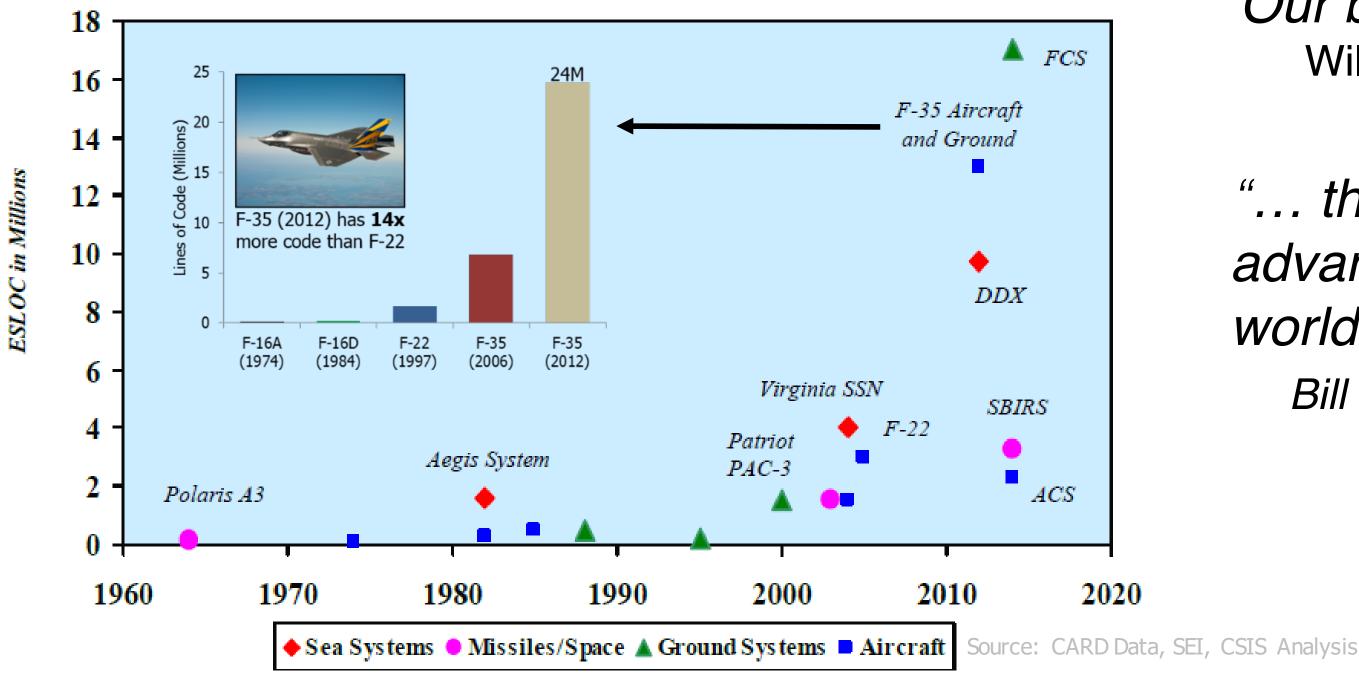
Learning for Automated Synthesis and Verification

Suresh Jagannathan

The Context

Software Content of Sample Major DoD Weapon Systems 1960 - 2020



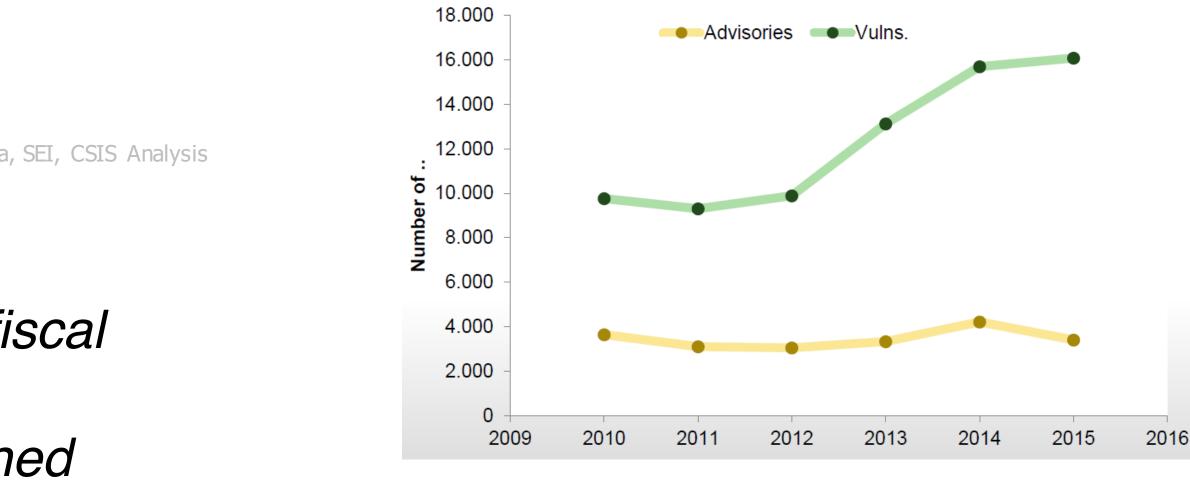
Nearly every U.S. weapons program tested in fiscal 2014 showed "significant vulnerabilities" to cyber attacks, including misconfigured, unpatched and outdated software.

Pentagon Chief Weapon's Tester Report

"Our big issue is software ..." William Roper, Air Force Undersecretary for Acquisitions

"... the services have largely failed to take advantage of an emerging "software-defined world."

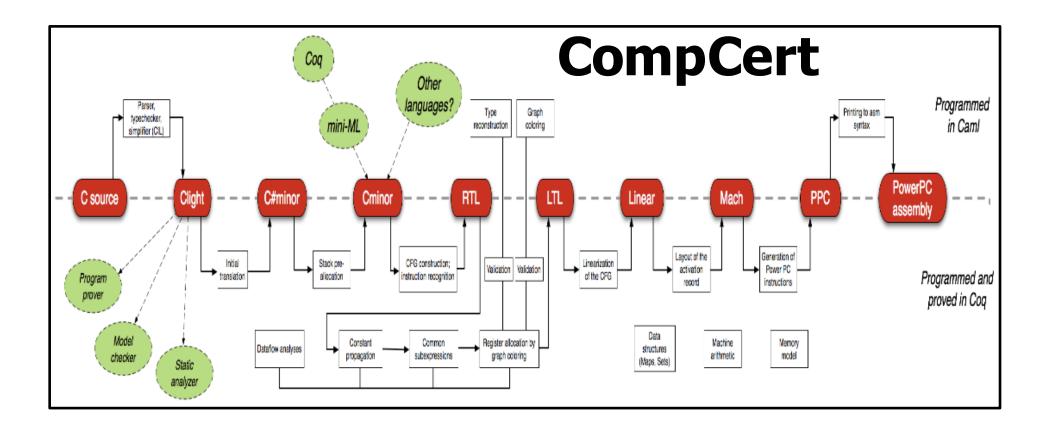
Bill Chappel, Director MTO, DARPA



Vulnerability History

- 2,484 applications from 263 vendors
- 40% Microsoft applications and 60% non-Microsoft applications in Windows operating systems

Trustworthiness through First Principles



8KLOC, 50K LoP

8.5KLOC, 200K LoP

... demonstrates feasibility of defining provably correct mission-critical kernels, but what about systems at scale?

HACMS

MUSE

Trends

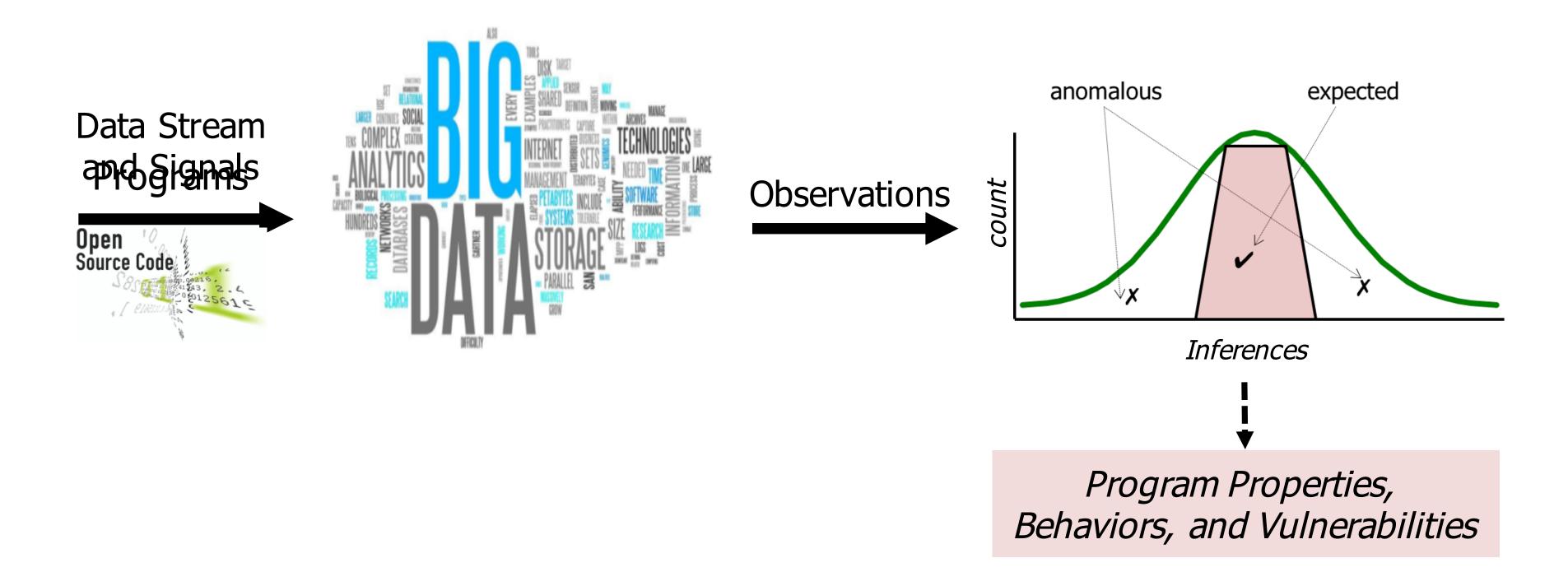
Navy's newest warship (USS Zumwalt) runs on Linux

