Secure Smart Contracts with Isabelle/Solidity?
on 2024-05-21
Diego Marmsoler d.marmsoler@exeter.ac.uk

Department of Computer Science www.marmsoler.com
University of Exeter @ @DiegoMarmsoler

Joint work with Asad Ahmed, Achim D. Brucker, Naipeng Dong, Horacio Mijail,
Billy Thornton, and Mark Utting

!Supported by the Engineering and Physical Sciences Research Council [EP/X027619/1]

Smart Contracts

0x5B3.. OxAb8.. 5378
0x4B2.. 0x787.. 2782

Nl

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Universi
of Exete1Ey

Introduction
Smart Contracts
Solidity
Isabelle/Solidity
Problem

Isabelle/Solidity

Conclusion
Applications

Summary

Engineering and
Physical Sciences
Research Council

1

Smart Contracts

0x5B3.. OxAb8.. 5378
0x4B2.. 0x787.. 2782

Nl

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

University
‘ of Exeter

Introduction
Smart Contracts
Solidity
Isabelle/Solidity
Problem
Isabelle/Solidity
Conclusion

Applications

Summary

Engineering and
Physical Sciences
Research Council

1

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Solidity
Solidit et
g’pg(eertg;v

Introduction
Smart Contracts

contract Bank {
mapping(address => uint256) balances;
function deposit() public payable {
balances[msg.sender] = balances[msg.sender] + msg.value; Isabelle/Solidity
Problem
Isabelle/Solidity
Conclusion
Applications
Summary

}

function withdraw() public {
uint256 bal = balances[msg.sender];

balances [msg.sender] = 0;
msg.sender.transfer(bal) ;

Engineering and
Physical Sciences
Research Council
2

Fallback Methods

contract Customer {

constructor (Bank b) public {
bank = b;

}

function deposit(uint v) public {
bank.deposit.value(v) ();

}

function withdraw() public {
bank.withdraw() ;

}

function() external payable {
//received some funds

Bank bank;

}
}

contract Bank { SOlIdIty

mapping(address => uint256) balances;

function deposit() public payable {
balances [msg.sender] =
balances [msg.sender] + msg.value;

3

function withdraw() public {
uint256 bal = balances[msg.sender];
balances[msg.sender] = 0;
msg.sender.transfer(bal);
}
}

.

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Universi
@ of Exetelt—y

Introduction

Smart Contracts

Isabelle/Solidity
Problem

Isabelle/Solidity

Conclusion
Applications

Summary

Enginering and
Physical Sciences
Research Council

Secure Smart
Contracts with

Problems with Smart Contracts
Isabelle/Solidity

Diego Marmsoler
University
of Exeter

Introduction
Smart Contracts
Solidity

It is estimated that since 2019, A

more than $5B was stolen
T . Isabelle/Solidity
due to vulnerabilities in smart contracts —
onclusion

Applications

Summary

Engineering and
Physical Sciences
Research Council

4

Isabelle/Solidity

Isabelle/Solidity is a deep empedding

of Solidity (v0.5.16) in Isabelle/HOL

B He BB Serh Makes Fodng Ve Uktes Macos Plugns Hop

Oed@E &

S USROS)

1atext

Fie Arowser| Documentation 4 0

Fontion domintron
16 vhere “stat SKIP ¢
10 (o (

assert cas (et
oty e e 1 ges 1 - costs K0P <o 5

. gas st > costs SKIP e cd 5t)

»
il “stnt \Asstm\) env cd st =

> casts (ssioh) ey o 50
costs (ASSIGN v ex) env cd
b

(vaue v, Value ©) >
do

L tostate (1exp v em)
usmm(1. value)
o ¢

option Err 1 . convers € £ v)
Doty Dot o (Stack s updatestore 1 (Kvalue v')

| (LStoreloc 1, Storage (STValue t1)) =
@ {

V' option Err (A . convert €t v);
mocify (st. ststorage = (storage 1) (address eny

1 Wl 1, menary (stue <))
o ¢

option Err (A . convert € £ 1)
Rty (hse. skimeory - pdatestore . (natue v')

1 (KCDptr p, Calldata (MTArray x 1)) =
do
L tostate (1exp v em ca);

uszmm(\ wesory)
o {

T (st accesstore 1 (stack st
ase 5 of Some it 1) return ' |
B — option 4 nenary 5017

ity (ist. stimesory
| (LStackloc 1, storage)
o (

apply? (Ast. acces:
I

5 option Err (st o
mocafy (Ast. <t (storage
I toretoc 1)
o ¢

eption 7 1t cnz <o (storage
Rodify (AG%. 5% (storge = storage 55 (saares

| (Wetoc 1,) =
o {

n - option €T (\st. cpuzn p Ux ¢ o (semary 57)):
mocify (Ast. 5t (nenory = o

I = throw err

¢ X R@ rEe@E 8K

<tatenent.
Z enviromsent — Calldatal = (unit, £x, State) state monad®

b2 HOL - Sttty 5 x

© ¢

(stack s))

SoucouL a1 1P Sissy ieassadin Wowrnoq | {0

= faupd L v (storage st (address env)))))

(nenory 5t1)

throw Err;

| w Err,
+ (adaress em)))
o = 5)

DM and A.D. Brucker. Isabelle/Solidity. AFP 2022.

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Introduction

Universi
of Exete1Ey

Smart Contracts
Solidity
Isabelle/Solidity

Problem

Conclusion
Applications

Summary

Engineering and
Physical Sciences
Research Council
5

Isabelle/Solidity

Isabelle/Solidity is a deep empedding
of Solidity (v0.5.16) in Isabelle/HOL
® Fixed-size integer types
with and without overflow.

