Formal Verification of a Constant-Time
Preserving C Compller

Sandrine Blazy

joint work with Gilles Barthe, Benjamin Grégoire, Rémi Hutin,
Vincent Laporte, David Pichardie and Alix Trieu

UNIVERSITE DE% 88 (A p J J o plenck institut
RENNES 1

rennes

Verified Software workshop, Cambridge, 2019-09-25

The CompCert formally verified compiler

Compiler + proof that the compiler does not introduce bugs

CompCert, a moderately optimising C compiler usable for critical embedded
software

- Fly-by-wire software, Airbus A380, FCGU

We prove the following semantic preservation property:

For all source programs S and compiler-generated code C,

if the compiler generates machine code C from source S,

without reporting a compilation error,

and S has a safe behaviouir,

then «C behaves like S».

0 — e ———
Behaviours = termination / divergence / undefined («going wrong»)
+ (finite or infinite) trace of I/O operations performed

CompCert: 1 compiler, 10 languages and 17
semantic-preservation proofs

[Clight J type elimination)[C#minor J

Optimisations: constant prop., CSE, tail calls, stack allocation
(LCM), (software pipelining) of «&»variables
CFG construction instruction
[RTL](expr. decomp. [CminorSel J(selection [Cminor J
register (instruction scheduling)
allocation (IRC) < 2
spilling, reloading

linearisation t "
[LTL J of the CFG { LTLin Jca ng conven 'O”E[Linear J
layout of
stack frames
asm code

[ASM)(generation [Mach J

3

CompCert: 1 compiler, 10 languages and 17
semantic-preservation proofs

[Clight I C#minor]
S5 S S L% g

_— - p——— [RTL JCminorSeI I Cminor J

s Lng s Lty S5 oo
—— S S [LTL E LTLin I Linear J

Operational semantics

RS

3

Proof methodology: forward simulation

Ingredients

 simulation relation & between source and target states
 measure m from source states to a well-founded set

t £
s » S2 s » S2
= ~ or ~ "‘;’:‘
o1 t v o2 e with 0 < m(s2) < m(s1)

ne cryptographic constant-time -
IScipline

Cryptographic constant-time programming

* Protect implementations against timing and cache side-channel attacks

- Cryptographic constant-time programs do not:
* branch on secrets
» perform memory accesses that depend on secrets

unsigned not constant time (unsigned x, unsigned y, bool secret)

{ if (secret) return y; else return x; }
e R

* There are constant-time implementations of many cryptographic
algorithms: AES, DES, RSA, etc.

Cryptographic constant-time programming

* Protect implementations against timing and cache side-channel attacks

- Cryptographic constant-time programs do not:
* branch on secrets
» perform memory accesses that depend on secrets

unsigned not constant time (un
{ 1if (secret) return y; else ¢

X, unsigned y, bool secret)
X; }

unsigned constant timel (unsigned x, unsigned y, bool secret)
{ return x + (y - xX) * secret; }
e

w

* There are constant-time implementations of many cryptographic
algorithms: AES, DES, RSA, etc.

Cryptographic constant-time programming

* Protect implementations against timing and cache side-channel attacks

- Cryptographic constant-time programs do not:

* branch on secrets
» perform memory accesses that depend on secrets

X, unsigned y, bool secret)
X; }

unsigned not constant time (un
{ 1if (secret) return y; else ¢

unsigned constant timel (unsigned x, unsigned y, bool secret)

{ return x + (y - X) * secret; }

SR

\§77unsigned constant time2 (unsigned x, unsigned y, bool secret)
{ return x © ((y ©~ xX) & (-(unsigned)secret)); }

S — e ————————tE———SEEREERETTTT
* There are constant-time implementations of many cryptographic
algorithms: AES, DES, RSA, etc.

Cryptographic constant-time: static verification

- Several verification tools have been built and used for checking that
popular libraries follow the cryptographic constant-time discipline.

- But checking low-level implementations is tricky. It makes:

- the analysis work harder (e.g. alias analysis),
* the results of the analysis difficult to understand for programmers.

 VVerification at source level is achievablel, but it needs to be combined with
a secure compiler.

V P, constantTime(P) BN constantTime(compile(P))

R

1. S.Blazy, D.Pichardie, A.Trieu. Verifying constant-time implementations by abstract interpretation. Journal of Computer Security. 01/2019.

