VeTSS 2024

Reasoning with Object Capabilities

Sophia Drossopoulou, Imperial College London

James Noble Susan Eisenbach Julian Mackay

... WHAT
should these features
guarantee?

Background,
Problem,

OCAP,
Our remit

The Background:

The Background:
B1: Internal (trusted) and External (untrusted) objects are intertwined.

The Background:
B1: Internal (trusted) and External (untrusted) objects are intertwined.

B2: External objects may call methods on internal objects.

The Background:
B1: Internal (trusted) and External (untrusted) objects are intertwined.

B2: External objects may call methods on internal objects.

B3: Internal objects may call methods on external objects.

The Background:
B1: Internal (trusted) and External (untrusted) objects are intertwined.

B2: External objects may call methods on internal objects.

B3: Internal objects may call methods on external objects.

The Problem: \itigate the arising uncertainty.

The Background:
B1: Internal (trusted) and External (untrusted) objects are intertwined.

B2: External objects may call methods on internal objects.

B3: Internal objects may call methods on external objects.

The Problem: \itigate the arising uncertainty.

OCAP Solution: Capability ... transferable right to perform an operation; capability
IS a reference; it cannot be forged; tranferred only through call

The Background:
B1: Internal (trusted) and External (untrusted) objects are intertwined.

B2: External objects may call methods on internal objects.

B3: Internal objects may call methods on external objects.

The Problem: \itigate the arising uncertainty.

OCAP Solution: Capability ... transferable right to perform an operation; capability
IS a reference; it cannot be forged; tranferred only through call

Our remit:

The Background:
B1: Internal (trusted) and External (untrusted) objects are intertwined.

B2: External objects may call methods on internal objects.

B3: Internal objects may call methods on external objects.

The Problem: \itigate the arising uncertainty.

OCAP Solution: Capability ... transferable right to perform an operation; capability
IS a reference; it cannot be forged; tranferred only through call

Our remit:

R1: Specify that external access to capability necessary for effect.

The Background:
B1: Internal (trusted) and External (untrusted) objects are intertwined.

B2: External objects may call methods on internal objects.

B3: Internal objects may call methods on external objects.

The Problem: \itigate the arising uncertainty.

OCAP Solution: Capability ... transferable right to perform an operation; capability
IS a reference; it cannot be forged; tranferred only through call

Our remit:

R1: Specify that external access to capability necessary for effect.

R2: Prove module’s adherence to specification.

The Background:
B1: Internal (trusted) and External (untrusted) objects are intertwined.

B2: External objects may call methods on internal objects.

B3: Internal objects may call methods on external objects.

The Problem: \itigate the arising uncertainty.

OCAP Solution: Capability ... transferable right to perform an operation; capability
IS a reference; it cannot be forged; tranferred only through call

Our remit:

R1: Specify that external access to capability necessary for effect.

R2: Prove module’s adherence to specification.

R3: Prove calls from internal to external object.

The Background:
B1: Internal (trusted) and External (untrusted) objects are intertwined.

B2: External objects may call methods on internal objects.

B3: Internal objects may call methods on external objects.

The Problem: \itigate the arising uncertainty.

OCAP Solution: Capability ... transferable right to perform an operation; capability
IS a reference; it cannot be forged; tranferred only through call

Our remit:

R1: Specify that external access to capability necessary for effect.

R2: Prove module’s adherence to specification.

R3: Prove calls from internal to external object.

Not our remit: Forbid external access to capabilty.

Background,
Problem,

OCAP,
Our remit

— In a diagram —

The Background:

The Background:
B1: Internal (trusted) and -(untrusted) objects are intertwined.

The Background:

B1 :-(trusted) and -(untrusted) objects are intertwined.

The Background:

B1 :-(trusted) and -(untrusted) objects are intertwined.

-,
_

The Background:

B2: External objects may call methods on internal objects.

-,
_

The Background:

B2: External objects may call methods on internal objects.

The Background:

B2: External objects may call methods on internal objects.

The Background:

B3: Internal objects may call methods on external objects.

-,
_

The Background:

B3: Internal objects may call methods on external objects.

The Problem:
OCAP Solution:

The Problem: Mitigate the arising uncertainty.

OCAP Solution: Capability ... transferable right to perform an operation; capability
IS a reference; it cannot be forged; tranferred only through call

Our remit:

R1: Specify that eventlual. external access to capability necessary for effect.

