
Bit-Precise Neural Network Verification

Edoardo Manino

The University of Manchester

21 May 2024

1 / 28

Background: neural network verification

S
af
et
y

P
ro
p
er
ty

Existing Verifiers

S
af
et
y

P
ro
p
er
ty

Integers

Bit Vectors

Floats/Posits S
o
ft
w
a
re

L
ib
ra
ri
es

Bit-Precise Verifiers

Mainstream approach (à la VNN-COMP)

▶ Neural network in high-level format (ONNX, PyTorch. . .)

▶ Input-output safety property in FOL (pre- and post-conditions)

▶ Large focus on robustness properties

2 / 28

The abstraction ladder (1)

The “classic ML” mindset
▶ Define a neural net as f : Rn → R

m

▶ Gradient descent, auto differentiation

▶ Data manifold, regularizers, . . .

What’s the implicit assumption?

▶ We live in a mathematician’s world

▶ At a very high level of abstraction

▶ And operations have infinite precision

Very effective, most of the time

3 / 28

The abstraction ladder (2)

Quantisation efforts

▶ 16-bit floating point

▶ 16-bit, 8-bit, 4-bit integers

▶ Binarized neural networks

Parallel execution
▶ GPU, SIMD instructions, TPU, FPGAs

▶ Distributed/federated learning

What’s the implicit assumption?

▶ We make a lot of optimisations

▶ But the result doesn’t really change

4 / 28

The abstraction ladder (3)

The software safety mindset

▶ Buffer overflow, division by zero

▶ Data race, deadlock, use-after-free

▶ Infinite loops, side effects

What’s the implicit assumption

▶ Every innocent bug

▶ Can introduce a vulnerability

Just a problem for library makers?

5 / 28

6 / 28

Implementation effects (1)

Can we expect consistent behaviour across devices?

▶ Cidon et al., Characterizing and taming model instability
across edge devices, 2021

▶ Wang et al, SysNoise: exploring and benchmarking
trainin-deployment system inconsistency, 2023

▶ Schlögl et al., Causes and Effects of Unanticipated Numerical
Deviations in Neural Network Inference Frameworks, 2023

Many low-level sources of noise!

▶ Pre-processing: .jpg→tensor (iDCT, interpolation, colour)

▶ Model inference: convolutions, upsampling, floats, quantize

▶ Post-processing: tensor→bounding box (rounding coordinates)

Up to 6% accuracy fluctuation1

1Cidon [2021] runs MobileNetV2 on photos taken from five different phones.
7 / 28

Implementation effects (2)

Can we trust NN verifiers?
▶ VNN-COMP compares the best neural network verifiers

▶ Let’s reproduce one of their results!

Benchmark: reach prob density/robot 11

▶ A ReLU network with architecture 5× 64× 64× 64× 5

▶ Input assumption: x0 ∈ [−1.8,−1.2] ∧ x1 ∈ [−1.8,−1.2]. . .

▶ Output assertion: y0 ≥ 0.27 ∧ y1 ∈ [−0.17, 0.17]. . .

Five tools return a counterexample!

▶ αβ-CROWN, Marabou, nnenum, VeriNet, Peregrinn

But none of them violates the output assertion2

2With the plain C code from onnx2c and the MinGW-w64 compiler.
8 / 28

9 / 28

Bit-precise neural network verification

S
a
fe
ty

P
ro
p
er
ty

Existing Verifiers

S
af
et
y

P
ro
p
er
ty

Integers

Bit Vectors

Floats/Posits S
o
ft
w
a
re

L
ib
ra
ri
es

Bit-Precise Verifiers

We need more precision!

▶ Bit-precise machine arithmetic (float or integer)

▶ Exact order of operations (requires knowledge of software)

▶ Guarantees sound proofs (unless the hardware is misbehaving)

10 / 28

11 / 28

NeuroCodeBench (1)

Benchmarking goals

▶ Representativeness → realistic use cases

▶ Compatibility → SV likes plain C code

▶ Variety → from small to “large” instances

▶ Correctness → known ground truth

Our work is inspired by

▶ Microcontroller software

Short paper available!