7

Compilers vs. cryptographic constant-time

unsigned not_constant time(unsigned x, unsigned y, bool b)

{
if (b) return y;

else return x;

unsigned constant time 1(unsigned x, unsigned vy,

{

return x + (y - X) * b;

unsigned constant time 2(unsigned x, unsigned vy,

{

A A

return x ((y

X) & (-(unsigned)b));

bool b)

bool b)

0 00 B W N

O

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

not constant time: # @not constant time

cmpb $0, 12(%esp)
jne .LBBO 1
leal 4(%esp), %eax
movl (%eax), %eax
retl
.LBBO 1:
leal 8(%esp), %eax
movl (%eax), %eax
retl
constant_time_ 1: # @constant_time 1
cmpb $0, 12(%esp)
jne .LBB1 1
leal 4(%esp), %eax
movl (%eax), %eax
retl
.LBB1 1:
leal 8(%esp), %eax
movl (%eax), %eax
retl
constant_time 2: # @constant_time 2
movl 4(%esp), %ecx
cmpb $0, 12(%esp)
jne .LBB2 1

C B Output (0/0) x86-64 clang (trunk) § - 978ms (14804B)

Compilers vs. cryptographic constant-time

int main() {
unsigned long long Xx;
double y;
X = (unsigned long long)y;

return 0;

00 N o U1 b W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

main:

L2:

.L3:

push rbp

mov rbp, rsp

movsd xmmO, QWORD PTR [rbp-8]
comisd xmm0, QWORD PTR .LCO[rip]
jnb L2

movsd xmm0, QWORD PTR [rbp-8]
cvttsd2si rax, xmm0

mov QWORD PTR [rbp-16], rax
jmp L3

movsd xmmO, QWORD PTR [rbp-8]
movsd xmml, QWORD PTR .LCO[rip]
subsd xmm0, xmml

cvttsd2si rax, xmm0

mov QWORD PTR [rbp-16], rax
movabs rax, -9223372036854775808
Xor QWORD PTR [rbp-16], rax
mov rax, QWORD PTR [rbp-16]
mov QWORD PTR [rbp-16], rax
mov eax, 0

pop rbp

ret

C B Output (0/0) x86-64 gcc 8.3 § - 849ms (12804B)

Compilers vs. cryptographic constant-time

Lucky Thirteen: Breaking the TLS and DTLS Record Protocols

Nadhem J. AlFardan and Kenneth G. Paterson*
Information Snr\nﬂ'fv (Ironn

Royal Holloway, University of Lon Lucky Microseconds: A Timing Attack on Amazon’s s2n
{nadhem.alfardan.2009, k«]
Implementation of TLS

S&P’2013

27th Febr EuroCrypt 2016

Abstract

The Transport Layer Security (TLS) protocol aims to pro-
vide confidentiality and integrity of data in transit across un-
trusted networks. TLS has become the de facto secure proto-
col of choice for Internet and mobile applications. DTLS is
a variant of TLS that is growing in importance. In this paper,
we present distinguishing and plaintext recovery attacks against
TLS and DTLS. The attacks are based on a delicate timing anal-
ysis of decryption processing in the two protocols. We include
experimental results demonstrating the feasibility of the attacks
in realistic network environments for several different imple-
mentations of TLS and DTLS, including the leading OpenSSL
implementations. We provide countermeasures for the attacks.
Finally, we discuss the wider implications of our attacks for the
cryptographic design used by TLS and DTLS.

Martin R. Albrecht* and Kenneth G. Paterson**

Information Security Group
Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK

{martin.albrecht, kenny.paterson}@rhul.ac.uk

Abstract. s2n is an implementation of the TLS protocol that was released in late June 2015
by Amazon. It is implemented in around 6,000 lines of C99 code. By comparison, OpenSSL
needs around 70,000 lines of code to implement the protocol. At the time of its release, Amazon
announced that s2n had undergone three external security evaluations and penetration tests.
We show that, despite this, s2n — as initially released — was vulnerable to a timing attack in
the case of CBC-mode ciphersuites, which could be extended to complete plaintext recovery in
some settings. Our attack has two components. The first part is a novel variant of the Lucky
13 attack that works even though protections against Lucky 13 were implemented in s2n. The
second part deals with the randomised delays that were put in place in s2n as an additional
countermeasure to Lucky 13. Our work highlights the challenges of protecting implementations
against sophisticated timing attacks. It also illustrates that standard code audits are insufficient
to uncover all cryptographic attack vectors.

e — e ———

Keywords TLS, CBC-mode encryption, timing attack, plaintext recovery, Lucky 13, s2n.

