
 Suresh Jagannathan

Learning for Automated
Synthesis and Verification

The Context

Nearly every U.S. weapons program tested in fiscal
2014 showed “significant vulnerabilities” to
cyber attacks, including misconfigured, unpatched
and outdated software.

Pentagon Chief Weapon’s Tester Report

Vulnerability History
• 2,484 applications from 263 vendors
• 40% Microsoft applications and 60% non-Microsoft
applications in Windows operating systems

“Our big issue is software …”
 William Roper, Air Force Undersecretary for Acquisitions

“… the services have largely failed to take
advantage of an emerging "software-defined
world."
 Bill Chappel, Director MTO, DARPA

Source: CARD Data, SEI, CSIS Analysis

Trustworthiness through First Principles

CompCert

8KLOC, 50K LoP

100K LoC; 30K LoP
(Multi-million dollar effort over 5 years)

HACMS
quadcopter

8.5KLOC, 200K LoP

… demonstrates feasibility of
defining provably correct
mission-critical kernels, but
what about systems at scale?

Strategies

HACMS MUSE

Trends

>2.1M repositories >10M LoC
(open source)

260K projects

250K projects

108K repositories

9.5K projects
28.5K projects

30K projects

250 projects

Navy’s newest warship
(USS Zumwalt) runs on
Linux

35% of all DoD systems use
open source software

9/11/2018 The Pentagon is set to make a big push toward open source software next year - The Verge

https://www.theverge.com/2017/11/14/16649042/pentagon-department-of-defense-open-source-software 1/4

The Pentagon is a so�ware-intensive workplace
By Kelsey Atherton Nov 14, 2017, 12:44pm EST

POLICY & LAW US & WORLD TECH

The Pentagon is set to make a big push toward
open source so�ware next year

17

Nestled hundreds of pages into the proposed bill to fund the Department of Defense sits
a small, unassuming section. The National Defense Authorization Act for Fiscal Year
2018 is the engine that powers the Pentagon, turning legislative will into tangible cash
for whatever Congress can fit inside. Thanks to an amendment introduced by Sen. Mike
Rounds of (R-SD) and co-sponsored by Sen. Elizabeth Warren (D-MA), this year the
NDAA could institute a big change: should the bill pass in its present form, the
Pentagon will be going open source.

“Open source” is the industry term for using publicly accessible code, published for all
to see and read. It’s contrasted with “closed source” or “proprietary” code, which a
company guards closely as a trade secret. Open source, by its nature, is a shared tool,
much more like creative commons than copyright. One big advantage is that, often, the

The Idea

Inferences

co
un
tObservations

Data Stream
and SignalsPrograms

Program Properties,
Behaviors, and Vulnerabilities

• Treat programs (more precisely, semantic objects extracted from programs) as data
• Observations and inferences applied to program properties

Supervised setting: program repair
Semi- or Un-supervised setting: program synthesis

Rationale

MUSE - Mining and Understanding Software Enclaves

Data
Open Source Software (OSS)

(currently 14TB, mostly Java and C/C++)

Pattern
Discovery

Bayesian Methods
Deep Learning / Neural Nets
Theorem Proving
Model Generation
Clustering
Rule Mining

Knowledge

Program
Analysis

Specification
Inference

Predict
Explore
Verify

Program Synthesis
Automated Repair
Malware Identification
Semantic Search

New Programs

Feature
Extraction Discovery

Verification
&

Validation
Corpus

Logic

CFGs

Commit Logs

State
Machines Traces

Repair

Search

Synthesize

Demo

Predict

Structure

Feature
Extraction Discovery

Verification
&

Validation
Corpus

130K Java
Projects

~2.3B methods

Analysis &
Specification
Extraction

~200B facts

Machine Learning
180 out of 130K projects

relevant to AES

Program

Implementation +
Proof of Correctness

Sy
nt

he
sis

 +
 P

ro
of

Re
fin

em
en

t

public static int lookup (int[][] arr, int hex)
{ int row = hex >> 4;

int column = hex & 0xF;
return arr[row][column];

}

Types Control Flow
Graphs

API
sequences

Proofs

422 Features

Specification-Driven Synthesis Using Big Code

Analysis

bytecode

invariants:

i<arraylength(a)
j >= minX + 1

.........

LIFTER
few (small) methods;
expensive analysis

features:

bc frequencies
k-subgraphs
library calls

.........

100 million methods
cheap analysis

Static Analysis
Via

Abstract
Interpretation

> 400 feature classes

Cluster 23 seems to contains a lot of crypto code.

SmallK - dimensionality reduction via non-negative matrix factorization

...
(defun aes-128-encrypt (plaintext key)

(let ((nk 4)) ; four 32-bit words
(cipher plaintext (keyexpansion key nk) nk)))

...