35% of all DoD systems use **THE VERGE** open source software

The Pentagon is set to make a big push toward open source software next year

The Pentagon is a software-intensive workplace

The Idea

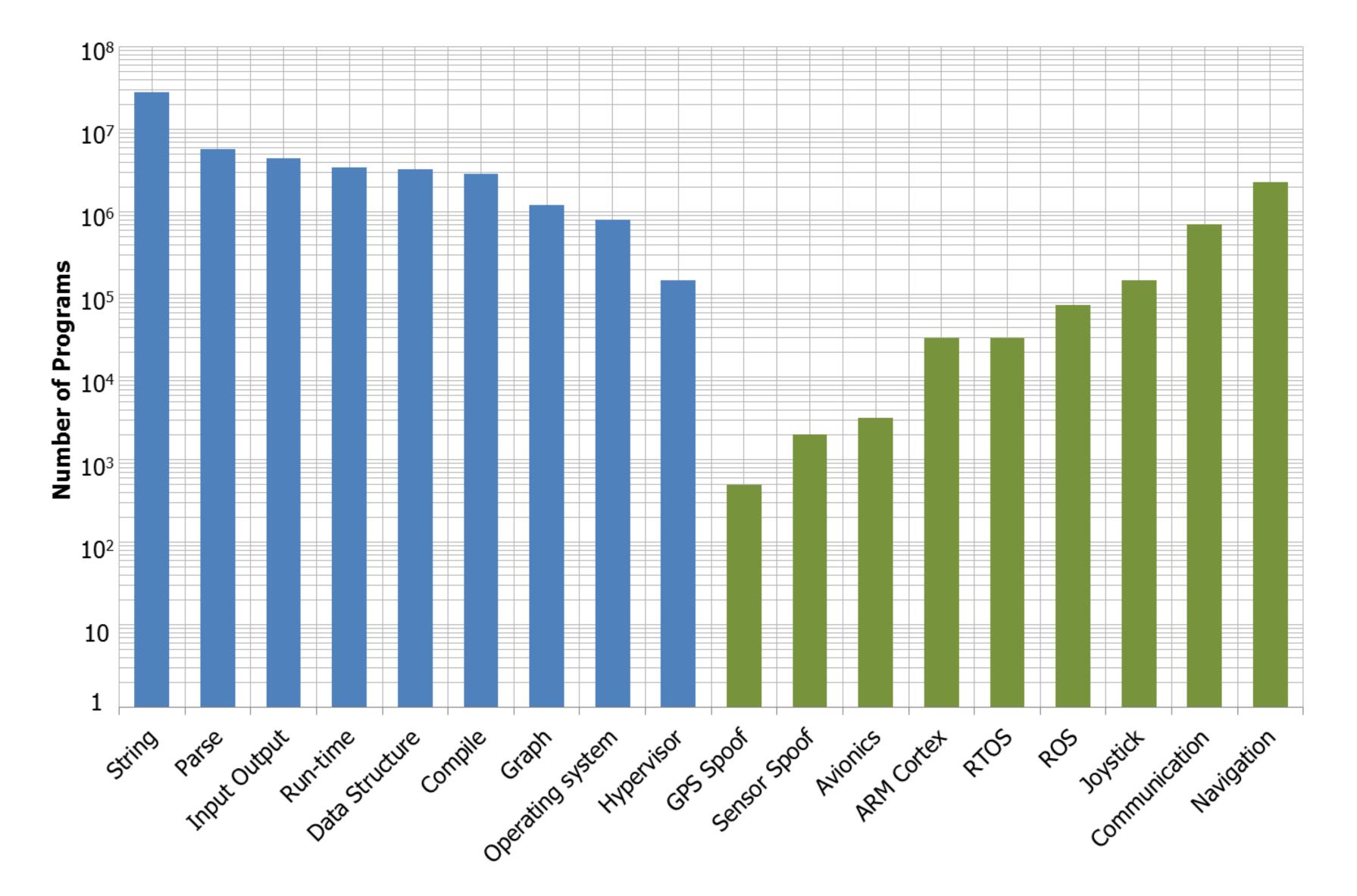


- Observations and inferences applied to program properties

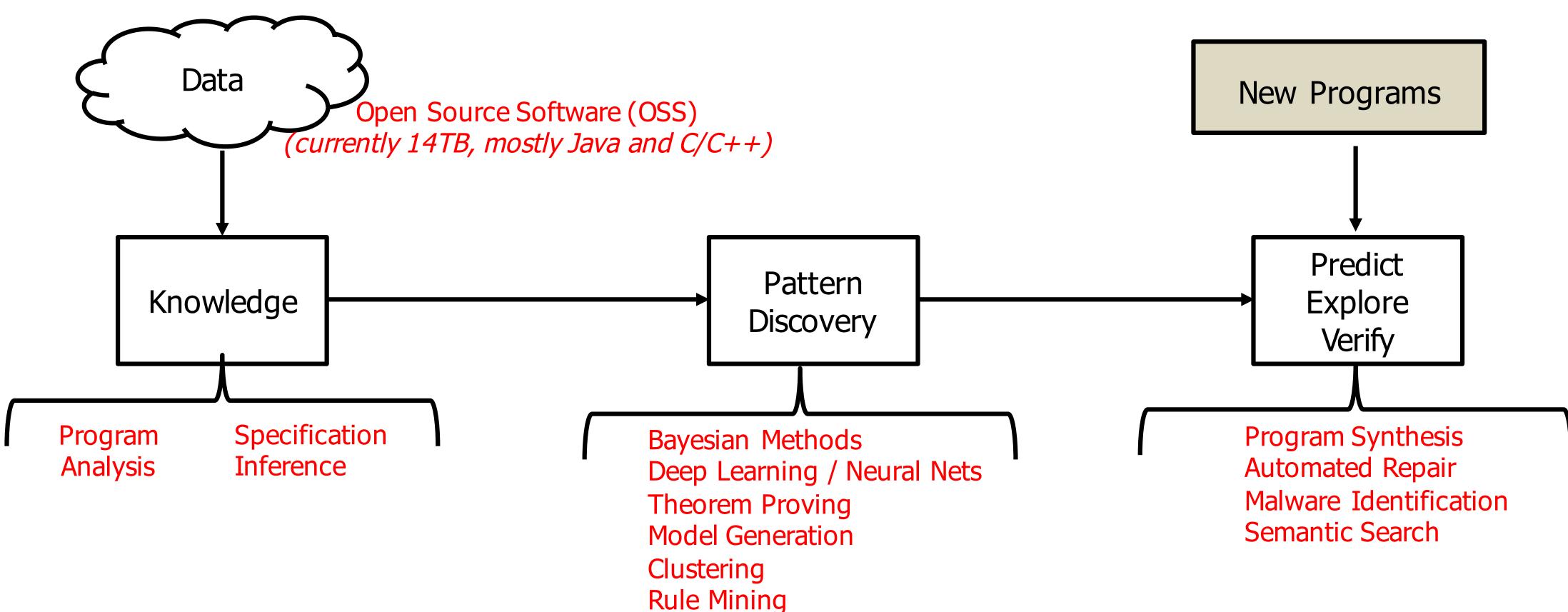
Supervised setting: program repair Semi- or Un-supervised setting: program synthesis

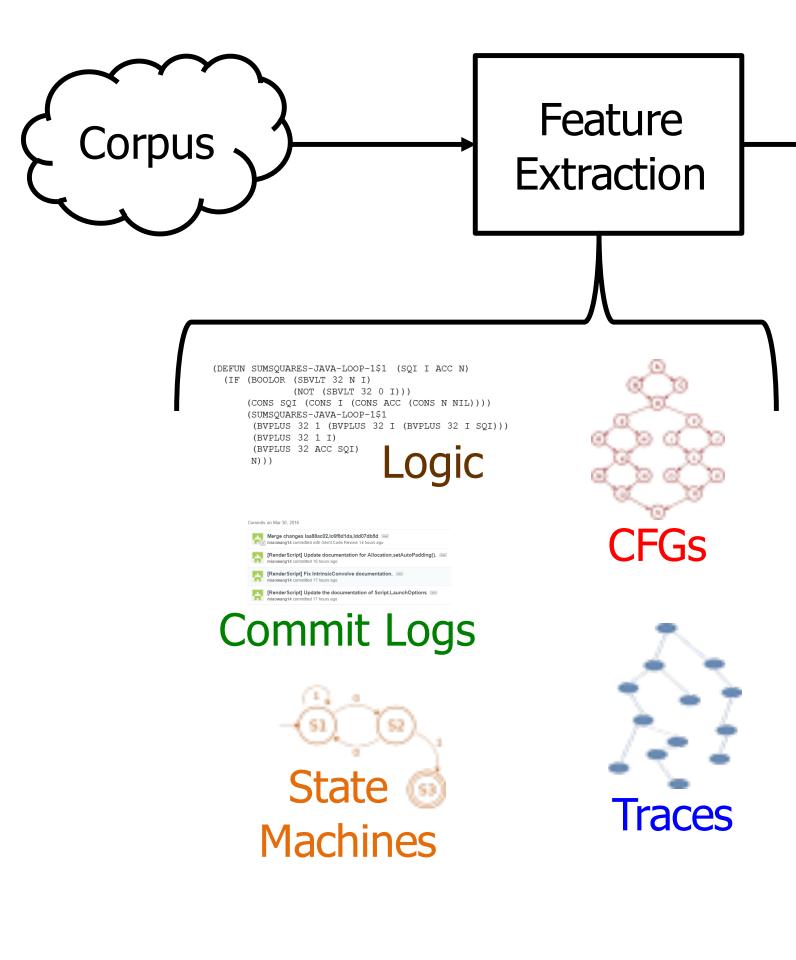
• Treat programs (more precisely, semantic objects extracted from programs) as data

