
26th International Conference, TACAS 2020
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2020
Dublin, Ireland, April 25–30, 2020, Proceedings, Part II

Tools and Algorithms
for the Construction
and Analysis of SystemsLN

CS
 1

20
79

A
RC

oS
S

Armin Biere
David Parker (Eds.)

Lecture Notes in Computer Science 12079

Editorial Board Members

Elisa Bertino, USA
Wen Gao, China
Bernhard Steffen , Germany

Gerhard Woeginger , Germany
Moti Yung, USA

Advanced Research in Computing and Software Science
Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany
Benjamin C. Pierce, University of Pennsylvania, USA
Bernhard Steffen , University of Dortmund, Germany
Deng Xiaotie, Peking University, Beijing, China
Jeannette M. Wing, Microsoft Research, Redmond, WA, USA

Founding Editors

Gerhard Goos, Germany
Juris Hartmanis, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693
https://orcid.org/0000-0001-9619-1558

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Armin Biere • David Parker (Eds.)

Tools and Algorithms
for the Construction
and Analysis of Systems
26th International Conference, TACAS 2020
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2020
Dublin, Ireland, April 25–30, 2020
Proceedings, Part II

Editors
Armin Biere
Johannes Kepler University
Linz, Austria

David Parker
University of Birmingham
Birmingham, UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-45236-0 ISBN 978-3-030-45237-7 (eBook)
https://doi.org/10.1007/978-3-030-45237-7

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© The Editor(s) (if applicable) and The Author(s) 2020. This book is an open access publication.
Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes were made.
The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-7170-9242
https://orcid.org/0000-0003-4137-8862
https://doi.org/10.1007/978-3-030-45237-7
http://creativecommons.org/licenses/by/4.0/

ETAPS Foreword

Welcome to the 23rd ETAPS! ETAPS 2020 was originally planned to take place in
Ireland in its beautiful capital Dublin. Because of the Covid-19 pandemic, this was
changed to an online event on July 2, 2020.

ETAPS 2020 is the 23rd instance of the European Joint Conferences on Theory and
Practice of Software.

ETAPS is an annual federated conference established in 1998, and consists of four
conferences: ESOP, FASE, FoSSaCS, and TACAS.

Each conference has its own Program Committee (PC) and its own Steering
Committee (SC).

The conferences cover various aspects of software systems, ranging from theoretical
computer science to foundations of programming language developments, analysis
tools, and formal approaches to software engineering.

Organizing these conferences in a coherent, highly synchronized conference pro-
gramme, enables researchers to participate in an exciting event, having the possibility
to meet many colleagues working in different directions in the field, and to easily attend
talks of different conferences.

On the weekend before the main conference, numerous satellite workshops take
place that attract many researchers from all over the globe. Also, for the second time, an
ETAPS Mentoring Workshop is organized.

This workshop is intended to help students early in the program with advice on
research, career, and life in the fields of computing that are covered by the ETAPS
conference.

ETAPS 2020 received 424 submissions in total, 129 of which were accepted,
yielding an overall acceptance rate of 30.4%.

I thank all the authors for their interest in ETAPS, all the reviewers for their
reviewing efforts, the PC members for their contributions, and in particular the PC (co-)
chairs for their hard work in running this entire intensive process.

Last but not least, my congratulations to all authors of the accepted papers!
Because of the change to an online event, most of the original ETAPS program had

to be cancelled. The ETAPS afternoon featured presentations of the three best paper
awards, the Test-of-Time award and the ETAPS PhD award. The invited and tutorial
speakers of ETAPS 2020 will be invited for ETAPS 2021, and all authors of accepted
ETAPS 2020 papers will have the opportunity to present their work at ETAPS 2021.

ETAPS 2020 originally was supposed to place in Dublin, Ireland, organized by the
University of Limerick and Lero. The local organization team consisted of Tiziana
Margaria (UL and Lero, general chair), Vasileios Koutavas (Lero@UCD), Anila Mjeda
(Lero@UL), Anthony Ventresque (Lero@UCD), and Petros Stratis (Easy Confer-
ences). I would like to thank Tiziana and her team for all the preparations, and we hope
there will be a next opportunity to host ETAPS in Dublin.

ETAPS 2020 is further supported by the following associations and societies:
ETAPS e.V., EATCS (European Association for Theoretical Computer Science),

EAPLS (European Association for Programming Languages and Systems), and EASST
(European Association of Software Science and Technology).

The ETAPS Steering Committee consists of an Executive Board, and representa-
tives of the individual ETAPS conferences, as well as representatives of EATCS,
EAPLS, and EASST.

The Executive Board consists of Holger Hermanns (Saarbrücken), Marieke Huis-
man (Twente, chair), Joost-Pieter Katoen (Aachen and Twente), Jan Kofron (Prague),
Gerald Lüttgen (Bamberg), Tarmo Uustalu (Reykjavik and Tallinn), Caterina Urban
(INRIA), and Lenore Zuck (Chicago).

Other members of the steering committee are:
Armin Biere (Linz)
Jordi Cabot (Barcelona)
Jean Goubault-Larrecq (Cachan)
Jan-Friso Groote (Eindhoven)
Esther Guerra (Madrid)
Jurriaan Hage (Utrecht)
Reiko Heckel (Leicester)
Panagiotis Katsaros (Thessaloniki)
Stefan Kiefer (Oxford)
Barbara König (Duisburg)
Fabrice Kordon (Paris)
Jan Kretinsky (Munich)
Kim G. Larsen (Aalborg)
Tiziana Margaria (Limerick)
Peter Müller (Zurich)
Catuscia Palamidessi (Palaiseau)
Dave Parker (Birmingham)
Andrew M. Pitts (Cambridge)
Peter Ryan (Luxembourg)
Don Sannella (Edinburgh)
Bernhard Steffen (Dortmund)
Mariëlle Stoelinga (Twente)
Gabriele Taentzer (Marburg)
Christine Tasson (Paris)
Peter Thiemann (Freiburg)
Jan Vitek (Prague)
Heike Wehrheim (Paderborn)
Anton Wijs (Eindhoven), and
Nobuko Yoshida (London)
I’d like to take this opportunity to thank all authors, attendants, organizers of the

satellite workshops, and Springer-Verlag GmbH for their support.
I hope you all enjoyed the ETAPS 2020 afternoon.

July 2020 Marieke Huisman
ETAPS SC Chair

ETAPS e.V. President

vi ETAPS Foreword

Preface

TACAS 2020 was the 26th edition of the International Conference on Tools and
Algorithms for the Construction and Analysis of Systems conference series. TACAS
2020 was part of the 23rd European Joint Conferences on Theory and Practice of
Software (ETAPS 2020).

TACAS is a forum for researchers, developers, and users interested in rigorously
based tools and algorithms for the construction and analysis of systems. The conference
aims to bridge the gaps between different communities with this common interest and
to support them in their quest to improve the utility, reliability, flexibility, and effi-
ciency of tools and algorithms for building systems. TACAS solicited four types of
submissions:

• Research papers advancing the theoretical foundations for the construction and
analysis of systems

• Case study papers with an emphasis on a real-world setting
• Regular tool papers presenting a new tool, a new tool component, or novel

extensions to an existing tool and requiring an artifact submission
• Tool demonstration papers focusing on the usage aspects of tools, also subject to

the artifact submission requirement

This year 155 papers were submitted to TACAS, consisting of 111 research papers,
8 case study papers, 19 regular tool papers, and 17 tool demo papers. Individual authors
were limited to a maximum of three submissions. Each paper was reviewed by at least
three Program Commitee (PC) members, who also provided feedback whether certain
papers should go through a rebuttal process.

The chairs asked for 59 rebuttals, usually following such rebuttal recommendations
by PC members. In parallel to PC reviewing, the Artifact Evaluation Committee
(AEC) reviewed the artifacts. A formal summary review of this evaluation was made
available to the PC members and taken into account in the discussion phase. The case
study chair and the tools chair made sure that identical reviewing and selection criteria
were applied within their respective class of papers. After this thorough reviewing,
rebuttal and discussion phase, a total of 48 papers were accepted, including 31 research
papers, 4 case study papers, 5 regular tool papers and 8 tool demo papers.

As in 2019, TACAS 2020 included an artifact evaluation (AE) for all types of
papers. There were two rounds of the AE: for regular tool papers and tool demon-
stration papers AE was compulsory and artifacts had to be submitted to the first round.
For research and case study papers, it was voluntary, and artifacts could be submitted to
either the first or the second round. The results of the first round were communicated to

the TACAS PC before their discussion phase so that the quality of the artifact could be
considered prior to the TACAS decision making. Each artifact was evaluated inde-
pendently by at least three reviewers. All accepted papers with accepted artifacts
received a badge which is added to the title page of the respective paper if desired by
the authors.

The AEC used a two-phase reviewing process: reviewers first performed an initial
check to see whether the artifact was technically usable and whether the accompanying
instructions were consistent, followed by a full evaluation of the artifact. The main
criteria for artifact acceptance was consistency with the paper, with completeness, and
documentation being handled in a more lenient manner as long as the artifact was
useful overall.

In the first round, out of 44 artifact submissions, 29 were accepted and 15 were
rejected. This corresponds to an acceptance rate of 66%. Out of the 36 artifacts for
regular tool papers and tool demonstration papers, 25 artifacts were accepted and 11
artifacts were rejected resulting in an acceptance rate of 69%. In all but five cases, tool
papers whose artifacts did not pass the evaluation were rejected. Those 5 artifacts were
invited for submission in the second evaluation round and 3 of these artifacts were
resubmitted and successfully evaluated. Overall, out of the 20 artifacts submitted to the
second evaluation round, 17 were accepted and 3 were rejected resulting in an
acceptance rate of 85%.

TACAS 2020 also hosted the 9th International Competition on Software Verifica-
tion (SV-COMP 2020), chaired and organized by Dirk Beyer. The competition had
again a high participation: 28 verification systems with developers from 11 countries
were submitted for the systematic comparative evaluation, including 3 submissions
from industry. Six teams contributed validators for verification witnesses. The TACAS
proceedings includes the competition report and short papers describing 11 of the
participating verification systems. These papers were reviewed by a separate
SV-COMP program committee; each of the papers was assessed by at least three
reviewers. Two sessions in the TACAS program were reserved for the presentation
of the results: the summary by the SV-COMP chair and the participating tools by the
developer teams in the first session, and the open community meeting in the second
session.

We are grateful to everyone who helped to make TACAS 2020 a success. In
particular, we would like to thank all PC members, external reviewers, and the
members of the AEC for their detailed and informed reviews and for their discussions
during the virtual PC and AEC meetings. The collection and selection of papers was
organized through the EasyChair Conference System and the proceedings volumes
were published with the help of Springer; we thank them all for their assistance. We

viii Preface

also thank the SC for their advice, the Organizing Committee of ETAPS 2020 and
its general chair (Tiziana Margaria) and the chair of the ETAPS Executive Board
(Marieke Huisman).

March 2020 Armin Biere
David Parker

PC Chairs

Marijn Heule
Case Study Chair

Falk Howar
Tools Chair

Dirk Beyer
Competition Chair

Arnd Hartmanns
Martina Seidl
AEC Chairs

Preface ix

Organization

Program Committee

Christel Baier TU Dresden, Germany
Ezio Bartocci Vienna University of Technology, Austria
Dirk Beyer LMU Munich, Germany
Armin Biere (Chair) Johannes Kepler University Linz
Jasmin Blanchette Vrije Universiteit Amsterdam, The Netherlands
Roderick Bloem TU Graz, Austria
Hana Chockler King’s College London, UK
Alessandro Cimatti FBK-irst, Italy
Rance Cleaveland University of Maryland, USA
Goran Frehse Université Grenoble Alpes, France
Martin Fränzle Carl von Ossietzky Univ. Oldenburg, Germany
Orna Grumberg Technion - Israel Institute of Technology
Kim Guldstrand Larsen Aalborg University, Denmark
Holger Hermanns Universität des Saarlandes, Germany
Marijn Heule Carnegie Mellon University, USA
Falk Howar TU Clausthal, IPSSE, Germany
Benjamin Kiesl CISPA Helmholtz Center for Inf. Security, Germany
Laura Kovacs Vienna University of Technology, Austria
Jan Kretinsky TU Munich, Germany
Wenchao Li Boston University, USA
Ken McMillan Microsoft, USA
Aina Niemetz Stanford University, USA
Gethin Norman University of Glasgow, UK
David Parker (Chair) University of Birmingham, UK
Corina Pasareanu CMU/NASA Ames Research Center, USA
Nir Piterman University of Gothenburg, Sweden
Kristin Yvonne Rozier Iowa State University, USA
Philipp Ruemmer Uppsala University, Sweden
Natasha Sharygina Università della Svizzera italiana, Switzerland
Bernhard Steffen TU Dortmund, Germany
Jan Strejček Masaryk University, Czech Republic
Michael Tautschnig Queen Mary University of London, UK
Jaco van de Pol Aarhus University, Denmark
Tom van Dijk University of Twente, The Netherlands
Christoph Wintersteiger Microsoft, UK

Artifact Evaluation Committee

Pranav Ashok TU Munich, Germany
Peter Backeman Uppsala University, Sweden
Ismail Lahkim Bennani Inria, France
Carlos E. Budde University of Twente, The Netherlands
Karlheinz Friedberger LMU Munich, Germany
Arnd Hartmanns (Chair) University of Twente, The Netherlands
Jannik Hüls Westfälische Wilhelms-Univ. Münster, Germany
Ahmed Irfan Stanford University, USA
Martin Jonas Masaryk University, Czech Republic
William Kavanagh University of Glasgow, UK
Brian Kempa Iowa State University, USA
Michaela Klauck Universität des Saarlandes, Germany
Sascha Klüppelholz TU Dresden, Germany
Bettina Könighofer TU Graz, Austria
Sophie Lathouwers University of Twente, The Netherlands
Florian Lonsing Stanford University, USA
Juraj Major Masaryk University, Czech Republic
Tobias Meggendorfer TU Munich, Germany
Vince Molnar Budapest Univ. of Tech. and Economics, Hungary
Alnis Murtovi TU Dortmund, Germany
Chris Novakovic University of Birmingham, UK
Nicola Paoletti Royal Holloway University of London, UK
Tim Quatmann RWTH Aachen University, Germany
Martina Seidl (Chair) Johannes Kepler University Linz, Austria
Leander Tentrup Universität des Saarlandes, Germany
Freark van der Berg University of Twente, The Netherlands
Marcell Vazquez-Chanlatte University of California at Berkeley, USA
Matthias Volk RWTH Aachen University, Germany
Petar Vukmirovic Vrije Universiteit Amsterdam, The Netherlands
Maximilian Weininger TU Munich, Germany

SV-COMP – Program Committee and Jury

Dirk Beyer (Chair) LMU Munich, Germany
Viktor Malík (2LS) BUT Brno, Czech Republic
Lei Bu (BRICK) Nanjing University, China
Michael Tautschnig

(CBMC)
Amazon Web Services, UK

Willem Visser (COASTAL) Stellenbosch University, South Africa
Vadim Mutilin

(CPA-BAM-BnB)
ISP RAS, Russia

Martin Spiessl (CPA-Seq) LMU Munich, Germany
Pavel Andrianov

(CPALockator)
ISP RAS, Russia

xii Organization

Hernán Ponce de León
(Dartagnan)

Bundeswehr University Munich, Germany

Henrich Lauko (DIVINE) Masaryk University, Czechia
Felipe R. Monteiro

(ESBMC)
Fed. Univ. of Amazonas, Brazil

Benjamin Quiring
(GACAL)

Northeastern University, USA

Vaibhav Sharma
(Java-Ranger)

University of Minnesota, USA

Philipp Ruemmer (JayHorn) Uppsala University, Sweden
Peter Schrammel (JBMC) University of Sussex, UK
Falk Howar (JDart) TU Dortmund, Germany
Omar Inverso (Lazy-CSeq) Gran Sasso Science Institute, Italy
Herbert Rocha

(Map2Check)
Universidade Federal do Amazonas, Brazil

Philipp Berger (NITWIT) RWTH Aachen, Germany
Cedric Richter (PeSCo) Paderborn University, Germany
Saurabh Joshi (Pinaka) IIT Hyderabad, India
Veronika Šoková

(PredatorHP)
BUT Brno, Czech Republic

Willem Visser (SPF) Amazon Web Services, USA
Marek Chalupa (Symbiotic) Masaryk University, Czech Republic
Matthias Heizmann

(UAutomizer)
University of Freiburg, Germany

Alexander Nutz (UKojak) University of Freiburg, Germany
Daniel Dietsch (UTaipan) University of Freiburg, Germany
Priyanka Darke (VeriAbs) Tata Consultancy Services, India
Raveendra K. Medicherla

(VeriFuzz)
Tata Consultancy Services, India

Liangze Yin
(Yogar-CBMC)

Nat. Univ. of Defense Technology, China

Steering Committee

Bernhard Steffen (Chair) TU Dortmund, Germany
Dirk Beyer LMU Munich, Germany
Rance Cleaveland University of Maryland, USA
Holger Hermanns Universität des Saarlandes, Germany
Kim G. Larsen Aalborg University, Denmark

Organization xiii

Additional Reviewers

Alexandre Dit Sandretto, Julien
Asadi, Sepideh
Ashok, Pranav
Avigad, Jeremy
Baanen, Tim
Bacci, Giorgio
Bacci, Giovanni
Backeman, Peter
Bae, Kyungmin
Barbosa, Haniel
Bentkamp, Alexander
Berani Abdelwahab, Erzana
Biewer, Sebastian
Blahoudek, Fanda
Blicha, Martin
Bozga, Marius
Bozzano, Marco
Bønneland, Frederik M.
Cerna, David
Ceska, Milan
Chalupa, Marek
Chapoutot, Alexandre
Dierl, Simon
Dureja, Rohit
Ebrahimi, Masoud
Eisentraut, Julia
Endrullis, Jörg
Ernst, Gidon
Esen, Zafer
Fan, Jiameng
Fazekas, Katalin
Fedyukovich, Grigory
Fleury, Mathias
Fokkink, Wan
Forets, Marcelo
Freiberger, Felix
Frenkel, Hadar
Friedberger, Karlheinz
Frohme, Markus
Fu, Feisi
Fürnkranz, Johannes
Giacobbe, Mirco
Gjøl Jensen, Peter

Gossen, Frederik
Goudsmid, Ohad
Griggio, Alberto
Grover, Kush
Gutiérrez, Elena
Haaswijk, Winston
Hadžić, Vedad
Hahn, Ernst Moritz
Hansen, Mikkel
Hartmanns, Arnd
Hecking-Harbusch, Jesko
Hofmann, Jana
Holzner, Stephan
Hugunin, Jasper
Humenberger, Andreas
Hupel, Lars
Hyvärinen, Antti
Irfan, Ahmed
Jasper, Marc
Jaulin, Luc
Jensen, Mathias Claus
Jensen, Peter Gjøl
Jonas, Martin
Jonsson, Bengt
Jonáš, Martin
Kacianka, Severin
Kaminski, Benjamin Lucien
Kanav, Sudeep
Kempa, Brian
Khalimov, Ayrat
Kiourti, Panagiota
Klauck, Michaela
Klüppelholz, Sascha
Koenighofer, Bettina
Kopetzki, Dawid
Krcal, Pavel
Kröger, Paul
Kupferman, Orna
Köhl, Maximilian
Lahkim Bennani, Ismail
Legay, Axel
Lemberger, Thomas
Liang, Chencheng

xiv Organization

Lorber, Florian
Ma, Meiyi
Major, Juraj
Mann, Makai
Marcovich, Ron
Marescotti, Matteo
Martins, Ruben
Meggendorfer, Tobias
Mikučionis, Marius
Mitsch, Stefan
Mover, Sergio
Mues, Malte
Murtovi, Alnis
Möhlmann, Eike
Mömke, Tobias
Müller, David
Narváez, David
Naujokat, Stefan
Oliveira da Costa, Ana
Otoni, Rodrigo
Pagel, Jens
Parlato, Gennaro
Paskevich, Andrei
Peppelman, Marijn
Perelli, Giuseppe
Pivoluska, Matej
Popescu, Andrei
Puch, Stefan
Putot, Sylvie
Rebola-Pardo, Adrián

Reynolds, Andrew
Rothenberg, Bat-Chen
Roveri, Marco
Rowe, Reuben
Rüthing, Oliver
Schilling, Christian
Shoukry, Yasser
Spießl, Martin
Srba, Jiri
Stankovic, Miroslav
Stierand, Ingo
Štill, Vladimír
Stjerna, Albin
Stock, Gregory
Stojic, Ivan
Theel, Oliver
Tian, Chun
Tonetta, Stefano
Trtík, Marek
van der Ploeg, Atze
Vom Dorff, Sebastian
Wardega, Kacper
Weininger, Maximilian
Wendler, Philipp
Wimmer, Simon
Winkels, Jan
Yolcu, Emre
Zeljić, Aleksandar
Zhou, Weichao

Organization xv

Contents – Part II

Bisimulation

An O(m log n) algorithm for branching bisimilarity on labelled
transition systems . 3

David N. Jansen, Jan Friso Groote, Jeroen J. A. Keiren, and Anton Wijs

Verifying Quantum Communication Protocols with Ground Bisimulation 21
Xudong Qin, Yuxin Deng, and Wenjie Du

Deciding the Bisimilarity of Context-Free Session Types 39
Bernardo Almeida, Andreia Mordido, and Vasco T. Vasconcelos

Sharp Congruences Adequate with Temporal Logics Combining Weak
and Strong Modalities . 57

Frédéric Lang, Radu Mateescu, and Franco Mazzanti

Verification and Efficiency

How Many Bits Does it Take to Quantize Your Neural Network?. 79
Mirco Giacobbe, Thomas A. Henzinger, and Mathias Lechner

Highly Automated Formal Proofs over Memory Usage of Assembly Code . . . 98
Freek Verbeek, Joshua A. Bockenek, and Binoy Ravindran

GASOL: Gas Analysis and Optimization for Ethereum Smart Contracts. 118
Elvira Albert, Jesús Correas, Pablo Gordillo, Guillermo Román-Díez,
and Albert Rubio

CPU Energy Meter: A Tool for Energy-Aware Algorithms Engineering 126
Dirk Beyer and Philipp Wendler

Logic and Proof

Practical Machine-Checked Formalization of Change Impact Analysis 137
Karl Palmskog, Ahmet Celik, and Milos Gligoric

What’s Decidable About Program Verification Modulo Axioms? 158
Umang Mathur, P. Madhusudan, and Mahesh Viswanathan

Formalized Proofs of the Infinity and Normal Form Predicates
in the First-Order Theory of Rewriting. 178

Alexander Lochmann and Aart Middeldorp

Fold/Unfold Transformations for Fixpoint Logic . 195
Naoki Kobayashi, Grigory Fedyukovich, and Aarti Gupta

Tools and Case Studies

Verifying OpenJDK’s LinkedList using KeY . 217
Hans-Dieter A. Hiep, Olaf Maathuis, Jinting Bian, Frank S. de Boer,
Marko van Eekelen, and Stijn de Gouw

Analysing installation scenarios of Debian packages 235
Benedikt Becker, Nicolas Jeannerod, Claude Marché,
Yann Régis-Gianas, Mihaela Sighireanu, and Ralf Treinen

Endicheck: Dynamic Analysis for Detecting Endianness Bugs 254
Roman Kápl and Pavel Parízek

Describing and Simulating Concurrent Quantum Systems. 271
Richard Bornat, Jaap Boender, Florian Kammueller, Guillaume Poly,
and Rajagopal Nagarajan

EMTST: Engineering the Meta-theory of Session Types 278
David Castro, Francisco Ferreira, and Nobuko Yoshida

Games and Automata

Solving Mean-Payoff Games via Quasi Dominions 289
Massimo Benerecetti, Daniele Dell’Erba, and Fabio Mogavero

Partial-Order Reduction for Parity Games with an Application
on Parameterised Boolean Equation Systems . 307

Thomas Neele, Tim A. C. Willemse, and Wieger Wesselink

Polynomial Identification of x-Automata . 325
Dana Angluin, Dana Fisman, and Yaara Shoval

SV-COMP 2020

Advances in Automatic Software Verification: SV-COMP 2020 347
Dirk Beyer

2LS: Heap Analysis and Memory Safety (Competition Contribution) 368
Viktor Malík, Peter Schrammel, and Tomáš Vojnar

COASTAL: Combining Concolic and Fuzzing
for Java (Competition Contribution) . 373

Willem Visser and Jaco Geldenhuys

xviii Contents – Part II

DARTAGNAN: Bounded Model Checking for Weak Memory
Models (Competition Contribution) . 378

Hernán Ponce-de-León, Florian Furbach, Keijo Heljanko,
and Roland Meyer

VeriAbs : Verification by Abstraction and Test
Generation (Competition Contribution) . 383

Mohammad Afzal, Supratik Chakraborty, Avriti Chauhan,
Bharti Chimdyalwar, Priyanka Darke, Ashutosh Gupta,
Shrawan Kumar, Charles Babu M, Divyesh Unadkat, and R Venkatesh

GACAL: Conjecture-Based Verification (Competition Contribution) 388
Benjamin Quiring and Panagiotis Manolios

Java Ranger at SV-COMP 2020 (Competition Contribution). 393
Vaibhav Sharma, Soha Hussein, Michael W. Whalen,
Stephen McCamant, and Willem Visser

JDART: Dynamic Symbolic Execution for JAVA
Bytecode (Competition Contribution). 398

Malte Mues and Falk Howar

Map2Check: Using Symbolic Execution and Fuzzing
(Competition Contribution). 403

Herbert Rocha, Rafael Menezes, Lucas C. Cordeiro,
and Raimundo Barreto

PredatorHP Revamped (Not Only) for Interval-Sized Memory Regions
and Memory Reallocation (Competition Contribution) 408

Petr Peringer, Veronika Šoková, and Tomáš Vojnar

Symbiotic 7: Integration of Predator and More
(Competition Contribution). 413

Marek Chalupa, Tomáš Jašek, Lukáš Tomovič, Martin Hruška,
Veronika Šoková, Paulína Ayaziová, Jan Strejček, and Tomáš Vojnar

Ultimate Taipan with Symbolic Interpretation and Fluid Abstractions
(Competition Contribution). 418

Daniel Dietsch, Matthias Heizmann, Alexander Nutz, Claus Schätzle,
and Frank Schüssele

Author Index . 423

Contents – Part II xix

Contents – Part I

Program Verification

Software Verification with PDR: An Implementation of the State
of the Art. 3

Dirk Beyer and Matthias Dangl

Verifying Array Manipulating Programs with Full-Program Induction 22
Supratik Chakraborty, Ashutosh Gupta, and Divyesh Unadkat

Interpretation-Based Violation Witness Validation for C: NITWIT 40
Jan Švejda, Philipp Berger, and Joost-Pieter Katoen

A Calculus for Modular Loop Acceleration . 58
Florian Frohn

SAT and SMT

Mind the Gap: Bit-vector Interpolation recast over Linear
Integer Arithmetic . 79

Takamasa Okudono and Andy King

Automated and Sound Synthesis of Lyapunov Functions
with SMT Solvers . 97

Daniele Ahmed, Andrea Peruffo, and Alessandro Abate

A Study of Symmetry Breaking Predicates and Model Counting 115
Wenxi Wang, Muhammad Usman, Alyas Almaawi, Kaiyuan Wang,
Kuldeep S. Meel, and Sarfraz Khurshid

MUST: Minimal Unsatisfiable Subsets Enumeration Tool 135
Jaroslav Bendík and Ivana Černá

Timed and Dynamical Systems

Safe Decomposition of Startup Requirements: Verification and Synthesis 155
Alessandro Cimatti, Luca Geatti, Alberto Griggio, Greg Kimberly,
and Stefano Tonetta

Multi-agent Safety Verification Using Symmetry Transformations 173
Hussein Sibai, Navid Mokhlesi, Chuchu Fan, and Sayan Mitra

Relational Differential Dynamic Logic . 191
Juraj Kolčák, Jérémy Dubut, Ichiro Hasuo, Shin-ya Katsumata,
David Sprunger, and Akihisa Yamada

Verifying Concurrent Systems

Assume, Guarantee or Repair . 211
Hadar Frenkel, Orna Grumberg, Corina Pasareanu,
and Sarai Sheinvald

Structural Invariants for the Verification of Systems
with Parameterized Architectures. 228

Marius Bozga, Javier Esparza, Radu Iosif, Joseph Sifakis,
and Christoph Welzel

Automated Verification of Parallel Nested DFS. 247
Wytse Oortwijn, Marieke Huisman, Sebastiaan J. C. Joosten,
and Jaco van de Pol

Discourje: Runtime Verification of Communication Protocols in Clojure 266
Ruben Hamers and Sung-Shik Jongmans

Probabilistic Systems

Scenario-Based Verification of Uncertain MDPs . 287
Murat Cubuktepe, Nils Jansen, Sebastian Junges, Joost-Pieter Katoen,
and Ufuk Topcu

Good-for-MDPs Automata for Probabilistic Analysis
and Reinforcement Learning . 306

Ernst Moritz Hahn, Mateo Perez, Sven Schewe, Fabio Somenzi,
Ashutosh Trivedi, and Dominik Wojtczak

Farkas Certificates and Minimal Witnesses for Probabilistic
Reachability Constraints. 324

Florian Funke, Simon Jantsch, and Christel Baier

Simple Strategies in Multi-Objective MDPs . 346
Florent Delgrange, Joost-Pieter Katoen, Tim Quatmann,
and Mickael Randour

Model Checking and Reachability

Partial Order Reduction for Deep Bug Finding in Synchronous Hardware . . . 367
Makai Mann and Clark Barrett

xxii Contents – Part I

Revisiting Underapproximate Reachability for Multipushdown Systems 387
S. Akshay, Paul Gastin, S Krishna, and Sparsa Roychowdhury

KReach: A Tool for Reachability in Petri Nets . 405
Alex Dixon and Ranko Lazić

AVR: Abstractly Verifying Reachability . 413
Aman Goel and Karem Sakallah

Timed and Probabilistic Systems

Verified Certification of Reachability Checking for Timed Automata 425
Simon Wimmer and Joshua von Mutius

Learning One-Clock Timed Automata . 444
Jie An, Mingshuai Chen, Bohua Zhan, Naijun Zhan,
and Miaomiao Zhang

Rare Event Simulation for Non-Markovian Repairable Fault Trees 463
Carlos E. Budde, Marco Biagi, Raúl E. Monti, Pedro R. D’Argenio,
and Mariëlle Stoelinga

FIG: The Finite Improbability Generator . 483
Carlos E. Budde

MORA - Automatic Generation of Moment-Based Invariants 492
Ezio Bartocci, Laura Kovács, and Miroslav Stankovič

Author Index . 499

Contents – Part I xxiii

Bisimulation

An O(m logn) algorithm for
branching bisimilarity

on labelled transition systems

David N. Jansen1 , Jan Friso Groote2 ,
Jeroen J.A. Keiren2 , and Anton Wijs2

1 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing, China dnjansen@ios.ac.cn

2 Department of Mathematics and Computer Science,
Eindhoven University of Technology, Eindhoven, The Netherlands

{J.F.Groote, J.J.A.Keiren, A.J.Wijs}@tue.nl

Abstract. Branching bisimilarity is a behavioural equivalence relation
on labelled transition systems (LTSs) that takes internal actions into
account. It has the traditional advantage that algorithms for branch-
ing bisimilarity are more efficient than ones for other weak behavioural
equivalences, especially weak bisimilarity. With m the number of tran-
sitions and n the number of states, the classic O(mn) algorithm was
recently replaced by an O(m(log |Act |+ log n)) algorithm [9], which is
unfortunately rather complex. This paper combines its ideas with the
ideas from Valmari [20], resulting in a simpler O(m log n) algorithm.
Benchmarks show that in practice this algorithm is also faster and of-
ten far more memory efficient than its predecessors, making it the best
option for branching bisimulation minimisation and preprocessing for
calculating other weak equivalences on LTSs.

Keywords: Branching bisimilarity · Algorithm · Labelled transition
systems

1 Introduction

Branching bisimilarity [8] is an alternative to weak bisimilarity [17]. Both equiva-
lences allow the reduction of labelled transition systems (LTSs) containing tran-
sitions labelled with internal actions, also known as silent, hidden or τ -actions.

One of the distinct advantages of branching bisimilarity is that, from the
outset, an efficient algorithm has been available [10], which can be used to cal-
culate whether two states are equivalent and to calculate a quotient LTS. It has
complexity O(mn) with m the number of transitions and n the number of states.
It is more efficient than classic algorithms for weak bisimilarity, which use tran-
sitive closure (for instance, [16] runs in O

(
n2m log n+mn2.376

)
, where n2.376 is

the time for computing the transitive closure), and algorithms for weak simula-
tion equivalence (strong simulation equivalence can be computed in O(mn) [12],
and for weak simulation equivalence first the transitive closure needs to be com-
puted). The algorithm is also far more efficient than algorithms for trace-based

© The Author(s) 2020
A. Biere and D. Parker (Eds.): TACAS 2020, LNCS 12079, pp. 3–20, 2020.
https://doi.org/10.1007/978-3-030-45237-7 1

TACAS
Evaluation
Artifact

2020
Accepted

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45237-7_1&domain=pdf
http://orcid.org/0000-0002-6636-3301
http://orcid.org/0000-0003-2196-6587
http://orcid.org/0000-0002-5772-9527
http://orcid.org/0000-0002-2071-9624
https://doi.org/10.1007/978-3-030-45237-7_1

4 D. N. Jansenetal.

equivalence notions, such as (weak) trace equivalence or weak failure equiva-
lence [16].

Branching bisimilarity also enjoys the nice mathematical property that there
exists a canonical quotient with a minimal number of states and transitions
(contrary to, for instance, trace-based equivalences). Additionally, as branching
bisimilarity is coarser than virtually any other behavioural equivalence taking
internal actions into account [7], it is ideal for preprocessing. In order to calcu-
late a desired equivalence, one can first reduce the behaviour modulo branching
bisimilarity, before applying a dedicated algorithm on the often substantially
reduced transition system. In the mCRL2 toolset [5] this is common practice.

In [9,11] an algorithm to calculate stuttering equivalence on Kripke struc-
tures with complexity O(m log n) was proposed. Stuttering equivalence essen-
tially differs from branching bisimilarity in the fact that transitions do not have
labels and as such all transitions can be viewed as internal. In these papers it
was shown that branching bisimilarity can be calculated by translating LTSs to
Kripke structures, encoding the labels of transitions into labelled states follow-
ing [6,19]. This led to an O(m(log |Act |+ log n)) or O(m logm) algorithm for
branching bisimilarity.

Besides the time complexity, the algorithm in [9,11] has two disadvantages.
First, the translation to Kripke structures introduces a new state and a new
transition per action label and target state of a transition, which increases the
memory required to calculate branching bisimilarity. This made it far less mem-
ory efficient than the classical algorithm of [10], and this was perceived as a
substantial practical hindrance. For instance, when reducing systems consisting
of tens of millions of states, such as [2], memory consumption is the bottleneck.
Second, the algorithm in [9,11] is very complex. To illustrate the complexity,
implementing it took approximately half a person-year.

Contributions. We present an algorithm for branching bisimilarity that runs
directly on LTSs in O(m log n) time and that is simpler than the algorithm
of [9,11]. To achieve this we use an idea from Valmari and Lehtinen [20,21]
for strong bisimilarity. The standard Paige–Tarjan algorithm [18], which has
O(m log n) time complexity for strong bisimilarity on Kripke structures, registers
work done in a separate partition of states. Valmari [20] observed that this leads
to complexity O(m logm) on LTSs and proposed to use a partition of transitions,
whose elements he (and we) calls bunches, to register work done. This reduces
the time complexity on LTSs to O(m log n).

Using this idea we design our more straightforward algorithm for branching
bisimilarity on LTSs. Essentially, this makes the maintenance of action labels
particularly straightforward and allows to simplify the handling of new, so-called,
bottom states [10]. It also leads to a novel main invariant, which we formulate as
Invariant 1. It allows us to prove the correctness of the algorithm in a far more
straightforward way than before.

We have proven the correctness and complexity of the algorithm in detail [14]
and demonstrate that it outperforms all preceding algorithms both in time and

An O(m log n) algorithm for branching bisimilarity on LTSs 5

space when the LTSs are sizeable. This is illustrated with more than 30 example
LTSs. This shows that the new algorithm pushes the state-of-the-art in com-
paring and minimising the behaviour of LTSs w.r.t. weak equivalences, either
directly (branching bisimilarity) or using the form of a preprocessing step (for
other weak equivalences).

Despite the fact that this new algorithm is more straightforward than the
previous O(m(log |Act |+ log n)) algorithm [9], the implementation of the algo-
rithm is still not easy. To guard against implementation errors, we extensively
applied random testing, comparing the output with that of other algorithms. The
algorithms and their source code are freely available in the mCRL2 toolset [5].

Overview of the article. In Section 2 we provide the definition of LTSs and
branching bisimilarity. In Section 3 we provide the core algorithm with high-level
data structures, correctness and complexity. The subsequent section presents the
procedure for splitting blocks, which can be presented as an independent pair
of coroutines. Section 5 presents some benchmarks. Proofs and implementation
details are omitted in this paper, and can be found in [14].

2 Branching bisimilarity

In this section we define labelled transition systems and branching bisimilarity.

Definition 1 (Labelled transition system). A labelled transition system
(LTS) is a triple A = (S,Act ,−→) where
1. S is a finite set of states. The number of states is denoted by n.
2. Act is a finite set of actions including the internal action τ .
3. −→ ⊆ S × Act × S is a transition relation. The number of transitions is

necessarily finite and denoted by m.

It is common to write t
a−→ t′ for (t, a, t′) ∈ −→. With slight abuse of notation we

write t
a−→ t′ ∈ T instead of (t, a, t′) ∈ T for T ⊆ −→. We also write t

a−→ Z for the
set of transitions {t a−→ t′ | t′ ∈ Z}, and Z

a−→ Z ′ for the set {t a−→ t′ | t ∈ Z, t′ ∈
Z ′}. We call all actions except τ the visible actions. If t

a−→ t′, we say that from
t, the state t′, the action a, and the transition t

a−→ t′ are reachable.

Definition 2 (Branching bisimilarity). Let A = (S,Act ,−→) be an LTS. We
call a relation R ⊆ S × S a branching bisimulation relation iff it is symmetric
and for all s, t ∈ S such that s R t and all transitions s

a−→ s′ we have:
1. a = τ and s′ R t, or
2. there is a sequence t

τ−→ · · · τ−→ t′ a−→ t′′ such that s R t′ and s′ R t′′.
Two states s and t are branching bisimilar, denoted by s ↔b t, iff there is a
branching bisimulation relation R such that s R t.

Note that branching bisimilarity is an equivalence relation. Given an equivalence
relation R, a transition s

a−→ t is called inert iff a = τ and s R t. If t
τ−→ t1

τ−→
· · · τ−→ tn−1

τ−→ tn
a−→ t′ such that t R ti for 1 ≤ i ≤ n, we say that the state tn,

the action a, and the transition tn
a−→ t′ are inertly reachable from t.

6 D. N. Jansenetal.

The equivalence classes of branching bisimilarity partition the set of states.

Definition 3 (Partition). For a set X a partition Π of X is a disjoint cover
of X, i.e., Π = {Bi ⊆ X | Bi �= ∅, 1 ≤ i ≤ k} such that Bi ∩ Bj = ∅ for all
1 ≤ i < j ≤ k and X =

⋃
1≤i≤k Bi.

A partition Π ′ is a refinement of Π iff for every B′ ∈ Π ′ there is some
B ∈ Π such that B′ ⊆ B.

We will often use that a partition Π induces an equivalence relation in the
following way: s ≡Π t iff there is some B ∈ Π containing both s and t.

3 The algorithm

In this section we present the core algorithm. In the next section we deal with
the actual splitting of blocks in the partition. We start off with an abstract
description of this core part.

3.1 High-level description of the algorithm

The algorithm is a partition refinement algorithm. It iteratively refines two par-
titions Πs and Πt. Partition Πs is a partition of states in S that is coarser
than branching bisimilarity. We refer to the elements of Πs as blocks, typically
denoted using B. Partition Πt partitions the non-inert transitions of −→, where
inertness is interpreted with respect to ≡Πs

. We refer to the elements of Πt as
bunches, typically denoted using T .

The partition of transitions Πt records the current knowledge about transi-
tions. Transitions are in different bunches iff the algorithm has established that
they cannot simulate each other (i.e., they cannot serve as s

a−→ s′ and t′ a−→ t′′

in Definition 2).
The partition of states Πs records the current knowledge about branching

bisimilarity. Two states are in different blocks iff the algorithm has found a proof
that they are not branching bisimilar (this is formalised in Invariant 3). This
implies that Πs must be such that states with outgoing transitions in different
combinations of bunches are in different blocks (Invariant 1).

Before performing partition refinement, the LTS is preprocessed to contract
τ -strongly connected components (SCCs) into a single state without a τ -loop.
This step is valid as all states in a τ -SCC are branching bisimilar. Conse-
quently, every block has bottom states, i.e., states without outgoing inert τ -
transitions [10].

The core invariant of the algorithm says that if one state in a block can
inertly reach a transition in a bunch, all states in that block can inertly reach a
transition in this bunch. This can be formulated in terms of bottom states:

Invariant 1 (Bunches). Πs is stable under Πt, i.e., if a bunch T ∈ Πt contains
a transition with its source state in a block B ∈ Πs, then every bottom state in
block B has a transition in bunch T .

An O(m log n) algorithm for branching bisimilarity on LTSs 7

The initial partitionsΠs andΠt are the coarsest partitions that satisfy Invari-
ant 1. Πt starts with a single bunch consisting of all non-inert transitions. Then,
in Πs we need to separate states with some transition in this bunch from those
without. We define Bvis to be the set of states from which a visible transition is
inertly reachable, and Binvis to be the other states. ThenΠs = {Bvis, Binvis}\{∅}.

Transitions in a bunch may have different labels or go to different blocks. In
that case, the bunch can be split as these transitions cannot simulate each other.
If we manage to achieve the situation where all transitions in a bunch have the
same label and go to the same target block, the obtained partition turns out
to be a branching bisimulation. Therefore, we want to split each bunch into so-
called action-block-slices defined below. We also immediately define some other
sets derived from Πt and Πs as we require them in our further exposition. So,
we have:

– The action-block-slices, i.e., the transitions in T with label a ending in B′:
T a−→B′ = {s a−→ s′ ∈ T | s′ ∈ B′}.

– The block-bunch-slices, i.e., the transitions in T starting in B:
TB−→ = {s b−→ s′ ∈ T | s ∈ B}.

– A block-bunch-slice intersected with an action-block-slice:
TB

a−→B′ = TB−→ ∩ T a−→B′ = {s a−→ s′ ∈ T | s ∈ B ∧ s′ ∈ B′}.
– The bottom states of B, i.e., the states without outgoing inert transitions:

Bottom(B) = {s ∈ B | ¬∃s′ ∈ B.s
τ−→ s′}.