-,

Our remit:

R1: Specify that eventlual. external access to capability necessary for effect.
S1: without eventl. access to account no change in balance

Our remit:

R1: Specify that eventlual. external access to capability necessary for effect.
S1: without eventl. access to account no change in balance
S2: without eventl. access to password no decrease in balance

Our remit:

R1: Specify that eventlual. external access to capability necessary for effect.
S1: without eventl. access to account no change in balance
S2: without eventl access to password no decrease In balance

1:Pwd

i

2'Acc
3:Bal

4 :Shop
Therefore, 5 calling 2 cannot reduce 2.balance.

Our remit:

R1: Specify that eventlual. external access to capability necessary for effect.
S1: without eventl. access to account no change in balance
S2: without eventl access to password no decrease In balance

o 7(

2 Acc

3:Bal 5
4 :Shop /

Therefore, 5 calling 2 cannot reduce 2.balance.

But, 6 calling 2 may reduce 2.balance.

Our remit:
R2: Prove module’s adherence to specification — later.

-,

_ S2: without access to password no decrease in balance
Our remit:

R3: Prove calls from internal to external object.

_ S2: without access to password no decrease in balance
Our remit:

R3: Prove calls from internal to external object.

_ S2: without access to password no decrease in balance
Our remit:

R3: Prove calls from internal to external object.

A call from 4 to 5 cannot reduce 2.balance

_ S2: without access to password no decrease in balance
Our remit:

R3: Prove calls from internal to external object.

_ S2: without access to password no decrease in balance
Our remit:

R3: Prove calls from internal to external object.

_ S2: without access to password no decrease in balance
Our remit:

R3: Prove calls from internal to external object.

A call from 4 to 6 might reduce 2.balance

Not our remit: Forbid external access to capabilty.

~ @

The Account example in Code

.. assuming all methods are public, and fields are private

Three Modules

module Mgood

class Password

class Account
field blnce:int
field pwd: Password
public method transfer (dest:Account, pwd':Password, amt:int) -> void
if this.pwd==pwd'
this.blnce—-=amt
dest .blnce+=amt
public method set (pwd':Password) -> void
if this.pwd==null
this.pwd=pwd'

16

.. assuming all methods are public, and fields are private

Three Modules

module Mgood

class Password

class Account
field blnce:int
field pwd: Password
public method transfer (dest:Account, pwd':Password, amt:int) -> void
if this.pwd==pwd'
this.blnce—-=amt
dest .blnce+=amt
public method set (pwd':Password) -> void
if this.pwd==null
this.pwd=pwd'

module Mpad
class Password

class Account
field blnce:int
field pwd: Password
public method transfer(..) ...
... as earlier ...
public method set (pwd': Password)
this.pwd=pwd'

16

.. assuming all methods are public, and fields are private

Three Modules

module Mgood

class Password

class Account
field blnce:int
field pwd: Password
public method transfer (dest:Account, pwd':Password, amt:int) -> void
if this.pwd==pwd'
this.blnce—-=amt
dest .blnce+=amt
public method set (pwd':Password) —-> void
if this.pwd==null
this.pwd=pwd'

module Mpsqg module Mfine
class Password class Password

class Account
field blnce:int
field pwd: Password

class Account
field blnce:int

field pwd: Password public method transfer(..)
public method transfer(..) as earlier

... as earlier ... public method set (pwd',pwd'': Password)
public method set (pwd': Password) if (this.pwd==pwd')

this.pwd=pwd' this.pwd=pwd''

16

.. assuming all methods are public, and fields are private

Three Modules

module Mgood

class Password

class Account
field blnce:int
field pwd: Password
public method transfer (dest:Account, pwd':Password, amt:int) -> void
if this.pwd==pwd'
this.blnce—-=amt
dest .blnce+=amt
public method set (pwd':Password) -> void
1if this.pwd==null
this.pwd=pwd'

module Mpsqg module Mfjine
class Password class Password

class Account
field blnce:int
field pwd: Password

class Account
field blnce:int

field pwd: Password public method transfer(..)
public method transfer(..) as earlier