©

Fie Srowser| Documentation 4 @ (=

fonceion (omantron)

of statenent
Z enviromsent — Calldatal = (unit, £x, State) state monad®

where "stat SKIP ¢

(e

assert as (st gas st
odity (it seons

> costs SKIP @ cd st).
gas 5t - costs SKIP & 3 1))

o
st \Asstm\) env cd st =

téo

assert Gas (st ga

costs (sion 1y) e

st
coses. (ASSION 1 ex) env ¢ 5

g
e (et ek eav el

(vaue v, Value ©) >
do
L tostate (1exp v em)

usmm(1, value t)
o {

option conver £t)
ity (1 <k := updatestore 1 (Kvalue v') (stack 1))
1 (Storeto 1, storage (sTvatue 1) =
o ¢
sotion e (4. conert
modity (3 " (storage 41 (38dres ey =t v (storsgerst (ddress rwh))
1 Wl 1, menary (stue <))
o ¢
option Err (1. convert ¢ ¢)
Tadity (st skimenory. o apdatestore L (lue v') nemory st}
}
| = throw Err
1 (KCDptr p, Calldata (MTArray x 1)) =
do
L tostate (1exp v em ca);
uszmm(\ wesory)
T (st accesstore 1 (stack st
sy of m'p | throw Err;

e nenary 501

1 (stack st))
P x T cd (storage
(adre:
I toretoc 1)
o ¢
ortion cmas p Ux t ca (s n;
oty (3 = [storage st) (address)

I (e 1,) =
o ¢

o ption ErT Q. canzn p Lt < (estory 1))
mocify (Ast. 5t (nenory = o

I = throw err
)

sy easiodin wowrnoq| (|0

|

DM and A.D. Brucker. Isabelle/Solidity. AFP 2022.

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Universi
of Exete1Ey

Introduction
Smart Contracts
Solidity

Isabelle/Solidity

Problem

Conclusion
Applications

Summary

Engineering and
Physical Sciences
Research Council
5

Isabelle/Solidity

Isabelle/Solidity is a deep empedding
of Solidity (v0.5.16) in Isabelle/HOL
® Fixed-size integer types
with and without overflow.
® Domain-specific primitives,
such as transfer or balance.

¢ X5 R&

S USROS)

text 1

fonceion (omantro
where "stat SKIP ¢
teo ¢

of statenent
Z enviromsent — Calldatal = (unit, £x, State) state monad®

assert Gas (Ast. gas 5t > costs SKIP e cd 5t)
Ry (A5t segas o= gas ot - costs SKIP & <0 51)

\Asstm\) env cd st =

> coses ssion v ex)
5 st - costs (ASSION

o
e (expr ex env cd);

(vaue v, Value ©) >
do

L tostate (lexp v env cd);

t. st (stack i= updatestore 1 (kialue v')

(stack s))
1 tstortoc 1, storage (smate) =
o ¢
sotion £ (4. comert ¢ 1)
modity (3 age 1 (starage S (5dress 6= o 11V (Starsge st (sdaress v)

(on on Ere (convert v)
| T
1 (oper . Calldsta (array x £1)
“d tate (lexp lv env cd);

ackloc 1, Mesory)

T (st accesstore 1 (stack st
sy of

Sone.(K0enptr p') > return p' | - throw Err
B option ErT (St conamp B X ©ca (neaory $10)
mocafy (Ast. stimemory o= 1)

T (st accesstore 1 (stack st
case i w Err,
option torage st aams e
ity (Aat. st (storage 1= (storage st) (adiress env o= 1))

I toretoc 1)
o {

 ntion BT dst, cants p L € o (storage st
ooty (. (storege 2= [storage 51 (a6aress en

I (e 1,) =
o ¢

n - option €T (\st. cpuzn p Ux ¢ o (semary 57)):
mocify (Ast. 5t (nenory = o

I = throw err
)

DM and A.D. Brucker. Isabelle/Solidity. AFP 2022.

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Universi
of Exete1Ey

Introduction
Smart Contracts
Solidity

Isabelle/Solidity

Problem

Conclusion
Applications

Summary

Engineering and
Physical Sciences
Research Council
5

Isabelle/Solidity

Isabelle/Solidity is a deep empedding
of Solidity (v0.5.16) in Isabelle/HOL
® Fixed-size integer types
with and without overflow.
® Domain-specific primitives,
such as transfer or balance.

® fallback methods which are
executed with monetary transfers.

DM and A.D. Brucker. Isabelle/Solidity. AFP 2022.

tostate (exp v env <)

SoucouL a1 1P Sissy ieassadin Wowrnoq | {0

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler
' University
.@ of Exeter

Introduction
Smart Contracts

Solidity

Isabelle/Solidity

Problem

Conclusion
Applications

Summary

Engineering and
Physical Sciences
Research Council

5

Isabelle/Solidity

Isabelle/Solidity is a deep empedding
of Solidity (v0.5.16) in Isabelle/HOL
® Fixed-size integer types
with and without overflow.
® Domain-specific primitives,
such as transfer or balance.

® fallback methods which are
executed with monetary transfers.

e Different types of stores, such as
storage, memory, calldata, stack.

DM and A.D. Brucker. Isabelle/Solidity. AFP 2022.

tostate (exp v env <)

SoucouL a1 1P Sissy ieassadin Wowrnoq | {0

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler
' University
.@ of Exeter

Introduction
Smart Contracts

Solidity

Isabelle/Solidity

Problem

Conclusion
Applications

Summary

Engineering and
Physical Sciences
Research Council

5

Isabelle/Solidity

Isabelle/Solidity is a deep empedding
of Solidity (v0.5.16) in Isabelle/HOL

Fixed-size integer types

with and without overflow.
Domain-specific primitives,

such as transfer or balance.
Fallback methods which are
executed with monetary transfers.

Different types of stores, such as
storage, memory, calldata, stack.

Extendable Gas model to model
computational costs. =

tostate (exp v env <)

SoucouL a1 1P Sissy ieassadin Wowrnoq | {0

DM and A.D. Brucker. Isabelle/Solidity. AFP 2022.