– The states in B with a transition in bunch T : B T−→ = {s | s a−→ s′ ∈ TB−→}.
– The outgoing transitions of block B: B−→ = {s a−→ s′ | s ∈ B, a ∈ Act , s′ ∈ S}.
– The incoming transitions of block B:B←− = {s a−→ s′ | s ∈ S, a ∈ Act , s′ ∈ B}.

The block-bunch-slices and action-block-slices are explicitly maintained as aux-
iliary data structures in the algorithm in order to meet the required performance
bounds. If the partitions Πs or Πt are adapted, all the derived sets above also
change accordingly.

A bunch can be trivial, which means that it only contains one action-block-
slice, or it can contain multiple action-block-slices. In the latter case one action-
block-slice is split off to become a bunch by itself. However, this may invalidate
Invariant 1. Some states in a block may only have transitions in the new bunch
while other states have only transitions in the old bunch. Therefore, blocks have
to be split to satisfy Invariant 1. Splitting blocks can cause bunches to become
non-trivial because action-block-slices fall apart.

This splitting is repeated until all bunches are trivial, and as already stated
above, the obtained partition Πs is the required branching bisimulation. As the
transition system is finite this process of repeated splitting terminates.

3.2 Abstract algorithm

We first present an abstract version of the algorithm in Algorithm 1. Its be-
haviour is as follows. As long as there are non-trivial bunches—i.e, bunches
containing multiple action-block-slices—, these bunches need to be split such
that they ultimately become trivial. The outer loop (Lines 1.2–1.19) takes a

8 D. N. Jansenetal.

Algorithm 1 Abstract algorithm for branching bisimulation partitioning

1.1: Contract τ -SCCs; initialize Πs and Πt

1.2: for all non-trivial bunches T ∈ Πt do
1.3: Select an action-block-slice T a−→B′ ⊂ T
1.4: Split T into T a−→B′ and T \ T a−→B′
1.5: for all unstable blocks B ∈ Πs (i.e., ∅ 	= TB

a−→B′ 	= TB−→) do
1.6: First make TB

a−→B′ a primary splitter; then make TB−→\TB
a−→B′ a secondary splitter

1.7: end for
1.8: for all splitters T ′

B−→ (in order) do
1.9: Split B into the subblock R that can inertly reach T ′

B−→ and the rest U
1.10: if T ′

B−→ was a primary splitter (note: T ′
B−→ = TB

a−→B′) then
1.11: Make TU−→ \ TU

a−→B′ a non-splitter
1.12: end if
1.13: if there are new non-inert transitions R

τ−→ U then
1.14: Split R into the subblock N that can inertly reach R

τ−→ U and the rest R′

1.15: Make all block-bunch-slices TN−→ of N secondary splitters
1.16: Create a bunch for the new non-inert transitions (N

τ−→ U) ∪ (N
τ−→ R′)

1.17: end if
1.18: end for
1.19: end for
1.20: return Πs

non-trivial bunch T from Πt, and from this it moves an action-block-slice T a−→B′

into its own bunch in Πt (Line 1.4). Hence, bunch T is reduced to T \ T a−→B′ .
The two new bunches T a−→B′ and T \ T a−→B′ can cause instability, violating

Invariant 1. This means there can be blocks with transitions in one new bunch,
but some bottom states only have transitions in the other new bunch. For such
blocks, stability needs to be restored by splitting them.

To restore this stability we investigate all block-bunch-slices in one of the
new bunches, namely T a−→B′ . Blocks that do not have transitions in these block-
bunch-slices are stable with respect to both bunches. To keep track of the blocks
that still need to be split, we partition the block-bunch-slices TB−→ into stable
and unstable block-bunch-slices. A block-bunch-slice is stable if we have ensured
that it is not a splitter for any block. Otherwise it is deemed unstable, and it
needs to be checked whether it is stable, or whether the block B must be split.
The first inner loop (Lines 1.5–1.7) inserts all unstable block-bunch-slices into
the splitter list. Block-bunch-slices of the shape TB

a−→B′ in the splitter list are
labelled primary, and other list entries are labelled secondary.

In the second loop (Lines 1.8–1.18), one splitter T ′
B−→ from the splitter list is

taken at a time and its source block is split into R (the part that can inertly reach
T ′
B−→) and U (the part that cannot inertly reach T ′

B−→) to re-establish stability.
If T ′

B−→ was a primary splitter of the form TB
a−→B′ , then we know that U

must be stable under TU−→ \TU
a−→B′ , as every bottom state in B has a transition

in the former block-bunch-slice TB−→, and as the states in U have no transition
in TB

a−→B′ , every bottom state in U must have a transition in TB−→ \ TB
a−→B′ .

Therefore, at Line 1.11, block-bunch-slice TU−→ \ TU
a−→B′ can be removed from

the splitter list. This is the three-way split from [18].
Some inert transitions may have become non-inert, namely the τ -transitions

that go from R to U . There cannot be τ -transitions from U to R. The new non-
inert transitions were not yet part of a bunch in Πt. So, a new bunch R

τ−→ U is
formed for them. All transitions in this new bunch leave R and thus R is the only

An O(m log n) algorithm for branching bisimilarity on LTSs 9

block that may not be stable under this new bunch. To avoid superfluous work,
we split off the unstable part N , i.e. the part that can inertly reach a transition
in R

τ−→ U and contains all new bottom states, at Line 1.14. The original bottom
states of R become the bottom states of R′. There can be transitions N

τ−→ R′

that also become non-inert, and we add these to the new bunch R
τ−→ U . As

observed in [10], blocks containing new bottom states can become unstable under
any bunch. So, stability of N (but not of R′) must be re-established, and all
block-bunch-slices leaving N are put on the splitter list at Line 1.15.

3.3 Correctness

The validity of the algorithm follows from a number of major invariants. The
main invariant, Invariant 1, is valid at Line 1.2. Additionally, the algorithm
satisfies the following three invariants.

Invariant 2 (Bunches are not unnecessarily split). For any pair of non-
inert transitions s

a−→ s′ and t
a−→ t′, if s, t ∈ B and s′, t′ ∈ B′ then s

a−→ s′ ∈ T
and t

a−→ t′ ∈ T for some bunch T ∈ Πt.

Invariant 3 (Preservation of branching bisimilarity). For all states s, t ∈
S, if s ↔b t, then there is some block B ∈ Πs such that s, t ∈ B.

Invariant 4 (No inert loops). There is no inert loop in a block, i.e., for every
sequence s1

τ−→ s2
τ−→ · · · τ−→ sn with si ∈ B ∈ Πs, n > 1 it holds that s1 �= sn.

Invariant 2 indicates that two non-inert transitions that (1) start in the same
block, (2) have the same label, and (3) end in the same block, always reside in
the same bunch. Invariant 3 says that branching bisimilar states never end up in
separate blocks. Invariant 4 ensures that all τ -paths in each block are finite. As
a consequence every block has at least one bottom state, and from every state a
bottom state can be inertly reached.

The invariants given above allow us to prove that the algorithm works cor-
rectly. When the algorithm terminates (and this always happens, see Section 3.5),
branching bisimilar states are perfectly grouped in blocks.

Theorem 1. From the Invariants 1, 3 and 4, it follows that after the algorithm
terminates, ≡Πs = ↔b.

Because of the space restrictions here, the proofs are omitted. The interested
reader is referred to [14] for the details.

3.4 In-depth description of the algorithm

To show that the algorithm has the desired O(m log n) time complexity, we now
give a more detailed description of the algorithm. The pseudocode of the detailed
algorithm is given in Algorithm 2. This algorithm serves two purposes. First of
all, it clarifies how the data structures are used, and refines many of the steps in
the high-level algorithm. Additionally, time budgets for parts of the algorithm

10 D. N. Jansenetal.

Algorithm 2 Detailed algorithm for branching bisimulation partitioning

2.1: Find τ -SCCs and contract each of them to a single state

O(m)
2.2: Bvis := {s ∈ S | s can inertly reach some s′ a−→ s′′}; Binvis := S \ Bvis

2.3: Πs := {Bvis, Binvis} \ {∅}
2.4: Πt := {{s a−→ s′ | a ∈ Act \ {τ}, s, s′ ∈ S} ∪ Bvis

τ−→ Binvis}
2.5: for all non-trivial bunches T ∈ Πt do
2.6: Select a ∈ Act and B′ ∈ Πs with |T a−→B′ | ≤ 1

2 |T |
≤ m iterations

2.7: Πt := (Πt \ {T}) ∪ {T a−→B′ , T \ T a−→B′}

O(|T a−→B′ |)

2.8: for all unstable blocks B ∈ Πs with ∅ ⊂ TB
a−→B′ ⊂ TB−→ do

2.9: Append TB
a−→B′ as primary to the splitter list

2.10: Append TB−→ \ TB
a−→B′ as secondary to the splitter list

2.11: Mark all transitions in TB
a−→B′

2.12: For every state ∈ B with both marked outgoing transitions
and outgoing transitions in TB−→ \ TB

a−→B′ , mark one such
transition

2.13: end for
2.14: for all splitters T ′

B−→ in the splitter list (in order) do
2.15: 〈R,U〉 := split(B, T ′

B−→)
2.16: Remove T ′

B−→ = T ′
R−→ from the splitter list

≤ |T a−→B′ | iterations

2.17: Πs := (Πs \ {B}) ∪ ({R,U} \ {∅})
O(|Marked(T ′

B−→)| +
|U−→| + |U←−| +
|Bottom(N)−→|)

or O(|R−→| + |R←−|)

2.18: if T ′
B−→ was a primary splitter (note: T ′

B−→ = TB
a−→B′) then

2.19: Remove TU−→ \ TU
a−→B′ from the splitter list

2.20: end if
2.21: if R

τ−→ U 	= ∅ then
2.22: Create a new bunch containing exactly R

τ−→ U , add
R

τ−→ U = (R
τ−→ U)R−→ to the splitter list, and mark

all its transitions
2.23: 〈N,R′〉 := split(R,R

τ−→ U)
2.24: Remove R

τ−→ U = (R
τ−→ U)N−→ from the splitter list

O(|R τ−→ U | +
|R′

−→| + |R′
←−| +

|Bottom(N)−→|)
or O(|N−→| + |N←−|)

2.25: Πs := (Πs \ {R}) ∪ ({N,R′} \ {∅})

O(|Bottom∗(N)−→|)
2.26: Add N

τ−→ R′ to the bunch containing R
τ−→ U

2.27: Insert all TN−→ as secondary into the splitter list

O(|Bottom(N)−→|)2.28: For each bottom state ∈ N , mark one of its outgoing
transitions in every TN−→ where it has one

2.29: end if
2.30: end for
2.31: end for
2.32: return Πs

are printed in grey at the right-hand side of the pseudocode. We use these time
budgets in Section 3.5 to analyse the overall complexity of the algorithm. We
focus on the most important details in the algorithm.

At Lines 2.6–2.7, a small action-block-slice T a−→B′ is moved into its own bunch,
and T is reduced to T \ T a−→B′ . All blocks that have transitions in the two new
bunches are added to the splitter list in Lines 2.8–2.13. This loop also marks
some transitions (in the time complexity annotations we write Marked(TB−→) for
the marked transitions of block-bunch-slice TB−→). The function of this marking
is similar to that of the counters in [18]: it serves to determine quickly whether a
bottom state has a transition in a secondary splitter TB−→\TB

a−→B′ (or slices that
are the result of splitting this slice). In general, a bottom state has transitions
in some splitter block-bunch-slice if and only if it has marked transitions in
this slice. There is one exception: After splitting under a primary splitter TB−→,
bottom states in U are not marked. But as they always have a transition in
TU−→ \ TU

a−→B′ , U is already stable in this case (see Line 2.19).

The second loop is refined to Lines 2.14–2.30. In every iteration one splitter
T ′
B−→ from the splitter list is considered, and its source block is first split into R

An O(m log n) algorithm for branching bisimilarity on LTSs 11

and U . Formally, the routine split(B, T) delivers the pair 〈R,U〉 defined by:

R = {s ∈ B | s τ−→ s1
τ−→ · · · τ−→ sn

a−→ s′ where s1, . . . , sn ∈ B, sn
a−→ s′ ∈ T},

U = B \R. (1)

We detail its algorithm and discuss its correctness in Section 4.
In Lines 2.21–2.28, the situation is handled when some inert transitions have

become non-inert. We mark one of the outgoing transitions of every new bottom
state such that we can find the bottom states with a transition in TN−→ in time
proportional to the number of such new bottom states.

We illustrate the algorithm in the following example. Note this also illustrates
some of the details of the split subroutine, which is discussed in detail in Section 4.

Example 1. Consider the situation in Figure 1a. Observe that block B is stable
w.r.t. the bunches T and T ′. We have split off a small bunch T a−→B′ from T , and
as a consequence, B needs to be restabilised. The bunches put on the splitter list
initially are T a−→B′ and T \ T a−→B′ . When putting these bunches on the splitter
list, all transitions in TB

a−→B′ are marked, see the m’s in Figure 1b. Also, for
states that have transitions both in T a−→B′ and in T \T a−→B′ , one transition in the
latter bunch is marked, see the m’s in Figure 1b.

We now first split B w.r.t. the primary splitter T a−→B′ into R, the states that
can inertly reach T a−→B′ , and U , the states that cannot. In Figure 1b, the states
known to be destined for R are indicated by , the states known to be destined
for U are indicated by . Initially, all states with a marked outgoing transition
are destined for R, the remaining bottom state of B is destined for U . The split
subroutine proceeds to extend sets R and U in a backwards fashion using two
coroutines, marking a state destined for R if one of its successors is already in R,
and marking a state destined for U if all its successors are in U . Here, the state
in U does not have any incoming inert transitions, so its coroutine immediately
terminates and all other states belong to R. Block B is split into subblocks R
and U , as shown in Figure 1c. Block U is stable w.r.t. both T a−→B′ and T \T a−→B′ .

We still need to split R w.r.t. T \ T a−→B′ , into R1 and U1, say. For this, we
use the marked transitions in T \ T a−→B′ as a starting point to compute all bot-
tom states that can reach a transition in T \ T a−→B′ . This guarantees that the
time we use is proportional to the size of T a−→B′ . Initially, there is one state des-
tined for R1, marked in Figure 1c, and one state destined for U1, marked
in the same figure. We now perform the two coroutines in split simultaneously.
Figure 1d shows the situation after both coroutines have considered one tran-
sition: The U1-coroutine (which calculates the states that cannot inertly reach
T \ T a−→B′) has initialised the counter untested of one state to 2 on Line 3.9�
of Algorithm 3 because two of its outgoing inert transitions have not yet been
considered. The R1-coroutine (which calculates the states that can inertly reach
T \ T a−→B′) has checked the unmarked transition in the splitter TR−→ \ TR

a−→B′ .
As the latter coroutine has finished visiting unmarked transitions in the splitter,
the U1-coroutine no longer needs to run the slow test loop at Lines 3.13�–3.17�
of the left column of Algorithm 3. In Figure 1e the situation is shown after two
more steps in the coroutines. Each has visited two extra transitions. There two

12 D. N. Jansenetal.

B

T a−→B′ T \
T a−→B′

T ′

(a)

B

T a−→B′ T \
T a−→B′

T ′

mmmm

(b)

U

R

T a−→B′ T \
T a−→B′

T ′

m

(c)

U

R

T a−→B′ T \
T a−→B′

T ′

2

�

�

(d)

U

R

T a−→B′ T \
T a−→B′

T ′

0

2

�

�

��

��

(e)

U1
U

R1

T a−→B′ T \
T a−→B′

T ′

nbm

m
m

m

(f)

U1
U

R1

T a−→B′ T \
T a−→B′

T ′

nb

mm

(g)

U1
U

R1

T a−→B′ T \
T a−→B′

T ′

(h)

U1

U2

R2

U

T a−→B′ T \
T a−→B′

T ′

nb

m

(i)

Fig. 1: Illustration of splitting of a small block from T and stabilising block B
with respect to the new bunches T a−→B′ and T \T a−→B′ , as explained in Example 1.

An O(m log n) algorithm for branching bisimilarity on LTSs 13

extra are states destined for R1, marked , and one state is destined for U1 with
0 remaining inert transitions, for which we know immediately that it has no
transition in T \ T a−→B′ , this is marked . Now, the R1-coroutine is terminated,
since it contains more that 1

2 |R| states, and the remaining incoming transitions
of states in U1 are visited. This will not further extend U1. The result of splitting
is shown in Figure 1f. Some inert transitions become non-inert, so a new bunch
with transitions R1

τ−→ U1 is created, and all these transitions are marked m.
We next have to split R1 with respect to this new bunch into the set of

states N1 that can inertly reach a transition in the new bunch, and the set
R′

1 that cannot inertly reach this bunch. In this case, all states in R1 have a
marked outgoing transition, hence N1 = R1, and R′

1 = ∅. The coroutine that
calculates the set of states that cannot inertly reach a transition in the bunch
will immediately terminate because there are no transitions to be considered.

Observe that R1 (= N1) has a new bottom state, marked ‘nb’. This means
that stability of R1 with respect to any bunch is not guaranteed any more and
needs to be re-established. We therefore consider all bunches in which R1 has an
outgoing transition. We add TR1

a−→B′ , TR1−→ \ TR1
a−→B′ and T ′

R1−→ to the splitter
list as secondary splitters, and mark one outgoing transition from each bottom
state in each of these bunches using m. This situation is shown in Figure 1g.

In this case, R1 is stable w.r.t. TR1
a−→B′ and TR1−→ \TR1

a−→B′ , i.e., all states in
R1 can inertly reach a transition in both bunches. In both cases this is observed
immediately after initialisation in split, since the set of states that cannot inertly
reach a transition in these bunches is initially empty, and the corresponding
coroutine terminates immediately.

Therefore, consider splitting R1 with respect to T ′
R1−→. This leads to R2, the

set of states that can inertly reach a transition in T ′, and U2, the set of states
that cannot inertly reach a transition in T ′. Note there are no marked transitions
in T ′

R1−→, so initially all bottom states of R1 are destined for U2 (marked in
Figure 1h), and there are no states destined for R2. Then we start splitting R1. In
the R2-coroutine, we first add the states with an unmarked transition in T ′

R1−→ to
R2 at Line 3.4r (i.e., in the right column of Algorithm 3) and then all predecessors
of the new bottom state need to be considered. When split terminates, there will
be no additional states in U2, and the remaining states end up in R2.

The situation after splitting R1 into R2 and U2 is shown in Figure 1i. One of
the inert transitions (marked m) becomes non-inert. Furthermore, R2 contains a
new bottom state. This is the state with a transition in T ′. As each block must
have a bottom state, a non-bottom state had to become a bottom state.

We need to continue stabilising R2 w.r.t. bunch R2
τ−→ U2, which does not

lead to a new split, and we need to restabilise R2 w.r.t. all bunches in which it
has an outgoing transition. This also does not lead to new splits, so the situation
in Figure 1i after removing the markings is the final result of splitting.

3.5 Time complexity

Throughout this section, let n be the number of states and m the number of
transitions in the LTS. To simplify the complexity notations we assume that

14 D. N. Jansenetal.

n ≤ m + 1. This is not a significant restriction, since it is satisfied by any LTS
in which every non-initial state has an incoming transition. We also write in(s)
and out(s) for the sets of incoming and outgoing transitions of state s.

We use the principle “Process the smaller half” [13]: when a set is split into
two parts, we spend time proportional to the size of the smaller subset. This leads
to a logarithmic number of operations assigned to each element. We apply this
principle twice, once to new bunches and once to new subblocks. Additionally,
we spend some time on new bottom states. This is formulated in the following
theorem.

Theorem 2. For the main loop of Algorithm 2 we have:

1. A transition is moved to a new small bunch at most �log2 n2� + 1 times.
Whenever this happens, constant time is spent on this transition.

2. A state s is moved to a new small subblock at most �log2 n� times. Whenever
this happens, O(|in(s)|+ |out(s)|+ 1) time is spent on state s.

3. A state s becomes a new bottom state at most once. When this happens,
O(|out(s)|+ 1) time is spent on state s.

Summing up these time budgets leads to an overall time complexity of O(m log n).

These runtimes are annotated as time budgets in the main loop of Al-
gorithm 2. Line 2.7 moves the transitions of T a−→B′ to their new bunch, and
Lines 2.6–2.14 take time proportional to the size of this new bunch.

A new subblock is formed at Line 2.17 (and at the same time, some states
in subblock R may become new bottom states). Lines 2.15–2.22 take time pro-
portional to its incoming and outgoing transitions. Similarly, a new subblock
is formed in Line 2.23, and Lines 2.23–2.26 take time proportional to this sub-
block’s transitions.

Finally, new bottom states found in R (and separated into N) allow to spend
time proportional to Bottom(N)−→ at Lines 2.15–2.28. At Line 2.27 we need to
include not only the current new bottom states but also the future ones because
there may be block-bunch-slices that only have transitions from non-bottom
states. When N is split under such a block-bunch-slice, at least one of these
states will become a bottom state.

Time spent per marked transition fits the time bound because only a small
number of transitions is marked: In Lines 2.11 and 2.12, at most two transitions
are marked per transition in the small splitter T a−→B′ . Line 2.22 marks R

τ−→ U ⊆
out(R) ∩ in(U), which is always within the transitions of the smaller subblock.
Line 2.28 marks no more transitions than the new bottom states have.

The initialisation in Lines 2.1–2.5 can be performed in O(m) time, where
the assumption n ≤ m+ 1 is used. Furthermore, we assume that we can access
action labels fast enough to bucket sort the transitions in time O(m), which is
for instance the case if the action labels are consecutively numbered.

To meet the indicated time budgets, our implementation uses a number of
data structures. States are stored in a refinable partition [21], grouped per block,
in such a way that we can visit bottom states without spending time on non-
bottom states. Transitions are stored in four linked refinable partitions, grouped

An O(m log n) algorithm for branching bisimilarity on LTSs 15

per source state, per target state, per bunch, and per block-bunch-slice, in such
a way that we can visit marked transitions without spending time on unmarked
transitions of the block. How these data structures are instrumental for the
complexity can be found in [14].

4 Splitting blocks

The function split(B, T), presented in Algorithm 3, refines block B into subblocks
R and U , where R contains those states in B that can inertly reach a transition in
T , and U contains the states that cannot, as formally specified in Equation (1).

These two sets are computed by two coroutines executing in lockstep: the two
coroutines start the same number of loop iterations, so that the overhead is at
most proportional to the faster of the two and all work done in both coroutines
can be attributed to the smaller of the two subblocks R and U .

As a precondition, split requires that bottom states of B with an outgo-
ing transition in TB−→ have a marked outgoing transition in TB−→. Formally,
Bottom(B) Marked(TB−→)

−−−−−−−−−→ = Bottom(B) TB−→−−−−→. This allows to compute the initial
sets: All states in B Marked(T)−−−−−−−→, i.e., sources of marked transitions in T , are put in
R. All bottom states that are not initially in R are put in U .

The sets are extended as follows in the coroutines. For R, first the states
in B T\Marked(T)−−−−−−−−−→ are added that were not yet in R. These are all the sources of
unmarked transitions in T . Using backward reachability along inert transitions,
R is extended until no more states can be added.

Algorithm 3 Refinement of a block under a splitter

3.1: function split(block B, block-bunch-slice T)
3.2: R := B Marked(T)−−−−−−−−→; U := Bottom(B) \ R
3.3: begin coroutines

3.4: Set untested [t] to undefined for all t ∈ B R := R ∪ B T\Marked(T)−−−−−−−−−−→

O(|Marked(T)|)

3.5: for all s ∈ U while |U | ≤ 1
2 |B| do for all s ∈ R while

O(1) or O(|R−→|)

3.6: for all inert t
τ−→ s do |R| ≤ 1

2 |B| do
3.7: if t ∈ R then Skip t, i.e. goto 3.6� for all inert t

τ−→ s do
O(|U←−|) or
O(|R←−|)

3.8: if untested [t] is undefined then
3.9: untested [t] := |{t τ−→u | u ∈ B}|

3.10: end if
3.11: untested [t] := untested [t] − 1
3.12: if untested [t] > 0 then Skip t
3.13: if B T−−→ 	⊆ R then

O(|U−→| +
|(Bottom(R) \
Bottom(B))−→|)

3.14: for all non-inert t
α−→ u do

3.15: if t
α−→ u ∈ T then Skip t

3.16: end for
3.17: end if
3.18: Add t to U Add t to R

O(|U←−|) or
O(|R←−|)3.19: end for end for

3.20: end for end for
3.21: if |U | > 1

2 |B| then if |R| > 1
2 |B| then

O(1)
3.22: Abort this coroutine Abort this coroutine
3.23: end if end if
3.24: Abort the other coroutine Abort the other coroutine
3.25: return (B \ U,U) return (R,B \ R)
3.26: end coroutines

16 D. N. Jansenetal.

To identify the states in U , observe that a state is in U if all its inert successors
are in U and it does not have a transition in TB−→. To compute U , we let a
counter untested [t] for every non-bottom state t record the number of outgoing
inert transitions to states that are not yet known to be in U . If untested [t] = 0,
this means all inert successors of t are guaranteed to be in U , so, provided t
does not have a transition in TB−→, one can also add t to U . To take care of the
possibility that all inert transitions of t have been visited before all sources of
unmarked transitions in TB−→ are added to R, we check all non-inert transitions
of t to determine whether they are not in TB−→ at Lines 3.13�–3.17�.

The coroutine that finishes first, provided that its number of states does not
exceed 1

2 |B|, has completely computed the smaller subblock resulting from the
refinement, and the other coroutine can be aborted. As soon as the number
of states of a coroutine is known to exceed 1

2 |B|, it is aborted, and the other
coroutine can continue to identify the smaller subblock. In detail, the runtime
complexity of 〈R,U〉 := split(B, T) is:
– O(|R−→|+ |R←−|), if |R| ≤ |U |, and
– O(|Marked(T)|+ |U−→|+ |U←−|+ |(Bottom(R) \ Bottom(B))−→|), if |U | ≤ |R|.

This complexity is inferred as follows. As we execute the coroutines in lockstep,
it suffices to show that the runtime bound for the smaller subblock is satisfied.

In case |R| ≤ |U |, observe |Marked(T)| ≤ |R−→|, so we get O(|R−→|+ |R←−|)
directly from the R-coroutine. When |U | ≤ |R|, we use time in O(|Marked(T)|)
for Line 3.2, and we use time in O(|U←−|) for everything else except Lines 3.13�–
3.17�. For these latter lines, we distinguish two cases. If it turns out that t has
no transition t

α−→ u ∈ T , it is a U -state, so we attribute the time to O(|U−→|).
Otherwise, it is an R-state that had some inert transitions in B, but they all are
now in R

τ−→ U . So t is a new bottom state, and we attribute the time to the
outgoing transitions of new bottom states: O(|(Bottom(R) \ Bottom(B))−→|).

5 Experimental evaluation

The new algorithm (JGKW20) has been implemented in the mCRL2 toolset [5]
and is available in its 201908.0 release. This toolset also contains implementations
of various other algorithms, such as the O(mn) algorithm by Groote and Vaan-
drager (GV) [10] and the O(m(log |Act | + log n)) algorithm of [9] (GJKW17).
In addition, it offers a sequential implementation of the partition-refinement al-
gorithm using state signatures by Blom and Orzan (BO) [3], which has time
complexity O(n2m). For each state, BO maintains a signature describing which
blocks the state can reach directly via its outgoing transitions.

In this section, we report on the experiments we have conducted to compare
GV, BO, GJKW17 and JGKW20 when applied to practical examples. In the
experiments the given LTSs are minimised w.r.t. branching bisimilarity. The set
of benchmarks consists of all LTSs offered by the VLTS benchmark set3 with
at least 60,000 transitions. Their name ends in “ �n/1000� �m/1000�” and thus

3 http://cadp.inria.fr/resources/vlts.

http://cadp.inria.fr/resources/vlts

An O(m log n) algorithm for branching bisimilarity on LTSs 17

T
ab

le
1:

R
u
n
n
in
g
ti
m
e
a
n
d
m
em

or
y
u
se

re
su
lt
s.

�
an

d
�
:
si
gn

ifi
ca
n
tl
y
b
et
te
r
(w

or
se
)
th
an

th
e
o
th
er
s.

m
o
d
e
l

t
im

e
s
p
a
c
e

G
V

B
O

G
J
K

W
1
7

J
G

K
W

2
0

G
V

B
O

G
J
K

W
1
7

J
G

K
W

2
0

v
a
sy

4
0
6
0

2
4
.

s
1
3
8
.

s
�

.1
s

.0
5
s
�

6
5
.5

M
B

6
0
.6

M
B

7
0

M
B

6
0

M
B

v
a
sy

1
8
7
3

.2
1
s

.3
7
s
�

.1
1
s

.0
7
s
�

5
5
.6

M
B

5
6
.7

M
B

5
0

M
B

5
0

M
B

v
a
sy

1
5
7
2
9
7

1
.7

s
2
.

s
.4

s
.2

s
�

9
7
.3

M
B

9
4
.3

M
B

1
2
7
.2

M
B

�
9
0

M
B

v
a
sy

5
2
3
1
8

.3
1
s

.9
s
�

.2
s

.2
s

7
3
.4

M
B

9
0
.4

M
B

9
0
.6

M
B

�
7
3
.4

M
B

v
a
sy

8
3
3
2
5

2
.6

s
�

1
.0

s
.9

s
.3

s
�

1
1
6
.2

M
B

.1
1

G
B

2
3
0
.5

M
B

�
.1
0

G
B

v
a
sy

1
1
6
3
6
8

.9
s

5
.

s
�

.6
s

.4
s
�

9
2
.8

M
B

1
1
0
.6

M
B

.1
3

G
B

�
9
0

M
B

v
a
sy

7
2
0
3
9
0

.4
s

.9
s

.6
s

.4
s

1
0
5
.2

M
B

1
0
3
.2

M
B

.1
9

G
B

�
9
5
.9

M
B

�
v
a
sy

6
9
5
2
0

1
.5

s
4
.

s
�

2
.4

s
.8

s
�

.1
5

G
B

.1
5

G
B

3
5
8
.1

M
B

�
1
6
2
.0

M
B

c
w
i
3
7
1
6
4
1

7
.4

s
�

5
.9

s
1
.

s
.7

s
.1
7

G
B

2
2
9
.0

M
B

�
1
8
5
.4

M
B

.1
4

G
B

�
v
a
sy

1
6
6
6
5
1

4
.9

s
�

1
.9

s
2
.

s
.7

s
�

1
5
7
.5

M
B

1
4
1
.8

M
B

3
4
2
.9

M
B

�
1
3
9
.5

M
B

�
c
w
i
2
1
4
6
8
4

1
.4

s
9
.

s
�

.5
s

.5
s

1
4
0
.7

M
B

1
6
2
.1

M
B

�
1
5
2
.0

M
B

.1
3

G
B

c
w
i
1
4
2
9
2
5

1
.4

s
�

.8
s

1
.0

s
.9

s
1
5
2
.5

M
B

1
1
7
.9

M
B

�
1
5
6
.6

M
B

�
1
5
2
.5

M
B

v
a
sy

3
8
6
1
1
7
1

1
.4

s
2
.

s
�

1
.3

s
.9

s
�

2
2
9
.2

M
B

2
1
0
.1

M
B

�
2
7
3
.4

M
B

�
2
2
8
.7

M
B

v
a
sy

6
6
1
3
0
2

3
.

s
4
.7

s
5
.

s
2
.2

s
�

.2
3

G
B

�
2
8
3
.1

M
B

6
1
8
.1

M
B

�
2
6
8
.0

M
B

v
a
sy

1
6
4
1
6
1
9

2
.0

s
5
.

s
�

3
.

s
-

.2
5

G
B

2
3
5
.4

M
B

2
6
2
.4

M
B

2
4
5
.0

M
B

v
a
sy

6
5
2
6
2
1

9
0

s
�

1
1
.

s
2
0

s
4
.7

s
�

.5
G
B

5
3
4
.7

M
B

1
.8

G
B

�
.5

G
B

c
w
i
5
6
6
3
9
8
4

8
.

s
7
.

s
8
.

s
6
.

s
.5

G
B

3
5
1
.5

M
B

�
5
1
4
.0

M
B

�
.5

G
B

v
a
sy

1
1
1
2
5
2
9
0

1
0
.

s
1
7
.

s
�

1
0

s
1
0

s
.8

G
B

7
2
0
.9

M
B

9
3
1
.5

M
B

.7
G
B

c
w
i
2
1
6
5
8
7
2
3

.4
m
in

3
.

m
in

�
-

.3
m
in

1
.3

G
B

1
.8
7
2
6

G
B

2
.1
3
2
1

G
B

�
1
.2

G
B

v
a
sy

6
1
2
0
1
1
0
3
1

2
.

m
in

�
1
.7

m
in

-
.4

m
in

1
.8

G
B

1
.7
3
7
9

G
B

3
.6
5
9
6

G
B

�
1
.5
9
6
0

G
B

�
v
a
sy

2
5
8
1
1
1
4
4
2

1
0

m
in

�
3
.

m
in

-
-

1
.5
9
9
9

G
B

1
.7
4
3
4

G
B

4
.1
2
9
9

G
B

�
1
.4

G
B

�
v
a
sy

5
7
4
1
3
5
6
1

5
0

s
5
6
.

s
-

-
1
.8
8
3
5

G
B

�
1
.5
2
1
7

G
B

1
.5

G
B

1
.5

G
B

v
a
sy

4
2
2
0
1
3
9
4
4

3
0

m
in

�
5
.

m
in

-
.6

m
in

2
.0
9
6
5

G
B

2
.3
1
8
8

G
B

5
.8
6
6
1

G
B

�
2
.0

G
B

�
v
a
sy

4
3
3
8
1
5
6
6
6

3
4
.

m
in

�
3
.

m
in

2
.

m
in

.8
m
in

�
2
.4
0
4
3

G
B

2
.3
5
5
9

G
B

5
.9
8
8
8

G
B

�
1
.8
5
3
5

G
B

�
c
w
i
2
4
1
6
1
7
6
0
5

3
0

s
1
9
.

s
2
0

s
2
0

s
1
.6

G
B

1
.5
1
5
7

G
B

�
1
.6
6
3
8

G
B

1
.6
7
4
8

G
B

�
v
a
sy

6
0
2
0
1
9
3
5
3

2
5
.

s
4
0

s
�

6
.

s
5
.

s
8
7
0
.

M
B

2
.3
4
4
2

G
B

�
8
7
0
.

M
B

8
7
0
.

M
B

v
a
sy

1
1
0
2
6
2
4
6
6
0

5
0

m
in

�
2
0

m
in

3
.

m
in

1
.

m
in

�
3
.6
4
7
5

G
B

4
.0
5
1
3

G
B

9
.6
4
2
5

G
B

�
3
.4
4
1
2

G
B

�
li
ft
6
-fi

n
a
l

1
.0

m
in

3
.

m
in

�
-

.9
m
in

3
.3
8
4
6

G
B

8
.1
9
8
4

G
B

�
6
.2
9
7
1

G
B

3
.2
1
2
5

G
B

�
v
a
sy

1
2
3
2
3
2
7
6
6
7

4
0

m
in

�
1
0

m
in

-
1
.

m
in

4
.0
0
9
1

G
B

4
.5
3
7
1

G
B

1
0
.6
7
4
3

G
B

�
3
.7
2
9
8

G
B

�
v
a
sy

8
0
8
2
4
2
9
3
3

2
.

m
in

5
.

m
in

�
-

2
.

m
in

6
.1
2
3
1

G
B

5
.4
3
5
8

G
B

�
6
.6
8
9
6

G
B

�
5
.4
6
0
0

G
B

c
w
i
7
8
3
8
5
9
1
0
1

5
.

m
in

1
0
0

m
in

�
6
.

m
in

3
.

m
in

6
.5
2
8
3

G
B

�
8
.3
2
6
6

G
B

1
3
.7
8
9
9

G
B

�
6
.7
6
4
6

G
B

d
in
in
g
1
4

1
7
.

m
in

2
0

m
in

2
0

m
in

1
0

m
in

2
0
.4
8
2
6

G
B

�
2
1
.7
1
5
6

G
B

2
3
.7
8
1
0

G
B

�
2
0
.9
7
5
6

G
B

c
w
i
3
3
9
4
9
1
6
5
3
1
8

1
1
.

m
in

8
0

m
in

�
2
0

m
in

8
.

m
in

2
2
.7
2
0
4

G
B

3
3
.0
3
5
1

G
B

3
7
.8
6
0
6

G
B

�
2
1
.0
6
1
1

G
B

�
1
3
9
4
-fi

n
3

2
5
.
h

�
3
.
h

.5
h

.3
h

�
3
7
.4
8
9
3

G
B

7
1
.8
6
9
8

G
B

�
5
3
.2
1
6
6

G
B

3
1
.5
1
3
2

G
B

�

T
o
t
a
l

2
8
.
h

�
8
.
h

1
.4

h
.8

h
�

1
2
1
.8

G
B

1
7
6
.3

3
G

B
1
9
4
.2

G
B

�
1
1
2
.0

G
B

�

18 D. N. Jansenetal.

describes their size. Additionally, we consider three cases that have been derived
from models distributed with the mCRL2 toolset:
1. lift6-final: this model is based on an elevator model, extended to six eleva-

tors (n = 6,047,527, m = 26,539,368);
2. dining 14: this is the dining philosophers model with 14 philosophers (n =

18,378,370, m = 164,329,284);
3. 1394-fin3: this is an altered version of the 1394-fin model, extended to three

processes and two data elements (n = 126,713,623, m = 276,426,688).
The software and benchmarks used for the experiments are available online [15].
All experiments have been conducted on individual nodes of the DAS-5 clus-
ter [1]. Each of these nodes was running CentOS Linux 7.4, had an Intel
Xeon E5-2698-v3 2.3GHz CPU, and was equipped with 256 GB RAM. Devel-
opment version 201808.0.c59cfd413f of mCRL2 was used for the experiments.4

Table 1 presents the obtained results. Benchmarks are ordered by their num-
ber of transitions. On each benchmark, we have applied each algorithm ten times,
and report the mean runtime and memory use of these ten runs, rounded to sig-
nificant digits (estimated using [4] for the standard deviation). A trailing decimal
dot indicates that the unit digit is significant. If this dot is missing, there is one
insignificant zero. For all presented data the estimated standard deviation is less
than 20% of the mean. Otherwise we print ‘-’ in Table 1.

The �-symbol after a table entry indicates that the measurement is sig-
nificantly better than the corresponding measurements for the other three algo-
rithms, and the �-symbol indicates that it is significantly worse. Here, the results
are considered significant if, given a hundred tables such as Table 1, one table of
running time (resp. memory) is expected to contain spuriously significant results.

Concerning the runtimes, clearly, GV and BO perform significantly worse
than the other two algorithms, and JGKW20 in many cases performs signifi-
cantly better than the others. In particular, JGKW20 is about 40% faster than
GJKW17, the fastest older algorithm. Concerning memory use, in the majority
of cases GJKW17 uses more memory than the others, while sometimes BO is
the most memory-hungry. JGKW20 is much more competitive, in many cases
even outperforming every other algorithm.

The results show that when applied to practical cases, JGKW20 is generally
the fastest algorithm, and even when other algorithms have similar runtimes, it
uses almost always the least memory. This combination makes JGKW20 cur-
rently the best option for branching bisimulation minimisation of LTSs.

Data Availability Statement and Acknowledgement. The datasets gen-
erated and analysed during the current study are available in the figshare reposi-
tory: https://doi.org/10.6084/m9.figshare.11876688.v1. This work is partly done
during a visit of the first author at Eindhoven University of Technology, and a
visit of the second author at the Institute of Software, Chinese Academy of Sci-
ences. The first author is supported by the National Natural Science Foundation
of China, Grant No. 61761136011.