... as earlier ... public method set (pwd',pwd'': Password)
public method set (pwd': Password) if (this.pwd==pwd')

this.pwd=pwd" this.pwd=pwd''
16

.. assuming all methods are public, and fields are private

Three Modules

module Mgood
class Password

class Account

field blnce:int
field pwd: Passwor«
public method tran:
if this.pwd==pwd
this.blnce—=amt
dest .blnce+=amt
public method set
if this.pwd==nul

this.pwd=pwd'

module Mpsqg module Mfjne
class Password class Password

class Account
field blnce:int
field pwd: Password

class Account
field blnce:int

field pwd: Password public method transfer(..)
public method transfer(..) as earlier

... as earlier ... public method set (pwd',pwd'': Password)
public method set (pwd': Password) if (this.pwd==pwd')

this.pwd=pwd' this.pwd=pwd"''

16

.. assuming all methods are public, and fields are private

Three Modules

module Mgood

class Password

class Account
field blnce:int
field pwd: Password
public method transfer (dest:Account, pwd':Password, amt:int) -> void
if this.pwd==pwd'
this.blnce—-=amt
dest .blnce+=amt
public method set (pwd':Password) -> void
1if this.pwd==null
this.pwd=pwd'

module Mpsqg module Mfjine
class Password class Password

class Account
field blnce:int
field pwd: Password

class Account
field blnce:int

field pwd: Password public method transfer(..)
public method transfer(..) as earlier

... as earlier ... public method set (pwd',pwd'': Password)
public method set (pwd': Password) if (this.pwd==pwd')

this.pwd=pwd" this.pwd=pwd''
17

.. assuming all methods are public, and fields are private

Three Modules

module Mgood
class Password

class Account

field blnce:int
field pwd: Passwor«
public method tran:
if this.pwd==pwd
this.blnce—=amt
dest .blnce+=amt
public method set
if this.pwd==nul

this.pwd=pwd'

module Mpsqg module Mfjne
class Password class Password

class Account
field blnce:int
field pwd: Password

class Account
field blnce:int

field pwd: Password public method transfer(..)
public method transfer(..) as earlier

... as earlier ... public method set (pwd',pwd'': Password)
public method set (pwd': Password) if (this.pwd==pwd')

this.pwd=pwd' this.pwd=pwd"''

17

[

O 0 N9 O U e W

10
11
12
13

class Shop
field accnt :Account, invntry: Inventory,

int price = anltem.price
int oldBlnce = this.accnt.blnce
buyer.payMe (this.accnt, price)
if (this.accnt.blnce == oldBlnce+price)
this.send (buyer,anltem)
else
buyer.tell ("you have not paid me")

private method send(buyer: external anItem:

clients: [externall

public method buy (buyer: external, anltem:

18

Item)

-> void

Item) -> void

-—

O 00 N U e W

10
11
12
13

class Shop

field accnt :Account, invntry: Inventory, clients:

public method buy (buyer: external, anlItem: Itern

int price = anltem.price

int oldBlnce = this.accnt.blnce

buyer.payMe (this.accnt, p

)

if (this.accnt.blnce == oldBlnce+t+price)

this.send (buyer,anlItem)
else

buyer.tell ("you have not paid me")

private method send (buyer:

external anItem:

18

Item)

External call

-> void

-—

O 00 N U e W

10
11
12
13

class Shop

field accnt :Account, invntry: Inventory, clients:

public method buy(buyer: external, anltem:

int price = anltem.price

int oldBlnce = this.accnt.blnce

buyer.payMe (this.accnt, p

if (this.accnt.blnce == oldBlnce+t+price)

this.send (buyer, anlItem)
else

e)

buyer.tell ("you have not paid me")

private method send (buyer:

external anItem:

18

Iten

Item)

External call

-> void

-—

O 00 N U e W

10
11
12
13

class Shop

field accnt :Account, invntry: Inventory, clients:

public method buy(buyer: external, anltem:

int price = anltem.price

int oldBlnce = this.accnt.blnce

buyer.payMe (this.accnt, p

if (this.accnt.blnce == oldBlnce+t+price)

this.send (buyer, anlItem)
else

e)

buyer.tell ("you have not paid me")

private method send (buyer:

external anItem:

18

Iten

Item)

External call

-> void

-—

O 00 N U e W

10
11
12
13

class Shop
field accnt :Account, invntry: Inventory, clients: External Ca”
public method buy(buyer: external, anItem: Iter
int price = anltem.price
int oldBlnce = this.accnt.blnce
buyer.payMe (this.accnt, price)
if (this.accnt.blnce == oldBlnce+t+price)
this.send (buyer,anlItem)
else
buyer.tell ("you have not paid me")
private method send(buyer: external anlItem: Item) —-> void

