
Language, Data, and
Security

James Cheney
University of Edinburgh

joint work with:
Ghita Berrada, Arthur Chan,

Stefan Fehrenbach, Weili Fu, Rudi Horn,
Roly Perera, Wilmer Ricciotti, Janek Stolarek

Semantics of SQL: quiz

SELECT R.A FROM R
WHERE R.A NOT IN (
 SELECT S.A FROM S
)

SELECT R.A FROM R
EXCEPT
SELECT S.A FROM S

≡?

Programming
languages Databases

Security

Three themes
• In roughly chronological order:

• Language-integrated query

• Systems provenance and security

• Towards verified databases

• Common theme: provenance

• that is, metadata about execution / how query
results depend on inputs / rich auditable log data

• (roughly; not really what this talk is about)

Language-integrated
query

Databases and Queries

SELECT d.dpt, d.id
FROM depts d, emps e

RDBMSRDBMS
dpt did

Sales 1

Marketing 2

Research 3

... ...

SQL

Data

The conventional
(JDBC) approach

Queries constructed using strings
SQL injection attacks can subvert meaning of query

Language-integrated
query

• "SQL-like comprehension operations
increasingly adopted [in e.g.
JavaScript, Python, ...]" - Eric Sedlar,
Oracle (SIGMOD 2014 keynote)

• Microsoft's LINQ and other "language-
integrated query" features now popular

query { for (x <-- employees)
 where (x.salary > 50000)
 [(name = x.name)] }

Links example

Effective Quotation
Relating approaches to language-integrated query

James Cheney Sam Lindley
The University of Edinburgh

jcheney@inf.ed.ac.uk,

Sam.Lindley@ed.ac.uk

Gabriel Radanne
ENS Cachan

gabriel.radanne@zoho.com

Philip Wadler
The University of Edinburgh

wadler@inf.ed.ac.uk

Abstract
Language-integrated query techniques have been explored in a
number of different language designs. We consider two differ-
ent, type-safe approaches employed by Links and F#. Both ap-
proaches provide rich dynamic query generation capabilities, and
thus amount to a form of heterogeneous staged computation, but to
date there has been no formal investigation of their relative expres-
siveness. We present two core calculi Eff and Quot, respectively
capturing the essential aspects of language-integrated querying us-
ing effects in Links and quotation in LINQ. We show via transla-
tions from Eff to Quot and back that the two approaches are equiv-
alent in expressiveness. Based on the translation from Eff to Quot,
we extend a simple Links compiler to handle queries.

Categories and Subject Descriptors D.3.1 [Formal Definitions
and Theory]; D.3.2 [Language Classifications]: Applicative (func-
tional) languages; H.2.3 [Languages]: Query languages

Keywords language-integrated query; effects; quotation

1. Introduction
Increasingly, programming involves coordinating data and compu-
tation among several layers, such as server-side, client-side and
database layers of a typical three-tier Web application. The inter-
action between the host programming language (e.g. Java, C#, F#,
Haskell or some other general-purpose language) running on the
server and the query language (e.g. SQL) running on the database
is particularly important, because the relational model and query
language provided by the database differ from the data structures
of most host languages. Conventional approaches to embedding
database queries within a general-purpose language, such as Java’s
JDBC, provide the programmer with precise control over perfor-
mance but are subject to typing errors and security vulnerabili-
ties such as SQL injection attacks [35]. Object-relational mapping
(ORM) tools and libraries, such as Java’s Hibernate, provide a pop-
ular alternative by wrapping database access and update in type-
safe object-oriented interfaces, but this leads to a loss of control
over the structure of generated queries, which makes it difficult to
understand and improve performance [14].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PEPM ’14, January 20–21, 2014, San Diego, CA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2619-3/14/01. . . $15.00.
http://dx.doi.org/10.1145/2543728.2543738

employees

dpt name salary

“Product” “Alex” 40,000
“Product” “Bert” 60,000
“Research” “Cora” 50,000
“Research” “Drew” 70,000
“Sales” “Erik” 200,000
“Sales” “Fred” 95,000
“Sales” “Gina” 155,000

tasks

emp tsk

“Alex” “build”

“Bert” “build”

“Cora” “abstract”

“Cora” “build”

“Cora” “call”

“Cora” “dissemble”

“Cora” “enthuse”

“Drew” “abstract”

“Drew” “enthuse”

“Erik” “call”

“Erik” “enthuse”

“Fred” “call”

“Gina” “call”

“Gina” “dissemble”

Figure 1. Sample Data

To avoid these so-called impedance mismatch problems, a num-
ber of language-integrated query techniques for embedding queries
into general-purpose programming languages have emerged, which
seek to reconcile the goals of type-safety and programmer control.
Two distinctive styles of language-integrated query have emerged:

• Employ some form of static analysis or type system to iden-
tify parts of programs that can be turned into queries (e.g.
Kleisli [38], Links [8], Batches for Java [36]).

• Extend a conventional language with explicit facilities for
quotation or manipulation of query code (e.g. LINQ [21],
Ur/Web [5], Database-Supported Haskell [13]).