4 https://github.com/mCRL2org/mCRL2/commit/c59cfd413f

https://doi.org/10.6084/m9.figshare.11876688.v1
https://github.com/mCRL2org/mCRL2/commit/c59cfd413f

An O(m log n) algorithm for branching bisimilarity on LTSs 19

References

1. Bal, H., Epema, D., de Laat, C., van Nieuwpoort, R., Romein, J., Seinstra, F.,
Snoek, C., Wijshoff, H.: A medium-scale distributed system for computer science
research: Infrastructure for the long term. IEEE Computer 49(5), 54–63 (2016).
https://doi.org/10.1109/MC.2016.127

2. Bartholomeus, M., Luttik, B., Willemse, T.: Modelling and analysing ERTMS Hy-
brid Level 3 with the mCRL2 toolset. In: Howar, F., Barnat, J. (eds.) Formal
methods for industrial critical systems: FMICS. LNCS, vol. 11119, pp. 98–114.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00244-2 7

3. Blom, S., Orzan, S.: Distributed branching bisimulation reduction of state spaces.
Electron. Notes Theor. Comput. Sci. 80(1), 99–113 (2003). https://doi.org/10.
1016/S1571-0661(05)80099-4

4. Brugger, R.M.: A note on unbiased estimation of the standard deviation. The
American Statistician 23(4), 32 (1969). https://doi.org/10.1080/00031305.1969.
10481865

5. Bunte, O., Groote, J.F., Keiren, J.J.A., Laveaux, M., Neele, T., de Vink, E.P.,
Wesselink, W., Wijs, A.J., Willemse, T.A.C.: The mCRL2 toolset for analysing
concurrent systems. In: Vojnar, T., Zhang, L. (eds.) Tools and algorithms for the
construction and analysis of systems: TACAS, Part II. LNCS, vol. 11428, pp. 21–
39. Springer (2019). https://doi.org/10.1007/978-3-030-17465-1 2

6. De Nicola, R., Vaandrager, F.: Three logics for branching bisimulation. J. ACM
42(2), 458–487 (1995). https://doi.org/10.1145/201019.201032

7. van Glabbeek, R.J.: The linear time – branching time spectrum II. In: Best, E. (ed.)
CONCUR’93: 4th international conference on concurrency theory. LNCS, vol. 715,
pp. 66–81. Springer, Berlin (1993). https://doi.org/10.1007/3-540-57208-2 6

8. van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimu-
lation semantics. J. ACM 43(3), 555–600 (1996). https://doi.org/10.1145/233551.
233556

9. Groote, J.F., Jansen, D.N., Keiren, J.J.A., Wijs, A.J.: An O(m log n) algorithm
for computing stuttering equivalence and branching bisimulation. ACM Trans.
Comput. Logic 18(2), Article 13 (2017). https://doi.org/10.1145/3060140

10. Groote, J.F., Vaandrager, F.: An efficient algorithm for branching bisimulation
and stuttering equivalence. In: Paterson, M.S. (ed.) Automata, languages and
programming [ICALP], LNCS, vol. 443, pp. 626–638. Springer, Berlin (1990).
https://doi.org/10.1007/BFb0032063

11. Groote, J.F., Wijs, A.J.: An O(m log n) algorithm for stuttering equivalence and
branching bisimulation. In: Chechik, M., Raskin, J.F. (eds.) Tools and algorithms
for the construction and analysis of systems: TACAS. LNCS, vol. 9636, pp. 607–
624. Springer, Berlin (2016). https://doi.org/10.1007/978-3-662-49674-9 40

12. Henzinger, M.R., Henzinger, T.A., Kopke, P.W.: Computing simulations on finite
and infinite graphs. In: 36th annual symposium on foundations of computer science
[FOCS]. pp. 453–462. IEEE Comp. Soc., Los Alamitos, Calif. (1995). https://doi.
org/10.1109/SFCS.1995.492576

13. Hopcroft, J.: An n log n algorithm for minimizing states in a finite automaton. In:
Kohavi, Z., Paz, A. (eds.) Theory of machines and computations, pp. 189–196.
Academic Press, New York (1971). https://doi.org/10.1016/B978-0-12-417750-5.
50022-1

14. Jansen, D.N., Groote, J.F., Keiren, J.J.A., Wijs, A.J.: A simpler O(m log n) al-
gorithm for branching bisimilarity on labelled transition systems. arXiv preprint
1909.10824 (2019), https://arxiv.org/abs/1909.10824

https://doi.org/10.1109/MC.2016.127
https://doi.org/10.1007/978-3-030-00244-2_7
https://doi.org/10.1016/S1571-0661(05)80099-4
https://doi.org/10.1016/S1571-0661(05)80099-4
https://doi.org/10.1080/00031305.1969.10481865
https://doi.org/10.1080/00031305.1969.10481865
https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.1145/201019.201032
https://doi.org/10.1007/3-540-57208-2_6
https://doi.org/10.1145/233551.233556
https://doi.org/10.1145/233551.233556
https://doi.org/10.1145/3060140
https://doi.org/10.1007/BFb0032063
https://doi.org/10.1007/978-3-662-49674-9_40
https://doi.org/10.1109/SFCS.1995.492576
https://doi.org/10.1109/SFCS.1995.492576
https://doi.org/10.1016/B978-0-12-417750-5.50022-1
https://doi.org/10.1016/B978-0-12-417750-5.50022-1
https://arxiv.org/abs/1909.10824

20 D. N. Jansenetal.

15. Jansen, D.N., Groote, J.F., Keiren, J.J.A., Wijs, A.J.: An O(m log n) algorithm
for branching bisimilarity on labelled transition systems. Figshare (2020), https:
//doi.org/10.6084/m9.figshare.11876688.v1

16. Kanellakis, P.C., Smolka, S.A.: CCS expressions, finite state processes, and three
problems of equivalence. Inf. Comput. 86(1), 43–68 (1990). https://doi.org/10.
1016/0890-5401(90)90025-D

17. Milner, R.: A calculus of communicating systems, LNCS, vol. 92. Springer, Berlin
(1980). https://doi.org/10.1007/3-540-10235-3

18. Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM J. Comput.
16(6), 973–989 (1987). https://doi.org/10.1137/0216062

19. Reniers, M.A., Schoren, R., Willemse, T.A.C.: Results on embeddings between
state-based and event-based systems. Comput. J. 57(1), 73–92 (2014). https://
doi.org/10.1093/comjnl/bxs156

20. Valmari, A.: Bisimilarity minimization in O(m log n) time. In: Franceschinis,
G., Wolf, K. (eds.) Applications and theory of Petri nets: PETRI NETS,
LNCS, vol. 5606, pp. 123–142. Springer, Berlin (2009). https://doi.org/10.1007/
978-3-642-02424-5 9

21. Valmari, A., Lehtinen, P.: Efficient minimization of DFAs with partial transi-
tion functions. In: Albers, S., Weil, P. (eds.) 25th international symposium on
theoretical aspects of computer science: STACS, LIPIcs, vol. 1, pp. 645–656.
Schloss Dagstuhl, Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2008).
https://doi.org/10.4230/LIPIcs.STACS.2008.1328

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

https://doi.org/10.6084/m9.figshare.11876688.v1
https://doi.org/10.6084/m9.figshare.11876688.v1
https://doi.org/10.1016/0890-5401(90)90025-D
https://doi.org/10.1016/0890-5401(90)90025-D
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1137/0216062
https://doi.org/10.1093/comjnl/bxs156
https://doi.org/10.1093/comjnl/bxs156
https://doi.org/10.1007/978-3-642-02424-5_9
https://doi.org/10.1007/978-3-642-02424-5_9
https://doi.org/10.4230/LIPIcs.STACS.2008.1328
http://creativecommons.org/licenses/by/4.0/

Verifying Quantum Communication Protocols
with Ground Bisimulation�

Xudong Qin1,2, Yuxin Deng1 , and Wenjie Du3

1 Shanghai Key Laboratory of Trustworthy Computing,
MOE International Joint Lab of Trustworthy Software,

and International Research Center of Trustworthy Software,
East China Normal University, Shanghai, China

steven qxd@126.com yxdeng@sei.ecnu.edu.cn
2 Peng Cheng Laboratory, Shenzhen, China

3 Shanghai Normal University, Shanghai, China
wenjiedu@shnu.edu.cn

Abstract. One important application of quantum process algebras is
to formally verify quantum communication protocols. With a suitable
notion of behavioural equivalence and a decision method, one can de-
termine if an implementation of a protocol is consistent with its specifi-
cation. Ground bisimulation is a convenient behavioural equivalence for
quantum processes because of its associated coinduction proof technique.
We exploit this technique to design and implement two on-the-fly algo-
rithms for the strong and weak versions of ground bisimulation to check
if two given processes in quantum CCS are equivalent. We then develop
a tool that can verify interesting quantum protocols such as the BB84
quantum key distribution scheme.

Keywords: Quantum process algebra · Bisimulation · Verification ·
Quantum communication protocols.

1 Introduction

Process algebras provide a useful formal method for specifying and verifying
concurrent systems. Their extensions to the quantum setting have also appeared
in the literature. For example, Jorrand and Lalire [18,21] defined the Quantum
Process Algebra (QPAlg) and presented a branching bisimulation to identify
quantum processes with the same branching structure. Gay and Nagarajan [15]
developed Communicating Quantum Processes (CQP), for which Davidson [6]
established a bisimulation congruence. Feng et al. [10] have proposed a quan-
tum variant of Milner’s CCS [23], called qCCS, and a notion of probabilistic
bisimulation for quantum processes, which is then improved to be a general no-
tion of bisimulation that enjoys a congruence property [12]. Later on, motivated
by [25], Deng and Feng [9] defined an open bisimulation for quantum processes

� Supported by the National Natural Science Foundation of China (61672229,
61832015) and the Inria-CAS joint project Quasar.

c© The Author(s) 2020
A. Biere and D. Parker (Eds.): TACAS 2020, LNCS 12079, pp. 21–38, 2020.
https://doi.org/10.1007/978-3-030-45237-7 2

TACAS
Evaluation
Artifact

2020
Accepted

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45237-7_2&domain=pdf
http://orcid.org/0000-0003-0753-418X
https://doi.org/10.1007/978-3-030-45237-7_2

22 X. Qin et al.

that makes it possible to separate ground bisimulation and the closedness un-
der super-operator applications, thus providing not only a neater and simpler
definition, but also a new technique for proving bisimilarity. In order to avoid
the problem of instantiating quantum variables by potentially infinitely many
quantum states, Feng et al. [11] extended the idea of symbolic bisimulation [17]
for value-passing CCS and provided a symbolic version of open bisimulation for
qCCS. They proposed an algorithm for checking symbolic ground bisimulation.

In the current work, we consider the ground bisimulation proposed in [9]. We
put forward an on-the-fly algorithm to check if two given processes in qCCS with
fixed initial quantum states are ground bisimilar. The algorithm is simpler than
the one in [11] because the initial quantum states are determined for the former
but can be parametric for the latter. Moreover, in many applications, we are only
interested in the correctness of a quantum protocol with a predetermined input
of quantum states. This is especially the case in the design stage of a protocol
or in the debugging of a program.

The ground bisimulation defined in [9] is a notion of weak bisimulation be-
cause a strong transition can be matched by a weak transition where invisible
actions are abstracted away. We also consider a strong version where all ac-
tions are visible, for which we have a simpler algorithm. Both algorithms are
obtained by adapting the on-the-fly algorithm for checking probabilistic bisimu-
lations [8,7], which in turn has its root in similar algorithms for checking classical
bisimulations [14,17]. The basic idea is as follows. A quantum process with an
initial quantum state forms a configuration. We describe the operational be-
haviour of a configuration as a probabilistic labelled transition system (pLTS),
where probabilistic transitions arise naturally because measuring a quantum sys-
tem can entail a probability distribution of post-measurement quantum systems.
Ground bisimulations are a strengthening of probabilistic bisimulations by im-
posing some constraints on quantum variables and the environment states of
processes. The skeleton of the algorithm for the strong ground bisimulation re-
sembles to that for strong probabilistic bisimulation [8]. The algorithm for the
(weak) ground bisimulation is inspired by [28] and uses as a subroutine a proce-
dure in the aforementioned work. The procedure reduces the problem of finding
a matching weak transition to a linear programming problem that can be solved
in polynomial time. We have developed a tool that implements both algorithms
and can check if two given configurations are strongly or weakly bisimilar. It
is useful to validate whether an implementation of a protocol is equivalent to
the specification. We have conducted experiments on a few interesting quantum
protocols including super-dense coding, teleportation, secret sharing, and sev-
eral quantum key distribution protocols, in particular the BB84 protocol [5], to
analyse the functional correctness of the protocols.

Other related work Ardeshir-Larijani et al. [3] proposed a quantum variant of
CCS to describe quantum protocols. The syntax of that variant is similar to
qCCS but its semantics is very different. The behaviour of a concurrent pro-
cess is a finite tree and an interleaving is a path from the root to a leaf. By
interpreting an interleaving as a superoperator [26], the semantics of a process

Verifying Quantum Communication Protocols with Ground Bisimulation 23

is a set of superoperators. The equivalence checking between two processes boils
down to the equivalence checking between superoperators, which is accomplished
by using the stabiliser simulation algorithm invented by Aaronson and Gottes-
man [1]. Ardeshir-Larijani et al. have implemented their approach in an equiva-
lence checker in Java and verified several quantum protocols from teleportation
to secret sharing. However, they are not able to handle the BB84 quantum key
distribution protocol because its correctness cannot be specified as an equiva-
lence between interleavings. Our approach is based on ground bisimulation and
keeps all the branching behaviour of a concurrent process. Our algorithms for
checking ground bisimulations are influenced by the on-the-fly algorithm of Hen-
nessy and Lin for value-passing CCS [17]. We are inspired by the probabilistic
bisimulation checking algorithm of Baier et al. [4] for the strong version of ground
bisimulation, and by the weak bisimulation checking algorithm of Turrini and
Hermanns [28] for the weak version.

Kubota et al. [20] implemented a semi-automated tool to check a notion of
symbolic bisimulation and used it to verify the equivalence of BB84 and another
quantum key distribution protocol based on entanglement distillation [27]. There
are two main differences between their work and ours. (1) Their tool is based on
equational reasoning and thus requires a user to provide equations while our tool
is fully automatic. (2) Their semantic interpretation of measurement is different
and entails a kind of linear-time semantics for quantum processes that ignores
the timepoints of the occurrences of probabilistic branches. However, we use a
branching-time semantics. For instance, the occurrence of a measurement before
or after a visible action is significant for our semantics but not for the semantics
proposed in [20].

Besides equivalence checking, based on either superoperators or bisimulations
as mentioned above, model checking is another feasible approach to verify quan-
tum protocols. For instance, Gay et al. developed the QMC model checker [16].
Feng et al. implemented the tool QPMC [13] to model check quantum programs
and protocols. There are also other approaches for verifying quantum systems.
Abramsky and Coecke [2] proposed a categorical semantics for quantum pro-
tocols. Quantomatic [19] is a semi-automated tool based on graph rewriting.
Ying [30] established a quantum Hoare logic, which has been implemented in a
theorem prover [22].

The rest of the paper is structured as follows. In Section 2 we recall the
syntax and semantics of the quantum process algebra qCCS. In Section 3 we
present an algorithm for checking ground bisimulations. In Section 4 we report
the implementation of the algorithm and some experimental results on verifying
a few quantum communication protocols. Finally, we conclude in Section 5 and
discuss some future work.

2 Quantum CCS

We introduce a quantum extension of classical CCS (qCCS) which was originally
studied in [10,29,12]. Three types of data are considered in qCCS: as classical

24 X. Qin et al.

qv(nil) = ∅ qv(τ.P) = qv(P)
qv(c?x.P) = qv(P) qv(c!e.P) = qv(P)
qv(c?q.P) = qv(P)− {q} qv(c!q.P) = qv(P) ∪ {q}
qv(E [q̃].P) = qv(P) ∪ q̃ qv(M [q̃;x].P) = qv(P) ∪ q̃
qv(P +Q) = qv(P) ∪ qv(Q) qv(P || Q) = qv(P) ∪ qv(Q)
qv(P [f]) = qv(P) qv(P\L) = qv(P)

qv(if b then P) = qv(P) qv(A(q̃; x̃)) = q̃.

Fig. 1. Free quantum variables

data we have Bool for booleans and Real for real numbers, and as quantum data
we have Qbt for qubits. Consequently, two countably infinite sets of variables
are assumed: cVar for classical variables, ranged over by x, y, ..., and qVar for
quantum variables, ranged over by q, r, We assume a set Exp, which includes
cVar as a subset and is ranged over by e, e′, . . . , of classical data expressions over
Real, and a set of boolean-valued expressions BExp, ranged over by b, b′, . . . ,
with the usual boolean constants true, false, and operators ¬, ∧, ∨, and →.
In particular, we let e �� e′ be a boolean expression for any e, e′ ∈ Exp and
�� ∈ {>,<,≥,≤,=}. We further assume that only classical variables can occur
freely in both data expressions and boolean expressions. Two types of channels
are used: cChan for classical channels, ranged over by c, d, ..., and qChan for
quantum channels, ranged over by c, d,.... A relabelling function f is a map
on cChan ∪ qChan such that f(cChan) ⊆ cChan and f(qChan) ⊆ qChan.
Sometimes we abbreviate a sequence of distinct variables q1, ..., qn into q̃.

The terms in qCCS are given by:

P,Q ::= nil | τ.P | c?x.P | c!e.P | c?q.P | c!q.P | E [q̃].P | M [q̃;x].P |
P +Q | P || Q | P [f] | P\L | if b then P | A(q̃; x̃)

where f is a relabelling function and L ⊆ cChan ∪ qChan is a set of channels.
Most of the constructors are standard as in CCS [23]. We briefly explain a few
new constructors. The process c?q.P receives a quantum datum along quantum
channel c and evolves into P , while c!q.P sends out a quantum datum along
quantum channel c before evolving into P . The symbol E represents a trace-
preserving super-operator applied on the quantum system referred to by the
variables q̃. The process M [q̃;x].P measures the state of qubits q̃ according to
the observable M and stores the measurement outcome into the classical variable
x of P .

Free classical variables can be defined in the usual way, except for the fact
that the variable x in the quantum measurement M [q̃;x] is bound. A process P
is closed if it contains no free classical variable, i.e. fv(P) = ∅.

The set of free quantum variables for process P , denoted by qv(P) can be
inductively defined as in Figure 1. For a process to be legal, we require that

1. q �∈ qv(P) in the process c!q.P ;
2. qv(P) ∩ qv(Q) = ∅ in the process P || Q;

Verifying Quantum Communication Protocols with Ground Bisimulation 25

(Tau)

〈τ.P, ρ〉 τ−→ 〈P, ρ〉

(C-Inp)

v ∈ Real

〈c?x.P, ρ〉 c?v−→ 〈P [v/x], ρ〉
(C-Outp)

v = [[e]]

〈c!e.P, ρ〉 c!v−→ 〈P, ρ〉

(C-Com)

〈P1, ρ〉 c?v−→ 〈P ′
1, ρ〉 〈P2, ρ〉 c!v−→ 〈P ′

2, ρ〉
〈P1 || P2, ρ〉 τ−→ 〈P ′

1 || P ′
2, ρ〉

(Q-inp)

r �∈ qv(c?q.P)

〈c?q.P, ρ〉 c?r−→ 〈P [r/q], ρ〉
(Q-Outp)

〈c!q.P, ρ〉 c!q−→ 〈P, ρ〉
(Q-Com)

〈P1, ρ〉 c?r−→ 〈P ′
1, ρ〉 〈P2, ρ〉 c!r−→ 〈P ′

2, ρ〉
〈P1 || P2, ρ〉 τ−→ 〈P ′

1 || P ′
2, ρ〉

(Oper)

〈E [q̃].P, ρ〉 τ−→ 〈P, Eq̃(ρ)〉
(Meas)

M =
∑

i∈I λiE
i pi = tr(Ei

q̃ρ)

〈M [q̃;x].P, ρ〉 τ−→ ∑
i∈I pi〈P [λi/x], E

i
q̃ρE

i
q̃/pi〉

(Int)

〈P1, ρ〉 α−→ Δ qbv(α) ∩ qv(P2) = ∅
〈P1 || P2, ρ〉 α−→ Δ || P2

(Sum)

〈P1, ρ〉 α−→ Δ

〈P1 + P2, ρ〉 α−→ Δ
(Rel)

〈P, ρ〉 α−→ Δ

〈P [f], ρ〉 f(α)−→ Δ[f]

(Res)

〈P, ρ〉 α−→ Δ cn(α) ∩ L = ∅
〈P\L, ρ〉 α−→ Δ\L

(Cho)

〈P, ρ〉 α−→ Δ [[b]] = true

〈if b then P , ρ〉 α−→ Δ

(Cons)

〈P [ṽ/x̃, r̃/q̃], ρ〉 α−→ Δ A(x̃, q̃) := P

〈A(ṽ, r̃), ρ〉 α−→ Δ

Fig. 2. Operational semantics of qCCS. Here in rule (C-Outp), [[e]] is the evaluation of
e, and in rule (Meas), Ei

q̃ denotes the operator Ei acting on the quantum systems q̃.

3. Each constant A(q̃; x̃) has a defining equation A(q̃; x̃) := P , where P is a
term with qv(P) ⊆ q̃ and fv(P) ⊆ x̃.

The first condition says that a quantum system will not be referenced after it
has been sent out. This is a requirement of the quantum no-cloning theorem.
The second condition says that parallel composition || models separate parties
that never reference a quantum system simultaneously.

Throughout the paper we implicitly assume the convention that processes
are identified up to α-conversion, bound variables differ from each other and
they are different from free variables.

Before introducing the operational semantics of qCCS processes, we review
the model of probabilistic labelled transition systems (pLTSs). Later on we will
interpret the behaviour of quantum processes in terms of pLTSs because quan-
tum measurements give rise to probability distributions naturally.

26 X. Qin et al.

We begin with some notations. A (discrete) probability distribution over a
set S is a function Δ : S → [0, 1] with

∑
s∈S Δ(s) = 1; the support of such a Δ is

the set
Δ� = { s ∈ S | Δ(s) > 0 }. The point distribution s assigns probability
1 to s and 0 to all other elements of S, so that
s� = {s}. We only need to
use distributions with finite supports, and let Dist(S) denote the set of finite
support distributions over S, ranged over by Δ, Θ, etc. If

∑
k∈K pk = 1 for some

collection of pk ≥ 0, and the Δk are distributions, then so is
∑

k∈K pk ·Δk with
(
∑

k∈K pk ·Δk)(s) =
∑

k∈K pk ·Δk(s).

Definition 1. A probabilistic labelled transition system is a triple 〈S,Actτ ,→〉,
where S is a set of states, Actτ is a set of visible actions Act augmented with the
invisible action τ , and → ⊆ S × Actτ ×Dist(S) is the transition relation.

We often write s
α−→ Δ for (s, α,Δ) ∈ →. In pLTSs we not only consider

relations between states, but also relations between distributions. Therefore, we
make use of the lifting operation below [7].

Definition 2. Let R ⊆ S×S be a relation between states. Then R◦ ⊆ Dist(S)×
Dist(S) is the smallest relation that satisfies the two rules: (i) s R s′ implies
s R◦ s′; (ii) Δi R◦ Θi for all i ∈ I implies (

∑
i∈I pi ·Δi) R◦ (

∑
i∈I pi · Θi) for

any pi ∈ [0, 1] with
∑

i∈I pi = 1, where I is a finite index set.

We apply this operation to the relations
α−→ in the pLTS for α ∈ Actτ , where

we also write
α−→ for (

α−→)
◦
. Thus as source of a relation

α−→ we now also allow

distributions. But note that s
α−→ Δ is more general than s

α−→ Δ because if
s

α−→ Δ then there is a collection of distributions Δi and probabilities pi such
that s

α−→ Δi for each i ∈ I and Δ =
∑

i∈I pi ·Δi with
∑

i∈I pi = 1.

We write s
τ̂−→ Δ if either s

τ−→ Δ or Δ = s. We define weak transitions
â

=⇒
by letting

τ̂
=⇒ be the reflexive and transitive closure of

τ̂−→ and writing Δ
â

=⇒ Θ

for a ∈ Act whenever Δ
τ̂

=⇒ a−→ τ̂
=⇒ Θ. If Δ = s is a point distribution, we often

write s
â

=⇒ Θ instead of s
â

=⇒ Θ.
We now give the semantics of qCCS. For each quantum variable q we assume

a 2-dimensional Hilbert space Hq. For any nonempty subset S ⊆ qVar we write
HS for the tensor product space

⊗
q∈S Hq and HS for

⊗
q �∈S Hq. In particular,

H = HqVar is the state space of the whole environment consisting of all the
quantum variables, which is a countably infinite dimensional Hilbert space.

Let P be a closed quantum process and ρ a density operator on H , the pair
〈P, ρ〉 is called a configuration. We write Con for the set of all configurations,
ranged over by C and D. We interpret qCCS with a pLTS whose states are all the
configurations definable in the language, and whose transitions are determined
by the rules in Figure 2; we have omitted the obvious symmetric counterparts
to the rules (C-Com), (Q-Com), (Int) and (Sum). The set of actions Act takes
the following form, consisting of classical/quantum input/output actions.

Act = {c?v, c!v | c ∈ cChan, v ∈ Real} ∪ {c?r, c!r | c ∈ qChan, r ∈ qVar}
As H is infinite dimensional, ρ should be understood as a density operator on some
finite dimensional subspace of H which contains Hqv(P).

1

1

Verifying Quantum Communication Protocols with Ground Bisimulation 27

We use cn(α) for the set of channel names in action α. For example, we have
cn(c?x) = {c} and cn(τ) = ∅.

In the first eight rules in Figure 2, the targets of arrows are point distribu-
tions, and we use the slightly abbreviated form C α−→ C′ to mean C α−→ C′.

The rules use the obvious extension of the function || on terms to configu-
rations and distributions. To be precise, C || P is the configuration 〈Q || P, ρ〉
where C = 〈Q, ρ〉, and Δ || P is the distribution defined by:

(Δ || P)(〈Q, ρ〉) def
=

{
Δ(〈Q′, ρ〉) if Q = Q′ || P for some Q′

0 otherwise.

Similar extension applies to Δ[f] and Δ\L.
Suppose there is a configuration C = 〈P, ρ〉, the partial trace over system

P at such state can be defined as trqv(P)(ρ) whose result is a reduced density
operator representing the state of the environment. We give the definition of
ground bisimulation and bisimilarity as follows.

Definition 3 ([9]). A relation R ⊆ Con × Con is a ground simulation if for
any C = 〈P, ρ〉, D = 〈Q, σ〉, C R D implies that qv(P) = qv(Q), trqv(P)(ρ) =
trqv(Q)(σ), and

– whenever C α−→ Δ, there is some distribution Θ with D α̂
=⇒ Θ and Δ R◦ Θ.

A relation R is a ground bisimulation if both R and R−1 are ground simulations.
We denote by ≈ the largest ground bisimulation, called ground bisimilarity. If

the above weak transition D α̂
=⇒ Θ is replaced by a strong transition D α−→ Θ,

we obtain a strong ground bisimulation.

In the rest of the paper, we mainly focus on ground bisimulation and only
briefly mention the algorithm for checking strong ground bisimulation.

3 Algorithm

We present an on-the-fly algorithm to check if two configurations are ground
bisimilar.

The algorithmmaintains two setsNonBisim andBisim to keep non-bisimilar
and bisimilar state pairs, respectively. When the algorithm terminates, Bisim
should contain all the state pairs satisfying the bisimulation relation.

The function Bisim(t, u), as shown in Algorithm 1, is the main function of
the algorithm, which attempts to find the smallest bisimulation containing the
pair (t, u). It initialises Bisim and a set named V isited to store the visited
pairs, then calls the function Match to search for a bisimulation. The function
Match(t, u, V isited) invokes a depth-first traversal to match a pair of states
(t, u) with all their possible behaviours. The set V isited is updated before the
traversal for detecting loops. We also match the behaviours of t and u from both
directions as we are checking bisimulations. Two states are deemed non-bisimilar
in three cases:

28 X. Qin et al.

– one state has a transition that cannot be matched by any possible weak
transition from the other;

– they do not have the same set of free quantum variables;
– the density operators of them corresponding to their quantum registers are

different.

The first case is checked by MatchAction, and the other two are done in
Match. We add a pair of states to NonBisim if one of the three cases above
has occurred. Otherwise, it will be stored in Bisim.

An auxiliary function Act(t) is invoked in Match to discover the next action
that t can perform. If t have no more action to perform the function will return
an empty set.

The function MatchAction(α, t, u, V isited) checks the equivalence of con-
figurations through comparing their transitions. The function recursively discov-
ers the next equivalent state pairs between the target states of the transitions.
Technically, it checks the condition that if t

α−→ Δ then there exists some Θ

such that u
α̂

=⇒ Θ and Δ R◦ Θ. Here we use as a subroutine a procedure of
[28] to reduce the problem to a linear programming problem that can be solved
in polynomial time. The problem is defined in Appendix. In MatchAction, we
introduce a predicate LP(Δ,u, α,R) which is true if and only if the linear pro-
gramming problem has a solution. We invoke the function Close to construct
an equivalence relation R between S and the states in the support of the target
distribution. Note that in Lines 28 and 34 we have two distinct cases because
in output actions the emitted values are required to be equal, which are unlike
other types of actions.

In general, there are loops in pLTSs. When a state pair to be considered
is already contained in V isited it will be assumed to be bisimilar and added
to Assumed (Lines 42-43). Later on, if the pair of states are found to be non-
bisimilar, the pair will be added to NonBisim and a wrong assumption exception
(Lines 18-21) will be raised to restart the checking process from the original pair
of states. Then Bisim(t, u) renews the sets Bisim, V isited and Assumed to
remove the pairs checked under the wrong assumption (Lines 4-6).

Algorithm 1 Checking ground bisimulation

Require: Two pLTSs with initial configurations t and u.
Ensure: A boolean value bres indicating if the two pLTSs are ground bisimilar.
1: function GroundBisimulation(t, u) =
2: NonBisim := ∅
3: function Bisim(t, u) = try {
4: Bisim := ∅
5: V isited := ∅
6: Assumed := ∅
7: return Match(t,u,Visited)
8: } catch WrongAssumptionException ⇒ Bisim(t, u)

9:

10: function Match(t, u, V isited) � t = 〈P, ρ〉 and u = 〈Q, σ〉

Verifying Quantum Communication Protocols with Ground Bisimulation 29

11: V isited:=V isited ∪ {(t, u)}
12: b:=

∧
α∈Act(t) MatchAction(α,t,u,Visited)

13: b:=
∧

α∈Act(u) MatchAction(α,u,t,Visited)

14: bc1 :=qv(P) = qv(Q)
15: bc2 :=trqv(P)(ρ) = trqv(P)(σ)

16: bres:=b ∧ b ∧ bc1 ∧ bc2
17: if bres is tt then Bisim = Bisim ∪ {(t, u)}
18: else if bres is ff then
19: NonBisim = NonBisim ∪ {(t, u)}
20: if (t, u) ∈ Assumed then
21: raise WrongAssumptionException

22: return bres
23:

24: function MatchAction(α, t, u, V isited)
25: switch α do
26: case c!
27: for t

c!ei−−→ Δi do
28: Assume {tk}tk∈�Δi� and {uj}

u
c!e′j
==⇒Γ∧ei=e′j∧uj∈�Γ�

29: R:= {(tk, uj)|Close(tk, uj , V isited) = tt}
30: θ:=LP(Δi, u, α,R)

31: return
∧

i θi

32: otherwise
33: for t

α−→ Δi do
34: Assume {tk}tk∈�Δi� and {uj}u α

=⇒Γ∧uj∈�Γ�
35: R:= {(tk, uj)|Close(tk, uj , V isited) = tt}
36: θ:=LP(Δi, u, α,R)

37: return
∧

i θi

38:

39: function Close(t, u, V isited)
40: if (t, u) ∈ Bisim then return tt
41: else if (t, u) ∈ NonBisim then return ff
42: else if (t, u) ∈ V isited then
43: Assumed = Assumed ∪ {(t, u)}
44: return tt
45: else return Match(t, u, V isited)

Now let us prove the termination and correctness of the algorithm.

Theorem 1 (Termination). Given two configurations t and u, the function
GroundBisimulation(t,u) always terminates.

Proof. The algorithm starts with two empty sets NonBisim and Bisim. The
next action to perform is detected inMatch. Then it invokes functionMatchAc-
tion to find the next new pair of configurations and recursively call function

30 X. Qin et al.

Match to check them. Once a state pair is checked to be non-bisimilar in
function Match, it is added into NonBisim. Meanwhile, if it is also con-
tained in the set Assumed, the algorithm restarts a new execution of Bisim.
Let k denote the number of executions of Bisim, and NonBisimk be the
set NonBisim at the end of Bisimk. It is easy to show by induction that
NonBisimk ⊂ NonBisimk+1 for any k ≥ 0. Since the system under consid-
eration is finite-state, there always exists some n such that NonBisimn is the
largest set of non-bisimilar state pairs and Bisimn is the last execution of Bisim.

After the execution of Bisimn, no more exceptions will be raised. Each time
Match is executed with t and u as its parameters, we add (t, u) into V isited.
The quantum variables and the configurations of the quantum registers for t and
u are compared. When no more state pairs are added into V isited, the function
Match will not be invoked again and the whole algorithm will terminate. ��

Theorem 2 (Correctness). Given two configurations t and u from two pLTSs,
Bisim(t, u) returns true if and only if they are ground bisimilar.

Proof. Let Bisimn be the last execution of Bisim. Let NonBisimn and Bisimn

be the values of the two sets NonBisim and Bisim, respectively, recording the
checked state pairs at the end of Bisimn. By inspecting Match, we know that
NonBisimn ∩Bisimn = ∅.

Let us analyse the result returned by Bisimn, which is the output of the
function callMatch(t, u, V isited). If the result is false then one of the conjuncts
in bres is invalid, which means that one of the three cases discussed in the
beginning of Section 3 occurs, thus t and u are indeed non-bisimilar. If the
return is true then there is Bisimn = V isitedn\NonBisimn. For each pair
(t, u) ∈ Bisimn, all the conjuncts in bres must be true. Both t and u must
have the same set of free quantum variables and the same density operators. In
addition, they have matching transitions. That is, for any action α, if t

α−→ Δ
then there exists some weak distribution Θ such that u

α
=⇒ Θ and Δ R◦ Θ.

This is true because (i) the relation R in function MatchAction is correctly
constructed, and (ii) the lifted relation R◦ exists. Below we argue for (i); the
existence of the lifting operation in (ii) relies on the validity of the predicate LP
whose correctness is established by Theorem 9 in [28].

The algorithm adds a pair into Assumedn if the pair to be checked has al-
ready been visited and passed the bisimulation checking conditions. It implies
that Assumedn ⊆ V isitedn. Furthermore, as there is no wrong assumption
detected after the execution of Bisimn, we have Assumedn ⊆ Bisimn which
implies that Bisimn = Assumedn ∪ Bisimn. So Bisimn constitutes a bisimu-
lation relation containing the initial state pair (t, u). ��

Before concluding this section, we analyse the time complexity of the algo-
rithm.

Theorem 3 (Complexity). Let the number of configurations reachable from t
and u be n. The time complexity of function Bisim(t, u) is polynomial in n.

Verifying Quantum Communication Protocols with Ground Bisimulation 31

Proof. The number of state pairs is at most n2. The number of state pairs
examined in the kth execution of Bisim is at most O(n2 − k). Therefore, the
total number of state pairs examined is as most O(n2+(n2−1)+...+1) = O(n4).
Note that each state has finitely many outgoing transitions. Given a transition,
to check if there exists a weak matching transition, we call the function LP at
most once, the construction of a flow network and solving the linear programming
problem are both polynomial in n if we use the algorithm in [28]. Consequently,
the whole algorithm is also polynomial in n. ��

For the strong version of ground bisimulation, we are only concerned with
the matching of strong transitions. Therefore, Algorithm 1 can be simplified and
there is no need of the predicate LP in the function MatchAction.

4 Implementation and Experiments

In this section, we report on an implementation of our approach and provide the
experimental results of verifying several quantum communication protocols.

Implementation,
Variable Initialisation,
Operator Definition

Parser
Strong

Bisimulation
Checking
Module

Specification,
Variable Initialisation,
Operator Definition

pLTS
Generation

Module

Weak
Bisimulation

Checking
Module

Strong Bisimilar
Configuration

Pairs

Weak Bisimilar
Configuration

Pairs

Fig. 3. Verification workflow.

4.1 Implementation

We have implemented both strong and weak ground bisimulation checkers in
Python 3.7. The workflow of our tool is sketched in Figure 3. The tool consists
of a pLTS generation module and two bisimulation checking modules, devoted
to modeling and verification, respectively. The input of this tool is a specifica-
tion and an implementation of a quantum protocol, both described as qCCS
processes, the definition of user-defined operators, as well as an initialisation of
classical and quantum variables. Unlike classical variables, the initialisation of
all quantum variables, deemed as a quantum register, is accomplished at the
same time so to allow for superposition states. The final output of the tool is a
result indicating whether the specification and the implementation are bisimilar
under the same initial states. The algorithm also stores the bisimilar state pairs
and non-bisimilar state pairs in two tables.

The pLTS generation module acts as a preprocessing unit before the verifica-
tion task. It first translates the input qCCS processes into two abstract syntax

pLTSs

pLTSs

AST

32 X. Qin et al.

trees (ASTs) by a parser. Then the ASTs are transformed into two pLTSs ac-
cording to the operational semantics given in Figure 2, using the user-defined
operators and the initial values of variables. The weak bisimulation checking
module implements the weak ground bisimilarity checking algorithm we defined
in the last section. It checks whether the initial states of the two generated pLTSs
are weakly bisimilar.

The tool is available in [24], where we also provide all the examples for the
experiments to be discussed in Section 4.3.

4.2 BB84 Quantum Key Distribution Protocol

To illustrate the use of our tool, we formalise the BB84 quantum key distribution
protocol. Our formalisation follows [11], where a manual analysis of the protocol
is provided. Now we perform automatic verification via the ground bisimulation
checker.

The BB84 protocol provides a provably secure way to create a private key
between two partners with a classical authenticated channel and a quantum inse-
cure channel between them. The protocol does not make use of entangled states.
It ensures its security through the basic property of quantum mechanics: if the
states to be distinguished are not orthogonal, such as |0〉 and |+〉, then informa-
tion gain about a quantum state is only possible at the expense of changing the
state. Let the sender and the receiver be Alice and Bob, respectively. The basic
BB84 protocol with a sequence of qubits q̃ with size n goes as follows:

1. Alice randomly generates two sequences of bits B̃a and K̃a using her qubits
q̃. Note that q̃ here are auxiliary qubits which are not modified in this step.

2. Alice sets the state of q̃, such that the ith bits of q̃ is |xy〉 where x and

y are the ith bits of B̃a and K̃a, and respectively, |00〉 = |0〉, |01〉 = |1〉,
|10〉 = |+〉 = (|0〉+ |1〉)/√2 and |11〉 = |−〉 = (|0〉 − |1〉)/√2.

3. Alice sends her qubits q̃ to Bob.
4. Bob randomly generates a sequence of bits B̃b using his qubits q̃′.
5. Bob measures the ith qubit of q̃ he received from Alice according to the

basis determined by the ith bit of B̃b. Respectively, the basis is {|0〉, |1〉} if
it is 0 and {|+〉, |−〉} if it is 1.

6. Bob sends his choice of measurements B̃b to Alice, and after receiving the
information, Alice sends her B̃a to Bob.

7. Alice and Bob match two sequences of bits B̃a and B̃b to determine at which
positions the bits are equal. If the bits match, they keep the corresponding
bits of K̃a and K̃b. Otherwise, they discard them.

After the execution of the basic BB84 protocol, the remaining bits of K̃a and
K̃b should be the same, provided that the communication channels are perfect
and there is no eavesdropper.

Implementation. For simplicity, we assume that the sequence q̃ consists of only
one qubit. This is enough to reflect the essence of the protocol. The other qubits

Verifying Quantum Communication Protocols with Ground Bisimulation 33

used below are auxiliary qubits for the operation Ran.

Alice
def
= Ran[q1;Ba].Ran[q1;Ka].SetKa

[q1].HBa
[q1].A2B!q1.

b2a?Bb.a2b!Ba.keya!cmp(Ka, Ba, Bb).nil;

Bob
def
= A2B?q1.Ran[q2;Bb].MBb

[q1;Kb].b2a!Bb.

a2b?Ba.keyb!cmp(Kb, Ba, Bb).nil;

BB84
def
= (Alice||Bob) \ {a2b, b2a,A2B}

where there are several special operations:

– Ran[q;x] = Set+[q].M0,1[q;x].Set0[q], where Set+ (resp.Set0) is the oper-
ation which sets a qubit it applies on to |+〉 (resp.|0〉), M0,1[q;x] is the
quantum measurement on q according to the basis {|0〉, |1〉} and stores the
result into x.

– SetK [q] sets the qubit q to the state |K〉.
– HB [q] applies H or does nothing on the qubit q depending on whether the

value of B is 1 or 0.
– MB [q;K] is the quantum measurement on q according to the basis {|+〉, |−〉}

or {|0〉, |1〉} depending on whether the value of B is 1 or 0.
– cmp(x, y, z) returns x if y and z match, and ε, meaning it is empty, if they

do not match.

Specification. The specification can be defined as follows using the same opera-
tions:

BB84spec
def
= Ran[q1;Ba].Ran[q1;Ka].Ran[q2;Bb]

.(keya!cmp(Ka, Ba, Bb).nil||keyb!cmp(Ka, Ba, Bb).nil).

Input. For the implementation of BB84, we need to declare the following vari-
ables and operators in the input attached to it.

– The classical bits are named Ba, Ka for Alice and Bb, Kb for Bob.
– The qubits are declared together as a vector |q1, q2〉. The vector always needs

an initial value. We can set it to be |00〉 in this example.

When modelling the protocol, we use several operators. They should be defined
and their definitions are part of the input.

– The operator Ran involves two operators Set+, Set0 and a measurement
M0,1 measuring the qubit according to the basis {|0〉, |1〉}.

– SetK needs Set0 and Set1.
– HB requires the Hadamard gate H.
– MB uses the measurement M+,− which measures the qubit according to the

basis {|+〉, |−〉}.
The function cmp is treated as an in-built function, so there is no need to define
it in the input.

For the specification BB84spec, we only declare the classical bits Ba, Bb, Ka,
qubits q1, q2 and the operator Ran. The variables and operators declared here
are the same as those in the input of the implementation.

34 X. Qin et al.

Output. Taking the input discussed above, the tool first generates two pLTSs,
with over 150 states for the implementation and 80 states for the specification,
and then runs the ground bisimulation checking algorithm. As we can see from
the fifth row in Table 1, our tool confirms that 〈BB84, ρ0〉 ≈ 〈BB84spec, ρ0〉,
where ρ0 denotes the initial state of the quantum register, thus the implemen-
tation is faithful to the specification. In the output of the tool, there is an enu-
meration of 1084 pairs of non-bisimilar states and 3216 pairs of bisimilar states.
The pLTSs and the state pairs can be found in [24].

4.3 Experimental Results

We conducted experiments on several quantum communication protocols with
a few different input variables. Table 1 provides a summary of our experimental
results obtained on a macOS machine with an Intel Core i7 2.5 GHz processor
and 16GB of RAM.

Weak ground bisimulation

Program Variables Bisi Impl Spec N B ms

Super-dense
coding

q1q2 = |00〉, x = 1 Yes 16 5 9 20 259

q1q2 = |00〉, x = 5 No 6 2 - - 2

Super-dense
coding (modified)

q1q2 = |00〉, x = 5 Yes 8 5 5 12 110

Teleportation
q1q2q3 = |100〉 Yes 34 3 22 22 232

q1q2q3 = 1√
2
|000〉+ 1√

2
|100〉 Yes 34 3 22 22 264

q1q2q3 =
√
3
2
|000〉+ 1

2
|100〉 Yes 34 3 22 22 239

Secret Sharing
q1q2q3q4 = |1000〉 Yes 103 3 65 65 1339

q1q2q3q4=
1√
2
|0000〉+ 1√

2
|1000〉 Yes 103 3 65 65 1252

q1q2q3q4=

√
3

2
|0000〉+ 1

2
|1000〉 Yes 103 3 65 65 1187

BB84 q1q2 = |00〉 Yes 152 80 1084 3216 130163

BB84 (with
eavesdropper)

q1q2q3 = |000〉 Yes 1180 352 121072 75392 55728587

B92 q1q2 = |00〉 Yes 64 80 466 1284 34522

E91 q1q2q3q4 = |0000〉 Yes 124 80 964 2676 113840

Table 1. Experimental results. The columns headed by Impl and Spec show the
numbers of nodes contained in the generated pLTSs of the implementations and speci-
fications, respectively. Column N shows the sizes of the sets of non-bisimilar state pairs
and Column B shows the sizes of the sets of bisimilar state pairs. Column ms shows
the time cost of the verification in milliseconds.

In each case, we report the final outcome (whether an implementation is
ground bisimilar to its specification), the number of nodes in two pLTSs, the
numbers of non-bisimilar and bisimilar state pairs in NonBisim and Bisim,
respectively, as well as the verification time of our ground bisimulation checking
algorithm. The time cost excludes the part of pLTS generation which takes
around one second in all the examples.

Verifying Quantum Communication Protocols with Ground Bisimulation 35

Besides the protocol discussed in Section 4.2, we also verify other ones that
make use of entangled qubits such as the teleportation and the quantum secrect
sharing protocol. For quantum key distribution protocols, we conduct experi-
ments on the BB84, the B92 and the E91.

Not all the cases in Table 1 give the size of the set NonBisim of non-bisimilar
state pairs, as the bisimulation checking algorithm may immediately terminate
once a negative verification result is obtained, i.e. the two initial states are not
bisimilar.

Data Availability Statement
The datasets generated and/or analyzed during the current study are available
in the figshare repository: https://doi.org/10.6084/m9.figshare.11874942.v1.

5 Conclusion and Future Work

We have presented an on-the-fly algorithm to check ground bisimulation for
quantum processes in qCCS, and a simpler algorithm for strong ground bisim-
ulation. Based on the algorithms, we have developed a tool to verify quantum
communication protocols modelled as qCCS processes. We have carried out ex-
periments on several non-trivial quantum communication protocols from super-
dense coding to key distribution and found the tool helpful.

As to future work, several interesting problems remain to be addressed. For
example, a limitation of the current work is to compare quantum processes with
predetermined states of quantum registers. Indeed, there are occasions where
one would expect two processes to be equivalent for arbitrary initial states.
It is infeasible to enumerate all those states. Then the symbolic bisimulations
proposed in [11] will be useful. We are considering to implement the algorithm
for symbolic ground bisimulation, and then tackle the more challenging symbolic
open bisimulation, both proposed in that work. Another problem occurs in the
experiment of Section 4.2. The example tested one qubit instead of a sequence of
qubits because more qubits lead to a drastic growth of the running time, which
shows a limitation of the current approach of explicitly representing state spaces.