If Account comes from a “good” module,
and buyer has no unprotected access to 4.accnt .pwd,

then
4.accnt.blnce Wil not decrease 4.accnt.blnce,

18

p—t

o 00 NN T e W

10
11
12
13

class Shop
field accnt :A

public method |
int price =
int oldBlnce
buyer .payMe (
if (this.acc
this.send

else
buyer.tell ("you have not paid me")
private method send(buyer: external anlItem: Item) -> void

If Account comes from a “good” module,
and buyer has no unprotected access to 4.accnt .pwd,

then
4.accnt.blnce Wil not decrease 4.accnt.blnce,

18

19

Remember:. A capability represents a transferable right
to perform one or more operations on a given object

20

Remember:. A capability represents a transferable right
to perform one or more operations on a given object

So: “The password enables withdrawal from the account”?

20

Remember:. A capability represents a transferable right
to perform one or more operations on a given object

W & N

= - __I~ g " W W W SWWE WYV S W g T 3 = N~ Bl e e O S A ! R e G G M N b ey aa e e
AR I .11 1 JCl VYV UI U ol \/\/ LIl AVV O () = OU f

Or. “Without the password call of withdraw will fail”?

20

Remember:. A capability represents a transferable right
to perform one or more operations on a given object

D
-
)

Or: “Without eventual access to password no reduction of the balance of the account”?

20

Remember:. A capability represents a transferable right
to perform one or more operations on a given object

D
-
)

Or: “Without eventual access to password no reduction of the balance of the account”?

So: VvV a:Accnt,b:Num. { “without eventual external access t0” a.pwd A a.balancezb}

20

Remit_1: A module spec S, such that

Mgood E S
Mbad H# S
Mbetter = S

Remember:. A capability represents a transferable right
to perform one or more operations on a given object

R1: Specify that external access to capability necessary for effect.

D
~
)

Or: “Without eventual access to password no reduction of the balance of the account”?

So: VvV a:Accnt,b:Num. { “without eventual external access t0” a.pwd A a.balancezb}

20

21

In general: VvV x1:C1,x2:C2...{ A }

21

In general: VvV x1:C1,x2:C2...{ A }

21

In general: VvV x1:C1,x2:C2...{ A }

21

): Vv a:Accnt. v b:Num. { “without eventual external access to” a.pwd A a.balancezb}

In general: VvV x1:C1,x2:C2...{ A }

21

Remit_1 _a: Meaning of “without eventual external access to”

... Is about an external object eventually obtainining access.

Def: <o) £V o[0o’ external and reachable from top of stack frame = o)»+0’]

22

Remit_1 _a: Meaning of “without eventual external access to”

.. Is about an external object eventually obtainining access.

Def: <(o»40’ % the penultimate object on any path from o’ to o is internal.

Def: <o) £V o[0o’ external and reachable from top of stack frame = o)»+0’]

22

Remit_1 _a: Meaning of “without eventual external access to”

.. Is about an external object eventually obtainining access.

Def: <(o»40’ % the penultimate object on any path from o’ to o is internal.

Def: <o) £V o[0o’ external and reachable from top of stack frame = o)»+0’]

For example:

22

Remit_1 _a: Meaning of “without eventual external access to”

.. Is about an external object eventually obtainining access.

Def: <(o»40’ % the penultimate object on any path from o’ to o is internal.

Def: <o) £V o[0o’ external and reachable from top of stack frame = o)»+0’]

For example:

= (1»4+ 5
o L1Y4+06
 EL2)F 4

o EL2)4 8

22

Remit_1 _a: Meaning of “without eventual external access to”

.. Is about an external object eventually obtainining access.

Def: <(o»40’ % the penultimate object on any path from o’ to o is internal.

Def: <o) £ VYV o' [0 externa! “ame = {0oY+0’]
Protection is “relative”
to an object

For example:

= (I1»4 5
o L1Y4+06
 EL2)F 4

o EL2)4 8

22

Remit_1 _a: Meaning of “without eventual external access to”

Def: <(o»40’ % the penultimate object on any path from o’ to o is internal.