Links is an example of the first approach. It uses a type-and-
effect system [32] to classify parts of programs as executable only
on the database, executable only on the host programming lan-
guage, or executable anywhere. For example, consider the em-
ployee and task data in tables in Figure 1. The following code

for (x <- employees)

where(x.salary > 50000)

[(name=x.name)]

retrieves the names of employees earning over $50,000, specif-
ically [“Bert”,“Drew”,“Erik”,“Fred”,“Gina”]. In Links, the
same code can be run either on the database (if employees and
tasks are tables) or in the host language. If executed as a query,
the interpreter generates a single (statically defined) SQL query
that can take advantage of the database’s indexing or other query
optimisation; if executed in-memory, the expression will by default
be interpreted as a quadratic nested loop. (Efficient in-memory im-
plementations of query expressions are also possible [16].)

name
Bert
Drew
Erik
Fred
Gina

select name
from employees e
where e.salary > 50000

Wong 2000, Syme 2006, Cooper et al. 2006, 2009

query { for (x <-- employees)
 where (x.salary > 50000)
 [(name = x.name)] }

Language-integrated
provenance

Effective Quotation
Relating approaches to language-integrated query

James Cheney Sam Lindley
The University of Edinburgh

jcheney@inf.ed.ac.uk,

Sam.Lindley@ed.ac.uk

Gabriel Radanne
ENS Cachan

gabriel.radanne@zoho.com

Philip Wadler
The University of Edinburgh

wadler@inf.ed.ac.uk

Abstract
Language-integrated query techniques have been explored in a
number of different language designs. We consider two differ-
ent, type-safe approaches employed by Links and F#. Both ap-
proaches provide rich dynamic query generation capabilities, and
thus amount to a form of heterogeneous staged computation, but to
date there has been no formal investigation of their relative expres-
siveness. We present two core calculi Eff and Quot, respectively
capturing the essential aspects of language-integrated querying us-
ing effects in Links and quotation in LINQ. We show via transla-
tions from Eff to Quot and back that the two approaches are equiv-
alent in expressiveness. Based on the translation from Eff to Quot,
we extend a simple Links compiler to handle queries.

Categories and Subject Descriptors D.3.1 [Formal Definitions
and Theory]; D.3.2 [Language Classifications]: Applicative (func-
tional) languages; H.2.3 [Languages]: Query languages

Keywords language-integrated query; effects; quotation

1. Introduction
Increasingly, programming involves coordinating data and compu-
tation among several layers, such as server-side, client-side and
database layers of a typical three-tier Web application. The inter-
action between the host programming language (e.g. Java, C#, F#,
Haskell or some other general-purpose language) running on the
server and the query language (e.g. SQL) running on the database
is particularly important, because the relational model and query
language provided by the database differ from the data structures
of most host languages. Conventional approaches to embedding
database queries within a general-purpose language, such as Java’s
JDBC, provide the programmer with precise control over perfor-
mance but are subject to typing errors and security vulnerabili-
ties such as SQL injection attacks [35]. Object-relational mapping
(ORM) tools and libraries, such as Java’s Hibernate, provide a pop-
ular alternative by wrapping database access and update in type-
safe object-oriented interfaces, but this leads to a loss of control
over the structure of generated queries, which makes it difficult to
understand and improve performance [14].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PEPM ’14, January 20–21, 2014, San Diego, CA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2619-3/14/01. . . $15.00.
http://dx.doi.org/10.1145/2543728.2543738

employees

dpt name salary

“Product” “Alex” 40,000
“Product” “Bert” 60,000
“Research” “Cora” 50,000
“Research” “Drew” 70,000
“Sales” “Erik” 200,000
“Sales” “Fred” 95,000
“Sales” “Gina” 155,000

tasks

emp tsk

“Alex” “build”

“Bert” “build”

“Cora” “abstract”

“Cora” “build”

“Cora” “call”

“Cora” “dissemble”

“Cora” “enthuse”

“Drew” “abstract”

“Drew” “enthuse”

“Erik” “call”

“Erik” “enthuse”

“Fred” “call”

“Gina” “call”

“Gina” “dissemble”

Figure 1. Sample Data

To avoid these so-called impedance mismatch problems, a num-
ber of language-integrated query techniques for embedding queries
into general-purpose programming languages have emerged, which
seek to reconcile the goals of type-safety and programmer control.
Two distinctive styles of language-integrated query have emerged:

• Employ some form of static analysis or type system to iden-
tify parts of programs that can be turned into queries (e.g.
Kleisli [38], Links [8], Batches for Java [36]).

• Extend a conventional language with explicit facilities for
quotation or manipulation of query code (e.g. LINQ [21],
Ur/Web [5], Database-Supported Haskell [13]).

Links is an example of the first approach. It uses a type-and-
effect system [32] to classify parts of programs as executable only
on the database, executable only on the host programming lan-
guage, or executable anywhere. For example, consider the em-
ployee and task data in tables in Figure 1. The following code

for (x <- employees)

where(x.salary > 50000)

[(name=x.name)]

retrieves the names of employees earning over $50,000, specif-
ically [“Bert”,“Drew”,“Erik”,“Fred”,“Gina”]. In Links, the
same code can be run either on the database (if employees and
tasks are tables) or in the host language. If executed as a query,
the interpreter generates a single (statically defined) SQL query
that can take advantage of the database’s indexing or other query
optimisation; if executed in-memory, the expression will by default
be interpreted as a quadratic nested loop. (Efficient in-memory im-
plementations of query expressions are also possible [16].)

name
Bert
Drew
Erik
Fred
Gina

Fehrenbach & Cheney (PPDP 2016/SCP)
Stolarek et al. (work in progress)

query { for (x <-- employees)
 where (x.salary > 50000)
 [(name = x.name)] }

Language-integrated
provenance

Effective Quotation
Relating approaches to language-integrated query

James Cheney Sam Lindley
The University of Edinburgh

jcheney@inf.ed.ac.uk,

Sam.Lindley@ed.ac.uk

Gabriel Radanne
ENS Cachan

gabriel.radanne@zoho.com

Philip Wadler
The University of Edinburgh

wadler@inf.ed.ac.uk

Abstract
Language-integrated query techniques have been explored in a
number of different language designs. We consider two differ-
ent, type-safe approaches employed by Links and F#. Both ap-
proaches provide rich dynamic query generation capabilities, and
thus amount to a form of heterogeneous staged computation, but to
date there has been no formal investigation of their relative expres-
siveness. We present two core calculi Eff and Quot, respectively
capturing the essential aspects of language-integrated querying us-
ing effects in Links and quotation in LINQ. We show via transla-
tions from Eff to Quot and back that the two approaches are equiv-
alent in expressiveness. Based on the translation from Eff to Quot,
we extend a simple Links compiler to handle queries.