Appendix

Algorithm 1 needs to check the condition that if t
α−→ Δ then there exists some

Θ such that u
α̂

=⇒ Θ and Δ R◦ Θ. We use as a subroutine a procedure of [28] to
reduce the problem to a network flow problem that can be solved in polynomial
time.

Technically, we construct a network graph G(Δ,u, α,R) = (V,E) defined as
follows. Let S be the set of reachable states, and R be a binary relation on the
states.

Let � and � be two vertices that represent the source and the sink of the
network, respectively. For each visible action α, the set of vertices V is given

https://doi.org/10.6084/m9.figshare.11874942.v1

36 X. Qin et al.

below
V = {�,�} ∪ S ∪ Str ∪ Sα ∪ Str

α ∪ S⊥ ∪ SR
where

Str = {vtr|tr = v
β−→ Γ, β ∈ {α, τ}};

Sα = {vα|v ∈ S};
Str
α = {vtrα |vtr ∈ Str};

S⊥ = {v⊥|v ∈ S};
SR = {vR|v ∈ S}.

and the set of edges E is

E = {(�, u)} ∪ L1 ∪ Lα ∪ L2 ∪ Lα
⊥ ∪ LR

where
L1 = {(v, vtr), (vtr, v′)|tr = v

τ−→ Γ, v′ ∈
Γ �};
Lα = {(v, vtrα), (vtrα , v′α)|tr = v

α−→ Γ, v′α ∈
Γ �};
L2 = {(vα, vtrα), (vtrα , v′α)|tr = vα

τ−→ Γ, v′α ∈
Γ �};
Lα
⊥ = {(uα, u⊥)|u ∈ S};

LR = {(s⊥, s′R), (s′R,�)|(s, s′) ∈R}.
For the invisible action τ , the definition is similar: V = {�,�}∪S∪Str∪S⊥∪SR
and E = {(�, u)} ∪ L1 ∪ L⊥ ∪ LR where L⊥ = {(s, s⊥) | s ∈ S}.

If α is a visible action, we consider the following linear programming problem
associated to G(Δ,u, α,R):

max
∑

(s,v)∈E
−fs,v

subject to

fs,v ≥ 0 for each (s, v) ∈ E

f�,u = 1

fvR,� = Δ(v) for each v ∈ S∑
(s,v)∈E

fs,v −
∑

(v,w)∈E
fv,w = 0 for each v ∈ V \ {�,�}

fvtr,v′ − Γ (v′) · fv,vtr = 0 for each tr = v
τ−→ Γ and v′ ∈
Γ �

fvtr
α ,v′

α
− Γ (v′) · fv,vtr

α
= 0 for each tr = v

α−→ Γ and v′ ∈
Γ �
fvtr

α ,v′
α
− Γ (v′) · fvα,vtr

α
= 0 for each tr = v

τ−→ Γ and v′ ∈
Γ �

Note that the fourth constraint is referred to as the flow-conservation constraints.
The last three constraints link the source state and the result distribution.

For the invisible action τ , the linear programming problem associated to the
network G(Δ,u, τ,R) is the same as above except that the last two constraints
are dropped.

We denote by LP(Δ,u, α,R) the predicate that is true if and only if the
linear programming problem above has a solution.

Verifying Quantum Communication Protocols with Ground Bisimulation 37

References

1. Aaronson, S., Gottesman, D.: Improved simulation of stabilizer circuits. Physical
Review A 70(052328) (2004)

2. Abramsky, S., Coecke, B.: A categorical semantics of quantum protocols. In: Pro-
ceedings of the 19th IEEE Symposium on Logic in Computer Science. pp. 415–425.
IEEE Computer Society (2004)

3. Ardeshir-Larijani, E., Gay, S.J., Nagarajan, R.: Automated equivalence checking of
concurrent quantum systems. ACM Transactions on Computational Logic 19(4),
28:1–28:32 (2018)

4. Baier, C., Engelen, B., Majster-Cederbaum, M.E.: Deciding bisimilarity and simi-
larity for probabilistic processes. Journal of Computer and System Sciences 60(1),
187–231 (2000)

5. Bennett, C.H., Brassard, G.: Quantum cryptography: Public-key distribution and
coin tossing. In: Proceedings of the IEEE International Conference on Computer,
Systems and Signal Processing. pp. 175–179 (1984)

6. Davidson, T.A.S.: Formal Verification Techniques using Quantum Process Calcu-
lus. Ph.D. thesis, University of Warwick (2011)

7. Deng, Y.: Semantics of Probabilistic Processes: An Operational Approach. Springer
(2015)

8. Deng, Y., Du, W.: A local algorithm for checking probabilistic bisimilarity. In:
Proceedings of the 4th International Conference on Frontier of Computer Science
and Technology. pp. 401–407. IEEE Computer Society (2009)

9. Deng, Y., Feng, Y.: Open bisimulation for quantum processes. In: Proceedings of
the 7th IFIP International Conference on Theoretical Computer Science. Lecture
Notes in Computer Science, vol. 7604, pp. 119–133. Springer (2012)

10. Feng, Y., Duan, R., Ji, Z., Ying, M.: Probabilistic bisimulations for quantum pro-
cesses. Information and Computation 205(11), 1608–1639 (2007)

11. Feng, Y., Deng, Y., Ying, M.: Symbolic bisimulation for quantum processes. ACM
Transactions on Computational Logic 15(2), 1–32 (2014)

12. Feng, Y., Duan, R., Ying, M.: Bisimulation for quantum processes. In: Proceed-
ings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. pp. 523–534. ACM (2011)

13. Feng, Y., Hahn, E.M., Turrini, A., Zhang, L.: QPMC: A model checker for quantum
programs and protocols. In: Proceedings of the 20th International Symposium
on Formal Methods. Lecture Notes in Computer Science, vol. 9109, pp. 265–272.
Springer (2015)

14. Fernandez, J.C., Mounier, L.: Verifying bisimulations “on the fly”. In: Proceed-
ings of the 3rd International Conference on Formal Description Techniques for
Distributed Systems and Communication Protocols. pp. 95–110. North-Holland
(1990)

15. Gay, S.J., Nagarajan, R.: Communicating quantum processes. In: Palsberg, J.,
Abadi, M. (eds.) Proceedings of the 32Nd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. pp. 145–157 (2005)

16. Gay, S.J., Nagarajan, R., Papanikolaou, N.: QMC: A model checker for quantum
systems. In: Proceedings of the 20th International Conference on Computer Aided
Verification. Lecture Notes in Computer Science, vol. 5123, pp. 543–547. Springer
(2008)

17. Hennessy, M., Lin, H.: Symbolic bisimulations. Theoretical Computer Science
138(2), 353–389 (1995)

38 X. Qin et al.

18. Jorrand, P., Lalire, M.: Toward a quantum process algebra. In: Proceedings of the
1st Conference on Computing Frontiers. pp. 111–119. ACM (2004)

19. Kissinger, A.: Pictures of Processes: Automated Graph Rewriting for Monoidal
Categories and Applications to Quantum Computing. Ph.D. thesis, University of
Oxford (2011)

20. Kubota, T., Kakutani, Y., Kato, G., Kawano, Y., Sakurada, H.: Semi-automated
verification of security proofs of quantum cryptographic protocols. Journal of Sym-
bolic Computation 73, 192–220 (2016)

21. Lalire, M.: Relations among quantum processes: Bisimilarity and congruence.
Mathematical Structures in Computer Science 16(3), 407–428 (2006)

22. Liu, T., Li, Y., Wang, S., Ying, M., Zhan, N.: A theorem prover for quantum hoare
logic and its applications. CoRR abs/1601.03835 (2016)

23. Milner, R.: Communication and Concurrency. Prentice-Hall (1989)
24. Qin, X., Deng, Y., Du, W.: QBisim (2020), https://github.com/MartianQXD/

QBisim
25. Sangiorgi, D.: A theory of bisimulation for the pi-calculus. Acta Informatica 33(1),

69–97 (1996)
26. Selinger, P.: Towards a quantum programming language. Mathematical Structures

in Computer Science 14(4), 527–586 (2004)
27. Shor, P., Preskill, J.: Simple proof of security of the BB84 quantum key distribution

protocol. Physical Review Letters 85(2), 441–444 (2000)
28. Turrini, A., Hermanns, H.: Polynomial time decision algorithms for probabilistic

automata. Information and Computation 244, 134–171 (2015)
29. Ying, M., Feng, Y., Duan, R., Ji, Z.: An algebra of quantum processes. ACM

Transactions on Computational Logic 10(3), 1–36 (2009)
30. Ying, M.: Foundations of Quantum Programming. Morgan Kaufmann (2016)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

https://github.com/MartianQXD/QBisim
https://github.com/MartianQXD/QBisim
http://creativecommons.org/licenses/by/4.0/

Deciding the bisimilarity of context-free session
types

Bernardo Almeida , Andreia Mordido , and Vasco T. Vasconcelos

LASIGE, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal

Abstract. We present an algorithm to decide the equivalence of context-
free session types, practical to the point of being incorporated in a com-
piler. We prove its soundness and completeness. We further evaluate its
behaviour in practice. In the process, we introduce an algorithm to decide
the bisimilarity of simple grammars.

Keywords: Types, Type equivalence, Bisimulation, Algorithm

1 Introduction

Session types enhance the expressivity of traditional types for programming lan-
guages by allowing the description of structured communication on heteroge-
neously typed channels [14,15,24]. Traditional session types are regular in the
sense that the sequences of communication actions admitted by a type are in
the union of a regular language (for finite executions) and an ω-regular language
(for infinite executions). Introduced by Thiemann and Vasconcelos, context-free
session types liberate traditional session types from the shackles of tail recursion,
allowing, for example, the safe serialization of arbitrary recursive datatypes [26].

Session types are often used to discipline interactions in concurrent programs.
When associated to (bidirectional, heterogeneous) channels, session types de-
scribe the permitted patterns of interaction. For example, a type of the form

r e c x . +{Lea f : Skip , Node : ! I n t ; x ; x}

may describe one end of a communication channel. A process holding such a
channel end must first select between choices Leaf and Node. If Leaf is chosen, then
type Skip forwards the interaction to the continuation, if any. If no continuation
is present, then interaction is over. Otherwise, the process must send an integer
(! Int) followed by two trees, as witnessed by the recursive calls occurring after
the choice of Node. A concurrent process holding the other end of the channel
interacts via a dual type:

r e c y . &{Lea f : Skip , Node : ? I n t ; y ; y}

In this case the process must be ready to offer both choices, Leaf and Node. For
the latter option, the process must further receive an integer (?Int), followed by
two trees.

Regular languages cannot capture such behaviour. The best one can do with
regular session types (and without resorting to channel passing) is to use a
c© The Author(s) 2020
A. Biere and D. Parker (Eds.): TACAS 2020, LNCS 12079, pp. 39–56, 2020.
https://doi.org/10.1007/978-3-030-45237-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45237-7_3&domain=pdf
http://orcid.org/0000-0001-5398-6529
http://orcid.org/0000-0002-1547-0692
http://orcid.org/0000-0002-9539-8861
https://doi.org/10.1007/978-3-030-45237-7_3

40 B. Almeida et al.

regular type that allows transmitting trees, as well as many other non tree-like
structures. The correct behaviour of processes interacting on such a channel
would need to be checked at runtime [2,26].

If the algorithmic aspects of type equivalence for regular session types are well
known (Gay and Hole propose an algorithm to decide subtyting [9], from which
type equivalence can be derived), the same does not apply to context-free session
types. Thiemann and Vasconcelos [26] show that the equivalence of context-free
session types is decidable, by reducing the problem to the verification of bisim-
ulation for Basic Process Algebra (BPA) which, in turn, was proved decidable
by Christensen, Hüttel, and Stirling [6]. Even if the equivalence problem for
context-free session types is known to be decidable, no algorithm has been pro-
posed. Padovani [20] introduces a language with context-free session types that
avoids the problem of checking the equivalence of types by requiring annotations
in the source code. Annotations result in the structural alignment between code
and types. This alignment—enforced by an explicit resumption process operator
that breaks sequential composition in types—sidesteps the problem central to
this paper: that of checking type equivalence. Furthermore, there are some basic
equivalences on types that the compiler is not able to identify [20].

After the breakthrough by Christensen, Hüttel, and Stirling—a result that
provides no immediate practical algorithm—the problem of deciding the equiv-
alence of BPA terms has been addressed by several researchers [4,6,8,18]. Most
of these works provide no practical algorithm that can be readily used, except
the one by Czerwinski and Lasota where a polynomial time algorithm is pre-
sented that decides the bisimilarity of normed context-free processes in O(n5) [8].
However, context-free session types are not necessarily normed, which precludes
resorting to this algorithm, or using the original result by Baeten, Bergstra,
and Klop [3], as well as improvements by Hirshfeld, Jerrum, and Moller [12,13].
Moreover, the complexity estimates for deciding bisimilarity in BPA process are
not promising. Kiefer provided an EXPTIME lower bound for BPA bisimilarity
by proving this problem is EXPTIME-hard [19], whereas Jančar has provided a
double exponential upper bound for this problem and proved that its complexity
is O(22

pol(n)

) [17].
The decidability of deterministic pushdown automata (DPDA) has also been

subject of much study [16,22,23]. Several techniques have been proposed to solve
the problem, but no immediate practical algorithm was available until Henry and
Sénizergues provide an algorithm for this problem [10]. Its poor performance
however precludes its incorporation in a compiler. Furthermore, the algorithm
Henry and Sénizergues propose handles the problem of language equivalence
rather than the problem of deciding bisimilarity of DPDAs.

Our algorithm to decide the equivalence of context-free session types also
allows deciding the bisimilarity of simple grammars (i.e., deterministic gram-
mars in Greibach Normal Formal). It proceeds in three stages. The first stage
builds a context-free grammar in Greibach Normal Formal (GNF)—in fact a
simple grammar—from two context-free session types in a way that bisimula-
tion is preserved. A basic result from Baeten, Bergstra, and Klop states that any

Deciding the bisimilarity of context-free session types 41

guarded BPA system can be transformed into Greibach Normal Formal (GNF)
while preserving bisimulation equivalence, but unfortunately no procedure is
presented [3]. The second stage prunes the grammar by removing unreachable
symbols in unnormed sequences of non-terminal symbols. This stage builds on
the result of Christensen, Hüttel, and Stirling [6]. The third stage constructs
an expansion tree, by alternating between expansion and simplification steps.
This last stage uses expansion operations proposed by Jančar, Moller, and Hir-
shfeld [11,18], and simplification rules proposed by Caucal, Christensen, Hüttel,
Stirling, Jančar, and Moller [5,6,18]. The finite representation of bisimulations
of BPA transition graphs [5,6] is paramount for our results of soundness and
completeness.

The branching nature of the expansion tree confers an (at least) exponen-
tial complexity to the algorithm. However, our experiments with a concrete
implementation—both as a stand-alone tool and incorporated in a compiler [2]—
are promising. We propose heuristics that decrease the execution time in 89%
and reduce the number of timeouts by 95% (see Section 5).

We present an algorithm to decide the equivalence of context-free session
types, practical to the point of being readily included in any compiler, an exercise
that we conducted in parallel [2]. The main contributions of this work are:

– The proposal and implementation of an algorithm to decide type equivalence
of context-free session types;

– A proof of its soundness and completeness against the declarative definition;
– The proposal and implementation of an algorithm to decide the bisimilarity

of simple grammars; and
– The empirical study of the runtime behaviour of the implementation.

The rest of the paper is organized as follows: an introduction to context-free
session types can be found in Section 2, the algorithm in Section 3, the main
results in Section 4, evaluation in Section 5, and conclusions in Section 6.

2 Context-free session types

This section briefly introduces context-free session types, based on the work of
Thiemann and Vasconcelos [26]. The types we consider build upon a denumer-
able set of variables and a set of choice labels. Metavariables X,Y, Z range over
variables and � over labels. We assume given a set of base types denoted by B.
The syntax of types is given by the grammar below.

S, T ::= skip | �B | �{�i : Ti}i∈I | S;T | μX.T | X

� ::= ! | ? � ::= ⊕ | &

In type μX.T , variable X is bound in the subterm T . The sets of bound and
free variables in a given type are defined accordingly. Notation [T/X]S denotes
the resulting of substituting T for the (free) occurrences of X in S.

Judgement S� characterizes terminated types: context-free session types
that exhibit no further action [1].

42 B. Almeida et al.

Terminated predicate: T�

skip� X�
S� T�
S;T�

T�
μX.T�

Notice that all types of the form μX.μX1 . . . μXn.X, for n ≥ 0, are terminated.
We are not interested in all types generated by the above grammar. If Δ is a

list of pairwise distinct variables, then judgement Δ � T characterises the types
of interest: the well-formed types.
Type formation system: Δ � T

Δ � skip Δ � �B

X ∈ Δ

Δ � X

Δ � S Δ � T

Δ � S;T

Δ � Ti (∀i ∈ I)

Δ � �{�i : Ti}i∈I

¬T� Δ,X � T

Δ � μX.T

Terminated processes have a simple characterisation—types comprising skip,
μ and semicolon—which justifies the inclusion of ¬T� in the rules for type
formation (Thiemann and Vasconcelos [26] introduce a contractive judgement for
the effect). Type formation serves two main purposes: ensuring that all variables
introduced by μ-types are pairwise distinct and that types underneath a μ are
not terminated. This can be clearly seen by formation rule for μ-types, where
notation Δ,X is understood as requiring X /∈ Δ. In the sequel we assume that
all types are such that � T and denote by T the set such types.

The set of actions is generated by the following grammar.

a ::= �B | ��

The labelled transition system (LTS) for context-free session types is given
by T as the set of states, the set of actions, and the transition relation S

a−→T T
defined by the rules below.

Labelled transition system: S
a−→T T

�B
�B−→T skip � {�i : Ti}i∈I

��j−→T Tj (j ∈ I)

S
a−→T S′

S;T
a−→T S′;T

S� T
a−→T T ′

S;T
a−→T T ′

[μX.S/X]S
a−→T T

μX.S
a−→T T

Type bisimulation is defined in the usual way from the labelled transition
system [21]. We say that a type relation R is a bisimulation if, whenever SRT ,
for all a we have:

– for each S′ with S
a−→T S′, there is T ′ such that T a−→T T ′ and S′RT ′, and

– for each T ′ with T
a−→T T ′, there is S′ such that S

a−→T S′ and S′RT ′.

We say that two types are bisimilar, written S ∼T T , if there is a bisimulation R
with SRT .

Deciding the bisimilarity of context-free session types 43

3 An algorithm to decide type bisimilarity

This section presents an algorithm to decide whether two types are in a type
bisimulation. In the process we also provide an algorithm to decide the bisimi-
larity of simple context-free languages. The algorithm comprises three stages:

1. Translate the two types to a simple grammar,
2. Prune unreachable symbols, and
3. Explore an expansion tree, alternating between simplification and expansion

operations, until finding an empty node—case in which it decides positively—
or failing to expand all nodes—case in which it decides negatively.

Translating types to grammars. Type variables X are the non-terminal symbols
and LTS labels a are the terminal symbols. Sequences of type variables �X are
called words; ε denotes the empty word. A context-free grammar in Greibach
Normal Form is a pair (�X,P) where �X is the start word and P a set of produc-
tions of the form Y → a�Z (context-free session types do not require productions
of the form Y → ε). Due to the deterministic nature of context-free session types,
the grammars we are interested in are simple: for each non-terminal symbol Y
and terminal symbol a, there is at most one production of the form Y → a�Z.

Grammars in Greibach normal form naturally induce a labelled transition
system by taking words �X for states, terminal symbols a for actions, and a−→P ,
defined as X�Y

a−→P �Z�Y when X → a�Z ∈ P, for the transition relation. The
associated bisimilarity is denoted by ∼P .

The unravelling function on well-formed context-free session types, taken
from Thiemann and Vasconcelos [26], is defined as follows.

unr(μX.T) = unr([μX.T/X]T)

unr(S;T) =

{
unr(T) unr(S) = skip
(unr(S);T) unr(S) 	= skip

unr(T) = T in all other cases

The function terminates under the assumption that types are well formed.
Another function, word, builds a word from a type. In the process it updates

a global set P of grammar productions. Word concatenation is denoted by �X · �Y .

word(skip) = ε

word(S;T) = word(S) · word(T)
word(�B) = Y, setting P := P ∪ {Y → �B} (Y fresh)

word(�{�i : Ti}i∈I) = Y, setting P := P ∪ {Y → ��i · word(Ti) | i ∈ I} (Y fresh)
word(X) = X

word(μX.T) = X

The following lemma relates terminated types to the result of a call to word.

Lemma 1. Let � T . Then, T� if and only if word(T) = ε.

44 B. Almeida et al.

Proof. The direct implication follows by rule induction on predicate �:

– Case skip�: word(skip) = ε.
– Case X�: if T is X, then 	� T .
– Case S;T�: by induction hypothesis on the rule premises S� and T�,

word(S) = ε and word(T) = ε. Hence, word(S;T) = ε.
– Case μX.S: the hypothesis T� and the rule premises of hypothesis � T are

contradictory.

Conversely, if word(T) = ε, using the rules of the definition of word that produce
the empty word:

– if T is skip, then we have T�.
– if T is U ;V , word(U) = ε, and word(V) = ε, then, by induction, we have U�

and V�. Hence, T�.
– No other case in function word produces an empty word. ��

To define the translation of context-free session types to simple grammars,
assume that {μX1.T1, . . . , μXn.Tn} is the set of all μ-subterms in a given type T .
Further assume that i < j whenever Xj ∈ free(μXi.Ti). That is, the μ-subterms
are topologically sorted with respect to their lexical nesting, innermost subterms
first. Now we identify unrolled versions of the μ-subterms.

T ′
1 = [μXn.Tn/Xn]· · · [μX2.T2/X2][μX1.T1/X1]T1

T ′
2 = [μXn.Tn/Xn]· · · [μX2.T1/X2]T2

...
T ′
n = [μXn.Tn/Xn]Tn

Clearly each type T ′
i is closed (has no free variables). Notice that if T is a μ-type,

then μXn.Tn is T itself.
Finally, given an initial set of productions P0, function grm translates a type

T into a grammar composed of a start word and set of productions:

grm(T,P0) = (word(T),Pn)

where each Pi is computed from Pi−1 by the following recurrence,

P ′
i ∪ {Xi → aj �Yj

�Z | (Z → aj �Yj) ∈ P ′
i} where (Z �Z,P ′

i) = grm(unr(T ′
i),Pi−1)

Notice that word(unr(T ′
i)) is a non-empty word because of Lemma 1 and the

fact that each T ′
i is non-terminated by hypothesis. The function grm terminates

on all inputs (because recursion is always on subterms) and adds a finite number
of productions to the original set. Furthermore, because choices in session types
do not contain duplicated labels, the function returns a simple grammar.

To run grm on two well-formed types proceed as follows: rename the second
type so that bound variables do not overlap with those of the first; start with
an empty set of productions; run the algorithm consecutively on the two types
to obtain two initial words and a single set of productions.

Deciding the bisimilarity of context-free session types 45

Example 1. Consider the following pair of context-free session types.

S � (μX1.&{n : X1;X1; ?int, � :?int}); (μX2.!int;X2;X2)

T � (μY1.&{n : Y1;Y1, � : skip}; ?int); (μY2.!int;Y2)

Starting from the empty set of productions, running grm consecutively on S and
on T produces the following set of productions

X1 → &nX1X1X3 X3 → ?int Y1 → &nY1Y1Y3 Y2 → !intY2

X1 → &�X4 X4 → ?int Y1 → &� Y3 Y3 → ?int

X2 → !intX2X2

and two start words X1X2 and Y1Y2.

Pruning unnormed productions. For �a a non-empty sequence of non-terminal
symbols a1, . . . , an, write �Y

�a−→P �Z when �Y
a1−→P · · · an−→P �Z. We say that �Y is

normed when �Y
�a−→P ε for some �a, and that �Y is unnormed otherwise. When

�Y is normed, the minimal path of �Y is the shortest �a such that �Y
�a−→P ε. In

this case, the norm of �Y , denoted by |�Y |, is the length of �a. As observed by
Christensen, Hüttel, and Stirling [6], any unnormed word �Y is bisimilar to its
concatenation with any other word, that is, if �Y is unnormed, then �Y ∼P �Y �X.
We use this fact to prune unreachable symbols in unnormed words. And we do
this in all productions.

Example 2. Recall Example 1 and notice that X2 and Y2 are both unnormed.
Then, the last occurrence of X2 in production X2 → !intX2X2 is unreachable,
hence we simplify the production to obtain X2 → !intX2.

Building an expansion tree. We base the third stage of the algorithm on the
notion of expansion tree as proposed by Jančar and Moller [18], adapting an
idea by Hirshfeld [11]. The nodes in trees are labelled by sets of pairs of words.
We say that a node N ′ is an expansion of N if N ′ is a minimal set such that:
for every pair (�X, �Y) ∈ N ,

– if �X → a �X ′ then �Y → a�Y ′ with (�X ′, �Y ′) ∈ N ′, and
– if �Y → a�Y ′ then �X → a �X ′ with (�X ′, �Y ′) ∈ N ′.

An expansion tree is built from a root node: the singleton set containing
the pair of start words obtained by translating the two types into a grammar.
A children node is obtained from its parent node by expansion. However, as
Jančar and Moller observed, expansions alone often lead to infinite trees. We then
alternate between expansion and simplification operations, until either finding
an empty node—case in which we decide equivalence positively—or failing to
expand all nodes—case in which we decide equivalence negatively. We say that
a branch is successful if it is infinite or finishes in an empty node, otherwise it
is said to be unsuccessful.

46 B. Almeida et al.

In the expansion step, each node N derives a single child node, obtained as
an expansion of N . As we are dealing with simple grammars, no branching is
expected in the expansion tree at this step.

The simplification step consists on the application of the following rules:

Reflexive rule: Omit from a node any pair of the form (�X, �X);
Congruence rule: Omit from a node N any pair that belongs to the least
congruence containing the ancestors of N ;
BPA1 rule: If (X0

�X, Y0
�Y) is in N and (X0

�X ′, Y0
�Y ′) belongs to the ances-

tors of N , then create a sibling node for N replacing (X0
�X, Y0

�Y) by (�X, �X ′)

and (�Y , �Y ′);
BPA2 rule: If (X0

�X, Y0
�Y) is in N and X0 and Y0 are normed, then:

Case |X0| ≤ |Y0|: Let �a be a minimal path for X0 and �Z the word such
that Y0

�a−→P �Z. Add a sibling node for N including the pairs (X0
�Z, Y0)

and (�X, �Z�Y) in place of (X0
�X, Y0

�Y);
Otherwise: Let �a be a minimal path for Y0 and �Z the word such that
X0

�a−→P �Z. Add a sibling node for N including the pairs (X0, Y0
�Z) and

(�Z �X, �Y) in place of (X0
�X, Y0

�Y).

Contrarily to expansion and to the reflexive and congruence simplifications,
BPA rules promote branching in the expansion tree. We iteratively apply the
simplification rules to ensure the algorithm computes the simplest possible chil-
dren nodes derived from N . We can easily show that the simplification function
that results from applying the reflexive, congruence, and BPA rules, has a fixed
point in the complete partial ordered set of pairs node-ancestors, where the set
of ancestors is fixed. The proof builds a partial order on the sets of pairs node-
ancestors and uses Tarski’s fixed point theorem [25]. The number of children
nodes generated by the application of these rules is finite [6,18]. Notice that the
sibling nodes do not exclude the (often) infinite branch resulting from successive
expansions.

Checking the bisimilarity of simple grammars. Given a set of productions and
two start words �X and �Y (all pruned), function bisimG alternates between sim-
plification and expansion stages, starting with expansion. To avoid getting stuck
in an infinite branch of the expansion tree, we use a breadth-first search on the
expansion tree: node-ancestor pairs to be processed are stored in a queue. The
initial pair inserted in the queue contains the initial node {(�X, �Y)} and an empty
set of ancestors.

bisimG(�X, �Y ,P) = expand(singletonQueue(({(�X, �Y)}, ∅),P)

Predicate expand terminates as soon as all nodes fail to expand (signalled by
an empty queue), case in which the algorithm returns False, or an empty node is
reached, case in which the algorithm returns True. Otherwise, it extracts node

Deciding the bisimilarity of context-free session types 47

n at the front of the queue, simplifies its child node, and recurs.

expand(q,P) =

if empty(q) then False

else (n, a) = front(q)

if empty(n) then True

else if hasChild(n,P)

then expand(simplify({(child(n,P), a ∪ n)}, dequeue(q),P))

else expand(dequeue(q),P)

The simplification stage distinguishes the case where all type variables are
normed, in which case BPA1 is not required to decide equivalence [5,6], from the
case where some type variables might be unnormed.

rules = if allProductionsNormed(P) then [reflex, congruence, bpa2]

else [reflex, congruence, bpa1, bpa2]

Function simplify applies the various rules iteratively, until reaching a fixed
point. The application of the rules (via function apply) produces a set of nodes
that are then enqueued. The simplification stage does not introduce new levels
in the tree, hence the set of ancestors na is passed to function apply as is.

simplify(na, q,P) = fold(enqueue, q, apply(na, rules,P))

Example 3. The expansion tree for our running example is in Figure 1. Once a
successful branch is reached (marked with �), bisimG(�X, �Y ,P) returns True.

Checking the bisimilarity of context-free session types. Function bisimT decides
the equivalence of two well-formed and renamed types, S and T . It starts by
computing the start words for S and T by first translating S to a grammar and
enriching this with the productions for type T . After pruning the productions
in the grammar (function prune), the equivalence of S and T is decided using
function bisimG.

bisimT(T, U) = bisimG(�X, �Y , prune(P))

where (�X,P ′) = grm(S, ∅)
(�Y ,P) = grm(T,P ′)

4 Correctness of the algorithm

In this section we prove that function bisimT is sound and complete with respect
to the meta-theory of context-free session types. We start by showing a full
abstraction result between context-free session types and grammars in Greibach
Normal Form. Then, based on results from Caucal [5], Christensen, Hüttel, and
Stirling [6], Jančar and Moller [18], we conclude that the algorithm we propose
is sound and complete.

48 B. Almeida et al.

(X1X2, Y1Y2)

(X1X1X3X2, Y1Y1Y3Y2), (X4X2, Y3Y2)
expand

(X1X1X3X2, Y1Y1Y3Y2), (X4X2, Y3Y2)(X1, Y1), (X1X3X2, Y1Y3Y2), (X4X2, Y3Y2)
self

…

…

bpa2

(X1, Y1), (X3X2, Y3Y2), (X4X2, Y3Y2)
bpa2

(X1, Y1), (X3, Y3), (X2, Y2), (X4X2, Y3Y2)
bpa2

(X1, Y1), (X3, Y3), (X2, Y2), (X4, Y3)

(X1X1X3, Y1Y1Y3), (X4, Y3), (ε, ε), (X2, Y2), (ε, ε)
reflex

(X1X1X3, Y1Y1Y3), (X4, Y3), (X2, Y2)
cong

(X1X1X3, Y1Y1Y3)

(X1, Y1), (X1X3, Y1Y3)
bpa2

(X1, Y1), (X3, Y3)
bpa2

…

∅
cong

expand

✓

bpa1

(ε, X2), (ε, Y1), (X3X2, Y3Y2), (X4X2, Y3Y2)

expand

×

…

…
bpa2

…

…

Fig. 1: An example of an expansion tree

Type translation is fully abstract. Sections 2 and 3 introduce bisimulation rela-
tions on the set T of types ∼T and on a given set P of productions ∼P . Our
ultimate goal is to prove that we can faithfully analyze the bisimilarity of types
by analyzing the bisimilarity of the corresponding grammars. For this purpose,
we prove that the translation proposed in Section 3 is a fully abstract encoding,
i.e., preserves the bisimilarity relation.

We start showing that the transformation of types to grammars preserves
the labelled transitions. The following result states that grammars produced by
grm mimic the transitions of the corresponding types and vice-versa.

Lemma 2. Let (�X,P ′) = grm(S, ∅) and (�Y ,P) = grm(T,P ′). Then, S a−→T T

if and only if �X
a−→P �Y .

Proof. For the direct implication we proceed by rule induction on the hypothesis,
using the definition of word.

– Case �B: if �B �B−→T skip, then word(�B)
�B−→P ε.

– Case ��i: if �{�i : Si}i∈I
��i−→T Si, then word(S)

��i−→P word(Si).
– Case S1;S2 with S1

a−→T S′
1: if S1;S2

a−→T S′
1;S2 and S1

a−→T S′
1,

by induction hypothesis, we have word(S1)
a−→P word(S′

1). Furthermore,
word(S1;S2) = word(S1) · word(S2). Hence, word(S1;S2)

a−→P word(S′
1;S2).

Deciding the bisimilarity of context-free session types 49

– Case S1;S2 with S1� and S2
a−→T S′

2: in the case S1;S2
a−→T S′

2, where
S1� and S2

a−→T S′
2, by Lemma 1 and since S1�, we have word(S1;S2) =

word(S2). Thus, by induction hypothesis we have word(S1;S2)
a−→P word(S′

2).

– Case μX.T : if μX.T
a−→T S′, then [μX.T/X]T

a−→T S′. Also unr(S)
a−→T

S′ and, by induction hypothesis, word(unr(S))
a−→P word(S′). Hence, by

definition of word, word(S) = X
a−→P word(S′).

For the reverse implication, we prove that any transition in the grammar leads
to a transition in the corresponding types.

– if word(S) �B−→P �X, then word(S) = Y · �X, where Y
�B−→P ε, and so unr(S) =

�B;T and thus S
�B−→T T .

– if word(S) ��i−→P �X, then word(unr(S)) = Y , where Y
��i−→P �X. Hence, unr(S)

is of the form �{�′j : Uj}j∈J ;T with �i = �′j and �X = word(Uj ;T), for some

j ∈ J . Using the LTS we conclude that S
��i−→T Uj ;T . ��

Lemma 3. If word S
a−→P �X, then exists T s.t. S a−→T T and �X = word T .

Proof. By induction on the definition of word. ��

The main result of this subsection follows from Lemmas 2 and 3.

Theorem 1. Let (�X,P ′) = grm(S, ∅) and (�Y ,P) = grm(T,P ′). Then, grm is
a full abstract encoding, i.e., S ∼T T if and only if �X ∼P �Y .

Proof. For the direct implication, assume that S ∼T T and let B be a bisimula-
tion for S and T . Then, consider B′ = {(word(S0),word(T0)) | (S0, T0) ∈ B}. Ob-
viously, (word(S),word(T)) ∈ B′. To prove that B′ is a bisimulation, one assumes
that word(S0)

a−→P �X and proves that there exists �Y such that word(T0)
a−→P �Y

with (�X, �Y) ∈ B′. This proof is done by coinduction on the definition of word,
uses Lemmas 2, 3, and the definition of B′.
For the reverse implication, assume that �X ∼P �Y , with �X = word(S) and
�Y = word(T) and let B′ be a bisimulation for �X and �Y . Then, consider B =
{(S0, T0) | (word(S0),word(T0)) ∈ B′}. Notice that (S, T) ∈ B. The proof that
B is a bisimulation, consists in showing that: given (S0, T0) ∈ B, such that
S0

a−→T S′
0, there exists T ′

0 such that T0
a−→T T ′

0 and (S′
0, T

′
0) ∈ B. The proof

follows by rule coinduction on the LTS and uses Lemmas 2 and 3. ��

Now we sketch the proof that pruning grammars also preserves bisimulation.
We distinguish the grammars in the context through the subscript of ∼.

Theorem 2. �X ∼P �Y if and only if �X ∼prune(P)
�Y .

Proof. For the direct implication, the bisimulation for �X and �Y over P is also a
bisimulation for �X and �Y over prune(P). For the reverse implication, if B′ is a
bisimulation for �X and �Y over prune(P), then B = B′ ∪ {(�VW, �VW �Z) | (W →
�VW �Z) ∈ P, W unnormed} is a bisimulation for �X and �Y over P. ��

50 B. Almeida et al.

Correctness of the algorithm. We now focus on the correctness of the function
bisimG. Before proceeding to soundness, we recall the safeness property intro-
duced by Jančar and Moller [18].

Lemma 4 (Safeness Property). Given a set of productions P, �X ∼P �Y if
and only if the expansion tree rooted at {(�X, �Y)} has a successful branch.

Notice that function bisimG builds an expansion tree by alternating between
simplification—reflexive, congruence, and BPA—and expansion operations, as
proposed by Jančar and Moller. These simplification rules are safe [18], in the
sense that the application of any rule preserves the bisimulation from a parent
node to at least one child node and, reciprocally, that bisimulation on a child
node implies the bisimulation of its parent node.

While the safeness property is instrumental in proving soundness, the finite
witness property is of utmost importance to prove completeness. This result fol-
lows immediately from the analysis by Jančar and Moller [18], which capitalizes
on results by Caucal [5], and Christensen, Hüttel, and Stirling [6]:

Lemma 5 (Finite Witness Property). Given a set of productions P, if
�X ∼P �Y then the expansion tree rooted at {(�X, �Y)} has a finite successful branch.

We refer to Caucal, Christensen, Hüttel, and Stirling for details on the proof
of existence of a finite witness, as stated in Lemma 5. This proof is particularly
interesting in that it highlights the importance of the BPA rules and of pruning
productions on reaching such (finite) witness. The results in these two papers also
elucidate the reason for the distinction, in the simplification phase, between the
cases where all the symbols in the grammar are and are not normed (cf. program
variable rules in function expand). The safeness and finite witness properties
ensure the termination of the algorithm, its soundness and completeness.

Lemma 6 (Termination). Let (�X,P ′) = grm(S, ∅) and (�Y ,P) = grm(T,P ′).
Then, the computation of bisimG(�X, �Y , prune(P)) always terminates.

Proof. Start by noticing that prune(P) always terminates. For bisimG itself, if
S ∼T T then, by Theorems 1 and 2, we have word(S) ∼prune(P) word(T) and
thus the existence of a finite successful branch is ensured by the finite witness
property (Lemma 5). Hence, breadth-first search eventually terminates.

When S 	∼T T , we easily conclude that all branches in the expansion tree
are finite and thus bisimG(�X, �Y) terminates. To conclude that all branches are
finite, observe that any infinite branch is successful by definition and thus the
safeness property would imply word(S) ∼prune(P) word(T) and we would have
S ∼T T , by Theorems 1 and 2. ��

Lemma 7. Let (�X,P ′) = grm(S, ∅) and (�Y ,P) = grm(T,P ′). If bisimG(�X, �Y ,

prune(P)) returns True, then �X ∼prune(P)
�Y .

Proof. Function bisimG returns True whenever it reaches a (finite) successful
branch in the expansion tree rooted at {(�X, �Y)}, i.e., a branch terminating in
an empty node. Conclude with the safeness property, Lemma 4. ��

Deciding the bisimilarity of context-free session types 51

From the previous results, the soundness of our algorithm is now immediate:
the algorithm to check the bisimulation of context-free session types is sound
with respect to the meta-theory of context-free session types.

Theorem 3 (Soundness). Let (�X,P ′) = grm(S, ∅) and (�Y ,P) = grm(T,P ′).
If bisimG(�X, �Y , prune(P)) returns True then S ∼T T .

Proof. From Theorem 1, Theorem 2, and Lemma 7. ��

Given that the algorithm terminates (Lemma 6), we know that if S 	∼T T ,
then bisimG(�X, �Y , prune(P)) returns False, where (�X,P ′) = grm(S, ∅) and
(�Y ,P) = grm(T,P ′). We now show that the algorithm to check the bisimu-
lation of context-free session types is complete with respect to the meta-theory
of context-free session types. The finite witness property is paramount to achieve
this result.

Theorem 4 (Completeness). Let (�X,P ′) = grm(S, ∅) and (�Y ,P) =

grm(T,P ′). If S ∼T T then bisimG(�X, �Y , prune(P)) returns True.

Proof. Assume S ∼T T . By Theorems 1 and 2, we have �X ∼prune(P)
�Y . Hence,

Lemma 5 ensures the existence of a finite successful branch on the expansion
tree rooted at {(�X, �Y)}, i.e., a branch terminating in an empty node. Since
our algorithm traverses the expansion tree using breadth-first search it will,
eventually, reach the empty node and conclude the bisimulation positively. ��

Theorem 4 ensures that if bisimG(�X, �Y ,P) returns False then S 	∼T T .

5 Evaluation

This section discusses the behaviour of our algorithm in the real world. Both for
testing and for performance evaluation, we require test suites. We started with
a carefully crafted, manually produced, suite of valid and invalid tests. This test
suite was assembled by gathering pairs of types that emerged from examples
we have studied and from programs we have written in FreeST, a programming
language with context-free session types [2]. The tests produced by this method
are, on the one hand, small, and, on the other hand, lacking diversity.

We then turned our attention to the automatic generation of test cases. Pro-
ducing pairs of arbitrary (well-formed) types that share no variables is simple.
However, the probability that a randomly generated pair of types turns out to be
bisimilar is extremely low. For this reason, we generate arbitrary pairs of types
that are bisimilar by construction. Theorem 5 naturally induces an algorithm:
given a natural number n (the size of the pair), arbitrarily select for the base
case (n = 0) one of the pairs in item 1 of the theorem and for the recursive case
(n ≥ 1) one of the pairs in 2–12 items.

52 B. Almeida et al.

Theorem 5 (Properties of type bisimilarity).

1. skip ∼T skip and �B ∼T �B;
2. S;T ∼T U ;V if S ∼T U and T ∼T V ;
3. μX.S ∼T μX.T if S ∼T T ;
4. �{�i : Si}i∈I ∼T �{�i : Ti}i∈I if (Si ∼T Ti)i∈I ;
5. S ∼T T ; skip and S ∼T skip;T if S ∼T T ;
6. �{�i : Si}i∈I ;U ∼T �{�i : Ti;V }i∈I if (Si ∼T Ti)i∈I and U ∼T V ;
7. T ∼T S if S ∼T T ;
8. R; (S;T) ∼T (U ;V);W if R ∼T U , S ∼T V , and T ∼T W ;
9. μX.μY.S ∼T μX.[X/Y]T ∼T μY.[Y/X]T if S ∼T T ;

10. μX.S ∼T T if S ∼T T and X /∈ free(S);
11. [U/X]S ∼T [V/X]T if S ∼T T and U ∼T V ;
12. μX.S ∼T [μX.T/X]T if S ∼T T .

Proof. 1–3: Bisimulation is a congruence. 4–12: Thiemann and Vasconcelos [26]
exhibit the appropriate bisimulations. ��

For evaluating the algorithm on non-bisimilar pairs we add the following
five anti-axioms to the list in Theorem 5: (1) skip 	∼T �B; (2) ?B 	∼T !B; (3)
skip 	∼T �{�i : Si}i∈I ; (4) ⊕{�i : Si}i∈I 	∼T &{�i : Si}i∈I ; (5) �{�i : Si}i∈I 	∼T
�{�j : Sj}J where I ⊂ J . We generate two types using the same methodology as
for the positive case and, then, discard the data collected when the pair turns
out to be bisimilar. This produces pairs of types that are much closer than those
obtained by random generation, thus hopefully approaching the reality that the
compilers face when in production.