1 class Shop

» field accnt :Account, invntry: Inventory, clients: [external]
'3

© 4 public method buy (buyer: external, anItem: Item) -> void

5 int price = anltem.price

6 int oldBlnce = this.accnt.blnce

7 buyer.payMe (this.accnt, price)

8 1f (this.accnt.blnce == oldBlnce+price)

9 this.send (buyer, anlItem)

10 else

11 buyer.tell ("you have not paid me")

12 private method send (buyer: external anlItem: Item) -> void
13

23

Remit_1 _a: Meaning of “without eventual external access to”

Def: <(o»40’ % the penultimate object on any path from o’ to o is internal.

PRE: (this.accnt.pwd)»<buyer A this.accnt.blnce ==
POST: this.accnt.blnce >=Db

1 class Shop

» field accnt :Account, invntry: Inventory, clients: [external]
'3

© 4 public method buy(buyer: external, anlItem: Item) -> void

5 int price = anltem.price

6 int oldBlnce = this.accnt.blnce

7 buyer.payMe (this.accnt, price)

8 1f (this.accnt.blnce == oldBlnce+price)

9 this.send (buyer,anltem)

10 else

11 buyer.tell ("you have not paid me")

12 private method send (buyer: external anlItem: Item) -> void
13

23

Remit_1 _a: Meaning of “without eventual external access to”

.. Is about an external object eventually obtainining access.

Def: <(o»40’ % the penultimate object on any path from o’ to o is internal.

For example:

= (I1»4 5
o L1Y4+06
 EL2)F 4

o EL2)4 8

24

Remit_1 _a: Meaning of “without eventual external access to”

.. Is about an external object eventually obtainining access.

Def: <(o»40’ % the penultimate object on any path from o’ to o is internal.

Def: <o) £V o' [0o’ external and reachable from top of stack frame = o)»+0’]

For example:

= (1»4+ 5
o L1Y4+06
 EL2)F 4

o EL2)4 8

24

Remit_1 _a: Meaning of “without eventual external access to”

.. Is about an external object eventually obtainining access.

Def: <(o»40’ % the penultimate object on any path from o’ to o is internal.

Def: <o) £V o' [0o’ external and reachable from top of stack frame = o)»+0’]

For example:

LB L1)4 5 Di... = 1)
L L1)4 6
L L2)4 4

w EL2)4 8

24

Remit_1 _a: Meaning of “without eventual external access to”

.. Is about an external object eventually obtainining access.

Def: <(o»40’ % the penultimate object on any path from o’ to o is internal.

Def: <o) £V o' [0o’ external and reachable from top of stack frame = o)»+0’]

For example:

LB LIY45 Di... = 1)
SR YA D1Po... = 1)
. L2+ 4

w EL2)4 8

24

Remit_1 _a: Meaning of “without eventual external access to”

.. Is about an external object eventually obtainining access.

Def: <(o»40’ % the penultimate object on any path from o’ to o is internal.

Def: <o) £V o' [0o’ external and reachable from top of stack frame = o)»+0’]

For example:

LB LIY45 Di... = 1)
K146 O1Po... = 1)
W L2944 D1Do... ¥ K2
W (2)4 8

O1DoPs... = 1

24

D1PoPs... £2»

Remit_1 _a: Meaning of “without eventual external access to”

.. Is about an external object eventually obtainining access.

Def: <(o»40’ % the penultimate object on any path from o’ to o is internal.

Def: <o) £ VYV o' [0 externa! - _ “ame = {0oY+0’]
Protection is “relative”

to an object,

or a frame
For example:
LB LIY45 Di... = 1)
P) - K1)+ 6 O Do... = 1)
5. \ FEL2)4 4 D1Po... = «2)
3 y \ L HE o (2)4 8

4 - D1PoPs... E K1)
a D1PoPs... £2»

Definition

ME Vx1:C1,..xn:Cn { A}

A

25

Definition

ME Vx1:C1,..xn:Cn { A}

A

VM ,Vo, o, Val,...an|

25

Definition

ME Vx1:C1,..xn:Cn { A}

A

VM ,Vo, o, Val,...an|

M,oE= this: ext A al:C1,...an:Cn A Al al,...an/ x1,..xn]

25

Definition

ME Vx1:C1,..xn:Cn { A}

A

VM ,Vo, o, Val,...an|

M,oE= this: ext A al:C1,...an:Cn A Al al,...an/ x1,..xn]

AN
M,*M, o o G!

