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Introduction
• A very brief intro to the CHERI architecture and its use cases

• To learn more about the CHERI architecture and prototypes:

http://www.cheri-cpu.org/

• Watson, et al. Capability Hardware Enhanced RISC 
Instructions: CHERI Instruction-Set Architecture (Version 
7), Technical Report UCAM-CL-TR-927, Computer Laboratory, 
June 2019.

• Watson, et al. Introduction to CHERI, Technical Report
UCAM-CL-TR-941, Computer Laboratory, September 2019.
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Hardware-software co-design over 9 years
• SRI + Cambridge over three DARPA programs (~$26M), EPSRC REMS, 

(£5.6M) Industrial: Google / DeepMind / Arm / HPE / … (~£750K)

• Architectural mitigation for C/C++ TCB vulnerabilities
• Tagged memory, capability pointer representation
• Fine-grained pointer and memory protection
• Highly scalable software compartmentalization
• Hybrid capability system for incremental adoption

• Least-privilege, capability-oriented design mitigates many known
(and unknown future) classes of vulnerabilities + exploit techniques

• Hardware-software-model co-design + concrete prototyping:
• CHERI model, CHERI-MIPS, CHERI-RISC-V, CHERI-ARM concrete ISAs
• Formal ISA models, Qemu-CHERI, FPGA prototypes
• CHERI Clang/LLVM/LLD, CheriBSD, C/C++-language applications
• Repeated iteration to improve {performance, security, compatibility, ..}

• New work: CHERI portability – ARMv8-A (w/Arm) and RISC-V
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CHERI design goals and approach (1)
• Architectural security to mitigate C/C++ TCB vulnerabilities

• Efficient primitives allow software to ubiquitously employ the
principle of least privilege and principle of intentional use

• De-conflate virtualization and protection

• Memory Management Units (MMUs) protect by location in memory

• CHERI protects references (pointers) to code, data, objects

• Capabilities can also be used to describe scalable isolated 
compartments with efficient sharing within address spaces

• Capabilities add protection properties to existing indirection
(pointers), avoiding adding new architectural table lookups
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CHERI design goals and approach (2)
• Hybrid capability architecture

• Model composes naturally with RISC ISAs, MMUs, MMU-based systems 
software, C/C++ languages

• Capabilities protect resources within virtual address spaces

• Supports incremental software deployment paths

• Architectural mechanism can enforce various software policies

• Language-based properties – e.g., referential, spatial, and temporal integrity 
(e.g., C/C++ compiler, linkers, OS model, runtime)

• New software abstractions – e.g., software compartmentalization
(e.g., confined objects for in-address-space isolation)

• Portable protection model? MIPS, RISC-V, ARMv8, …
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CHERI enforces protection semantics for pointers

• Integrity and provenance validity ensure that valid pointers are derived from other valid pointers 
via valid transformations; invalid pointers cannot be used
• E.g., Received network data cannot be interpreted as a code or data pointer

• Bounds prevent pointers from being manipulated to access the wrong object

• Bounds can be minimized by software – e.g., stack allocator, heap allocator, linker

• Monotonicity prevents pointer privilege escalation – e.g., broadening bounds

• Permissions limit unintended use of pointers; e.g., W^X for pointers

• These primitives not only allow us to implement strong memory protection, but also higher-level 
policies such as scalable software compartmentalization
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Recent CHERI evolution
• First release of CHERI ISA specification technical report in two years

• Key features:

• Architecture-neutral CHERI model

• Elaborated CHERI-RISC-V ISA

• CHERI Concentrate capability compression model (TCS 2019)

• Side-channel resistance features

• Improved C-language compatibility, dynamic linkage, performance 
optimizations  (ASPLOS 2019)

• Experimental features including 64-bit capabilities for 32-bit 
architectures (ICCD 2018), temporal safety (MICRO 2019)

• All instruction pseudocode derived from Sail formal models
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Looking Beyond CHERI-MIPS
• 64-bit MIPS for pragmatic reason: needed a 64-bit RISC ISA in late 2010

• Reason for hope: portable virtual-memory semantics and UNIX process model 
despite (quite) different MMUs across architectures

• Architectural abstraction: Lift CHERI properties above ISA –
E.g., tagged capabilities → architectural-neutral specification

• Architectural localization: E.g., ISA choices, opcode approaches, exceptions, 
page tables, … → architecture-specific specifications

• Maintain essential CHERI design choices (capabilities, tagged memory, …)

• Validate through full architectural instantiations and software stacks

• Review instantiation choices based on gained experience, evaluation

• Broaden research agenda – managed languages, non-volatile memory, semantics, …
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CHERI target architectures
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Architecture Features CHERI challenges
64-bit MIPS 1990s RISC architecture

(CHERI baseline)
Poor code density and addressing modes:
harder to differentiate ‘essential’ CHERI costs; 
few transition opportunities with MIPS

64-bit ARMv8-A Mature and widely 
deployed load-store 
architecture

Feature-rich; exception-adverse; rich address 
modes; constrained opcode space; hardware 
page tables; virtualization features; ecosystem

32-bit and 64-
bit RISC-V

Open RISC ISA in active 
development
(MIPS + 10 years?)