Produce a formalization
of the AES standard

Specification

Refinement

Verification
Proved correct for 128/192/256-bit encryption/decryption.
“Correct” means the ciphertext bits exactly match the formal spec, for all

2256 possible inputs (key + plaintext).
Turn spec and implementation into mathematical terms

• Symbolically execute code (2,880 JVM instructions, 2.2M simplifications, 13
seconds)

• Unroll recursion in spec
• Unrolled code is ~100 billion nodes (spec is ~10^26)
• Must share common subterms!

Apply semantic equivalence checker to prove correspondence

Synthesis
Synthesize novel implementations using pieces from the

corpus
Example: replace the Galois Field operation in one AES

implementation (2abc6c6a-f84a-4e54-9da9-6a13ef25b9d8)
with an optimized version from another project (dcee2208-
f0ec-4796-adb5-9bde1d25c07f)
• Mix and match to get best performance
• Prove the resulting hybrid implementation correct

SynthHorn: A Data-Driven CHC Solver
Verification condition (VC)

Invariant Inference

A

Joint work with He Zhu and Stephen Magill

A Automatic Program Verification

Program + Spec

Verification
Conditions
(in CHCs)

Decision Procedure
(Z3)

Yes

Invariants

Machine Learning
Libraries

No, counterexamples
(concrete data)

Invariants

PDR, Interpolation

No, counterexamples
(abstract traces)

VCs

Spacer fails in
this particular case

CFG

assert (x � y)

Program

main() {
int x = 1;
int y = 0;
while (*) {
x = x + y;
y = y + 1;

}
assert (x >= y)

}

p(x, y)

x = 1 ^ y = 0 ! p(x, y)

p(x, y) ^ x0 = x+ y ^ y0 = y + 1 ! p(x0, y0)

p(x, y) ^ x0 = x+ y ^ y0 = y + 1 ! x0 >= y0

x = 1 ^ y = 0 ! x >= y

assert (x � y)assert (x � y)assert (x � y)assert (x � y)assert (x � y)

 The Context

Induction

y

-2

-1

0

1

2

3

4

x

0 1 2 3 4 5 6 7

postive negative

A Data-Driven Invariant Inference

x>=1

y>=0

p(x, y) ⌘ {x >= 1 ^ y >= 0}

assert (x � y)

Sampling p(x, y)

Ask Z3 positive

p(0,1) p(0,2), …

p(1,0), p(1,1), …

negative

classification

Vision:
An inductive invariant can be discovered from data

Goal: Design a learner to learn inductive invariants from data

Program

Learner
VC generator

SMT

Inductive
invariants

Invariant
samples

SynthHorn work flow:

A Data-Driven Invariant Inference

A Machine Learning Technique for
invariants of arbitrary Boolean combination

of arbitrary linear arithmetic predicates.

_
i ĵ

wT
ij · xij + bij

A Hypothesis Domain

can potentially support other domains (e.g. heap)

A Learning Invariants from Data ...

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

main() {
int x, y;
x = 0; y = ✽;
while (y != 0) { // p(x,y)
if (y < 0) {x--; y++;}
else {x++; y—;}
assert (x != 0);

}
}

p(3,-2) p(1,-1) p(0,0) p(0,1) p(0,2)

p(1,0) p(1,1) p(2, 2) p(4,3) p(7,4)

Sampling p(x, y)

•First take: use linear classification (SVM, Perceptron,
Logistic Regression).

•But, there is a tension between Machine Learning and
Verification: Generality vs. Safety.

nonlinear
classifier

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

A Learning Arbitrarily Shaped Invariants ...

-x - y -1 >= 0

�x� y � 1 � 0

•Generality: Call linear classification by leveraging its ability to infer high
quality classifiers even from data that are not linearly separable.

x + y -1 >= 0

�x� y � 1 � 0 _ x+ y � 1 � 0

•Safety: Call linear classification recursively until all samples are correctly
separated.

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

x - y + 1 >= 0

� x� y � 1 � 0 _ x+ y � 1 � 0

_ x� y + 1 � 0

-x + y + 1 >= 0

� x� y � 1 � 0 _ x+ y � 1 � 0

_ x� y + 1 � 0 ^ �x+ y + 1 � 0

•SynthHorn: Combine Generality and Safety together!

