
Mark Batty 
University of Kent  

Industrial concurrency specification for C/C++



It is time for mechanised industrial standards

2

Specifications are written in English prose: this is insufficient

Write mechanised specs instead (formal, machine-readable, executable)

Designers can scrutinise, research questions can be identified

Mechanised specs enable verification for secure systems

Writing mechanised specifications is practical now



A case study:
industrial concurrency specification 

3



Multiple threads communicate through a shared memory

Shared memory concurrency

4

…Thread Thread

Shared memory

…



Multiple threads communicate through a shared memory

Most systems use a form of shared memory concurrency:

Shared memory concurrency

5

…Thread Thread

Shared memory

…



An example programming idiom

6

…Thread 1 Thread 2

data, flag, r

…

Thread 1:

data = 1;
flag = 1; 

Thread 2:

while (flag==0)
  {};
r = data;

data, flag, r initially zero

In the end r==1

Sequential consistency:
simple interleaving of
concurrent accesses

Reality: more complex



An example programming idiom

7

…Thread 1 Thread 2

data, flag, r

…

Thread 1:

data = 1;
flag = 1; 

Thread 2:

while (flag==0)
  {};
r = data;

data, flag, r initially zero

In the end r==1

Sequential consistency:
simple interleaving of
concurrent accesses

Reality: more complex



Memory is slow, so it is optimised (buffers, caches, reordering…)

e.g. IBM’s machines allow reordering of unrelated writes

(so do compilers, ARM, Nvidia…)

Sometimes, in the end r==0, a relaxed behaviour

Many other behaviours like this, some far more subtle, leading to trouble

Relaxed concurrency

8

Thread 1:

data = 1;
flag = 1; 

Thread 2:

while (flag==0)
  {};
r = data;

data, flag, r initially zero

In the end r==1



Memory is slow, so it is optimised (buffers, caches, reordering…)

e.g. IBM’s machines allow reordering of unrelated writes

(so do compilers, ARM, Nvidia…)

Sometimes, in the end r==0, a relaxed behaviour

Many other behaviours like this, some far more subtle, leading to trouble

Relaxed concurrency

9

Thread 1:

flag = 1;
data = 1; 

Thread 2:

while (flag==0)
  {};
r = data;

data, flag, r initially zero

In the end r==1



Relaxed behaviour leads to problems

10

Power/ARM processors:
unintended relaxed behaviour
observable on shipped machines

[AMSS10]

Bugs in deployed processors

Many bugs in compilers

Bugs in language specifications

Bugs in operating systems



Relaxed behaviour leads to problems

11

Errors in key compilers (GCC, 
LLVM): compiled programs could 
behave outside of spec.

[MPZN13, CV16]

Bugs in deployed processors

Many bugs in compilers

Bugs in language specifications

Bugs in operating systems



Relaxed behaviour leads to problems

12

The C and C++ standards had 
bugs that made unintended 
behaviour allowed.

More on this later.

[BOS+11, BMN+15]

Bugs in deployed processors

Many bugs in compilers

Bugs in language specifications

Bugs in operating systems



Relaxed behaviour leads to problems

13

Confusion among operating 
system engineers leads to
bugs in the Linux kernel

[McK11, SMO+12]

Bugs in deployed processors

Many bugs in compilers

Bugs in language specifications

Bugs in operating systems



Relaxed behaviour leads to problems

14

Bugs in deployed processors

Many bugs in compilers

Bugs in language specifications

Bugs in operating systems

Current engineering practice is severely lacking!