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler
' University
.@ of Exeter

Introduction
Smart Contracts

Solidity

Isabelle/Solidity

Problem

Conclusion
Applications

Summary

Engineering and
Physical Sciences
Research Council

5

. - Secure Smart
How to ensure compliance of the semantics e
Isabelle/Solidity

Diego Marmsoler
University
l of Exeter
N Introduction

{ 3\ 4
Generate " Generate Random | Smart Contracts
Random State N Solidity Code N Soliity
g ~ o Isabelle/Solidity
Problem
v y
() (c) Deol dE Conclusion
. reate | eploy and Execute Aoplicati
Execute Semantics > pplications
7 Test Contract Contract Summary
. J \ J
DM and A.D. Brucker. Eﬁ i Gineerre,
Research Council

6

Conformance Testing of Formal Semantics using Grammar-based Fuzzing. TAP 2022.

Applications

® Verified Constant Solving

B v Output| Query Sledgehammer| Symbols

10, B2 By 12 58I@) UTF -8-Isabelle) | nimro W..

DM and A. Brucker. A Denotational Semantics of Solidity in Isabelle/HOL. SEFM 2021.

SaLI0Y L 23815 NINBPIS S3INsay YoieasiadAH juawndod 4 @

4 Fle Edit Search Markers Folding View Utliies Maaos Plugins Hi lsabelle R
NefdE & 9e XA & BEE B
] Constant_Folding.thy (%USERPROFILES\solidity\) v
B/1" 16| The following function optinizes expressions w.r.t. gas consumption
= 17|
St 18|prinrec eupdate R
2 | 10fand wupdate :: L - L
€| 20fwhere
2| 21) "lupdate (Id i) = Id i"
S| 22[| "lupdate (Ref i xs) = Ref i (map eupdate xs)*
8| 231 eupdate (E.INT b v) =
I (ifv>o0
gl 2 then E.INT b (-(2%(bits.to_nat b - 1)) + (v+2"(bits.to_nat b - 1))
2 2 else E.INT b (2 (bits.to_nat b - 1) - (-v+2~(bits.to_nat b - 1) -
21| 27|| "eupdate (UINT b v) = UINT b (v mod (2"bits.to_nat b))"
@ | 28| "eupdate (ADDRESS a) = ADDRESS a”
T | 29|| "eupdate (BALANCE a) = BALANCE a"
30|| "eupdate THIS = THIS"
31| "eupdate SENDER = SENDER"
32|| "eupdate VALUE = VALUE"
33| "eupdate TRUE = TRUE"
34|| "eupdate FALSE = FALSE"
35| "eupdate (LVAL 1) = LVAL (lupdate 1)*
36[| "eupdate (PLUS ex1 ex2) =
37, (case (eupdate ex1) of
38 E.INT bl v1 =
39 (case (eupdate ex2) of
40 E.INT b2 v2
41 let v=vl+v2 in
42 ifv>o
43 then E.INT (max bl b2) (-(2~((max (bits.to_nat bl) (bits]
44 else E.INT (max bl b2) (2°((max (bits.to_nat bl) (bits.tc
45 | UINT b2 v2 =
46 if b2 < bl
a7 then let vavl+v2 in
48 ity >
49 then E.INT bl (-(2°((bits.to_nat b1)-1)) + (v+2*((bits.
50 else E.INT bl (2~((bits.to_nat bl)-1) - (-v+2~((bits.tc
51 else PLUS (E.INT bl v1) (UINT b2 v2)

/1132MiB IITEERERIZET 4 MiB 08:09

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler
' University
@ of Exeter

Introduction
Smart Contracts
Solidity

Isabelle/Solidity
Problem

Isabelle/Solidity

Conclusion

Summary

Research Council

Engineering and
Physical Sciences

7

Applications

® Verified Constant Solving

® Soundness of SSCalc

4 Fle Edit Search Markers Folding View Utiities Maaos Plugins Hi Isabelle o X

NedE & oe XA & E]
7] Weakest_Precondition.thy (%USERPROFILE%\solidity\) v

2 1199]

~ [1193[Lenma wp_external_invoke_transfer:

5| 1194) Identifier = Precondition"

= 1195 “Identifier = Postcondition"

£ 119 :1"Postcondition”

£ [1197) "Postcondition”

g 1198 "Invariant"

§ 1199 assunes assm: "Ast::state.

° [vst'::State. gas st' < gas st A type (accounts st' ad) = Some (Contl

g . Pe ad iv st' A Pi ad pre post st' A Pfi ad pref postf st' A M

H > Qe ad iv st A Qi ad pre post st A Qfi ad pref postf st A Qfe ad

2 shows "type (accounts st ad) = Sofle (Contract cname) — Pe ad iv st

v proof (induction st rule: gas_induct)

120 B:318e(BMBABEIRATTEB-Isabelle) | nm

case (1
show ?case unfolding Pe_def Pi_def Pfi_def Pfe_def
proof elins
fix ev::Environment and ad' i xe val cd
assume a00: "type (accounts st ad) = Some (Contract cname)" 1
and a@: “"address ev
and al: "Yadv c g v t g' v’
local.expr ad' ev cd (st(gas := gas st - costs (EXTERNAL ad' i
gas st - costs (EXTERNAL ad' i xe val) ev cd st) = =
Normal ((KValue adv, Value TAddr), g) A u
adv # ad A
type (accounts st adv) = Some (Contract c) A
¢ || fdom ep A
Tocal.expr val ev cd (st(gas := g)) g = Normal ((KValue v, Valu=
convert t (TUInt b256) v = Some v' |
- iv (storage st ad) <ReadLm (bal (accounts st ad)) - ReadLin: Vi

show "wpS (local.stmt (EXTERNAL & i xe val) ev cd) (Ast. iv (storagy
proof (spllt result spnt, split prcd split; rule conjI; (rule alll){‘
fix x1

assume "x1)" and 2: ”lu(al stmt (EXTERNAL ad' i xe
then have "local Stmt (EXTERNAL ad val) e st = Normal (x]
then show "gas s+ """ < gas st A iv (storage s''**"" ad) (ReadLin:
proof (cases rule: external)

