller size
• If a value is too large for a size a silent overflow will occur

Solidity
assert(int8(200) == int8(-56)); //true

assert(uint8(200) == uint8(-56)); //true

assert(uint8(200) + int16(32600) == int16(-32736)); //true

assert(uint16(100) + int16(32700)); //compiler error

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Language Features
Fixed-size Integer Types
Domain-specific Primitives
Gas Model
Method Calls
Complex Data Types
Assignments with Different
Semantics

Testing

Example
Applications
Verified Constant Solving
SSCalc
Banking Contract

11

Fixed-size Integer Types

• Signed and unsigned integers from 8 . . . 256 bits (with steps of 8 bits)
• Signed integer types are only compatible with unsigned types of smaller size
• If a value is too large for a size a silent overflow will occur

Solidity
assert(int8(200) == int8(-56)); //true

assert(uint8(200) == uint8(-56)); //true

assert(uint8(200) + int16(32600) == int16(-32736));

//true

assert(uint16(100) + int16(32700)); //compiler error

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Language Features
Fixed-size Integer Types
Domain-specific Primitives
Gas Model
Method Calls
Complex Data Types
Assignments with Different
Semantics

Testing

Example
Applications
Verified Constant Solving
SSCalc
Banking Contract

11

Fixed-size Integer Types

• Signed and unsigned integers from 8 . . . 256 bits (with steps of 8 bits)
• Signed integer types are only compatible with unsigned types of smaller size
• If a value is too large for a size a silent overflow will occur

Solidity
assert(int8(200) == int8(-56)); //true

assert(uint8(200) == uint8(-56)); //true

assert(uint8(200) + int16(32600) == int16(-32736)); //true

assert(uint16(100) + int16(32700)); //compiler error

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Language Features
Fixed-size Integer Types
Domain-specific Primitives
Gas Model
Method Calls
Complex Data Types
Assignments with Different
Semantics

Testing

Example
Applications
Verified Constant Solving
SSCalc
Banking Contract

11

Fixed-size Integer Types

• Signed and unsigned integers from 8 . . . 256 bits (with steps of 8 bits)
• Signed integer types are only compatible with unsigned types of smaller size
• If a value is too large for a size a silent overflow will occur

Solidity
assert(int8(200) == int8(-56)); //true

assert(uint8(200) == uint8(-56)); //true

assert(uint8(200) + int16(32600) == int16(-32736)); //true

assert(uint16(100) + int16(32700));

//compiler error

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Language Features
Fixed-size Integer Types
Domain-specific Primitives
Gas Model
Method Calls
Complex Data Types
Assignments with Different
Semantics

Testing

Example
Applications
Verified Constant Solving
SSCalc
Banking Contract

11

Fixed-size Integer Types

• Signed and unsigned integers from 8 . . . 256 bits (with steps of 8 bits)
• Signed integer types are only compatible with unsigned types of smaller size
• If a value is too large for a size a silent overflow will occur

Solidity
assert(int8(200) == int8(-56)); //true

assert(uint8(200) == uint8(-56)); //true

assert(uint8(200) + int16(32600) == int16(-32736)); //true

assert(uint16(100) + int16(32700)); //compiler error

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Language Features
Fixed-size Integer Types
Domain-specific Primitives
Gas Model
Method Calls
Complex Data Types
Assignments with Different
Semantics

Testing

Example
Applications
Verified Constant Solving
SSCalc
Banking Contract

12

Domain-specific Primitives

• External vs. contract accounts
• Query account balances
• Transfer money

Solidity
uint256 x = 0xAb8483F64d9C6d1EcF9b849Ae677dD3315835cb2.balance;
uint256 y = address(this).balance;

0xAb8483F64d9C6d1EcF9b849Ae677dD3315835cb2.transfer(1000);

assert(0xAb8483F64d9C6d1EcF9b849Ae677dD3315835cb2.balance == x+1000);
//true

assert(address(this).balance == y-1000); //true

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Language Features
Fixed-size Integer Types
Domain-specific Primitives
Gas Model
Method Calls
Complex Data Types
Assignments with Different
Semantics

Testing

Example
Applications
Verified Constant Solving
SSCalc
Banking Contract

12

Domain-specific Primitives

• External vs. contract accounts
• Query account balances
• Transfer money

Solidity
uint256 x = 0xAb8483F64d9C6d1EcF9b849Ae677dD3315835cb2.balance;
uint256 y = address(this).balance;