25

Remit_1_b : Meaning of Vv x1:C1,x2:C2... {A}

Definition

ME Vx1:C1,..xn:Cn { A}

A

VM’ ,Vo, o, Val,...an|

M,okE=this: ext A al:C1,...an:Cn A Al al,...an/ x1,..xn]

A\
M**M, 0 ~* 0’
—

M, 0’ = this: ext — Al al,...an/ x1,..xn]

25

Remit_1_b : Meaning of Vv x1:C1,x2:C2... {A}

Definition
Scoped execution
ME Vx1:C1,..xn:Cn { A}

A

VM’ ,Vo, o, Val,...an|

M, okE=this: ext A al :C1,...an:Cn A Al al,...an/ x1,..xn]

AN
M,*M, o o * Os
p—

M, 0’ = this: ext — Al al,...an/ x1,..xn]

25

Definition

’ ’ A
M*M, o »* ¢ =

26

Definition

M*M g «* g 2 M*M, o ->* o “while not popping the top frame of ¢~

26

Definition

M*M g «* g 2 M*M, o ->* o “while not popping the top frame of ¢~

26

Definition

M*M g «* g 2 M*M, o ->* o “while not popping the top frame of ¢~

26

Definition

M*M g «* g 2 M*M, o ->* o “while not popping the top frame of ¢~

26

Definition

M*M g «* g 2 M*M, o ->* o “while not popping the top frame of ¢~

00
00
° .
o

26

Definition

M*M g «* g 2 M*M, o ->* o “while not popping the top frame of ¢~

00
00
° .
o

26

Definition

M*M g «* g 2 M*M, o ->* o “while not popping the top frame of ¢~

00
00
° .
o

26

Definition

M*M g «* g 2 M*M, o ->* o “while not popping the top frame of ¢~

26

Definition

M*M g «* g 2 M*M, o ->* o “while not popping the top frame of ¢~

26

Definition

M*M g «* g 2 M*M, o ->* o “while not popping the top frame of ¢~

T

26

Definition

M*M g «* g 2 M*M, o ->* o “while not popping the top frame of ¢~

26

Definition

M*M g «* g 2 M*M, o ->* o “while not popping the top frame of ¢~

26

Definition

M*M g «* g 2 M*M, o ->* o “while not popping the top frame of ¢~

26

Definition

M*M g «* g 2 M*M, o ->* o “while not popping the top frame of ¢~

26

Definition

M*M g «* g 2 M*M, o ->* o “while not popping the top frame of ¢~

04 _>* 018
0, =" O

04 _>* 020
O, =" O,

26

Definition

M*M g «* g 2 M*M, o ->* o “while not popping the top frame of ¢~

x
O, O

-
O, ->* Oy
T
M o, > O,
T _I(O'4 *021)

o
-

26

Definition

M*M g «* g 2 M*M, o ->* o “while not popping the top frame of ¢~

x
O, O

-
O, ->* Oy
T
(o, Mo, o, ->* 0,
é _'(04 *021)
Q O, > O,

26 _'(04 =0,)

Definition
M*M g «* g 2 M*M, o ->* o “while not popping the top frame of ¢~

Therefore, V' x1:C1,...xn:Cn { A} maens that

%
O, 0O
010 011 O 4 18

-
O, ->* Oy
T
o, Mo, o, ->* O,
é _'(04 *021)
@ O, > O,

26 _'(04 =0,)

Definition
M*M g «* g 2 M*M, o ->* o “while not popping the top frame of ¢~

Therefore, V' x1:C1,...xn:Cn { A} maens that

x
O, O

:
O, ->* Oy
M g, »* O, A preserved from o, to o,
”
o, Mo, o, ->* 0,
é _'(04 0,)
Q g, ->" O,

26 _'(04 =0,)

Definition
M*M g «* g 2 M*M, o ->* o “while not popping the top frame of ¢~

Therefore, V' x1:C1,...xn:Cn { A} maens that

O, =" O A preserved from o, to o,

:
O, ->* Oy
M g, »* O, A preserved from o, to o,
”
o, Mo, o, ->* 0,
é _'(04 0,)
@ g, ->" O,

26 _'(04 =0,)

Definition

M *M, g ~* g

M*M., ¢ ->* o

Execution Is “relative”

to a state

04 _>* 024

“while not popping the top frame of o~

“ 4 } maens that

A preserved from o, to o,

A preserved from o, to o,

S

S2

S3

o4

Vv a:Account. { €a) }

Vv a:Account. { €a.pwd » }

V a:Account,b:Num. { €a) A a.blnce =b }

V a:Account, b:Num. { €a.pwd » A a.blnce = b}

27

S

S2

S3

o4

VvV a:Account. { €a) }
Vv a:Account. { €a.pwd » }

V a:Account,b:Num. { €a) A a.blnce ~ b !

