

Verified Trustworthy Software Systems

Problem Book 2024

Brijesh Dongol and Azalea Raad

VeTSS Problem Book – 2024 Dongol and Raad

2

1 Introduction

This Problem Book aims to present a (non-exhaustive) repository of important verification
problems and challenges to the VeTSS community (including academia, industry and the
government) and explain why these problems are important. The VeTSS Problem Book is
part of our community-building strategy: by identifying important problems, we will develop
a community of researchers that cares about these problems and can be encouraged to
tackle them. The Problem Book may be used by researchers to make a case to funding
bodies. The Problem Book may also help researchers understand, improve and deliver the
impact of their existing work, and connect with others working on adjacent topics.

The VeTSS Problem Book differs from state-of-the-art and body-of-knowledge documents
on verification. The focus is not on what has been achieved, but on describing what we want
to achieve, and how we would like to grow the field of verification. Other examples of
relevant problem books include the NCSC Problem Book (which is a high-level tool to
discuss relevant topics within the organisation), as well as the RITICS Critical National
Infrastructure Problem Book and the RISE Report on Future Research Trends in Secure
Hardware and Embedded Systems, which are used to direct research in their respective
areas. Other documents that readers may wish to reference include A Path Toward Secure
and Measurable Software report1 published by the White House and the Secure by Design:
Choosing Secure and Verifiable Technologies report2 published by the Australian
government.

There is no prescribed timescale for projects (short- or long-term research). That is, impact
is important but not immediately needed — a project with longer-term impact is equally good
in terms of funding. We push for topics that can be taken up by officials/white papers,
provided that the scientific work and the justification are there. However, we cannot
advocate for a particular method as it may not work for all set-ups.

A project may pick and choose different areas mentioned in this document. However, we
note the following caveats.

1. The Problem Book is certainly incomplete and may not cover all verification activities in

the UK. It should not be used as criteria in the long term, especially because some
problems may be missed, or new problems may be introduced by the community.

2. The Problem Book is not prescribing a top-down approach and is a living document
developed by the VeTSS community for the VeTSS community. As such, we actively seek
input from members of the VeTSS community.

To address the dynamic nature of this Problem Book, we encourage community members
to submit feedback to the e-mail address below (p. 18). Minor modifications will be

1 https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf
2 https://www.cyber.gov.au/sites/default/files/2024-05/choosing-secure-and-verifiable-technologies.pdf

https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf
https://www.cyber.gov.au/sites/default/files/2024-05/choosing-secure-and-verifiable-technologies.pdf

VeTSS Problem Book – 2024 Dongol and Raad

3

addressed by the VeTSS Directors, and more substantial changes will be discussed at
subsequent Advisory Board meetings.

We present the VeTSS Problem Book in three main parts. First, we discuss the dimensions
across which verification problems can be judged, setting out the general scope of the
problems within VeTSS (§2). We then discuss several important themes within verification
that have been identified in consultation with the verification community (§3). These themes
outline general challenges described for the community, as well as areas within which
impact can be delivered. Finally, we highlight potential cross-cutting questions between
VeTSS and the other NCSC research institutes: RISCS, RISE and RITICS (§4).

VeTSS Problem Book – 2024 Dongol and Raad

4

2 Verification Dimensions

VeTSS represents a large and diverse community, where verification can often mean
different things to different people/organisations. We have identified three key dimensions
across which impact can be achieved. In general, the community is united in progressing
verification tools and techniques along each of these dimensions. This progress enables
verification to become more accessible to both specialists and non-specialists by (a)
simplifying the ease of use and set-up, (b) boosting scalability, (c) integrating with existing
development environments, and (d) streamlining the learning curve for (generalist)
practitioners.

