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contract Bank {
mapping(address => uint256) balances;
function deposit() public payable {
balances[msg.sender] = balances[msg.sender] + msg.value; Isabelle/Solidity
Problem
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Conclusion
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}

function withdraw() public {
uint256 bal = balances[msg.sender];

balances [msg.sender] = 0;
msg.sender.transfer(bal) ;
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Fallback Methods

contract Customer {

constructor (Bank b) public {
bank = b;

}

function deposit(uint v) public {
bank.deposit.value(v) ();

}

function withdraw() public {
bank.withdraw() ;

}

function() external payable {
//received some funds

Bank bank;

}
}

contract Bank { SOlIdIty

mapping(address => uint256) balances;

function deposit() public payable {
balances [msg.sender] =
balances [msg.sender] + msg.value;

3

function withdraw() public {
uint256 bal = balances[msg.sender];
balances[msg.sender] = 0;
msg.sender.transfer(bal);
}
}
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Isabelle/Solidity
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of Solidity (v0.5.16) in Isabelle/HOL

B He BB Serh Makes Fodng Ve Uktes Macos Plugns Hop

Oed@E &

S USROS )

1atext

Fie Arowser| Documentation 4 0

Fontion domintron
16 vhere “stat SKIP ¢
10 (o (

assert cas (et
oty e e 1 ges 1 - costs K0P <o 5

. gas st > costs SKIP e cd 5t)

»
il “stnt \Asstm\ ) env cd st =

> casts (ssioh ) ey o 50
costs (ASSIGN v ex) env cd
b

(vaue v, Value ©) >
do

L tostate (1exp v em )
usmm( 1. value )
o ¢

option Err 1 . convers € £ v)
Doty Dot o (Stack s updatestore 1 (Kvalue v')

| (LStoreloc 1, Storage (STValue t1)) =
@ {

V' option Err (A . convert €t v);
mocify (st. ststorage = (storage 1) (address eny

1 Wl 1, menary (stue <))
o ¢

option Err (A . convert € £ 1)
Rty (hse. skimeory - pdatestore . (natue v')

1 (KCDptr p, Calldata (MTArray x 1)) =
do
L tostate (1exp v em ca);

uszmm(\ wesory )
o {

T (st accesstore 1 (stack st
ase 5 of Some it 1) return ' |
B — option 4 nenary 5017

ity (ist. stimesory
| (LStackloc 1, storage )
o (

apply? (Ast. acces:
I

5 option Err (st o
mocafy (Ast. <t (storage
I toretoc 1)
o ¢

eption 7 1t cnz <o (storage
Rodify (AG%. 5% (storge = storage 55 (saares

| (Wetoc 1, ) =
o {

n - option €T (\st. cpuzn p Ux ¢ o (semary 57)):
mocify (Ast. 5t (nenory = o

I = throw err

¢ X R@ rEe@E 8K

<tatenent.
Z enviromsent — Calldatal = (unit, £x, State) state monad®

b2 HOL - Sttty 5 x

# © ¢

(stack s))

SoucouL a1 1P Sissy ieassadin Wowrnoq | {0

= faupd L v (storage st (address env)))))

(nenory 5t1)

throw Err;

| w Err,
+ (adaress em)))
o = 5)

DM and A.D. Brucker. Isabelle/Solidity. AFP 2022.

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Introduction

Universi
of Exete1Ey

Smart Contracts
Solidity
Isabelle/Solidity

Problem

Conclusion
Applications

Summary

Engineering and
Physical Sciences
Research Council
5



Isabelle/Solidity

Isabelle/Solidity is a deep empedding
of Solidity (v0.5.16) in Isabelle/HOL
® Fixed-size integer types
with and without overflow.
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Isabelle/Solidity

Isabelle/Solidity is a deep empedding
of Solidity (v0.5.16) in Isabelle/HOL
® Fixed-size integer types
with and without overflow.
® Domain-specific primitives,
such as transfer or balance.
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Isabelle/Solidity

Isabelle/Solidity is a deep empedding
of Solidity (v0.5.16) in Isabelle/HOL
® Fixed-size integer types
with and without overflow.
® Domain-specific primitives,
such as transfer or balance.

® fallback methods which are
executed with monetary transfers.
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Isabelle/Solidity is a deep empedding
of Solidity (v0.5.16) in Isabelle/HOL

Fixed-size integer types

with and without overflow.
Domain-specific primitives,

such as transfer or balance.
Fallback methods which are
executed with monetary transfers.

Different types of stores, such as
storage, memory, calldata, stack.

