
Ç√

RESEARCH INSTITUTE IN

VERIFIED TRUSTWORTHY SOFTWARE SYSTEMS
UK’s second research institute in cyber-security

Annual Report 2017/2018

Ç√

2017/2018

MECHANISING THE

METATHEORY OF SQL
WITH NULLS

James Cheney
University of Edinburgh

VERIFYING EFFICIENT

LIBRARIES IN CAKEML

Scott Owens
University of Kent

MECHANISED ASSUME-
GUARANTEE REASONING

FOR CONTROL LAW

DIAGRAMS VIA CIRCUS

Jim Woodcock
University of York

SUPERVECTORIZER

Greta Yorsh
Queen Mary Univ. of London

AUTOMATED TESTING FOR

WEB BROWSERS

Benjamin Livshits
Imperial College London

AUTOMATED REASONING

WITH FINE-GRAINED

CONCURRENT

COLLECTIONS

Ilya Sergey
University College London

PRIDEMM
WEB INTERFACE

Mark Batty
University of Kent

EASTEND: EFFICIENT

AUTOMATIC SECURITY

TESTING FOR DYNAMIC

LANGUAGES

Johannes Kinder
Royal Holloway Univ. of London

vetss.org.uk 3

FOREWORD
Philippa Gardner, Director of VeTSS

The Research Institute in Verified Trustworthy Software Systems (VeTSS) is the UK's second

Academic Research Institute in cyber security, funded by the Engineering and Physical Sciences

Research Council (EPSRC) for five-years from April 2017. The purpose of VeTSS is to bring together

and support world-class UK academics, industrialists and government employees, unified by a

common interest in software analysis, testing and verification. VeTSS stands at the forefront of

research developments in fundamental theories and industrial-strength tools, targeting real-world

applications. It succeeds the previous three-year Research Institute in Automated Program Analysis

and Verification, funded by EPSRC and GCHQ.

The National Cyber Security Centre (NCSC) has given VeTSS £2.5 million over five years to support

academic research projects in software analysis, testing and verification. This annual report provides

a description of the projects funded from April 2017 to March 2018. In effect, most projects were

funded for eight months from August 2017, due to the start date of VeTSS. This report demonstrates

the deep connection between the VeTSS academic research and industry. For example, Livshits’ and

Donaldson's VeTSS project is related to an academic start-up of Donaldson (Imperial) that has

recently been bought by Google. This report also describes how VeTSS funding has led directly to

further funding by EPSRC, the EU and industry. For example, Yorsh's initial work on her VeTSS project

led directly to her ERC Starting Grant for £1.5 million. There has already been some published work

on the VeTSS projects but, in most cases, the work will be published in the coming year. This timeline

for publication is normal, and we will update the report as the publications emerge.

We have held a number of events since the start of VeTSS, including our main annual workshop

“Formal Methods and Tools for Security” at Microsoft Cambridge in September 2017 and 2018. We

have held meetings at NCSC and MoD, arranging for Gernot Heiser (Data61, Australia) to speak at

the NCSC about the verified microkernel seL4 and John Launchbury (Galois, USA) to speak at the

MoD about the DARPA HACMS project on verified autonomous vehicles. We have been part of a

successful bid for the Cambridge Newton Institute programme on “Verified Software” in 2020,

organised by de Moura (Microsoft Redmond), Farzan (Toronto), Hoare (formerly Oxford and

Microsoft), Gardner (Imperial), Larsen (Aalborg), Leroy (Inria Paris), McMillan (Microsoft Redmond),

O'Hearn (Facebook and UCL), Sewell (Cambridge), Shankar (SRI, California, lead organiser) and Vardi

(Rice). This meeting will bring international academics and industrialists to the UK for six weeks,

laying the groundwork for the next generation of verification grand challenges.

I hope that you will find this annual report of interest.

Professor Philippa Gardner

Director of VeTSS

Research Institute in Verified Trustworthy Software Systems 4

MECHANISING THE METATHEORY
OF SQL WITH NULLS

JAMES CHENEY

WILMER RICCIOTTI

• SQL is the standard query language used by the multi-billion-dollar relational database industry

• SQL semantics is notoriously subtle: it is written in natural language and is inconsistent across implementations

• Previous attempts to verify SQL transformations have ignored widely-used features, such as null values

• We present the first mechanised semantics that models these features, making it possible to formally verify
that real query optimisers are correct for real-world databases.