0xAb8483F64d9C6d1EcF9b849Ae677dD3315835cb2.transfer(1000);

assert(0xAb8483F64d9C6d1EcF9b849Ae677dD3315835cb2.balance == x+1000);
//true

assert(address(this).balance == y-1000); //true

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Language Features
Fixed-size Integer Types
Domain-specific Primitives
Gas Model
Method Calls
Complex Data Types
Assignments with Different
Semantics

Testing

Example
Applications
Verified Constant Solving
SSCalc
Banking Contract

12

Domain-specific Primitives

• External vs. contract accounts
• Query account balances
• Transfer money

Solidity
uint256 x = 0xAb8483F64d9C6d1EcF9b849Ae677dD3315835cb2.balance;
uint256 y = address(this).balance;

0xAb8483F64d9C6d1EcF9b849Ae677dD3315835cb2.transfer(1000);

assert(0xAb8483F64d9C6d1EcF9b849Ae677dD3315835cb2.balance == x+1000);
//true

assert(address(this).balance == y-1000); //true

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Language Features
Fixed-size Integer Types
Domain-specific Primitives
Gas Model
Method Calls
Complex Data Types
Assignments with Different
Semantics

Testing

Example
Applications
Verified Constant Solving
SSCalc
Banking Contract

12

Domain-specific Primitives

• External vs. contract accounts
• Query account balances
• Transfer money

Solidity
uint256 x = 0xAb8483F64d9C6d1EcF9b849Ae677dD3315835cb2.balance;
uint256 y = address(this).balance;

0xAb8483F64d9C6d1EcF9b849Ae677dD3315835cb2.transfer(1000);

assert(0xAb8483F64d9C6d1EcF9b849Ae677dD3315835cb2.balance == x+1000);
//true

assert(address(this).balance == y-1000); //true

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Language Features
Fixed-size Integer Types
Domain-specific Primitives
Gas Model
Method Calls
Complex Data Types
Assignments with Different
Semantics

Testing

Example
Applications
Verified Constant Solving
SSCalc
Banking Contract

12

Domain-specific Primitives

• External vs. contract accounts
• Query account balances
• Transfer money

Solidity
uint256 x = 0xAb8483F64d9C6d1EcF9b849Ae677dD3315835cb2.balance;
uint256 y = address(this).balance;

0xAb8483F64d9C6d1EcF9b849Ae677dD3315835cb2.transfer(1000);

assert(0xAb8483F64d9C6d1EcF9b849Ae677dD3315835cb2.balance == x+1000);
//true

assert(address(this).balance == y-1000); //true

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Language Features
Fixed-size Integer Types
Domain-specific Primitives
Gas Model
Method Calls
Complex Data Types
Assignments with Different
Semantics

Testing

Example
Applications
Verified Constant Solving
SSCalc
Banking Contract

13

Gas Model

• Execution costs Gas
• Programs are guaranteed to terminate
• No specification for Gas costs at Solidity level

Solidity
while (true) {}
//terminates with an out of gas exception

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Language Features
Fixed-size Integer Types
Domain-specific Primitives
Gas Model
Method Calls
Complex Data Types
Assignments with Different
Semantics

Testing

Example
Applications
Verified Constant Solving
SSCalc
Banking Contract

13

Gas Model

• Execution costs Gas
• Programs are guaranteed to terminate
• No specification for Gas costs at Solidity level

Solidity
while (true) {}
//terminates with an out of gas exception

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Language Features
Fixed-size Integer Types
Domain-specific Primitives
Gas Model
Method Calls
Complex Data Types
Assignments with Different
Semantics

Testing

Example
Applications
Verified Constant Solving
SSCalc
Banking Contract

14

Method Calls
Recently we added support for method calls

• Internal vs. external
• Send money with external calls
• Money transfer triggers fallback

Solidity
contract R {

mapping(address => uint256) map;

function rcv() external payable {
map[msg.sender] = msg.value;

}
}

Solidity
contract S {

R rec;

constructor(R r) public payable {
rec = r;

}

function snd(uint256 v) public {
rec.rcv.value(v)();