2.1 Dimension 1: Ease of Use vs Strength of Guarantees

Verification tools and techniques vary widely in how easy they are to use; specifically,
whether a tool/technique can be used out-of-the-box as a push-button approach with little
to no required training or instrumentation/annotation (e.g. user-defined specifications).
Examples of such push-button tools include the influential open-source Infer/Pulse platform
developed at Meta and used widely in-house as well as in big-tech companies such as
Amazon Web Services (AWS). Similarly, testing techniques are widely used in industrial
settings (e.g. to provide statistical/quantitative assurance metrics) as they typically require
minimal annotations/instrumentations and do not require specialised training. At the other
end of the spectrum lie techniques such as fully mechanised proofs, where a user needs to
fully specify the desired behaviours and mechanise their proofs in a theorem prover such as
Isabelle/HOL, Lean or Rocq (formerly Coq). Given sufficient resources, such techniques can
be used in large-scale settings (e.g. Compcert, CakeML, seL4 and CertiKOS).

The scalability of testing and push-button tools makes them ideal for industrial settings with
large teams of developers who cannot afford the steep learning curve of carrying out
mechanised proofs. Typically, however, the ease of use of a verification tool/technique is in
inverse correlation with the strength of the guarantees it provides. For instance, Infer/Pulse
mostly focus on memory-safety issues (e.g. the absence of null pointer dereferences), and
are limited to sequential programs (not accounting for concurrent code). On the other hand,
using mechanised techniques one can prove full functional correctness of a given piece of
code, albeit at the high time/training cost.

These techniques do not compete, but rather complement one another, and there is
undoubtedly great value in employing diverse tools/techniques spanning this spectrum. For
instance, while tools such as Infer/Pulse are highly suitable for large development teams as
part of the CI/CD loop in codebases that evolve rapidly, it is more desirable to fully verify
(using a mechanised proof) critical software, e.g. a micro-kernel, whose code is not subject
to frequent/immediate change. It is also possible to combine these techniques and move
from one end of the spectrum to the other to increase assurance.

VeTSS Problem Book – 2024 Dongol and Raad

5

2.2 Dimension 2: The Compute Stack

A second dimension of verification research is clarifying its area of focus by placing it in the
context of the Compute Stack (Fig. 1), ranging from low-level hardware such as logical gates
to operating systems and high-level applications. Clear definitions of such a stack enables
a separation of concerns at a specific area of interest, supporting modularity. Moreover, it
provides a pathway towards co-specification, co-verification and co-design techniques,
where the specification, verification and design of one layer of the stack informs another.

Fig 1. Figure from Erata et al.

Despite many years of progress, verification technology still has a long way to go. Even
large-scale projects focus on subcomponents of a system, or a specific (often intricate)
aspect, whose correctness may be difficult for humans to judge. Often, one needs to make
assumptions about intermediate layers (e.g. the operating system or hypervisor) to enable
proofs at higher levels of abstraction. Understanding the gaps allows one to articulate the
precise guarantees more clearly and to answer questions such as the role of a verified
component within an unverified system. Providing precise specifications of the interfaces
between different levels of the stack is critical to ensuring that the verified system can
ultimately be trusted.

2.3 Dimension 3: Verification Technology Readiness Level (VTRL)

Our third dimension addresses technology readiness levels (TRL), which is a widely-used
measurement system to assess the maturity of a given technology. Typically, there are nine
technology readiness levels, TRL 1 (the least mature, preliminary technology) to TRL 9 (the
most mature, market-ready technology). Examples of TRLs include those used at the UKRI
(Fig. 2) and NASA3. Existing descriptions are, however, inadequate for describing verification
technologies.

3 https://www.nasa.gov/directorates/somd/space-communications-navigation-program/technology-readiness-levels/

https://www.nasa.gov/directorates/somd/space-communications-navigation-program/technology-readiness-levels/

VeTSS Problem Book – 2024 Dongol and Raad

6

Fig 2. TRLs used by the EPSRC (https://tinyurl.com/UKRI-TRLS)

To this end, we introduce the notion of a Verification Technology Readiness Level (VTRL)
using a nine-point scale, divided into three phases. Here, one way of demonstrating impact
is by progressing a particular technique to higher levels of the VTRL stack, and hence
bringing the verification technology closer to wide-scale adoption. However, we emphasise
that we see value in conducting research at each of the VTRLs. In general, there are many
fundamental open problems that need to be addressed at lower (preliminary) VTRLs, so that
they unlock the potential of other techniques at higher VTRLs.