The Structured Query Language, SQL, is by far the most common language used by relational databases, which are the

basis of a multi-billion-dollar industry. The SQL standard is described by a large and comprehensive definition (ISO/IEC

9075:2016), based on natural language rather than a formal specification; due to the lack of an agreed-on formal

semantics, commercial SQL implementations interpret the standard in different ways, so that, given the same input

data, the same query can yield different results depending on the SQL system it is run on.

SQL systems first run a query optimiser which applies a set of rewrite rules to obtain an equivalent query that can be

processed more efficiently. However, due to the lack of a well-understood formal semantics, it is very difficult to

validate the soundness of such rewrite rules, and incorrect implementations are known in the literature. Bugs in query

optimisers could lead to corruption or errors in critical data.

Among SQL's features, its ability to deal with incomplete information, in the form of null values, accounts for a great

deal of semantic complexity. To express uncertainty, logical predicates on tuples containing null values employ three

truth values: true, false, and unknown. As a consequence, queries equivalent in the absence of null values can produce

different results when applied to tables with incomplete data, as illustrated in the diagram below.

Although there are some previous formalisations of SQL or relational query languages, all of them ignore null values,

so they “prove” query equivalences that are unsound in the presence of these features. Our project builds on a recent

(on-paper) formal semantics for SQL with nulls by Guagliardo and Libkin, providing the validation of key meta-theoretic

properties in the Coq proof assistant. We view this as a first step towards a future in which query optimisers are

certified. Our development can be publicly accessed at its GitHub repository (https://github.com/wricciot/nullSQL).

PUBLICATIONS. An article is to be submitted to a leading conference on verification.

RELATED GRANTS. Dr James Cheney, ERC Consolidator Grant: “Skye: Bridging theory and practice for scientific data

curation”, 2016-2021, £1.75M.

IMPACT STATEMENT. “Database queries and query languages are widely used in industry, yet their implementations and

optimisation rules are error-prone due to complications, such as the semantics of nulls. This can easily lead to subtle

bugs in relational database engines or incorrect queries, and work on formalising the semantics of existing query

languages, including the real-world semantics of nulls, is very important and likely to have a tangible impact on making

systems more reliable. For example, optimisation rules proposed in Kim’s seminal work on query un-nesting contained

the famous count bug, which led to incorrect query results in the presence of null values and could have been

prevented if formal verification techniques were used.”

– Matthias Brantner, Oracle –

vetss.org.uk 5

AUTOMATED TESTING FOR
WEB BROWSERS

BENJAMIN LIVSHITS

ALASTAIR DONALDSON

• Web browsers are among the most critical infrastructure on which society depends

• Testing web browsers to find semantic defects is fundamentally challenging

• We have employed mutation-based structural fuzzing to help address this problem, focussing on testing
WebGL implementations inside major web browsers

The research work undertaken on this project at Imperial College London led to the development of an automated

approach to finding defects in web browsers using mutation-based structural fuzz testing. The investigators decided

to focus on testing components of web browsers related to high-performance graphics processing via the WebGL API,

because the interaction between web browsers and graphics processing units has become a prominent attack surface

in recent years. Two complementary approaches were explored: applying semantics-preserving transformations to

WebGL pages to detect rendering problems, where a semantics-preserving change (which, by definition, should have

no impact) leads to a change in what is rendered, and applying semantics-changing mutations to a well-formed page

in order to test the browser's robustness to adversarial inputs. This led to the discovery and reporting of a number of

issues in the Firefox and Chrome browsers, triggered by underlying defects in GPU drivers from a range of vendors.

The associated tool in which the techniques are implemented will be open sourced in due course.