Categories and Subject Descriptors D.3.1 [Formal Definitions
and Theory]; D.3.2 [Language Classifications]: Applicative (func-
tional) languages; H.2.3 [Languages]: Query languages

Keywords language-integrated query; effects; quotation

1. Introduction
Increasingly, programming involves coordinating data and compu-
tation among several layers, such as server-side, client-side and
database layers of a typical three-tier Web application. The inter-
action between the host programming language (e.g. Java, C#, F#,
Haskell or some other general-purpose language) running on the
server and the query language (e.g. SQL) running on the database
is particularly important, because the relational model and query
language provided by the database differ from the data structures
of most host languages. Conventional approaches to embedding
database queries within a general-purpose language, such as Java’s
JDBC, provide the programmer with precise control over perfor-
mance but are subject to typing errors and security vulnerabili-
ties such as SQL injection attacks [35]. Object-relational mapping
(ORM) tools and libraries, such as Java’s Hibernate, provide a pop-
ular alternative by wrapping database access and update in type-
safe object-oriented interfaces, but this leads to a loss of control
over the structure of generated queries, which makes it difficult to
understand and improve performance [14].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PEPM ’14, January 20–21, 2014, San Diego, CA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2619-3/14/01. . . $15.00.
http://dx.doi.org/10.1145/2543728.2543738

employees

dpt name salary

“Product” “Alex” 40,000
“Product” “Bert” 60,000
“Research” “Cora” 50,000
“Research” “Drew” 70,000
“Sales” “Erik” 200,000
“Sales” “Fred” 95,000
“Sales” “Gina” 155,000

tasks

emp tsk

“Alex” “build”

“Bert” “build”

“Cora” “abstract”

“Cora” “build”

“Cora” “call”

“Cora” “dissemble”

“Cora” “enthuse”

“Drew” “abstract”

“Drew” “enthuse”

“Erik” “call”

“Erik” “enthuse”

“Fred” “call”

“Gina” “call”

“Gina” “dissemble”

Figure 1. Sample Data

To avoid these so-called impedance mismatch problems, a num-
ber of language-integrated query techniques for embedding queries
into general-purpose programming languages have emerged, which
seek to reconcile the goals of type-safety and programmer control.
Two distinctive styles of language-integrated query have emerged:

• Employ some form of static analysis or type system to iden-
tify parts of programs that can be turned into queries (e.g.
Kleisli [38], Links [8], Batches for Java [36]).

• Extend a conventional language with explicit facilities for
quotation or manipulation of query code (e.g. LINQ [21],
Ur/Web [5], Database-Supported Haskell [13]).

Links is an example of the first approach. It uses a type-and-
effect system [32] to classify parts of programs as executable only
on the database, executable only on the host programming lan-
guage, or executable anywhere. For example, consider the em-
ployee and task data in tables in Figure 1. The following code

for (x <- employees)

where(x.salary > 50000)

[(name=x.name)]

retrieves the names of employees earning over $50,000, specif-
ically [“Bert”,“Drew”,“Erik”,“Fred”,“Gina”]. In Links, the
same code can be run either on the database (if employees and
tasks are tables) or in the host language. If executed as a query,
the interpreter generates a single (statically defined) SQL query
that can take advantage of the database’s indexing or other query
optimisation; if executed in-memory, the expression will by default
be interpreted as a quadratic nested loop. (Efficient in-memory im-
plementations of query expressions are also possible [16].)

name
Bert
Drew
Erik
Fred
Gina

Fehrenbach & Cheney (PPDP 2016/SCP)
Stolarek et al. (work in progress)

How to generalize?

query { for (x <-- employees)
 where (x.salary > 50000)
 [(name = x.name)] }

Language-integrated
view update

Effective Quotation
Relating approaches to language-integrated query

James Cheney Sam Lindley
The University of Edinburgh

jcheney@inf.ed.ac.uk,

Sam.Lindley@ed.ac.uk

Gabriel Radanne
ENS Cachan

gabriel.radanne@zoho.com

Philip Wadler
The University of Edinburgh

wadler@inf.ed.ac.uk

Abstract
Language-integrated query techniques have been explored in a
number of different language designs. We consider two differ-
ent, type-safe approaches employed by Links and F#. Both ap-
proaches provide rich dynamic query generation capabilities, and
thus amount to a form of heterogeneous staged computation, but to
date there has been no formal investigation of their relative expres-
siveness. We present two core calculi Eff and Quot, respectively
capturing the essential aspects of language-integrated querying us-
ing effects in Links and quotation in LINQ. We show via transla-
tions from Eff to Quot and back that the two approaches are equiv-
alent in expressiveness. Based on the translation from Eff to Quot,
we extend a simple Links compiler to handle queries.

Categories and Subject Descriptors D.3.1 [Formal Definitions
and Theory]; D.3.2 [Language Classifications]: Applicative (func-
tional) languages; H.2.3 [Languages]: Query languages

Keywords language-integrated query; effects; quotation

1. Introduction
Increasingly, programming involves coordinating data and compu-
tation among several layers, such as server-side, client-side and
database layers of a typical three-tier Web application. The inter-
action between the host programming language (e.g. Java, C#, F#,
Haskell or some other general-purpose language) running on the
server and the query language (e.g. SQL) running on the database
is particularly important, because the relational model and query
language provided by the database differ from the data structures
of most host languages. Conventional approaches to embedding
database queries within a general-purpose language, such as Java’s
JDBC, provide the programmer with precise control over perfor-
mance but are subject to typing errors and security vulnerabili-
ties such as SQL injection attacks [35]. Object-relational mapping
(ORM) tools and libraries, such as Java’s Hibernate, provide a pop-
ular alternative by wrapping database access and update in type-
safe object-oriented interfaces, but this leads to a loss of control
over the structure of generated queries, which makes it difficult to
understand and improve performance [14].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PEPM ’14, January 20–21, 2014, San Diego, CA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2619-3/14/01. . . $15.00.
http://dx.doi.org/10.1145/2543728.2543738

employees

dpt name salary

“Product” “Alex” 40,000
“Product” “Bert” 60,000
“Research” “Cora” 50,000
“Research” “Drew” 70,000
“Sales” “Erik” 200,000
“Sales” “Fred” 95,000
“Sales” “Gina” 155,000

tasks

emp tsk

“Alex” “build”