VTRL VTRL Description VTRL Phase

1 Proof principles (including logics and semantics)

Foundational
Research

2 Verification frameworks, proof support and/or compositional reasoning
methods

3 Experimental verification on litmus tests and proof-of-concept examples

4 Mechanised verification on extended set of litmus tests and proof-of-
concept examples

Translational
Development

5 Mechanised verification on isolated industrial-strength examples (lab
conditions)

6 Automation, reusability and reproducibility on multiple large-scale case
studies

7 Integration with existing verification and/or development environments
Industrial
Deployment 8 Verification of systems in a deployed (operational) environment

9 Proof maintenance and robustness of deployed system

https://tinyurl.com/UKRI-TRLS

VeTSS Problem Book – 2024 Dongol and Raad

7

We anticipate different VTRLs to be tackled by different groups of researchers. Levels 1-3
involve foundational work, typically characterising theoretical research and development of
proofs-of-concept in academia. Levels 4-6 involve technology-transfer initiatives supported
by academia-industry collaborations and large-scale case studies. Levels 7-9 involve
development and adoption of verification technologies steered by industry demands.

We note that verification tools such as model checkers and theorem provers are often
generic and have the capability of enabling different VTRLs. For example, the Archive of
Formal Proofs records a library of proofs for Isabelle/HOL ranging from verified
mathematics to industrial-strength applications.

VeTSS Problem Book – 2024 Dongol and Raad

8

3 VeTSS Verification Themes

We structure the VeTSS Problem Book by defining areas of strategic interest and relevance
to industry, academia and the government, categorised as themes. Specifically, we target
verification applied to Specification (§3.1); Resilience (§3.2); Protocols (§3.3); Software
Systems (§3.4); Programmer/Language Support (§3.5); and Proof Robustness (§3.6). Each
theme presents a non-exhaustive list of research topics, challenges and open problems. The
purpose of each theme is to cover topics that are of general interest and relevance to the
wider community and have been identified to enable work that advances the state of the art
across the three dimensions described in §2.

Note that VeTSS themes naturally cover areas such as AI, quantum computing,
neuromorphic and biology-based computing without giving these areas specific focus. For
example, the use of AI (including synthesis) could apply to (and in fact plays an important
role in) each of the themes listed below.

3.1 Specification

Rigorous specifications are at the heart of verification and the key to eliminating ambiguity,
providing clarity in the requirements, design and implementation phases of a project.
However, this is not always achieved, and overly complex specifications can sometimes
become a source of confusion. Formal specifications (e.g. written in temporal logic) may
not be understood by non-specialists, engineers or domain experts, making it challenging to
validate the correctness of a specification. A specification may also be at the wrong level of
abstraction, or be overly verbose, making it difficult to use. Finally, verification frameworks
may rely on a complete specification, which can be overly time-consuming to develop. A
missing ingredient is often appropriately expressive frameworks that provide sufficient
levels of mathematical rigour, using domain-specific knowledge as input.

Example Topics

Given a specification, showing that a concrete implementation meets an abstract
specification is a fundamental aspect of verification. As such, this theme forms the
foundation for most (if not all) VeTSS-related problems, covering both functional and non-
functional properties. Some example topics include:

1. Varying Abstraction Levels to serve different purposes and audiences, e.g. functional
and technical requirements, interface and design specifications.

2. Domain-Specific Modelling Frameworks that go beyond existing techniques (e.g. set
theory, predicate logic, temporal logic) to describe system properties, behaviours and
constraints.

3. Tool Support facilitating formal specification, requirements gathering (e.g.
requirements engineering) and analysis processes to make formal methods more
accessible to developers and engineers.