▶ Manino, Menezes, Shmarov, Cordeiro. NeuroCodeBench: a
plain C neural network benchmark for software verification.
2023

▶ https://arxiv.org/abs/2309.03617

12 / 28

https://arxiv.org/abs/2309.03617

NeuroCodeBench (2)

Benchmark Category Safe Unsafe Ground Truth

math functions 33 11 A Priori
activation functions 40 16 A Priori

hopfield nets 47 33 A Priori
poly approx 48 48 Brute Force

reach prob density 22 13 VNN-COMP’22
reinforcement learning 103 193 VNN-COMP’22

Total 293 314

Table: Overview of NeuroCodeBench. The “Unsafe” column comprises
all properties for which a counterexample exists. The “Ground Truth”
column reports the source of our verdicts.

13 / 28

14 / 28

A short story (1)

CBMC CPAChecker ESBMC PeSCo UAutomizer
0

200

400

600

111
30

255 224

7

420
508

175

0

594

76 69

177

383

6

#
v
er
d
ic
ts

Correct Unknown Incorrect

Figure: top software verifiers after 900 seconds (August 2023).

Experiments with off-the-shelf verifiers

▶ We pick the top scoring tools from SV-COMP 2022

▶ We keep the same settings of the reachability category

▶ Some of these tools have competed for decades

▶ Variety of techniques: BMC, automata, portfolios

15 / 28

A short story (2)

CBMC CPAChecker ESBMC PeSCo UAutomizer
0

200

400

600

111
30

255 224

7

420
508

175

0

594

76 69

177

383

6

#
v
er
d
ic
ts

Correct Unknown Incorrect

Figure: top software verifiers after 900 seconds (August 2023).

Our opinion

▶ No support of mathematical libraries → incorrect results

▶ Cannot scale to large programs → unknown result (timeout)

Is there anything else at play here?

16 / 28

17 / 28

A short story (3)

Reproducibility goal

▶ Submit NeuroCodeBench to SV-COMP 2023

▶ Experiments run by independent team

▶ Tool authors have a chance to fix bugs

Community engagement (October 2023)

▶ After some discussion3 NeuroCodeBench is approved

▶ All future editions of SV-COMP will use it

Improve ESBMC (November 2023)

▶ At Manchester, we develop one of the top software verifiers

▶ NeuroCodeBench is breaking our own tool too!

3https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/issues/1396
18 / 28

A short story (4)

CBMC CPAChecker ESBMC PeSCo UAutomizer
0

200

400

600

111
30

255 224

7

420
508

175

0

594

76 69

177

383

6

#
v
er
d
ic
ts

Correct Unknown Incorrect

Figure: top software verifiers before SV-COMP (August 2023).

CBMC CPAChecker ESBMC PeSCo UAutomizer
0

200

400

600

204

7
50

11 6

321

596
553

592 597

78
0 0 0 0

#
v
er
d
ic
ts

Correct Unknown Incorrect

Figure: top software verifiers after SV-COMP (December 2023).

19 / 28

A short story (5)

2LS BRICK Bubaak CBMC CoVeriTeamCPAChecker Crux Divine ESBMC
0

100

200

300

400

10 5 18

204 198

7 14 1

50

0 0 0

78 78

0 0 0 0

#
v
er
d
ic
ts

Correct Incorrect

Figure: all software verifiers on NeuroCodeBench (December 2023).

Graves Infer Mopsa PeSCo Symbiotic UAutomizer UKojak UTaipan VeriAbs
0

100

200

300

400

30

217

11 11 14 6 3 6 19

67

362

0 0 0 0 0 0 0

#
v
er
d
ic
ts

Correct Incorrect

Figure: all software verifiers on NeuroCodeBench (December 2023).

The University
of Manchester

AWS

Meta

20 / 28

or so they thought. . .

21 / 28

Bit-precise verification: what’s next?