“Bert” “build”

“Cora” “abstract”

“Cora” “build”

“Cora” “call”

“Cora” “dissemble”

“Cora” “enthuse”

“Drew” “abstract”

“Drew” “enthuse”

“Erik” “call”

“Erik” “enthuse”

“Fred” “call”

“Gina” “call”

“Gina” “dissemble”

Figure 1. Sample Data

To avoid these so-called impedance mismatch problems, a num-
ber of language-integrated query techniques for embedding queries
into general-purpose programming languages have emerged, which
seek to reconcile the goals of type-safety and programmer control.
Two distinctive styles of language-integrated query have emerged:

• Employ some form of static analysis or type system to iden-
tify parts of programs that can be turned into queries (e.g.
Kleisli [38], Links [8], Batches for Java [36]).

• Extend a conventional language with explicit facilities for
quotation or manipulation of query code (e.g. LINQ [21],
Ur/Web [5], Database-Supported Haskell [13]).

Links is an example of the first approach. It uses a type-and-
effect system [32] to classify parts of programs as executable only
on the database, executable only on the host programming lan-
guage, or executable anywhere. For example, consider the em-
ployee and task data in tables in Figure 1. The following code

for (x <- employees)

where(x.salary > 50000)

[(name=x.name)]

retrieves the names of employees earning over $50,000, specif-
ically [“Bert”,“Drew”,“Erik”,“Fred”,“Gina”]. In Links, the
same code can be run either on the database (if employees and
tasks are tables) or in the host language. If executed as a query,
the interpreter generates a single (statically defined) SQL query
that can take advantage of the database’s indexing or other query
optimisation; if executed in-memory, the expression will by default
be interpreted as a quadratic nested loop. (Efficient in-memory im-
plementations of query expressions are also possible [16].)

name
Bert
Drew
Erik
Fred
Gina

Horn (work in progress)

query { for (x <-- employees)
 where (x.salary > 50000)
 [(name = x.name)] }

Language-integrated
view update

Effective Quotation
Relating approaches to language-integrated query

James Cheney Sam Lindley
The University of Edinburgh

jcheney@inf.ed.ac.uk,

Sam.Lindley@ed.ac.uk

Gabriel Radanne
ENS Cachan

gabriel.radanne@zoho.com

Philip Wadler
The University of Edinburgh

wadler@inf.ed.ac.uk

Abstract
Language-integrated query techniques have been explored in a
number of different language designs. We consider two differ-
ent, type-safe approaches employed by Links and F#. Both ap-
proaches provide rich dynamic query generation capabilities, and
thus amount to a form of heterogeneous staged computation, but to
date there has been no formal investigation of their relative expres-
siveness. We present two core calculi Eff and Quot, respectively
capturing the essential aspects of language-integrated querying us-
ing effects in Links and quotation in LINQ. We show via transla-
tions from Eff to Quot and back that the two approaches are equiv-
alent in expressiveness. Based on the translation from Eff to Quot,
we extend a simple Links compiler to handle queries.

Categories and Subject Descriptors D.3.1 [Formal Definitions
and Theory]; D.3.2 [Language Classifications]: Applicative (func-
tional) languages; H.2.3 [Languages]: Query languages

Keywords language-integrated query; effects; quotation

1. Introduction
Increasingly, programming involves coordinating data and compu-
tation among several layers, such as server-side, client-side and
database layers of a typical three-tier Web application. The inter-
action between the host programming language (e.g. Java, C#, F#,
Haskell or some other general-purpose language) running on the
server and the query language (e.g. SQL) running on the database
is particularly important, because the relational model and query
language provided by the database differ from the data structures
of most host languages. Conventional approaches to embedding
database queries within a general-purpose language, such as Java’s
JDBC, provide the programmer with precise control over perfor-
mance but are subject to typing errors and security vulnerabili-
ties such as SQL injection attacks [35]. Object-relational mapping
(ORM) tools and libraries, such as Java’s Hibernate, provide a pop-
ular alternative by wrapping database access and update in type-
safe object-oriented interfaces, but this leads to a loss of control
over the structure of generated queries, which makes it difficult to
understand and improve performance [14].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PEPM ’14, January 20–21, 2014, San Diego, CA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2619-3/14/01. . . $15.00.
http://dx.doi.org/10.1145/2543728.2543738

employees

dpt name salary

“Product” “Alex” 40,000
“Product” “Bert” 60,000
“Research” “Cora” 50,000
“Research” “Drew” 70,000
“Sales” “Erik” 200,000
“Sales” “Fred” 95,000
“Sales” “Gina” 155,000

tasks

emp tsk

“Alex” “build”

“Bert” “build”

“Cora” “abstract”

“Cora” “build”

“Cora” “call”

“Cora” “dissemble”

“Cora” “enthuse”

“Drew” “abstract”

“Drew” “enthuse”

“Erik” “call”

“Erik” “enthuse”

“Fred” “call”

“Gina” “call”

“Gina” “dissemble”

Figure 1. Sample Data

To avoid these so-called impedance mismatch problems, a num-
ber of language-integrated query techniques for embedding queries
into general-purpose programming languages have emerged, which
seek to reconcile the goals of type-safety and programmer control.
Two distinctive styles of language-integrated query have emerged:

• Employ some form of static analysis or type system to iden-
tify parts of programs that can be turned into queries (e.g.
Kleisli [38], Links [8], Batches for Java [36]).