The funding from VeTTS was incredibly useful in allowing us to explore this emerging area. We have not yet published

work on the results, but the work undertaken so far will form the basis for future publications, and has put us in a

good position to apply for follow-on projects – a research grant from the Google Chrome University Research Program

has already been secured, with more details available below. The work is strongly related to a line of work Donaldson
has been pursuing for several years on metamorphic testing for graphics compilers, which led to the GraphicsFuzz

start-up company (www.graphicsfuzz.com) that was recently acquired by Google and has since been open-sourced

(https://github.com/google/graphicsfuzz). Open-sourcing of the VeTTS project and potential integration with the

GraphicsFuzz code base will further the impact potential of the project.

PUBLICATIONS. Several articles are in preparation to be submitted to leading conferences in the field.

RELATED GRANTS. Dr A. Donaldson, EPSRC Fellowship “Reliable Many-Core Programming”, 10/2016-09/2021, £1M.

Dr A. Donaldson (Co-I), with C. Cadar (PI), EPSRC

Grant “Automatically Detecting and Surviving

Exploitable Compiler Bugs”, 01/2018-12/2020,

£672K. Dr A. Donaldson, Google Chrome University

Research Program project “Automatic Detection of

Rendering-Related Security Vulnera-bilities in Web

Browsers”, 01/2018-04/2019, £130K.

IMPACT STATEMENT. “From a technical standpoint,

the GraphicsFuzz work to which this VeTTS project is

closely related has been highly successful in

developing basic technologies for improving the

security and reliability of billions of deployed mobile

devices. From a broader point of view, this work has

gotten widespread visibility and, of course, was seen

by Google as being so valuable that they bought it.”

– John Regehr, Professor, University of Utah –

A crash in Firefox caused by a driver bug discovered by our techniques

Research Institute in Verified Trustworthy Software Systems 6

PRIDEMM
WEB INTERFACE

 MARK BATTY RADU GRIGORE

• Prose specifications of relaxed memory behaviour are imprecise and lead to bugs in language specifications,
processors, compilers and vendor-endorsed programming idioms

• Mechanised formal models used in academia to unambiguously specify and verify relaxed memory behaviour

• PrideMM is a Solver for Relaxed Memory Models, which improves on state-of-the-art descriptions of the
concurrency behaviour of programming languages

• PrideMM provides a platform for comparison, testing, and refinement of relaxed memory models

Modern computer systems have relaxed memory: they exhibit highly unintuitive memory behaviour as a result of

aggressive processor and compiler optimisations. At the same time, these systems are specified with relatively

imprecise prose specifications, leading to bugs in language specifications, deployed processors, compilers and vendor-

endorsed programming idioms. A push from academia has, in place of prose, introduced mechanised formal models

that unambiguously specify relaxed memory behaviour, together with proofs and simulation tools that allow the

validation of key design goals.

This project concerns PrideMM: a solver that allows one to run tests over state-of-the-art descriptions of the

concurrency behaviour of programming languages. Previous relaxed memory simulators were based on ad-hoc

backends or SAT solvers. Additional computational complexity arises in cutting-edge language models that must

consider multiple paths of control flow, so the simulator backend embodies a problem outside of the scope of SAT.

The problem is, however, within the scope of rapidly improving QBF solvers, atop which PrideMM is built.

The Web Interface to PrideMM, available at https://www.cs.kent.ac.uk/projects/prideweb/, is an essential outcome

of this project. It allows one to run large batteries of automatically generated tests, and compare its runtime to those

of the existing state of the art. The goal of PrideMM is to facilitate discussion with the specifiers of industrial

concurrency models, promoting the latest academic solutions to open problems faced by industry.

PUBLICATIONS. [1] M. Batty et al. “PrideMM: A Solver for Relaxed Memory Models”, draft paper on PrideMM, detailing

representations of key memory models, a proof-of-concept

backend, and a specification language that marries

expressiveness and ease of solving. [2] M. Janota, R. Grigore,

V. Manquinho. “On the Quest for an Acyclic Graph”, draft

paper on finding acyclic graphs under a set of constraints, a

general problem central to the PrideMM backend.

RELATED GRANTS. Dr Mark Batty, EPSRC Grant: “Compositional,

dependency-aware C++ concurrency”, PI, £98,786, 04/2018-

03/2020. Dr Mark Batty, EPSRC Grant “Verifiably Correct Tran-

sactional Memory”, Co-I, £82,904, 07/2018-06/2021. PrideMM

is the starting point for tools envisaged by these two grants.