Output | Query | Sledgehammer, Symbols

DM and B. Thornton. SSCalc: A calculus for Solidity smart contracts. SEFM 2023.

o W... INVIHEED, 1132MiB IITEERGEHIZET 2 MiB 08:04)
e ——————————

SaLI0aU L 23815 NINRPIS S3INsay YoieasiadAH Juawndod 4 @

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Universi
of Exete1Ey

Introduction
Smart Contracts

Solidity

Isabelle/Solidity
Problem

Isabelle/Solidity

Conclusion

Summary

Research Council
7

Engineering and
Physical Sciences

Applications

® Verified Constant Solving
® Soundness of SSCalc
e Verified Banking

4 Fle Edit Search Markers Folding View Utiities Macos Plugins Hi

BrE & S XOE @@ C
] Reentrancy.thy (%USERPROFILE%\solidity\)
subsection<Verification:

locale Reentrancy = Calculus +
assumes ro: "cname = STR ''Bank''"

and ri:

and r2: "fb = SKIP"

and r3: "const = ([], SKIP)"

5)
begin

subsubsection:Method lemmas>
text <
These lemmas

required by @{term vcg_external}

File Browser | Documentation 4 B

lemma mwithdraw[mcontract]:

using r1 unfolding bank_def by simp
lenma mdeposit[mcontract]:

using r1 unfolding bank_def by simp
Bl cubsubsectLoncvariabue Lamess

lemma balance:

hdraw'', Method ([], firue, BLOCK ((STR ''bal

subsubsectionCas
text

These lemmas are required by @{term vcg_transfer}
[1142[1emma cases_ext:

| 143| assumes *members $5 mid = Some (Method (fp,True,f))"
| 124} and "fp = [] — P deposit

Lemmas>

B v | Output| Query Sledgehammer| Symbols
136380 6B EIBAS) TF-8-I1sabelle) | 1 m o W... INVEEEEINER

Isabelle. o x

EE B

“"members $$ STR ''withdraw'' = Some (Method ([], True, keep))"

"members $$ STR ''deposit’' = Some (Method ([], True, deposit))"

“members $$ (STR '‘'balance'') = Some (Var (STMap TAddr (STValue (Tulnt t
using e bank_def fmlookup_of List[of "[(STR ' ‘balance’', Var (STHap TAG
sTR **

. Value (TUI

SaLI0aU | 23815 NINBPIS S3INsay YoieasiadAH Juawndod 4 @

MiB IITEERERIZET 4MiB 08:16

DM and A. Brucker. Isabelle/Solidity: A deep embedding of Solidity in Isabelle/HOL. TBP.

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler
' University
@ of Exeter

Introduction
Smart Contracts

Solidity

Isabelle/Solidity
Problem

Isabelle/Solidity

Conclusion

Summary

Research Council

Engineering and
Physical Sciences

7

Secure Smart
Contracts with

Summary
Isabelle/Solidity

Diego Marmsoler

Universi
@ of Exetelt—y

Introduction
Smart Contracts

Solidity

What is achieved so far
® Formalisation of a subset of Solidity in Isabelle/HOL

® (Conservative extension guarantees semantic consistency
® Deep embedding allows to reason about the language itself -

Problem

Isabelle/Solidity

Conclusion

Applications

Engineering and
Physical Sciences
Research Council

8

Secure Smart
Contracts with

Summary
Isabelle/Solidity

Diego Marmsoler

Universi
@ of ExetexEy

What is achieved so far
® Formalisation of a subset of Solidity in Isabelle/HOL troduction
Smart Contracts

Solidity

® (Conservative extension guarantees semantic consistency

® Deep embedding allows to reason about the language itself -

Problem

® Used in several case studies to verify ... o
sabelle/Solidity

® Gas—optimizer Conclusion
® soundness of Solidity calculus Applictions
® concrete Solidity contracts

Engineering and
Physical Sciences
Research Council

8

Secure Smart
Contracts with

Summary
Isabelle/Solidity

Diego Marmsoler

Universi
@ of ExetexEy

What is achieved so far

® Formalisation of a subset of Solidity in Isabelle/HOL traduction
® (Conservative extension guarantees semantic consistency zn:_a:@mm
. : ity
® Deep embedding allows to reason about the language itself -
® Used in several case studies to verify ... s
sabelle/Solidity

Conclusion

® Gas-optimizer
® soundness of Solidity calculus
® concrete Solidity contracts

Applications

What are we currently working on
® Shallow embedding to improve automation for the verification of contracts

Engineering and
Physical Sciences
Research Council

Secure Smart
Contracts with

Summary
Isabelle/Solidity

Diego Marmsoler

Universi
@ of Exete1Ey

What is achieved so far

® Formalisation of a subset of Solidity in Isabelle/HOL traduction
® (Conservative extension guarantees semantic consistency zn:_a:cmm
. : ity
® Deep embedding allows to reason about the language itself -
® Used in several case studies to verify ... s
sabelle/Solidity

Conclusion

® Gas-optimizer
® soundness of Solidity calculus
® concrete Solidity contracts

Applications

What are we currently working on
® Shallow embedding to improve automation for the verification of contracts

® First results are promising!

