Industrial concurrency specification for C/C++

Mark Batty

University of Kent

It is time for mechanised industrial standards

Specifications are written in English prose: this is insufficient

Write mechanised specs instead (formal, machine-readable, executable)
Designers can scrutinise, research questions can be identified
Mechanised specs enable verification for secure systems

Writing mechanised specifications is practical now

A case study:
industrial concurrency specification

Shared memory concurrency

Multiple threads communicate through a shared memory

__

e e e e e e e e e e e e o e m o e e e o e e e e e e e o e e e e e e e e e e e e e o e = e = e e =

Shared memory concurrency

Multiple threads communicate through a shared memory

__

e e e e e e e e e e e e o e m o e e e o e e e e e e e o e e e e e e e e e e e e e o e = e = e e =

An example programming idiom

data, flag, r initially zero

Thread |

Thread |: Thread 2:
data = 1; while (flag==0)
flag = 1; {};
r = data;
In the end r==
Thread 2

SR

data, flag, r

An example programming idiom

data, flag, r initially zero

data, flag, r

SR

Thread |: Thread 2:
data = 1; while (flag==0)
flag = 1; {};
r = data;
In the end r==
Thread | Thread 2 Sequential consistency:

simple interleaving of
concurrent accesses

Reality: more complex

Relaxed concurrency

Memory is slow, so it is optimised (buffers, caches, reordering...)

e.g. IBM’s machines allow reordering of unrelated writes

(so do compilers,ARM, Nyvidia...)

data, flag, r initially zero

Thread |: Thread 2:
data = 1; while (flag==0)
flag = 1; {};

r = data;

In the end r==

Sometimes, in the end r==0, a relaxed behaviour

Many other behaviours like this, some far more subtle, leading to trouble

8

Relaxed concurrency

Memory is slow, so it is optimised (buffers, caches, reordering...)

e.g. IBM’s machines allow reordering of unrelated writes

(so do compilers,ARM, Nyvidia...)

data, flag, r initially zero

Thread I: Thread 2:
flag = 1; while (flag==0)
data = 1; {};

r = data;

In the end r==

Sometimes, in the end r==0, a relaxed behaviour

Many other behaviours like this, some far more subtle, leading to trouble

9

Relaxed behaviour leads to problems

Bugs in deployed processors Power/ARM processors:
unintended relaxed behaviour

observable on shipped machines

[AMSS 1 0]

Relaxed behaviour leads to problems

Bugs in deployed processors Errors in key compilers (GCC,

Many bugs in compilers LLVM): compiled programs could
behave outside of spec.

[MPZN3, CV16]

Relaxed behaviour leads to problems

Bugs in deployed processors

Many bugs in compilers

Bugs in language specifications

The C and C++ standards had
bugs that made unintended
behaviour allowed.

More on this later.

[BOS+1 |, BMN+15]

Relaxed behaviour leads to problems

Bugs in deployed processors
Many bugs in compilers
Bugs in language specifications

Bugs in operating systems

Confusion among operating
system engineers leads to
bugs in the Linux kernel

[McK11,SMO+12]

Relaxed behaviour leads to problems

Bugs in deployed processors
Many bugs in compilers
Bugs in language specifications

Bugs in operating systems

Current engineering practice is severely lacking!

Vague specifications are at fault

Relaxed behaviours are subtle,
difficult to test for and often
unexpected, yet allowed for
performance

Specifications try to define what
is allowed, but English prose is
untestable, ambiguous, and hides
errors

S
h -
©

e
- —
©

-’

(/s
]
- —

2

e
1]

4
-
©
O

1=
Q
£

L~ §

nformation technology ogramming
Information technolog Pr mming

languages — C++

Developed by

Where IT all begins

A diverse and continuing effort

Modelling of hardware and languages
Build mechanised executable

formal models of specifications

AFI+09,BOS+1 |,BDW 6]
FGP+16,LDGK08,0SP09]
FSP+17]

A diverse and continuing effort

Modelling of hardware and languages

Simulation tools and reasoning principles

Provide tools to simulate the
formal models, to explain their
behaviours to non-experts

Provide reasoning principles to
help in the verification of code

[BOS+11,SSP+,BDG| 3]

A diverse and continuing effort

Modelling of hardware and languages
Simulation tools and reasoning principles

Empirical testing of current hardware

Run a battery of tests to
understand the observable
behaviour of the system and
check it against the model

[AMSS’| 1]

A diverse and continuing effort

Modelling of hardware and languages
Simulation tools and reasoning principles
Empirical testing of current hardware

Verification of language design goals

Explicitly stated design goals
should be proved to hold

[BMN+15]