IMPACT STATEMENT. “I believe that a well-reasoned memory

model is the most important feature of any parallel program-

ming platform, and that Mark Batty’s work has contributed to

building confidence in these models more than anyone else’s.”

– Olivier Giroux, Distinguished Architect at NVIDIA, Chair of

Concurrency & Parallelism for ISO C++ –

PrideMM screenshot. One specifies a test, model, and outcome
and PrideMM works out whether the outcome is allowed or not.
“True” indicates the outcome is allowed, and the graph indicates
the underlying mathematical structure justifying this outcome.

https://www.cs.kent.ac.uk/projects/prideweb/

vetss.org.uk 7

VERIFYING EFFICIENT LIBRARIES
IN CAKEML

SCOTT OWENS

DEREK DREYER

• CakeML is a functional programming language and an ecosystem of associated proofs and tools, including a
formally verified compiler to various processor architectures

• CakeML lacks support for verifying libraries that use unsafe features, e.g., array accesses w/o bounds checks

• The RustBelt project (Dreyer) uses the Iris framework to reason about unsafe features of Mozilla’s Rust language

• This exploratory project investigated the feasibility of using RustBelt’s Iris to verify CakeML programs: we
established that it is not possible to use Iris as-is, and that it is necessary to develop an Iris-like logic for CakeML

CakeML is a dialect of the ML family of programming languages, designed to play

a central role in trustworthy software systems. The CakeML project is an ongoing

collaboration between Scott Owens (Kent, UK), Magnus Myreen (Chalmers,

Sweden), and Johannes Pohjola and Michael Norrish (Data61, Australia). The

project’s main accomplishment to date is the world’s first fully verified compiler

for a practical, functional programming language.

The RustBelt project aims to put the safety of Mozilla’s Rust programming langua-

ge on a firm semantic foundation. Rust’s standard libraries make widespread

internal use of unsafe blocks, which enable them to opt out of the type system
when necessary. The hope is that such unsafe code is properly encapsulated,

preserving language-level safety guarantees from Rust’s type system. However,

subtle significant bugs with such code have already been discovered by RustBelt.

This project explored the way in which fundamental mathematical insights from

RustBelt could be incorporated into CakeML’s suite of verification tools, setting the

foundation for follow-up projects with greater scope for more advanced unsafe

features, such as C’s malloc and free, or passing CakeML data to C functions. Such

features are important, as they bring end-to-end verification to performance-

critical areas, such as uni-kernel operating systems, or distributed systems where

even (non-end-to-end) verified systems are known to be buggy.

We have established that the Iris technology can, in principle, solve the problems

observed in CakeML. However, subsequent work on developing an initial

prototype demonstrated that we cannot directly apply the existing Iris work to

CakeML, as hoped, and that we need to re-design its logical foundations to

accommodate the CakeML proof ecosystem. In particular, the HOL4 theorem

prover of CakeML has foundational differences from RustBelt’s Coq theorem

prover. This is the subject of our subsequent VeTSS project.

RELATED GRANTS. Dr Scott Owens, EPSRC Grant: “Trustworthy Refactoring”,

09/2016-03/2020, £728,766.

IMPACT STATEMENT. “At Rockwell Collins, we use CakeML in projects to build avion-

ics components with formally proven behavioural guarantees: these components

have to exhibit high performance. In some cases, this can be achieved by algorith-

mic transformations already justifiable in CakeML. Beyond that, a great deal more
performance can be obtained by unsafe (formally verified) compilation steps, and

we are eager to take advantage of such advances when they become available.”