VvV a:Account, b:Num. { € a.pwd » A a.blnce = b }

27

API - agnostic:

Challenge 1: A module spec S, such that a.blnce, a.pwd can be ghost

Mgood E S
Mbad H S
Mbetter =

Talk about effects

S1 2 V a:Account. { €a) }

>

S2 Vv a:Account. { €a.pwd » }

Talk about
emergent behaviour

>

S3 VvV a:Account,b:Num. { €a) A a.blnce =b}

S4 2 YV a:Account, b:Num. { €a.pwd » A a.blnce = b }

Mbad H S2 Mbad H S4

27

API - agnostic:

Challenge_1: A module spec S, such that a.bince, a.pwd can be ghost

Mgood E S
Mbad H S
Mbetter =

Talk about effects

S1 2 V a:Account. { €a) }

>

S2 Vv a:Account. { €a.pwd » }

Talk about

S3 2 V a:Account,b:Num. {«a) A a.bince=b} emergent behaviour

S4 2 YV a:Account, b:Num. { €a.pwd » A a.blnce = b }

Mbad H S2 Mbad H S4 Mfine E S2 Mfine E S4

27

28

In the context of arbitrary, unlimited calls from internal to external,
and arbitrary, unlimited calls from external to internal,

29

Challenge 2: An inference system, such that ...

An assertion A is encapsulated by module M, if
it can only be invalidated through calls to methods from M.

30

Challenge 2: An inference system, such that ...

An assertion A is encapsulated by module M, if
it can only be invalidated through calls to methods from M.

For example:

Modpa.q F Encaps(a:Account Aa.balance =bal)
Modpetter F Encaps(a:Account Aa.balance =Dbal)

30

Challenge 2: An inference system, such that ...

An assertion A is encapsulated by module M, if
it can only be invalidated through calls to methods from M.

For example:

Modypaq E Encaps(a:Account Aa.balance =bal)
Modpetter F Encaps(a:Account Aa.balance =bal)

Assume two further modules, Mod,,; and Mod,,;, which use ledgers to keep a map between accounts
and their balances, which export functions that allow the update of this map. In Mod,,; the ledger
is not protected, while in Mod,; the ledger is protected.

Mod,; ¥ Encaps(a : Account Aa.balance =bal)
Mod,; k Encaps(a: Account Aa.balance =bal)

30

Challenge 2: An inference system, such that ...

Three Stages
Assume an ulderlying Hoare logic of triples with usual meaning Mry {AYs{A)
1st stage Expand it to Hoare logic of triples with usual meaning M+ {A}s{A"},

. L J
-A‘-cnr-“mm -‘-Lr\ e v v un

2nd Stage Expand triples to quadruples
. . M {A}s{A"} || {A"}
Which promises that ’

- termination of s leads to a state satisfying A’
- Intermediate external states satisfy A”

3rd Stage Rules for module satisfying a specification MFES

31

Challenge 2: An inference system, such that ...

1st stage

We expand underlying Hoare logic to Hoare logic of triples with usual meaning

EXTEND
Mry {A}s{A"} scontains no method call

M#r {A}s{A"}

TYPES-1
s contains no method call

M*Er {x:C}s{x:C}

32

Challenge 2: An inference system, such that ...

2nd stage

INV

We expand triples to quadruples M¥r {A}s{A"}

Mr {A}s{A"} || {A"}

TYPES-2

Mr {A}s{A"} || {A"}
MFEF {x:CANA}Ys{x:CAA"} || {A”}

M {A}s{A} || {A} M {As}s{As} || {A}
Mt {A1ANA3}s{A2ANAs} || {A}
SEQU
M {A}si{A} || {A} M {Ay}s; {A3}A
M {A1}si;82{A3} || {A}
CONSEQU
M+ {Ay}s{As} || {As} MErFA & A MFE A3 — As MFE Ay — Ag

Mt {Ay}s{As} || {As}

3rd stage

WELLFRM_MoD CoMB_SPEC
M v SFpec(M) M+ S ME S,

F M MES{AS

34

3rd stage

INVARIANT

??7?