Engineering and
Physical Sciences
Research Council

Secure Smart

References I Contracts with
Isabelle/Solidity
Diego Marmsoler
¥ Diego Marmsoler and Achim D. Brucker.
A Denotational Semantics of Solidity in Isabelle/HOL. Sé‘,’gﬁ%‘ﬁ"
In Radu Calinescu and Corina S. P3sareanu, editors, Software Engineering
and Formal Methods, pages 403-422, Cham, 2021. Springer International ntroduction
Publishing. Sy
Isabelle/Solidity
¥ Diego Marmsoler and Achim D. Brucker. o
Isabelle/Solidity
Conformance testing of formal semantics using grammar-based fuzzing. Conelusion

Applications

In Laura Kovécs and Karl Meinke, editors, Tests and Proofs, pages 106—125,
Cham, 2022. Springer International Publishing.

¥ Diego Marmsoler and Achim D. Brucker.
Isabelle/solidity: A deep embedding of solidity in isabelle/hol.
Archive of Formal Proofs, July 2022.
https:/ /isa-afp.org/entries /Solidity.html, Formal proof development.

Enginering and
Physical Sciences
Research Council

https://isa-afp.org/entries/Solidity.html

Secure Smart
Contracts with

References Il
Isabelle/Solidity

Diego Marmsoler

ey

Introduction

Smart Contracts

¥ Diego Marmsoler and Billy Thornton. oy
SSCalc: A Calculus for Solidity Smart Contracts. S
Isabelle/Solidity

In Carla Ferreira and Tim A. C. Willemse, editors, Software Engineering and
Formal Methods, pages 184-204, Cham, 2023. Springer Nature Switzerland. ~ Senclisin

Engineering and
Physical Sciences
Research Council

10

O Language Features
Fixed-size Integer Types
Domain-specific Primitives
Gas Model
Method Calls
Complex Data Types
Assignments with Different Semantics

@ Testing

@ Example Applications
Verified Constant Solving
SSCalc
Banking Contract

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Universi
@ of ExetexEy

Language Features
Fixed-size Integer Types
Domain-specific Primitives
Gas Model
Method Calls
Complex Data Types
Assignments with Different

Semantics

Testing

Example
Applications
Verified Constant Solving
SSCalc
Banking Contract

Engineering and
Physical Sciences
Research Council

Fixed-size Integer Types

e Signed and unsigned integers from 8...256 bits (with steps of 8 bits)
® Signed integer types are only compatible with unsigned types of smaller size

If a value is too large for a size a silent overflow will occur

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Universi
@ of ExeterEy

Language Features

Domain-specific Primitives
Gas Model

Method Calls

Complex Data Types
Assignments with Different

Semantics

Testing

Example
Applications
Verified Constant Solving
SSCalc
Banking Contract

Engineering and
Physical Sciences
Research Council

Fixed-size Integer Types

e Signed and unsigned integers from 8...256 bits (with steps of 8 bits)
e Signed integer types are only compatible with unsigned types of smaller size

e If a value is too large for a size a silent overflow will occur

assert(int8(200) == int8(-56));

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Universi
@ of ExetexEy

Language Features

Domain-specific Primitives
Gas Model

Method Calls

Complex Data Types
Assignments with Different

Semantics

Testing

Example
Applications
Verified Constant Solving
SSCalc
Banking Contract

Engineering and
Physical Sciences
Research Council

11

Fixed-size Integer Types

e Signed and unsigned integers from 8...256 bits (with steps of 8 bits)
e Signed integer types are only compatible with unsigned types of smaller size

e If a value is too large for a size a silent overflow will occur

assert(int8(200) == int8(-56));

//true

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Universi
@ of ExetexEy

Language Features

Domain-specific Primitives
Gas Model

Method Calls

Complex Data Types
Assignments with Different

Semantics

Testing

Example
Applications
Verified Constant Solving
SSCalc
Banking Contract

Engineering and
Physical Sciences
Research Council

11

Fixed-size Integer Types

e Signed and unsigned integers from 8...256 bits (with steps of 8 bits)
e Signed integer types are only compatible with unsigned types of smaller size

e If a value is too large for a size a silent overflow will occur

assert(int8(200) == int8(-56));

assert(uint8(200) == uint8(-56));

//true

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Universi
@ of ExetexEy

Language Features

Domain-specific Primitives
Gas Model

Method Calls

Complex Data Types
Assignments with Different

Semantics

Testing

Example
Applications
Verified Constant Solving
SSCalc
Banking Contract

Engineering and
Physical Sciences
Research Council

11

Fixed-size Integer Types

e Signed and unsigned integers from 8...256 bits (with steps of 8 bits)
e Signed integer types are only compatible with unsigned types of smaller size

e If a value is too large for a size a silent overflow will occur

assert(int8(200) == int8(-56));

assert(uint8(200) == uint8(-56));

//true

//true

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Universi
@ of ExetexEy

Language Features

Domain-specific Primitives
Gas Model

Method Calls

Complex Data Types
Assignments with Different

Semantics

Testing

Example
Applications
Verified Constant Solving
SSCalc
Banking Contract

Engineering and
Physical Sciences
Research Council

11

Fixed-size Integer Types

e Signed and unsigned integers from 8...256 bits (with steps of 8 bits)
e Signed integer types are only compatible with unsigned types of smaller size

e If a value is too large for a size a silent overflow will occur

assert(uint8(200) == uint8(-56));

assert(uint8(200) + int16(32600) ==

assert(int8(200) == int8(-56)); //true

//true

int16(-32736));

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Universi
@ of ExetenEy

Language Features

Domain-specific Primitives
Gas Model

Method Calls

Complex Data Types
Assignments with Different

Semantics

Testing

Example
Applications
Verified Constant Solving
SSCalc
Banking Contract

Engineering and
Physical Sciences
Research Council

11

Fixed-size Integer Types

e Signed and unsigned integers from 8...256 bits (with steps of 8 bits)
e Signed integer types are only compatible with unsigned types of smaller size

e If a value is too large for a size a silent overflow will occur

assert(uint8(200) == uint8(-56));

assert(uint8(200) + int16(32600) ==

assert(int8(200) == int8(-56)); //true

//true

int16(-32736));