Vague specifications are at fault

15

Relaxed behaviours are subtle, 
difficult to test for and often 
unexpected, yet allowed for 
performance

Specifications try to define what 
is allowed, but English prose is 
untestable, ambiguous, and hides 
errors



A diverse and continuing effort

16

Build mechanised executable 
formal models of specifications

[AFI+09,BOS+11,BDW16]
[FGP+16,LDGK08,OSP09]
[FSP+17]

Modelling of hardware and languages

Simulation tools and reasoning principles

Empirical testing of current hardware

Verification of language design goals

Test and verify compilers

Feedback to industry: specs and test suites



A diverse and continuing effort

17

Provide tools to simulate the 
formal models, to explain their 
behaviours to non-experts

Provide reasoning principles to 
help in the verification of code

[BOS+11,SSP+,BDG13]

Modelling of hardware and languages

Simulation tools and reasoning principles

Empirical testing of current hardware

Verification of language design goals

Test and verify compilers

Feedback to industry: specs and test suites



A diverse and continuing effort

18

Run a battery of tests to 
understand the observable 
behaviour of the system and 
check it against the model

[AMSS’11]

Modelling of hardware and languages

Simulation tools and reasoning principles

Empirical testing of current hardware

Verification of language design goals

Test and verify compilers

Feedback to industry: specs and test suites



A diverse and continuing effort

19

Explicitly stated design goals 
should be proved to hold

[BMN+15]

Modelling of hardware and languages

Simulation tools and reasoning principles

Empirical testing of current hardware

Verification of language design goals

Test and verify compilers

Feedback to industry: specs and test suites



A diverse and continuing effort

20

Test to find the relaxed 
behaviours introduced by 
compilers and verify that 
optimisations are correct

[MPZN13, CV16]

Modelling of hardware and languages

Simulation tools and reasoning principles

Empirical testing of current hardware

Verification of language design goals

Test and verify compilers

Feedback to industry: specs and test suites



A diverse and continuing effort

21

Specifications should be fixed 
when problems are found

Test suites can ensure 
conformance to formal models

[B11]

Modelling of hardware and languages

Simulation tools and reasoning principles

Empirical testing of current hardware

Verification of language design goals

Test and verify compilers

Feedback to industry: specs and test suites



A diverse and continuing effort

22

Modelling of hardware and languages

Simulation tools and reasoning principles

Empirical testing of current hardware

Verification of language design goals

Test and verify compilers

Feedback to industry: specs and test suites

I will describe my part:



The C and C++ memory model 

23



 Acknowledgements 

24

S. Owens

S. Sarkar P. Sewell  T. Weber

K. MemarianM. Dodds A. Gotsman K. Nienhuis

J. Pichon-Pharabod



The medium for system implementation

Defined by WG14 and WG21 of the International Standards Organisation

The ’11, ’14 and ‘17 revisions define relaxed memory behaviour

I worked with WG21, formalising and improving their concurrency design

C and C++

25



The medium for system implementation

Defined by WG14 and WG21 of the International Standards Organisation

The ’11, ’14 and ‘17 revisions define relaxed memory behaviour

We worked with the ISO, formalising and improving their concurrency design

C and C++

26



C++11 concurrency design

A contract with the programmer: they must avoid data races, 
two threads competing for simultaneous access to a single variable

Beware:
Violate the contract and the compiler is free to allow anything: catch fire!

27

Thread 1:

data = 1; 

Thread 2:

r = data;

data initially zero



C++11 concurrency design

A contract with the programmer: they must avoid data races, 
two threads competing for simultaneous access to a single variable

Beware:
Violate the contract and the compiler is free to allow anything: catch fire!

28

Thread 1:

data = 1; 

Thread 2:

r = data;

data initially zero



C++11 concurrency design

A contract with the programmer: they must avoid data races, 
two threads competing for simultaneous access to a single variable

Beware:
Violate the contract and the compiler is free to allow anything: catch fire!

Atomics are excluded from the requirement, and can order non-atomics, 
preventing simultaneous access and races

29

Thread 1:

data = 1; 

Thread 2:

r = data;

data initially zero



C++11 concurrency design

A contract with the programmer: they must avoid data races, 
two threads competing for simultaneous access to a single variable

Beware:
Violate the contract and the compiler is free to allow anything: catch fire!