A diverse and continuing effort

Modelling of hardware and languages
Simulation tools and reasoning principles
Empirical testing of current hardware
Verification of language design goals

Test and verify compilers

20

Test to find the relaxed

behaviours introduced by
compilers and verify that
optimisations are correct

[MPZN13,CVI6]

A diverse and continuing effort

Modelling of hardware and languages
Simulation tools and reasoning principles
Empirical testing of current hardware
Verification of language design goals

Test and verify compilers

Feedback to industry: specs and test suites

21

Specifications should be fixed
when problems are found

Test suites can ensure
conformance to formal models

[B11]

A diverse and continuing effort

Modelling of hardware and languages
Simulation tools and reasoning principles
Empirical testing of current hardware
Verification of language design goals

Test and verify compilers

Feedback to industry: specs and test suites

| will describe my part:

The C and C++ memory model

23

Acknowledgements

. ’ - g]
-y .l" - - .
“ A‘I
gl - N
¥ e » e O
Ay - : - YL
» 2 o |
. ;g '
oy 0 ey
'
- L]
% f/ | A

M. Dds A. Gotsman K.Memarian K. Nienhuis S.wens

J. Pichon-Pharabod S. Sarkar

T.Weber

24

C and C++

The medium for system implementation
Defined by WG4 and WG21 of the International Standards Organisation

The’ll,’14 and ‘| 7 revisions define relaxed memory behaviour

uuuuuuuuuu

incits>
Where IT all begins

merican National Standard

<

25 E

C and C++

The medium for system implementation
Defined by WG4 and WG21 of the International Standards Organisation
The’ll,’14 and ‘| 7 revisions define relaxed memory behaviour

We worked with the ISO, formalising and improving their concurrency design

American National Standard

Develop

incits>
Where IT all begins

C++11| concurrency design

A contract with the programmer: they must avoid data races,
two threads competing for simultaneous access to a single variable

data initially zero

Thread I: Thread 2:
data = 1; r = data;

Beware:
Violate the contract and the compiler is free to allow anything: catch fire!

27

C++11| concurrency design

A contract with the programmer: they must avoid data races,
two threads competing for simultaneous access to a single variable

data initially zero

Thread I: Thread 2:
data = 1; r = data;

Beware:
Violate the contract and the compiler is free to allow anything: catch fire!

28

C++11| concurrency design

A contract with the programmer: they must avoid data races,
two threads competing for simultaneous access to a single variable

data initially zero

Thread I: Thread 2:

data =1 r = data;

we

Beware:
Violate the contract and the compiler is free to allow anything: catch fire!

Atomics are excluded from the requirement, and can order non-atomics,
preventing simultaneous access and races

29

C++11| concurrency design

A contract with the programmer: they must avoid data races,
two threads competing for simultaneous access to a single variable

data, r,atomic flag,initially zero

Thread I: Thread 2:
data = 1; while (flag==0)
flag = 1; {};

r = data;

Beware:
Violate the contract and the compiler is free to allow anything: catch fire!

Atomics are excluded from the requirement, and can order non-atomics,
preventing simultaneous access and races

30

Design goals in the standard

The design is complex but the standard claims a powerful simplification:

C++11/14:§1.10p21
It can be shown that programs that correctly use mutexes and

memory order seq cst operations to prevent all data races and use no
other synchronization operations behave [according to] “‘sequential
consistency’.

This is the central design goal of the model, called DRF-SC

31

Implicit design goals

Compilers like GCC, LLVM map C/C++ to pieces of machine code

C/C++ Power ARM x86

Load acquire |ld;cmp;bc;isync Idr;dmb MOV (from memory)

Each mapping should preserve the behaviour of the original program

C/C++] 1

x86 Power ARM

32

We formalised a draft of the standard

A mechanised formal model, close to the standard text

C++11 standard §1.10p|2: The corresponding formalisation:

An evaluation A happens before an let happens_before sb ithb = sb U ithb
evaluation B if:

* A is sequenced before B, or
* A inter-thread happens before B.

The implementation shall ensure that no let consistent_hb hb =
program execution demonstrates a cycle in isIrreflexive (transitiveClosure /ib)
the “happens before” relation.