Extendable Gas model to model
computational costs. =
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® Verified Constant Solving
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® Verified Constant Solving

® Soundness of SSCalc
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® Verified Constant Solving
® Soundness of SSCalc
e Verified Banking
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What are we currently working on
® Shallow embedding to improve automation for the verification of contracts

® First results are promising!
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Fixed-size Integer Types

e Signed and unsigned integers from 8...256 bits (with steps of 8 bits)
® Signed integer types are only compatible with unsigned types of smaller size

If a value is too large for a size a silent overflow will occur
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assert(int8(200) == int8(-56));
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e If a value is too large for a size a silent overflow will occur

assert(int8(200) == int8(-56));

//true

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Universi
@ of ExetexEy

Language Features

Domain-specific Primitives
Gas Model

Method Calls

Complex Data Types
Assignments with Different

Semantics

Testing

Example
Applications
Verified Constant Solving
SSCalc
Banking Contract

Engineering and
Physical Sciences
Research Council

11



Fixed-size Integer Types

e Signed and unsigned integers from 8...256 bits (with steps of 8 bits)
e Signed integer types are only compatible with unsigned types of smaller size

e If a value is too large for a size a silent overflow will occur

assert(int8(200) == int8(-56));

assert(uint8(200) == uint8(-56));

//true
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Fixed-size Integer Types

e Signed and unsigned integers from 8...256 bits (with steps of 8 bits)
e Signed integer types are only compatible with unsigned types of smaller size

e If a value is too large for a size a silent overflow will occur

assert(int8(200) == int8(-56));

assert(uint8(200) == uint8(-56));

//true

//true
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Fixed-size Integer Types

e Signed and unsigned integers from 8...256 bits (with steps of 8 bits)
e Signed integer types are only compatible with unsigned types of smaller size

e If a value is too large for a size a silent overflow will occur

assert(uint8(200) == uint8(-56));

assert(uint8(200) + int16(32600) ==

assert(int8(200) == int8(-56)); //true

//true

int16(-32736));
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Fixed-size Integer Types

e Signed and unsigned integers from 8...256 bits (with steps of 8 bits)
e Signed integer types are only compatible with unsigned types of smaller size

e If a value is too large for a size a silent overflow will occur

assert(uint8(200) == uint8(-56));

assert(uint8(200) + int16(32600) ==

assert(int8(200) == int8(-56)); //true

//true

int16(-32736));

//true

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Universi
@ of ExetexEy

Language Features

Domain-specific Primitives
Gas Model

Method Calls

Complex Data Types
Assignments with Different

Semantics

Testing

Example
Applications
Verified Constant Solving
SSCalc
Banking Contract

Engineering and
Physical Sciences
Research Council

11



Fixed-size Integer Types

e Signed and unsigned integers from 8...256 bits (with steps of 8 bits)

e Signed integer types are only compatible with unsigned types of smaller size

e If a value is too large for a size a silent overflow will occur

assert(int8(200) == int8(-56)); //true

assert(uint8(200) == uint8(-56)); //true
assert(uint8(200) + int16(32600) == int16(-32736)); //true

assert(uint16(100) + int16(32700));
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Fixed-size Integer Types

e Signed and unsigned integers from 8...256 bits (with steps of 8 bits)

e Signed integer types are only compatible with unsigned types of smaller size

e If a value is too large for a size a silent overflow will occur

assert(int8(200) == int8(-56)); //true

assert(uint8(200) == uint8(-56)); //true
assert(uint8(200) + int16(32600) == int16(-32736)); //true

assert(uint16(100) + int16(32700)); //compiler error
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Domain-specific Primitives

® External vs. contract accounts
® Query account balances

® Transfer money
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Domain-specific Primitives

e External vs. contract accounts

® Query account balances

® Transfer money

uint256 x
uint256 y

0xAb8483F64d9C6d1ECFIb849Ae677dD3315835cb2.balance;
address(this) .balance;
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Domain-specific Primitives

® External vs. contract accounts
® Query account balances

® Transfer money

0xAb8483F64d9C6d1ECFIb849Ae677dD3315835cb2.balance;
address(this) .balance;

uint256 x
uint256 y

0xAb8483F64d9C6d1ECFIb849Ae677dD3315835¢cb2. transfer (1000) ;
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Domain-specific Primitives

® External vs. contract accounts
® Query account balances

® Transfer money

0xAb8483F64d9C6d1ECFIb849Ae677dD3315835cb2.balance;
address(this) .balance;

uint256 x
uint256 y

0xAb8483F64d9C6d1ECFIb849Ae677dD3315835¢cb2. transfer (1000) ;

