
Formal Verification of a Constant-Time
Preserving C Compiler

joint work with Gilles Barthe, Benjamin Grégoire, Rémi Hutin,
Vincent Laporte, David Pichardie and Alix Trieu

Sandrine Blazy

Verified Software workshop, Cambridge, 2019-09-25

The CompCert formally verified compiler

 Compiler + proof that the compiler does not introduce bugs

CompCert, a moderately optimising C compiler usable for critical embedded
software

• Fly-by-wire software, Airbus A380, FCGU

We prove the following semantic preservation property:

Behaviours = termination / divergence / undefined («going wrong»)  
+ (finite or infinite) trace of I/O operations performed

For all source programs S and compiler-generated code C,
if the compiler generates machine code C from source S,
without reporting a compilation error,  
and S has a safe behaviour, 
then «C behaves like S».

2

CompCert: 1 compiler, 10 languages and 17
semantic-preservation proofs

Clight C#minor

CminorCminorSelRTL

LTL LTLin Linear

MachASM

type elimination

spilling, reloading

calling conventions

stack allocation

of «&»variables

instruction

selection

register

allocation (IRC)

linearisation

of the CFG

layout of

stack frames

asm code

generation

CFG construction

expr. decomp.

Optimisations: constant prop., CSE, tail calls,
(LCM), (software pipelining) 

(instruction scheduling)

3

CompCert: 1 compiler, 10 languages and 17
semantic-preservation proofs

Clight C#minor

CminorCminorSelRTL

LTL LTLin Linear

MachASM

3

Operational semantics

S t S′� S t * S′�

S t n S′� S t + S′� S t ∞

Proof methodology: forward simulation

Ingredients

• simulation relation between source and target states

•measure m from source states to a well-founded set

≈

4

s1

≈

s2

σ1 σ2

≈

+

t

t

s1

≈

s2

σ1

≈

ε

with 0 ≤ m(s2) < m(s1)

or

The cryptographic constant-time
discipline

5

Cryptographic constant-time programming

6

•Protect implementations against timing and cache side-channel attacks	  

•Cryptographic constant-time programs do not:

• branch on secrets

• perform memory accesses that depend on secrets 

• There are constant-time implementations of many cryptographic
algorithms: AES, DES, RSA, etc.

unsigned not_constant_time (unsigned x, unsigned y, bool secret)
{ if (secret) return y; else return x; }

Cryptographic constant-time programming

6

•Protect implementations against timing and cache side-channel attacks	  

•Cryptographic constant-time programs do not:

• branch on secrets

• perform memory accesses that depend on secrets 

• There are constant-time implementations of many cryptographic
algorithms: AES, DES, RSA, etc.

unsigned not_constant_time (unsigned x, unsigned y, bool secret)
{ if (secret) return y; else return x; }

unsigned constant_time1 (unsigned x, unsigned y, bool secret)
{ return x + (y - x) * secret; }

Cryptographic constant-time programming

6

•Protect implementations against timing and cache side-channel attacks	  

•Cryptographic constant-time programs do not:

• branch on secrets

• perform memory accesses that depend on secrets 

• There are constant-time implementations of many cryptographic
algorithms: AES, DES, RSA, etc.

unsigned not_constant_time (unsigned x, unsigned y, bool secret)
{ if (secret) return y; else return x; }

unsigned constant_time1 (unsigned x, unsigned y, bool secret)
{ return x + (y - x) * secret; }

unsigned constant_time2 (unsigned x, unsigned y, bool secret)
{ return x ^ ((y ^ x) & (-(unsigned)secret)); }

Cryptographic constant-time: static verification

7

• 	Several verification tools have been built and used for checking that
popular libraries follow the cryptographic constant-time discipline. 

•But checking low-level implementations is tricky. It makes:

• the analysis work harder (e.g. alias analysis),

• the results of the analysis difficult to understand for programmers. 

• Verification at source level is achievable1, but it needs to be combined with
a secure compiler.

∀P, 𝖼𝗈𝗇𝗌𝗍𝖺𝗇𝗍𝖳𝗂𝗆𝖾(P) ? 𝖼𝗈𝗇𝗌𝗍𝖺𝗇𝗍𝖳𝗂𝗆𝖾(𝖼𝗈𝗆𝗉𝗂𝗅𝖾(P))

1. S.Blazy, D.Pichardie, A.Trieu. Verifying constant-time implementations by abstract interpretation. Journal of Computer Security. 01/2019.