– Konrad Slind, Senior Industrial Logician, Rockwell Collins – CakeML Infrastructure

Research Institute in Verified Trustworthy Software Systems 8

SUPERVECTORIZER

GRETA YORSH

• Optimising compilers for Single-Instruction-Multiple-Data (SIMD) architectures rely on sophisticated program
analyses and transformations

• Correctness hard to prove due to interaction between optimisation passes and SIMD semantics/costs

• Supervectorizer: integration of unbounded superoptimisation with auto-vectorisation enables software to take
full advantage of SIMD capabilities of existing and new microprocessor designs

• Potential for fundamental advances in SMT solvers and industrial-strength SIMD optimising compilers

Optimising compilers for Single Instruction Multiple Data (SIMD) architectures rely on sophisticated program analyses

and transformations. In particular, auto-vectorisation is designed to automatically identify and exploit data-level

parallelism. To deliver expected performance improvements, compiler writers resort to changing optimisation passes,

heuristics, and cost models. This process is highly challenging even for the few experts who possess the required range

of skills, and any errors introduced affect the entire software stack, likely compromising its reliability and security.

Ensuring correctness of these compiler optimisations is hard due to implicit interactions between optimisation passes

and abstruse details of SIMD instructions semantics and costs. It results in missed optimisation opportunities and

subtle bugs, such as miscompiled code, which might remain undiscovered for a long time and manifest themselves in

obscure ways across abstraction layers of a software stack.

This project aimed at enabling software to take full advantage of SIMD capabilities of microprocessor designs, without

modifying the compiler. In particular, we integrate unbounded superoptimisation with auto-vectorisation. This appro-

ach reduces the engineering effort needed to tune a production compiler for new SIMD architectures and improves

compiler reliability without compromising the performance of generated code. We believe that this approach will lead

to fundamental advances in SMT solvers and industrial-strength optimising compilers targeting SIMD architectures.

The work done in this project has had the following impact:

• Initial results were presented, by invitation, at Intel’s Compiler, Architecture and Tools Conference (CATC).

• Postdoctoral research assistant, Julian Nagele, who joined in January 2018, has been working on a robust

prototype implementation and experiments with SIMD instructions. Julian is engaged with the LLVM community

and obtained valuable early-stage feedback from developers at EuroLLVM 2018.

• The work on this project has led directly to the award to Dr Yorsh of ERC Starting Grant. Initial results obtained

under VeTSS funding demonstrated feasibility of the proposed ERC plan and the work under ERC will build on the

infrastructure and experimental results obtained under VeTSS funding.

• The quantitative trading firm Jane Street expressed

interest in incorporating techniques developed

under this grant into the compiler for OCAML.

• Amazon invited Dr Yorsh to join as Amazon Scholar

to work with Amazon Video on tools for improving

correctness and performance of their code.

PUBLICATIONS. An article on the symbolic cost model for

SIMD instructions is in preparation.

RELATED GRANTS. Dr Greta Yorsh, ERC Starting Grant,

£1.25M, 2018-2022. Structure of the preliminary prototype

vetss.org.uk 9

EASTEND: EFFICIENT AUTOMATIC
SECURITY TESTING FOR DYNAMIC LANGUAGES

JOHANNES KINDER

• Dynamic languages like JavaScript and Python are immensely popular

• Dynamic types and non-standard semantics make security bugs difficult to spot

• EASTEND focused on automated security testing for dynamic languages, in particular JavaScript.

• EASTEND improves the applicability of dynamic symbolic execution for JavaScript code and develops a flexible
specification and testing methodology for security properties

EASTEND is based on the hypothesis that inherently dynamic languages are best served by a dynamic approach to

verification that points to errors in the code without restricting the freedom of the developer. It uses test generation

via dynamic symbolic execution (DSE) to systematically cover paths through programs and check security properties

along those paths. The two main research objectives of EASTEND were: improving the applicability of dynamic

symbolic execution (DSE) for real-world JavaScript code (RO1); and developing a flexible specification and testing

methodology for security properties that goes beyond simple assertion checking (RO2).

Regular expressions (REs) limit applicability of DSE to testing code security in practical client- and server-side web

applications, as modern solvers cannot reason about real-world REs as they are used by developers. We developed an

encoding of complex REs and with a refinement scheme that soundly translates REs into the subset supported by state-

of-the-art solvers. We implemented our approach in our DSE engine for JavaScript, ExpoSE [1], and evaluated it on

1,131 Node.js packages, demonstrating that the encoding is effective and can increase line coverage by up to 30%.

The increased coverage demonstrates that more parts of the program can be reached, increasing the analysis surface

for detecting bugs and vulnerabilities, e.g., using the specification and testing methods developed as part of RO2.