//true

assert (0xAb8483F64d9C6d1EcFIb849Ae677dD3315835¢cb2. balance == x+1000) ;
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Secure Smart

Domain-specific Primitives e
Isabelle/Solidity

Diego Marmsoler

® External vs. contract accounts
® Query account balances @ Unjversity
X¢

® Transfer money

Language Features

Fixed-size Integer Types

Sol id |ty Gas Model
Method Calls

uint256 x = 0xAb8483F64d9C6d1EcFI9b849Ae677dD3315835cb2.balance; e B s
uint256 y = address(this).balance; AT Pl

Testing
0xAb8483F64d9C6d1ECFIb849Ae677dD3315835¢cb2. transfer (1000) ; Example

Applications
assert (0xAb8483F64d9C6d1EcFIb849Ae677dD3315835¢cb2.balance == x+1000); ‘S’:Q"T‘* Constant Solving
//true Banking Contract
assert(address(this) .balance == y-1000); //true
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Gas Model

® Execution costs Gas
® Programs are guaranteed to terminate
® No specification for Gas costs at Solidity level
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Gas Model

® Execution costs Gas
® Programs are guaranteed to terminate
® No specification for Gas costs at Solidity level

while (true) {}
//terminates with an out of gas exception
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Method Calls
Recently we added support for method calls

® Internal vs. external
® Send money with external calls

® Money transfer triggers fallback
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Method Calls

Recently we added support for method calls

® Internal vs. external
® Send money with external calls

® Money transfer triggers fallback

Solidity
contract R {

mapping(address => uint256) map;

function rcv() external payable {
map [msg.sender] = msg.value;
}
}

contract S {
R rec;

constructor(R r) public payable {
rec = r;

}

function snd(uint256 v) public {
rec.rcv.value(v) ();
}
}
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Complex Data Types
® Three types of stores: storage, memory, calldata
® Mappings can only be kept in storage
® Arrays can be kept in all types of stores
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Complex Data Types
® Three types of stores: storage, memory, calldata
® Mappings can only be kept in storage
® Arrays can be kept in all types of stores

contract Example {
mapping(address => uint256) myMapping; //storage map

uint8[2] [3] myStorageArray; //storage array

//calldata array
function example(uint8[2] calldata myCDArray) external {

uint8[2] memory myMemoryArray; //memory array

}
}

uint8[2] storage myPointer = myStorageArray[1]; //storage pointer
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Assignments with Different Semantics
® Assignment between memory moves pointer
e Assignment between storage copies (except for pointers)
® Assignment between memory and storage copies
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Secure Smart

Assignments with Different Semantics e

. . Isabelle/Solidit
® Assignment between memory moves pointer sabelie/Solidty

e Assignment between storage copies (except for pointers)

® Assignment between memory and storage copies @ Universty

Diego Marmsoler

Language Features

o = Fixed-size Integer Types

SOl id Ity SOl id Ity DA P
//initialized with O int [2] [2] memory x; Gs Model
Method Calls

int[2] memory x; int[2] [2] memory y; Complox Data Types
int [2] memory y;

x[11=y[1];

Testi
X=y; x[0] [0]=1; e
x[1]=1; x[1]1[1]1=1; Aapications
Verified Constant Solving
assert(y[1] == 1); //true assert(y[0]1[0] == 1); //false P

assert(y[1] [1] 1); //true
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Assignments with Different Semantics

® Assignment between memory moves pointer
e Assignment between storage copies (except for pointers)
® Assignment between memory and storage copies

contract Example {
//initialized with 0
int [2] storage y;

function example() public {
int[2] storage x=y;

x[1]1=1;

assert(y[1]==1); //true
}
3

contract Example {
//initialized with O
int [2] storage x;

int [2] storage y;

function example() public {

X =7y;
x[1]=1;

assert(y[1]==1); //false
}
}
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Assignments with Different Semantics

® Assignment between memory moves pointer
e Assignment between storage copies (except for pointers)
® Assignment between memory and storage copies

contract Example {
//initialized with 0
int [2] storage y;

function example() public {
int [2] memory x = y;

x[1]1=1;

assert(y[1] == 1); //false
}
3

contract Example {
//initialized with O
int [2] storage y;

function example() public {
int [2] memory x = y;
x[1]=y[1]1;
x[11[1]=1;

assert(y[1] [1]==1); //false
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Example

contract TestContract0 {
uint8 v_u8.s8;
mapping(uintl6 => uint8) v.m_u16_u8.9; Extracted
bool [1][2] a-b-12.s5; storage variables

function test () public {
uint104 v_ul04_m2;