Compilers vs. cryptographic constant-time

8

Compilers vs. cryptographic constant-time

8

Compilers vs. cryptographic constant-time

8

S&P’2013

EuroCrypt 2016

A CompCert compiler that
preserves cryptographic
constant-time

Our contributions

• 	A machine-checked proof that a mildly modified version of the CompCert
compiler preserves cryptographic constant-time  

•Proof-engineering challenge: how to turn an existing formally-verified
compiler into a formally-verified secure compiler? 
(CompCert: 100,000 lines of Coq) 

•A proof toolkit for proving security preservation

10

Methodology and challenges

•Smooth proof methodology to prove that CompCert preserves
cryptographic constant-time (CT)

•Reuse as much as possible existing CompCert simulation proof
scripts

• Follow the motto  
« simple transformations should be easy to prove CT-preserving »

11

∀P, 𝖼𝗈𝗇𝗌𝗍𝖺𝗇𝗍𝖳𝗂𝗆𝖾(P) ? 𝖼𝗈𝗇𝗌𝗍𝖺𝗇𝗍𝖳𝗂𝗆𝖾(𝖼𝗈𝗆𝗉𝗂𝗅𝖾(P))

Security property: cryptographic constant-time

• 	We enrich the CompCert traces of events with two kinds of leakages:
• the truth value of a condition,

• a pointer representing the address of

• either a memory access

• or a called function.

•We adapt consistently the semantics and still note the new judgement.

•Event erasure: from we can extract

• the compile-only judgement and

• the leak-only judgement .

•Program leakage is observed by the semantics.

S t S′�
S t S′�

S t
𝖼𝗈𝗆𝗉 S′�

S t
𝗅𝖾𝖺𝗄 S′�

𝗅𝖾𝖺𝗄

12

Security property: cryptographic constant-time

• Involves two executions of a program : need to adapt CompCert
simulations diagrams

• = two initial states share the same values for public inputs of , but
differ on the values of secret inputs of . 

• 	A program is constant-time secure w.r.t. if for two initial states and
 of such that holds, then both leak-only executions starting

from and observe the same leakage.

•We also provide alternative definitions (avoiding reasoning on infinite
executions) and prove their equivalence with the previous property when
languages are equipped with a well-formed same-point relation (where
control flow is explicit).

P

φ(si, s′�i) P
P

P φ si
s′ �i P φ(si, s′�i)

si s′ �i

≡

13

Modelling the same-point relation s ≡ s′�

• The relation captures the fact that program positions match in both states
(including stack pointers).

•We also capture that memory-block allocation histories match.

• In the CompCert languages, the relation satisfies the 4 following properties. 
 
 
 
 
 
 
 
 

• These properties are useful to prove security property equivalences and
soundness of the forthcoming proof methods.

14

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

1:8 Anon.

a , a0 initial states of P =) a ⌘ a0(1) a �nal state of P
a ⌘ a0

=) a0 �nal state of P (2)

a
t�!b

a0
t�!b 0

a ⌘ a0
=) b ⌘ b 0(3)

a
t�!b

a0
t 0�!b 0

a ⌘ a0
=) |t | = |t 0 | (4)

Fig. 3. Expected properties of the same-point relation ⌘

point. It ensures that the leakage reveals enough information to characterize the control-�ow of
the execution. Property 4 means that if both states a and a0 are at a same program point, then both
steps from a and a0 leak the same amount of information (hence the same size for both traces). This
prevents from building an attacker model in which the mere absence of a leakage reveals some
information. We do not require the traces to be equal because t and t 0 may not depend only on
control-�ow position. In the special case where t is empty, this property ensure that t 0 is empty
too. This property is useful in our methodology and easily satis�ed by all CompCert semantics.
Another remark is that this property subsumes the non-cancelling assumption made by [Barthe
et al. 2018], i.e., that the equality of the leakages of two executions implies the pairwise equality of
the leakages of each of their steps. This is a direct consequence of our property.

When such same-point relations exist, they are all consequences of the most informative relation
(written ⌘strongest): two states are related if and only if they are reachable from two initial states
within the same number of steps and producing the same trace. Although the relation ⌘strongest
is convenient to prove general properties of ⌘-related states, it is generally helpful to de�ne a
same-point relation for each language in terms of the control-�ow components of the execution
states. We illustrate that the ⌘ relation is consequence of the ⌘strongest one in the following lemma.