//true

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Universi
@ of ExetexEy

Language Features

Domain-specific Primitives
Gas Model

Method Calls

Complex Data Types
Assignments with Different

Semantics

Testing

Example
Applications
Verified Constant Solving
SSCalc
Banking Contract

Engineering and
Physical Sciences
Research Council

11

Fixed-size Integer Types

e Signed and unsigned integers from 8...256 bits (with steps of 8 bits)

e Signed integer types are only compatible with unsigned types of smaller size

e If a value is too large for a size a silent overflow will occur

assert(int8(200) == int8(-56)); //true

assert(uint8(200) == uint8(-56)); //true
assert(uint8(200) + int16(32600) == int16(-32736)); //true

assert(uint16(100) + int16(32700));

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Universi
@ of ExetenEy

Language Features

Domain-specific Primitives
Gas Model

Method Calls

Complex Data Types
Assignments with Different
Semantics

Testing

Example
Applications
Verified Constant Solving
SSCalc
Banking Contract

Engineering and
Physical Sciences
Research Council

11

Fixed-size Integer Types

e Signed and unsigned integers from 8...256 bits (with steps of 8 bits)

e Signed integer types are only compatible with unsigned types of smaller size

e If a value is too large for a size a silent overflow will occur

assert(int8(200) == int8(-56)); //true

assert(uint8(200) == uint8(-56)); //true
assert(uint8(200) + int16(32600) == int16(-32736)); //true

assert(uint16(100) + int16(32700)); //compiler error

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Universi
@ of ExetexEy

Language Features

Domain-specific Primitives
Gas Model

Method Calls

Complex Data Types
Assignments with Different
Semantics

Testing

Example
Applications
Verified Constant Solving
SSCalc
Banking Contract

Engineering and
Physical Sciences
Research Council

11

Domain-specific Primitives

® External vs. contract accounts
® Query account balances

® Transfer money

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Universi
@ 0) Exetelt'y

Language Features

Fixed-size Integer Types

Gas Model
Method Calls

Complex Data Types
Assignments with Different

Semantics

Testing

Example
Applications
Verified Constant Solving
SSCale
Banking Contract

Engineering and
Physical Sciences
Research Council

12

Domain-specific Primitives

e External vs. contract accounts

® Query account balances

® Transfer money

uint256 x
uint256 y

0xAb8483F64d9C6d1ECFIb849Ae677dD3315835cb2.balance;
address(this) .balance;

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Universi
@ of Exetelt—y

Language Features

Fixed-size Integer Types

Gas Model
Method Calls

Complex Data Types
Assignments with Different

Semantics

Testing

Example

Applications
Verified Constant Solving
SSCalc

Banking Contract

Engineering and
Physical Sciences
Research Council

12

Domain-specific Primitives

® External vs. contract accounts
® Query account balances

® Transfer money

0xAb8483F64d9C6d1ECFIb849Ae677dD3315835cb2.balance;
address(this) .balance;

uint256 x
uint256 y

0xAb8483F64d9C6d1ECFIb849Ae677dD3315835¢cb2. transfer (1000) ;

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Universi
@ of ExetexEy

Language Features

Fixed-size Integer Types

Gas Model
Method Calls

Complex Data Types
Assignments with Different
Semantics

Testing

Example
Applications
Verified Constant Solving
SSCalc
Banking Contract

Enginering and
Physical Sciences
Research Council

Domain-specific Primitives

® External vs. contract accounts
® Query account balances

® Transfer money

0xAb8483F64d9C6d1ECFIb849Ae677dD3315835cb2.balance;
address(this) .balance;

uint256 x
uint256 y

0xAb8483F64d9C6d1ECFIb849Ae677dD3315835¢cb2. transfer (1000) ;

//true

assert (0xAb8483F64d9C6d1EcFIb849Ae677dD3315835¢cb2. balance == x+1000) ;

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Universi
@ of ExetexEy

Language Features

Fixed-size Integer Types

Gas Model
Method Calls

Complex Data Types
Assignments with Different

Semantics

Testing

Example
Applications
Verified Constant Solving
SSCalc
Banking Contract

Engineering and
Physical Sciences
Research Council

12

Secure Smart

Domain-specific Primitives e
Isabelle/Solidity

Diego Marmsoler

® External vs. contract accounts
® Query account balances @ Unjversity
X¢

® Transfer money

Language Features

Fixed-size Integer Types

Sol id |ty Gas Model
Method Calls

uint256 x = 0xAb8483F64d9C6d1EcFI9b849Ae677dD3315835cb2.balance; e B s
uint256 y = address(this).balance; AT Pl

Testing
0xAb8483F64d9C6d1ECFIb849Ae677dD3315835¢cb2. transfer (1000) ; Example

Applications
assert (0xAb8483F64d9C6d1EcFIb849Ae677dD3315835¢cb2.balance == x+1000); ‘S’:Q"T‘* Constant Solving
//true Banking Contract
assert(address(this) .balance == y-1000); //true

Engineering and
Physical Sciences
Research Council

12

Gas Model

® Execution costs Gas
® Programs are guaranteed to terminate
® No specification for Gas costs at Solidity level