. . Extracted
uint104 [1][1] memory a_ul04_11_m2; memory,/stack variables
v-ul04_.m2=14622709355569675963178665339646; G ted
v-m_u16_u8.9[59381]=79; enerate
input state

int8 counterl=int8(0);

while ((v-m_u224_s240_1[uint224(444)]==(v-u216_s1—v_u104.m2)) && counterl <int8(10)){
0xf7218C33533a3F22e3296F8b1DC0074B399355Eb.transfer(v_m_u16_u8_9[uint16(0)]); Generated
counterl=counterl+int8(1); program

}

Assert.equal (v-m_ul6_u8_9[59381]==79, true);

Assert . equal (a_u104.11_m2[0][0]==8130097819054169632795960896007, true);

Assert . equal (0xf7218C33533a3F22e3296F8b1DC0074B399355Eb Computed
_balance==100000000000000000000, true); result state
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Verified Constant Solving

Solidity

int16 x;

// costs 20 Gas
x = int16(250) + uint8(500);

Solidity
int16 x;

// costs 8 Gas
X = int16(494);

@ b

sbegin

s|| "eupdate (E.INT b v)

5|| "eupdate FALSE = FALSE"

Fle Edt Seach Markers Foldng View Utliies Macros Plugins Help
IwRdE & 4¢ DA R CED

) Corstant gy DAONEDRNECONSUAE

oty
section<Constant Folding =
theory Constant Folding
inports

Solidity Main

The following function optimizes expressions w.r.t. gas consumption

fun eupdate
and lupdate
lwhere

"lupdate (Id i) = Id i"

=
=

Saoaus aaess | orepIs sunsay upseasidA 4|3

| "lupdate (Ref i exp) = Ref i (map eupdate exp)"
(if (bevbits)
then if v > 0
then E.INT b (-(2"(b-1)) + (v+2*(b-1)) mod (2°b))
else E.INT b (2%(b-1) - (-v+2%(b-1)-1) mod (2°b) - 1)
else E.INT b v)"
| "eupdate (UINT b v) = (if (bevbits) then UINT b (v mod (2°b)) else UINT b v)"
| "eupdate (ADDRESS a) = ADDRESS a"
| "eupdate (BALANCE a) = BALANCE a"
| "eupdate TRUE = TRUE"

| “eupdate (LVAL 1) = LVAL (lupdate 1)"
| “eupdate (PLUS exl ex2) =
(case (eupdate ex1) of
E.INT bl v1 =
if bl € vbits
then (case (eupdate ex2) of
E.INT b2 v2 =
if baevbits
then let vavi+v2 in
ifv>ae
then E.INT (max bl b2) (-(2"((max bl b2)-1)) + (v42*((max bl
else E.INT (max bl b2) (2*((max bl b2)-1) - (-v+2*((max bl b:
else (PLUS (E.INT bl v1) (E.INT b2 v2))

then let v=vl+v2 in
ifv>o
then E.INT bl (-(2~(b1-1)) + (v+#2*(b1-1)) mod (2°b1))
else E.INT bl (2°(b1-1) - (-v42%(b1-1)-1) mod (2°b1) - 1)
else PLUS (E.INT bl v1) (UINT b2 v2)
| _ = PLUS (E.INT bl v1) (eupdate ex2))

8 Output Query|Siedgehammer Symbols
0152161 isobel

else PLUS (E.INT bl v1) (eupdate ex2)

belle)

U G MEREED 7 WEEER 31293010 12:2)
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SSCalc

Specification
® |nvariant over member
variables and balance
® Pre/post-conditions for
internal methods
Verification
® Constructor establishes
invariant
® External methods preserve
invariant

® Preconditions imply
postconditions for internal
methods

contract Example {

}

uint x;

constructor(uint y, .) public {
.. X =Y,

}

function intil(uint y, .) internal {
adl.call.value(1l ether) (abi.
encodeWithSignature("ext()"));
}
function ext() extermal {
int1(5, ...);
ad2.transfer (1l ether);

}

function () external payable {

}

DM and B. Thornton. SSCalc: A calculus for Solidity smart contracts. SEFM 2023.
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Verification of Banking Contract

Zbalances(a) < balance

contract Bank {
mapping(address => uint256) balances;

function deposit() public payable {
balances[msg.sender] = balances[msg.sender] + msg.value;

}

function withdraw() public {
uint256 bal = balances[msg.sender];
balances [msg.sender] = 0;
msg.sender.transfer(bal);
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