L���� 3.2. For all ⌘ relation, we have ⌘strongest ✓ ⌘.

P����. Let s and s 0 such that s ⌘strongest s 0. By de�nition, there exist initial states si and s 0i ,
number of steps n and trace t such that si

t�!n s and s 0i
t�!n s 0. We show by induction on n that s ⌘ s 0.

If n = 0, then s = si and s 0 = s 0i , and therefore s ⌘ s 0 by property 1.
Otherwise, there exist states sn�1 and s 0n�1, traces t1, t2, t

0
1, t

0
2 such that si

t1�! n�1 sn�1
t2�! s ,

s 0i
t 01�!n�1 s 0n�1

t 02�! s 0 and t = t1 ++ t2 = t 01 ++ t
0
2. By induction hypothesis we have that sn�1 ⌘ s 0n�1.

By Property 4, we have that |t2 | = |t 02 |. We thus have necessarily that t1 = t 01 and t2 = t 02. Hence,
s ⌘ s 0 by Property 3. ⇤

Given a same-point relation, we characterize in two supplementary ways constant-time security,
and show that our three de�nitions are pairwise equivalent. Our two following de�nitions are
more restricted than CTS, but they facilitate our correctness proofs.

De�nition 3.3 (CTSn). Let P be a safe program. P is CTSn w.r.t. � if the following holds. Let si
and s 0i be initial states of P such that �(si , s 0i) holds. If the leak-only execution of P from si (resp. s 0i)
reaches state s (resp. s 0) in a same number of steps with a leakage trace t (resp. t 0), then both traces
(hence both leaks) are the same. More formally, for all n, s, s 0, t , t 0 such that si

t�!n s and s 0i
t 0�!n s 0,

then t = t 0.

L���� 3.4. CTSn implies CTS.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

Method #1: leakage preservation

•Simplest situation: a program transformation preserves leakage.

• Traditional CompCert forward-simulation diagram

• Forward simulation implies behaviour preservation (in this setting)

1515

s1

≈

s2

σ1 σ2

≈

+

t

t

s1

≈

s2

σ1

≈

ε

with 0 ≤ m(s2) < m(s1)

or

A palette of proof methods

1616

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Formal Verification of a Constant-Time Preserving C Compiler 1:15

Compiler pass Diagram used Explanation on the pass
Cshmgen Trace preservation Type elaboration, simpli�cation of control
Cminorgen Memory injection Stack allocation
Selection Leakage erasing Recognition of operators and addr. modes
RTLgen Trace preservation Generation of CFG and 3-address code
Tailcall Trace preservation Tailcall recognition
Inlining Trace transformation Function inlining
Renumber Trace preservation Renumbering CFG nodes
ConstProp Trace transformation Constant propagation
CSE Leakage erasing Common subexpression elimination
Deadcode Leakage erasing Redundancy elimination
Allocation Leakage erasing Register allocation
Tunneling Leakage erasing Branch tunneling
Linearize CT-simulation Linearization of CFG
CleanupLabels Trace preservation Removal of unreferenced labels
Debugvar Trace preservation Synthesis of debugging information
Stacking Memory injection Laying out stack frames
Asmgen Trace transformation Emission of assembly code

Table 1. Compilation passes and how we prove them constant-time preserving

trace transformations. This table shows that thanks to our proof techniques, most transformations
were relatively convenient to adapt, and heavily bene�t from existing proof scripts.

5.2 Leakage Preservation
The �rst case we consider is one where leakages are preserved by compilation. This case is ac-
tually the one covered by compiler correctness and can thus leverage directly the many already
existing lemmas and theorems of CompCert. It is directly stated and proved on the instrumented
semantics !.

T������ 5.2 (C������������ �������� ������������ �� ������� ������������). Let S be
a safe source program and T be the target compiled program. If S is constant-time w.r.t. � then T
is constant-time w.r.t. �, provided that the relation ⇡ between program states is a trace preserving
simulation (w.r.t. to !) as de�ned in Figure 2.

