
Approved for public release; distribution is unlimited. This research is sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air Force
Research Laboratory (AFRL), under contract FA8750-10-C-0237. The views, opinions, and/or findings contained in this article/presentation are those of the
author(s)/presenter(s) and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

Technology Transition for CHERI
Opportunities for Research

Robert N. M. Watson, Simon W. Moore, Peter Sewell, Peter G. Neumann
Hesham Almatary, Jonathan Anderson, John Baldwin, Hadrien Barrel, Ruslan Bukin, David Chisnall, James Clarke,

Nirav Dave, Brooks Davis, Lawrence Esswood, Nathaniel W. Filardo, Khilan Gudka, Alexandre Joannou,
Robert Kovacsics, Ben Laurie, A.Theo Markettos, J. Edward Maste, Alfredo Mazzinghi, Alan Mujumdar,

Prashanth Mundkur, Steven J. Murdoch, Edward Napierala, Robert Norton-Wright, Philip Paeps, Lucian Paul-Trifu,
Alex Richardson, Michael Roe, Colin Rothwell, Peter Rugg, Hassen Saidi, Peter Sewell, Stacey Son,

Domagoj Stolfa, Andrew Turner, MunrajVadera, Jonathan Woodruff, Hongyan Xia, and Bjoern A. Zeeb

University of Cambridge and SRI International
VeTTSVerified Software Workshop – 24 September 2019

Introduction
• A very brief intro to the CHERI architecture and its use cases

• To learn more about the CHERI architecture and prototypes:

http://www.cheri-cpu.org/

• Watson, et al. Capability Hardware Enhanced RISC
Instructions: CHERI Instruction-Set Architecture (Version
7), Technical Report UCAM-CL-TR-927, Computer Laboratory,
June 2019.

• Watson, et al. Introduction to CHERI, Technical Report
UCAM-CL-TR-941, Computer Laboratory, September 2019.

2

Hardware-software co-design over 9 years
• SRI + Cambridge over three DARPA programs (~$26M), EPSRC REMS,

(£5.6M) Industrial: Google / DeepMind / Arm / HPE / … (~£750K)

• Architectural mitigation for C/C++ TCB vulnerabilities
• Tagged memory, capability pointer representation
• Fine-grained pointer and memory protection
• Highly scalable software compartmentalization
• Hybrid capability system for incremental adoption

• Least-privilege, capability-oriented design mitigates many known
(and unknown future) classes of vulnerabilities + exploit techniques

• Hardware-software-model co-design + concrete prototyping:
• CHERI model, CHERI-MIPS, CHERI-RISC-V, CHERI-ARM concrete ISAs
• Formal ISA models, Qemu-CHERI, FPGA prototypes
• CHERI Clang/LLVM/LLD, CheriBSD, C/C++-language applications
• Repeated iteration to improve {performance, security, compatibility, ..}

• New work: CHERI portability – ARMv8-A (w/Arm) and RISC-V
3

Instruction
Fetch

Register
Fetch Decode Execute Writeback

Capability Coprocessor

Instruction Cache MMU: TLB Data Cache

Memory

Memory
Access

L2 Cache

Tag Controller

Implementation on FPGA

CHERI design goals and approach (1)
• Architectural security to mitigate C/C++ TCB vulnerabilities

• Efficient primitives allow software to ubiquitously employ the
principle of least privilege and principle of intentional use

• De-conflate virtualization and protection

• Memory Management Units (MMUs) protect by location in memory

• CHERI protects references (pointers) to code, data, objects

• Capabilities can also be used to describe scalable isolated
compartments with efficient sharing within address spaces

• Capabilities add protection properties to existing indirection
(pointers), avoiding adding new architectural table lookups

4

CHERI design goals and approach (2)
• Hybrid capability architecture

• Model composes naturally with RISC ISAs, MMUs, MMU-based systems
software, C/C++ languages