VeTSS Problem Book – 2024 Dongol and Raad

9

4. Translation Tools that support the formalisation of requirements in different styles
(e.g. axiomatic, declarative, operational or denotational semantics) to enable them to
be used by different types of program development methods.

5. Documentation Tools to generate clear and concise documentation from formal
specifications that are usable at different stages of development.

6. Formal Models of AI that specify the (potentially quantitative) safety and security
guarantees for the AI models in use within a system.

7. Specification Debugging and Validation Techniques that allow users to check that
their specifications match the real systems that they describe, e.g. by generating test
harnesses or litmus tests.

8. Specification Languages that formalise guarantees such as concurrency (atomicity),
real-time, security (e.g. information flow), autonomy or probabilistic properties of
hardware and/or software components.

9. Specifications of AI that describe the classification and prediction guarantees of an
AI model.

Example Research Questions

● How can we guarantee the correctness/validity of a specification, including when
they are developed by different teams?

● Which types of specifications and formal models best support the system
development process?

● How can specifications be integrated with existing verification and validation tools?
● How can we describe the relationships between different types of specifications?
● How can we ensure specification integrity, e.g. to ensure that it has not been changed

by an adversary.

3.2 Verified Resilience

This theme refers to a system or software component that has been analysed or proven to
be capable of withstanding and recovering from various types of disruptions, such as
hardware failures, network outages, attacks, or other unexpected events. Such systems may
be input-controlled, or more increasingly, autonomous and self-regulating. Resilience covers
a system’s operations not only during deployment, but throughout its lifetime.

A system may fail under normal use, or due to interference from an active attacker or
adversary. Moreover, as more systems use AI as part of their decision engines, verifying the
underlying AI may naturally become part of verified resilience. Resilience is particularly
challenging in a networked or distributed setting, requiring one to express properties
concerning multiple sites and multiple versions (replicas) of data. Here, there must be clear
descriptions of robustness and ways to cope with availability and integrity, e.g. in the
presence of data disaggregation and sharding. Some domains (e.g. financial systems and
healthcare) may additionally require confidentiality and be subject to additional regulatory

VeTSS Problem Book – 2024 Dongol and Raad

10

controls. Often, resilience is subject to both qualitative and quantitative (including
probabilistic) measures.

Example Topics

This theme covers fault and/or failure tolerance of systems (as well as systems of systems)
against e.g. natural disasters, cyber attacks and other threats in different domains, including
(but not limited to):
● Critical National Infrastructure (CNI), e.g. resilience of national power grids, water

supply networks and transportation networks.
● Healthcare Systems, e.g. patient records and medical devices.
● Financial Services, e.g. trading systems, payment networks and data centres.
● Cloud Services, ensuring the availability and integrity of hosted data and services.
● Autonomous Systems, e.g. autonomous vehicles, robotic systems, satellites and

sensor networks.
● Telecommunication, ensuring connectivity and service quality against network

congestion, hardware failures and other threats.
● Industrial Control Systems (ICS), e.g. manufacturing systems and resilient supply

chain management.
● Outer Space, including satellites and related systems.
● Aerospace and Defence, e.g. mission-critical systems, intelligence and

communication systems.
● Low-power, Embedded and Smart Devices, including the Internet of Things (IoT).
● Education/Remote Working, including online learning and working platforms.

Example Research Questions

● How can we verify resilience, including recovery, degraded services and antifragility?
● How can verification be incorporated into “resilience cases”?
● How can recovery be incorporated into resilience verification?
● How can AI components in resilient systems be verified, or incorporated into,

verifying resilience?
● How do future and emerging technologies (including AI) impact this theme?

3.3 Verified Security Protocols

This theme aims to provide assurance that security protocols (including those used for
networking and cryptography) and their associated mechanisms are correct. This involves
(a) ensuring adherence to well-defined security guarantees (e.g. agreement, authentication),
and (b) providing protection of sensitive information and integrity of data. Proofs may
require models of specialised and non-specialised hardware, e.g. Trusted Platform Modules
(TPMs), Isolation Engines and Trusted Execution Environments (TEEs).