}
}

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Language Features
Fixed-size Integer Types
Domain-specific Primitives
Gas Model
Method Calls
Complex Data Types
Assignments with Different
Semantics

Testing

Example
Applications
Verified Constant Solving
SSCalc
Banking Contract

14

Method Calls
Recently we added support for method calls

• Internal vs. external
• Send money with external calls
• Money transfer triggers fallback

Solidity
contract R {

mapping(address => uint256) map;

function rcv() external payable {
map[msg.sender] = msg.value;

}
}

Solidity
contract S {

R rec;

constructor(R r) public payable {
rec = r;

}

function snd(uint256 v) public {
rec.rcv.value(v)();

}
}

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Language Features
Fixed-size Integer Types
Domain-specific Primitives
Gas Model
Method Calls
Complex Data Types
Assignments with Different
Semantics

Testing

Example
Applications
Verified Constant Solving
SSCalc
Banking Contract

15

Complex Data Types
• Three types of stores: storage, memory, calldata
• Mappings can only be kept in storage
• Arrays can be kept in all types of stores

Solidity
contract Example {

mapping(address => uint256) myMapping; //storage map

uint8[2][3] myStorageArray; //storage array

//calldata array
function example(uint8[2] calldata myCDArray) external {

uint8[2] storage myPointer = myStorageArray[1]; //storage pointer

uint8[2] memory myMemoryArray; //memory array
}

}

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Language Features
Fixed-size Integer Types
Domain-specific Primitives
Gas Model
Method Calls
Complex Data Types
Assignments with Different
Semantics

Testing

Example
Applications
Verified Constant Solving
SSCalc
Banking Contract

15

Complex Data Types
• Three types of stores: storage, memory, calldata
• Mappings can only be kept in storage
• Arrays can be kept in all types of stores

Solidity
contract Example {

mapping(address => uint256) myMapping; //storage map

uint8[2][3] myStorageArray; //storage array

//calldata array
function example(uint8[2] calldata myCDArray) external {

uint8[2] storage myPointer = myStorageArray[1]; //storage pointer

uint8[2] memory myMemoryArray; //memory array
}

}

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Language Features
Fixed-size Integer Types
Domain-specific Primitives
Gas Model
Method Calls
Complex Data Types
Assignments with Different
Semantics

Testing

Example
Applications
Verified Constant Solving
SSCalc
Banking Contract

16

Assignments with Different Semantics
• Assignment between memory moves pointer
• Assignment between storage copies (except for pointers)
• Assignment between memory and storage copies

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Language Features
Fixed-size Integer Types
Domain-specific Primitives
Gas Model
Method Calls
Complex Data Types
Assignments with Different
Semantics

Testing

Example
Applications
Verified Constant Solving
SSCalc
Banking Contract

16

Assignments with Different Semantics
• Assignment between memory moves pointer
• Assignment between storage copies (except for pointers)
• Assignment between memory and storage copies

Solidity
//initialized with 0
int[2] memory x;
int[2] memory y;

x=y;
x[1]=1;

assert(y[1] == 1); //true

Solidity
int[2][2] memory x;
int[2][2] memory y;

x[1]=y[1];
x[0][0]=1;
x[1][1]=1;

assert(y[0][0] == 1); //false
assert(y[1][1] == 1); //true

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Language Features
Fixed-size Integer Types
Domain-specific Primitives
Gas Model
Method Calls
Complex Data Types
Assignments with Different
Semantics

Testing

Example
Applications
Verified Constant Solving
SSCalc
Banking Contract

16

Assignments with Different Semantics
• Assignment between memory moves pointer
• Assignment between storage copies (except for pointers)
• Assignment between memory and storage copies

Solidity
contract Example {

//initialized with 0
int[2] storage y;

function example() public {
int[2] storage x=y;

x[1]=1;

assert(y[1]==1); //true
}

}

Solidity
contract Example {

//initialized with 0
int[2] storage x;
int[2] storage y;

function example() public {
x = y;
x[1]=1;

assert(y[1]==1); //false
}

}

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Language Features
Fixed-size Integer Types
Domain-specific Primitives
Gas Model
Method Calls
Complex Data Types
Assignments with Different
Semantics

Testing

Example
Applications
Verified Constant Solving
SSCalc
Banking Contract

16

Assignments with Different Semantics
• Assignment between memory moves pointer
• Assignment between storage copies (except for pointers)
• Assignment between memory and storage copies