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Universi
@ of Exetelt—y

Language Features
Fixed-size Integer Types

Domain-specific Primitives

Method Calls
Complex Data Types
Assignments with Different
Semantics

Testing

Example
Applications
Verified Constant Solving
SSCalc
Banking Contract

Engineering and
Physical Sciences
Research Council

13

Gas Model

® Execution costs Gas
® Programs are guaranteed to terminate
® No specification for Gas costs at Solidity level

while (true) {}
//terminates with an out of gas exception

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Universi
@ of Exetelt'y

Language Features
Fixed-size Integer Types

Domain-specific Primitives

Method Calls
Complex Data Types
Assignments with Different
Semantics

Testing

Example
Applications
Verified Constant Solving
SSCale
Banking Contract

Engineering and
Physical Sciences
Research Council

13

Method Calls
Recently we added support for method calls

® Internal vs. external
® Send money with external calls

® Money transfer triggers fallback

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler
University
of Exeter

Language Features
Fixed-size Integer Types
Domain-specific Primitives

Gas Model

Complex Data Types
Assignments with Different

Semantics

Testing

Example
Applications
Verified Constant Solving
SSCalc
Banking Contract

Engineering and
Physical Sciences
Research Council

14

Method Calls

Recently we added support for method calls

® Internal vs. external
® Send money with external calls

® Money transfer triggers fallback

Solidity
contract R {

mapping(address => uint256) map;

function rcv() external payable {
map [msg.sender] = msg.value;
}
}

contract S {
R rec;

constructor(R r) public payable {
rec = r;

}

function snd(uint256 v) public {
rec.rcv.value(v) ();
}
}

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler
University
of Exeter

Language Features
Fixed-size Integer Types
Domain-specific Primitives

Gas Model

Complex Data Types
Assignments with Different

Semantics

Testing

Example
Applications
Verified Constant Solving
SSCalc
Banking Contract

Engineering and
Physical Sciences
Research Council

14

Complex Data Types
® Three types of stores: storage, memory, calldata
® Mappings can only be kept in storage
® Arrays can be kept in all types of stores

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Universi
@ of Exetelt—y

Language Features
Fixed-size Integer Types
Domain-specific Primitives
Gas Model
Method Calls

Assignments with Different
Semantics

Testing

Example
Applications
Verified Constant Solving
SSCalc
Banking Contract

Enginering and
Physical Sciences
Research Council

Complex Data Types
® Three types of stores: storage, memory, calldata
® Mappings can only be kept in storage
® Arrays can be kept in all types of stores

contract Example {
mapping(address => uint256) myMapping; //storage map

uint8[2] [3] myStorageArray; //storage array

//calldata array
function example(uint8[2] calldata myCDArray) external {

uint8[2] memory myMemoryArray; //memory array

}
}

uint8[2] storage myPointer = myStorageArray[1]; //storage pointer

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Universi
@ of ExetexEy

Language Features
Fixed-size Integer Types
Domain-specific Primitives
Gas Model
Method Calls

Assignments with Different
Semantics

Testing

Example
Applications
Verified Constant Solving
SSCalc
Banking Contract

Engineering and
Physical Sciences
omrch Council

Assignments with Different Semantics
® Assignment between memory moves pointer
e Assignment between storage copies (except for pointers)
® Assignment between memory and storage copies

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler
University
of Exeter

Language Features
Fixed-size Integer Types
Domain-specific Primitives
Gas Model
Method Calls
Complex Data Types

Testing

Example
Applications
Verified Constant Solving
SSCalc
Banking Contract

Engineering and
Physical Sciences
Research Council

16

Secure Smart

Assignments with Different Semantics e

. . Isabelle/Solidit
® Assignment between memory moves pointer sabelie/Solidty

e Assignment between storage copies (except for pointers)

® Assignment between memory and storage copies @ Universty

Diego Marmsoler

Language Features

o = Fixed-size Integer Types

SOl id Ity SOl id Ity DA P
//initialized with O int [2] [2] memory x; Gs Model
Method Calls

int[2] memory x; int[2] [2] memory y; Complox Data Types
int [2] memory y;

x[11=y[1];

Testi
X=y; x[0] [0]=1; e
x[1]=1; x[1]1[1]1=1; Aapications
Verified Constant Solving
assert(y[1] == 1); //true assert(y[0]1[0] == 1); //false P

assert(y[1] [1] 1); //true

Engineering and
Physical Sciences
Research Council

16

Assignments with Different Semantics

® Assignment between memory moves pointer
e Assignment between storage copies (except for pointers)
® Assignment between memory and storage copies

contract Example {
//initialized with 0
int [2] storage y;

function example() public {
int[2] storage x=y;

x[1]1=1;

assert(y[1]==1); //true
}
3

contract Example {
//initialized with O
int [2] storage x;

int [2] storage y;

function example() public {

X =7y;
x[1]=1;

assert(y[1]==1); //false
}
}

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Universi
@ of Exetelt—y

Language Features
Fixed-size Integer Types
Domain-specific Primitives
Gas Model
Method Calls
Complex Data Types

Testing

Example
Applications
Verified Constant Solving
SSCalc
Banking Contract

Enginering and
Physical Sciences
Research Council

Assignments with Different Semantics

® Assignment between memory moves pointer
e Assignment between storage copies (except for pointers)
® Assignment between memory and storage copies

contract Example {
//initialized with 0
int [2] storage y;

function example() public {
int [2] memory x = y;

x[1]1=1;

assert(y[1] == 1); //false
}
3

contract Example {
//initialized with O
int [2] storage y;

function example() public {
int [2] memory x = y;
x[1]=y[1]1;
x[11[1]=1;

assert(y[1] [1]==1); //false

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Universi
@ of Exetelt—y

Language Features
Fixed-size Integer Types
Domain-specific Primitives
Gas Model
Method Calls
Complex Data Types

Testing

Example
Applications
Verified Constant Solving
SSCalc
Banking Contract

Enginering and
Physical Sciences
Research Council

Example

contract TestContract0 {
uint8 v_u8.s8;
mapping(uintl6 => uint8) v.m_u16_u8.9; Extracted
bool [1][2] a-b-12.s5; storage variables

function test () public {
uint104 v_ul04_m2;

. . Extracted
uint104 [1][1] memory a_ul04_11_m2; memory,/stack variables
v-ul04_.m2=14622709355569675963178665339646; G ted
v-m_u16_u8.9[59381]=79; enerate
input state

int8 counterl=int8(0);

while ((v-m_u224_s240_1[uint224(444)]==(v-u216_s1—v_u104.m2)) && counterl <int8(10)){
0xf7218C33533a3F22e3296F8b1DC0074B399355Eb.transfer(v_m_u16_u8_9[uint16(0)]); Generated
counterl=counterl+int8(1); program