VeTSS Problem Book – 2024 Dongol and Raad

11

This theme covers approaches to describing and modelling protocols (e.g. as Requests for
Comments) as well as their security guarantees expressed as (hyper-)properties.
Verification may be at the level of a protocol’s design and implementation, which may be
performed in tandem so that the analysis of each is informed by the other. This theme also
covers theories for verified protocols in systems that have been (or are about to be)
deployed, and research aimed at advancing the state-of-the-art theory for modelling and
analysing protocols (e.g. to make verification scalable).

Example Topics

The applications of verified protocols are diverse and span multiple domains (where
correctness, security and reliability are paramount), including (but not limited to):
● Secure Communication between two or more parties over a network, where the

messages may or may not be confidential, e.g. over 6G and satellite communication
and networking between low-power (IoT) devices at a large scale.

● Cloud Services, including their storage, computing power, databases, networking and
software components. Examples of cloud service providers include Amazon Web
Services (AWS), Microsoft Azure, Google Cloud Platform (GCP) and IBM Cloud.

● Digital Signatures, used e.g. for software distribution, financial transactions and legal
contracts in order to provide authenticity, integrity and provenance guarantees.

● Autonomous Systems, where security plays a key role in resilience against an
adversary.

● Trust Anchors used by protocols, e.g. cryptographic libraries, secure operating
systems and hypervisors and secure compilers and languages.

● Trusted Computing Modules, e.g. TPM and TEE, providing hardware security, root-of-
trust and remote attestation, as well as secure boot, storage and execution
environments.

● Cryptographic Encryption Schemes, e.g. TLS/SSH, zero knowledge proofs, key
exchange mechanisms, fully homomorphic encryption and key encapsulation.

Example Research Questions

● How can we bridge the chasm between theoretical models and practical
implementation of real-world code?

● How can we lower the expertise required for using protocol verification tools,
facilitating and increasing their use?

● How can we improve the scalability of protocol verification, e.g. to verify larger, highly
stateful protocols?

● How do future and emerging technologies (e.g. quantum computing) impact this
theme? For instance, what do we need to do to enable verification of protocols using
post-quantum primitives?

VeTSS Problem Book – 2024 Dongol and Raad

12

3.4 Verified Software Systems

Verification in this theme is primarily aimed at confirming that software behaves as
specified. Examples include (but are not limited to) functional correctness, memory safety,
deadlock and liveness guarantees, and information-flow properties (e.g. non-interference).
Depending on the program being verified, a proof may need to specify additional
assumptions, e.g. the program’s context and/or operating environment.

Verification may additionally be assisted by static and dynamic guarantees provided
by a programming language (and compiler), the underlying type system, and/or domain-
specific assumptions. Supporting theories may include refinement and abstraction that
enable software systems to be developed in multiple stages, where high-level specifications
are refined into lower-level implementations. Supporting tools include those that allow
natural translation between different semantics, including operational, denotational,
declarative and algebraic semantics, as well as the integration of logics and reasoning
frameworks, including temporal logics, epistemic logics, Hoare-style logics and separation
logics. This theme may also cover the integration of specialised solvers, model checkers
and theorem provers for different formal frameworks to support a program development
methodology.

Example Topics

Of particular interest are industrially relevant codebases, concurrent programs, correct
(de)compilation and co-verification (i.e. verifying hardware and software together). Specific
application domains include (but are not limited to):
● Safety-Critical Systems (e.g. in aerospace and defence, automotive systems, medical

devices such as pacemakers and infusion pumps, power grids and transport
networks).

● Financial Services (e.g. algorithmic trading, risk management and settlement
systems) as mentioned above.

● Co-Verification, including architectural specifications (e.g. SAIL, ASL), hardware ISAs
(e.g. x86, ARM), microkernels and operating systems (e.g. seL4, Linux, certiKOS) and
hypervisors.

● Software Synthesis involving the generation of verifiably correct executables from
formal specifications, including through the use of Large Language Models (LLMs).