33

Communication with WG21 and WG | 4

ssues were discussed in N-papers and Defect Reports

A xce

... =
AAA[E
e

4 A

1%

explicithy
opcratiey
objects of

A first g
[intro s
operaton

™
&
oty

How tha
operation
BOCESS W

el

e i)

Upd

Fori

ISONEC
Pasl E. N
Clark Nq
NM. M4
Ham Boy
Aathosy

Poser Dy
Lawrenc

Introf

Mark By

el rey
group of]

Core
Issue 1

The phr
Replace

4/3/2016

Exp

ISO/IEC

Paul E. N
Mark Ba
Clark Ne]
N.M. M4
Hans Bo
Anthony
Peter Di

Lawrenc

Introc

Mark Ba
summari
email, re
in a com,

This pap
subgroup
N3040,

Pittsburg]

Library
Librar)

Add a no|
in the dis]
which is

Library

The seco
an unboyl
restrictin,
Working
with this

Library
(Normg

This topi|
compatib

Unlike C|
are going
or C nee

http://www .open

M

-
ey
el
o
40
(hany
»
o
Tasen]
.-

PAPPEI S -

HIRERTR L I H

A3 xee

Coh

ISONEC
Michael

Mak B

Introq
This papd

|

wikl ik

Propod

- v e

A2 xxe

N31
Pap

ISONEC]

Pl E. N
Mark By
Clark Ny
Hans Boy
Asthosy
Scotz O
Susmn §
Pever Se
Thark W
Michacl
Lawrens|

Introf

Mark By
formaliz
discussey
Ham Boy
discusiad
calling of
of these

BSUCS 1%

Floase
this vers
covered

Moee def
Non-{
CA 8:)
Sections.
1
Comeec
™

aq
Pl

v v

A2 xce

Previous

Seurce:

Referend
Version |
Date: Fol
Swobject:

The men
that allod
Cesell o

Soe abo
Oct 201
Commit{

e o

A xce

Provious

Sebmity

Seurce:
Referen
Version)
Date: 1Y
Sebject]

The sy
stands 0
allocatiol
From 18

-
n
all

Unfortu
befoee 1
syncheog
and ropld

B2 D

Segposty
See abony

Ot 201

oy v v ol

A xce

Previous

Ot 201

Comanit|

Fed 2013
Propose
In

Previous

oy vww ol

A2 xce

Preyious

Sabmityf

Source:
Referen
Version]
Date: A

o —

Te Cll
This is pf

i

in

The sy
specified

Thas secy

ES 7

N

See abon
Oct 01
Comanit|

Feb 201
Comnit|

v

A2 xce

Provious

Sabmity|
Suhmivy
Source:

Refereny
Version]
Date: Ay
Subject]

Summad

1t haxs bey
specified
of side ¢}

doing thy
™

0y
)
v
a

op

The woe
allowed
o the oo

Comogyl
Also proj

™
¥

With a o

N
oy
ey

If the o
10 assune

N
)
ey

Segposty

v e

A2 xce

Preyious

Sebimitty

Seurce:

Referend
Version)
Date: Ag
Sebject:

Cl1 seeq|

fe
Y

Purhern|

'd

d &

Soc abon
Oct1 201

Commit|

Feb 2017

Comanit|

v v)

e S S

Previous

Mosz of
syncheon|
memory

Fawtly, C
locks can

(1

The rea
threaded

Segpostd

Oct 2011

Comanit|

Oct 201

Proposey

oy v v gl

N4136 - C Concurrency Challenges Draft
2014-10-13

Mark Batty, Kayvan Memarian, Kyndylan Nienhuis, Joan Pichon, Peter Sewoll

This document wan prosemted for discumion st the Redmond SO | mocting os 2014-09.05 1t i the
dnit of an scademis paper whose examples mise ssees with the C and C++ memory models

Major problems fixed, key properties verified

DRF-SC:

The central design goal, was false, the standard permitted too much
Fixed the model and then proved (in HOL4) that the goal is now true

Fixes were incorporated, pre-ratification, and are in C++11/14

Compilation mappings:
Efficient x86, Power mappings are sound [BOS+1| |, BMO+12,SMO+12]

Reasoning:

Developed a reasoning principle for proving programs correct [BDO 3]

35

Timing was everything

Achieved direct impact on the standard
Making this work was partly a social problem

C++1 1 was a major revision, so the ISO was receptive to change

But...

36

A fundamental problem uncovered

X, ¥, r1l, r2 initially zero

// Thread 1 // Thread 2
rl = x; r2 = vy;
if(rl==1) y = 1; if(r2==1) x = 1;

Can we observe r1==1,r2==1 at the end?