Atomics are excluded from the requirement, and can order non-atomics, 
preventing simultaneous access and races

30

Thread 1:

data = 1;
flag = 1; 

Thread 2:

while (flag==0)
  {};
r = data;

data, r, atomic flag, initially zero



Design goals in the standard

31

The design is complex but the standard claims a powerful simplification:

C++11/14: §1.10p21
It  can  be  shown  that  programs  that  correctly  use  mutexes  and 
memory_order_seq_cst operations to prevent all data races and use no 
other  synchronization  operations  behave  [according  to]  “sequential 
consistency”.

This is the central design goal of the model, called DRF-SC



32

Compilers like GCC, LLVM map C/C++ to pieces of machine code

C/C++ Power ARM x86

Load acquire ld; cmp; bc; isync ldr; dmb MOV (from memory)

Implicit design goals

Each mapping should preserve the behaviour of the original program

Power ARMx86

C/C++11



33

A mechanised formal model, close to the standard text

In total, several thousand lines of Lem [MOG+14]

We formalised a draft of the standard

C++11 standard §1.10p12:
An evaluation A happens before an 
evaluation B if:

• A is sequenced before B, or  
• A inter-thread happens before B. 

The implementation shall ensure that no 
program execution demonstrates a cycle in 
the “happens before” relation.

The corresponding formalisation:
let happens_before sb ithb = sb ∪ ithb 

let consistent_hb hb =
        isIrreflexive (transitiveClosure hb) 



Issues were discussed in N-papers and Defect Reports

Communication with WG21 and WG14

4/3/2016 3057: Explicit Initializers for Atomics

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3057.html 1/5

Explicit Initializers for Atomics
ISO/IEC JTC1 SC22 WG21 N3057 = 10-0047 - 2010-03-11

Paul E. McKenney, paulmck@linux.vnet.ibm.com 
Mark Batty, mjb220@cl.cam.ac.uk  
Clark Nelson, clark.nelson@intel.com  
N.M. Maclaren, nmm1@cam.ac.uk  
Hans Boehm, hans.boehm@hp.com  
Anthony Williams, anthony@justsoftwaresolutions.co.uk  
Peter Dimov, pdimov@mmltd.net  
Lawrence Crowl, crowl@google.com, Lawrence@Crowl.org

Introduction
Mark Batty recently undertook a partial formalization of the C++ memory model, which Mark
summarized in N2955. This paper summarizes the discussions on Mark's paper, both verbal and
email, recommending appropriate actions for the Library Working Group. Core issues are dealt with
in a companion N3074 paper.

This paper is based on N3045, and has been updated to reflect discussions in the Concurrency
subgroup of the Library Working Group in Pittsburgh. This paper also carries the C-language side of
N3040, which was also discussed in the Concurrency subgroup of the Library Working Group in
Pittsburgh.

Library Issues

Library Issue 1: 29.3p1 Limits to Memory-Order Relaxation (Non-Normative)

Add a note stating that memory_order_relaxed operations must maintain indivisibility, as described
in the discussion of 1.10p4. This must be considered in conjunction with the resolution to LWG 1151,
which is expected to be addressed by Hans Boehm in N3040.

Library Issue 2: 29.3p11 Schedulers, Loops, and Atomics (Normative)

The second sentence of this paragraph, “Implementations shall not move an atomic operation out of
an unbounded loop”, does not add anything to the first sentence, and, worse, can be interpreted as
restricting the meaning of the first sentence. This sentence should therefore be deleted. The Library
Working Group discussed this change during the Santa Cruz meeting in October 2009, and agreed
with this deletion.

Library Issue 3: 29.5.1 Uninitialized Atomics and C/C++ Compatibility
(Normative)

This topic was the subject of a spirited discussion among a subset of the participants in the C/C++-
compatibility effort this past October and November.