Solidity
contract Example {

//initialized with 0
int[2] storage y;

function example() public {
int[2] memory x = y;

x[1]=1;

assert(y[1] == 1); //false
}

}

Solidity
contract Example {

//initialized with 0
int[2] storage y;

function example() public {
int[2] memory x = y;
x[1]=y[1];
x[1][1]=1;

assert(y[1][1]==1); //false
}

}

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Language Features
Fixed-size Integer Types
Domain-specific Primitives
Gas Model
Method Calls
Complex Data Types
Assignments with Different
Semantics

Testing

Example
Applications
Verified Constant Solving
SSCalc
Banking Contract

17

Example

contract TestContract0 {
uint8 v u8 s8 ;
mapping(uint16 => uint8) v m u16 u8 9;
bool [1][2] a b 12 s5 ;
...
function test () public {

uint104 v u104 m2;
uint104 [1][1] memory a u104 11 m2;
...
v u104 m2=14622709355569675963178665339646;
v m u16 u8 9[59381]=79;
...
int8 counter1=int8(0);
while((v m u224 s240 1[uint224(444)]==(v u216 s1−v u104 m2)) && counter1<int8(10)){

0xf7218C33533a3F22e3296F8b1DC0074B399355Eb.transfer(v m u16 u8 9[uint16(0)]);
counter1=counter1+int8(1);

}
...
Assert . equal(v m u16 u8 9[59381]==79, true);
Assert . equal(a u104 11 m2[0][0]==8130097819054169632795960896007, true);
Assert . equal(0xf7218C33533a3F22e3296F8b1DC0074B399355Eb

.balance==100000000000000000000, true);
...

}
}

Extracted
storage variables

Extracted
memory/stack variables

Generated
input state

Generated
program

Computed
result state

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Language Features
Fixed-size Integer Types
Domain-specific Primitives
Gas Model
Method Calls
Complex Data Types
Assignments with Different
Semantics

Testing

Example
Applications
Verified Constant Solving
SSCalc
Banking Contract

18

Verified Constant Solving

Solidity
int16 x;

// costs 20 Gas
x = int16(250) + uint8(500);

Solidity
int16 x;

// costs 8 Gas
x = int16(494);

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Language Features
Fixed-size Integer Types
Domain-specific Primitives
Gas Model
Method Calls
Complex Data Types
Assignments with Different
Semantics

Testing

Example
Applications
Verified Constant Solving
SSCalc
Banking Contract

19

SSCalc

Specification
• Invariant over member

variables and balance
• Pre/post-conditions for

internal methods
Verification

• Constructor establishes
invariant

• External methods preserve
invariant

• Preconditions imply
postconditions for internal
methods

Solidity
contract Example {

uint x;
constructor(uint y, ...) public {

... x = y; ...
}
function int1(uint y, ...) internal {

... ad1.call.value(1 ether)(abi.
encodeWithSignature("ext()")); ...

}
function ext() external {

... int1(5, ...); ...

... ad2.transfer(1 ether); ...
}
function () external payable {

...
}

}

DM and B. Thornton. SSCalc: A calculus for Solidity smart contracts. SEFM 2023.

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Language Features
Fixed-size Integer Types
Domain-specific Primitives
Gas Model
Method Calls
Complex Data Types
Assignments with Different
Semantics

Testing

Example
Applications
Verified Constant Solving
SSCalc
Banking Contract

20

Verification of Banking Contract

∑
a

balances(a) ≤ balance

Solidity
contract Bank {

mapping(address => uint256) balances;

function deposit() public payable {
balances[msg.sender] = balances[msg.sender] + msg.value;

}

function withdraw() public {
uint256 bal = balances[msg.sender];
balances[msg.sender] = 0;
msg.sender.transfer(bal);

}
}

	Introduction
	Smart Contracts
	Solidity

	Isabelle/Solidity
	Problem
	Isabelle/Solidity

	Conclusion
	Applications
	Summary

	Appendix
	Language Features
	Fixed-size Integer Types
	Domain-specific Primitives
	Gas Model
	Method Calls
	Complex Data Types
	Assignments with Different Semantics

	Testing
	Example Applications
	Verified Constant Solving
	SSCalc
	Banking Contract