37

A fundamental problem uncovered

X, ¥, r1l, r2 initially zero

// Thread 1
rl = x;
if(rl==1) v = 1;

The write of v is dependent on the read of x

38

A fundamental problem uncovered

X, ¥, r1l, r2 initially zero

// Thread 1 // Thread 2
rl = x; r2 = vy;
if(rl==1) y = 1; if(r2==1) x = 1;

The write of y is dependent on the read of x

The write of x is dependent on the read of y

39

A fundamental problem uncovered

X, ¥, r1l, r2 initially zero

// Thread 1 // Thread 2
rl = x; r2 = vy;
if(rl==1) y = 1; if(r2==1) x = 1;

Can we observe r1==1,r2==1 at the end?

The write of y is dependent on the read of x
The write of X is dependent on the read of y

1/1 never occurs in compiled code, and ought to be forbidden

40

A fundamental problem uncovered

X, ¥, r1l, r2 initially zero

// Thread 1 // Thread 2
rl = x; r2 = vy;
if(rl==1) y = 1; if(r2==1) x = 1;

Can we observe r1==1,r2==1 at the end?

The write of y is dependent on the read of x
The write of X is dependent on the read of y

1/1 never occurs in compiled code, and ought to be forbidden

“ Note: [...] However, implementations should not allow such behavior. — end note |”

ISO: notes carry no force, and “should” imposes no constraint, so yes!

41

A fundamental problem uncovered

| Why? Dependencies are ignored to allow
| dependency-removing optimisations

C++ Should respect the left-over dependencies

The wri{ We have proved that no fix exists in the structure
| of the current specification

il‘ This identifies a difficult research problem

ISO: notes carry no force, and “should” imposes no constraint, so yes!

42

The thin-air problem

43

A slightly different program

X,¥,r1l, r2 initially zero

// Thread 1 // Thread 2

rl = x; r2 = vy;

1f(rl==1) yv = 1; 1f(r2==1) {x = 1}
else {x = 1}

Can we observe r1==1,r2==1 at the end?

In both branches on Thread 2, 1 is written to X

An optimising compiler may perform common subexpression elimination

44

A slightly different program

X,¥,r1l, r2 initially zero

// Thread 1 // Thread 2
rl = x; r2 = vy;
1f(rl==1) yv = 1; x = 1;

Can we observe r1==1,r2==1 at the end?
In both branches on Thread 2, 1 is written to X

An optimising compiler may perform common subexpression elimination

In the altered program, ARM would allow the outcome 1/1

45

A slightly different program

X,¥,r1l, r2 initially zero

// Thread 1 // Thread 2

rl = x; r2 = vy;

1f(rl==1) yv = 1; 1f(r2==1) {x
else {x = 1}

1}

Can we observe r1==1,r2==1 at the end?

—— N — - —— ———— e —

We need a semantic notion of dependency
Execution depends on more than one control-flow path

C++ spec considers one at a time: fundamental change is needed

46

Current work

Several candidates:

® The Promising Semantics [KHL+17] — an abstract machine with speculation of writes through promises. At
each step, promised writes must be sure to execute.

e |effrey and Riely [JR16] — based on event structures, executions are built up iteratively, out of order.Add a
read only if the write it reads from must be executed.

® Podkopaey, Sergey, and Nanevski [PSN 6] — an abstract machine where conditionals can be preemptively
explored, and writes that always occur can be promoted.

® Bubbly and Ticky semantics [PPS16] — based on event structures.The event structure is non-
deterministically mutated in a transition system that mimics compiler optimisations.

Each relies on a repeated search over multiple control-flow paths

This makes the models more expensive to evaluate than C++ (cannot use SAT)

Which model to choose?

47

Model simulation

Simulators provide lightweight automatic validation of design criteria:
[WBSCI7] uses SAT to check DRF-SC, compiler mappings, litmus tests for C++, OpenCL, CPUs, GPUs

We are building a simulator for thin-air models
Higher complexity requires advanced Quantified Boolean Formula solvers
AVeTTS grant is paying for the development of a web interface

Our own solution to the thin-air problem is under development:

a compositional denotational semantics that looks rather different [Bl7]

Simon Cooksey Radu Grigore Sarah Harris Scott Owens Marco Paviotti

48

Conclusion

Mechanised industrial specification is practical, with a valuable payoff:

® |Improved specs
® Simulators — an executable golden model that matches the spec

® Test suites can be generated

® Design criteria can be validated

It can guide us to future research questions

It is a necessary step in formal verification of security properties

49

[ABD+15] J. Alglave, M. Batty, A. Donaldson, G. Gopalakrishnan, J. Ketema, D. Poetzl, T. Sorensen, J. Wickerson. GPU concurrency: weak behaviours and programming assumptions. ASPLOS’15
[AFI+09] J. Alglave, A. Fox, S. Ishtiaq, M. O. Myreen, S. Sarkar, P. Sewell, and F. Zappa Nardelli. The semantics of Power and ARM multiprocessor machine code. DAMP’09
[AMSSI10] J. Alglave, L. Maranget, S. Sarkar, and P. Sewell. Fences in weak memory models. CAV’10