Unlike C++, C has no mechanism to force a given variable to be initialized. Therefore, if C++ atomics
are going to be compatible with those of C, either C++ needs to tolerate uninitialized atomic objects,
or C needs to require that all atomic objects be initialized. There are a number of cases to consider:



Major problems fixed, key properties verified

35

DRF-SC: 

The central design goal, was false, the standard permitted too much

Fixed the model and then proved (in HOL4) that the goal is now true

Fixes were incorporated, pre-ratification, and are in C++11/14

Compilation mappings: 

Efficient x86, Power mappings are sound [BOS+11,BMO+12,SMO+12]

Reasoning: 

Developed a reasoning principle for proving programs correct [BDO13]



Timing was everything

36

Achieved direct impact on the standard

Making this work was partly a social problem

C++11 was a major revision, so the ISO was receptive to change

But…



A fundamental problem uncovered

37

// Thread 1
r1 = x;
if(r1==1) y = 1;

// Thread 2
r2 = y;
if(r2==1) x = 1;

x, y, r1, r2 initially zero

Can we observe r1==1, r2==1 at the end?



The write of y is dependent on the read of x

The write of x is dependent on the read of y

This will never occur in compiled code, and ought to be forbidden

“[ Note: […] However, implementations should not allow such behavior. — end note ]”

The ISO: notes carry no force, and “should” imposes no constraint  

38

// Thread 1
r1 = x;
if(r1==1) y = 1;

// Thread 2
r2 = y;
if(r2==1) x = 1;

x, y, r1, r2 initially zero

Can we observe r1==1, r2==1 at the end?

A fundamental problem uncovered



The write of y is dependent on the read of x

The write of x is dependent on the read of y

This will never occur in compiled code, and ought to be forbidden

“[ Note: […] However, implementations should not allow such behavior. — end note ]”

The ISO: notes carry no force, and “should” imposes no constraint  

39

// Thread 1
r1 = x;
if(r1==1) y = 1;

// Thread 2
r2 = y;
if(r2==1) x = 1;

x, y, r1, r2 initially zero

Can we observe r1==1, r2==1 at the end?

A fundamental problem uncovered



The write of y is dependent on the read of x

The write of x is dependent on the read of y

1/1 never occurs in compiled code, and ought to be forbidden

“[ Note: […] However, implementations should not allow such behavior. — end note ]”

The ISO: notes carry no force, and “should” imposes no constraint  

40

// Thread 1
r1 = x;
if(r1==1) y = 1;

// Thread 2
r2 = y;
if(r2==1) x = 1;

x, y, r1, r2 initially zero

Can we observe r1==1, r2==1 at the end? 

A fundamental problem uncovered



The write of y is dependent on the read of x

The write of x is dependent on the read of y

1/1 never occurs in compiled code, and ought to be forbidden

“[ Note: […] However, implementations should not allow such behavior. — end note ]”

ISO: notes carry no force, and “should” imposes no constraint, so yes!

41

// Thread 1
r1 = x;
if(r1==1) y = 1;

// Thread 2
r2 = y;
if(r2==1) x = 1;

x, y, r1, r2 initially zero

Can we observe r1==1, r2==1 at the end? 

A fundamental problem uncovered



The write of y is dependent on the read of x

The write of x is dependent on the read of y

1/1 never occurs in compiled code, and ought to be forbidden

“[ Note: […] However, implementations should not allow such behavior. — end note ]”

ISO: notes carry no force, and “should” imposes no constraint, so yes!

42

// Thread 1
r1 = x;
if(r1==1) y = 1;

// Thread 2
r2 = y;
if(r2==1) x = 1;

x, y, r1, r2 initially zero

Can we observe r1==1, r2==1 at the end? 