P����. First we observe that such simulation implies that the leak-only semantics satis�es a
leak-preserving simulation. This simulation is the classic forward simulation used in CompCert
and we know it implies behavior preservation. Hence source and target programs share the same
leakages. As a consequence, CTS at source level implies CTS at target level. ⇤

While this simulation is quite basic and restrictive, it is still satis�ed by a few transformation
passes (6 among 17, see Table 1), including passes that do not optimize conditional branches, nor
memory accesses. These passes are then especially easy to adapt to constant-time preservation
since we can reuse the same proof script as for the original simulation proof. This is a great time
saver for a pass like RTLgen (which transforms a structured Cminor program into a RTL control-�ow
graph) because its soundness proof is quite verbose. However, many optimizations do not preserve
leakages. Indeed, optimizations such as common subexpression elimination (CSE) or constant

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

Method #1 used 6 times  
among 17 proofs

Method #2: leakage erasing simulation

•Some optimisations erase leakages  
(e.g. a memory load is replaced by a load from a register).

• They are still constant-time preserving as long as their decision to erase this
information does not depend on secret values.

•We slightly adapt the forward-simulation diagram.

1717

≈0τ

 or (and is leak only)τ = t τ = ε t
The previous proof script

requires very few changes!

s1

≈n

s2

σ1 σ2

≈n’

n

t
s1 s2

σ1

ε

with 0 ≤ m(s2) < m(s1)

or ≈n ≈0

A palette of proof methods

1818

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Formal Verification of a Constant-Time Preserving C Compiler 1:15

Compiler pass Diagram used Explanation on the pass
Cshmgen Trace preservation Type elaboration, simpli�cation of control
Cminorgen Memory injection Stack allocation
Selection Leakage erasing Recognition of operators and addr. modes
RTLgen Trace preservation Generation of CFG and 3-address code
Tailcall Trace preservation Tailcall recognition
Inlining Trace transformation Function inlining
Renumber Trace preservation Renumbering CFG nodes
ConstProp Trace transformation Constant propagation
CSE Leakage erasing Common subexpression elimination
Deadcode Leakage erasing Redundancy elimination
Allocation Leakage erasing Register allocation
Tunneling Leakage erasing Branch tunneling
Linearize CT-simulation Linearization of CFG
CleanupLabels Trace preservation Removal of unreferenced labels
Debugvar Trace preservation Synthesis of debugging information
Stacking Memory injection Laying out stack frames
Asmgen Trace transformation Emission of assembly code

Table 1. Compilation passes and how we prove them constant-time preserving

trace transformations. This table shows that thanks to our proof techniques, most transformations
were relatively convenient to adapt, and heavily bene�t from existing proof scripts.

5.2 Leakage Preservation
The �rst case we consider is one where leakages are preserved by compilation. This case is ac-
tually the one covered by compiler correctness and can thus leverage directly the many already
existing lemmas and theorems of CompCert. It is directly stated and proved on the instrumented
semantics !.

T������ 5.2 (C������������ �������� ������������ �� ������� ������������). Let S be
a safe source program and T be the target compiled program. If S is constant-time w.r.t. � then T
is constant-time w.r.t. �, provided that the relation ⇡ between program states is a trace preserving
simulation (w.r.t. to !) as de�ned in Figure 2.

P����. First we observe that such simulation implies that the leak-only semantics satis�es a
leak-preserving simulation. This simulation is the classic forward simulation used in CompCert
and we know it implies behavior preservation. Hence source and target programs share the same
leakages. As a consequence, CTS at source level implies CTS at target level. ⇤

While this simulation is quite basic and restrictive, it is still satis�ed by a few transformation
passes (6 among 17, see Table 1), including passes that do not optimize conditional branches, nor
memory accesses. These passes are then especially easy to adapt to constant-time preservation
since we can reuse the same proof script as for the original simulation proof. This is a great time
saver for a pass like RTLgen (which transforms a structured Cminor program into a RTL control-�ow
graph) because its soundness proof is quite verbose. However, many optimizations do not preserve
leakages. Indeed, optimizations such as common subexpression elimination (CSE) or constant

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

Method #2 used 5 times  
among 17 proofs

Step-counting simulation ≈n

•We make sure that the prediction of n does not depend on secrets by
requiring it will only depend on the control states.

•Given a same-point relation , we define a notion of same-point
congruence.

≡ ≈n

1919

⇒
s

≈n

σ

s’

σ’

≈n’ n = n’

Method #3: Leak-transforming by memory-
injection simulation

•Some transformations alter the memory layout.

• Leaky pointers are not preserved.

•Still, there exists a leakage transformation that maps the source leakage
trace to the target leakage trace.