• Capabilities protect resources within virtual address spaces

• Supports incremental software deployment paths

• Architectural mechanism can enforce various software policies

• Language-based properties – e.g., referential, spatial, and temporal integrity
(e.g., C/C++ compiler, linkers, OS model, runtime)

• New software abstractions – e.g., software compartmentalization
(e.g., confined objects for in-address-space isolation)

• Portable protection model? MIPS, RISC-V, ARMv8, …

5

CHERI enforces protection semantics for pointers

• Integrity and provenance validity ensure that valid pointers are derived from other valid pointers
via valid transformations; invalid pointers cannot be used
• E.g., Received network data cannot be interpreted as a code or data pointer

• Bounds prevent pointers from being manipulated to access the wrong object

• Bounds can be minimized by software – e.g., stack allocator, heap allocator, linker

• Monotonicity prevents pointer privilege escalation – e.g., broadening bounds

• Permissions limit unintended use of pointers; e.g., W^X for pointers

• These primitives not only allow us to implement strong memory protection, but also higher-level
policies such as scalable software compartmentalization

Data

Heap Stack

Code

Control flow

Monotonicity PermissionsIntegrity and
provenance validity Bounds

6

Recent CHERI evolution
• First release of CHERI ISA specification technical report in two years

• Key features:

• Architecture-neutral CHERI model

• Elaborated CHERI-RISC-V ISA

• CHERI Concentrate capability compression model (TCS 2019)

• Side-channel resistance features

• Improved C-language compatibility, dynamic linkage, performance
optimizations (ASPLOS 2019)

• Experimental features including 64-bit capabilities for 32-bit
architectures (ICCD 2018), temporal safety (MICRO 2019)

• All instruction pseudocode derived from Sail formal models

7

Looking Beyond CHERI-MIPS
• 64-bit MIPS for pragmatic reason: needed a 64-bit RISC ISA in late 2010

• Reason for hope: portable virtual-memory semantics and UNIX process model
despite (quite) different MMUs across architectures

• Architectural abstraction: Lift CHERI properties above ISA –
E.g., tagged capabilities → architectural-neutral specification

• Architectural localization: E.g., ISA choices, opcode approaches, exceptions,
page tables, … → architecture-specific specifications

• Maintain essential CHERI design choices (capabilities, tagged memory, …)

• Validate through full architectural instantiations and software stacks

• Review instantiation choices based on gained experience, evaluation

• Broaden research agenda – managed languages, non-volatile memory, semantics, …

8

CHERI target architectures

9

Architecture Features CHERI challenges
64-bit MIPS 1990s RISC architecture

(CHERI baseline)
Poor code density and addressing modes:
harder to differentiate ‘essential’ CHERI costs;
few transition opportunities with MIPS

64-bit ARMv8-A Mature and widely
deployed load-store
architecture

Feature-rich; exception-adverse; rich address
modes; constrained opcode space; hardware
page tables; virtualization features; ecosystem

32-bit and 64-
bit RISC-V

Open RISC ISA in active
development
(MIPS + 10 years?)

Limited addressing modes (expects micro-op
fusion); hardware page tables; only partially
standardized; features missing (e.g., hypervisor);
immature software stack

CHERI-ARM and CHERI-RISC-V

• We are now pursing two DARPA-supported CHERI transition projects:

• Joint with Arm, an experimental adaptation of 64-bit ARMv8-A to
implement the CHERI protection model (since 2014)

• An experimental adaptation of 32/64-bit RISC-V to implement CHERI
protection model (since 2017)

• Complete elaborations of the full hardware-software stack:

• All aspects of the architectures (e.g., CHERI w/hypervisors, etc.)

• Formal models, hardware implementations, compilers, OSes, etc.

• Potential for industrial transition through both paths

10

CHERI ISA comparison

• While software-facing CHERI semantics may be identical, integration
with the baseline ISA may differ substantially based on underlying
architecture design

11

Base
ISA

Status Width Register
file

On fail? MMU Cap
mode

DDC
reloc.