Given the data,

A Combating Over- and Under-fitting

main() {
int x, y;
x = 0; y = 50;
while (x < 100) { // p(x,y)
x = x + 1;
if (x > 50) {y = y + 1;}

}
assert (y == 100);

}

Sampling p(x, y)

56� x � 0 ^ (249� 17x+ 6y � 0 _ �50 + y � 0 ^ 50� y � 0 ^
51� x � 0 _ x� y � 0 ^ �x+ y � 0) _ x� y � 0 ^ �x+ y � 0

Z3
y

0

50

100

x

0 50 100

Positive Negative
56 - x >= 0

249 - 17x + 6y >= 0 51 - x >= 0

x - y >= 0
-x + y >= 0

-50 + y >= 0
50 - y >= 0

Vision:
A simple invariant is more likely to generalize.

Goal: Design a learner to learn simple invariants

•Can we generalize the learned invariant solely using the data
from which the linear classifiers are produced?

A Combating Over- and Under-fitting

0

50

100

0 50 100

Positive Negative

0

50

100

0 50 100

Positive Negative Classified

0

50

100

0 50 100

Positive Negative Classified

0

50

100

0 50 100

Positive Negative Classified

0

50

100

0 50 100

Positive Negative

50 - y >= 0t f

-50 + y >= 0
t f

⚪

-x + y >= 0
t

+
⚪

f
x - y >= 0

t

+

+

-x + y >= 0

⚪

⚪
f

t f

0

50

100

0 50 100

Positive Negative Classified

Learned classifiers from linear classification

Data

�50 + y � 0 ^ 50� y � 0 ^ �x+ y � 0 _
�50 + y � 0 ^ ¬(50� y � 0) ^ x� y � 0 ^ �x+ y � 0

p(x, y) ⌘-50 + y >= 0
50 - y >= 0
-x + y >= 0
x - y >= 0
56 - x >= 0
51 - x >= 0
249 - 17x + 6y >= 0

-50 + y >= 0
50 - y >= 0
-x + y >= 0
x - y >= 0

+ postive label

leaf node

decision node

⚪ negative label

Decision Tree Learning

Z3

249 - 17x + 6y >= 0

System State Space

Bad Inv

Initial

System State Space

Bad Inv

Initial

A Counterexample guided sampling by Z3

Tr(X,X 0) ^ Inv[X] ! Inv[X 0] Strengthen InvariantWeaken Invariant

System State Space

Bad Inv

Initial

Find a true counterexample Find an inductive invariant
System State Space

Inv

Initial

Bad

F3

System State Space

Inv

Initial

Generalizing from
bounded positive samples
using Machine Learning

SynthHorn Spacer, GPDR, Duality

Generalizing from
bounded unrolling of CHCs
using Interpolation

Bad
F2

F0
F1

Bad

System State Space

vs

A Counterexample guided sampling by Z3

A Experimental
Results

Sy
nt

hH
or

n
36

8/
38

1
pa

ss
ed

 (s
ec

s)

0.01

0.1

1

10

100

1000

Spacer 303/381 passed
(secs)

0.01 0.1 1 10 100 1000

CHC sat CHC unsat

T

T

Comparison with Spacer

Total 381

Z3-GPDR 300

Z3-Spacer 303

Z3-Duality 309

SynthHorn 368

Comparison with
GPDR, Spacer, Duality

•Collected 381 loop and recursive programs with
intricate invariants

SynthHorn can verify more programsSpacer is faster

A Experimental Results
Sy

nt
hH

or
n

36
8/

38
1

pa
ss

ed

(s
ec

s)

0.01

0.1

1

10

100

1000

Spacer 303/381 passed (secs)
0.01 0.1 1 10 100 1000

CHC sat CHC unsat
TO

TO

Comparison with Spacer

Total 381

Z3-GPDR 300

Z3-Spacer 303

Z3-Duality 309

SynthHorn 368

Comparison with
GPDR, Spacer, Duality

•Collected 381 loop and recursive programs with intricate invariants

SynthHorn can verify more programsSpacer is faster

Comparison with PIE

Sy
nt

hH
or

n
81

/8
2

pa
ss

ed
 (s

ec
s)

0.1

1

10

100

1000

PIE 79/82 passed (secs)
0.1 1 10 100 1000

CHC sat
TO

TO

A data-driven invariant
inference tool using
enumeration-based
search (PLDI’16)

Machine learning leads to
order-of-magnitude faster

performance than enumeration

A Experimental Results

A Conclusions

Learning in the Large (MUSE)
• Trustworthiness through statistical guarantees drawn from a large corpus
• Embrace generality (learning) to discover properties (synthesis)
• Learning to drive semantic search and model generation
• Feature discovery to guide abstraction and refinement

Learning in the Small (SynthHorn)
• (Small) sample generation from theorem provers
• Tame generality (learning) to realize safety (verification)
• Learning to discover classifiers
• Feature discovery to simplify invariants