• Extend a conventional language with explicit facilities for
quotation or manipulation of query code (e.g. LINQ [21],
Ur/Web [5], Database-Supported Haskell [13]).

Links is an example of the first approach. It uses a type-and-
effect system [32] to classify parts of programs as executable only
on the database, executable only on the host programming lan-
guage, or executable anywhere. For example, consider the em-
ployee and task data in tables in Figure 1. The following code

for (x <- employees)

where(x.salary > 50000)

[(name=x.name)]

retrieves the names of employees earning over $50,000, specif-
ically [“Bert”,“Drew”,“Erik”,“Fred”,“Gina”]. In Links, the
same code can be run either on the database (if employees and
tasks are tables) or in the host language. If executed as a query,
the interpreter generates a single (statically defined) SQL query
that can take advantage of the database’s indexing or other query
optimisation; if executed in-memory, the expression will by default
be interpreted as a quadratic nested loop. (Efficient in-memory im-
plementations of query expressions are also possible [16].)

name
Bert
Drew
Erik
Fred
Gina

 Vera

 "Vera"

Horn (work in progress)

query { for (x <-- employees)
 where (x.salary > 50000)
 [(name = x.name)] }

Language-integrated
view update

Effective Quotation
Relating approaches to language-integrated query

James Cheney Sam Lindley
The University of Edinburgh

jcheney@inf.ed.ac.uk,

Sam.Lindley@ed.ac.uk

Gabriel Radanne
ENS Cachan

gabriel.radanne@zoho.com

Philip Wadler
The University of Edinburgh

wadler@inf.ed.ac.uk

Abstract
Language-integrated query techniques have been explored in a
number of different language designs. We consider two differ-
ent, type-safe approaches employed by Links and F#. Both ap-
proaches provide rich dynamic query generation capabilities, and
thus amount to a form of heterogeneous staged computation, but to
date there has been no formal investigation of their relative expres-
siveness. We present two core calculi Eff and Quot, respectively
capturing the essential aspects of language-integrated querying us-
ing effects in Links and quotation in LINQ. We show via transla-
tions from Eff to Quot and back that the two approaches are equiv-
alent in expressiveness. Based on the translation from Eff to Quot,
we extend a simple Links compiler to handle queries.

Categories and Subject Descriptors D.3.1 [Formal Definitions
and Theory]; D.3.2 [Language Classifications]: Applicative (func-
tional) languages; H.2.3 [Languages]: Query languages

Keywords language-integrated query; effects; quotation

1. Introduction
Increasingly, programming involves coordinating data and compu-
tation among several layers, such as server-side, client-side and
database layers of a typical three-tier Web application. The inter-
action between the host programming language (e.g. Java, C#, F#,
Haskell or some other general-purpose language) running on the
server and the query language (e.g. SQL) running on the database
is particularly important, because the relational model and query
language provided by the database differ from the data structures
of most host languages. Conventional approaches to embedding
database queries within a general-purpose language, such as Java’s
JDBC, provide the programmer with precise control over perfor-
mance but are subject to typing errors and security vulnerabili-
ties such as SQL injection attacks [35]. Object-relational mapping
(ORM) tools and libraries, such as Java’s Hibernate, provide a pop-
ular alternative by wrapping database access and update in type-
safe object-oriented interfaces, but this leads to a loss of control
over the structure of generated queries, which makes it difficult to
understand and improve performance [14].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PEPM ’14, January 20–21, 2014, San Diego, CA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2619-3/14/01. . . $15.00.
http://dx.doi.org/10.1145/2543728.2543738

employees

dpt name salary

“Product” “Alex” 40,000
“Product” “Bert” 60,000
“Research” “Cora” 50,000
“Research” “Drew” 70,000
“Sales” “Erik” 200,000
“Sales” “Fred” 95,000
“Sales” “Gina” 155,000

tasks

emp tsk

“Alex” “build”

“Bert” “build”

“Cora” “abstract”

“Cora” “build”

“Cora” “call”

“Cora” “dissemble”

“Cora” “enthuse”

“Drew” “abstract”

“Drew” “enthuse”

“Erik” “call”

“Erik” “enthuse”

“Fred” “call”

“Gina” “call”

“Gina” “dissemble”

Figure 1. Sample Data

To avoid these so-called impedance mismatch problems, a num-
ber of language-integrated query techniques for embedding queries
into general-purpose programming languages have emerged, which
seek to reconcile the goals of type-safety and programmer control.
Two distinctive styles of language-integrated query have emerged:

• Employ some form of static analysis or type system to iden-
tify parts of programs that can be turned into queries (e.g.
Kleisli [38], Links [8], Batches for Java [36]).

• Extend a conventional language with explicit facilities for
quotation or manipulation of query code (e.g. LINQ [21],
Ur/Web [5], Database-Supported Haskell [13]).

Links is an example of the first approach. It uses a type-and-
effect system [32] to classify parts of programs as executable only
on the database, executable only on the host programming lan-
guage, or executable anywhere. For example, consider the em-
ployee and task data in tables in Figure 1. The following code

for (x <- employees)

where(x.salary > 50000)

[(name=x.name)]

retrieves the names of employees earning over $50,000, specif-
ically [“Bert”,“Drew”,“Erik”,“Fred”,“Gina”]. In Links, the
same code can be run either on the database (if employees and
tasks are tables) or in the host language. If executed as a query,
the interpreter generates a single (statically defined) SQL query
that can take advantage of the database’s indexing or other query
optimisation; if executed in-memory, the expression will by default
be interpreted as a quadratic nested loop. (Efficient in-memory im-
plementations of query expressions are also possible [16].)

name
Bert
Drew
Erik
Fred
Gina

 Vera

 "Vera"

Horn (work in progress)

Very subtle in
general.

Verification?