8

A CompCert compiler that
preserves cryptographic
constant-time

Our contributions

« A machine-checked proof that a mildly modified version of the CompCert
compiler preserves cryptographic constant-time

* Proof-engineering challenge: how to turn an existing formally-verified
compiler into a formally-verified secure compiler?
(CompCert: 100,000 lines of Coq)

* A proof toolkit for proving security preservation

10

Methodology and challenges

VP, constantTime(P) 5 constantTime(compile(P))

L — e ————

» Smooth proof methodology to prove that CompCert preserves
cryptographic constant-time (CT)
* Reuse as much as possible existing CompCert simulation proof
scripts

* Follow the motto
« simple transformations should be easy to prove CT-preserving »

11

Security property: cryptographic constant-time

- We enrich the CompCert traces of events with two kinds of leakages:
 the truth value of a condition,
* a pointer representing the address of
- either a memory access
- or a called function.

- We adapt consistently the semantics and still note S 2 S’ the new judgement.
- Event erasure: from S - S’ we can extract

. the compile-only judgement S —t>comp S’ and

- the leak-only judgement S —t>|eak A\

- Program leakage is observed by the —c;x S€mMantics.

12

Security property: cryptographic constant-time

- Involves two executions of a program P: need to adapt CompCert
simulations diagrams

- (55, 5;) = two initial states share the same values for public inputs of P, but
differ on the values of secret inputs of P.

- A program P is constant-time secure w.r.t. ¢ if for two initial states s, and
s; of P such that ¢(s;, ;) holds, then both leak-only executions starting
from s, and s; observe the same leakage.

- We also provide alternative definitions (avoiding reasoning on infinite
executions) and prove their equivalence with the previous property when

languages are equipped with a well-formed same-point relation = (where
control flow is explicit).

13

Modelling the same-point relation s = s’

* The relation captures the fact that program positions match in both states

(including stack pointers).

* We also capture that memory-block allocation histories match.

* In the CompCert languages, the relation satisfies the 4 following properties.

L a final state of P
a, a’ initial states of P = a=ad’ L= o —> ' final state of P
t ;
a—b a—b
a/_t)b/ — b=b’ a’ t—,>b’ — |t| = |t’|
a=a a=a

* These properties are useful to prove security property equivalences and

soundness of the forthcoming proof methods.

14

Method #1: leakage preservation

- Simplest situation: a program transformation preserves leakage.
- Traditional CompCert forward-simulation diagram

- Forward simulation implies behaviour preservation (in this setting)

t £
ST » s2 ST » S2
= = or = ‘..;:‘
' t + et :
o > G0 _—p with 0 < m(s2) < m(s1)

15

A palette of proof methods

Method #1 used 6 times

among 17 proofs

Compiler pass

Diagram used

Explanation on the pass

Cshmgen
Cminorgen
Selection
RTLgen
Tailcall
Inlining
Renumber
ConstProp
CSE
Deadcode
Allocation
Tunneling
Linearize
CleanupLabels
Debugvar
Stacking
Asmgen

| Trace preservation |

Trace preservation
Trace preservation

| Trace preservation

Trace preservation
Trace preservation

Type elaboration, simplification of control
Stack allocation

Recognition of operators and addr. modes
Generation of CFG and 3-address code
Tailcall recognition

Function inlining

Renumbering CFG nodes

Constant propagation

Common subexpression elimination
Redundancy elimination

Register allocation

Branch tunneling

Linearization of CFG

Removal of unreferenced labels

Synthesis of debugging information
Laying out stack frames

Emission of assembly code

16

Method #2: leakage erasing simulation

- Some optimisations erase leakages
(e.g. a memory load is replaced by a load from a register).

* They are still constant-time preserving as long as their decision to erase this
iInformation does not depend on secret values.

- We slightly adapt the forward-simulation diagram.

s » s2

~n Py or
: - .
o1l > 02

T =tor(t = €andis leak only)

The previous proof script
requires very few changes!

17

A palette of proof methods

Method #2 used 5 times

among 17 proofs

Compiler pass

Diagram used

Explanation on the pass

Cshmgen
Cminorgen
Selection
RTLgen
Tailcall
Inlining
Renumber
ConstProp
CSE
Deadcode
Allocation
Tunneling
Linearize
CleanupLabels
Debugvar
Stacking
Asmgen

Trace preservation

|Leakage erasing

Trace preservation
Trace preservation

Trace preservation

Leakage erasing
Leakage erasing
Leakage erasin

Leakage erasing

Trace preservation
Trace preservation

Type elaboration, simplification of control
Stack allocation

Recognition of operators and addr. modes
Generation of CFG and 3-address code
Tailcall recognition

Function inlining

Renumbering CFG nodes

Constant propagation

Common subexpression elimination
Redundancy elimination

Register allocation

Branch tunneling

Linearization of CFG

Removal of unreferenced labels

Synthesis of debugging information
Laying out stack frames

Emission of assembly code

18

Step-counting simulation =&,

- We make sure that the prediction of n does not depend on secrets by
requiring it will only depend on the control states.