We used QuickCheck [7] to generate two test suites. That for bisimilar pairs
is constructed based on Theorem 5, whereas the construction of non-bisimilar
tests relies on Theorem 5 plus the anti-axioms above. Both test suites comprise
2000 entries, featuring types with a number of nodes (in the syntax tree) ranging
from 1 to 200.

The base algorithm described in the previous section turns out to behave
quite poorly. We then implemented the following variants.

1. Eliminating redundant productions in the grammar. Since the size of the
expansion tree depends, among other things, on the number of productions in
the grammar, generating smaller grammars seems a promising optimisation.
Rather than blindly adding a new production Y → �Z to the grammar (in
function word, Section 3), we look, in the set of productions, for a production
W → �X syntactically equal to the former, up to renaming of non-terminal
symbols. In this case, we add no new production and return non-terminal W
instead. To find W , we look for the least fixed-point of the transitions in the
languages generated by �Z and �X and compare them. This optimisation does
not compromise the results of soundness, completeness, nor termination.

2. Using a filter rule that removes nodes with hopeless pairs. A filter rule ensures
that nodes composed by pairs of types with different norms (if normed) are
removed from the expansion tree, since these types are not bisimilar. The
filter rule preserves the results of soundness, completeness, and termination.

Deciding the bisimilarity of context-free session types 53

(b) Number of timeouts per variant (c) Runtime of B1 per number of nodes

Fig. 2: Results on the test suite composed by bisimilar pairs of types is represented
in blue and the test suite with non-bisimilar pairs is represented in orange. Time is in
milliseconds. Scales of 2a and 2c are logarithmic; scale of 2b is linear.

3. Using a double-ended queue to prepend promising children. A double-ended
queue allows prioritizing nodes with potential to reach an empty node faster.
The algorithm prepends (rather than appends) empty nodes or nodes whose
pairs (�X, �Y) are such that | �X| ≤ 1 and |�Y | ≤ 1. This procedure does not
compromise soundness, completeness, nor termination because the number of
terminal symbols is finite and the algorithm takes advantage of the reflexive
and congruence rules to remove previously visited nodes from the queue.

To better understand how the algorithm performs in practice, we tested all
the optimisations and their combinations. We evaluate each variant 1–3 individ-
ually (denoted by B1–B3) and all their combinations. For instance, B12 denotes
the variant obtained from combining optimisations 1 and 2 above. B stands for
the base algorithm, bisimT. We implemented the base algorithm and its variants
in Haskell, using the Glasgow Haskell Compiler (version 8.6.5). The evaluation
was conducted on a machine with an Intel Core i7-6700K at 4.2GHz and 8 GB
of RAM running Arch Linux; tests were run under a timeout of 2 minutes.

54 B. Almeida et al.

Figure 2a depicts the distribution of the execution times (in ms) for both
test suites and all variants. We observe that the behavior of negatives tests is
roughly the same in all variants. However, the execution time for the positive
tests differ from variant to variant. These differences mainly depend on the
trade-off between the computational effort required for each optimisation and
the efficiency they bring to deciding the equivalence of grammars. We observe
that including optimisation 1 improves the execution time, while the rest, in
general, does not. The combination of optimizations has a positive impact on
execution time, with the exception of the B23 variant, whose distribution is
worse than the base case.

Figure 2b shows the number of timeouts for each variant. The base case, B,
has 146 positive tests whose execution time exceeds 2 minutes. The distribution
of timeouts per variant exhibits a behavior that is consistent with that of runtime
shown in Figure 2a. All combinations lead to a reduction in the number of
timeouts, when compared to the base case.

Variant B1, resulting from considering optimisation 1, performs better than
all others, presenting a median of 1.4 milliseconds and 7 timeouts, both for the
positive tests. By taking advantage of optimisation 1, the number of timeouts
reduced by 95%. The remaining positive tests take, on average, 1863.38 ms to
complete with the base algorithm and 195.68 ms with variant B1, resulting in
an 89% reduction in the execution time. This is the variant in production for
the FreeST compiler [2].

The distribution of the execution time of B1 against the size of the input types
is depicted in Figure 2c. As expected, the execution time increases considerably
with the number of nodes. Although we have carried out tests with a fairly large
number of nodes in the abstract syntax trees, we remark that, when used in a
compiler, the algorithm will mostly come across types with a reduced number of
nodes.

6 Conclusion

Context-free session types are a promising tool to describe protocols in con-
current programs. In order to be incorporated in programming languages and
effectively used in compilers, a practical algorithm to decide bisimulation is called
for. Taking advantage of a process algebra graph representation of types to de-
cide bisimulation [12,13], we developed one such algorithm and proved it correct.
The algorithm is incorporated in a compiler for a concurrent functional language
equipped with context-free session types [2].

Possible extensions to this work include addressing higher-order session types.
We also plan to extend the implementation of the algorithm to cope with context-
free grammars in Greibach Normal Form that are not necessarily deterministic.

Acknowledgements. We thank Alcides Fonseca for helping with the testing pro-
cess, and Filipe Casal, Alexandra Silva, and Peter Thiemman for comments and
discussions. This work was supported by FCT through the LASIGE Research
Unit, ref. UIDB/00408/2020 and by Cost Action CA15123 EUTypes.

Deciding the bisimilarity of context-free session types 55

References

1. Aceto, L., Hennessy, M.: Termination, deadlock, and divergence. J. ACM 39(1),
147–187 (1992)

2. Almeida, B., Mordido, A., T. Vasconcelos, V.: Freest: Context-free session types
in a functional language. In: Proceedings Programming Language Approaches
to Concurrency- and Communication-cEntric Software. Electronic Proceedings in
Theoretical Computer Science, vol. 291, pp. 12–23. Open Publishing Association
(2019). https://doi.org/10.4204/EPTCS.291.2

3. Baeten, J.C., Bergstra, J.A., Klop, J.W.: Decidability of bisimulation equivalence
for process generating context-free languages. Journal of the ACM (JACM) 40(3),
653–682 (1993)

4. Burkart, O., Caucal, D., Steffen, B.: An elementary bisimulation decision procedure
for arbitrary context-free processes. In: Mathematical Foundations of Computer
Science. pp. 423–433 (1995). https://doi.org/10.1007/3-540-60246-1_148

5. Caucal, D.: Décidabilité de l’égalité des langages algébriques infinitaires simples.
In: Annual Symposium on Theoretical Aspects of Computer Science. pp. 37–48.
Springer (1986)

6. Christensen, S., Hüttel, H., Stirling, C.: Bisimulation equivalence is decidable for
all context-free processes. Inf. Comput. 121(2), 143–148 (1995)

7. Claessen, K., Hughes, J.: Quickcheck: a lightweight tool for random testing of
haskell programs. In: Proceedings of the Fifth ACM SIGPLAN International Con-
ference on Functional Programming. pp. 268–279. ACM (2000), https://doi.org/
10.1145/351240.351266

8. Czerwinski, W., Lasota, S.: Fast equivalence-checking for normed context-free pro-
cesses. In: IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS 2010). Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik (2010)

9. Gay, S.J., Hole, M.: Subtyping for session types in the pi calculus. Acta Inf. 42(2-3),
191–225 (2005). https://doi.org/10.1007/s00236-005-0177-z

10. Henry, P., Sénizergues, G.: Lalblc a program testing the equivalence of dpda’s.
In: International Conference on Implementation and Application of Automata. pp.
169–180. Springer (2013)

11. Hirshfeld, Y.: Bisimulation trees and the decidability of weak bisimulations. Electr.
Notes Theor. Comput. Sci. 5, 2–13 (1996)

12. Hirshfeld, Y., Jerrum, M., Moller, F.: A polynomial algorithm for deciding bisim-
ilarity of normed context-free processes. Theor. Comput. Sci. 158(1&2), 143–159
(1996). https://doi.org/10.1016/0304-3975(95)00064-X

13. Hirshfeld, Y., Moller, F.: A fast algorithm for deciding bisimilarity of normed
context-free processes. In: CONCUR ’94, Concurrency Theory. pp. 48–63 (1994).
https://doi.org/10.1007/978-3-540-48654-1_5

14. Honda, K.: Types for dyadic interaction. In: CONCUR ’93, 4th International Con-
ference on Concurrency Theory. LNCS, vol. 715, pp. 509–523. Springer (1993)

15. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: Programming Languages
and Systems. pp. 122–138 (1998). https://doi.org/10.1007/BFb0053567

16. Jančar, P.: Selected ideas used for decidability and undecidability of bisimilarity.
In: International Conference on Developments in Language Theory. pp. 56–71.
Springer (2008)

https://doi.org/10.4204/EPTCS.291.2
https://doi.org/10.1007/3-540-60246-1_148
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/351240.351266
https://doi.org/10.1007/s00236-005-0177-z
https://doi.org/10.1016/0304-3975(95)00064-X
https://doi.org/10.1007/978-3-540-48654-1_5
https://doi.org/10.1007/BFb0053567

56 B. Almeida et al.

17. Jancar, P.: Bisimilarity on basic process algebra is in 2-exptime (an explicit proof).
arXiv preprint arXiv:1207.2479 (2012)

18. Jančar, P., Moller, F.: Techniques for decidability and undecidability of bisimilarity.
In: International Conference on Concurrency Theory. pp. 30–45. Springer (1999)

19. Kiefer, S.: Bpa bisimilarity is exptime-hard. Information Processing Letters 113(4),
101–106 (2013)

20. Padovani, L.: Context-free session type inference. In: Programming Languages
and Systems - 26th European Symposium on Programming. pp. 804–830 (2017).
https://doi.org/10.1007/978-3-662-54434-1_30

21. Sangiorgi, D.: An Introduction to Bisimulation and Coinduction. Cambridge Uni-
versity Press (2014)

22. Sénizergues, G.: The equivalence problem for deterministic pushdown automata is
decidable. In: International Colloquium on Automata, Languages, and Program-
ming. pp. 671–681. Springer (1997)

23. Stirling, C.: Decidability of DPDA equivalence. Theoretical Computer Science
255(1-2), 1–31 (2001)

24. Takeuchi, K., Honda, K., Kubo, M.: An interaction-based language and its typing
system. In: PARLE. LNCS, vol. 817, pp. 398–413. Springer (1994)

25. Tarski, A., et al.: A lattice-theoretical fixpoint theorem and its applications. Pacific
journal of Mathematics 5(2), 285–309 (1955)

26. Thiemann, P., Vasconcelos, V.T.: Context-free session types. In: Proceedings of
the 21st ACM SIGPLAN International Conference on Functional Programming.
pp. 462–475 (2016). https://doi.org/10.1145/2951913.2951926

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-662-54434-1_30
https://doi.org/10.1145/2951913.2951926
http://creativecommons.org/licenses/by/4.0/

Sharp Congruences Adequate with Temporal
Logics Combining Weak and Strong Modalities

Frédéric Lang1, Radu Mateescu1, and Franco Mazzanti2

1 Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP��, LIG, 38000 Grenoble, France
{Frederic.Lang,Radu.Mateescu}@inria.fr

2 ISTI-CNR, Pisa, Italy
Franco.Mazzanti@isti.cnr.it

Abstract. We showed in a recent paper that, when verifying a modal
μ-calculus formula, the actions of the system under verification can be
partitioned into sets of so-called weak and strong actions, depending on
the combination of weak and strong modalities occurring in the formula.
In a compositional verification setting, where the system consists of pro-
cesses executing in parallel, this partition allows us to decide whether
each individual process can be minimized for either divergence-preserving
branching (if the process contains only weak actions) or strong (other-
wise) bisimilarity, while preserving the truth value of the formula. In this
paper, we refine this idea by devising a family of bisimilarity relations,
named sharp bisimilarities, parameterized by the set of strong actions.
We show that these relations have all the nice properties necessary to
be used for compositional verification, in particular congruence and ad-
equacy with the logic. We also illustrate their practical utility on several
examples and case-studies, and report about our success in the RERS
2019 model checking challenge.

Keywords: Bisimulation · Concurrency · Model checking · Mu-calculus.

1 Introduction

This paper deals with the verification of action-based, branching-time temporal
properties expressible in the modal μ-calculus (Lμ) [31] on concurrent systems
consisting of processes composed in parallel, usually described in languages with
process algebraic flavour. A well-known problem is the state-space explosion that
happens when the system state space exceeds the available computer memory.

Compositional verification is a set of techniques and tools that have proven
efficient to palliate state-space explosion in many case studies [18]. They may
either focus on the construction of the state space reduced for some equivalence
relation, such as compositional state space construction [24, 32, 36, 43, 45–47],
or on the decomposition of the full system verification into the verification of
(expectedly smaller) subsystems, such as compositional reachability analysis [49,
10], assume-guarantee reasoning [41], or partial model checking [1, 34].

�� Institute of Engineering Univ. Grenoble Alpes

c© The Author(s) 2020
A. Biere and D. Parker (Eds.): TACAS 2020, LNCS 12079, pp. 57–76, 2020.
https://doi.org/10.1007/978-3-030-45237-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45237-7_4&domain=pdf

In this paper, we focus on property-dependent compositional state space
construction, where the reduction to be applied to the system is obtained by
analysing the property under verification. We will refine the approach of [37]
which, given a formula ϕ of Lμ to be verified, shows how to extract from ϕ a
maximal hiding set of actions and a reduction (minimization for either strong [40]
or divergence-preserving3 branching — divbranching for short — bisimilarity [20,
23]) that preserves the truth value of ϕ. The reduction is chosen according to
whether ϕ belongs to an Lμ fragment named Ldbr

μ , which is adequate with div-
branching bisimilarity. This fragment consists of Lμ restricted to weak modal-
ities, which match actions preceded by (property-preserving) sequences of hid-
den actions, as opposed to traditional strong modalities 〈α〉ϕ0 and [α]ϕ0, which
match only a single action satisfying α. If ϕ belongs to Ldbr

μ , then the system can
be reduced for divbranching bisimilarity; otherwise, it can be reduced for strong
bisimilarity, the weakest congruence preserving full Lμ. We call this approach
of [37] the mono-bisimulation approach.

We refine the mono-bisimulation approach in [35], by handling the case of
Lμ formulas containing both strong and weak modalities. To do so, fragments
named Lstrong

μ (As) extend Ldbr
μ with strong modalities matching only the ac-

tions belonging to a given set As of strong actions. This induces a partition of
the parallel processes into those containing at least one strong action and those
not containing any, so that a formula ϕ ∈ Lstrong

μ (As) is still preserved if the pro-
cesses containing strong actions are reduced for strong bisimilarity and the other
ones for divbranching bisimilarity. We call this refined approach the combined
bisimulations approach. Guidelines are also provided in [35] to extract a set of
strong actions from particular Lμ formulas encoding the operators of widely-used
temporal logics, such as CTL [11], ACTL [39], PDL [15], and PDL-Δ [44]. This
approach is implemented on top of the CADP verification toolbox [19], and ex-
periments show that it can improve the capabilities of compositional verification
on realistic case studies, possibly reducing state spaces by orders of magnitude.

In this paper, we extend these results as follows: (1) We refine the approach
by devising a family of new bisimilarity relations, called sharp bisimilarities,
parameterized by the set of strong actions As. They are hybrid between strong
and divbranching bisimilarities, where strong actions are handled as in strong
bisimilarity whereas weak actions are handled as in divbranching bisimilarity.
(2) We show that each fragment Lstrong

μ (As) is adequate with the corresponding
sharp bisimilarity, namely, Lstrong

μ (As) is precisely the set of properties that
are preserved by sharp bisimilarity (w.r.t. As) on all systems. (3) We show
that, similarly to strong and divbranching bisimilarities, every sharp bisimilarity
is a congruence for parallel composition, which enables it to be used soundly
in a compositional verification setting. (4) We define an efficient state space

3 In [18, 37], the name divergence-sensitive is used instead of divergence-preserving
branching bisimulation (or branching bisimulation with explicit divergences) [20,
23]. This could lead to a confusion with the relation defined in [13], also called
divergence-sensitive but slightly different from the former relation. To be consistent
in notations, we replace by dbr the abbreviation dsbr used in earlier work.

58 F. Lang et al.

reduction algorithm that preserves sharp bisimilarity and has the same worst-
case complexity as divbranching minimization. Although it is not a minimization
(i.e., sharp bisimilar states may remain distinguished in the reduced state space),
it coincides with divbranching minimization whenever the process it is applied
to does not contain strong actions, and with strong minimization in the worst
case. Therefore, applying this reduction compositionally always yields state space
reduction at least as good as [35], which itself is an improvement over [37]. (5)
At last, we illustrate our approach on case studies and compare our new results
with those of [35, 37]. We also report about our recent success in the RERS 2019
challenge, which was obtained thanks to this new approach.

The paper is organized as follows: Sections 2 and 3 introduce the neces-
sary background about process descriptions and temporal logic. Section 4 de-
fines sharp bisimilarity, states its adequacy with Lstrong

μ (As), and its congruence
property for parallel composition. Section 5 presents the reduction algorithm
and shows that it is correct and efficient. Section 6 illustrates our new approach
on the case studies. Section 7 discusses related work. Finally, Section 8 concludes
and discusses research directions for the future. The proofs of all theorems pre-
sented in this paper and a detailed description of how we tackled the RERS 2019
challenge are available in a Zenodo archive.4

2 Processes, Compositions, and Reductions

We consider systems of processes whose behavioural semantics can be repre-
sented using an LTS (Labelled Transition System).

Definition 1 (LTS). Let A be an infinite set of actions including the invisible
action τ and visible actions A \ {τ}. An LTS P is a tuple (Σ,A,−→, pinit),
where Σ is a set of states, A ⊆ A is a set of actions, −→ ⊆ Σ × A × Σ is the
(labelled) transition relation, and pinit ∈ Σ is the initial state. We may write
ΣP , AP ,−→P for the sets of states, actions, and transitions of an LTS P , and
init(P) for its initial state. We assume that P is finite and write |P |st (resp.

|P |tr) for the number of states (resp. transitions) of P . We write p
a−→ p′ for

(p, a, p′) ∈ −→ and p
A−→ for (∃p′ ∈ ΣP , a ∈ A) p

a−→ p′.

LTS can be composed in parallel and their actions may be abstracted away
using the parallel composition and action mapping defined below, of which action
hiding, cut (also known as restriction), and renaming are particular cases.

Definition 2 (Parallel composition of LTS). Let P,Q be LTS and Async ⊆
A\{τ}. The parallel composition of P and Q with synchronization on Async, writ-
ten “P |[Async]| Q”, is defined as (ΣP ×ΣQ, AP ∪ AQ,−→, (init(P), init(Q))),

where (p, q)
a−→ (p′, q′) if and only if (1) p

a−→P p′, q′ = q, and a /∈ Async, or (2)

p′ = p, q
a−→Q q′, and a /∈ Async, or (3) p

a−→P p′, q a−→Q q′, and a ∈ Async.

4 https://doi.org/10.5281/zenodo.3470930

Sharp Congruences for Logics Combining Weak and Strong Modalities 59

Definition 3 (Action mapping). Let P be an LTS and ρ : AP → 2A be a
total function. We write ρ(AP) for the image of ρ, defined by

⋃
a∈AP

ρ(a). We
write ρ(P) for the LTS (ΣP , ρ(AP),−→, init(P)) where −→= {(p, a′, p′) | (∃a ∈
AP) p

a−→P p′∧a′ ∈ ρ(a)}. An action mapping ρ is admissible if τ ∈ AP implies
ρ(τ) = {τ}. We distinguish the following admissible action mappings:

– ρ is an action hiding if (∃A ⊆ A \ {τ}) (∀a ∈ A ∩ AP) ρ(a) = {τ} ∧ (∀a ∈
AP \A) ρ(a) = {a}. We write “hide A in P” for ρ(P).

– ρ is an action cut if (∃A ⊆ A \ {τ}) (∀a ∈ A ∩ AP) ρ(a) = ∅ ∧ (∀a ∈
AP \A) ρ(a) = {a}. We write “cut A in P” for ρ(P).

– ρ is an action renaming if (∃f : AP → A) (∀a ∈ AP) ρ(a) = {f(a)} and
τ ∈ AP implies f(τ) = τ . We write “rename f in P” for ρ(P).

Parallel composition and action mapping subsume all abstraction and compo-
sition operators encodable as networks of LTS [42, 18, 33], such as synchroniza-
tion vectors5 and the parallel composition, hiding, renaming, and cut operators
of CCS [38], CSP [8], mCRL [26], LOTOS [29], E-LOTOS [30], and LNT [9].

LTS can be compared and reduced modulo well-known bisimilarity relations,
such as strong [40] and (div)branching [20, 23] bisimilarity. We do not give their
definitions, which can easily be found elsewhere (e.g., [35]). They are special cases
of Definition 7 (page 7), as shown by Theorem 1 (page 9). We write ∼ (resp.
∼dbr) for the strong (resp. divbranching) bisimilarity relation between states.
We write minstr (P) (resp. mindbr (P)) for the quotient of P w.r.t. strong (resp.
divbranching) bisimilarity, i.e., the LTS obtained by replacing each state by its
equivalence class. The quotient is the smallest LTS of its equivalence class, thus
computing the quotient is called minimization. Moreover, these bisimilarities are
congruences for parallel composition and admissible action mapping. This allows
reductions to be applied at any intermediate step during LTS construction, thus
potentially reducing the overall cost. However, since processes may constrain
each other by synchronization, composing LTS pairwise following the algebraic
structure of the composition expression and applying reduction after each com-
position can be orders of magnitude less efficient than other strategies in terms
of the largest intermediate LTS. Finding an optimal strategy is impossible, as
it requires to know the size of (the reachable part of) an LTS product without
actually computing the product. One generally relies on heuristics to select a
subset of LTS to compose at each step of LTS construction. In this paper, we
will use the smart reduction heuristic [12, 18], which is implemented within the
SVL [17] tool of CADP [19]. This heuristic tries to find an efficient composition
order by analysing the synchronization and hiding structure of the composition.

5 For instance, the composition of P and Q where action a of P synchronizes with
either b or c of Q, can be written as ρ(P) |[b, c]|Q, where ρ maps a onto {b, c}. This
example illustrates the utility to map actions into sets of actions of arbitrary size.

60 F. Lang et al.

3 Temporal Logics

Definition 4 (Modal μ-calculus [31]). The modal μ-calculus (Lμ) is built
from action formulas α and state formulas ϕ, whose syntax and semantics w.r.t.
an LTS P = (Σ,A,−→, pinit) are defined as follows:

α ::= a [[a]]A = {a}
| false [[false]]A = ∅
| α1 ∨ α2 [[α1 ∨ α2]]A = [[α1]]A ∪ [[α2]]A
| ¬α0 [[¬α0]]A = A \ [[α0]]A

ϕ ::= false [[false]]P δ = ∅
| ϕ1 ∨ ϕ2 [[ϕ1 ∨ ϕ2]]P δ = [[ϕ1]]P δ ∪ [[ϕ2]]P δ
| ¬ϕ0 [[¬ϕ0]]P δ = Σ \ [[ϕ0]]P δ

| 〈α〉ϕ0 [[〈α〉ϕ0]]P δ = {p ∈ Σ | ∃p a−→ p′.a ∈ [[α]]A ∧ p′ ∈ [[ϕ0]]P δ }
| X [[X]]P δ = δ(X)

| μX.ϕ0 [[μX.ϕ0]]P δ =
⋃

k≥0 Φ0
k
P,δ(∅)

where X ∈ X are propositional variables denoting sets of states, δ : X → 2Σ

is a context mapping propositional variables to sets of states, [] is the empty
context, δ[U/X] is the context identical to δ except for variable X, which is
mapped to state set U , and the functional Φ0P,δ : 2Σ → 2Σ associated to the
formula μX.ϕ0 is defined as Φ0P,δ(U) = [[ϕ0]]P δ[U/X]. For closed formulas, we
write P |= ϕ (read P satisfies ϕ) for pinit ∈ [[ϕ]]P [].

Action formulas α are built from actions and Boolean operators. State formulas
ϕ are built from Boolean operators, the possibility modality 〈α〉ϕ0 denoting the
states with an outgoing transition labelled by an action satisfying α and leading
to a state satisfying ϕ0, and the minimal fixed point operator μX.ϕ0 denoting
the least solution of the equation X = ϕ0 interpreted over 2Σ .

The usual derived operators are defined as follows: Boolean connectors true =
¬false and ϕ1 ∧ ϕ2 = ¬(¬ϕ1 ∨ ¬ϕ2); necessity modality [α]ϕ0 = ¬〈α〉 ¬ϕ0; and
maximal fixed point operator νX.ϕ0 = ¬μX.¬ϕ0[¬X/X], where ϕ0[¬X/X] is
the syntactic substitution of X by ¬X in ϕ0. Syntactically, 〈〉 and [] have the
highest precedence, followed by ∧, then ∨, and finally μ and ν. To have a well-
defined semantics, state formulas are syntactically monotonic [31], i.e., in every
subformula μX.ϕ0, all occurrences of X in ϕ0 fall in the scope of an even number
of negations. Thus, negations can be eliminated by downward propagation. We
now introduce the weak modalities of the fragment Ldbr

μ , proposed in [37].

Definition 5 (Modalities of Ldbr
μ [37]). We write ατ for an action formula

such that τ ∈ [[ατ]]A and αa for an action formula such that τ /∈ [[αa]]A. We con-
sider the following modalities, their Lμ semantics, and their informal semantics:

modality name notation Lμ semantics
ultra-weak 〈(ϕ1?.ατ)

∗〉ϕ2 μX.ϕ2 ∨ (ϕ1 ∧ 〈ατ 〉X)
weak 〈(ϕ1?.ατ)

∗.ϕ1?.αa〉ϕ2 μX.ϕ1 ∧ (〈αa〉ϕ2 ∨ 〈ατ 〉X)
weak infinite looping 〈ϕ1?.ατ 〉@ νX.ϕ1 ∧ 〈ατ 〉X

Sharp Congruences for Logics Combining Weak and Strong Modalities 61

Ultra-weak: p is source of a path whose transition labels satisfy ατ , leading to
a state that satisfies ϕ2, while traversing only states that satisfy ϕ1.

Weak: p is source of a path whose transition labels satisfy ατ , leading to a state
that satisfies ϕ1 and 〈αa〉ϕ2, while traversing only states that satisfy ϕ1.

Weak infinite looping: p is source of an infinite path whose transition labels
satisfy ατ , while traversing only states that satisfy ϕ1.

We also consider the three dual modalities [(ϕ1?.ατ)
∗]ϕ2 = ¬〈(ϕ1?.ατ)

∗〉 ¬ϕ2,
[(ϕ1?.ατ)

∗.ϕ1?.αa]ϕ2 = ¬〈(ϕ1?.ατ)
∗.ϕ1?.αa〉 ¬ϕ2, [ϕ1?.ατ] � = ¬〈ϕ1?.ατ 〉@.

The fragment Ldbr
μ adequate with divbranching bisimilarity consists of Lμ from

which the modalities 〈a〉ϕ and [a]ϕ are replaced by the ultra-weak, weak, and
weak infinite looping modalities defined above.

We identify fragments of Lμ parameterized by a set of strong actions As, as
the set of state formulas whose action formulas contained in strong modalities
satisfy only actions of As.

Definition 6 (Lstrong
μ (As) fragment of Lμ [35]). Let As ⊆ A be a set of

actions called strong actions and αs be any action formula such that [[αs]]A ⊆ As,
called a strong action formula. Lstrong

μ (As) is defined as the set of formulas
semantically equivalent to some formula of the following language:

ϕ ::= false | ϕ1 ∨ ϕ2 | ¬ϕ0 | 〈αs〉ϕ0 | X | μX.ϕ0

| 〈(ϕ1?.ατ)
∗〉ϕ2 | 〈(ϕ1?.ατ)

∗.ϕ1?.αa〉ϕ2 | 〈ϕ1?.ατ 〉@
In the context of Lstrong

μ (As), we call 〈αs〉ϕ0 a strong modality.6

In [35], we also provide guidelines for extracting a set As from particular
Lμ formulas encoding the operators of widely-used temporal logics, such as
CTL [11], ACTL [39], PDL [15], and PDL-Δ [44].

Example 1. The PDL formula [true∗.a1.a2] true belongs to Lstrong
μ ({a2}) as it

is semantically equivalent to [(true?.true)∗.true?.a1] [a2] true. The CTL formula
EF(〈a1〉 true∧〈a2〉 true) belongs both to Lstrong

μ ({a1}) as it is semantically equiv-
alent to 〈(true?.true)∗〉 〈(〈a1〉 true?.true)∗.〈a1〉 true?.a2〉 true and to Lstrong

μ ({a2})
as it is semantically equivalent to the same formula where a1 and a2 are swapped.
These formulas do not belong to Lstrong

μ (∅). (This was shown in [35].)

The latter example shows that to a formula ϕ may correspond several mini-
mal sets of strong actions As. Indeed, either the 〈a1〉 true or the 〈a2〉 truemodality
can be made part of a weak modality, but not both in the same formula.

4 Sharp Bisimilarity

We define the family of sharp bisimilarity relations below. Each relation is hy-
brid between strong and divbranching bisimilarities, parameterized by the set
of strong actions, such that the conditions of strong bisimilarity apply to strong
actions and the conditions of divbranching bisimilarity apply to all other actions.

6 For generality we allow τ ∈ As, to enable strong modalities of the form 〈ατ 〉ϕ0.

62 F. Lang et al.

Definition 7 (Sharp bisimilarity). A divergence-unpreserving sharp bisimu-
lation w.r.t. a set of actions As is a symmetric relation R ⊆ Σ ×Σ such that if
(p, q) ∈ R then for all p

a−→ p′, there exists q′ such that (p′, q′) ∈ R and either of

the following hold: (1) q
a−→ q′, or (2) a = τ , τ /∈ As, and q′ = q, or (3) a /∈ As,

and there exists a sequence of transitions q0
τ−→ . . .

τ−→ qn
a−→ q′ (n ≥ 0) such

that q0 = q, and for all i ∈ 1..n, (p, qi) ∈ R.7 A sharp bisimulation R additionally
satisfies the following divergence-preservation condition: for all (p0, q0) ∈ R such

that p0
τ−→ p1

τ−→ p2
τ−→ . . . with (pi, q0) ∈ R for all i ≥ 0, there is also an

infinite sequence q0
τ−→ q1

τ−→ q2
τ−→ . . . such that (pi, qj) ∈ R for all i, j ≥ 0.

Two states p and q are sharp bisimilar w.r.t. As, written p ∼�As
q, if and only

if there exists a sharp bisimulation R w.r.t. As such that (p, q) ∈ R.

Similarly to strong, branching, and divbranching bisimilarities, sharp bisimi-
larity is an equivalence relation as it is the union of all sharp bisimulations. The
quotient of an LTS P w.r.t. sharp bisimilarity is unique and minimal both in
number of states and number of transitions.

Example 2. Let a, b, ω ∈ A \ {τ}, τ, ω /∈ As. LTS Pi and P ′
i of Figure 1 satisfy

Pi ∼�As P ′
i (i ∈ 1..7). We give the smallest relation between Pi and P ′

i , whose
symmetric closure is a sharp bisimulation w.r.t. As and the weakest condition
for P ′

i to be minimal. Unlike divbranching, states on the same τ -cycle are not
necessarily sharp bisimilar: in P ′

7, if a ∈ As then p′0 and p′2 are not sharp bisimilar.

Example 3. The LTS of Figure 2(a) is equivalent for ∼�{a} to the one of Fig-
ure 2(b), which is minimal. We see that sharp bisimilarity reduces more than
strong bisimilarity when at least one action (visible or invisible) is weak. Here, τ
is the only weak action and the minimized LTS is smaller than the one minimal
for strong bisimilarity (only p1 and p2 are strongly bisimilar).

If τ ∈ As, then case (2) of Definition 7 cannot apply, i.e., τ -transitions cannot
be totally suppressed. As a consequence, looking at case (3), if τ -transitions are
present in state q0 then, due to symmetry, they must have a counterpart in
state p. As a result, finite sequences of τ -transitions are preserved. Sharp may
however differ from strong bisimilarity in the possibility to compress circuits of
τ -transitions that would remain unreduced, as illustrated in Example 4 below.

Example 4. If τ ∈ As and a /∈ As, then the LTS of Figure 2(b) (which is minimal
for strong bisimilarity) can be reduced to the LTS of Figure 2(c).

Next theorems are new. Theorem 1 expresses that sharp bisimilarity w.r.t. a
set of strong actions As is strictly stronger than w.r.t. any set of strong actions
strictly included in As. Unsurprisingly, it also establishes that sharp coincides
with divbranching when the set of strong actions is empty, and with strong when

7 We require that (p, qi) ∈ R for all i ∈ 1..n and not the simpler condition (p, qn) ∈ R
(as usual when defining branching bisimulation) because sharp bisimulation has not
the nice property that (p, q0) ∈ R and (p, qn) ∈ R imply (p, qi) ∈ R for all i ∈ 1..n.

Sharp Congruences for Logics Combining Weak and Strong Modalities 63

a �= τ ∧ b �= τ ∧ ω �= τ ∧ τ /∈ As ∧ ω /∈ As implies

P1 : p0

τ

��

p1

p2
τ �� p3

ω

�� ∼�As P ′
1 : p′0

ω �� p′1
{(p0, p′0), (p1, p′1), (p2, p′0), (p3, p′0)}
P ′
1 minimal

P2 : p0

τ

��

p1

p2
τ �� p3

ω

��
a

�� ∼�As P ′
2 : p′0

τ
��

p′1

p′3

ω

��

a

��
{(p0, p′0), (p1, p′1), (p2, p′0), (p3, p′3)}
a ∈ As implies P ′

2 minimal

P3 : p0
a ��

τ

��

p1

p2

a

��

ω

�� ∼�As P ′
3 : p′0

a ��

ω

		 p
′
1

{(p0, p′0), (p1, p′1), (p2, p′0)}
a �= ω implies P ′

3 minimal

P4 : p0
a ��

τ

��

p1

p2 τ
��

a

��

p3

a

��
w

�� ∼�As P ′
4 : p′0

a ��

ω

		 p
′
1

{(p0, p′0), (p1, p′1), (p2, p′0), (p3, p′0)}
a �= ω implies P ′

4 minimal

P5 : p0
a ��

τ

��

p1

p2 τ
��

a

��

p3

a

��
b

�� ∼�As P ′
5 : p′0

a ��

τ
��

p′1

p′3

a

��

b

��
{(p0, p′0), (p1, p′1), (p2, p′0), (p3, p′3)}
b �= a ∧ b ∈ As implies P ′

5 minimal

P6 : p0
ω ��

τ

��

p1

p2 τ
�� p3

τ

ω

�� ∼�As P ′
6 : p′0

ω ��

τ

�� p′1
{(p0, p′0), (p1, p′1), (p2, p′0), (p3, p′0)}
P ′
6 minimal

P7 : p0
a ��

τ

��

p1

p2 τ
�� p3

τ

a

�� ∼�As P ′
7 : p′0 a

��

τ

��

p′1

p′2

τ

��
{(p0, p′0), (p1, p′1), (p2, p′2), (p3, p′0)}
a ∈ As implies P ′

7 minimal

Fig. 1. Examples of sharp bisimilar LTS

64 F. Lang et al.

p0
τ ��

τ

��

p1

τ

��

p5
a �� p7

p2
τ �� p3

τ �� p4

τ

��

τ

τ

��

a �� p6

τ

�� p′0
τ �� p′1

a

��
τ

p′2

p′′0

τ

��
a �� p′′1

(a) (b) (c)

Fig. 2. LTS of Examples 3 and 4

it comprises all actions (including τ). It follows that the set of sharp bisimilarity
relations equipped with set inclusion forms a complete lattice whose supremum
is divbranching bisimilarity and whose infimum is strong bisimilarity.

Theorem 1. (1) ∼�∅ =∼dbr (2) ∼�A =∼ (3) if A′
s ⊂ As then ∼�As ⊂∼�A′

s
.

Theorem 2 expresses that sharp bisimilarity w.r.t. As preserves the truth
value of all formulas of Lstrong

μ (As), and Theorem 3 that two LTS verifying
exactly the same formulas of Lstrong

μ (As) are sharp bisimilar. We can then deduce
that Lstrong

μ (As) is adequate with ∼�As
, as expressed by Corollary 1.

Theorem 2. If P ∼�As P ′ and ϕ ∈ Lstrong
μ (As) then P |= ϕ iff P ′ |= ϕ.

Theorem 3. If (∀ϕ ∈ Lstrong
μ (As)) P |= ϕ iff Q |= ϕ, then P ∼�As

Q.

Corollary 1. Lstrong
μ (As) is adequate with ∼�As

, i.e., P ∼�As
P ′ if and only if

(∀ϕ ∈ Lstrong
μ (As)) P |= ϕ iff P ′ |= ϕ.

Theorems 4 and 5 express that sharp bisimilarity is a congruence for parallel
composition and admissible action mapping. It follows that it is also a congruence
for hide, cut, and rename, as expressed by Corollary 2.

Theorem 4. If P ∼�As
P ′, Q ∼�As

Q′ then P |[Async]|Q ∼�As
P ′ |[Async]|Q′.

Theorem 5. If ρ is admissible and P ∼�As
P ′, then ρ(P) ∼�A′

s
ρ(P ′), where

A′
s = ρ(As) \ ρ(AP \As).

Corollary 2. We write Aτ for A ∪ {τ}. If P ∼�As
P ′ then:

– cut A in P ∼�As
cut A in P ′

– hide A in P ∼�As
hide A in P ′ if Aτ ⊆ As ∨Aτ ∩As = ∅

– rename f in P ∼�As
rename f in P ′ if f(As) ⊆ As∧f(AP \As)∩As = ∅

These theorems and corollaries generalize results on strong and divbranching
bisimilarity. In particular, the side conditions of Corollary 2 are always true when
As = ∅ (divbranching) or As = A (strong).

Since every admissible network of LTS can be translated into an equivalent
composition expression consisting of parallel compositions and admissible action

Sharp Congruences for Logics Combining Weak and Strong Modalities 65

mappings, Theorems 4 and 5 imply some congruence property at the level of
networks of LTS. However, one must be careful on how the synchronization
rules preserve or modify the set of strong actions of components.

In the sequel, we establish formally the relationship between sharp bisimilar-
ity and sharp τ -confluence, a strong form of τ -confluence [27] defined below in a
way analogous to strong τ -confluence in [28]. It is known that every τ -transition
that is τ -confluent is inert for branching bisimilarity, i.e., its source and target
states are branching bisimilar. There are situations where τ -confluence can be
detected locally, thus enabling on-the-fly LTS reductions. We present an analo-
gous result that might have similar applications, namely, every τ -transition that
is sharp τ -confluent is inert for (divergence-unpreserving) sharp bisimilarity.

Definition 8 (Sharp τ -confluence). Let P = (Σ,A,−→, pinit) and T ⊆ τ−→
be a set of internal transitions. T is sharp τ -confluent w.r.t. a set As of strong
actions if τ /∈ As and for all (p0, τ, p1) ∈ T , a ∈ A, and p2 ∈ Σ: (1) p0

a−→ p2
implies either p1

a−→ p2 or there exists p3 such that p1
a−→ p3 and (p2, τ, p3) ∈ T ,

and (2) if a ∈ As then p1
a−→ p3 implies either p0

a−→ p3 or there exists p2 such

that p1
a−→ p2 and (p2, τ, p3) ∈ T . A transition p0

τ−→ p1 is sharp τ -confluent
w.r.t. As if there is a set of transitions T that is sharp τ -confluent w.r.t. As and
such that (p0, τ, p1) ∈ T .

The difference between strong τ -confluence and sharp τ -confluence is the ad-
dition of condition (2), which can be removed to obtain the very same definition
of strong τ -confluence as [28]. Strong τ -confluence thus coincides with sharp τ -
confluence w.r.t. the empty set of actions. Sharp τ -confluence not only requires
that other transitions of the source state of a confluent transition also exist in
the target state, but also that the converse is true for strong actions.

If a transition is sharp τ -confluent w.r.t. As, then it is also sharp τ -confluent
w.r.t. any subset of As. In particular, sharp τ -confluence is stronger than strong
τ -confluence (which is itself stronger than τ -confluence). Theorem 6 formalizes
the relationship between sharp τ -confluence and divergence-unpreserving sharp
bisimilarity. This result could be lifted to sharp bisimilarity by adding a condition
on divergence in the definition of sharp τ -confluence.

Theorem 6. If τ /∈ As and p0
τ−→P p1 is sharp τ -confluent w.r.t. As, then p0

and p1 are divergence-unpreserving sharp bisimilar w.r.t. As.

Theorem 6 illustrates a form of reduction that one can expect using sharp
bisimilarity when τ /∈ As, namely compression of diamonds of sharp τ -confluent
transitions, which are usually generated by parallel composition. The strongest
form of sharp τ -confluence (which could be called ultra-strong τ -confluence) is
when all visible actions are strong. In that case, every visible action present in
the source state must be also present in the target state, and conversely. The
source and target states are then sharp bisimilar w.r.t. the set of visible actions.
Yet, it is interesting to note that they are not necessarily strongly bisimilar,
sharp bisimilarity w.r.t. all visible actions being weaker than strong bisimilarity.

66 F. Lang et al.

There exist weaker forms of τ -confluence [27, 50], which accept that choices
between τ -confluent and other transitions are closed by arbitrary sequences of
τ -confluent transitions rather than sequences of length 0 or 1. It could be in-
teresting to investigate how the definition of sharp τ -confluence could also be
weakened, while preserving inertness for sharp bisimilarity.

5 LTS Reduction

The interest of sharp bisimilarity in the context of compositional verification is
the ability to replace components by smaller but still equivalent ones, as allowed
by the congruence property. To do so, we need a procedure that enables such a
reduction. This is what we address in this section.

A procedure to reduce an LTS P for sharp bisimilarity is proposed as follows:
(1) Build P ′, consisting of P in which all τ -transitions that immediately precede
a transition labelled by a strong action (or all τ -transitions if τ is itself a strong
action) are renamed into a special visible action κ ∈ A\AP ; (2) Minimize P ′ for
divbranching bisimilarity; (3) Hide in the resulting LTS all occurrences of κ. The
renaming of τ -transitions into κ allows them to be considered temporarily as vis-
ible transitions, so that they are not eliminated by divbranching minimization.8

This algorithm is now defined formally.

Definition 9. Let P be an LTS and As be a set of strong actions. Let κ ∈ A\AP

be a special visible action. We write redAs
(P) for the reduction of P defined as

the LTS “hide κ in mindbr (P
′)”, where P ′ = (ΣP , AP ∪ {κ},−→, init(P)) and

−→ is defined as follows:

−→ = {(p, κ, p′) | p a−→P p′ ∧ κ(a, p′)} ∪ {(p, a, p′) | p a−→P p′ ∧ ¬κ(a, p′)}
where κ(a, p′) = ((a = τ) ∧ (τ ∈ As ∨ p′ As−→P))

It is clear that redAs
(P) is a reduction, i.e., it cannot have more states and

transitions than P . Since the complexities of the transformation from P to P ′

and of hiding κ are at worst linear in |P |tr , the complexity of the whole algorithm
is dominated by divbranching minimization, for which there exists an algorithm9

of worst-case complexity O(m log n), where m = |P |tr and n = |P |st [25].
As regards correctness, Theorem 7 states that redAs(P) is indeed sharp bisim-

ilar to P . Theorem 8 indicates that the reduction coincides with divbranching
minimization if the LTS does not contain any strong action, with strong min-
imization if τ is a strong action or if the LTS does not contain τ , and that
the resulting LTS has a size that lies in between the size of the minimal LTS for
divbranching bisimilarity and the size of the minimal LTS for strong bisimilarity.