● Verified Compilers that can provide additional guarantees, e.g. race freedom and
memory safety.

● Verified Decompilers and Lifters that provide guarantees about correctness of lifting
from binaries to an intermediate abstraction (e.g. BIL).

● Lightweight Formal Methods and Testing Techniques, including static analysis, data-
flow analysis, abstract interpretation, model-based testing, fuzzing that enables rapid
checking of type errors, data races and other vulnerabilities.

● Runtime Verification and Monitors that can take corrective actions, where necessary.
● Proof-Carrying Code to enable programs to formal proofs that demonstrate its

adherence to security policies or safety requirements.

VeTSS Problem Book – 2024 Dongol and Raad

13

Example Research Questions

● How do future and emerging technologies (e.g. LLMs) impact this theme? For
instance, how can AI be used to drive verification tools?

● How can we combine verified and unverified components into an integrated system,
and what guarantees do they provide?

● What are the underlying software specifications, and how can they be communicated
to developers?

● How can verification effectively combine hardware and software guarantees to
ensure robust system-level assurances?

3.5 Programmer/Language Support

This theme concerns the development of techniques that enable generalist programmers to
integrate (aspects of) verification into daily programming tasks. Programmers may not
require full functional correctness of the programs that they write. However, there can be
many benefits to supporting lightweight verification or using formal techniques to aid
correct-by-construction development, aka verification for the masses.
 Note that the aim here may not necessarily be to establish full functional correctness,
but rather to facilitate eliminating or avoiding common bugs and weaknesses during
programming. As such, this theme also covers studies of human-computer interaction, e.g.
to ascertain the efficacy and suitability of such techniques, as well as programming
languages and compilers that themselves include built-in features for enabling verification
and maintainability (e.g. Rust).

Example Topics

The aim here is to provide support during the development process via (lightweight)
methods. Examples of such applications include (but are not limited to):
● Code-Generating Proof Environments, e.g. Dafny, JML, Why3 and KeY, allowing one to

verify programs written in their domain-specific language which can then be
compiled to common languages such as Java, Python and C#.

● Language Integration, e.g. F*, Liquid Haskell and Reason/ML (Imandra), providing
real-time analysis and programming support.

● IDE Support, e.g. code suggestions, autocompletion, and real-time error checking, as
well as high-quality debugging and profiling tools that support verification.

● Debuggers and Testing Tools supporting unit, integration and end-to-end testing;
formal bug tracking systems to log, prioritise, and track issues; formal techniques for
error handling and logging to capture and report issues; and built-in support for unit
testing and property-based testing.

● Static Code Analysis Tools, e.g. linters and code analysers to enforce particular
coding standards, identify common coding errors and style issues.

VeTSS Problem Book – 2024 Dongol and Raad

14

● Auto Generation of Documentation, e.g. pre/post conditions and inline comments to
explain the purpose and usage of code.

● Language-Level Lightweight Verification, incorporating contracts to specify expected
behaviours that can be validated at run- or compile-time (cf. proof-carrying code).

● Type (inference) systems to reduce the burden of explicit type annotations while
ensuring type safety, improving code correctness and expressiveness and providing
robust error handling mechanisms.

● Numerical Accuracy tools such as Herbie that help programmers understand the level
of accuracy needed in real-time applications.

● Concurrency and Parallelism support, e.g. Erlang's lightweight processes or Go's
goroutines, to simplify writing race-free concurrent code.

● Legacy and Dead-Code Analysis to identify and eliminate code that is no longer
executed or reachable during the program execution and does not contribute to the
functionality of the software.

Example Research Questions

● How can we expose the implicit assumptions within a specification or
implementation? How can we do this via effective tooling for generalist
programmers?

● How can we facilitate adoption of verification technologies in practical development
environments, e.g. integrated into CI/CD?

● How can we advance the state of the practice of verification and tooling to maximise
the use of limited verification budgets?