•Our solution:

•Use of step-counting simulations (with more advanced counting)

• and explicit memory injections  
(tracking how leaky pointers are transformed)

2020

A palette of proof methods

2121

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Formal Verification of a Constant-Time Preserving C Compiler 1:15

Compiler pass Diagram used Explanation on the pass
Cshmgen Trace preservation Type elaboration, simpli�cation of control
Cminorgen Memory injection Stack allocation
Selection Leakage erasing Recognition of operators and addr. modes
RTLgen Trace preservation Generation of CFG and 3-address code
Tailcall Trace preservation Tailcall recognition
Inlining Trace transformation Function inlining
Renumber Trace preservation Renumbering CFG nodes
ConstProp Trace transformation Constant propagation
CSE Leakage erasing Common subexpression elimination
Deadcode Leakage erasing Redundancy elimination
Allocation Leakage erasing Register allocation
Tunneling Leakage erasing Branch tunneling
Linearize CT-simulation Linearization of CFG
CleanupLabels Trace preservation Removal of unreferenced labels
Debugvar Trace preservation Synthesis of debugging information
Stacking Memory injection Laying out stack frames
Asmgen Trace transformation Emission of assembly code

Table 1. Compilation passes and how we prove them constant-time preserving

trace transformations. This table shows that thanks to our proof techniques, most transformations
were relatively convenient to adapt, and heavily bene�t from existing proof scripts.

5.2 Leakage Preservation
The �rst case we consider is one where leakages are preserved by compilation. This case is ac-
tually the one covered by compiler correctness and can thus leverage directly the many already
existing lemmas and theorems of CompCert. It is directly stated and proved on the instrumented
semantics !.

T������ 5.2 (C������������ �������� ������������ �� ������� ������������). Let S be
a safe source program and T be the target compiled program. If S is constant-time w.r.t. � then T
is constant-time w.r.t. �, provided that the relation ⇡ between program states is a trace preserving
simulation (w.r.t. to !) as de�ned in Figure 2.

P����. First we observe that such simulation implies that the leak-only semantics satis�es a
leak-preserving simulation. This simulation is the classic forward simulation used in CompCert
and we know it implies behavior preservation. Hence source and target programs share the same
leakages. As a consequence, CTS at source level implies CTS at target level. ⇤

While this simulation is quite basic and restrictive, it is still satis�ed by a few transformation
passes (6 among 17, see Table 1), including passes that do not optimize conditional branches, nor
memory accesses. These passes are then especially easy to adapt to constant-time preservation
since we can reuse the same proof script as for the original simulation proof. This is a great time
saver for a pass like RTLgen (which transforms a structured Cminor program into a RTL control-�ow
graph) because its soundness proof is quite verbose. However, many optimizations do not preserve
leakages. Indeed, optimizations such as common subexpression elimination (CSE) or constant

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

Method #3 used 2 times  
among 17 proofs

A palette of proof methods

2222

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Formal Verification of a Constant-Time Preserving C Compiler 1:15

Compiler pass Diagram used Explanation on the pass
Cshmgen Trace preservation Type elaboration, simpli�cation of control
Cminorgen Memory injection Stack allocation
Selection Leakage erasing Recognition of operators and addr. modes
RTLgen Trace preservation Generation of CFG and 3-address code
Tailcall Trace preservation Tailcall recognition
Inlining Trace transformation Function inlining
Renumber Trace preservation Renumbering CFG nodes
ConstProp Trace transformation Constant propagation
CSE Leakage erasing Common subexpression elimination
Deadcode Leakage erasing Redundancy elimination
Allocation Leakage erasing Register allocation
Tunneling Leakage erasing Branch tunneling
Linearize CT-simulation Linearization of CFG
CleanupLabels Trace preservation Removal of unreferenced labels
Debugvar Trace preservation Synthesis of debugging information
Stacking Memory injection Laying out stack frames
Asmgen Trace transformation Emission of assembly code

Table 1. Compilation passes and how we prove them constant-time preserving

trace transformations. This table shows that thanks to our proof techniques, most transformations
were relatively convenient to adapt, and heavily bene�t from existing proof scripts.

5.2 Leakage Preservation
The �rst case we consider is one where leakages are preserved by compilation. This case is ac-
tually the one covered by compiler correctness and can thus leverage directly the many already
existing lemmas and theorems of CompCert. It is directly stated and proved on the instrumented
semantics !.