A fundamental problem uncovered

Why? Dependencies are ignored to allow 
dependency-removing optimisations

C++ Should respect the left-over dependencies

We have proved that no fix exists in the structure 
of the current specification

This identifies a difficult research problem



The thin-air problem 

43



In both branches on Thread 2, 1 is written to x

An optimising compiler may perform common subexpression elimination

In the altered program, ARM would allow outcome 1/1

44

// Thread 1
r1 = x;
if(r1==1) y = 1;

// Thread 2
r2 = y;
if(r2==1) {x = 1}
else {x = 1}

x, y, r1, r2 initially zero

Can we observe r1==1, r2==1 at the end? 

A slightly different program



In both branches on Thread 2, 1 is written to x

An optimising compiler may perform common subexpression elimination

In the altered program, ARM would allow the outcome 1/1

45

// Thread 1
r1 = x;
if(r1==1) y = 1;

// Thread 2
r2 = y;
x = 1;

x, y, r1, r2 initially zero

Can we observe r1==1, r2==1 at the end? 

A slightly different program



46

// Thread 1
r1 = x;
if(r1==1) y = 1;

// Thread 2
r2 = y;
if(r2==1) {x = 1}
else {x = 1}

x, y, r1, r2 initially zero

Can we observe r1==1, r2==1 at the end? 

A slightly different program

We need a semantic notion of dependency

Execution depends on more than one control-flow path

C++ spec considers one at a time: fundamental change is needed



Current work

47

Several candidates: 

•  The Promising Semantics [KHL+17] — an abstract machine with speculation of writes through promises. At 
each step, promised writes must be sure to execute.

• Jeffrey and Riely [JR16] — based on event structures, executions are built up iteratively, out of order. Add a 
read only if the write it reads from must be executed.

• Podkopaev, Sergey, and Nanevski [PSN16] — an abstract machine where conditionals can be preemptively 
explored, and writes that always occur can be promoted.

• Bubbly and Ticky semantics [PPS16] — based on event structures. The event structure is non-
deterministically mutated in a transition system that mimics compiler optimisations.

Each relies on a repeated search over multiple control-flow paths

This makes the models more expensive to evaluate than C++ (cannot use SAT)

Which model to choose?



Model simulation

48

Simulators provide lightweight automatic validation of design criteria:

[WBSC17] uses SAT to check DRF-SC, compiler mappings, litmus tests for C++, OpenCL, CPUs, GPUs

We are building a simulator for thin-air models

Higher complexity requires advanced Quantified Boolean Formula solvers

A VeTTS grant is paying for the development of a web interface

Our own solution to the thin-air problem is under development:

a compositional denotational semantics that looks rather different [B17]

Marco PaviottiSimon Cooksey Radu Grigore Sarah Harris Scott Owens



Conclusion

49

Mechanised industrial specification is practical, with a valuable payoff:

• Improved specs

• Simulators — an executable golden model that matches the spec

• Test suites can be generated

• Design criteria can be validated

It can guide us to future research questions

It is a necessary step in formal verification of security properties



[ABD+15] J. Alglave, M. Batty, A. Donaldson, G. Gopalakrishnan, J. Ketema, D. Poetzl, T. Sorensen, J. Wickerson. GPU concurrency: weak behaviours and programming assumptions. ASPLOS’15

[AFI+09] J. Alglave, A. Fox, S. Ishtiaq, M. O. Myreen, S. Sarkar, P. Sewell, and F. Zappa Nardelli. The semantics of Power and ARM multiprocessor machine code. DAMP’09

[AMSS10] J. Alglave, L. Maranget, S. Sarkar, and P. Sewell. Fences in weak memory models. CAV’10 

[AMSS’11] J. Alglave, L. Maranget, S. Sarkar, and P. Sewell. Litmus: Running tests against hardware. TACAS’11/ETAPS’11

[B17] M. Batty. Compositional relaxed concurrency. Philosophical Transactions A, 2017

[B11] P. Becker, editor. Programming Languages — C++. 2011. ISO/IEC 14882:2011. A non-final version is available at http://www.open-std.org/jtc1/sc22/ wg21/docs/papers/2011/n3242.pdf. 