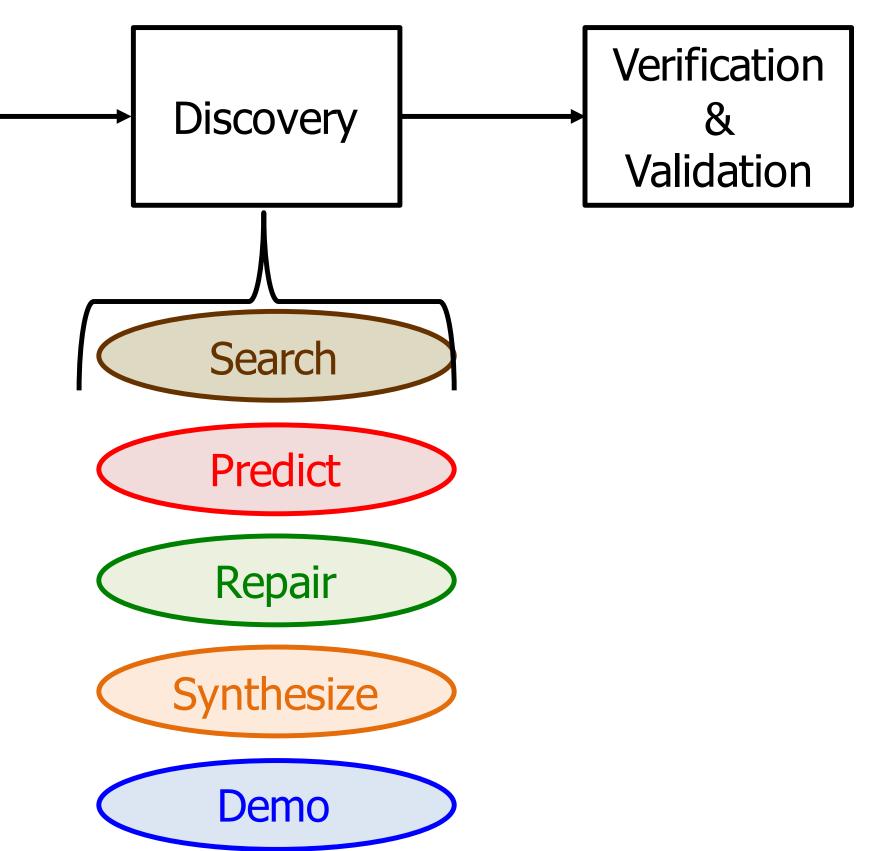
Rationale



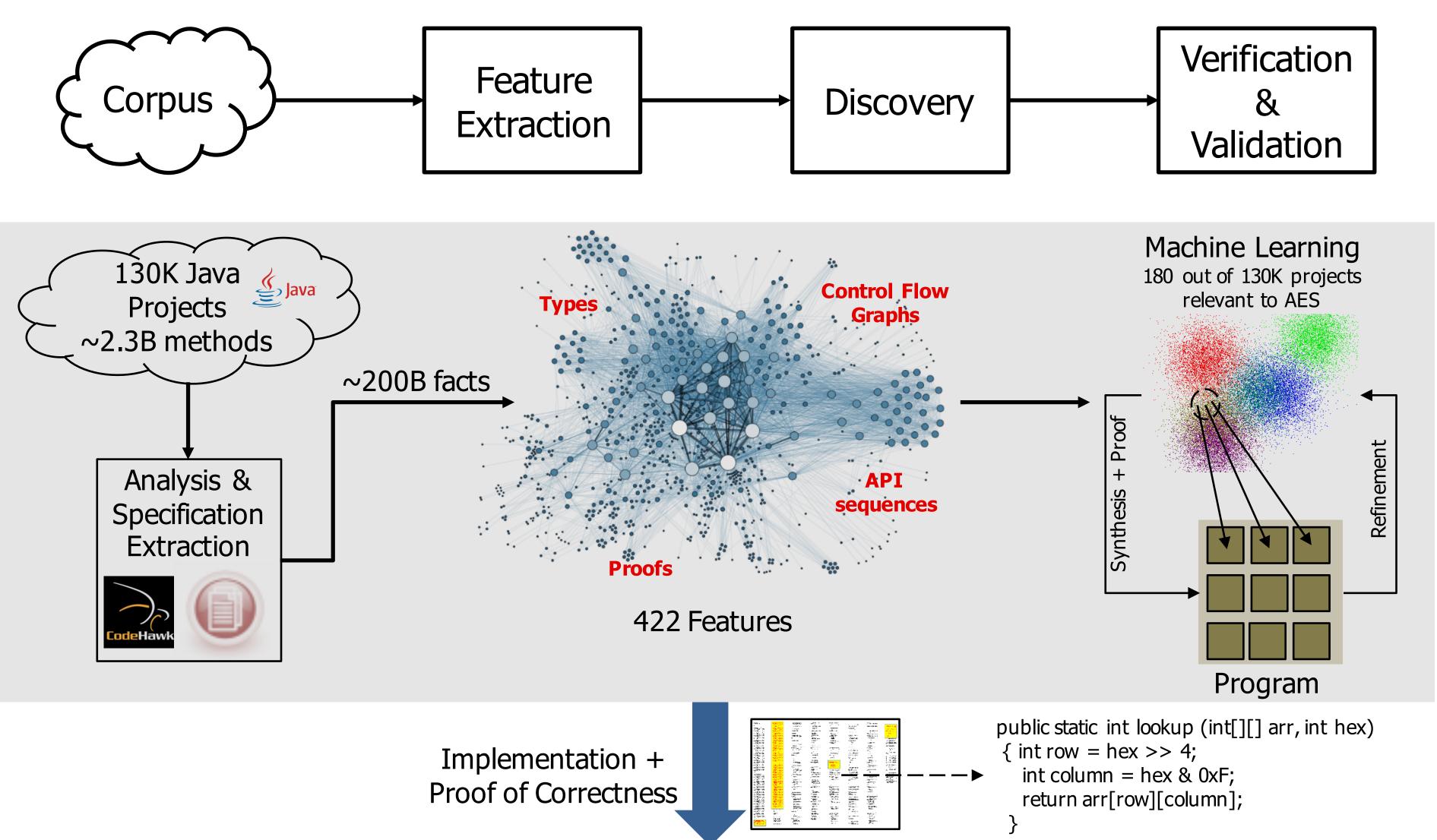
MUSE - Mining and Understanding Software Enclaves

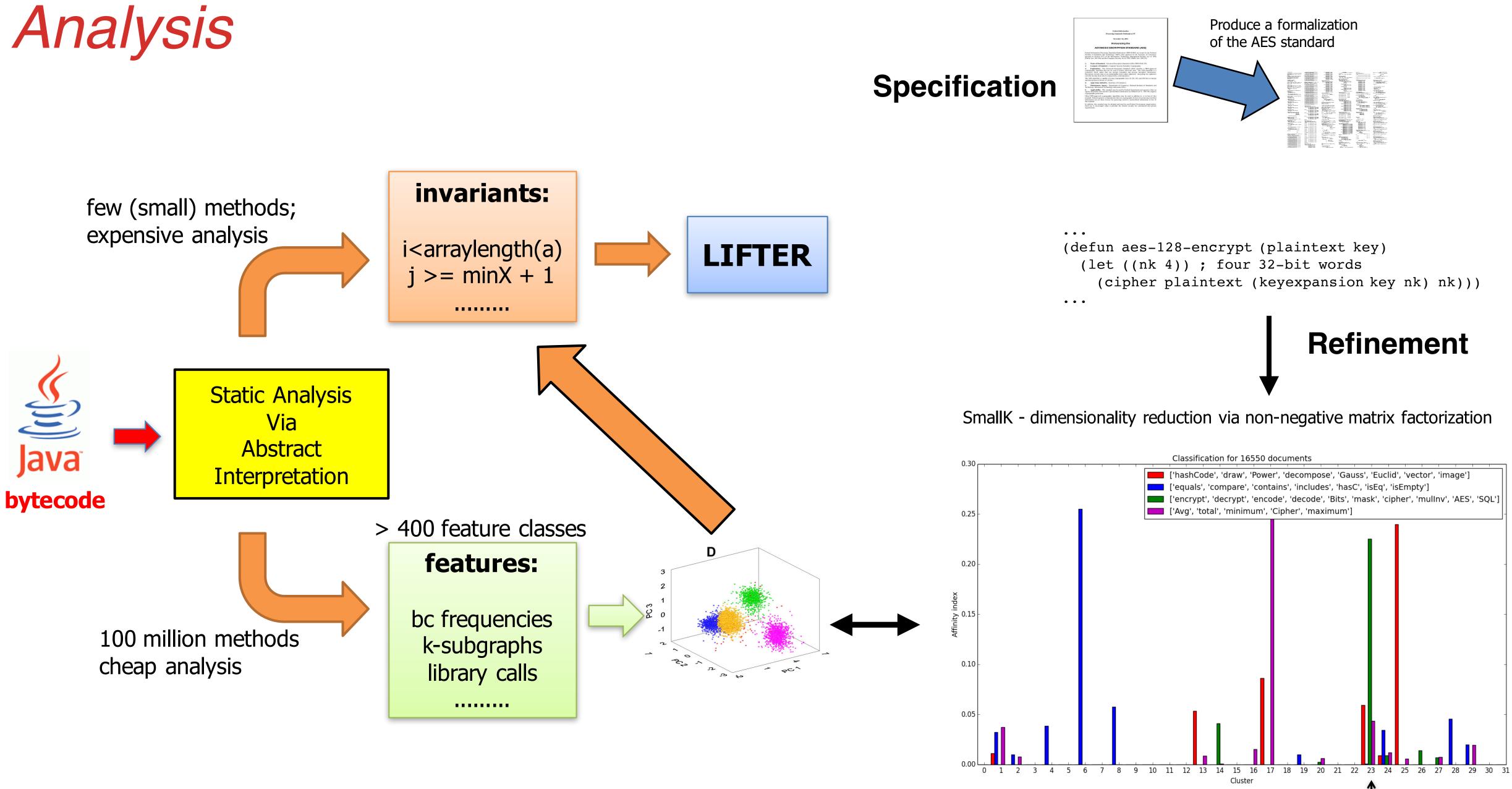




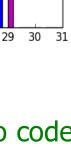


Specification-Driven Synthesis Using Big Code





Cluster 23 seems to contains a lot of crypto code.