T������ 5.2 (C������������ �������� ������������ �� ������� ������������). Let S be
a safe source program and T be the target compiled program. If S is constant-time w.r.t. � then T
is constant-time w.r.t. �, provided that the relation ⇡ between program states is a trace preserving
simulation (w.r.t. to !) as de�ned in Figure 2.

P����. First we observe that such simulation implies that the leak-only semantics satis�es a
leak-preserving simulation. This simulation is the classic forward simulation used in CompCert
and we know it implies behavior preservation. Hence source and target programs share the same
leakages. As a consequence, CTS at source level implies CTS at target level. ⇤

While this simulation is quite basic and restrictive, it is still satis�ed by a few transformation
passes (6 among 17, see Table 1), including passes that do not optimize conditional branches, nor
memory accesses. These passes are then especially easy to adapt to constant-time preservation
since we can reuse the same proof script as for the original simulation proof. This is a great time
saver for a pass like RTLgen (which transforms a structured Cminor program into a RTL control-�ow
graph) because its soundness proof is quite verbose. However, many optimizations do not preserve
leakages. Indeed, optimizations such as common subexpression elimination (CSE) or constant

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

+ 3 times with a slight
generalisation…

A palette of proof methods

2323

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Formal Verification of a Constant-Time Preserving C Compiler 1:15

Compiler pass Diagram used Explanation on the pass
Cshmgen Trace preservation Type elaboration, simpli�cation of control
Cminorgen Memory injection Stack allocation
Selection Leakage erasing Recognition of operators and addr. modes
RTLgen Trace preservation Generation of CFG and 3-address code
Tailcall Trace preservation Tailcall recognition
Inlining Trace transformation Function inlining
Renumber Trace preservation Renumbering CFG nodes
ConstProp Trace transformation Constant propagation
CSE Leakage erasing Common subexpression elimination
Deadcode Leakage erasing Redundancy elimination
Allocation Leakage erasing Register allocation
Tunneling Leakage erasing Branch tunneling
Linearize CT-simulation Linearization of CFG
CleanupLabels Trace preservation Removal of unreferenced labels
Debugvar Trace preservation Synthesis of debugging information
Stacking Memory injection Laying out stack frames
Asmgen Trace transformation Emission of assembly code

Table 1. Compilation passes and how we prove them constant-time preserving

trace transformations. This table shows that thanks to our proof techniques, most transformations
were relatively convenient to adapt, and heavily bene�t from existing proof scripts.

5.2 Leakage Preservation
The �rst case we consider is one where leakages are preserved by compilation. This case is ac-
tually the one covered by compiler correctness and can thus leverage directly the many already
existing lemmas and theorems of CompCert. It is directly stated and proved on the instrumented
semantics !.

T������ 5.2 (C������������ �������� ������������ �� ������� ������������). Let S be
a safe source program and T be the target compiled program. If S is constant-time w.r.t. � then T
is constant-time w.r.t. �, provided that the relation ⇡ between program states is a trace preserving
simulation (w.r.t. to !) as de�ned in Figure 2.

P����. First we observe that such simulation implies that the leak-only semantics satis�es a
leak-preserving simulation. This simulation is the classic forward simulation used in CompCert
and we know it implies behavior preservation. Hence source and target programs share the same
leakages. As a consequence, CTS at source level implies CTS at target level. ⇤

While this simulation is quite basic and restrictive, it is still satis�ed by a few transformation
passes (6 among 17, see Table 1), including passes that do not optimize conditional branches, nor
memory accesses. These passes are then especially easy to adapt to constant-time preservation
since we can reuse the same proof script as for the original simulation proof. This is a great time
saver for a pass like RTLgen (which transforms a structured Cminor program into a RTL control-�ow
graph) because its soundness proof is quite verbose. However, many optimizations do not preserve
leakages. Indeed, optimizations such as common subexpression elimination (CSE) or constant

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.

Method2 #4 used only 1 time

2. G.Barthe, B. Grégoire, and V. Laporte. Secure Compilation of Side-Channel
Countermeasures: The Case of Cryptographic Constant-Time. CSF, 2018.

Texte niveau 1

• Texte niveau 2

• Texte niveau 3

• Texte niveau 4

• Texte niveau 5

Experiments

2424

Conclusion and perspectives

• 	A machine checked-proof that a mildly modified version of the CompCert
compiler preserves cryptographic constant-time

•A carefully crafted methodology that maximises proof reuse

•Perspectives

•Combine CT-CompCert with verified C crypto programs

• Explore other observational information-flow policies and adapt
CompCert

25