- Given a same-point relation =, we define a notion ~, of same-point
congruence.

19

Method #3: Leak-transforming by memory-
Injection simulation

« Some transformations alter the memory layout.
- Leaky pointers are not preserved.

- Still, there exists a leakage transformation that maps the source leakage
trace to the target leakage trace.

* Our solution:
- Use of step-counting simulations (with more advanced counting)

 and explicit memory injections
(tracking how leaky pointers are transformed)

20

Method #3 used 2 times

A palette of proof methods among 17 proofs

Compiler pass Diagram used Explanation on the pass
Cshmgen Trace preservation Type elaboration, simplification of control
Cminorgen | Memory injection | Stack allocation

Selection Leakage erasing Recognition of operators and addr. modes
RTLgen Trace preservation Generation of CFG and 3-address code
Tailcall Trace preservation Tailcall recognition

Inlining Function inlining

Renumber Trace preservation Renumbering CFG nodes

ConstProp _ Constant propagation

CSE Leakage erasing Common subexpression elimination
Deadcode Leakage erasing Redundancy elimination

Allocation Leakage erasing Register allocation

Tunneling Leakage erasing Branch tunneling

Linearize ‘ Linearization of CFG

CleanupLabels Trace preservation Removal of unreferenced labels
Debugvar Trace preservation Synthesis of debugging information
Stacking | Memory injection | Laying out stack frames

Asmgen Emission of assembly code

21

+ 3 times with a slight

A palette of proof methods generalisation. ..

Compiler pass Diagram used Explanation on the pass
Cshmgen Trace preservation Type elaboration, simplification of control
Cminorgen Memory injection Stack allocation

Selection Leakage erasing Recognition of operators and addr. modes
RTLgen Trace preservation Generation of CFG and 3-address code
Tailcall Trace preservation Tailcall recognition

Inlining [Trace transformation]| Function inlining

Renumber Trace preservation Renumbering CFG nodes

ConstProp | Trace transformation | Constant propagation

CSE Leakage erasing Common subexpression elimination
Deadcode Leakage erasing Redundancy elimination

Allocation Leakage erasing Register allocation

Tunneling Leakage erasing Branch tunneling

Linearize ‘ Linearization of CFG

CleanupLabels Trace preservation Removal of unreferenced labels
Debugvar Trace preservation Synthesis of debugging information
Stacking Memory injection Laying out stack frames

Asmgen | Trace transformation Emission of assembly code

22

Method? #4 used only 1 time

A palette of proof methods

Compiler pass Diagram used Explanation on the pass
Cshmgen Trace preservation Type elaboration, simplification of control
Cminorgen Memory injection Stack allocation

Selection Leakage erasing Recognition of operators and addr. modes
RTLgen Trace preservation Generation of CFG and 3-address code
Tailcall Trace preservation Tailcall recognition

Inlining Trace transformation Function inlining

Renumber Trace preservation Renumbering CFG nodes

ConstProp Trace transformation Constant propagation

CSE Leakage erasing Common subexpression elimination
Deadcode Leakage erasing Redundancy elimination

Allocation Leakage erasing Register allocation

Tunneling Leakage erasing Branch tunneling

Linearize |CT—siI;1ulation _l Linearization of CFG

CleanupLabels Trace preservation Removal of unreferenced labels
Debugvar Trace preservation Synthesis of debugging information
Stacking Memory injection Laying out stack frames

Asmgen Trace transf 2. G.Barthe, B. Grégoire, and V. Laporte. Secure Compilation of Side-Channel

23

Countermeasures: The Case of Cryptographic Constant-Time. CSF, 2018.

e — e E———_

Experiments

™M

Q

Q

Q

O

o

Q

Q

Q

O

—

Q

Q

Q

O

G

£

)

Q

a

£

o

)

.

™M

£

0}

Q

a

S

o

)

o

Q

Q

O

O

|
!

X X X X X
o o o) o
S © © < N

9duUaJaal e se 00O-20b
Bbuisn ‘paads uoiNIaXD SAIlR|IDY

0%-

24

Conclusion and perspectives

- A machine checked-proof that a mildly modified version of the CompCert
compiler preserves cryptographic constant-time
* A carefully crafted methodology that maximises proof reuse

* Perspectives
« Combine CT-CompCert with verified C crypto programs

- Explore other observational information-flow policies and adapt
CompCert

25