● How can we manage frequent and often rapid software changes?
● How do future and emerging technologies (e.g. LLMs and neuro-symbolic proof

methods) impact this theme? For instance, how can AI technologies be used for code
and proof generation?

● How can one provide guarantees during compilation or code generation? E.g. can we
develop compilers that generate warnings when programmers use potentially
memory unsafe programming patterns?

3.6 Program and Proof Robustness, Maintainability and Repair

This theme refers to preserving the correctness of programs and proofs in a system under
change. This addresses the real-world problem of ensuring that the deployed version of
software matches the verified version, where it is important to ensure that the proofs of
verified software under change are not rendered obsolete when the software is modified.
Real-world software development seldom involves programming from scratch – often the
core development effort is on maintaining or modernising existing codebases.

VeTSS Problem Book – 2024 Dongol and Raad

15

The models and specifications must cover the existing code and their proofs (reference
models) as well as the desired programs and their proofs (target models). This enables one
to develop techniques for systematically checking that reference models are used when
target models are generated. Statistical and ML-based approaches may be used to guide
the search process. Other options are developing tools that enable proofs to be maintained
by design, as well as integrating these tools in the development process.

Example Topics

The aim here is to support program development. Example include (but are not limited to):
● Integration with CI/CD Pipelines including automated (re)verification combined with

testing prior to deployment.
● Interoperability to ensure compatibility of a verified component with existing

ecosystems to facilitate easy integration with other programming languages and
libraries.

● Patch Generation and Synthesis to identify and generate patches that satisfy
specified correctness conditions, as well as non-functional properties, using existing
functions, libraries, templates and code fragments.

● Invariant Synthesis which may be used to generate missing proof outlines.
● Code Modernisation, Transformation and Refactoring to enable improvements to

code quality or to address specific issues.
● Search-Based Program Repair to explore the space of potential code changes to find

a fix, guided by heuristics, mutation operators, patterns, fitness functions, leveraging
historical bug fixes and patches from version control repositories and program repair
tools.

● Constraint Solving and Program Repair to formulate the repair problem as a constraint
satisfaction problem.

● Proof Reuse that leverages existing correctness proofs or proof fragments to repair
incomplete or incorrect proofs, possibly by identifying similar proof patterns or
lemmas and applying them in the proof being repaired.

● Dynamic Analysers that monitor a program’s behaviour during execution and
suggest/apply fixes when a bug or defect is identified.

● Resolution-Based Repair to resolve formal proofs by inferring correct proof steps
based on existing ones, potentially using ML and data-driven approaches.

● Interactive Proof Repair that provides suggestions and guidance to the user when
automation is challenging, potentially providing the capability of making manual
corrections to a proof.

Example Research Questions

● How can formal methods/tools enable rapid proof maintenance or re-verification of
software under change?

● How can formal methods/tools enable rapid program repair or patch synthesis for
software under change?

VeTSS Problem Book – 2024 Dongol and Raad

16

● How can the differences across the different versions of programs/proofs be
documented in a human-readable manner?

● Can we generate natural language explanations of tool-suggested proof/program
repair steps?

● How can we make proofs more readable when required?

VeTSS Problem Book – 2024 Dongol and Raad

17

4 Cross-Cutting Verification Themes

As well as the themes that fall directly within the VeTSS remit, VeTSS actively aims to
address and tackle cross-cutting verification challenges that span neighbouring disciplines,
including those prioritised by the other three NCSC (National Cyber Security Centre)
Research Institutes (RIs), namely RISCS (Research Institute for Socio-Technical Cyber
Security), RISE (Research Institute for Secure hardware and Embedded systems) and RITICS
(Research Institute in Trustworthy Inter-connected Cyber-physical Systems).

We discuss several examples of such cross-cutting challenges below.

4.1 RISCS (Sociotechnical Cyber Security)

Understanding the societal, cultural and economical impact of verification is highly
important and falls within the purview of RISCS research. For instance:

● How can we integrate humans in the loop for verification? Specifically, how can we
expand the “human in the loop” model to embrace ethics, narratives, EDI (equity,
diversity and inclusion), human-centred security, trust, privacy and transparency?