S
a
fe
ty

P
ro
p
er
ty

Existing Verifiers

S
af
et
y

P
ro
p
er
ty

Integers

Bit Vectors

Floats/Posits S
o
ft
w
a
re

L
ib
ra
ri
es

Bit-Precise Verifiers

We need more precision!

▶ Support: ML dev pipeline (Python, ONNX, Apache TVM. . .)

▶ Scalability: code transformations, encoding, abstractions. . .

▶ Synthesis: verifying is not enough, let’s enforce safety!

22 / 28

Neural Network Quantization (1)

Why quantization?

▶ Old technique from signal processing/information theory

▶ Reduce memory footprint (e.g., store 8-bit weights)

▶ Reduce latency/power (full integer computation)

23 / 28

Neural Network Quantization (2)

Many Strategies

▶ Dynamic

▶ Post-Training

▶ Q-Aware Training

▶ Non-Uniform

▶ . . .

Main differences
▶ Whether the weights and/or the activations are quantized

▶ Whether the weights are fine-tuned after quantization

▶ Whether the quantization is uniform (e.g., int 8-bit)

24 / 28

Quantisation and NN Equivalence

Number of bits

Safety Prop. 6 7 8 9 10 11 12 13 28 29 30 31 32

Set.
R40 S S F S S S S S . . . S S S S S
R50 S S F F F F F F . . . F F F F S

Vers.

R20 S F S S S S S S . . . S S S S S
R30 S F S S S S S S . . . S S S S S
R40 S F S F F F S S . . . S S S S S
R50 S F F F F F F F . . . F F F F F

Virg.

R20 S F S S S S S S . . . S S S S S
R30 S F S S S S S S . . . S S S S S
R40 S F S S F S S S . . . S S S S S
R50 S F F F F F F F . . . F F F F F

Table: Effects of quantization on the safety of a NN trained on Iris data.

Effects of Quantisation

▶ Even if the accuracy does not drop, the behaviour may change

▶ Can we deploy safe quantized network?

25 / 28

CEG4N: Counterexample-Guided NN Quantisation (1)

Quantisation

▶ Genetic algorithm

▶ Minimise bits

▶ Test equivalence

Verification
▶ Verify equivalence

▶ If not, generate
counterexample

▶ Augment testset

▶ Repeat

Start

Bits Search Module

Abstractions Module

Verifier Module

Success Failure

• A neural network f ;

• A set of counterexamples

• A set of properties;

• Search Module parameters;

• Verifier Module parameters;

Bits sequence N is found.

Property Ψ does not
hold. Counterexample
xCE is added to the

counterexamples set HCE

Property Ψ holds

Timeout,
Out of

memory, etc.

Unable to
find bits

sequence N .

26 / 28

CEG4N: Counterexample-Guided NN Quantisation (2)

Model Verifier r Iter. Bits Status

seeds 10x1 ESBMC 0.01 2 3,4 Success
0.03 13 18,12 Success
0.05 3 6,4 Timeout

NNEQUIV 0.01 2 3,4 Success
0.03 2 4,3 Success
0.05 2 4,4 Success

seeds 15x1 ESBMC 0.01 4 5,2 Success
0.03 5 8,6 Timeout
0.05 7 8,7 Timeout

NNEQUIV 0.01 2 5,2 Success
0.03 2 4,4 Success
0.05 3 5,3 Success

See all results in Batista et al., IEEE TCAD Journal (2023)

▶ Few iterations are needed to converge to a safe quantisation!

27 / 28

Summary

S
af
et
y

P
ro
p
er
ty

Existing Verifiers

S
af
et
y

P
ro
p
er
ty

Integers

Bit Vectors

Floats/Posits S
of
tw

a
re

L
ib
ra
ri
es

Bit-Precise Verifiers

Bit-precise neural network verification

▶ Only way to avoid false positives/negatives

▶ Tricky! Current verifiers may be buggy

▶ Applications require scalability workarounds

Any questions?

28 / 28