Theorem 7. For any LTS P , we have P ∼�As
redAs

(P).

8 The letter κ stands for keep uncompressed.
9 Strictly speaking, the algorithm of [25] implements branching minimization but, as
noted by its authors, handling divergences requires only a minor adaptation.

Sharp Congruences for Logics Combining Weak and Strong Modalities 67

Theorem 8. The following hold for any LTS P : (1) if AP ∩ As = ∅ then
redAs

(P) = mindbr (P), (2) if τ /∈ AP \As then redAs
(P) = minstr (P), and (3)

|mindbr (P)|st ≤ |redAs(P)|st ≤ |minstr (P)|st ∧ |mindbr (P)|tr ≤ |redAs(P)|tr ≤
|minstr (P)|tr .

Although sharp reduction is effective in practice, as will be illustrated in
the next section, it may fail to compress τ -transitions that are inert for sharp
bisimilarity, as show the following examples.

Example 5. Consider the LTS of Figure 2(a) (page 9). Its reduction using the
above algorithm consists of the three steps depicted below:

p0
τ ��

τ

��

p1

τ

��

p5
a �� p7

p2
τ �� p3

κ �� p4

τ

��

τ

κ

��

a �� p6

τ

�� p′0
κ �� p′1

τ

κ ��

a
��

p′2

a

��
p′3

p′0
τ �� p′1

τ

τ ��

a
��

p′2

a

��
p′3

1. τ -to-κ renaming 2. Divbranching min. 3. κ-hiding

The reduced LTS (obtained at step 3) has one more state and two more
transitions than the minimal LTS shown in Figure 2(b). Even though all visible
actions are strong, our reduction compresses more than strong bisimilarity (recall
that the minimal LTS for strong bisimilarity has 7 states and 8 transitions). In
general, our reduction reduces more than strong bisimilarity10 as soon as τ /∈ As

(which is the case for most formulas in practice).

Example 6. In Figure 1 (page 8), if a ∈ As then redAs
(P1) = P ′

1, redAs
(P2) = P ′

2,
and redAs

(P6) = P ′
6, i.e., reduction yields the minimal LTS. Yet, redAs

(P3) =

P3 �= P ′
3, i.e., the sharp τ -confluent transition p0

τ−→P3 p2 is not compressed.
Similarly, P4, P5, and P7 are not minimized using redAs .

Devising a minimization algorithm for sharp bisimilarity is left for future
work. It could combine elements of existing partition-refinement algorithms for
strong and divbranching minimizations, but the following difficulty must be
taken into account (basic knowledge about partition-refinement is assumed):

– A sequence of τ -transitions is inert w.r.t. the current state partition if both
its source, target, and intermediate states are in the same block. To refine a
partition for sharp bisimilarity, one must be able to compute efficiently the
set of non-inert transitions labelled by weak actions and reachable after an
arbitrary sequence of inert transitions. The potential presence of inert cycles
has to be considered carefully to avoid useless computations.

10 The result of reduction is necessarily strong-bisimulation minimal, because if a tran-
sition p

τ−→ p′ is renamed into κ, then it is also the case of a τ -transition in every
state bisimilar to p, which remains bisimilar after the renaming. In addition, the sub-
sequent divbranching minimization step necessarily merges strongly bisimilar states.

68 F. Lang et al.

– In the case of divbranching bisimilarity, every τ -cycle is inert and can thus be
compressed into a single state. This is usually done initially, using the Tarjan
algorithm for finding strongly connected components, whose complexity is
linear in the LTS size. This guarantees the absence of inert cycles (except
self τ -loops) all along the subsequent partition-refinement steps. However,
τ -cycles are not necessarily inert for sharp bisimilarity, as illustrated by LTS
P ′
7 in Figure 1 (page 8). Therefore, τ -cycles cannot be compressed initially.

Instead, a cycle inert w.r.t. the current partition may be split into several
sub-blocks during a refinement step. To know whether the sub-blocks still
contain inert cycles, the Tarjan algorithm may have to be applied again.

Although redAs is not a minimization, we will see that it performs very well
when used in a compositional setting. The reason is that (1) only a few of the
system actions are strong, which limits the number of τ -transitions renamed to κ,
and (2) sharp τ -confluent transitions most often originate from the interleaving of
τ -transitions that are inert in the components of parallel composition. The above
reduction algorithm removes most inert transitions in individual (sequential)
LTS, thus limiting the number of sharp τ -confluent transitions in intermediate
LTS. Still, better reductions can be expected with a full minimization algorithm,
which will compress all τ -transitions that are inert for sharp bisimilarity.

6 Experimentation

We experimented sharp reduction on the examples presented in [35] (consisting
of formulas containing both weak and strong modalities), namely the TFTP
(Trivial File Transfer Protocol) and the CTL verification problems on parallel
systems of the RERS 2018 challenge. For lack of space, see [35] for more details
about these case studies. In both cases, we composed parallel processes in the
same order as we did using the combined bisimulations approach, but using sharp
bisimilarity instead of strong or divbranching bisimilarity to reduce processes.
Experiments were done on a 3GHz/12GB RAM/8-core Intel Xeon computer
running Linux, using the specification languages and 32-bit versions of tools
provided in the CADP toolbox version 2019-d “Pisa” [19].

The results are given in Figures 3 (TFTP) and 4 (RERS 2018), both in
terms of the size of the largest intermediate LTS, the size of the final LTS (LTS
obtained after the last reduction step, on which the formula is checked), memory
consumption, and time. Each subfigure contains three curves corresponding to
the mono-bisimulation approach (using strong bisimulation to reduce all LTS),
the combined bisimulations approach, and the sharp bisimulation approach. The
former two curves are made from data that were already presented in [35]. Note
that the vertical axis of all subfigures is on a logarithmic scale. In the RERS 2018
case, the mono-bisimulation approach gives results only for experiments 101#22
and 101#23, all other experiments failing due to state space explosion.11

11 E.g., smart mono-bisimulation fails on problem 103#23 after generating an inter-
mediate LTS with more than 4.5 billion states and 36 billion transitions (instead of
50, 301 states and 334, 530 transitions using sharp bisimulation) using Grid’5000 [6].

Sharp Congruences for Logics Combining Weak and Strong Modalities 69

Fig. 3. Experimental results of the TFTP case-study

Fig. 4. Experimental results of the RERS 2018 case-study

70 F. Lang et al.

These results show that sharp bisimilarity incurs much more LTS reduction
than the combined bisimulations approach, by a factor close to the one obtained
when switching from the mono-bisimulation approach to the combined bisimu-
lations approach. However, in the case of the RERS 2018 examples, this gain
on LTS size does not always apply to time and/or memory consumption in the
same proportions, except for experiment 103#22. This suggests that our imple-
mentation of minimization could be improved.

These experiments were conducted after closing of the RERS 2018 challenge.
Encouraged by the good results obtained with these two approaches, we partic-
ipated to the 2019 edition12, where 180 CTL problems were proposed instead of
9 in 2018. The models on which the properties had to be verified have from 8 to
70 parallel processes and from 29 to 234 actions. Although the models had been
given in a wealth of different input formats (communicating automata, Petri
nets in PNML format with NUPN information [16], and Promela) suitable for
a large number of model checking tools, no other team than ours participated
to the parallel challenges. This is a significant difference with 2018, when the
challenge was easier, allowing three teams (with different tools) to participate.

We applied smart sharp reduction to these problems, using a prototype pro-
gram that extracts strong actions automatically from (a restricted set of) CTL
formulas used in the competition.13 This allowed the 180 properties to be checked
automatically in less than 2.5 hours (CPU time), and using about 200 MB of
RAM only, whereas using strong reduction failed on most of the largest problems.
The largest intermediate graph obtained for the whole set of problems has 3364
states. All results were correct and we won all gold medals14 in this category.15

Details are available in the Zenodo archive mentioned in the introduction.

7 Related Work

The paper [48] defines on doubly-labelled transition systems (mix between Kripke
structure and LTS) a family of bisimilarity relations derived from divbranching
bisimilarity, parameterized by a natural number n, which preserves CTL* formu-
las whose nesting of next operators is smaller or equal to n. Similar to our work,
they show that this family of relations (which is distinct from sharp bisimilarity
in that there is no distinction between weak and strong actions) fills the gap
between strong and divbranching bisimilarities. They apply their bisimilarity
relation to slicing rather than compositional verification.

The paper [2] proposes that, if the formula contains only so-called selec-
tive modalities, of the form 〈(¬α1)

∗.α2〉ϕ0, then all actions but those satisfying

12 http://rers-challenge.org/2019
13 The paper [35] presents identities that were used to extract such strong actions.
14 A RERS gold medal is not a ranking but an achievement, not weakened by the low

number of competitors. We also won all gold medals in the “verification of LTL
properties on parallel systems” category, using an adaptation of this approach.

15 http://cadp.inria.fr/news12.html

Sharp Congruences for Logics Combining Weak and Strong Modalities 71

α1 or α2 can be hidden, and the resulting system can be reduced for τ∗.a-
equivalence [14]. Yet, there exist formulas whose strong modalities 〈α〉ϕ0 can-
not translate into anything but the selective modality 〈(¬true)∗.α〉ϕ, meaning
that no action at all can be hidden. In this case, τ∗.a equivalence coincides with
strong bisimilarity and thus incurs much less reduction than sharp bisimilarity.
Moreover, it is well-known that τ∗.a-equivalence is not a congruence for parallel
composition [7], which makes it unsuitable to compositional verification, even to
check formulas that contain weak modalities only.

The adequacy of Ldbr
μ with divbranching bisimilarity is shown in [37]. This

paper also claims that ACTL\X is as expressive as Ldbr
μ and thus also adequate

with divbranching bisimilarity, but a small mistake in the proof had the authors
omit that the Ldbr

μ formula 〈τ〉@ cannot actually be expressed in ACTL\X. It
remains true that ACTL\X is preserved by divbranching bisimilarity.

In [13], it is shown that ACTL\X is adequate with divergence sensitive
branching bisimilarity. This bisimilarity relation is equivalent to divbranching
bisimilarity [21–23] only in the case of deadlock-free LTS, but it differs in the
presence of deadlock states since it does not distinguish a deadlock state from a
self τ -loop (which can instead be recognized in Ldbr

μ with the 〈τ〉@ formula).

8 Conclusion

This work enhances the reductions that can be obtained by combining compo-
sitional LTS construction with an analysis of the temporal logic formula to be
verified. In particular, known results about strong and divbranching bisimilari-
ties have been combined into a new family of relations called sharp bisimilarities,
which inherit all nice properties of their ancestors and refine the state of the art
in compositional verification.

This new approach is promising. Yet, to be both usable by non-experts and
fully efficient, at least two components are still missing: (1) The sets of strong
actions, which are a key ingredient in the success of this approach, still have to
be computed either using pencil and paper or using tools dedicated to restricted
logics; automating their computation in the case of arbitrary Lμ formulas is
not easy, but likely feasible, opening the way to a new research track; finding
a minimal set of strong actions automatically is challenging, and since it is
not unique, even more challenging is the quest for the set that will incur the
best reductions. (2) Efficient algorithms are needed to minimize LTS for sharp
bisimilarity; they could probably be obtained by adapting the known algorithms
for strong and divbranching minimizations (at least using some kind of signature-
based partition refinement algorithm in the style of Blom et al. [3–5] in a first
step), but this remains to be done.

Acknowledgements. The authors thank Hubert Garavel, who triggered our collabo-

ration between Grenoble and Pisa, and Wendelin Serwe for his comments on earlier

versions of this paper. They also thank the anonymous referees for the pertinence of

their comments, which allowed significant improvements of this paper.

72 F. Lang et al.

References

1. Andersen, H.R.: Partial model checking. In: Proceedings of the 10th Annual IEEE
Symposium on Logic in Computer Science LICS (San Diego, California, USA). pp.
398–407. IEEE Computer Society Press (Jun 1995)

2. Barbuti, R., De Francesco, N., Santone, A., Vaglini, G.: Selective mu-calculus and
formula-based equivalence of transition systems. Journal of Computer and System
Sciences 59, 537–556 (1999)

3. Blom, S., Orzan, S.: A Distributed Algorithm for Strong Bisimulation Reduction
of State Spaces. Software Tools for Technology Transfer 7(1), 74–86 (2005)

4. Blom, S., Orzan, S.: Distributed State Space Minimization. Software Tools for
Technology Transfer 7(3), 280–291 (2005)

5. Blom, S., van de Pol, J.: Distributed branching bisimulation minimization by induc-
tive signatures. In: Proceedings of the 8th International Workshop on Parallel and
Distributed Methods in verifiCation PDMC 2009 (Eindhoven, The Netherlands).
Electronic Proceedings in Theoretical Computer Science, vol. 14 (2009)

6. Bolze, R., Cappello, F., Caron, E., Daydé, M.J., Desprez, F., Jean-
not, E., Jégou, Y., Lanteri, S., Leduc, J., Melab, N., Mornet, G.,
Namyst, R., Primet, P., Quétier, B., Richard, O., Talbi, E., Touche, I.:
Grid’5000: A large scale and highly reconfigurable experimental grid testbed.
IJHPCA 20(4), 481–494 (2006). https://doi.org/10.1177/1094342006070078,
https://doi.org/10.1177/1094342006070078

7. Bouajjani, A., Fernandez, J.C., Graf, S., Rodŕıguez, C., Sifakis, J.: Safety for
branching time semantics. In: Proceedings of 18th ICALP. Springer (Jul 1991)

8. Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A Theory of Communicating Sequen-
tial Processes. J. ACM 31(3), 560–599 (Jul 1984)

9. Champelovier, D., Clerc, X., Garavel, H., Guerte, Y., McKinty, C., Powazny, V.,
Lang, F., Serwe, W., Smeding, G.: Reference Manual of the LNT to LOTOS Trans-
lator (Version 6.7) (Jul 2017), INRIA, Grenoble, France

10. Cheung, S.C., Kramer, J.: Enhancing Compositional Reachability Analysis with
Context Constraints. In: Proceedings of the 1st ACM SIGSOFT International Sym-
posium on the Foundations of Software Engineering (Los Angeles, CA, USA). pp.
115–125. ACM Press (Dec 1993)

11. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Transactions on Pro-
gramming Languages and Systems 8(2), 244–263 (Apr 1986)

12. Crouzen, P., Lang, F.: Smart Reduction. In: Giannakopoulou, D., Orejas, F.
(eds.) Proceedings of Fundamental Approaches to Software Engineering (FASE’11),
Saarbrücken, Germany. Lecture Notes in Computer Science, vol. 6603, pp. 111–126.
Springer (Mar 2011)

13. De Nicola, R., Vaandrager, F.: Three logics for branching bisimulation. Journal of
the Association for Computing Machinery (1990)

14. Fernandez, J.C., Mounier, L.: “On the Fly” Verification of Behavioural Equiva-
lences and Preorders. In: Larsen, K.G., Skou, A. (eds.) Proceedings of the 3rd
Workshop on Computer-Aided Verification (CAV’91), Aalborg, Denmark. Lecture
Notes in Computer Science, vol. 575, pp. 181–191. Springer (Jul 1991)

15. Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs.
J. Comput. Syst. Sci. 18(2), 194–211 (Sep 1979)

16. Garavel, H.: Nested-Unit Petri Nets. Journal of Logical and Algebraic Methods in
Programming 104, 60–85 (Apr 2019)

Sharp Congruences for Logics Combining Weak and Strong Modalities 73

17. Garavel, H., Lang, F.: SVL: a Scripting Language for Compositional Verification.
In: Kim, M., Chin, B., Kang, S., Lee, D. (eds.) Proceedings of the 21st IFIP WG
6.1 International Conference on Formal Techniques for Networked and Distributed
Systems (FORTE’01), Cheju Island, Korea. pp. 377–392. Kluwer Academic Pub-
lishers (Aug 2001), full version available as INRIA Research Report RR-4223

18. Garavel, H., Lang, F., Mateescu, R.: Compositional Verification of Asynchronous
Concurrent Systems Using CADP. Acta Informatica 52(4), 337–392 (Apr 2015)

19. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: A Toolbox for the
Construction and Analysis of Distributed Processes. Springer International Journal
on Software Tools for Technology Transfer (STTT) 15(2), 89–107 (Apr 2013)

20. van Glabbeek, R.J., Weijland, W.P.: Branching-Time and Abstraction in Bisimu-
lation Semantics (extended abstract). CS R8911, Centrum voor Wiskunde en In-
formatica, Amsterdam (1989), also in proc. IFIP 11th World Computer Congress,
San Francisco, 1989

21. van Glabbeek, R.J., Luttik, B., Trcka, N.: Branching bisimilarity with explicit
divergence. Fundam. Inform. 93(4), 371–392 (2009). https://doi.org/10.3233/FI-
2009-109, https://doi.org/10.3233/FI-2009-109

22. van Glabbeek, R.J., Luttik, B., Trcka, N.: Computation tree logic with
deadlock detection. Logical Methods in Computer Science 5(4) (2009),
http://arxiv.org/abs/0912.2109

23. van Glabbeek, R.J., Weijland, W.P.: Branching Time and Abstraction in Bisimu-
lation Semantics. Journal of the ACM 43(3), 555–600 (1996)

24. Graf, S., Steffen, B.: Compositional Minimization of Finite State Systems. In:
Clarke, E.M., Kurshan, R.P. (eds.) Proceedings of the 2nd Workshop on Computer-
Aided Verification (CAV’90), Rutgers, New Jersey, USA. Lecture Notes in Com-
puter Science, vol. 531, pp. 186–196. Springer (Jun 1990)

25. Groote, J.F., Jansen, D.N., Keiren, J.J.A., Wijs, A.: An o(m log n) algorithm for
computing stuttering equivalence and branching bisimulation. ACM Transactions
on Computational Logic 18(2) (2017)

26. Groote, J., Ponse, A.: The Syntax and Semantics of μCRL. CS-R 9076, Centrum
voor Wiskunde en Informatica, Amsterdam (1990)

27. Groote, J.F., Sellink, M.P.A.: Confluence for process verification. Theoretical Com-
puter Science 170(1–2), 47–81 (1996)

28. Groote, J., Pol, J.: State space reduction using partial τ -confluence. In: Nielsen,
M., Rovan, B. (eds.) Proceedings of the 25th International Symposium on Math-
ematical Foundations of Computer Science (MFCS’00), Bratislava, Slovakia. Lec-
ture Notes in Computer Science, vol. 1893, pp. 383–393. Springer (Aug 2000), also
available as CWI Technical Report SEN-R0008, Amsterdam, March 2000

29. ISO/IEC: LOTOS – A Formal Description Technique Based on the Temporal Or-
dering of Observational Behaviour. International Standard 8807, International Or-
ganization for Standardization – Information Processing Systems – Open Systems
Interconnection, Geneva (Sep 1989)

30. ISO/IEC: Enhancements to LOTOS (E-LOTOS). International Standard
15437:2001, International Organization for Standardization – Information Tech-
nology, Geneva (Sep 2001)

31. Kozen, D.: Results on the propositional μ-calculus. Theoretical Computer Science
27, 333–354 (1983)

32. Krimm, J.P., Mounier, L.: Compositional State Space Generation from LOTOS
Programs. In: Brinksma, E. (ed.) Proceedings of the 3rd International Workshop on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS’97),

74 F. Lang et al.

University of Twente, Enschede, The Netherlands. Lecture Notes in Computer
Science, vol. 1217. Springer (Apr 1997), extended version with proofs available as
Research Report VERIMAG RR97-01

33. Lang, F.: EXP.OPEN 2.0: A Flexible Tool Integrating Partial Order, Composi-
tional, and On-the-fly Verification Methods. In: Romijn, J., Smith, G., van de Pol,
J. (eds.) Proceedings of the 5th International Conference on Integrated Formal
Methods (IFM’05), Eindhoven, The Netherlands. Lecture Notes in Computer Sci-
ence, vol. 3771, pp. 70–88. Springer (Nov 2005), full version available as INRIA
Research Report RR-5673

34. Lang, F., Mateescu, R.: Partial Model Checking using Networks of Labelled Tran-
sition Systems and Boolean Equation Systems. Logical Methods in Computer Sci-
ence 9(4), 1–32 (Oct 2013)

35. Lang, F., Mateescu, R., Mazzanti, F.: Compositional verification of concurrent sys-
tems by combining bisimulations. In: McIver, A., ter Beek, M. (eds.) Proceedings
of the 23rd International Symposium on Formal Methods – 3rd World Congress on
Formal Methods FM 2019 (Porto, Portugal). Lecture Notes in Computer Science,
vol. 11800, pp. 196–213. Springer (2019)

36. Malhotra, J., Smolka, S.A., Giacalone, A., Shapiro, R.: A Tool for Hierarchical
Design and Simulation of Concurrent Systems. In: Proceedings of the BCS-FACS
Workshop on Specification and Verification of Concurrent Systems, Stirling, Scot-
land, UK. pp. 140–152. British Computer Society (Jul 1988)

37. Mateescu, R., Wijs, A.: Property-Dependent Reductions Adequate with
Divergence-Sensitive Branching Bisimilarity. Sci. Comput. Program. 96(3), 354–
376 (2014)

38. Milner, R.: Communication and Concurrency. Prentice-Hall (1989)
39. Nicola, R.D., Vaandrager, F.W.: Action versus State based Logics for Transition

Systems, Lecture Notes in Computer Science, vol. 469, pp. 407–419. Springer (Apr
1990)

40. Park, D.: Concurrency and Automata on Infinite Sequences. In: Deussen, P. (ed.)
Theoretical Computer Science. Lecture Notes in Computer Science, vol. 104, pp.
167–183. Springer (Mar 1981)

41. Pnueli, A.: In transition from global to modular temporal reasoning about pro-
grams. Logic and Models of Concurrent Systems 13, 123–144 (1984)

42. de Putter, S., Wijs, A., Lang, F.: Compositional model checking is lively — ex-
tended version (2019), submitted to Science of Computer Programming

43. Sabnani, K.K., Lapone, A.M., Ümit Uyar, M.: An Algorithmic Procedure for
Checking Safety Properties of Protocols. IEEE Transactions on Communications
37(9), 940–948 (Sep 1989)

44. Streett, R.: Propositional dynamic logic of looping and converse. Information and
Control (54), 121–141 (1982)

45. Tai, K.C., Koppol, P.V.: An Incremental Approach to Reachability Analysis of
Distributed Programs. In: Proceedings of the 7th International Workshop on Soft-
ware Specification and Design, Los Angeles, CA, USA. pp. 141–150. IEEE Press,
Piscataway, NJ (Dec 1993)

46. Tai, K.C., Koppol, P.V.: Hierarchy-Based Incremental Reachability Analysis of
Communication Protocols. In: Proceedings of the IEEE International Conference
on Network Protocols, San Francisco, CA, USA. pp. 318–325. IEEE Press, Piscat-
away, NJ (Oct 1993)

47. Valmari, A.: Compositional State Space Generation. In: Rozenberg, G. (ed.) Ad-
vances in Petri Nets 1993 – Papers from the 12th International Conference on

Sharp Congruences for Logics Combining Weak and Strong Modalities 75

Applications and Theory of Petri Nets (ICATPN’91), Gjern, Denmark. Lecture
Notes in Computer Science, vol. 674, pp. 427–457. Springer (1993)

48. Yatapanage, N., Winter, K.: Next-preserving branching bisimulation. Theoretical
Computer Science 594, 120–142 (2015)

49. Yeh, W.J., Young, M.: Compositional Reachability Analysis Using Process Alge-
bra. In: Proceedings of the ACM SIGSOFT Symposium on Testing, Analysis, and
Verification (SIGSOFT’91), Victoria, British Columbia, Canada. pp. 49–59. ACM
Press (Oct 1991)

50. Ying, M.: Weak confluence and τ -inertness. Theoretical Computer Science 238,
465–475 (2000)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

76 F. Lang et al.

Verification and Efficiency

How Many Bits Does it Take to Quantize Your
Neural Network?

Mirco Giacobbe12, Thomas A. Henzinger1, and Mathias Lechner1

1 IST Austria, Klosterneuburg, Austria
2 University of Oxford, Oxford, United Kingdom

Abstract. Quantization converts neural networks into low-bit fixed-
point computations which can be carried out by efficient integer-only
hardware, and is standard practice for the deployment of neural net-
works on real-time embedded devices. However, like their real-numbered
counterpart, quantized networks are not immune to malicious misclas-
sification caused by adversarial attacks. We investigate how quantiza-
tion affects a network’s robustness to adversarial attacks, which is a
formal verification question. We show that neither robustness nor non-
robustness are monotonic with changing the number of bits for the rep-
resentation and, also, neither are preserved by quantization from a real-
numbered network. For this reason, we introduce a verification method
for quantized neural networks which, using SMT solving over bit-vectors,
accounts for their exact, bit-precise semantics. We built a tool and an-
alyzed the effect of quantization on a classifier for the MNIST dataset.
We demonstrate that, compared to our method, existing methods for the
analysis of real-numbered networks often derive false conclusions about
their quantizations, both when determining robustness and when detect-
ing attacks, and that existing methods for quantized networks often miss
attacks. Furthermore, we applied our method beyond robustness, show-
ing how the number of bits in quantization enlarges the gender bias of a
predictor for students’ grades.

1 Introduction

Deep neural networks are powerful machine learning models, and are becom-
ing increasingly popular in software development. Since recent years, they have
pervaded our lives: think about the language recognition system of a voice as-
sistant, the computer vision employed in face recognition or self driving, not to
talk about many decision-making tasks that are hidden under the hood. How-
ever, this also subjects them to the resource limits that real-time embedded
devices impose. Mainly, the requirements are low energy consumption, as they
often run on batteries, and low latency, both to maintain user engagement and
to effectively interact with the physical world. This translates into specializ-
ing our computation by reducing the memory footprint and instruction set, to
minimize cache misses and avoid costly hardware operations. For this purpose,
quantization compresses neural networks, which are traditionally run over 32-bit

c© The Author(s) 2020
A. Biere and D. Parker (Eds.): TACAS 2020, LNCS 12079, pp. 79–97, 2020.
https://doi.org/10.1007/978-3-030-45237-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45237-7_5&domain=pdf

floating-point arithmetic, into computations that require bit-wise and integer-
only arithmetic over small words, e.g., 8 bits. Quantization is the standard tech-
nique for the deployment of neural networks on mobile and embedded devices,
and is implemented in TensorFlow Lite [13]. In this work, we investigate the ro-
bustness of quantized networks to adversarial attacks and, more generally, formal
verification questions for quantized neural networks.

Adversarial attacks are a well-known vulnerability of neural networks [24].
For instance, a self-driving car can be tricked into confusing a stop sign with a
speed limit sign [9], or a home automation system can be commanded to deac-
tivate the security camera by a voice reciting poetry [22]. The attack is carried
out by superposing the innocuous input with a crafted perturbation that is im-
perceptible to humans. Formally, the attack lies within the neighborhood of a
known-to-be-innocuous input, according to some notion of distance. The fraction
of samples (from a large set of test inputs) that do not admit attacks determines
the robustness of the network. We ask ourselves how quantization affects a net-
work’s robustness or, dually, how many bits it takes to ensure robustness above
some specific threshold. This amounts to proving that, for a set of given quanti-
zations and inputs, there does not exists an attack, which is a formal verification
question.

The formal verification of neural networks has been addressed either by
overapproximating—as happens in abstract interpretation—the space of outputs
given a space of attacks, or by searching—as it happens in SMT-solving—for a
variable assignment that witnesses an attack. The first category include meth-
ods that relax the neural networks into computations over interval arithmetic
[20], treat them as hybrid automata [27], or abstract them directly by using
zonotopes, polyhedra [10], or tailored abstract domains [23]. Overapproximation-
based methods are typically fast, but incomplete: they prove robustness but do
not produce attacks. On the other hand, methods based on local gradient de-
scent have turned out to be effective in producing attacks in many cases [16], but
sacrifice formal completeness. Indeed, the search for adversarial attack is NP-
complete even for the simplest (i.e., ReLU) networks [14], which motivates the
rise of methods based on Satisfiability Modulo Theory (SMT) and Mixed Integer
Linear Programming (MILP). SMT-solvers have been shown not to scale beyond
toy examples (20 hidden neurons) on monolithic encodings [21], but today’s spe-
cialized techniques can handle real-life benchmarks such as, neural networks for
the MNIST dataset. Specialized tools include DLV [12], which subdivides the
problem into smaller SMT instances, and Planet [8], which combines different
SAT and LP relaxations. Reluplex takes a step further augmenting LP-solving
with a custom calculus for ReLU networks [14]. At the other end of the spec-
trum, a recent MILP formulation turned out effective using off-the-shelf solvers
[25]. Moreover, it formed the basis for Sherlock [7], which couples local search
and MILP, and for a specialized branch and bound algorithm [4].

All techniques mentioned above do not reason about the machine-precise
semantics of the networks, neither over floating- nor over fixed-point arithmetic,
but reason about a real-number relaxation. Unfortunately, adversarial attacks

80 M. Giacobbe et al.

computed over the reals are not necessarily attacks on execution architectures,
in particular, for quantized networks implementations. We show, for the first
time, that attacks and, more generally, robustness and vulnerability to attacks
do not always transfer between real and quantized networks, and also do not
always transfer monotonically with the number of bits across quantized networks.
Verifying the real-valued relaxation of a network may lead scenarios where

(i) specifications are fulfilled by the real-valued network but not for its quantized
implementation (false negative),

(ii) specifications are violated by the real-valued network but fulfilled by its
quantized representation (false negatives), or

(iii) counterexamples witnessing that the real-valued network violated the spec-
ification, but do not witness a violation for the quantized network (invalid
counterexamples/attacks).

More generally, we show that all three phenomena can occur non-monotonically
with the precision in the numerical representation. In other words, it may occur
that a quantized network fulfills a specification while both a higher and a lower
bits quantization violate it, or that the first violates it and both the higher and
lower bits quantizations fulfill it; moreover, specific counterexamples may not
transfer monotonically across quantizations.

The verification of real-numbered neural networks using the available meth-
ods is inadequate for the analysis of their quantized implementations, and the
analysis of quantized neural networks needs techniques that account for their
bit-precise semantics. Recently, a similar problem has been addressed for bina-
rized neural networks, through SAT-solving [18]. Binarized networks represent
the special case of 1-bit quantizations. For many-bit quantizations, a method
based on gradient descent has been introduced recently [28]. While efficient (and
sound), this method is incomplete and may produce false negatives.

We introduce, for the first time, a complete method for the formal verification
of quantized neural networks. Our method accounts for the bit-precise semantics
of quantized networks by leveraging the first-order theory of bit vectors without
quantifiers (QF BV), to exactly encode hardware operations such as 2’comple-
mentation, bit-shift, integer arithmetic with overflow. On the technical side, we
present a novel encoding which balances the layout of long sequences of hardware
multiply-add operations occurring in quantized neural networks. As a result, we
obtain a encoding into a first-order logic formula which, in contrast to a standard
unbalanced linear encoding, makes the verification of quantized networks prac-
tical and amenable to modern bit-precise SMT-solving. We built a tool using
Boolector [19], evaluated the performance of our encoding, compared its effec-
tiveness against real-numbered verification and gradient descent for quantized
networks, and finally assessed the effect of quantization for different networks
and verification questions.

We measured the robustness to attacks of a neural classifier involving 890
neurons and trained on the MNIST dataset (handwritten digits), for quantiza-
tions between 6 and 10 bits. First, we demonstrated that Boolector, off-the-shelf
and using our balanced SMT encoding, can compute every attack within 16

How Many Bits Does it Take to Quantize Your Neural Network? 81

hours, with a median time of 3h 41m, while timed-out on all instances beyond 6
bits using a standard linear encoding. Second, we experimentally confirmed that
both Reluplex and gradient descent for quantized networks can produce false
conclusions about quantized networks; in particular, spurious results occurred
consistently more frequently as the number of bits in quantization decreases.
Finally, we discovered that, to achieve an acceptable level of robustness, it takes
a higher bit quantization than is assessed by standard accuracy measures.

Lastly, we applied our method beyond the property of robustness. We also
evaluate the effect of quantization upon the gender bias emerging from quantized
predictors for students’ performance in mathematics exams. More precisely, we
computed the maximum predictable grade gap between any two students with
identical features except for gender. The experiment showed that a substan-
tial gap existed and was proportionally enlarged by quantization: the lower the
number bits the larger the gap.

We summarize our contribution in five points. First, we show that the ro-
bustness of quantized neural networks is non-monotonic in the number of bits
and is non-transferable from the robustness of their real-numbered counterparts.
Second, we introduce the first complete method for the verification of quan-
tized neural networks. Third, we demonstrate that our encoding, in contrast to
standard encodings, enabled the state-of-the-art SMT-solver Boolector to verify
quantized networks with hundreds of neurons. Fourth, we also show that exist-
ing methods determine both robustness and vulnerability of quantized networks
less accurately than our bit-precise approach, in particular for low-bit quanti-
zations. Fifth, we illustrate how quantization affects the robustness of neural
networks, not only with respect to adversarial attacks, but also with respect to
other verification questions, specifically fairness in machine learning.

2 Quantization of Feed-forward Networks

A feed-forward neural network consists of a finite set of neurons x1, . . . , xk par-
titioned into a sequence of layers: an input layer with n neurons, followed by
one or many hidden layers, finally followed by an output layer with m neurons.
Every pair of neurons xj and xi in respectively subsequent layers is associated
with a weight coefficient wij ∈ R; if the layer of xj is not subsequent to that
of xi, then we assume wij = 0. Every hidden or output neuron xi is associated
with a bias coefficient bi ∈ R. The real-valued semantics of the neural network
gives to each neuron a real value: upon a valuation for the neurons in the input
layer, every other neuron xi assumes its value according to the update rule

xi = ReLU-N(bi +
k∑

j=1

wijxj), (1)

where ReLU-N : R → R is the activation function. Altogether, the neural net-
work implements a function f : Rn → Rm whose result corresponds to the valu-
ation for the neurons in the output layer.

82 M. Giacobbe et al.

The activation function governs the firing logic of the neurons, layer by layer,
by introducing non-linearity in the system. Among the most popular activation
functions are purely non-linear functions, such as the tangent hyperbolic and
the sigmoidal function, and piece-wise linear functions, better known as Rectified
Linear Units (ReLU) [17]. ReLU consists of the function that takes the positive
part of its argument, i.e., ReLU(x) = max{x, 0}. We consider the variant of
ReLU that imposes a cap value N , known as ReLU-N [15]. Precisely

ReLU-N(x) = min{max{x, 0}, N}, (2)

which can be alternatively seen as a concatenation of two ReLU functions (see
Eq. 10). As a consequence, all neural networks we treat are full-fledged ReLU
networks; their real-valued versions are amenable to state-of-the-art verification
tools including Reluplex, but neither account for the exact floating- nor fixed-
point execution models.

Quantizing consists of converting a neural network over real numbers, which
is normally deployed on floating-point architectures, into a neural network over
integers, whose semantics corresponds to a computation over fixed-point arith-
metic [13]. Specifically, fixed-point arithmetic can be carried out by integer-only
architectures and possibly over small words, e.g., 8 bits. All numbers are rep-
resented in 2’s complement over B bits words and F bits are reserved to the
fractional part: we call the result a B-bits quantization in QF arithmetic. More
concretely, the conversion follows from the rounding of weight and bias coeffi-
cients to the F -th digit, namely b̄i = rnd(2F bi) and w̄ij = rnd(2Fwij) where
rnd(·) stands for any rounding to an integer. Then, the fundamental relation
between a quantized value ā and its real counterpart a is

a ≈ 2−F ā. (3)

Consequently, the semantics of a quantized neural network corresponds to the
update rule in Eq. 1 after substituting of x, w, and b with the respective approx-
imants 2−F x̄, 2−F w̄, and 2−F b̄. Namely, the semantics amounts to

x̄i = ReLU-(2FN)(b̄i + int(2−F
k∑

j=1

w̄ij x̄j)), (4)

where int(·) truncates the fractional part of its argument or, in other words,
rounds towards zero. In summary, the update rule for the quantized semantics
consists of four parts. The first part, i.e., the linear combination

∑k
j=1 w̄ij x̄j ,

propagates all neurons values from the previous layer, obtaining a value with
possibly 2B fractional bits. The second scales the result by 2−F truncating the
fractional part by, in practice, applying an arithmetic shift to the right of F bits.
Finally, the third applies the bias b̄ and the fourth clamps the result between 0
and 2FN . As a result, a quantize neural network realizes a function f : Zn → Zm,
which exactly represents the concrete (integer-only) hardware execution.

We assume all intermediate values, e.g., of the linear combination, to be
fully representable as, coherently with the common execution platforms [13], we

How Many Bits Does it Take to Quantize Your Neural Network? 83

always allocate enough bits for under and overflow not to happen. Hence, any
loss of precision from the respective real-numbered network happens exclusively,
at each layer, as a consequence of rounding the result of the linear combination to
F fractional bits. Notably, rounding causes the robustness to adversarial attacks
of quantized networks with different quantization levels to be independent of one
another, and independent of their real counterpart.

3 Robustness is Non-monotonic in the Number of Bits

A neural classifier is a neural network that maps a n-dimensional input to one
out of m classes, each of which is identified by the output neuron with the largest
value, i.e., for the output values z1, . . . , zm, the choice is given by

class(z1, . . . , zm) = argmax
i

zi. (5)

For example, a classifier for handwritten digits takes in input the pixels of an
image and returns 10 outputs z0, . . . , z9, where the largest indicates the digit the
image represents. An adversarial attack is a perturbation for a sample input

original + perturbation = attack

that, according to some notion of closeness, is indistinguishable from the original,
but tricks the classifier into inferring an incorrect class. The attack in Fig. 1 is

Fig. 1: Adversarial attack.

indistinguishable from the original by the human eye, but induces our classifier
to assign the largest value to z3, rather than z9, misclassifying the digit as a
3. For this example, misclassification happens consistently, both on the real-
numbered and on the respective 8-bits quantized network in Q4 arithmetic.
Unfortunately, attacks do not necessarily transfer between real and quantized
networks and neither between quantized networks for different precision. More
generally, attacks and, dually, robustness to attacks are non-monotonic with the
number of bits.

We give a prototypical example for the non-monotonicity of quantized net-
works in Fig. 2. The network consists of one input, 4 hidden, and 2 output
neurons, respectively from left to right. Weights and bias coefficients, which are
annotated on the edges, are all fully representable in Q1. For the neurons in the
top row we show, respectively from top to bottom, the valuations obtained using
a Q3, Q2, and Q1 quantization of the network (following Eq. 4); precisely, we

84 M. Giacobbe et al.

+ =

1/2
6/8
3/4
1/2

2/8
1/4
1/2

3/8
1/4
1/2

3/2 -1 3/2

+1

a± ε

0

+1/2

3
2
4

8

a± ε
1

Q3
Q2
Q1

Fig. 2: Neural network with non-monotonic robustness w.r.t. its Q1, Q2, and Q3 quan-
tizations.

show their fractional counterpart x̄/2F . We evaluate all quantizations and obtain
that the valuations for the top output neuron are non-monotonic with the num-
ber of fractional bits; in fact, the Q1 dominates the Q3 which dominates the Q2
output. Coincidentally, the valuations for the Q3 quantization correspond to the
valuations with real-number precision (i.e., never undergo truncation), indicating
that also real and quantized networks are similarly incomparable. Notably, all
phenomena occur both for quantized networks with rounding towards zero (as
we show in the example), and with rounding to the nearest, which is naturally
non-monotonic (e.g., 5/16 rounds to 1/2, 1/4, and 3/8 with, resp., Q1, Q2, and
Q3).

Non-monotonicity of the output causes non-monotonicity of robustness, as
we can put the decision boundary of the classifier so as to put Q2 into a different
class than Q1 and Q3. Suppose the original sample is 3/2 and its class is associ-
ated with the output neuron on the top, and suppose attacks can only lay in the
neighboring interval 3/2 ± 1. In this case, we obtain that the Q2 network admits
an attack, because the bottom output neuron can take 5/2, that is larger than
2. On the other hand, the bottom output can never exceed 3/8 and 1/2, hence
Q1 and Q3 are robust. Dually, also non-robustness is non-monotonic as, for the
sample 9/2 whose class corresponds to the bottom neuron, for the interval 9/2
± 2, Q2 is robust while both Q3 and Q1 are vulnerable. Notably, the specific
attacks of Q3 and Q1 also do not always coincide as, for instance, 7/2.

Robustness and non-robustness are non-monotonic in the number of bits
for quantized networks. As a consequence, verifying a high-bits quantization,
or a real-valued network, may derive false conclusions about a target lower-bits
quantization, in either direction. Specifically, for the question as for whether an
attack exists, we may have both (i) false negatives, i.e., the verified network is
robust but the target network admits an attack, and (ii) false positives, i.e., the
verified network is vulnerable while the target network robust. In addition, we
may also have (iii) true positives with invalid attacks, i.e., both are vulnerable
but the found attack do not transfer to the target network. For these reasons
we introduce a verification method quantized neural network that accounts for
their bit-precise semantics.

How Many Bits Does it Take to Quantize Your Neural Network? 85

4 Verification of Quantized Networks using Bit-precise
SMT-solving

Bit-precise SMT-solving comprises various technologies for deciding the satisfia-
bility of first-order logic formulae, whose variables are interpreted as bit-vectors
of fixed size. In particular, it produces satisfying assignments (if any exist) for
formulae that include bitwise and arithmetic operators, whose semantics corre-
sponds to that of hardware architectures. For instance, we can encode bit-shifts,
2’s complementation, multiplication and addition with overflow, signed and un-
signed comparisons. More precisely, this is the quantifier-free first-order theory
of bit-vectors (i.e., QF BV), which we employ to produce a monolithic encoding
of the verification problem for quantized neural networks.

A verification problem for the neural networks f1, . . . , fK consists of checking
the validity of a statement of the form

ϕ(y1, . . . ,yK) =⇒ ψ(f1(y1), . . . , fK(yK)), (6)

where ϕ is a predicate over the inputs and ψ over the outputs of all networks; in
other words, it consists of checking an input–output relation, which generalizes
various verification questions, including robustness to adversarial attacks and
fairness in machine learning, which we treat in Sec. 5. For the purpose of SMT
solving, we encode the verification problem in Eq. 6, which is a validity question,
by its dual satisfiability question

ϕ(y1, . . . ,yK) ∧
K∧
i=1

fi(yi) = zi ∧ ¬ψ(z1, . . . , zK), (7)

whose satisfying assignments constitute counterexamples for the contract. The
formula consists of three conjuncts: the rightmost constraints the input within
the assumption, the leftmost forces the output to violate the guarantee, while
the one in the middle relates inputs and outputs by the semantics of the neural
networks.