Systems provenance
& security

Office of Personnel Management breach (2015)

DARPA Transparent Computing ($60m,2015-2019)

General idea

Kernel

P1 P2 P3

Provenance recorder

RDBMSDB

Challenge
• The amount of "normal" system data is massive (up to GBs/

day; graphs with millions or billions of nodes/edges)

• while attacks are ~ 50 nodes/edges.

• We don't know what attacks "look like" in advance

• We usually don't have annotated data

• Nor can we expect future attacks to be similar to previously seen
ones

• We need unsupervised techniques that can find sparse
anomalies in large property graphs

• this appears to be an open problem in general

• Currently exploring pattern mining

Berrada et al., work in progress

Provenance expressiveness
benchmarking

• How do we know correct/sufficient information is recorded?

• How do different recording systems differ?

• Idea: Benchmarking recording systems to observe & classify their
behavior automatically (at least for small examples)

Methodology

The automation is not yet implemented, most of the steps are still done
manually until now
The benchmarks are classified following the structure of the unique
patterns.

Sheung Chi Chan (Univ. of Edinburgh) Provenance Benchmarking June 23, 2017 8 / 17

Chan et al., TaPP 2017

Configuration
languages

• High-level configuration languages are increasingly
popular ("DevOps")

• Chef, Ansible, Puppet

• Configuration errors can have be hard to spot, yet
cause massive damage/losses

• (e.g. $150M cost for recent four hour Amazon outage)

• First step: understanding semantics of configuration
languages such as Puppet (Fu et al, ECOOP '17)

• Next: formalizing and implementing provenance tracking
for such languages (MSR studentship)

Overview of configuration tasks and problems

• Large data centers;

• Manual configuration is
difficult to manage and
error-prone

Misconfigurations can potentially impact many users and cause
big losses

I The failure of Amazon EC2 in April 2011 lasted many days and
some customers lost data

I Most recently four hour outage estimated to cost Amazon
customers $150-$160 milion

Mechanizing the
metatheory of SQL

with nulls
Project funded by NCSC/VeTSS

August 2017-March 2018
 W. Ricciotti and J. Cheney

Semantics of SQL with
nulls: quiz

SELECT R.A FROM R
WHERE R.A NOT IN (
 SELECT S.A FROM S
)

A
1

null

R

A
null

S
SELECT R.A FROM R
EXCEPT
SELECT S.A FROM S

≡?

Semantics of SQL with
nulls: quiz

SELECT R.A FROM R
WHERE R.A NOT IN (
 SELECT S.A FROM S
)

A
1

null

R

A
null

S

{}

This is because "NOT IN" uses 3-valued semantics...

X

SELECT R.A FROM R
EXCEPT
SELECT S.A FROM S

{1}

≡?

Semantics of SQL with
nulls: quiz

SELECT R.A FROM R
WHERE R.A NOT IN (
 SELECT S.A FROM S
)

A
1

null

R

A
null

S

{}

This is because "NOT IN" uses 3-valued semantics...

X

SELECT R.A FROM R
EXCEPT
SELECT S.A FROM S

{1}

This means DB query
optimizers tend to be

VERY conservative

≡?

What is the semantics
of SQL?

• It is one of the most widely used and successful
"declarative" languages

• There is even a standard!

• However, its "standard" semantics is (many many
pages of) formal-ish English

• To date there is no formal semantics for all of SQL

• Handling complications of "full" SQL such as multiset
semantics, grouping, aggregation, nulls

• The "awkward squad" of the database world.

Wouldn't it be nice to
formalize that?

(using homotopy type theory, obviously?)

HoTTSQL: Proving Query Rewrites

with Univalent SQL Semantics

Shumo Chu, Konstantin Weitz, Alvin Cheung, Dan Suciu

University of Washington, USA

{chushumo, weitzkon, akcheung, suciu}@cs.washington.edu

http://cosette.cs.washington.edu

Abstract

Every database system contains a query optimizer that per-
forms query rewrites. Unfortunately, developing query opti-
mizers remains a highly challenging task. Part of the chal-
lenges comes from the intricacies and rich features of query
languages, which makes reasoning about rewrite rules dif-
ficult. In this paper, we propose a machine-checkable de-
notational semantics for SQL, the de facto language for in-
teracting with relational databases, for rigorously validating
rewrite rules. Unlike previously proposed semantics that are
either non-mechanized or only cover a small amount of SQL
language features, our semantics covers all major features
of SQL, including bags, correlated subqueries, aggregation,
and indexes. Our mechanized semantics, called HoTT SQL,
is based on K-Relations and homotopy type theory, where
we denote relations as mathematical functions from tuples to
univalent types. We have implemented HoTT SQL in Coq,
which takes only fewer than 300 lines of code, and have
proved a wide range of SQL rewrite rules, including those
from database research literature (e.g., magic set rewrites)
and real-world query optimizers (e.g., subquery elimina-
tion), where several of them have never been previously
proven correct. In addition, while query equivalence is gen-
erally undecidable, we have implemented an automated de-
cision procedure using HoTT SQL for conjunctive queries:
a well-studied decidable fragment of SQL that encompasses
many real-world queries.

CCS Concepts • Information systems→Database query
processing; Structured Query Language; • Theory of
computation→ Program verification

Keywords SQL, Formal Semantics, Homotopy Types, Equiv-
alence

1. Introduction

From purchasing plane tickets to browsing social network-
ing websites, we interact with database systems on a daily
basis. Every database system consists of a query optimizer
that takes in an input query and determines the best program,
also called a query plan, to execute in order to retrieve the
desired data. Query optimizers typically consist of two com-
ponents: a query plan enumerator that generates query plans
that are semantically equivalent to the input query, and a plan
selector that chooses the optimal plan from the enumerated
ones to execute based on a cost model.