Limited addressing modes (expects micro-op 
fusion); hardware page tables; only partially 
standardized; features missing (e.g., hypervisor); 
immature software stack



CHERI-ARM and CHERI-RISC-V

• We are now pursing two DARPA-supported CHERI transition projects:

• Joint with Arm, an experimental adaptation of 64-bit ARMv8-A to 
implement the CHERI protection model (since 2014)

• An experimental adaptation of 32/64-bit RISC-V to implement CHERI 
protection model (since 2017)

• Complete elaborations of the full hardware-software stack:

• All aspects of the architectures (e.g., CHERI w/hypervisors, etc.)

• Formal models, hardware implementations, compilers, OSes, etc.

• Potential for industrial transition through both paths
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CHERI ISA comparison

• While software-facing CHERI semantics may be identical, integration 
with the baseline ISA may differ substantially based on underlying 
architecture design
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file

On fail? MMU Cap
mode

DDC 
reloc.

Multibit
ASR

MIPS Full 64-bit
128-bit
256-bit

Split Exception SW TLB No Yes No

RISC-V Experimental 64-bit
128-bit

Both Exception HW PT Yes Yes Yes

ARM-A Experimental 128-bit Merged Clear tag HW PT Yes No Yes

x86-64 Sketch 128-bit Merged TBD HW PT TBD Yes TBD



CHERI: Portability implications for software
• CHERI Clang/LLVM

• Modest pointer/capability abstraction improvements in front-end, IR

• Adapt target back-ends to teach them about capability code generation

• Optimize for architecture-specific code generation

• Optimize for available microarchitectures

• CheriBSD

• More clear machine-independent / machine-independent split

• Shift to hybrid capability C in the kernel to improve machine independence

• Various MD kernel updates: boot code, exceptions, PMAP, …

• Clean up APIs, header separation, architecture abstraction

• Various userspace updates: rtld, libcheri, CRT/CSU, …
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ISCF: Digital Security by Design (UKRI)
• 5-year Digital Security by Design UKRI program: £70M UK 

gov. funding, £117M UK industrial match, to create CHERI-
ARM demonstrator SoC + board with proven ISA

• Leap supply-chain gap that makes adopting new architecture 
difficult – in particular, validation of concepts in  
microarchitecture, architecture, and software “at scale”

• Support industrial and academic R&D (EPSRC, InnovateUK)

• Baseline CPU selected; reuses existing SoC/board designs

• Ongoing collaboration reviewing and distilling {essential, 
desirable, experimental} CHERI features for use in SoC

• Science designed allowed: Support multiple architectural 
design choices for software-based evaluation once fabricated

• 2020 emulation models; 2021 “Morello” board delivery
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ISCF dual-stack software strategy

• Dual-stack strategy: pushes each software stack as far as it can go in the available timeline, provides both 
BSD- and GPL-licensed variants, and addresses distinct industrial transition opportunities and use cases

• Android – Mobile devices (Google and other Android-based phones and tablets, etc.)

• FreeBSD – Embedded/server devices (iOS, Junos, Playstation, Netapp, etc.)
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CHERI-extended Google Hafnium hypervisor

CHERI Clang/LLVM compiler suite, LLD, LLDB, GDB

CheriBSD/Arran (DARPA)
• FreeBSD kernel + userspace
• Kernel spatial and referential memory 

protection
• Userspace spatial, referential, and temporal 

memory protection
• Co-process and intra-process 

compartmentalization

Android (Arm)
• Linux kernel + Android userspace
• Userspace spatial and referential memory 

protection
• Android Runtime Environment (ART)

Open-source application suite



Potential areas for CHERI research
Quantitative ISA optimization

Compiler semantics and optimization

Superscalar microarchitectures

Tag tables vs. native DRAM tags

Toolchain: linker, debugger, …

C++ compilation to CHERI

Growing the software corpus

CHERI and ISO C/POSIX APIs

Compartmentalization frameworks

MMU-free CHERI microkernel

Safe Foreign Function Interfaces (FFIs)

Safe inter-language interoperability

C-language temporal memory safety

Integration with managed languages

Formal proofs of ISA properties 

Formal proofs of software properties

Verified hardware implementations

Use with large or non-volatile memory

Security analysis and red teaming

Microarchitectural optimization opportunities 
from exposed software semantics

MMU-free HW designs for “IoT”
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Invitation to collaborate

• It is an exciting moment for CHERI

• Finally allowed to talk about significant industrial collaboration

• Experimental adaptations to mainstream architecture(s)

• Rich and maturing software baselines for experimentation

• Strong formal foundations available to be built on

• New research funding opportunities (especially for the UK) 
create opportunity to broaden collaborations

www.cheri-cpu.org
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