We have developed a methodology for specification-based testing of cryptographic applications based on type-like

tags attached to runtime values that we call “Security Annotations” (SAs) [2]. We have developed explicit SAs for the

widely-used JavaScript library Crypto.JS, which implements common cryptographic algorithms and primitives. These

will allow developers using Crypto.JS to automatically inject our annotations into their testing environment at runtime

without any expert knowledge required. By using DSE with ExpoSE on a program using an appropriately annotated

API, developers will be able automatically detect cryptographic bugs without additional annotation requirements.

PUBLICATIONS. [1] B. Loring, D. Mitchell, J. Kinder. “ExpoSE: Practical Symbolic Execution of Standalone JavaScript”. In

Proc. Int. SPIN Symp. Model Checking of Software (SPIN), pp. 196–199, ACM, 2017. [2] D. Mitchell, L. T. van Binsbergen,

B. Loring, and J. Kinder. “Checking Cryptographic API Usage with Composable Annotations”. In ACM SIGPLAN

Workshop on Partial Evaluation and Program Manipulation (PEPM), 2018.

RELATED GRANTS. “Cryptobugs – Detecting Incorrect Use

of Cryptographic Routines”, GCHQ Studentship,

09/2015-02/2019. £120,449.

IMPACT STATEMENT. “We have started using ExpoSE as a

key component of a research project on privacy-

preserving proxy servers. To the best of my knowledge,

it is the only existing tool for dynamic symbolic

execution of modern real-world JavaScript code.”

– Prof. James Mickens, Harvard University –

Parallel testing architecture of ExpoSE

Research Institute in Verified Trustworthy Software Systems 10

AUTOMATED REASONING WITH FINE-
GRAINED CONCURRENT COLLECTIONS

ILYA SERGEY

NIKOS GOROGIANNIS

• A domain-specific language (DSL) for concurrent implementations of distributed protocols.

• Prototype DSL implementations of consensus protocols: Two-Phase Commit, Paxos, Multi-Paxos.

• An extension of Disel, a higher-order separation logic for distributed systems to handle concurrent per-node
implementations of distributed protocols.

As per the original proposal, the funding has been used to host Kristoffer Just Andersen as a visiting student at the CS

department of UCL, where he has worked under our supervision on the applications of techniques for logic-based

reasoning about concurrency to the verification of distributed systems with internal multi-threaded parallelism. The

project thus naturally evolved from the initially proposed research, elaborating and extending it for the distributed

setting. The artefacts produced to date include the runnable prototype (in Haskell) as well as a (partially) mechanised

logical development for the verification of multithreaded distributed programs. During Andersen’s stay at UCL, Sergey

and Andersen developed a domain-specific language for specifying, implementing, randomised testing and visual

debugging of distributed protocols.

We have developed Distributed Protocol Combinators (DPC), a declarative programming framework that aims to bridge
the gap between specifications and runnable implementations of distributed systems, as well as facilitate their
modelling, testing, and execution. DPC builds on the ideas from the state-of-the art logics for compositional systems
verification. DPC contributes with a novel family of program-level primitives, which allows construction of larger distri-
buted systems from smaller components, streamlining the usage of the most common asynchronous message-passing
communication patterns, and providing machinery for testing and user-friendly dynamic verification of systems. The
approach has been implemented in a form of a reusable Haskell library, as well as a tool for visual debugging of
asynchronous systems.

Declarative programming over distributed protocols is

possible and, we believe, can lead to new insights, such

as better understanding on how to structure systems

implementations. Even though there are several known

limitations to the design of DPC due to the chosen

linguistic foundations (i.e., Haskell), we consider our

approach beneficial and illuminating for the purposes of

prototyping, exploration, and teaching distributed

system design. In the future, we are going to explore

the opportunities, opened by DPC, for randomised

protocol testing and lightweight verification with

refinement types.

PUBLICATIONS. [1] K. J. A. Andersen, I. Sergey, “Distributed Protocol Combinators”, PADL’19. [2] N. Polikarpova, I.

Sergey. “Structuring the Synthesis of Heap-Manipulating Programs”, POPL’19.