Multibit
ASR

MIPS Full 64-bit
128-bit
256-bit

Split Exception SW TLB No Yes No

RISC-V Experimental 64-bit
128-bit

Both Exception HW PT Yes Yes Yes

ARM-A Experimental 128-bit Merged Clear tag HW PT Yes No Yes

x86-64 Sketch 128-bit Merged TBD HW PT TBD Yes TBD

CHERI: Portability implications for software
• CHERI Clang/LLVM

• Modest pointer/capability abstraction improvements in front-end, IR

• Adapt target back-ends to teach them about capability code generation

• Optimize for architecture-specific code generation

• Optimize for available microarchitectures

• CheriBSD

• More clear machine-independent / machine-independent split

• Shift to hybrid capability C in the kernel to improve machine independence

• Various MD kernel updates: boot code, exceptions, PMAP, …

• Clean up APIs, header separation, architecture abstraction

• Various userspace updates: rtld, libcheri, CRT/CSU, …
12

ISCF: Digital Security by Design (UKRI)
• 5-year Digital Security by Design UKRI program: £70M UK

gov. funding, £117M UK industrial match, to create CHERI-
ARM demonstrator SoC + board with proven ISA

• Leap supply-chain gap that makes adopting new architecture
difficult – in particular, validation of concepts in
microarchitecture, architecture, and software “at scale”

• Support industrial and academic R&D (EPSRC, InnovateUK)

• Baseline CPU selected; reuses existing SoC/board designs

• Ongoing collaboration reviewing and distilling {essential,
desirable, experimental} CHERI features for use in SoC

• Science designed allowed: Support multiple architectural
design choices for software-based evaluation once fabricated

• 2020 emulation models; 2021 “Morello” board delivery
13

ISCF dual-stack software strategy

• Dual-stack strategy: pushes each software stack as far as it can go in the available timeline, provides both
BSD- and GPL-licensed variants, and addresses distinct industrial transition opportunities and use cases

• Android – Mobile devices (Google and other Android-based phones and tablets, etc.)

• FreeBSD – Embedded/server devices (iOS, Junos, Playstation, Netapp, etc.)
14

CHERI-extended Google Hafnium hypervisor

CHERI Clang/LLVM compiler suite, LLD, LLDB, GDB

CheriBSD/Arran (DARPA)
• FreeBSD kernel + userspace
• Kernel spatial and referential memory

protection
• Userspace spatial, referential, and temporal

memory protection
• Co-process and intra-process

compartmentalization

Android (Arm)
• Linux kernel + Android userspace
• Userspace spatial and referential memory

protection
• Android Runtime Environment (ART)

Open-source application suite

Potential areas for CHERI research
Quantitative ISA optimization

Compiler semantics and optimization

Superscalar microarchitectures

Tag tables vs. native DRAM tags

Toolchain: linker, debugger, …

C++ compilation to CHERI

Growing the software corpus

CHERI and ISO C/POSIX APIs

Compartmentalization frameworks

MMU-free CHERI microkernel

Safe Foreign Function Interfaces (FFIs)

Safe inter-language interoperability

C-language temporal memory safety

Integration with managed languages

Formal proofs of ISA properties

Formal proofs of software properties

Verified hardware implementations

Use with large or non-volatile memory

Security analysis and red teaming

Microarchitectural optimization opportunities
from exposed software semantics

MMU-free HW designs for “IoT”

15

Invitation to collaborate

• It is an exciting moment for CHERI

• Finally allowed to talk about significant industrial collaboration

• Experimental adaptations to mainstream architecture(s)

• Rich and maturing software baselines for experimentation

• Strong formal foundations available to be built on

• New research funding opportunities (especially for the UK)
create opportunity to broaden collaborations

www.cheri-cpu.org

16