[AMSS’11] J. Alglave, L. Maranget, S. Sarkar, and P. Sewell. Litmus: Running tests against hardware. TACAS’11/ETAPS’11

[B17] M. Batty. Compositional relaxed concurrency. Philosophical Transactions A, 2017

[B11] P. Becker, editor. Programming Languages — C++. 2011. ISO/IEC 14882:2011. A non-final version is available at http://www.open-std.org/jtc1/sc22/ wg21/docs/papers/2011/n3242 .pdf.
[BDG13] M. Batty, M. Dodds, A. Gotsman. Library Abstraction for C/C++ Concurrency. POPL’13

[BDW16] M. Batty, A. Donaldson, J. Wickerson. Overhauling SC atomics in C11 and OpenCL. POPL’16

[BMN+15] M. Batty, K. Memarian, K. Nienhuis, J. Pichon, P. Sewell. The Problem of Programming Language Concurrency Semantics. ESOP’15

[BMO+12] M. Batty, K. Memarian, S. Owens, S. Sarkar, and P. Sewell. Clarifying and compiling C/C++ concurrency: from C++0x to POWER. POPL’12

[BOS+11] M. Batty, S. Owens, S. Sarkar, P. Sewell, and T. Weber. Mathematizing C++ concurrency. POPL’11

[CV16] S. Chakraborty, V. Vafeiadis. Validating optimizations of concurrent C/C++ programs. CGO’16

[FGP+16] S. Flur, K. E. Gray, C. Pulte, S. Sarkar, A. Sezgin, L. Maranget, W. Deacon, P. Sewell. Modelling the ARMv8 Architecture, Operationally: Concurrency and ISA. PLDI’16
[FSP+17] S. Flur, S. Sarkar, C. Pulte, K. Nienhuis, L. Maranget, K. E. Gray, A. Sezgin, M. Batty, P. Sewell. Mixed-size concurrency: ARM, POWER, C/C++11, and SC. POPL’17
[JR16] A. Jeffrey, J. Riely. On Thin Air Reads: Towards an Event Structures Model of Relaxed Memory. LICS’16

[LDGKOS] G. Li, M. Delisi, G. Gopalakrishnan, and R. M. Kirby. Formal specification of the MPI-2.0 standard in TLA+. PPoPP’08

[KHL+17] A Promising Semantics for Relaxed-Memory Concurrency. J. Kang, C.-K. Hur, O. Lahav, V. Vafeiadis, D. Dreyer. POPL’17

[McK11] P. E. McKenney. [patch rfc tip/core/rcu 0/28] preview of RCU changes for 3.3, November 2011. https://Ikml.org/lkm1/2011/11/2/363

[MOG+14] D. P. Mulligan, S. Owens, K. E. Gray, T. Ridge, and P. Sewell. Lem: reusable engineering of real-world semantics. ICFP *14

[MPZN13] R. Morisset, P. Pawan, F. Zappa Nardelli. Compiler testing via a theory of sound optimisations in the C11/C++11 memory model. PLDI’13

[OSP09] S. Owens, S. Sarkar, and P. Sewell. A better x86 memory model: x86-TSO. TPHOLS 09

[PPS16] J. Pichon-Pharabod and P. Sewell. A concurrency semantics for relaxed atomics that permits optimisation and avoids thin-air executions. POPL’16

[PSN16] A. Podkopaev, I. Sergey, and A. Nanevski. Operational aspects of C/C++ concurrency. CoRR’16.

[SMO+12] S. Sarkar, K. Memarian, S. Owens, M. Batty, P. Sewell, L. Maranget, J. Alglave, and D. Williams. Synchronising C/C++ and POWER. PLDI’12

[SSP+] S. Sarkar, P. Sewell, P. Pawan, L. Maranget, J. Alglave, D. Williams, F. Zappa Nardelli. The PPCMEM Web Tool. www.cl.cam.ac.uk/~pes20/ppcmem/

[WBDBI15] J. Wickerson. M. Batty, B. Beckmann, A. Donaldson. Remote-Scope Promotion: Clarified, Rectified, and Verified. OOPSLA’15

[WBSC17] J. Wickerson, M. Batty, T. Sorensen, G. A. Constantinides. Automatically comparing memory consistency models. POPL’17

https://lkml.org/lkml/2011/11/2/363
http://www.cl.cam.ac.uk/~pes20/ppcmem/