Verification

Proved correct for 128/192/256-bit encryption/decryption. "Correct" means the ciphertext bits exactly match the formal spec, for all

 2^{256} possible inputs (key + plaintext).

Turn spec and implementation into mathematical terms Symbolically execute code (2,880 JVM instructions, 2.2M simplifications, 13

- seconds)
- Unroll recursion in spec
- Unrolled code is ~ 100 billion nodes (spec is $\sim 10^{26}$)
- Must share common subterms!

Apply semantic equivalence checker to prove correspondence

Synthesis

Synthesize novel implementations using pieces from the corpus

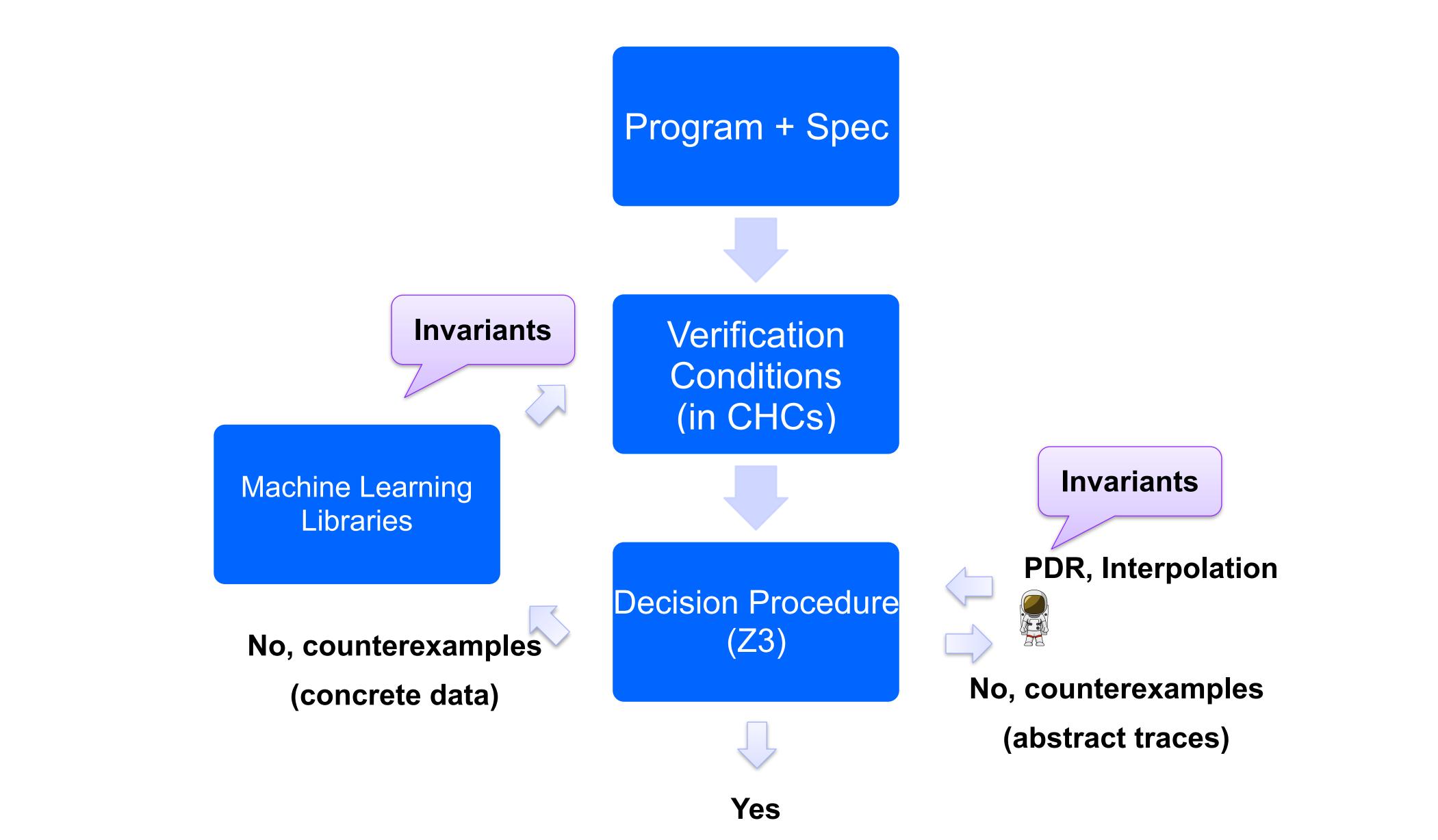
- Example: replace the Galois Field operation in one AES implementation (2abc6c6a-f84a-4e54-9da9-6a13ef25b9d8) with an optimized version from another project (dcee2208f0ec-4796-adb5-9bde1d25c07f)
 - Mix and match to get best performance
 - Prove the resulting hybrid implementation correct

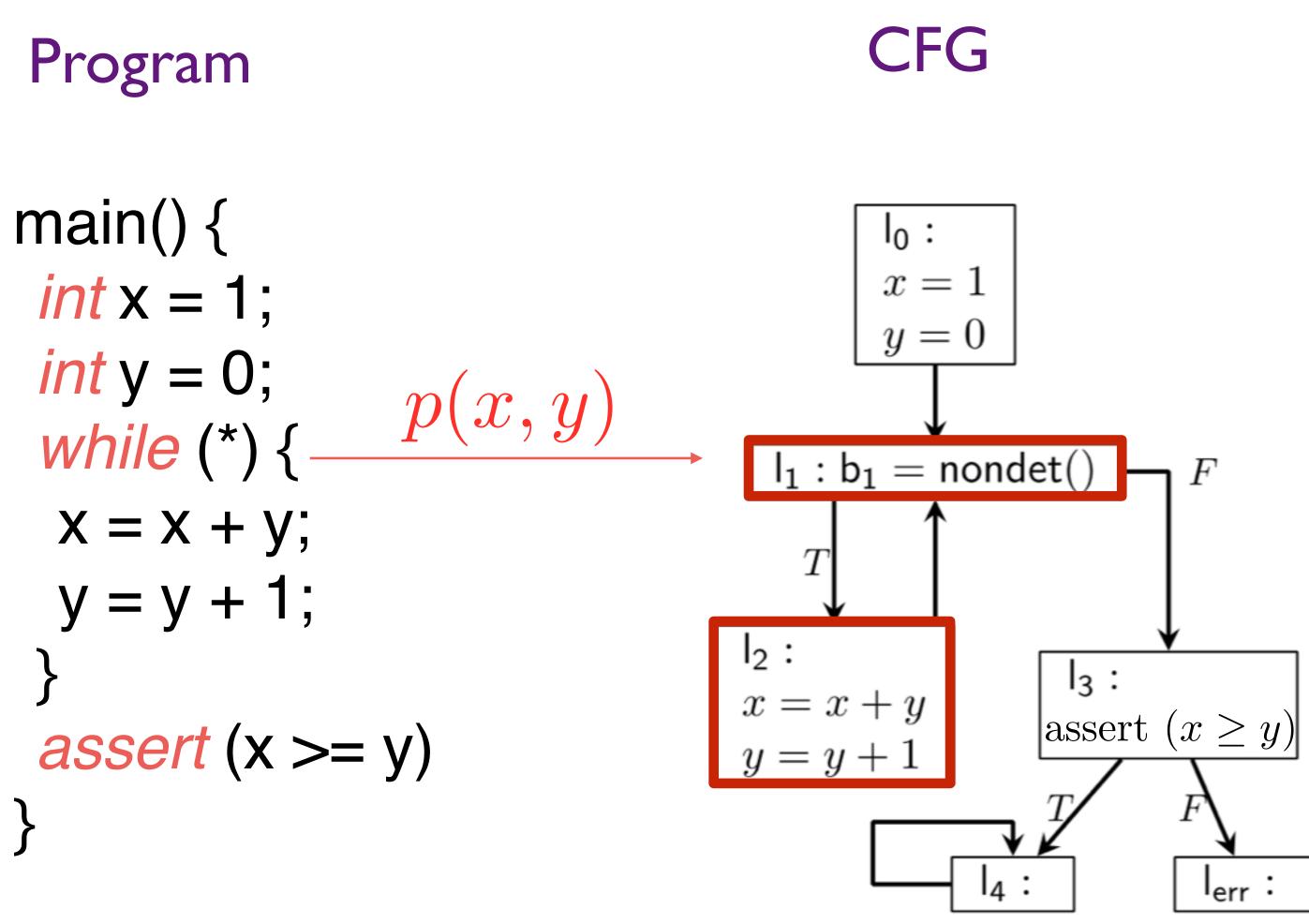
Invariant Inference SynthHorn: A Data-Driven CHC Solver Verification condition (VC)