}

Assert.equal (v-m_ul6_u8_9[59381]==79, true);

Assert . equal (a_u104.11_m2[0][0]==8130097819054169632795960896007, true);

Assert . equal (0xf7218C33533a3F22e3296F8b1DC0074B399355Eb Computed
_balance==100000000000000000000, true); result state

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler
University
of Exeter

Language Features
Fixed-size Integer Types
Domain-specific Primitives
Gas Model
Method Calls
Complex Data Types

Assignments with Different
Semantics

Example
Applications
Verified Constant Solving
SSCalc
Banking Contract

Engineering and
Physical Sciences
Research Council

17

Verified Constant Solving

Solidity

int16 x;

// costs 20 Gas
x = int16(250) + uint8(500);

Solidity
int16 x;

// costs 8 Gas
X = int16(494);

@ b

sbegin

s|| "eupdate (E.INT b v)

5|| "eupdate FALSE = FALSE"

Fle Edt Seach Markers Foldng View Utliies Macros Plugins Help
IwRdE & 4¢ DA R CED

) Corstant gy DAONEDRNECONSUAE

oty
section<Constant Folding =
theory Constant Folding
inports

Solidity Main

The following function optimizes expressions w.r.t. gas consumption

fun eupdate
and lupdate
lwhere

"lupdate (Id i) = Id i"

=
=

Saoaus aaess | orepIs sunsay upseasidA 4|3

| "lupdate (Ref i exp) = Ref i (map eupdate exp)"
(if (bevbits)
then if v > 0
then E.INT b (-(2"(b-1)) + (v+2*(b-1)) mod (2°b))
else E.INT b (2%(b-1) - (-v+2%(b-1)-1) mod (2°b) - 1)
else E.INT b v)"
| "eupdate (UINT b v) = (if (bevbits) then UINT b (v mod (2°b)) else UINT b v)"
| "eupdate (ADDRESS a) = ADDRESS a"
| "eupdate (BALANCE a) = BALANCE a"
| "eupdate TRUE = TRUE"

| “eupdate (LVAL 1) = LVAL (lupdate 1)"
| “eupdate (PLUS exl ex2) =
(case (eupdate ex1) of
E.INT bl v1 =
if bl € vbits
then (case (eupdate ex2) of
E.INT b2 v2 =
if baevbits
then let vavi+v2 in
ifv>ae
then E.INT (max bl b2) (-(2"((max bl b2)-1)) + (v42*((max bl
else E.INT (max bl b2) (2*((max bl b2)-1) - (-v+2*((max bl b:
else (PLUS (E.INT bl v1) (E.INT b2 v2))

then let v=vl+v2 in
ifv>o
then E.INT bl (-(2~(b1-1)) + (v+#2*(b1-1)) mod (2°b1))
else E.INT bl (2°(b1-1) - (-v42%(b1-1)-1) mod (2°b1) - 1)
else PLUS (E.INT bl v1) (UINT b2 v2)
| _ = PLUS (E.INT bl v1) (eupdate ex2))

8 Output Query|Siedgehammer Symbols
0152161 isobel

else PLUS (E.INT bl v1) (eupdate ex2)

belle)

U G MEREED 7 WEEER 31293010 12:2)

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

University
of Exeter

Language Features

Fixed-size Integer Types

Domain-specific Primitives
Gas Model

Method Calls

Complex Data Types
Assignments with Different
Semantics

Testing

Example
Applications
SSCalc

Banking Contract

Enginoaring and
ysical Scienc
omrchC ounci

SSCalc

Specification
® |nvariant over member
variables and balance
® Pre/post-conditions for
internal methods
Verification
® Constructor establishes
invariant
® External methods preserve
invariant

® Preconditions imply
postconditions for internal
methods

contract Example {

}

uint x;

constructor(uint y, .) public {
.. X =Y,

}

function intil(uint y, .) internal {
adl.call.value(1l ether) (abi.
encodeWithSignature("ext()"));
}
function ext() extermal {
int1(5, ...);
ad2.transfer (1l ether);

}

function () external payable {

}

DM and B. Thornton. SSCalc: A calculus for Solidity smart contracts. SEFM 2023.

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Universi
@ of Exeteﬁy

Language Features
Fixed-size Integer Types
Domain-specific Primitives
Gas Model
Method Calls
Complex Data Types
Assignments with Different
Semantics

Testing

Example
Applications
Verified Constant Solving

Banking Contract

Engineering and
Physical Sciences
Research Council

Verification of Banking Contract

Zbalances(a) < balance

contract Bank {
mapping(address => uint256) balances;

function deposit() public payable {
balances[msg.sender] = balances[msg.sender] + msg.value;

}

function withdraw() public {
uint256 bal = balances[msg.sender];
balances [msg.sender] = 0;
msg.sender.transfer(bal);

Secure Smart
Contracts with
Isabelle/Solidity

Diego Marmsoler

Universi
@ of Exetelt—y

Language Features
Fixed-size Integer Types
Domain-specific Primitives
Gas Model
Method Calls
Complex Data Types

Assignments with Different
Semantics

Testing

Example

Applications
Verified Constant Solving
SSCalc

Enginering and
Physical Sciences
Research Council

	Introduction
	Smart Contracts
	Solidity

	Isabelle/Solidity
	Problem
	Isabelle/Solidity

	Conclusion
	Applications
	Summary

	Appendix
	Language Features
	Fixed-size Integer Types
	Domain-specific Primitives
	Gas Model
	Method Calls
	Complex Data Types
	Assignments with Different Semantics

	Testing
	Example Applications
	Verified Constant Solving
	SSCalc
	Banking Contract