RELATED GRANTS. Dr Ilya Sergey, EPSRC Grant “Program Logics for Compositional Specification and Verification of

Distributed Systems”, 01/2017-11/2018, £101,009. Dr. Ilya Sergey, Google Faculty Research Award, “Distributed

System Optimisations as Network Semantics Transformations”, 2018.

This is coherent with with the first example we envisioned wrt. the protocol:

there is (1) the init ial state; (2) the state with the client await ing response, but

the message undelivered; (3) the state with the client wait ing and the server

having sent a response; and finally, (4) a terminal state with the client done.

The non-determinism can be similarly resolved by enumerat ing all possible

paths through a protocol, up to a certain t race length if the execut ion space is

not finite. If the state space of a network is finite, this can yield actual finite-

space model checking procedures. In the following subsect ion, we will explore

another alternat ive to resolving the non-determinism, yielding an unusual yet

very useful execut ion method.

2.4 I nt eract ive Explor at ion wit h GU I

F igur e 2. The interact ive explorat ion tool, loaded

with the calculator protocol.

By delegat ing the decision

of which transit ion to fol-

low to the user of an ap-

plicat ion that performs this

simulat ion, we can allow the

client of the framework to ex-

plore the network behaviour

interact ively. The DPC li-

brary provides a command-

line GUI applicat ion facilitat -

ing interact ive explorat ion of

dist ributed networks step-by-

step. Provided an init ial network specificat ion like the one described previously,

one can start the session by typing the following:

> runGUI addNetwork

This yields the interface displayed in Figure 2. By choosing specific t ransit ions in

sequence, the user can evolve and inspect the network at each step of execut ion.

This is useful for protocol design and debugging, and can help understand the

dynamics of a protocol, and the kinds of communicat ion pat terns it describes.

Addit ionally, as can be seen in Figure 2, in the interact ive tool we enrich the

possible t ransit ions at every step with the possibility of a node to go o↵-line.

In e↵ect , it means it will stop processing messages, modelling a benign (non-

byzant ine) fault . Other nodes cannot observe this and will “ perceive” the node

as not responding. This, however, becomes very useful when we move to explore

protocols that allow for part ial responses among a collect ion of nodes, as in the

case of crash-resilient consensus protocols.

2.5 Pr ot ocol-A war e D ist r ibut ed I mplement at ions

Dist ributed systems protocols serve as key components of some of the largest

software systems in use. The act ions taken in the protocol are governed by pro-

grams outside the key protocol primit ives, so it is vital that implementat ions

can integrate with software components in real general-purpose languages. We

here present such a language, by enriching the monadic core language of Haskell

with primit ives for sending and receiving messages. This allows use of the en-

7

Visual debugging of asynchronous systems using DPC

vetss.org.uk 11

MECHANISED ASSUME-GUARANTEE

REASONING FOR CONTROL LAW

DIAGRAMS VIA CIRCUS

JIM WOODCOCK

SIMON FOSTER

• Theoretical reasoning framework for discrete-time part of control-law block diagrams (such as Simulink), based
on mathematical semantics of diagrams and capable of dealing with large state spaces

• Contract-based compositional reasoning using refinement for verification of large systems

• Support for reasoning about diagrams with algebraic loops, ignored by most other verification approaches

• Verification of a subsystem of an industrial aircraft cabin-pressure control application

Control-law diagrams are used in industry to model complex engineering systems, such as the many components of

modern aircrafts. These systems must be built to the very highest standards possible, and their control laws must be

verified to ensure that they behave as required. Our project proposes a general methodology based on mathematical

descriptions of diagrams. It is expressive enough both to capture the full range of behaviours required and to be used

with other engineering techniques and their own diagrams and notations. Our techniques scale up to tackle

verification of large-scale systems. In this VeTSS-funded project, we developed a theoretical reasoning framework for

discrete-time blocks of control-law diagrams. As well as giving a mathematical meaning to Simulink (an industry-

standard diagrammatic notation for depicting control laws), our framework links to Modelica (another industry

standard notation) for multi-model descriptions. Our verification technique relies on computer programs that

automatically follow human patterns of reasoning.