Joint work with He Zhu and Stephen Magill

galois

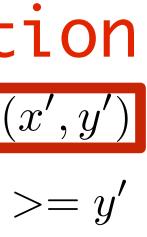
Automatic Program Verification



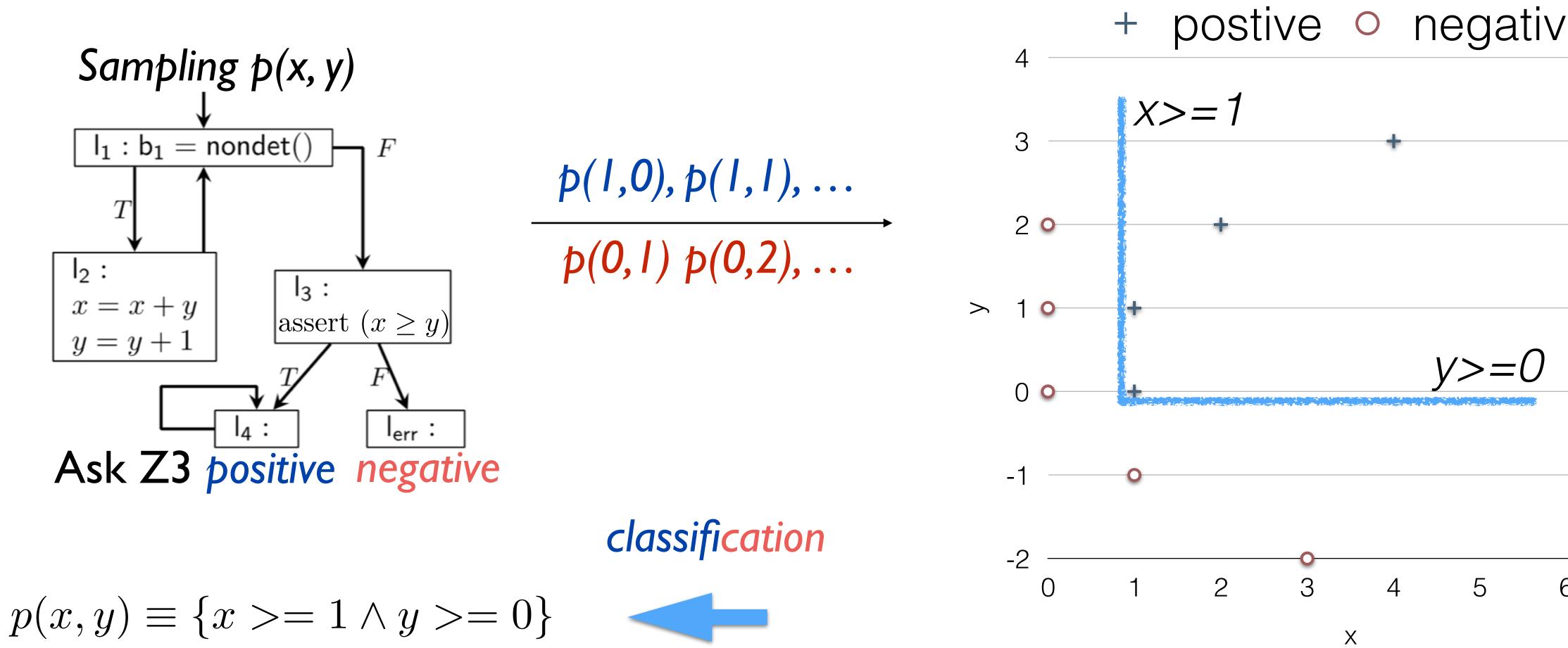


$x = 1 \land y = 0 \rightarrow p(x, y)$ Induction $p(x,y) \land x' = x + y \land y' = y + 1 \rightarrow p(x',y')$ $p(x,y) \land x' = x + y \land y' = y + 1 \rightarrow x' \ge y'$ $x = 1 \land y = 0 \to x \ge y$ Spacer fails in this particular case

VCs



Data-Driven Invariant Inference

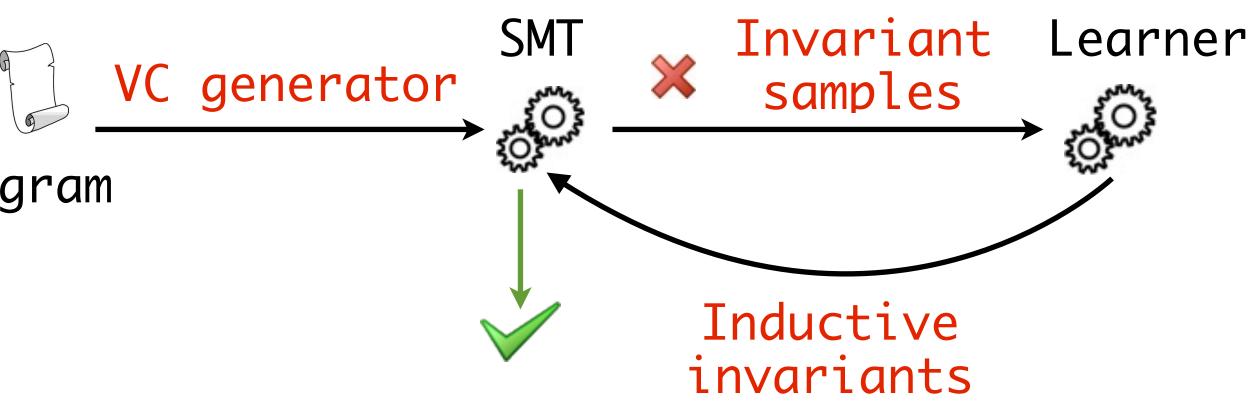


'e	+
	Ŧ
6	7

Data-Driven Invariant Inference

Vision: An inductive invariant can be discovered from data

Goal: Design a learner to learn inductive invariants from data SynthHorn work flow:



Program

Hypothesis Domain

A Machine Learning Technique for invariants of arbitrary Boolean combination of arbitrary linear arithmetic predicates.

 $\bigvee_{i} \bigwedge_{j} \mathbf{w}_{ij}^{'I'} \cdot \mathbf{x}_{ij} + b_{ij}$

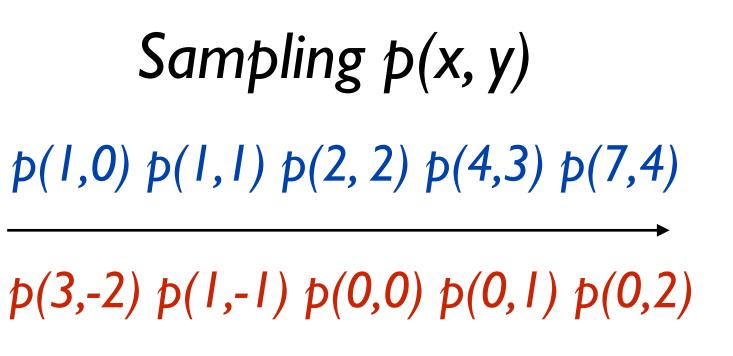
can potentially support other domains (e.g. heap)

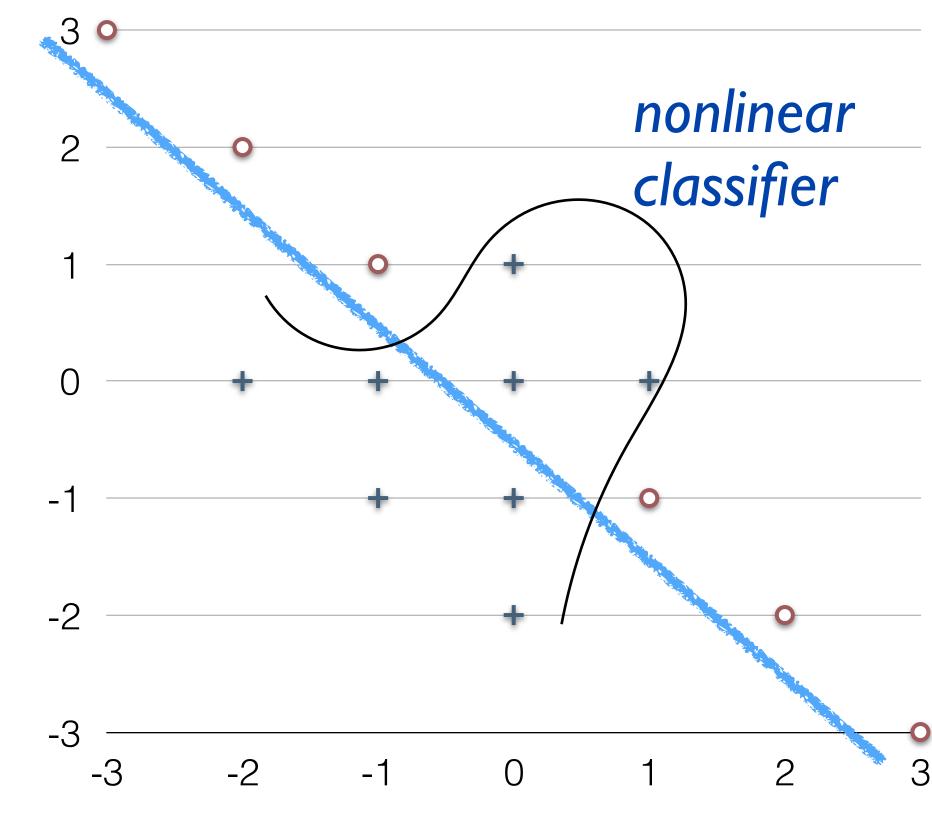
Learning Invariants from Data ...

Sampling p(x, y)

• First take: use linear classification (SVM, Perceptron, Logistic Regression).