[BDG13] M. Batty, M. Dodds, A. Gotsman. Library Abstraction for C/C++ Concurrency. POPL’13

[BDW16] M. Batty, A. Donaldson, J. Wickerson. Overhauling SC atomics in C11 and OpenCL. POPL’16

[BMN+15] M. Batty, K. Memarian, K. Nienhuis, J. Pichon, P. Sewell. The Problem of Programming Language Concurrency Semantics. ESOP’15

[BMO+12] M. Batty, K. Memarian, S. Owens, S. Sarkar, and P. Sewell. Clarifying and compiling C/C++ concurrency: from C++0x to POWER. POPL’12

[BOS+11] M. Batty, S. Owens, S. Sarkar, P. Sewell, and T. Weber. Mathematizing C++ concurrency. POPL’11

[CV16] S. Chakraborty, V. Vafeiadis. Validating optimizations of concurrent C/C++ programs. CGO’16

[FGP+16] S. Flur, K. E. Gray, C. Pulte, S. Sarkar, A. Sezgin, L. Maranget, W. Deacon, P. Sewell. Modelling the ARMv8 Architecture, Operationally: Concurrency and ISA. PLDI’16

[FSP+17] S. Flur, S. Sarkar, C. Pulte, K. Nienhuis, L. Maranget, K. E. Gray, A. Sezgin, M. Batty, P. Sewell. Mixed-size concurrency: ARM, POWER, C/C++11, and SC. POPL’17

[JR16] A. Jeffrey, J. Riely. On Thin Air Reads: Towards an Event Structures Model of Relaxed Memory. LICS’16

[LDGK08] G. Li, M. Delisi, G. Gopalakrishnan, and R. M. Kirby. Formal specification of the MPI-2.0 standard in TLA+. PPoPP’08

[KHL+17] A Promising Semantics for Relaxed-Memory Concurrency. J. Kang, C.-K. Hur, O. Lahav, V. Vafeiadis, D. Dreyer. POPL’17

[McK11] P. E. McKenney. [patch rfc tip/core/rcu 0/28] preview of RCU changes for 3.3, November 2011. https://lkml.org/lkml/2011/11/2/363

[MOG+14] D. P. Mulligan, S. Owens, K. E. Gray, T. Ridge, and P. Sewell. Lem: reusable engineering of real-world semantics. ICFP ’14

[MPZN13] R. Morisset, P. Pawan, F. Zappa Nardelli. Compiler testing via a theory of sound optimisations in the C11/C++11 memory model. PLDI’13

[OSP09] S. Owens, S. Sarkar, and P. Sewell. A better x86 memory model: x86-TSO. TPHOLS’09

[PPS16] J. Pichon-Pharabod and P. Sewell. A concurrency semantics for relaxed atomics that permits optimisation and avoids thin-air executions. POPL’16

[PSN16] A. Podkopaev, I. Sergey, and A. Nanevski. Operational aspects of C/C++ concurrency. CoRR’16.

[SMO+12] S. Sarkar, K. Memarian, S. Owens, M. Batty, P. Sewell, L. Maranget, J. Alglave, and D. Williams. Synchronising C/C++ and POWER. PLDI’12

[SSP+] S. Sarkar, P. Sewell, P. Pawan, L. Maranget, J. Alglave, D. Williams, F. Zappa Nardelli. The PPCMEM Web Tool. www.cl.cam.ac.uk/~pes20/ppcmem/

[WBDB15] J. Wickerson. M. Batty, B. Beckmann, A. Donaldson. Remote-Scope Promotion: Clarified, Rectified, and Verified. OOPSLA’15

[WBSC17] J. Wickerson, M. Batty, T. Sorensen, G. A. Constantinides. Automatically comparing memory consistency models. POPL’17

https://lkml.org/lkml/2011/11/2/363
http://www.cl.cam.ac.uk/~pes20/ppcmem/