● How can we communicate verification to different audiences? This requires an
understanding of work habits and culture, their impact and how they may act as
barriers to adoption or full implementation of security.

● How much code is verified each day? How can we measure this? How much of the
world runs on verified code? Which aspects of code are getting verified?

● How can we drive and foster cultures that encourage such verification
measurements (e.g. similar to how the theorem solvers community has benchmarks
and competitions to drive research in this area)?

● How can we design surveys to better understand the current verification landscape
and the barriers to adoption, e.g. to find out the perceived value of verification where
and when it takes place? Why does verification make things better for a business
even when nothing breaks? It is alo helpful to understand what verification can do to
move the needle, e.g. financial/esteem incentives. For instance, one can ask
programmers/companies how much they would pay for formal verification and if
they currently pay for it. If the parties involved cannot disclose these figures, then one
could ask e.g. for metrics on the number of their staff working on verification.

4.2 RISE (Secure Hardware and Embedded Systems)

VeTSS has a natural link with RISE as the safety and security of software systems ultimately
relies on correctly functioning hardware with formally specified guarantees. Initiatives such
as DSbD (Digital Security by Design) shows we can do this effectively, and the verification,

VeTSS Problem Book – 2024 Dongol and Raad

18

hardware, programming languages and security fields interplay naturally. Examples
research questions intersecting RISE and VeTSS include (but are not limited to):

● How can we make use of formal ISA models to support verification of critical
software such as drivers, firmware, hypervisors and operating systems?

● How can we leverage different types of processing (e.g. CPU, GPU), memory (e.g.
NVM), networking (e.g. RDMA) and connection (e.g. CXL) technologies to develop
more efficient and more robust systems? This may include future systems such as
quantum processors.

● How can we integrate verification with cryptography and post-quantum hardware to
provide formally verified security guarantees?

● What are the formal methods to support co-verification, i.e. verification that leverages
both hardware and software models?

● How do we model and verify hardware-based AI processors (e.g. neural processing
units)?

● Can we achieve full-stack verification of embedded systems with limited
functionality?

4.3 RITICS (Trustworthy Inter-Connected Cyber-Physical Systems)

Verification has long been recognised as being of importance to guarantee the correctness
of critical services such as manufacturing and transport, energy, water and
telecommunication networks. Such systems are often cyber-physical in nature and contain
(autonomous) networked computers that can control physical systems. Examples of
research questions intersecting RITCS and VeTSS include (but are not limited to):

● How do we model and verify cyber-physical systems that (autonomously) monitor
inputs from sensors, control outputs to actuators, implement logic and arithmetic
operations and manage communication with other devices or systems? Systems
may be connected to form a large network or a swarm.

● What are appropriate formal methods for scalable verification of industry-standard
frameworks for PLCs such as ladder logic?

● How can we model and verify bespoke communication protocols between cyber-
physical systems, particularly when they must provide security guarantees and
protection from hardware and software attacks.

● What is the role of formal methods and verification in the development of digital
twins, where we require computational models and specifications that simulate the
behaviour, characteristics and interactions of their counterpart physical systems?

VeTSS Problem Book – 2024 Dongol and Raad

19

5 Acknowledgments

This document was prepared in collaboration with input from the members of the VeTSS
Advisory Board, a panel of Expert Reviewers and the VeTSS program managers.

VeTSS Advisory Board: NCSC, Jade Alglave, Rob Ashmore, Sofia Guerra, Ekaterina
Komendantskaya, Brad Martin, Alastair Reid, Peter Sewell, Gregory Smith, Greta Yorsh

Expert Reviewers: NCSC, Rob Ashmore, Ana Cavalcanti, Chris Hankin, Matthew Hill, Steve
Schneider, John Wickerson

VeTSS Program Managers: Teresa Carbajo-Garcia and Ling Zhang

Contact Address:
contact@vetss.org.uk (Feedback welcome)

mailto:contact@vetss.org.uk