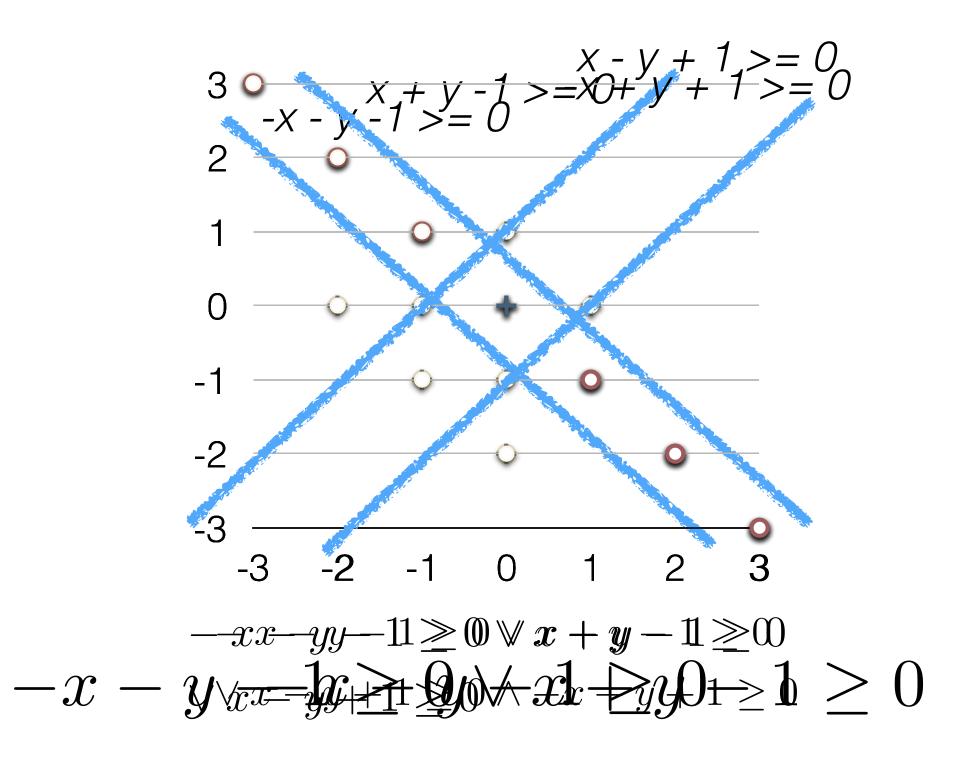
• But, there is a tension between Machine Learning and Verification: Generality vs. Safety.





Learning Arbitrarily Shaped Invariants ...

Given the data,



• Generality: Call linear classification by leveraging its ability to infer high quality classifiers even from data that are not linearly separable.

 Safety: Call linear classification recursively until all samples are correctly separated.

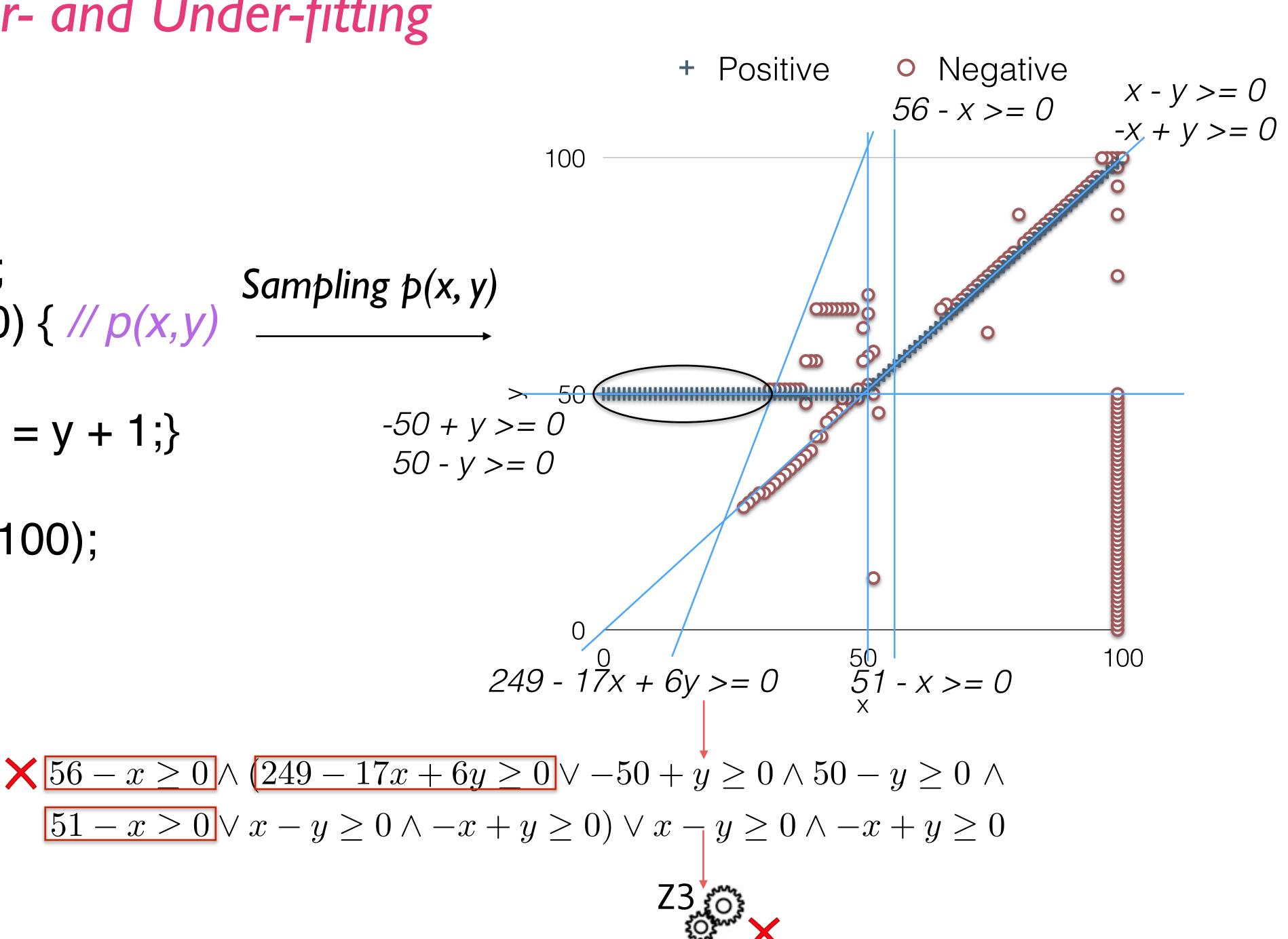
SynthHorn: Combine Generality and Safety together!

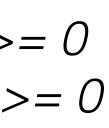
Combating Over- and Under-fitting

main() {
int x, y;

$$x = 0; y = 50;$$

while (x < 100) { // $p(x,y)$
 $x = x + 1;$
if (x > 50) { $y = y + 1;$ }
}
assert (y == 100);
}



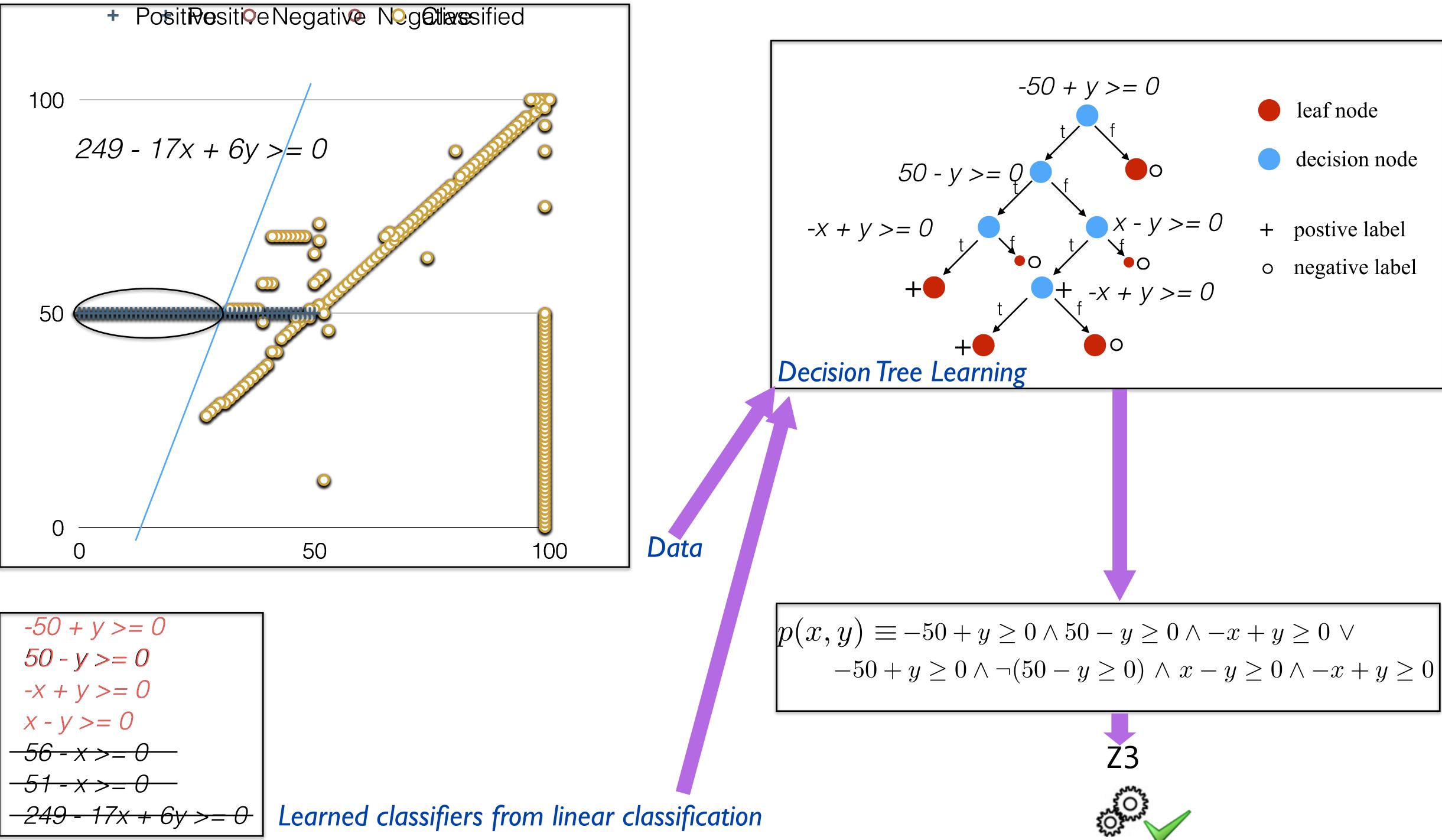


Combating Over- and Under-fitting

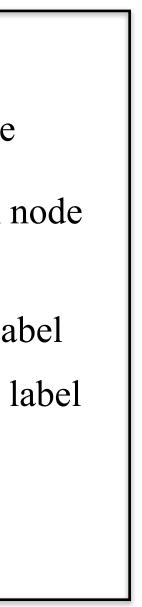
• Can we generalize the learned invariant solely using the data from which the linear classifiers are produced?