The key idea behind plan enumeration is to apply rewrite

rules that transform a given query plan into another one that,
hopefully, has a lower cost than the input. While numerous
plan rewrite rules have been proposed and implemented, un-
fortunately designing such rules remains a highly challeng-
ing task. For one, rewrite rules need to be semantically pre-

serving, i.e., if a rule transforms query plan Q into Q′, then
the results (i.e., the relation) returned from executing Q must
be the same as those returned from Q′, and this has to hold
for all possible input database schemas and instances. Ob-
viously, establishing such a proof for any non-trivial query
rewrite rule is not an easy task.

Coupled with that, the rich language constructs and subtle
semantics of SQL, the de facto programming language used
to interact with relational database systems, only makes the
task even more difficult. As a result, while various rewrite
rules have been proposed and studied extensively in the data
management research community [39, 42, 43, 50], to the best
of our knowledge only some simple ones have been formally
proven to be semantic preserving. This has unfortunately led
to dire consequences as incorrect query results have been
returned from widely-used database systems due to unsound
rewrite rules, and such bugs can often go undetected for
extended periods of time [22, 49, 51].

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from Permissions@acm.org.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

PLDI’17, June 18–23, 2017, Barcelona, Spain

ACM. 978-1-4503-4988-8/17/06...$15.00

http://dx.doi.org/10.1145/3062341.3062348

510

PLDI '17

Handles most of the "SQL
awkward squad"

• "our semantics covers all major features of SQL, including
bags, correlated subqueries, aggregation, and indexes"

• combines HoTT with K-relation semantics used for DB
provenance, to dramatically simplify query equivalence
proofs

• BUT WAIT....

A tuple t ∈ R1 EXCEPT R2 retains its multiplicity in R1

if its multiplicity in R2 is not 0 (since if !R2" t ̸= 0, then
∥!R2" t∥ → 0 = 1).

Summation (
∑

) Given A : U and B : A→ U ,
∑

x:A B(x)
is a dependent pair type (

∑
) and is used to denote projec-

tion. For example:

!SELECT k FROM R" ! λ t.
∑

t′:Tuple σR

∥

∥!k" t′ = t
∥

∥× !R" t′

For a tuple t in the result of this projection query, its car-
dinality is the summation of the cardinalities of all tuples of
schema σA that also has the same value on column k with t.
Here ∥!k" t′ = t∥ equals to 1 if t and t′ have same value on
k, otherwise it equals to 0. Unlike K-Relations, using uni-
valent types allow us to support summation over an infinite
domain and evaluate expressions such as the projection de-
scribed above.

In general, proving rewrite rules using UNINOMIAL

allows us to use powerful automatic proving techniques
such as associative-commutative term rewriting in semi-ring
structures (recall that U is a semi-ring) similar to the ring

tactic [3] and Nelson-Oppen algorithm on congruence clo-
sure [45]. Both mitigate our proof burden.

3.4 Derived HoTTSQL Constructs

HoTT SQL supports additional SQL features including
grouping, integrity constraints, and indexes. All such fea-
tures are commonly utilized in query optimization. These
features are supported by automatic syntactic rewrites in
HoTT SQL.

Grouping Grouping is a widely-used relational operator
that projects rows with a common value into separate groups,
and applies an aggregation function (e.g., average) to each
group. In SQL, this is supported via the GROUP BY operator
that takes in the attribute names to form groups. HoTT SQL
supports grouping by de-sugaring GROUP BY using a cor-
related subquery that returns a single attribute relation, and
applying aggregation function to the resulting relation [6].
Below is an example of such a rewrite expressed using SQL,
where α represents any of the standard SQL aggregates:

SELECT k AS k, α(x.a) AS a1 FROM R x GROUP BY x.k

rewrites to ⇓

SELECT DISTINCT k AS k,
α(SELECT x.a AS a FROM R x WHERE x.k = y.k) AS a1

FROM R y

We will illustrate grouping in rewrite rules in Sec. 5.1.2.

Integrity Constraints Integrity constraints are used in
database systems and facilitate various semantics-based
query optimizations [20]. HoTT SQL supports two impor-
tant integrity constraints: keys and functional dependencies,
again through syntactic rewrites.

A key constraint requires an attribute to have unique val-
ues among all tuples in a relation. In HoTT SQL, declaring

an attribute a as a key in relation R is rewritten to the fol-
lowing assertion:

key k(R);

rewrites to ⇓

SELECT * FROM R x =
SELECT x.* FROM R x, R y WHERE x.k = y.k

To see why this rewrite satisfies the key constraint, note
that k is a key in R if and only if R is equal to its self-join
on k after converting the result into a set. Intuitively, if k
is a key, then self-join of R on k will keep all the tuples of
R with each tuple’s multiplicity unchanged. Conversely, if
some value of k occurs n > 1 times in R, then the second
query increases the multiplicity of all those tuples by n, thus
the two queries are not equivalent.

Functional Dependencies Keys are used in defining func-
tional dependencies and indexes. A functional dependency
constraint from attribute a to b requires that for any two tu-
ples t1 and t2 in R, (t1.a = t2.a) → (t1.b = t2.b) This is
equivalent to saying that a is a key in the projection of R on
the attributes a, b:

fd a -> b in R;

rewrites to ⇓

key a(DISTINCT SELECT x.a AS a, x.b AS b FROM R x);

Index An index on an attribute a is a data structure that
speeds up the retrieval of tuples with a given value of a [23,
Ch. 8].

To reason about rewrite rules that use indexes, we fol-
low the idea that an index can be treated as a logical relation
rather than physical data structure [55]. Since defining in-
dex as a relation requires a unique identifier of each tuple
(analogous to a pointer to each tuple in the physical imple-
mentation of an index in database systems), we define index
as a HoTT SQL query that projects on the a key of the re-
lation and the index attribute. For example, if k is a key of
relation R, an index i of R on attribute a can be defined as:

index i(a,R);
rewrites to ⇓

i := SELECT x.k AS k, x.a AS a FROM R x

Here := means by definition (rather than proved). In Sec-
tion 5.1.4, we show example rewrite rules that utilize indexes
that are commonly used in query optimizers.