We used our framework to verify the control laws for a subsystem used in aircrafts that controls the cabin pressure

after landing. Specifically, the cabin-pressure system must keep working until the aircraft has made a successful

landing and the cabin doors have been open for a minimum amount of time. The subsystem is made by Honeywell

and we worked with colleagues at D-RisQ. Our technique revealed a vulnerable block that should be improved. The

outcomes of this project include a theory to reason about block diagrams using mathematical contracts, mechanisation

of the theory in the Isabelle theorem prover, as well as the verification of the cabin-pressure control subsystem. A

technical report is available online at http://eprints.whiterose.ac.uk/129640/.

PUBLICATIONS. K. Ye, S. Foster, J. Woodcock. “Compositional Assume-Guarantee Reasoning of Control-Law Diagrams

using UTP”, under submission.

RELATED GRANTS. Dr Simon Foster, EPSRC UKRI

Innovation Fellowship: “CyPhyAssure: Com-

positional Safety Assurance for Cyber-Physical

Systems”, £562,549, 06/2018–05/2021, with

project partners ClearSy and D-RisQ.

IMPACT STATEMENT. “Simulink is a language highly

applied by industry in the development of safety-

critical embedded, real-time, and cyber-physical

systems, where the establishment of accessible

verification support can have substantial impact.

This VeTSS project has made a crucial step forward

in this area by provision of theorem proving

technology in Isabelle/UTP, validated by its

application to a real-world aircraft cabin-pressure

control application from our company.”

– Colin O’Halloran, CEO, D-RisQ –

Requirement 1 A	finalize	event	will	be	broadcast after	the	aircraft	
door	has	been	open	continuously	for	
door_open_time seconds	while	the	aircraft	is	
on	the	ground	after	a	successful	landing

Requirement	2 The	finalize	event	is	broadcast only	while	the	
aircraft	is	on	the	ground

Requirement	3 The	finalize	event	will	not	occur	during flight

Requirement	4 The	finalize	event	will	not	be	enabled	while	the	
aircraft door	is	closed

Verified

Verified

Verified

Verified

No:	correct	diagram	and	retry

Yes:	verification	successful

encode

e
n
co
d
e

Workflow: from textual representation to formal verification

TRUSTWORTHY SOFTWARE

FOR NUCLEAR ARMS

CONTROL

Andy King
University of Kent

A FOUNDATION FOR

TESTING AND VERIFYING

C++ TRANSACTIONS

John Wickerson
Imperial College London

AUTOMATED BLACK-BOX

VERIFICATION OF

NETWORKING SYSTEMS

Alexandra Silva
University College London

SUPERVECTORIZER

(PHASE II)

Greta Yorsh
Queen Mary University of London

GENERATING EXPLOITABLE

CRASHES

Daniel Kroening
Oxford University

BUILDING VERIFIED

APPLICATIONS IN CAKEML

Scott Owens
University of Kent

OPERATING SYSTEM

COMPONENTS AS

VERIFIED LIBRARIES

Tom Ridge
University of Leicester

FORMAL VERIFICATION OF

QUANTUM SECURITY

PROTOCOLS USING COQ

Raja Nagarajan
Middlesex University London

SPECIFICATION AND

VERIFICATION OF C++
DATA-STRUCTURE LIBRARIES

Mark Batty
University of Kent

2018/2019

SESSION-TYPE-BASED

VERIFICATION FRAMEWORK

FOR MESSAGE-PASSING IN GO

Nobuko Yoshida
Imperial College London

Ç√

CONTACT US

E-MAIL: VeTSS@imperial.ac.uk

PETAR MAKSIMOVIĆ

Academic Program Manager

Ç√
RESEARCH INSTITUTE IN

VERIFIED TRUSTWORTHY SOFTWARE SYSTEMS
UK’s second research institute in cyber-security

RESEARCH INSTITUTE IN VERIFIED TRUSTWORTHY SOFTWARE SYSTEMS

Department of Computing, Imperial College London
South Kensington Campus, London SW7 2AZ
United Kingdom

TERESA CARBAJO GARCÍA

Administrative Program Manager

PHONE: +44 (0)20 759 43140

	Cover pages-no images
	Projects