The semantics of the network consists of the bit-level translation of the up-
date rule in Eq. 4 over all neurons, which we encode in the formula

k∧
i=1

xi = ReLU-(2FN)(x′
i) ∧ x′

i = b̄i + ashr(x′′
i , F) ∧ x′′

i =
k∑

j=1

w̄ijxj . (8)

Each conjunct in the formula employs three variables x, x′, and x′′ and is made
of three, respective, parts. The first part accounts for the operation of clamp-
ing between 0 and 2FN , whose semantics is given by the formula ReLU-M(x) =
ite(sign(x), 0, ite(x ≥ M,M,x)). Then, the second part accounts for the oper-
ations of scaling and biasing. In particular, it encodes the operation of rounding
by truncation scaling, i.e., int(2−Fx), as an arithmetic shift to the right. Fi-
nally, the last part accounts for the propagation of values from the previous
layer, which, despite the obvious optimization of pruning away all monomials

86 M. Giacobbe et al.

+

wkxk +

wk−1xk−1

w2x2 w1x1

+

+

+ +

+

w1x1 w2x2 wkxk

Linear layout Balanced layout
(a) (b)

Fig. 3: Abstract syntax trees for alternative encodings of a long linear combination of
the form

∑k
i=1 wixi.

with null coefficient, often consists of long linear combinations, whose exact se-
mantic amounts to a sequence of multiply-add operations over an accumulator;
particularly, encoding it requires care in choosing variables size and association
layout.

The size of the bit-vector variables determines whether overflows can occur.
In particular, since every monomial wijxj consists of the multiplication of two
B-bits variables, its result requires 2B bits in the worst case; since summation
increases the value linearly, its result requires a logarithmic amount of extra
bits in the number of summands (regardless of the layout). Provided that, we
avoid overflow by using variables of 2B + log k bits, where k is the number of
summands.

The association layout is not unique and, more precisely, varies with the or-
der of construction of the long summation. For instance, associating from left
to right produces a linear layout, as in Fig. 3a. Long linear combonations occur-
ring in quantized neural networks are implemented as sequences of multiply-add
operations over a single accumulator; this naturally induces a linear encoding.
Instead, for the purpose formal verification, we propose a novel encoding which
re-associates the linear combination by recursively splitting the sum into equal
parts, producing a balanced layout as in Fig. 3b. While linear and balanced lay-
outs are semantically equivalent, we have observed that, in practice, the second
impacted positively the performance of the SMT-solver as we discuss in Sec. 5,
where we also compare against other methods and investigate different verifica-
tion questions.

5 Experimental Results

We set up an experimental evaluation benchmark based on the MNIST dataset
to answer the following three questions. First, how does our balanced encoding

How Many Bits Does it Take to Quantize Your Neural Network? 87

scheme impact the runtime of different SMT solvers compared to a standard
linear encoding? Then, how often can robustness properties, that are proven for
the real-valued network, transferred to the quantized network and vice versa?
Finally, how often do gradient based attacking procedures miss attacks for quan-
tized networks?

The MNIST dataset is a well-studied computer vision benchmark, which
consists of 70,000 handwritten digits represented by 28-by-28 pixel images with
a single 8-bit grayscale channel. Each sample belongs to exactly one category
{0, 1, . . . 9}, which a machine learning model must predict from the raw pixel
values. The MNIST set is split into 60,000 training and 10,000 test samples.

We trained a neural network classifier on MNIST, following a post-training
quantization scheme [13]. First, we trained, using TensorFlow with floating-point
precision, a network composed of 784 inputs, 2 hidden layers of size 64, 32 with
ReLU-7 activation function and 10 outputs, for a total of 890 neurons. The
classifier yielded a standard accuracy, i.e., the ratio of samples that are correctly
classified out of all samples in the testing set, of 94.7% on the floating-point
architecture. Afterward, we quantized the network with various bit sizes, with
the exception of imposing the input layer to be always quantized in 8 bits, i.e.,
the original precision of the samples. The quantized networks required at least
Q3 with 7 total bits to obtain an accuracy above 90% and Q5 with 10 bits to
reach 94%. For this reason, we focused our study on the quantizations from 6
and the 10 bits in, respectively, Q2 to Q6 arithmetic.

Robust accuracy or, more simply, robustness measure the ratio of robust
samples: for the distance ε > 0, a sample a is robust when, for all its pertur-
bations y within that distance, the classifier class ◦ f chooses the original class
c = class ◦ f(a). In other words, a is robust if, for all y

|a− y|∞ ≤ ε =⇒ c = class ◦ f(y), (9)

where, in particular, the right-hand side can be encoded as
∧m

j=1 zj ≤ zc, for
z = f(y). Robustness is a validity question as in Eq. 6 and any witness for
the dual satisfiability question constitutes an adversarial attack. We checked
the robustness of our selected networks over the first 300 test samples from the
dataset with ε = 1 on the first 200 and ε = 2 on the next 100; in particular, we
tested our encoding using the SMT-solver Boolector [19], Z3 [5], and CVC4 [3],
off-the-shelf.

Our experiments serve two purposes. The first is evaluating the scalability
and precision of our approach. As for scalability, we study how encoding layout,
i.e., linear or balanced, and the number of bits affect the runtime of the SMT-
solver. As for precision, we measured the gap between our method and both a
formal verifier for real-numbered networks, i.e., Reluplex [14], and the IFGSM
algorithm [28], with respect to the accuracy of identifying robust and vulner-
able samples. The second purpose of our experiments is evaluating the effect
of quantization on the robustness to attacks of our MNIST classifier and, with
an additional experiment, measuring the effect of quantization over the gender
fairness of a student grades predictor, also demonstrating the expressiveness of
our method beyond adversarial attacks.

88 M. Giacobbe et al.

As we only compared the verification outcomes, any complete verifier for
real-numbered networks would lead to the same results as those obtained with
Reluplex. Note that these tools verify the real-numbered abstraction of the net-
work using some form of linear real arithmetic reasoning. Consequently, rounding
errors introduced by the floating-point implementation of both, the network and
the verifier, are not taken into account.

5.1 Scalability and performance

We evaluated whether our balanced encoding strategy, compared to a standard
linear encoding, can improve the scalability of contemporary SMT solvers for
quantifier-free bit-vectors (QF BV) to check specifications of quantized neural
networks. We ran all our experiments on an Intel Xeon W-2175 CPU, with 64GB
memory, 128GB swap file, and 16 hours of time budget per problem instance.
We encoded each instance using the two variants, the standard linear and our
balanced layout. We scheduled 14 solver instances in parallel, i.e., the number of
physical processor cores available on our machine. While Z3, CVC4 and Yices2

SMT-solver Encoding 6-bit 7-bit 8-bit 9-bit 10-bit

Boolector [19]
Linear (standard) 3h 25m oot oot oot oot
Balanced (ours) 18m 1h 29m 3h 41m 5h 34m 8h 58m

Z3 [5]
Linear (standard) oot - - - -
Balanced (ours) oot - - - -

CVC4 [3]
Linear (standard) oom - - - -
Balanced (ours) oom - - - -

Yices2 [6]
Linear (standard) oot - - - -
Balanced (ours) oot - - - -

Table 1: Median runtimes for bit-exact robustness checks. The term oot refers to
timeouts, and oom refers to out-of-memory errors. Due to the poor performance of Z3,
CVC4, and Yices2 on our smallest 6-bit network, we abstained from running experi-
ments involving more than 6 bits, i.e., entries marked by a dash (-).

timed out or ran out of memory on the 6-bit network, Boolector could check the
instances of our smallest network within the given time budget, independently
of the employed encoding scheme. Our results align with the SMT-solver perfor-
mances reported by the SMT-COMP 2019 competition in the QF BV division
[11]. Consequently, we will focus our discussion on the results obtained with
Boolector.

With linear layout Boolector timed-out on all instances but the smallest
networks (6 bits), while with the balanced layout it checked all instances with
an overall median runtime of 3h 41m and, as shown in Tab. 1, roughly doubling
at every bits increase, as also confirmed by the histogram in Fig. 4.

How Many Bits Does it Take to Quantize Your Neural Network? 89

Fig. 4: Runtimes for bit-exact adversarial robustness checks of a classifier trained on
the MNIST dataset using Boolector and our balanced SMT encodings. Runtime roughly
doubles with each additional bit used for the quantization.

Our results demonstrate that our balanced association layout improves the
performance of the SMT-solver, enabling it to scale to networks beyond 6 bits.
Conversely, a standard linear encoding turned out to be ineffective on all tested
SMT solvers. Besides, our method tackled networks with 890 neurons which,
while small compared to state-of-the-art image classification models, already
pose challenging benchmarks for the formal verification task. In the real-numbered
world, for instance, off-the-shelf solvers could initially tackle up to 20 neurons
[20], and modern techniques, while faster, are often evaluated on networks below
1000 neurons [14,4].

Additionally, we pushed our method to its limits, refining our MNIST net-
work to a four-layers deep Convolutional network (2 Conv + 2 Fully-connected
layers) with a total of 2238 neurons, which achieved a test accuracy of 98.56%.
While for the 6-bits quantization we proved robustness for 99% of the tested
samples within a median runtime of 3h 39min, for 7-bits and above all instances
timed-out. Notably, Reluplex also failed on the real-numbered version, reporting
numerical instability.

5.2 Comparison to other methods

Looking at existing methods for verification, one has two options to verify quan-
tized neural networks: verifying the real-valued network and hoping the func-
tional property is preserved when quantizing the network, or relying on incom-
plete methods and hoping no counterexample is missed. A question that emerges
is how accurate are these two approaches for verifying robustness of a quantized
network? To answer this question, we used Reluplex [14] to prove the robust-
ness of the real-valued network. Additionally, we compared to the Iterative Fast
Gradient Sign Method (IFGSM), which has recently been proposed to generate
�∞-bounded adversarial attacks for quantized networks [28]; notably, IFGSM is

90 M. Giacobbe et al.

incomplete in the sense that it may miss attacks. We then compared these two
verification outcomes to the ground-truth obtained by our approach.

In our study, we employ the following notation. We use the term ”false nega-
tive” (i) to describe cases in which the quantized network can be attacked, while
no attack exists that fools the real-number network. Conversely, the term ”false
positive” (ii) describes the cases in which a real-number attack exists while the
quantized network is robust. Furthermore, we use the term ”invalid attack” (iii)
to specify attacks produced for the real-valued network that fools the real-valued
network but not the quantized network.

Regarding the real-numbered encoding, Reluplex accepts only pure ReLU
networks. For this reason, we translate our ReLU-N networks into functionally
equivalent ReLU networks, by translating each layer with

ReLU-N(W · x+ b) = ReLU
(
− I · ReLU(−W · x− b+N)

)
. (10)

Out of the 300 samples, at least one method timed out on 56 samples, leaving
us with 244 samples whose results were computed over all networks. Tab. 2
depicts how frequently the robustness property could be transferred from the
real-valued network to the quantized networks. Not surprisingly, we observed
the trend that when increasing the precision of the network, the error between
the quantized model and the real-valued model decreases. However, even for the
10-bit model, in 0.8% of the tested samples, verifying the real-valued model leads
to a wrong conclusion about the robustness of the quantized network. Moreover,
our results show the existence of samples where the 10-bit network is robustness
while the real-valued is attackable and vice versa. The invalid attacks illustrate
that the higher the precision of the quantization, the more targeted attacks need
to be. For instance, while 94% of attacks generated for the real-valued network
represented valid attacks on the 7-bit model, this percentage decrease to 80%
for the 10-bit network.

True False False True
Bits negatives negatives positives positives

(i) (ii)

6 66.4% 25.0% 3.3% 5.3%
7 84.8% 6.6% 1.6% 7.0%
8 88.5% 2.9% 0.4% 8.2%
9 91.0% 0.4% 0.4% 8.2%
10 91.0% 0.4% 0.4% 8.2%

Invalid
attacks
(iii)

8%
6%
10%
20%
20%

Table 2: Transferability of vulnerability from the verification outcome of the real-
valued network to the verification outcome of the quantized model. While vulnera-
bility is transferable between the real-valued and the higher precision networks, (9
and 10-bits), in most of the tested cases, this discrepancy significantly increases when
compressing the networks with fewer bits, i.e. see columns (i) and (ii).

How Many Bits Does it Take to Quantize Your Neural Network? 91

Next, we compared how well incomplete methods are suited to reason about
the robustness of quantized neural networks. We employed IFGSM to attack the
244 test samples for which we obtained the ground-truth robustness and mea-
sure how often IFGSM is correct about assessing the robustness of the network.
For the sake of completeness, we perform the same analysis for the real-valued
network.

True False False True
Bits negatives negatives positives positives

(i) (ii)

6 69.7% 1.2 % - 30.3%
7 86.5% 1.6 % - 13.5%
8 88.9% 0.8 % - 11.1%
9 91.4% 0.8 % - 8.6 %
10 91.4% 0 % - 8.6 %

R 91.4% 0 % - 8.6 %

Table 3: Transferability of incomplete robustness verification (IFGSM [28]) to ground-
truth robustness (ours) for quantized networks. While for the real-valued and 10-bit
networks our gradient based incomplete verification did not miss any possible attack, a
non-trivial number of vulnerabilities were missed by IFGSM for the low-bit networks.
The row indicted by R compares IFGSM attacking the floating-point implementation
to the grouth-truth obtained, using Reluplex, by verifying the real-valued relaxation
of the network.

Our results in Tab. 3 present the trend that with higher precision, e.g., 10-
bits or reals, incomplete methods provide a stable estimate about the robustness
of the network, i.e., IFGSM was able to find attacks for all non-robust samples.
However, for lower precision levels, IFGSM missed a substantial amount of at-
tacks, i.e., for the 7-bit network, IFGSM could not find a valid attack for 10%
of the non-robust samples.

5.3 The effect of quantization on robustness

In Tab. 3 we show how standard accuracy and robust accuracy degrade on our
MNIST classifier when increasing the compression level. The data indicates a
constant discrepancy between standard accuracy and robustness; for real num-
bered networks, a similar fact was already known in the literature [26]: we empir-
ically confirm that observation for our quantized networks, whose discrepancy
fluctuated between 3 and 4% across all precision levels. Besides, while an ac-
ceptable, larger than 90%, standard accuracy was achieved at 7 bits, an equally
acceptable robustness was achieved at 9 bits.

One relationship not shown in Tab. 3 is that these 4% of non-robust samples
are not equal for across quantization levels. For instance, we observed samples

92 M. Giacobbe et al.

Precision 6 7 8 9 10 R

Standard 73.4% 91.8% 92.2% 94.3% 95.5% 94.7%
Robust 69.7% 86.5% 88.9% 91.4% 91.4% 91.4%

Table 4: Accuracy of the MNIST classifiers on the 244 test samples for which all
quantization levels could be check within the given time budget. The column indicated
by R compares the accuracy of the floating-point implementation to the robust accuracy
of the real-valued relaxation of the network.

that are robust for 7-bit network but attackable when quantizing with 9- and 10-
bits. Conversely, there are attacks for the 7-bit networks that are robust samples
in the 8-bit network.

5.4 Network specifications beyond robustness

Concerns have been raised that decisions of an ML system could discriminate
towards certain groups due to a bias in the training data [2]. A vital issue in
quantifying fairness is that neural networks are black-boxes, which makes it hard
to explain how each input contributes to a particular decision.

We trained a network on a publicly available dataset consisting of 1000 stu-
dents’ personal information and academic test scores [1]. The personal features
include gender, parental level of education, lunch plans, and whether the stu-
dent took a preparation course for the test, all of which are discrete variables. We
train a predictor for students’ math scores, which is a discrete variable between
0 and 100. Notably, the dataset contains a potential source for gender bias: the
mean math score among females is 63.63, while it is 68.73 among males.

The network we trained is composed of 2 hidden layers with 64 and 32 units,
respectively. We use a 7-bit quantization-aware training scheme, achieving a
4.14% mean absolute error, i.e., the difference between predicted and actual
math scores on the test set.

The network is fair if the gender of a person influences the predicted math
score by at most the bias β. In other words, checking fairness amounts to verifying
that ∧

i�=gender

si = ti ∧ sgender
= tgender =⇒ |f(s)− f(t)| ≤ β, (11)

is valid over the variables s and t, which respectively model two students for
which gender differs but all other features are identical—we call them twin stu-
dents. When we encode the dual formula, we encode two copies of the semantics
of the same network: to one copy we give one student s and take the respective
grade g, to the other we give its twin t and take grade h; precisely, we check for
the unsatisfiability the negation of formula in Eq. 11. Then, we compute a tight
upper bound for the bias, that is the maximum possible change in predicted
score for any two twins. To compute the tightest bias, we progressively increase
β until our encoded formula becomes unsatisfiable.

How Many Bits Does it Take to Quantize Your Neural Network? 93

We measure mean test error and gender bias of the 6- to the 10-bits quanti-
zation of the networks. We show the results in Tab. 5. The test error was stable

Quantization Mean Tightest bias
level test error upper bound

6 bits 4.46 22
7 bits 4.14 17
8 bits 4.37 16
9 bits 4.38 15
10 bits 4.59 15

Table 5: Results for the formal analysis of the gender bias of a students’ grade predic-
tor. The maximum gender bias of the network monotonically decreases with increasing
precision.

between 4.1 and 4.6% among all quantizations, showing that the change in pre-
cision did not affect the quality of the network in a way that was perceivable
by standard measures. However, our formal analysis confirmed a gender bias in
the network, producing twins with a 15 to 21 difference in predicted math score.
Surprisingly, the bias monotonically increased as the precision level in quantiza-
tion lowered, indicating to us that quantization plays a role in determining the
bias.

6 Conclusion

We introduced the first complete method for the verification of quantized neural
networks which, by SMT solving over bit-vectors, accounts for their bit-precise
semantics. We demonstrated, both theoretically and experimentally, that bit-
precise reasoning is necessary to accurately ensure the robustness to adversarial
attacks of a quantized network. We showed that robustness and non-robustness
are non-monotonic in the number of bits for the numerical representation and
that, consequently, the analysis of high-bits or real-numbered networks may de-
rive false conclusions about their lower-bits quantizations. Experimentally, we
confirmed that real-valued solvers produce many spurious results, especially on
low-bit quantizations, and that also gradient descent may miss attacks. Addi-
tionally, we showed that quantization indeed affects not only robustness, but
also other properties of neural networks, such as fairness. We also demonstrated
that, using our balanced encoding, off-the-shelf SMT-solving can analyze net-
works with hundreds of neurons which, despite hitting the limits of current
solvers, establishes an encouraging baseline for future research.

94 M. Giacobbe et al.

Acknowledgments

An early version of this paper was put into the easychair repository as EasyChair
Preprint no. 1000. This research was supported in part by the Austrian Science
Fund (FWF) under grants S11402-N23(RiSE/SHiNE) and Z211-N23 (Wittgen-
stein Award), in part by the Aerospace Technology Institute (ATI), the Depart-
ment for Business, Energy & Industrial Strategy (BEIS), and Innovate UK under
the HICLASS project (113213).

References

1. Students performance in exams. https://www.kaggle.com/spscientist/students-
performance-in-exams

2. Barocas, S., Hardt, M., Narayanan, A.: Fairness in machine learning. In: Proceeding
of NIPS (2017)

3. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,
Reynolds, A., Tinelli, C.: Cvc4. In: International Conference on Computer Aided
Verification. pp. 171–177. Springer (2011)

4. Bunel, R.R., Turkaslan, I., Torr, P.H.S., Kohli, P., Mudigonda, P.K.: A unified
view of piecewise linear neural network verification. In: NeurIPS. pp. 4795–4804
(2018)

5. De Moura, L., Bjørner, N.: Z3: An efficient smt solver. In: International conference
on Tools and Algorithms for the Construction and Analysis of Systems. pp. 337–
340. Springer (2008)

6. Dutertre, B.: Yices 2.2. In: International Conference on Computer Aided Verifica-
tion. pp. 737–744. Springer (2014)

7. Dutta, S., Jha, S., Sankaranarayanan, S., Tiwari, A.: Output range analysis for
deep feedforward neural networks. In: NFM. Lecture Notes in Computer Science,
vol. 10811, pp. 121–138. Springer (2018)

8. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks.
In: ATVA. Lecture Notes in Computer Science, vol. 10482, pp. 269–286. Springer
(2017)

9. Evtimov, I., Eykholt, K., Fernandes, E., Kohno, T., Li, B., Prakash, A., Rah-
mati, A., Song, D.: Robust physical-world attacks on deep learning models. arXiv
preprint arXiv:1707.08945 1 (2017)

10. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.T.: AI2: safety and robustness certification of neural networks with abstract
interpretation. In: IEEE Symposium on Security and Privacy. pp. 3–18. IEEE
(2018)

11. Hadarean, L., Hyvarinen, A., Niemetz, A., Reger, G.: Smt-comp 2019. https://smt-
comp.github.io/2019/results (2019)

12. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. In: CAV (1). Lecture Notes in Computer Science, vol. 10426, pp. 3–29.
Springer (2017)

13. Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard, A.G., Adam, H.,
Kalenichenko, D.: Quantization and training of neural networks for efficient integer-
arithmetic-only inference. In: CVPR. pp. 2704–2713. IEEE Computer Society
(2018)

How Many Bits Does it Take to Quantize Your Neural Network? 95

14. Katz, G., Barrett, C.W., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: An
efficient SMT solver for verifying deep neural networks. In: CAV (1). Lecture Notes
in Computer Science, vol. 10426, pp. 97–117. Springer (2017)

15. Krizhevsky, A., Hinton, G.: Convolutional deep belief networks on cifar-10. Un-
published manuscript 40(7) (2010)

16. Moosavi-Dezfooli, S., Fawzi, A., Frossard, P.: Deepfool: A simple and accurate
method to fool deep neural networks. In: CVPR. pp. 2574–2582. IEEE Computer
Society (2016)

17. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann ma-
chines. In: ICML. pp. 807–814. Omnipress (2010)

18. Narodytska, N., Kasiviswanathan, S.P., Ryzhyk, L., Sagiv, M., Walsh, T.: Verifying
properties of binarized deep neural networks. In: AAAI. pp. 6615–6624. AAAI Press
(2018)

19. Niemetz, A., Preiner, M., Biere, A.: Boolector 2.0. JSAT 9, 53–58 (2014)
20. Pulina, L., Tacchella, A.: An abstraction-refinement approach to verification of

artificial neural networks. In: CAV. Lecture Notes in Computer Science, vol. 6174,
pp. 243–257. Springer (2010)

21. Pulina, L., Tacchella, A.: Challenging SMT solvers to verify neural networks. AI
Commun. 25(2), 117–135 (2012)

22. Schönherr, L., Kohls, K., Zeiler, S., Holz, T., Kolossa, D.: Adversarial attacks
against automatic speech recognition systems via psychoacoustic hiding. In: ac-
cepted for Publication, NDSS (2019)

23. Singh, G., Gehr, T., Püschel, M., Vechev, M.T.: An abstract domain for certifying
neural networks. In: POPL. ACM (2019)

24. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I.J.,
Fergus, R.: Intriguing properties of neural networks. CoRR abs/1312.6199 (2013)

25. Tjeng, V., Xiao, K.Y., Tedrake, R.: Evaluating robustness of neural networks with
mixed integer programming (2018)

26. Tsipras, D., Santurkar, S., Engstrom, L., Turner, A., Madry, A.: Robustness may be
at odds with accuracy. In: International Conference on Learning Representations
(2019)

27. Xiang, W., Tran, H., Johnson, T.T.: Output reachable set estimation and verifi-
cation for multilayer neural networks. IEEE Trans. Neural Netw. Learning Syst.
29(11), 5777–5783 (2018)

28. Zhao, Y., Shumailov, I., Mullins, R., Anderson, R.: To compress or not to compress:
Understanding the interactions between adversarial attacks and neural network
compression. In: SysML Conference (2019)

96 M. Giacobbe et al.

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

How Many Bits Does it Take to Quantize Your Neural Network? 97

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

Highly Automated Formal Proofs over Memory

Usage of Assembly Code

Freek Verbeek1,2 , Joshua A. Bockenek1 , and
Binoy Ravindran1

1 Virginia Tech, Blacksburg VA, USA
2 Open University of The Netherlands, Heerlen, The Netherlands

Abstract. We present a methodology for generating a characterization
of the memory used by an assembly program, as well as a formal proof
that the assembly is bounded to the generated memory regions. A for-
mal proof of memory usage is required for compositional reasoning over
assembly programs. Moreover, it can be used to prove low-level security
properties, such as integrity of the return address of a function. Our ver-
ification method is based on interactive theorem proving, but provides
automation by generating pre- and postconditions, invariants, control-
flow, and assumptions on memory layout. As a case study, three binaries
of the Xen hypervisor are disassembled. These binaries are the result
of a complex build-chain compiling production code, and contain vari-
ous complex and nested loops, large and compound data structures, and
functions with over 100 basic blocks. The methodology has been success-
fully applied to 251 functions, covering 12,252 assembly instructions.

Keywords: Formal Verification · Assembly · x86-64 · Memory Usage

1 Introduction

This paper presents a formal methodology for reasoning over the memory usage

of functions in a software suite. Various security properties require knowledge
on memory usage. For example, proving absence of buffer overflows requires
proving that a function does not write outside certain memory regions. Control-
flow integrity requires showing, among other things, that the return address
cannot be overwritten [61]. The security property called non-interference requires
reasoning over which parts of the memory are used by which functions [50].

Moreover, memory usage is crucial for compositional reasoning over assembly
code. Typically, compositional reasoning requires proving that certain code frag-
ments are spatially independent [45,47]. A proof of memory usage can be used to
prove such independence, thereby allowing composition. Consider a function g

that at some point calls function f . Compositional reasoning means that a veri-
fication effort over f can be reused for verification of g without unfolding it. This
at least requires that the verification effort over f establishes that f does not
modify the stack frame of g. More generally, compositional reasoning requires

c© The Author(s) 2020
A. Biere and D. Parker (Eds.): TACAS 2020, LNCS 12079, pp. 98–117, 2020.
https://doi.org/10.1007/978-3-030-45237-7_6

TACAS
Evaluation
Artifact

2020
Accepted

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45237-7_6&domain=pdf
http://orcid.org/0000-0002-6625-1123
http://orcid.org/0000-0002-1055-8003
http://orcid.org/0000-0002-8663-739X
https://doi.org/10.1007/978-3-030-45237-7_6

Highly Automated Formal Proofs over Memory Usage of Assembly Code 99

at least knowing that f restricts itself to certain parts of the memory. This is
exactly what is established by proving memory usage.

Memory usage cannot satisfactorily be expressed at the source-code level. As
an illustration, consider formulating a property that a function cannot overwrite
its own return address. This requires knowledge on the values of the stack and
frame pointers, making it an assembly-level property. At the assembly level, one
can easily express a property formulating that the memory at the top of the
stack frame (where the return address is stored) should remain unmodified.

Reasoning over assembly, however, is complicated due to the semantical gap
between assembly and source code. In assembly code, ostensibly simple com-
putations can be implemented using complex sequences of low-level operations.
For example, a simple integer division by 10 can be implemented with a series of
bit-level operations. Assembly code does not have types. It is common to, e.g.,
mix logical bitwise operators with signed integer arithmetic, or floating-point
operations with bitvector operations. Assembly code does not have a clear dis-
tinction between stack frame and heap. Whether some address refers to a local
variable stored in the stack, a global variable, or part of the heap, is provable
only by adding assumptions on memory layout. Finally, assembly does not have
a clear notion of scoping. Function calls are not necessarily clearly delineated,
and instead of assuming that a function cannot write to a variable it has no
access to (such as a local variable of another function), this has to be proven.

The contribution of this paper consists of a formal, compositional and highly
automated methodology for reasoning over memory usage at the assembly-level.3

Our approach first uses untrusted tools to generate a formal memory usage cer-

tificate (see Section 2). This certificate contains 1.) theorems on memory us-
age, 2.) the preconditions under which memory usage can be shown, and 3.)
proof ingredients. These proof ingredients contain assumptions on memory lay-
out, control-flow information, and invariants. Section 2 provides an example of a
function that theoretically can overwrite its own return address. We show that
the certificate provides preconditions and a formal proof that a return-address-
based exploit is not possible under those preconditions.

The certificate and the original assembly are loaded into an interactive the-
orem prover (ITP). Memory usage in general is an undecidable property (Rice’s
theorem [48]), which is why we aim for an ITP environment to allow user in-
teraction when necessary. Using the proof ingredients, the certificate is formally
proven correct with minimal user interaction, making use of customized proof
strategies. Section 3 describes certificate verification and composition.

To demonstrate applicability and scalability, we apply the methodology to
x86-64 binaries of the Xen hypervisor [13] (see Section 4). The binaries are ob-
tained via the standard Xen build process, including optimizations. The binaries
are decompiled to assembly using off-the-shelf disassembly tools. Our method-
ology is applied to 251 functions; for each function a certificate is automatically
generated, and a proof is finished in the Isabelle/HOL theorem prover [44]. With-

3 All code and proofs are publicly available [57].

100 F. Verbeek et al.

out exception, the manual interaction consists of elementary interactive theorem
proving such as applying the proper proof method.

While past work [38,41,25] on assembly-level formal verification exists, the
degree of either scalability or automation is limited. As example of interactive
theorem proving, Boyer and Yu verified machine-code implementations of vari-
ous standard sort- and string functions, requiring over 19,000 lines of manually
written proof code for the verification of roughly 900 instructions [8]. As exam-
ple of automated theorem proving, Tan et al. presented an approach which takes
about 6 hours for a 533-instruction string search algorithm [56]. In constrast, this
paper involves a degree of user interaction of ≈85 lines of proof code per 1,000
lines of assembly. Our work is able to almost fully automatically verify 12,252
instructions from real world industrial binaries compiled by a real world build
process. Section 5 discusses prior art, its contrast with the paper’s work, and
the paper’s contributions. To the best of our knowledge, there is no related work
that is able to achieve similar scalablity and automation on real world binaries.

2 Formal Memory Usage Certificates

Figure 1 provides an example of a formal memory usage certificate (FMUC).
The FMUC is generated automatically from an assembly file. This assembly file
may be produced from a binary using a disassembler such as objdump, IDA,4

Ghidra’s decompiler,5 or Capstone [46]. In case source code is available, the
assembly code can also be produced directly by a compiler. In this example,
the C code of Figure 1a is used solely for presentation, the input to the FMUC
generation is the assembly created by decompiling the corresponding binary. For
each function in the assembly file, an FMUC is produced. External functions,
for example due to dynamic linking, are treated as black boxes (see Section 3.4).

An FMUC consists of two parts: a memory usage theorem and its proof (see
Figure 1c). The theorem consists of assumptions implying a Hoare triple [28,40]
over the function. The Hoare triple is specific to memory usage. Intuitively,
it means that from a state satisfying precondition P , after execution of code
fragment f , the state satisfies postcondition Q (as in normal Hoare triples). The
Hoare triple also contains a memory region set M . Besides its regular meaning,
the Hoare triple expresses that any write that occurs during execution of f occurs
within one of the memory regions in this set.

The term memory usage formally denotes an overapproximation of the mem-
ory written to by a function. Thus, any address that is not enclosed in one of the
regions of M , is guaranteed to be preserved. Set M , however, will also include
the memory regions read by the function, for verification purposes.

The precondition P expresses that the instruction pointer rip is at the entry
point of the function. It also provides initial symbolic values for all registers and
memory regions that are read (e.g.,: rsp = rsp

0
). Finally, it formulates that

the return address is stored at the top of the stack frame. The postcondition Q

4 https://www.hex-rays.com/products/ida/index.shtml
5 https://ghidra-sre.org/

https://www.hex-rays.com/products/ida/index.shtml
https://ghidra-sre.org/

Highly Automated Formal Proofs over Memory Usage of Assembly Code 101

int main(int argc , char* argv []) {
int* a = (int*)argv;
int* b = (int*)(argv + 4);
(int)(argv + 2) = *a + *b;
(char)argv = ’a’;

int array[argc];

for (int i = 0; i < argc; i++) {
array[i] = argv[i][0] * 2;

}

if (is_even(argc)) {
return array[argc];

}
return array [0];

}

(a) C Code

Block 1149−>120b;
Loop

Block 123e−>1244;
If SF �= OF Then

Block 120d−>123a
Else Break Fi

Pool;
Block 1246−>1249;
Block 124b−>124b; – call to is_even

Block 1250−>1252;
If ZF Then

Block 1263−>1267
Else Block 1254−>1261 Fi;
Block 1269−>1279;
If ZF Then

Block 1280−>1285
Else Block 127b−>127b Fi

(b) Syntactic Control Flow f

thm: MRR =⇒ {P}f{Q;M}
proof:

apply (check_scf_step)+
apply (check_scf_while "P123e || P1246")
apply (check_scf_step)+

where:
P ≡ rip = 1149 ∧ rsp = rsp0 ∧ . . . ∧ ∗[rsp, 8] = ret_addr

Q ≡ rip = ret_addr ∧ rsp = rsp0 + 8 ∧ . . . ∧ ∗[rsp0, 8] = ret_addr

(c) Theorem and proof code

M = {a = [rsp0, 8], b = [fs0 + 40, 8], c = [rsi0 + 36, 4], d = [rsp0 − 8, 8], . . .}
MRR = {a, b, c, d, . . .} are separate

(d) The memory regions and their relations for block 123e−>1244.

P123e(σ) = rip = 123e

rbp = rsp0 − 8
rdi = rdi0
rsp = rsp0 − (88 + 16 ∗ ((15 + 4 ∗ sextend(〈31, 0〉rdi0)) / 16))
∗[rsp0 − 40, 8] = rsp0 − (85 + 16 ∗ ((15 + 4 ∗ sextend(〈31, 0〉rdi0)) / 16)) >> 2 << 2
∗[rsp0 − 48, 8] = sextend(〈31, 0〉rdi0)− 1
∗[rsp0 − 56, 8] = rsi0 + 32

. . .

(e) Invariant at line 0x123e (only 7 out of 23 equations shown)

{P124b} is_even {P1250;Mis_even}

(f) Assumption due to call of function is_even

Fig. 1: An FMUC. Region [a, s] denotes a region of s bytes starting at 64-bit
address a. Notation ∗r denotes reading region r in little-endian fashion. Notation
〈31, 0〉rdi0 takes the lower 32 bits of the register.

102 F. Verbeek et al.

expresses that the function has returned, i.e., the instruction pointer is equal to
the return address and the stack pointer rsp is equal to its original value plus
eight. For any callee-saved register, i.e., any register whose value is assumed to
be preserved by the function call, it will say that its value is unchanged.

The component f of the memory usage theorem is a representation of the
control flow of the function in terms of syntactic structures such as basic blocks,
loops and if-then-else statements (see Figure 1b). We call this the syntactic
control flow (SCF). The SCF is automatically generated from the control flow
graph (CFG). The reason that a syntactic structure is required, is because the
proof is done using Hoare logic, which is guided by syntax. The proof of an FMUC
of an entire function is based on FMUCs per basic block. Thus one FMUC is
generated per basic block, and one corollary FMUC for the entire function.

The proof consists of two further proof ingredients: memory region relations

and invariants. We zoom in on block 123e−>1244 to explain both of these. The
FMUC provides 13 regions for this block, of which 4 are shown (see Figure 1d).
Region a stores the return address. Region b depends on the segment register
fs and stores the canary [15]. Region c is based on the pointer passed as second
argument to the function. Finally, region d is part of the stack frame. The gener-
ated memory region relations assume that all these regions are separate. Out of
the per-block memory regions and their relations, memory regions and relations
for the function as a whole are composed.

For each basic block, an invariant is generated. Stronger invariants can lead
to a tighter approximation of memory usage. The invariant assigned to block
123e−>1244 is effectively a loop invariant (see Figure 1e). The frame pointer
rbp is equal to the original stack pointer minus eight. Register rdi has not
been touched. We also show some of the more complex invariants, such as the
value of the stack pointer. In total, the loop invariant provides information on
11 registers and 12 memory locations for this basic block. Note that the FMUC
provides preconditions in terms of the initial state of the corresponding basic
block. In Section 3.2 these are lifted to preconditions in terms of the initial state
of the function.

For this example, we treated is_even as an external function (see Figure 1f).
An assumption was thus generated, that expresses that the memory usage of that
function suffices to show that the invariant at line 124b implies the invariant at
line 1250. This means, among others, that the memory used by is_even (denoted
Mis_even) should not overlap with regions a through d. Section 3.4 provides more
information on composition.

The FMUC is generated automatically, except for the three line proof in Fig-
ure 1c. Due to the undecidability of memory usage, interaction may be required.
Isabelle/HOL proof strategies are provided to assist in that interaction. Sec-
tion 3 provides more details. The manual effort required in proving the FMUC
for this function, consists simply of calling the proper proof strategies. First,
check_scf_step is run, applying Hoare logic rules and proving correctness of the
memory usage until the loop. Then, the proof strategy for dealing with the loop

Highly Automated Formal Proofs over Memory Usage of Assembly Code 103

is called, with the invariant generated from the FMUC. Finally, check_scf_step
is called again, which is able to verify the remainder of the function.

Finally, note that without any assumptions the function could overwrite its
own return address at various places. The memory region relations MRR are
sufficiently strong to exclude this. These relations thus form the preconditions
under which a return-address exploit is impossible. As example, they assume that
regions a and c are separate. This means that the address stored in parameter
argv (reflected as rsi0 at the assembly level) is not allowed to point to a region
within the stack frame of function main.

Due to space restriction, we omit details on the algorithms that generate an
FMUC. In general, none of the FMUC generation is part of the trusted comput-
ing base. That is, none of the algorithms need to be backed up by formal proofs.
The output of the FMUC generation is imported into Isabelle/HOL, where it is
proven correct. If there is an error in CFG generation, control flow extraction,
symbolic execution, or in the generated invariants, then the certificate cannot
be proven in Isabelle/HOL. One exception is the memory region relations. They
are assumptions, and if they are internally inconsistent this leads to a vacuous
truth. For that reason, Z3 is used to generate them [39], making it impossible to
introduce, e.g., a relation where two overlapping regions are considered separate.

3 FMUC Verification

This section presents the verification of an FMUC. Both the FMUC and the
original assembly are loaded into Isabelle/HOL. The theorem is then proven
using the proof ingredients stored in the FMUC. This means that given a step
function that models the semantics of the assembly instructions, the Hoare triple
is verified.

Let step :: I × S × S �→ B be a transition relation. It takes as input an
instruction of type I and two states σ and σ′. It returns true if and only if
execution of the instruction in state σ can produce state σ′. Undefined behavior,
such as null-pointer dereferencing, is modeled by relating a state to any successor
state. The semantics of a syntactic control flow (SCF) are straightforwardly
defined by a function exec_scf :: SCF ×S×S �→ B (here SCF denotes the type
of a syntactic control flow object). In case of loops the function is defined using
a least fixed point construction. This way, if the halting condition is never met,
there exists no related σ′.

First, we define the notion of memory usage wrt. a certain state change:

Definition 1. The set of memory regions M is the memory usage wrt. the state

change from σ to σ′, if and only if, any byte at an address a not inside one of

the regions is unchanged.

usage(M,σ, σ′) ≡ ∀a · (∀r ∈ M · [a, 1] �� r) =⇒ σ′ : ∗[a, 1] = σ : ∗[a, 1]

Here, notation σ : ∗[a, s] means reading in little-endian fashion s bytes from
memory address a in state σ. Notation r0 �� r1 denotes that two regions are
separate.

104 F. Verbeek et al.

Definition 2. A memory usage Hoare triple is defined as:

{P} f {Q;M} ≡ ∀σ σ′ · P (σ) ∧ exec_scf(f, σ, σ′) −→ Q(σ′) ∧ usage(M,σ, σ′)

In words, Definition 2 states the following: if precondition P holds on the
initial state σ and σ′ can be obtained by executing f , postcondition Q holds on
the produced state and the values stored in all memory regions outside set M

are preserved.

3.1 Verification Tools Used

Isabelle/HOL The theorem prover utilized in this work was Isabelle 2018 [44].
It is a generic tool with a flexible, extensible syntactic framework. Isabelle also
utilizes a powerful proof language known as intelligible semi-automated reason-
ing (Isar) [59] and a proof strategy language called Eisbach [37]. We made heavy
use of Word library [17]. This library provides a limited-precision integer type,
’a word, where ’a is the number of bits in the integer. Various operations are
provided for manipulation of and arithmetic involving formal words, including bit
indexing, bit shifting, setting specific bits, and signed and unsigned arithmetic.
Operators for inequality are also included, as well as operations for converting
between word sizes.

Machine Model and Instruction Semantics Heule et al. provide seman-
tics of the x86-64 architecture [27]. Instead of manually codifying instruction
semantics, they applied machine learning to derive semantics from a live x86
machine. This produced highly reliable semantics: they compared the seman-
tics to manually written semantics based on the Intel reference manuals, and
found that in the few cases where they differed the Intel manuals were wrong.
Roessle et al. embedded these semantics into the Isabelle/HOL theorem prover
and tested the formal Isabelle semantics against live x86 hardware [49]. This
formal machine model is the base of our verification effort.

Symbolic Execution Bockenek et al. provide an Isabelle/HOL symbolic
execution engine based on the above semantics [6]. Effectively, this provides a
function symb_exec that symbolically runs basic blocks. Let a0 and a1 be the
start- and end-addresses of the block. A call to symb_exec(a0, a1, σ, σ

′) returns
true if and only if state σ′ is the result of symbolically executing the block from
state σ. The symbolic execution is completely written in Isabelle/HOL, meaning
that every rewrite rule has been formally proven correct.

3.2 Per-block Verification

Verification occurs by first verifying per basic block. Figure 2a shows an introduc-
tion rule for establishing a Hoare triple over a basic block. The first assumption
requires the symbolic execution method to run over a universally quantified sym-
bolic state σ that satisfies the precondition. Any resulting state σ′ should satisfy
the postcondition Q, and the set of memory regions M generated for the block
should be correct.

Highly Automated Formal Proofs over Memory Usage of Assembly Code 105

The second assumption is required because of an important subtlety: the
regions generated in the FMUC are expressed in terms of the initial state of
their basic block. However, it makes no sense to express the regions used by
individual blocks within a larger function in terms of their own initial state. If a
region of a basic block somewhere within a function body depends on, e.g., the
value of register rdi at the start of that block, then it is unsound to express that
memory region in terms of rdi0, i.e., the value of rdi at the start of the function.
Therefore, the Hoare triples are defined based on a set of memory regions M ′

that solely depends on the initial state of the function. For each block, that set is
obtained by taking the generated set of memory regions M (expressed in terms
of the initial state of the block) and applying it to any state that satisfies the
current invariant. This produces a set of regions expressed in terms of the initial
state of the function.

An Isabelle proof strategy has been implemented that, given the proof ingre-
dients from the FMUC, discharges this introduction rule. The proof strategy runs
symbolic execution within Isabelle/HOL, proves the postcondition and proves
the memory usage. The open variables P , Q, a0, a1 and M are all provided by
the FMUC. No interaction is required; for basic blocks the proof is automated.