3.5 Limitations

HoTT SQL does not currently support ORDER BY. ORDER BY

is usually used with LIMIT n, e.g., output the first n tuples
in a sorted relation. In addition, we currently do not support
NULLs (i.e., 3-valued logic), and leave them as future work.

4. Translating HoTT SQL to UNINOMIAL

We translate HoTT SQL to UNINOMIAL by first compil-
ing HoTT SQL to an intermediate language HoTT IR. In

516

Meanwhile, back at the
ranch...

A Formal Semantics of SQL Queries, Its Validation, and

Applications

Paolo Guagliardo

School of Informatics

University of Edinburgh

pguaglia@inf.ed.ac.uk

Leonid Libkin

School of Informatics

University of Edinburgh

libkin@inf.ed.ac.uk

ABSTRACT
While formal semantics of theoretical languages underlying
SQL have been provided in the past, they all made sim-
plifying assumptions ranging from changes in the syntax to
omitting bag semantics and nulls. This situation is reminis-
cent of what happens in the field of programming languages,
where semantics of formal calculi underlying main features
of languages are abundant, but formal semantics of real lan-
guages that people use are few and far between.

We take the basic class of SQL queries – essentially
SELECT-FROM-WHERE queries with subqueries, set/bag
operations, and nulls – and define a formal semantics for it,
without any departures from the real language. Already this
fragment requires decisions related to the data model and
handling variable names that are normally disregarded by
simplified semantics. To justify our choice of the semantics,
we validate it experimentally on a large number of randomly
generated queries and databases.

We give two applications of the semantics. One is the first
formal proof of the equivalence of basic SQL and relational
algebra that extends to bag semantics and nulls. The other
application looks at the 3-valued logic employed by SQL
that is universally assumed to be necessary to handle nulls.
We prove however that this is not so, as three-valued logic
does not add power: every SQL query in our fragment can
be evaluated under the usual two-valued Boolean semantics
of conditions.

1. INTRODUCTION
Providing a formal semantics of a language is a major task

in programming language research [17, 19, 26]. It enables
one to formally reason about languages, verify correctness
of programs, and it becomes an important tool in design-
ing language extensions as well as new languages. Given
the complexities of real-life languages, it is very common to
abstract the core of a language by means of a well-behaved
theoretical calculus and study its semantics. Providing the
semantics of a real language is typically a much harder task

This work is licensed under the Creative Commons Attribution-

NonCommercial-NoDerivatives 4.0 International License. To view a copy

of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For

any use beyond those covered by this license, obtain permission by emailing

info@vldb.org.

Proceedings of the VLDB Endowment, Vol. 10, No. 8

Copyright 2017 VLDB Endowment 2150-8097/17/04.

as it needs to account for all its idiosyncrasies. This has
been done for several languages [1, 13, 18, 25, 28, 29]; the
di↵erence is that to describe such a formal semantics one
needs a book, rather than a paper (or sometimes even a
book to explain what the first book said [24]).
When it comes to the main query language used by re-

lational DBMSs – SQL – we have the Standard [20], but it
cannot serve as a formal semantics, as it is written in natu-
ral language. In fact, it is well known that di↵erent vendors
of RDBMSs interpret various points of the Standard di↵er-
ently (see, e.g., [4, 21]). A natural language description does
not lend itself to proper formal reasoning that is necessary
to derive language equivalences and optimization rules.
Given the problems of using the Standard as the definition

of formal semantics, there have been attempts to formalize
SQL. Several of them go via translating SQL queries into re-
lational algebra (RA), for which formal semantics has been
properly defined. Database texts (e.g., [2, 30, 14]) of course
provide examples of SQL-to-RA translations, but at an in-
formal level. Formal translations did appear [6, 32] but they
imposed rather strong restrictions: for example, queries in-
terpreted under set semantics of queries, absence of nulls,
disallowed subqueries in FROM, etc.
A di↵erent line of work attempted to provide a formal se-

mantics of SQL directly, but all such attempts have fallen
short of the real SQL. An early paper [27] looked only at set
semantics, and the more recent and rigorous formalization
[7, 8] – designed to prove equivalences of queries with the
help of a proof assistant – did not include null values and
used a reconstruction of the language, thus not accounting
for some of the trickier aspects of variable binding. Other
attempts were made in the programming languages commu-
nity [23, 33] but they too restricted the language signifi-
cantly: for example, [23] works essentially with RA, rather
than SQL, and set semantics, while [33] disallows nested
subqueries in both FROM and WHERE and uses list semantics.
To see why restrictions such as the absence of nulls or

set semantics deviate significantly from the behavior of real
language, and could even lead to wrong equivalences among
queries, we look at two simple examples.

Example 1. In standard literature translations from SQL
to RA, one converts IN and NOT IN subqueries into EXISTS
and NOT EXISTS subqueries. But such conversions do not
always work in real life. To see this, take two relations R

and S with a single attribute A and compute their di↵erence
R� S. The first option is to use a NOT IN subquery:

Q1: SELECT R.A FROM R WHERE R.A NOT IN (
SELECT S.A FROM S)

VLDB '17

with nulls!

Our project
• Formalize Guagliardo & Libkin semantics of (subset

of) SQL with nulls...

• using "conventional" Coq formalization approach, at least
initially

• Try to reconcile with Chu et al.'s HoTTSQL
approach

• also: consider the "adequacy" of HoTT / K-relation
interpretation of SQL

• Goal: first full formalization of "real" SQL with nulls

• + verification or counterexamples to equivalences

Conclusion
• My (group's) research covers a range of topics

• Programming languages + DB = language integrated query

• Security + DB = provenance mining

• Verification + DB = mechanizing metatheory of SQL

• Long-term vision: verified trustworthy
database systems

• that provide answers that are correct (queries executed
correctly)

• and trustworthy (provenance/explanation of how
results were derived)