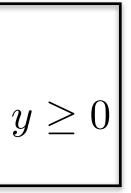
Vision: A <u>simple</u> invariant is more likely to generalize.

Goal: Design a learner to learn <u>simple</u> invariants



$$\begin{array}{l}
-50 + y >= 0 \\
50 - y >= 0 \\
-x + y >= 0 \\
x - y >= 0 \\
-56 - x >= 0 \\
-51 - x >= 0 \\
-249 - 17x + 6y >= 0
\end{array}$$

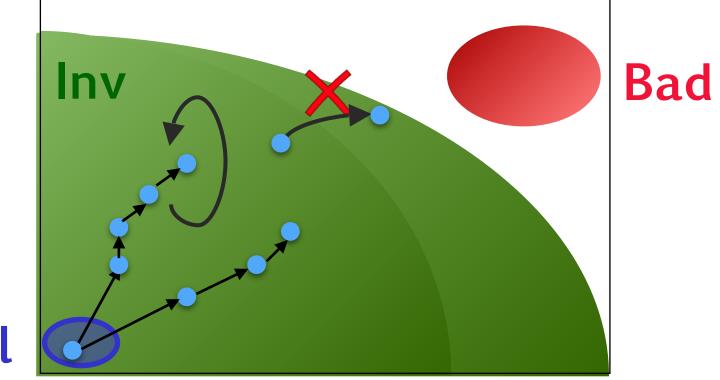




Counterexample guided sampling by Z3

$Tr(X, X') \wedge Inv[X] \rightarrow Inv[X']$

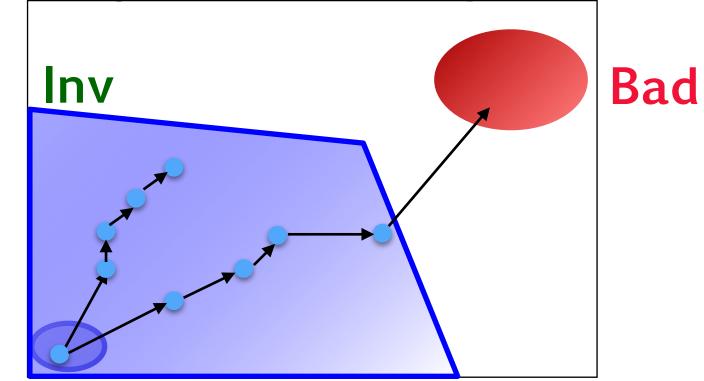
System State Space



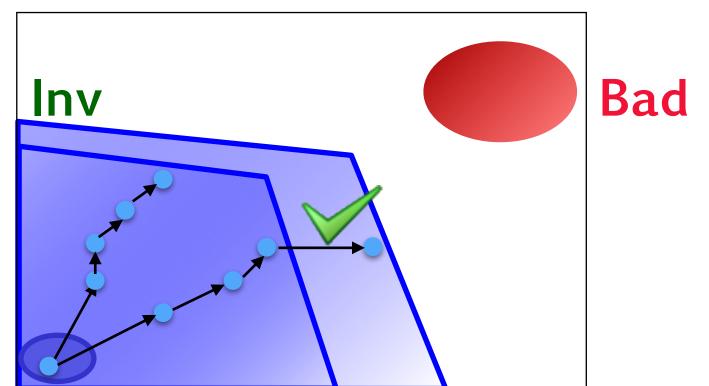
Initial

Initial

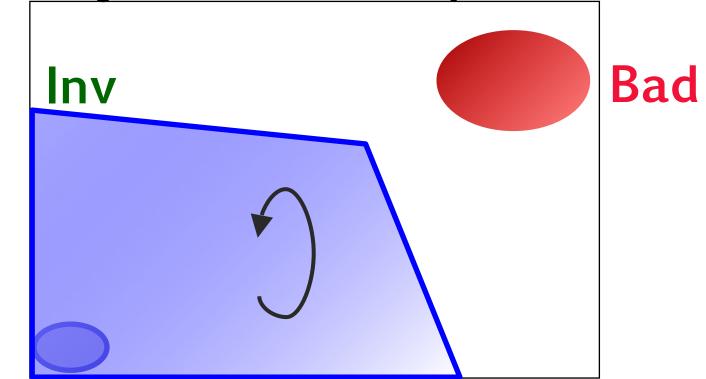
Find a true counterexample System State Space



StWeageheinvariant System State Space



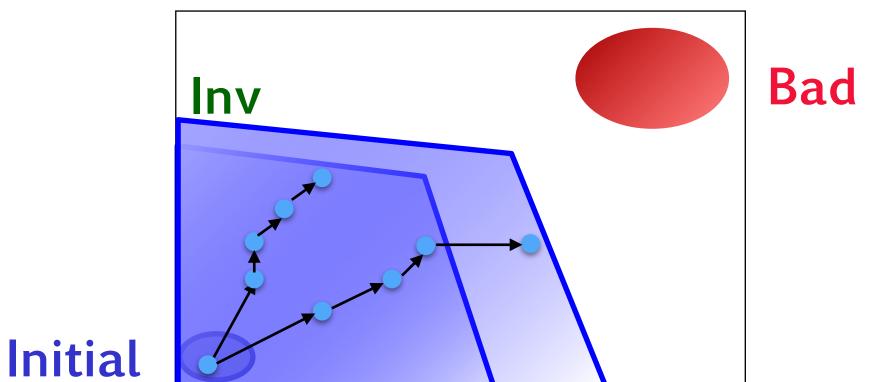
Find an inductive invariant System State Space