M+ Vx : C{A}

35

INVARIANT

M+ Encps(x:C AN A)

M+ Vx C{A}

36

INVARIANT

M+ Encps(x:C A A)
VD,m: mBody(m,D,M)=public (y:C){stmt} =

.

M+ Vx C{A}

37

INVARIANT

MV Encps(x:C A A)
VD,m: mBody(m,D,M)=public (y:C){stmt} =

M+ { this:D,y:D, x:C A PRE(A) } stmt { POST(A) } || { POST(A) }

M+ Vx : C{A}

38

39

[CaLL_ExT]

M+ { yo:ext , Yu=yom(yy,.y) { 2722 } |l {77}

40

[CaLL_ExT]

F M : Vx:D{A}

M+ { yo:ext , Yu:=yom(ys,.ys) { 222 } || {??}

40

[CaLL_ExT]

F M : Vx:D{A}

Mt A{y:ext Ax:D , Yu=yom(y,.yn) { 222 } || {77}

40

[CaLL_ExT]

F M : Vx:D{A}

M¥rA{y:ext Ax:D ANAVY }u=yom(yy,.yn) { 222 } || {??}

40

[CaLL_ExT]

F M : Vx:D{A}

M¥rA{y:ext Ax:D ANAVY }u=yom(y,.yn) { A~vy } || {??}

40

[CaLL_ExT]

F M : Vx:D{A}

M¥rA{y:ext Ax:D ANAVY }u=yom(y,.yn) { A~vy } || { A}

40

[CaLL_ExT]

F M : Vx:D{A}

M¥rA{y:ext Ax:D ANAVY }u=yom(y,.yn) { A~vy } || { A}

40

[CaLL_ExT]

F M : Vx:D{A}
M¥r{y:ext Ax:D NAVY }u:=yom(yy,.yn) { A~vy } || { A}

Definition 5.7. [The v operator] is defined below
({e)) vy = (e)exy (A1 ANAz) vy = (A1 YY) A (A2 V)

({e)exu) vy = (e)exu (Vx:C.A) vy = Vx:C.(A-vy)
(intle) vy 2 intle (mA) vy = -(A-vy)
evVy = e (e:C)vy = e:C

40

[CaLL_EXT]

F M : Vx: D{A}
M¥r{y:ext Ax:D NAVY }u:=yom(yy,.yn) { A~vy } || { A}

Definition 5.7. [The v operator] is defined below
({e)) vy = (e)exy (A1 AAz2) vy = (A1 YY) A (A2 V)

({(eyexu) vy = (e)oxu (Vx:C.A)~vy = Vx:C.(A-Vy)
(intle) vy 2 intle (mA) vy = -(A-vy)
evVy = e (e:C)vy = e:C

Lemma 5.8. For any state o, assertion A, and variables y, z, disjoint with one another:
If fo(A) =0, then

(1) M,c EA-Vy — M, oVvy

2 M,ocv(y,z) FA = MoEA-VY

40

Challenge 4: An inference system, such we can prove external calls

Protection is
“relative” to a frame;

i Our —V operator
Mvr{y:ext Ax:D AA-vy }u:=,, _ helps us switch to callee’s view

Definition 5.7. [The v operator] is defined below
({e)) vy = (e)exy (A1 AAz) vy = (A1-VYy) A (A2 V)
({eyexu) vy = (e)exu (Vx:C.A) vy = Vx:C.(A-Vy)
(intle) vy = intle (-mA) vy = -(A-Vy)
evVy = e (e:C)vy = e:C

Lemma 5.8. For any state o, assertion A, and variables y, z, disjoint with one another:

If fo(A) = 0, then

(1) Mo = A vy = M, ovVy
(2) M,O'V(y,f) - A — Mo :A—Vg

40

Summary

* Distinction between external/internal objects

* v X: ... { A} Two state invariants for external states / relative
execution

» Specifications talk about necessary conditions for effect:
VX ...{«&e» NA}

means that capability e is needed in order to invalidate A

« e »: capability e is protected from reachable external objects

* APl-agrnositc spec,
* “Algorithmic” inference system system,
* Reason with open calls

e Protection, €e », is relative to state 0. Use — V to switch view
 Execution, M’*M, o ~* ¢’ , Is relative to state o

* Surpises:
- Use sufficient conditions to talk about necessary conditions
- from temporal operators/logics to invariants/Hoare logics