Counterexample guided sampling by Z3

SynthHorn

System State Space

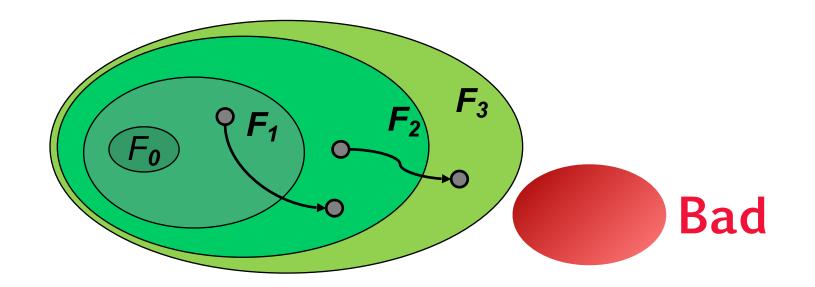


Generalizing from bounded positive samples using Machine Learning

VS

Spacer, GPDR, Duality

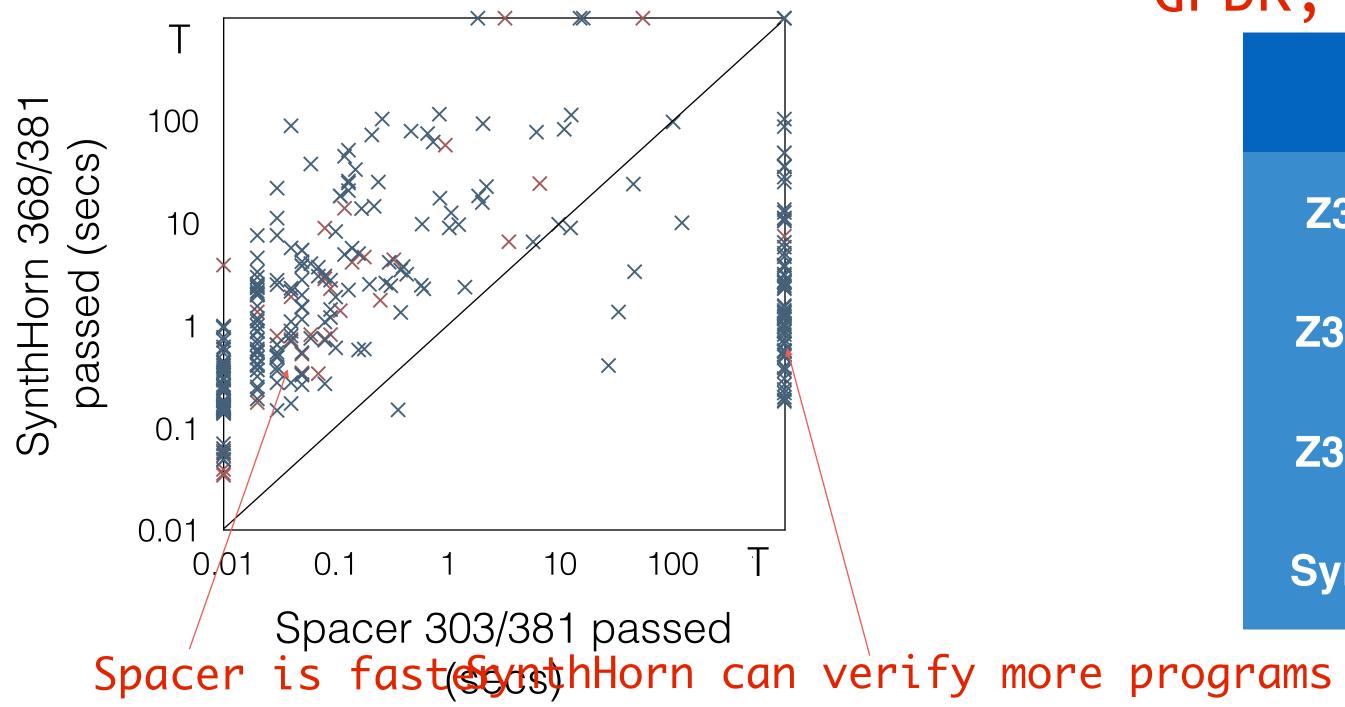
System State Space



Generalizing from bounded unrolling of CHCs using Interpolation

Experimental Results Collected 381 loop and recursive programs with

× CHE sat × CHC unsat with Spacer



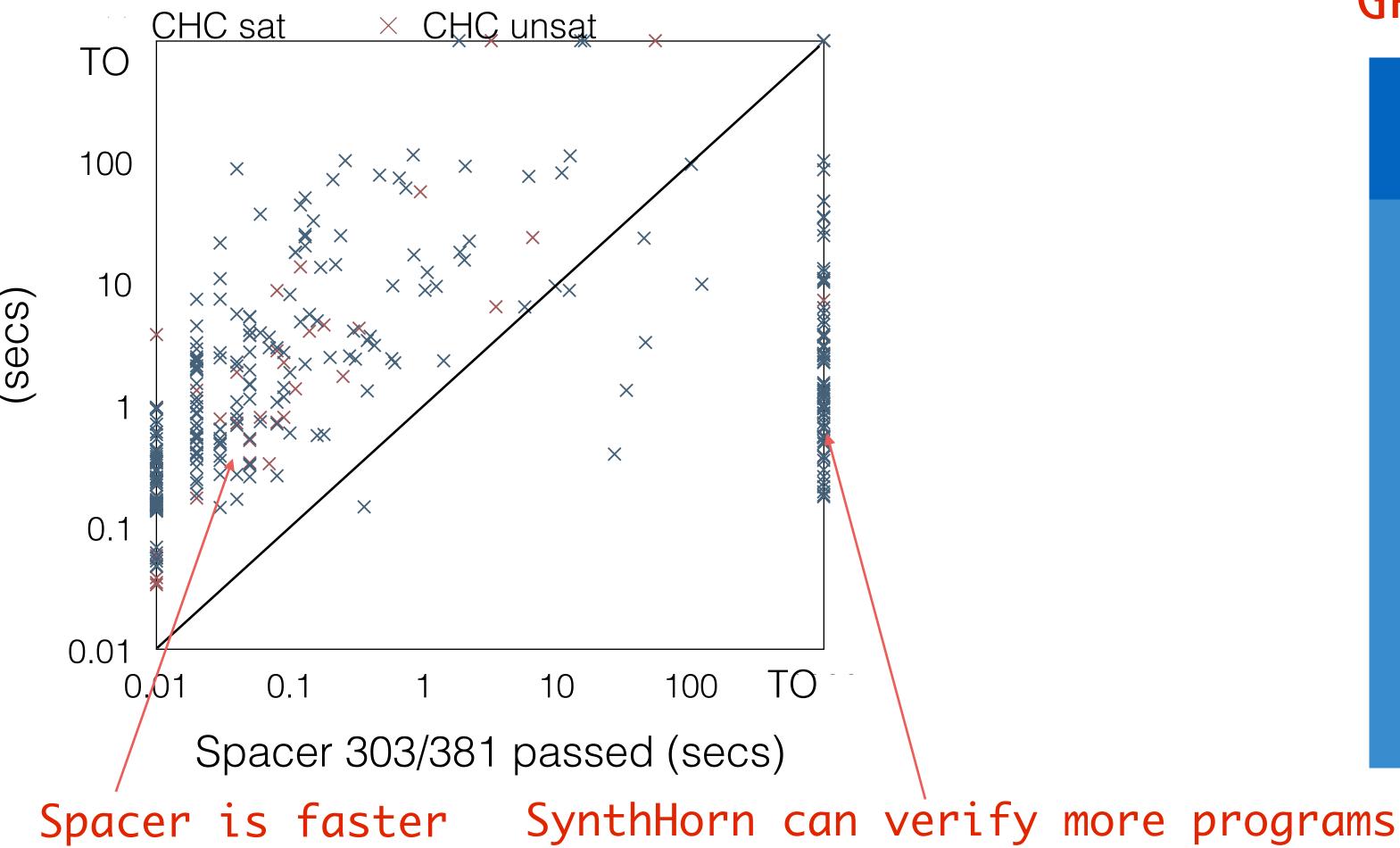
Comparison with GPDR, Spacer, Duality

Total	381
Z3-GPDR	300
Z3-Spacer	303
Z3-Duality	309
SynthHorn	368

Experimental Results

• Collected 381 loop and recursive programs with intricate invariants

Comparison with Spacer

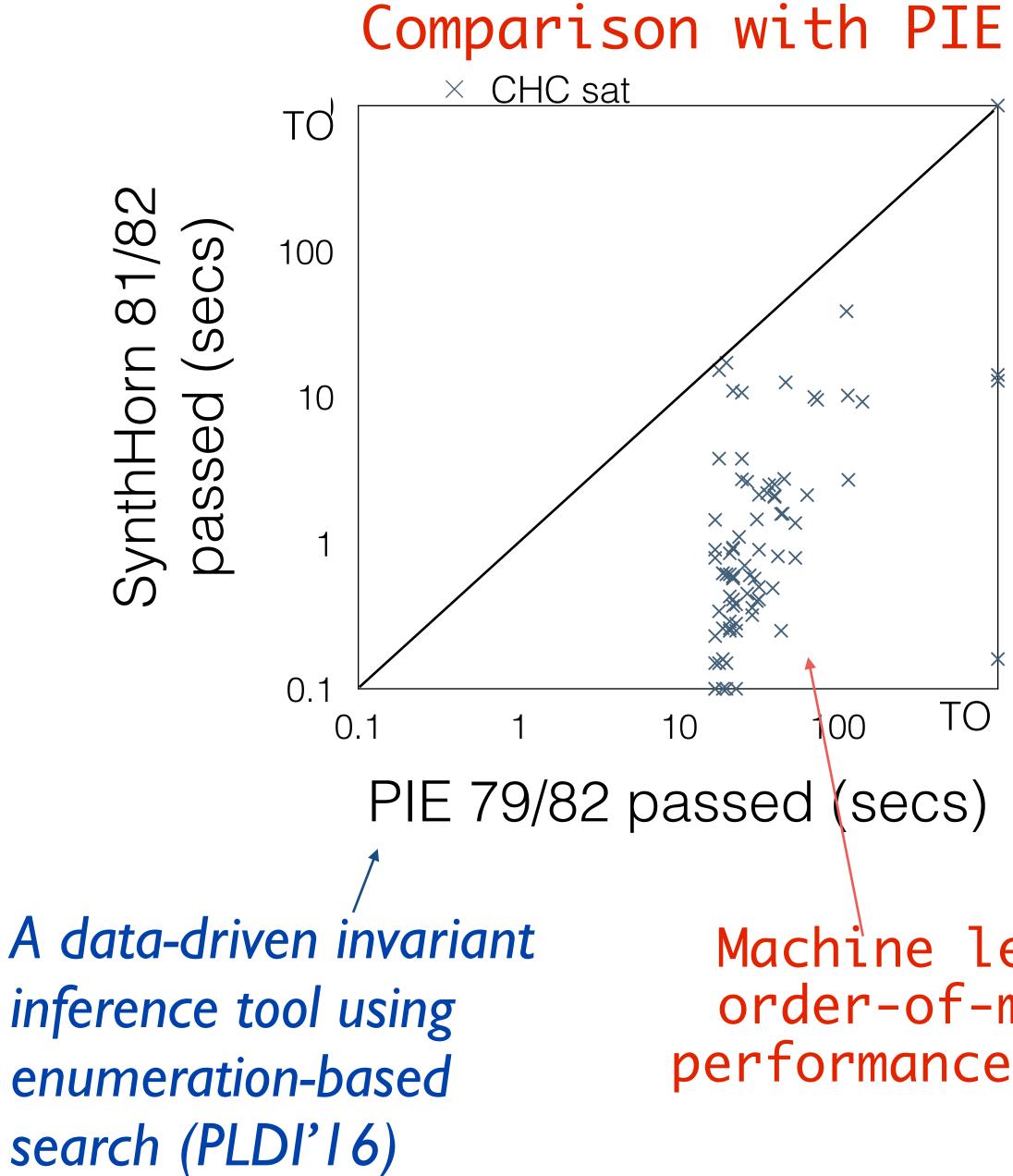


SynthHorn 368/381 passed (secs)

Comparison with GPDR, Spacer, Duality

Total	381
Z3-GPDR	300
Z3-Spacer	303
Z3-Duality	309
SynthHorn	368

Experimental Results



Machine learning leads to order-of-magnitude faster performance than enumeration

Conclusions

Learning in the Large (MUSE)

- Trustworthiness through statistical guarantees drawn from a large corpus
- Embrace generality (learning) to discover properties (synthesis)
- Learning to drive semantic search and model generation
- Feature discovery to guide abstraction and refinement

Learning in the Small (SynthHorn)

- (Small) sample generation from theorem provers
- Tame generality (learning) to realize safety (verification)
- Learning to discover classifiers
- Feature discovery to simplify invariants

antees drawn from a large corpus er properties (synthesis) nodel generation

n provers ety (verification)