3.3 Verification of Function Body

∀σ σ′ · P (σ) ∧ symb_exec(a0, a1, σ, σ
′) =⇒ Q(σ′) ∧ usage(M(σ), σ, σ′)

M ′ = { r | ∃σ · P (σ) ∧ r ∈ M(σ) }

{P} Block a0−>a1 {Q;M ′}

(a) Introduction rule

{P} f {Q;M1} {Q} g {R;M2} M = M1 ∪M2

{P} f ; g {R;M}

(b) Sequence rule

{I ∧B} f {I ′;M} I ′ =⇒ I I ∧ ¬B =⇒ Q

{I} While B DO f OD {Q;M}

(c) While rule

Fig. 2: Hoare rules for memory usage

For each syntactic construct, a Hoare rule is defined (see Figure 2). The
sequence and conditional rules (only first is shown) are straightforward: the
memory usage is the union of the memory usage of the constituents. Note that
the sequence rule is sound only because the memory predicates are independent
of the initial state of the basic blocks, as discussed above.

The while rule is based on a loop invariant I. If the memory usage of one
iteration of function body f is constrained to the set of memory regions M , then

106 F. Verbeek et al.

that holds for the entire loop. This sounds counterintuitive. Consider a simple C-
like loop iterating from i = 0 while i < 10 and as body the assignment a[i] = 0,
i.e., it writes to the ith element of an array. Verification of the loop requires
the invariant I(σ) = i(σ) < 10. The FMUC of the loop body will have a set of
memory regions M(σ) = {[a+ i(σ), 1]}, i.e, one region of one byte, expressed in
terms of the initial state of the basic block. Now consider the application of the
introduction rule to the block of the loop body. It will introduce a Hoare triple
with:

M ′ = { r | ∃σ · I(σ) ∧ r ∈ M(σ)}
= { r | ∃σ · i(σ) < 10 ∧ r = [a+ i(σ), 1]}
= { [a′, 1] | a ≤ a′ ≤ a+ 10}

The set M ′ is actually the memory used by the entire loop. This is because
the introduction rule applies the state-dependent set of memory regions to any
state that satisfies the invariant. This shows that the strength of the generated
invariants influences the tightness of the overapproximation of memory usage. A
weaker invariant, e.g., i < 20, would produce a larger set of memory regions.

An Isabelle/HOL proof strategy is implemented that automatically applies
the proper Hoare logic rule. It is driven by the syntactic control flow provided
by the FMUC. For function bodies without loops, this proof strategy requires
no further interaction. For each loop entry, it is required to manually apply the
weaken rule to show that the postcondition of the block before entry implies the
loop invariant. Without exception, each of these proofs could be finished using
standard off-the-shelf Isabelle/HOL tools. The part that is usually the most
involved – defining the invariants – is taken care of by the FMUC generation.

3.4 Composition

Let f be a function body. Assume that the function has been verified, i.e., a Hoare
triple has been proven of the form: {Pf} f {Qf ;Mf}. In order to composably
reuse that verification effort, function f is considered to be a black box once it
is verified. Now consider a function g calling function f :

a0: push rbp

a1: call f

a2: pop rbp

a3: ret

Let P denote the precondition right before executing the assembly instruction
call. Precondition P contains the equality ∗[rspg

0
− 8, 8] = rbp

g
0
, expressing

that function g has pushed frame pointer rbp into its own local stack frame. Let
Q denote the postcondition just after returning, but before executing pop. The
postcondition of g expresses that callee-saved register rbp is properly restored,
i.e., rbp = rbp

g
0
. That is indeed done by the pop instruction. In order to prove

proper restoration of rbp, it must be proven that function f did not overwrite
any byte in region [rspg

0
− 8, 8]. Additionally, function f must be proven not to

overwrite region [rspg
0
, 8] which stores the return address of g. For this particular

instance of calling f , it thus must be proven that f preserves these two regions.

Highly Automated Formal Proofs over Memory Usage of Assembly Code 107

More generically, function f can be called by various functions other than g.
For each call the specific requirements on which memory regions are required to
be preserved differ. Thus, to be able to verify function f once, and reuse that
verification effort for each call, the verification effort must at least contain an
overapproximation of the memory written to by function f . Note that this is
exactly the requirement when using separation logic [45,47,33]. Separation logic
provides a frame rule for compositional reasoning. This frame rule informally
states that if a program can be confined to a certain part of a state, properties
of this program carry over when the program is part of a bigger system.

We thus provide a version of the frame rule of separation logic, specific to
memory usage verification (see Figure 3). Effectively, this rule is used to prove
that the memory usage of a caller function g is equal to the memory it uses
itself, plus the memory used by function f . It requires four assumptions. First,
it assumes function f has been verified for memory usage, with Mf denoting that
memory usage. Second, it assumes that precondition P can be split up into two
parts: precondition Pf required to verify function f , and a separate part Psep.
The separate part is specific to the actual call of the function. In the example,
Psep will contain the equality [rspg

0
− 8, 8] = rbp

g
0
. Third, the correctness of the

set of memory regions Mf should suffice to prove that the separated part Psep

is preserved. In the example, this effectively means that Mf should not overlap
with the two regions of g. Fourth, Psep and Qf should imply postcondition Q.

{Pf} f {Qf ;Mf}
P =⇒ Pf ∧ Psep

∀σ σ′ · usage(Mf , σ, σ
′) ∧ Psep(σ) −→ Psep(σ

′)
Qf ∧ Psep =⇒ Q

{P} Call f {Q;Mf}

Fig. 3: Frame rule for composition of memory usage

In practice, many functions will not be part of the assembly code under veri-
fication (e.g., external calls). We thus have to generate the assumptions required
to proceed with verification. To this end, we introduce the following notation:

{P} f {Q;Mf} ≡ ∃ Pf Qf Psep · four assumptions of frame rule are satisfied

Making this assumption informally expresses that function f is assumed to have
been verified. Its memory usage Mf is assumed to suffice to prove that we could
step from states satisfying P to states satisfying Q.

4 Case Study: Xen Project

The Xen Project [13] is a mature, widely-used virtual machine monitor (VMM),
also known as a hypervisor. Hypervisors provide a method of managing multiple

108 F. Verbeek et al.

virtual instances of operating systems (called guests or domains) on a physical
host. The Xen hypervisor is a suitable case study because of its security rele-
vance and its complex build process involving real production code. Security is a
significant issue in environments where hypervisors are used, such as the Ama-
zon Elastic Compute Cloud (Amazon EC2), Rackspace Cloud, and many other
cloud service providers. For example, when one or more physical hosts support
virtual guests for any number of distinct users, ensuring isolation of the guest
operating systems (OSs) is important. The Xen build process produces multi-
ple binaries that contain functions not present in the Xen source itself. This is
due to the inclusion of external static libraries and programs. We used Xen 4.12
compiled with GCC 8.2 via the standard Xen build process. This build process
uses various optimization levels, ranging from O1 to O3.

Of the binaries produced by the Xen build process, we considered three:
xenstore, xen-cpuid, and qemu-img-xen. The xenstore binary is involved in
the functionality of XenStore,6 a hierarchical data structure shared amongst
all Xen domains. The xen-cpuid utility queries the underlying processors and
displays information about the features they support. The third binary, qemu-
img-xen, consists of over three hundred functions that are not present in the Xen
source code. It provides some of the functionality of Quick Emulator (QEMU).
QEMU is a free, open-source emulator.7 Xen uses it to emulate device models
(DMs), which provide an interface for hardware storage.

Binaries Function Count Instruction Count Loops Manual Lines of Proof

xenstore 2/6 100 0 6
xen-cpuid 2/3 210 2 39
qemu-img-xen 247/343 11,942 64 1,002
Total 251/352 12,252 65 1,047

Verified Indirection Address
Computation

repz cmps RecursionSCF explosion

0

100

200

300
71.31

18.75
5.4 2.84 0.57 1.14

C
o
u
n
ts

a
n
d

P
er

ce
n
ta

g
es

Fig. 4: Case Study Overview

6 https://wiki.xen.org/wiki/XenStore
7 https://www.qemu.org/

https://wiki.xen.org/wiki/XenStore
https://www.qemu.org/

Highly Automated Formal Proofs over Memory Usage of Assembly Code 109

Our methodology is currently capable of dealing with 71% of the functions
present in these binaries (see Figure 4). The supported features include (nested)
loops, subcalls, variable argument lists, jumps into other function bodies, string
instructions with the rep prefix. There is no particular limit on function size.
The average number of instructions per function analyzed is 49. Some of the
functions analyzed have over 300 instructions and over 100 basic blocks.

There are five categories of features we do not support. The first and most
common is indirection, accounting for 19%. Indirection involves a call or jump
instruction that loads the target address from a register or memory location
rather than using a static value. Switch statements and certain uses of goto are
the most common causes of indirect jumps. Indirect calls generally result from
usage of function pointers. For example, the main functions of all three verified
binaries used switch statements in loops in the process of parsing command line
options. These statements introduced indirect branches.

The second category involves issues related to generating the memory region
relations. This step requires solving linear arithmetic over symbolically computed
addresses. Sometimes, addresses are computed using a combination of arithmetic
operators with bitwise logical operators. In some of these cases, our translation
to Z3 does not produce an answer. As an example, function qcow_open uses
the rotate-left function to compute an address. As another example, function
AES_set_encrypt_key produces addresses that are obtained via combinations
of bit-shifting, bit masking, and xor-ing.

The instruction repz cmps is currently not supported for technical reasons. It
is the assembly equivalent of the function strncmp, but instead writes its result to
a flag. Various other string-related instructions with the rep prefix are supported.
Functions with recursion, a minority in systems code, are also not supported.
Recursive stack frames in our framework are not well-suited to automation.
The two recursive functions we encountered both perform file-system-like tasks.
Functions do_chmod and do_ls are similar respectively to the permission-setting
chmod utility, and directory-displaying ls. The final category is functions whose
SCF explodes. The issue occurs mostly when loops have multiple entries.

The table in Figure 4 provides an overview of the verification effort. The
table shows the absolute counts of functions verified as well as the total number
of instructions for those functions. Alongside that information is the number of
functions with loops that were verified and how many manual lines of proof were
required in total. The vast majority of those manual proof lines were related to
the loop count.

5 Related Work

Assembly verification has been an active research field for decades. Table 1 pro-
vides an inexhaustive overview of related work. We first address some formal
verification efforts at the assembly level. Then we discuss work in which assem-
bly verification played a role in a larger verification context. Finally, verified
compilation and static binary analysis tools are discussed.

110 F. Verbeek et al.

Assembly-level Verification. Clutterbuck et al. [14] performed formal ver-
ification of assembly code using SPACE-8080, a verifiable subset of the Intel 8080
instruction set architecture (ISA) that is analyzable and formally verifiable [12].
Not long after, Bevier et al. presented a systems approach to software verification
[5,7]. Their work laid out a methodology for verifying the correctness of all com-
ponents necessary to execute a program correctly, including compiler, assembler
and linker. The methodology was applied to a small OS kernel, Kit [4]. Similarly,
Yu and Boyer [60,8] presented operational semantics and mechanized reasoning
for approximately 80% of the instructions of the MC68020 microprocessor, over
85 instructions. Their approach utilized symbolic execution of operational se-
mantics. These early efforts required significant interaction. For example, the
approach of Yu and Boyer required over 19,000 lines of manually written proof
to verify approximately 900 assembly instructions.

Matthews et al. targeted a simple machine model called TINY as well as
Java virtual machine (JVM) bitcode using the M5 operational model [38]. Their
approach utilizes symbolic execution of code annotated with manually written
invariants. It also used verification condition generation to increase automa-
tion. This reduced the number of manually written invariants. Both of these
assembly-style languages feature a stack for handling scratch variables rather
than a register file as x86, ARM, and most other mainstream ISAs do.

Goel et al. presented an approach for modeling and verifying non-deterministic
programs on the binary level [25,24]. In addition to formulating the semantics of
most user-mode x86 instructions, they provided semantics for common system
calls. System call semantics increase the spread of programs that can be fully
verified. Their work was applied to multiple small case studies, including a word
count program and two kernel-mode memory copying examples.

Bockenek et al. provide an approach to proving memory usage over x86
code [6]. They used a Floyd-style reasoning framework to prove Floyd invari-
ants over functions [21]. They have applied it to functions of the HermitCore
unikernel, covering 2,613 assembly instructions. Their approach required a sig-
nificant amount of manual effort: pre- and postconditions, invariants, the actual
regions of memory used and their relations all need to be manually defined.

The main difference between these existing approaches and the methodol-
ogy presented in this paper concerns automation. Generally, interactive theorem
proving over semantics of assembly instructions does not scale due to the amount
of intricate user interaction involved. Figure 1e shows, e.g., the complexity of
defining an assembly-level invariant even for a small example. Fully automated
approaches to formal verification, however, do not scale either. The recent au-
tomated approach AUSPICE takes about 6 hours for a 533-instruction string
search algorithm [56]. To the best of our knowledge, our methodology is the first
that is able to deal with optimized x86-64 binaries produced by production code,
with a “manual effort vs. instruction count ratio” of roughly 1 to 11.

Myreen et al. developed decompilation-into-logic [40,41,42]. That work, de-
veloped in the HOL4 theorem prover [54], uses operational semantics of machine
code to lift programs into a functional form. That functional form can then be

Highly Automated Formal Proofs over Memory Usage of Assembly Code 111

Table 1: Overview of Related Work.

Work Target Approach Applications Verified code

Clutterbuck & Carré SPACE-8080 ITP N/A
Bevier et al. PDP-11-like ITP Kit
Yu & Boyer MC68020 ITP String functions 863 insts
Matthews et al. Tiny/JVM ITP+VCG CBC enc/dec 631 insts
Goel et al. x86-64 ITP word-count 186 insts
Bockenek et al. x86-64 ITP HermitCore 2,613 insts
Tan et al. ARMv7 ATP String search 983 insts
Myreen et al. ARM/x86 DiL seL4 9,500 SLoC
Feng et al. MIPS-like ITP Example functions
This paper x86-64 ITP+CG Xen 12,252 insts

Sewell et al. C TV+DiL seL4 9,500 SLoC
Shi et al. C/ARM9 ATP+MC ORIENTAIS 8,000 SLoC, 60 insts
Dam et al. ARMv7 ATP+UC PROSPER 3,000 insts

VCG = Verification Condition Generation DiL = Decompilation-into-Logic
SLoC = Source Lines of Code ATP = Automated Theorem Proving
UC = User Contracts CG = Certificate Generation
TV = Translation Validation MC = Model Checking

used in a Hoare logic framework for program analysis [40]. Decompilation-into-
logic has been used for both ARM and x86 ISA machine models, and applied
to various large examples, including benchmarks such as a garbage collector,
and the Skein hash function. Decompilation-into-logic covers – formally – the
gap between machine code and a HOL model. It is not a verification method in
itself, i.e., it does not verify properties over the machine code. It can be used as
a component in a binary-level verification methodology [51].

Feng et al. presented stack abstractions for modular verification of assembly
code [20,19]. Their work allows for integration of various proof-carrying code
systems [43]. As with our work, it utilizes a Hoare-style framework for its veri-
fication. The authors applied their work to multiple example functions, such as
two factorial implementations. In constrast to our approach, manual annotations
are required to provide information regarding invariants and memory layout.

Integrated Assembly-Level Verification Efforts. A major verification
effort, based on decompilation-into-logic, is the verification of the seL4 ker-
nel [32,31]. The seL4 project provides a microkernel written in formally proven
correct C code. The tool AutoCorres [26] is used for C code verification. Sewell
et al. verified a refinement relation between the C source code and an ARM
binary for both non-optimized and optimized at O2 [51]. The major differences
with respect to our work is that our methodology targets existing production
code, instead of code written with verification in mind. For example, the seL4
source code does not allow taking the addresses of stack variables (such as in
Figure 1a): their approach requires a static separation of stack and heap. Neither
the seL4 proof effort nor our methodology support function pointers.

112 F. Verbeek et al.

Shi et al. formally verified a real-time operating system (RTOS) for auto-
motive use called ORIENTAIS [52]. Part of their approach involved source-level
verification using a combination of Hoare logic and abstract communicating se-
quential processes (CSP) model analysis [29]. Binary verification was done by
lifting the RTOS binary to xBIL, a related hardware verification language [53].
They translated requirements from the OSEK automotive industry standard to
source code annotations.

Targeting a similar case study as this paper, Dam et al. formally verified a
tiny ARMv7 hypervisor, PROSPER [16,3] at the assembly level. Their methodol-
ogy integrated HOL4 with the Binary Analysis Platform (BAP) [9]. BAP utilizes
a custom intermediate language that provides an architecture-agnostic represen-
tation of machine instructions and their side effects. HOL4 was used to translate
the ARM binary into BAP’s intermediate language, using the formal model of
the ARM ISA by Fox et al.[22]. The SMT solver Simple Theorem Prover (STP)
[23] was used to determine the targets of indirect branches and to discharge the
generated verification conditions. While the approach was generally automated,
user input was still required to describe software contracts of the hypervisor.

Verified Compilation. In contrast to directly verifying machine or assem-
bly code, one can verify source code and then use verified compilation. Verified
compilation establishes a refinement relation between assembly and source code.
The CompCert project [36] provides a compiler for a subset of C. Its output has
been verified to have the same semantics as the C source code. The seL4 project
used CompCert to reduce its trusted code base [31]. Another example of verified
compilation is CakeML [35]. It utilizes a subset of Standard ML modeled with
big-step operational semantics. The main purpose of verified compilation, how-
ever, is not to verify properties over the code. For example, if the source code is
vulnerable to a return-address exploit, then the assembly code is vulnerable as
well. Verified compilation is thus often accompanied by source code verification.
We have argued that for memory usage, assembly-level verification is necessary.

Static Analysis. Static analysis of binary code has been an active research
field for decades [34,9,58]. The BitBlaze project [55] provides a tool called Vine
which constructs control flow graphs for supplied programs and lifts x86 instruc-
tions to its own intermediate language (IL). Though Vine itself is not formally
verified, it does support interfacing with the SMT solver STP as well as CVC
[1,2]. The tool Infer [10], developed at Facebook, provides in-depth static analy-
sis of LLVM code to detect bugs in C and C++ programs. It utilizes separation
logic [47] and bi-abduction [11] to perform its analyses in an automated fashion.
It is designed to be integrated into compiler toolchains, in order to provide im-
mediate feedback even in continuous integration scenarios. FindBugs is a static
analysis tool for Java code [30]. Rather than relying on formal methods, it uses
searches for common code idioms to detect likely bugs. Common errors it high-
lights include null pointer dereferences, objects that compare equal not having
equal hash codes, and inconsistent synchronization. The tool Splint [18] detects
buffer overflows and similar potential security flaws in C code. It relies on anno-
tated preconditions to derive postconditions.

Highly Automated Formal Proofs over Memory Usage of Assembly Code 113

The main difference between these static analysis tools and formal verification
is that these tools generally are highly suited to find bugs, but are not able
to prove absence of them. They generally apply techniques that are formally
unsound, such as depth-bounded searches.

6 Conclusion

This paper presents an approach to formal verification of memory usage of func-
tions in a compiled program. Memory usage is a property that expresses an
overapproximation of the memory used by assembly code. Memory usage is fun-
damental to compositional verification of assembly code, as compositionality at
least requires to prove that functions do not unexpectedly interfere with each
others’ stack frame. It can also be used to show security-related properties, such
as integrity of the return address.

Our approach automatically generates a formal memory usage certificate that
includes 1.) a set of memory regions read from and written to, 2.) postconditions
that express sanity constraints over the function (e.g., the return address has not
been overwritten, callee-saved registers are restored), 3.) proof ingredients such
as the preconditions necessary for formal verification. The certificate is loaded
into a theorem prover, where it is verified. Since the problem of memory usage
is undecidable, we use an interactive theorem prover. The proof ingredients,
combined with custom proof strategies, provide a large degree of automation.
They deal with memory aliasing, the control flow of the function, and invariants.

The approach is applied to three binaries of the Xen hypervisor. These bina-
ries contain production code and are the result of a complex build chain. They
contain, among others, various nested loops, large and compound data struc-
tures, variadic functions, and both in- and external function calls. For 71% of
the functions of these binaries, a certificate could be generated and verified. For
each of these functions, it has at least been formally proven that the return ad-
dress is not overwritten. The amount of user interaction is roughly 85 lines of
proof code per 1,000 lines of assembly code. The greatest bottleneck is in indirect
branching, which accounts for 19% of the functions.

In the near future we aim to support indirect branching. This would allow
support of switches, callbacks, and pointers to functions. Additionally, we aim to
strengthen the invariant generation. Stronger invariants lead to a tighter overap-
proximation of memory usage. The challenge here is not only to generate these
invariants, but to automate their proof as well. Finally, we want to leverage the
certificate to target high-level security properties, such as noninterference.

Data Availability Statement and Acknowledgments All code and proofs are avail-
able in the Zenodo repository: 10.5281/zenodo.3676687. Distribution statement:
Approved for public release; distribution is unlimited. This material is based
upon work supported by the Defense Advanced Research Projects Agency (DARPA)
under Agreement No. HR.00112090028, ONR under grant N00014-17-1-2297,
and NAVSEA/NEEC under grant N00174-16-C-0018.

10.5281/zenodo.3676687
https://doi.org/10.5281/zenodo.3676687

114 F. Verbeek et al.

References

1. Barrett, C., Berezin, S.: CVC Lite: A new implementation of the cooperating va-
lidity checker. In: International Conference on Computer Aided Verification. pp.
515–518. Springer (2004)

2. Barrett, C., Tinelli, C.: CVC3. In: International Conference on Computer Aided
Verification. pp. 298–302. Springer (2007)

3. Baumann, C., Näslund, M., Gehrmann, C., Schwarz, O., Thorsen, H.: A high assur-
ance virtualization platform for armv8. In: 2016 European Conference on Networks
and Communications (EuCNC). pp. 210–214. IEEE (2016)

4. Bevier, W.R.: Kit and the short stack. Journal of Automated Reasoning 5(4),
519–530 (1989)

5. Bevier, W.R., Hunt, W.A., Moore, J.S., Young, W.D.: An approach to sys-
tems verification. Journal of Automated Reasoning 5(4), 411–428 (Dec 1989).
10.1007/BF00243131

6. Bockenek, J.A., Verbeek, F., Lammich, P., Ravindran, B.: Formal verification of
memory preservation of x86-64 binaries (Sep 2019)

7. Boyer, R.S., Moore, J.S.: A Computational Logic. Academic Press, Inc. (1979)

8. Boyer, R.S., Yu, Y.: Automated proofs of object code for a widely used micropro-
cessor. Journal of the ACM 43(1), 166–192 (1996)

9. Brumley, D., Jager, I., Avgerinos, T., Schwartz, E.J.: BAP: A binary analysis plat-
form. In: Gopalakrishnan, G., Qadeer, S. (eds.) International Conference on Com-
puter Aided Verification. pp. 463–469. Springer Berlin Heidelberg, Berlin, Heidel-
berg (2011). 10.1007/978-3-642-22110-1_37

10. Calcagno, C., Distefano, D.: Infer: An automatic program verifier for memory
safety of C programs. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R.
(eds.) NASA Formal Methods. pp. 459–465. Springer Berlin Heidelberg, Berlin,
Heidelberg (2011). 10.1007/978-3-642-20398-5_33, https://fbinfer.com/

11. Calcagno, C., Distefano, D., O’Hearn, P., Yang, H.: Compositional shape analysis
by means of bi-abduction. In: Proceedings of the 36th annual ACM SIGPLAN-
SIGACT symposium on Principles of programming languages. pp. 289–300. POPL
’09 (2009)

12. Carré, B.A., O’Neill, I.M., Clutterbuck, D.L., Debney, C.W.: SPADE–the
southampton program analysis and development environment. In: Software En-
gineering Environments. Peter Peregrinus, Ltd. Stevenage (1986)

13. Chisnall, D.: The Definitive Guide to the Xen Hypervisor. Pearson Education
(2008)

14. Clutterbuck, D.L., Carré, B.A.: The verification of low-level code. Software Engi-
neering Journal 3(3), 97–111 (May 1988). 10.1049/sej.1988.0012

15. Cowan, C., Pu, C., Maier, D., Walpole, J., Bakke, P., Beattie, S., Grier, A., Wagle,
P., Zhang, Q., Hinton, H.: Stackguard: Automatic adaptive detection and pre-
vention of buffer-overflow attacks. In: USENIX Security Symposium. vol. 98, pp.
63–78. San Antonio, TX (1998)

16. Dam, M., Guanciale, R., Nemati, H.: Machine code verification of a tiny ARM
hypervisor. In: Proceedings of the 3rd International Workshop on Trustworthy
Embedded Devices. pp. 3–12. TrustED ’13, ACM Press, New York, NY, USA
(2013). 10.1145/2517300.2517302

17. Dawson, J., Graunke, P., Huffman, B., Klein, G., Matthews, J.: Machine words in
Isabelle/HOL (Aug 2018)

10.1007/BF00243131
https://doi.org/10.1007/BF00243131
10.1007/978-3-642-22110-1_37
https://doi.org/10.1007/978-3-642-22110-1_37
10.1007/978-3-642-20398-5_33
https://doi.org/10.1007/978-3-642-20398-5_33
https://fbinfer.com/
10.1049/sej.1988.0012
https://doi.org/10.1049/sej.1988.0012
10.1145/2517300.2517302
https://doi.org/10.1145/2517300.2517302

Highly Automated Formal Proofs over Memory Usage of Assembly Code 115

18. Evans, D., Larochelle, D.: Improving security using extensible lightweight static
analysis. IEEE Software 19(1), 42–51 (Jan 2002). 10.1109/52.976940

19. Feng, X., Shao, Z., Vaynberg, A., Xiang, S., Ni, Z.: Modular verification of as-
sembly code with stack-based control abstractions. Tech. Rep. YALEU/DCS/TR-
1336, Dept. of Computer Science, Yale University, New Haven, CT (Nov 2005),
http://flint.cs.yale.edu/publications/sbca.html

20. Feng, X., Shao, Z., Vaynberg, A., Xiang, S., Ni, Z.: Modular verification of assembly
code with stack-based control abstractions. In: Proc. 2006 ACM SIGPLAN Con-
ference on Programming Language Design and Implementation. PLDI’06, vol. 41,
pp. 401–414. ACM Press, New York, NY, USA (Jun 2006)

21. Floyd, R.W.: Assigning meanings to programs. Mathematical Aspects of Computer
Science 19(1), 19–32 (1967)

22. Fox, A., Myreen, M.O.: A trustworthy monadic formalization of the ARMv7 in-
struction set architecture. In: Kaufmann, M., Paulson, L.C. (eds.) Interactive The-
orem Proving. pp. 243–258. Springer Berlin Heidelberg, Berlin, Heidelberg (2010).
10.1007/978-3-642-14052-5_18

23. Ganesh, V., Dill, D.L.: A decision procedure for bit-vectors and arrays. In: Damm,
W., Hermanns, H. (eds.) Computer Aided Verification. pp. 519–531. Springer
Berlin Heidelberg, Berlin, Heidelberg (2007). /10.1007/978-3-540-73368-3_52

24. Goel, S.: Formal Verification of Application and System Programs Based on a
Validated x86 ISA Model. Ph.D. thesis (2016), http://hdl.handle.net/2152/46437

25. Goel, S., Hunt, W.A., Kaufmann, M., Ghosh, S.: Simulation and formal ver-
ification of x86 machine-code programs that make system calls. In: 2014 For-
mal Methods in Computer-Aided Design (FMCAD). pp. 91–98 (Oct 2014).
10.1109/FMCAD.2014.6987600

26. Greenaway, D., Andronick, J., Klein, G.: Bridging the gap: Automatic verified ab-
straction of C. In: Beringer, L., Felty, A. (eds.) International Conference on Inter-
active Theorem Proving. pp. 99–115. ITP 2012, Springer-Verlag, Berlin, Heidelberg
(Aug 2012)

27. Heule, S., Schkufza, E., Sharma, R., Aiken, A.: Stratified synthesis: Automatically
learning the x86-64 instruction set. In: Proceedings of the 37th ACM SIGPLAN
Conference on Programming Language Design and Implementation. pp. 237–250.
PLDI ’16, ACM, New York, NY, USA (2016)

28. Hoare, C.A.R.: An axiomatic basis for computer programming. Communications
of the ACM 12(10), 576–580 (Oct 1969)

29. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666–
677 (Aug 1978). 10.1145/359576.359585

30. Hovemeyer, D., Pugh, W.: Finding bugs is easy. SIGPLAN Not. 39(12), 92–106
(Dec 2004). 10.1145/1052883.1052895, http://findbugs.sourceforge.net/

31. Klein, G., Andronick, J., Elphinstone, K., Murray, T., Sewell, T., Kolanski, R.,
Heiser, G.: Comprehensive formal verification of an OS microkernel. ACM Trans-
actions on Computer Systems 32(1), 2:1–2:70 (Feb 2014). 10.1145/2560537

32. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elka-
duwe, D., Engelhardt, K., Kolanski, R., Norrish, M., et al.: seL4: Formal verifica-
tion of an OS kernel. In: Proceedings of the ACM SIGOPS 22nd symposium on
Operating systems principles. pp. 207–220. ACM (2009)

33. Krebbers, R., Jung, R., Bizjak, A., Jourdan, J.H., Dreyer, D., Birkedal, L.: The
essence of higher-order concurrent separation logic. In: European Symposium on
Programming. pp. 696–723. Springer (2017)

10.1109/52.976940
https://doi.org/10.1109/52.976940
http://flint.cs.yale.edu/publications/sbca.html
10.1007/978-3-642-14052-5_18
https://doi.org/10.1007/978-3-642-14052-5_18
/10.1007/978-3-540-73368-3_52
https://doi.org//10.1007/978-3-540-73368-3_52
http://hdl.handle.net/2152/46437
10.1109/FMCAD.2014.6987600
https://doi.org/10.1109/FMCAD.2014.6987600
10.1145/359576.359585
https://doi.org/10.1145/359576.359585
10.1145/1052883.1052895
https://doi.org/10.1145/1052883.1052895
http://findbugs.sourceforge.net/
10.1145/2560537
https://doi.org/10.1145/2560537

116 F. Verbeek et al.

34. Kruegel, C., Kirda, E., Mutz, D., Robertson, W., Vigna, G.: Automating mimicry
attacks using static binary analysis. In: USENIX Security Symposium. vol. 14, pp.
11–11 (2005)

35. Kumar, R., Myreen, M.O., Norrish, M., Owens, S.: CakeML: A verified implemen-
tation of ML. In: Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. pp. 179–191. POPL ’14, ACM, New York,
NY, USA (2014), https://cakeml.org/

36. Leroy, X., Blazy, S., Kästner, D., Schommer, B., Pister, M., Ferdinand, C.: Com-
pCert - a formally verified optimizing compiler. In: Embedded Real Time Software
and Systems, 8th European Congress. ERTS 2016, SEE, HAL, Toulouse, France
(Jan 2016), https://hal.inria.fr/hal-01238879

37. Matichuk, D., Murray, T., Wenzel, M.: Eisbach: A proof method language for
Isabelle. Journal of Automated Reasoning 56(3), 261–282 (2016)

38. Matthews, J., Moore, J.S., Ray, S., Vroon, D.: Verification condition generation via
theorem proving. In: International Conference on Logic for Programming, Artificial
Intelligence, and Reasoning. pp. 362–376. Springer-Verlag (2006)

39. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: International conference
on Tools and Algorithms for the Construction and Analysis of Systems. pp. 337–
340. Springer-Verlag (2008)

40. Myreen, M.O., Gordon, M.J.C.: Hoare logic for realistically modelled machine code.
In: Grumberg, O., Huth, M. (eds.) Tools and Algorithms for the Construction and
Analysis of Systems. pp. 568–582. Springer-Verlag, Berlin, Heidelberg (2007)

41. Myreen, M.O., Gordon, M.J.C., Slind, K.: Machine-code verification for multiple
architectures - an application of decompilation into logic. In: 2008 Formal Methods
in Computer-Aided Design. pp. 1–8. IEEE (Nov 2008)

42. Myreen, M.O., Gordon, M.J.C., Slind, K.: Decompilation into logic—improved.
In: 2012 Formal Methods in Computer-Aided Design (FMCAD). pp. 78–81. IEEE
(2012)

43. Necula, G.C.: Proof-carrying code. In: Proceedings of the 24th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages. pp. 106–119. ACM
(1997)

44. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for
Higher-Order Logic, vol. 2283. Springer Science & Business Media (2002)

45. O’Hearn, P., Reynolds, J., Yang, H.: Local reasoning about programs that alter
data structures. In: International Workshop on Computer Science Logic. pp. 1–19.
Springer (2001)

46. Quynh, N.A.: Capstone: Next-gen disassembly framework (Aug 2014),
http://www.capstone-engine.org/, accessed June 27, 2019

47. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
Proceedings 17th Annual IEEE Symposium on Logic in Computer Science. pp.
55–74. IEEE (2002)

48. Rice, H.G.: Classes of recursively enumerable sets and their decision problems.
Transactions of the American Mathematical Society 74(2), 358–366 (1953)

49. Roessle, I., Verbeek, F., Ravindran, B.: Formally verified big step semantics out of
x86-64 binaries. In: Proceedings of the 8th ACM SIGPLAN International Confer-
ence on Certified Programs and Proofs. pp. 181–195. CPP 2019, ACM, New York,
NY, USA (2019)

50. Rushby, J.: Noninterference, Transitivity, and Channel-Control Security Policies.
SRI International, Computer Science Laboratory (1992)

https://cakeml.org/
https://hal.inria.fr/hal-01238879
http://www.capstone-engine.org/

Highly Automated Formal Proofs over Memory Usage of Assembly Code 117

51. Sewell, T.A.L., Myreen, M.O., Klein, G.: Translation validation for a verified OS
kernel. In: Proceedings of the 34th ACM SIGPLAN Conference on Programming
Language Design and Implementation. pp. 471–482. PLDI ’13, ACM, New York,
NY, USA (2013)

52. Shi, J., He, J., Zhu, H., Fang, H., Huang, Y., Zhang, X.: ORIENTAIS: Formal
verified OSEK/VDX real-time operating system. In: 2012 IEEE 17th International
Conference on Engineering of Complex Computer Systems. pp. 293–301 (Jul 2012)

53. Shi, J., Zhu, L., Fang, H., Guo, J., Zhu, H., Ye, X.: xBIL – a hardware resource ori-
ented binary intermediate language. In: 2012 IEEE 17th International Conference
on Engineering of Complex Computer Systems. pp. 211–219 (Jul 2012)

54. Slind, K., Norrish, M.: A brief overview of HOL4. In: International Conference on
Theorem Proving in Higher Order Logics. pp. 28–32. Springer (2008)

55. Song, D., Brumley, D., Yin, H., Caballero, J., Jager, I., Kang, M.G., Liang, Z.,
Newsome, J., Poosankam, P., Saxena, P.: BitBlaze: A new approach to computer
security via binary analysis. In: Proceedings of the 4th International Conference
on Information Systems Security. Keynote invited paper. Hyderabad, India (Dec
2008)

56. Tan, J., Tay, H.J., Gandhi, R., Narasimhan, P.: Auspice: Automatic safety property
verification for unmodified executables. In: VSSTE. pp. 202–222. Springer (2015)

57. Verbeek, F., Bockenek, J.A., Ravindran, B.: Artifact – Highly automated formal
proofs over memory usage of assembly code (2020). 10.5281/zenodo.3676687

58. Wang, F., Shoshitaishvili, Y.: Angr – the next generation of binary analysis. In:
2017 IEEE Cybersecurity Development (SecDev). pp. 8–9. IEEE (2017)

59. Wenzel, M.: Isabelle/Isar—a generic framework for human-readable proof docu-
ments. From Insight to Proof—Festschrift in Honour of Andrzej Trybulec 10(23),
277–298 (2007)

60. Yu, Y.: Automated Proofs of Object Code for a Widely Used Microprocessor. Ph.D.
thesis, University of Texas at Austin (1992)

61. Zhang, M., Sekar, R.: Control flow integrity for COTS binaries. In: Presented as
part of the 22nd USENIX Security Symposium (USENIX Security 13). pp. 337–352
(2013)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

10.5281/zenodo.3676687
https://doi.org/10.5281/zenodo.3676687
http://creativecommons.org/licenses/by/4.0/

GASOL: Gas Analysis and Optimization for
Ethereum Smart Contracts ∗ †

Elvira Albert1,2 , Jesús Correas2 , Pablo Gordillo2 ,
Guillermo Román-Dı́ez3 , and Albert Rubio1,2

1 Instituto de Tecnoloǵıa del Conocimiento, Spain
2 Complutense University of Madrid, Spain
3 Universidad Politécnica de Madrid, Spain

Abstract. We present the main concepts, components, and usage of
Gasol, a Gas AnalysiS and Optimization tooL for Ethereum smart con-
tracts. Gasol offers a wide variety of cost models that allow inferring
the gas consumption associated to selected types of EVM instructions
and/or inferring the number of times that such types of bytecode in-
structions are executed. Among others, we have cost models to measure
only storage opcodes, to measure a selected family of gas-consumption
opcodes following the Ethereum’s classification, to estimate the cost of
a selected program line, etc. After choosing the desired cost model and
the function of interest, Gasol returns to the user an upper bound of
the cost for this function. As the gas consumption is often dominated
by the instructions that access the storage, Gasol uses the gas analysis
to detect under-optimized storage patterns, and includes an (optional)
automatic optimization of the selected function. Our tool can be used
within an Eclipse plugin for Solidity which displays the gas and instruc-
tions bounds and, when applicable, the gas-optimized Solidity function.

1 Introduction and Main Applications

Ethereum [27] is a global, open-source platform for decentralized applications
that has become the world’s leading programmable blockchain. As other block-
chains, Ethereum has a native cryptocurrency named Ether. Unlike other block-
chains, Ethereum is programmable using a Turing complete language, i.e., de-
velopers can code smart contracts that control digital value, run exactly as pro-
grammed, and are immutable. A smart contract is basically a collection of code
(its functions) and data (its state) that resides at a specific address on the
Ethereum blockchain. Smart contracts on the Ethereum blockchain are metered
using gas. Gas is a unit that measures the amount of computational effort that
it will take to execute each operation. Every single operation in Ethereum, be it

∗This work was funded partially by the Spanish MCIU, AEI and FEDER
(EU) projects RTI2018-094403-B-C31 and RTI2018-094403-B-C33, the MINECO and
FEDER (EU) projects TIN2015-69175-C4-2-R and TIN2015-69175-C4-3-R, by the CM
projects P2018/TCS-4314 and S2018/TCS-4339 co-funded by EIE Funds of the EU and
by the UCM CT27/16-CT28/16 grant.

†The software and dataset used during the current study are available at 10.6084/
m9.figshare.11876697

c© The Author(s) 2020
A. Biere and D. Parker (Eds.): TACAS 2020, LNCS 12079, pp. 118–125, 2020.
https://doi.org/10.1007/978-3-030-45237-7 7

TACAS
Evaluation
Artifact

2020
Accepted

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45237-7_7&domain=pdf
http://orcid.org/0000-0003-0048-0705
http://orcid.org/0000-0002-3219-0799
http://orcid.org/0000-0001-6189-4667
http://orcid.org/0000-0002-5427-8855
http://orcid.org/0000-0002-0501-9830
https://10.6084/m9.figshare.11876697
https://10.6084/m9.figshare.11876697
https://doi.org/10.1007/978-3-030-45237-7_7

GASOL: Gas Analysis and Optimization for Ethereum Smart Contracts 119

a transaction or a smart contract instruction execution, requires some amount of
gas. The gas consumption of the Ethereum Virtual Machine (EVM) instructions
is spelled out in [27]; importantly, instructions that use replicated storage are
gas-expensive. Miners get paid an amount in Ether which is equivalent to the
total amount of gas it took them to execute a complete operation. The rationale
for gas metering is threefold: (i) Paying for gas at the moment of proposing the
transaction prevents the emitter from wasting miners computational power by
requiring them to perform worthless intensive work. (ii) Gas fees disincentive
users to consume too much of replicated storage, which is a valuable resource
in a blockchain-based consensus system (this is why storage bytecodes are gas-
expensive). (iii) It puts a cap on the number of computations that a transaction
can execute, hence prevents DoS attacks based on non-terminating executions.

Solidity [13] is the most popular language to write Ethereum smart contracts
that are then compiled into EVM bytecode. The Solidity compiler, solc, is able
to generate only constant gas bounds. However, when the bounds are parametric
expressions that depend on the function parameters, on the contract state, or on
the blockchain state (according to the experiments in [8] this happens in almost
10% of the functions), named solc, returns ∞ as gas bound. This paper presents
Gasol [6], a resource analysis and optimization tool that is able to infer para-
metric bounds and optimize the gas consumption of Ethereum smart contracts.
Gasol takes as input a smart contract (either in EVM, disassembled EVM, or
in Solidity source code), a selection of a cost model among those available in
the system (c.f. Section 2), and a selected public function, and it automatically
infers cost upper bounds for this function. Optionally, the user can enable the
gas optimization option (c.f. Section 3) to optimize the function w.r.t. storage
usage, a highly valuable resource. Gasol has a wide range of applications: (1)
It can be used to estimate the gas fee for running transactions, as it soundly
over-approximates the gas consumption of functions. (2) It can be used to cer-
tify that the contract is free of out-of-gas vulnerabilities, as our bounds ensure
that if the gas limit paid by the user is higher than our inferred gas bounds,
the contract will not run out-of-gas. (3) As an attacker, one might estimate, how
much Ether (in gas), an adversary has to pour into a contract in order to execute
an out-of-gas attack. Also, attacks were produced by introducing a very large
number of underpriced bytecode instructions [23]. Our cost models could allow
detecting these second type of attacks by measuring how many instructions will
be executed (that should be very large) while its associated gas consumption
remains very low. (4) As we will show in the paper, the gas analysis can be used
to detect gas-expensive fragments of code and automatically optimize them.

2 Gas Analysis using Gasol

Figure 1 overviews the components of the Gasol tool [6]. The programmer
can use Gasol during the software development process from its Eclipse plugin
that allows selecting the cost model of interest and the function to be analyzed
and/or optimized from the Outline. This selection together with the compiled
EVM code is sent to the gas analyzer. A technical description of all phases

120 E. Albert et al.

Smart
Contract

EVM

Cost
Model

Upper
Bounds

Gas Analyzer

Solidity
Optimized

Solidity

Gas
Optimization

O
p
ti
m

iz
e
r Cost Models

Eclipse Plugin

Fig. 1. Overview of Gasol’s components

that comprise a gas analysis for EVM smart contracts is given in [8]. Basically,
the analyzer uses various tools [3,7] to extract the CFGs and decompile them
into a high-level representation from which upper bounds (UB) are produced by
using extensions of resource analyzers and solvers [4,5]. However, in our basic
gas analyzer named gastap [8], there was only one cost model to compute the
overall gas consumption of the function (including the opcode and memory gas
costs [27]), while Gasol is an extension of gastap that introduces optimization,
a wide variety of analysis options to define novel cost models, and an Eclipse
plugin. The UBs are provided to the user in the console as well as in markers
for functions within the Eclipse editor. If the user had selected the optimization
option, the analyzer detects potential sources of optimization and feeds them to
the optimizer to generate an optimized Solidity function within a new file.

Fig. 2 displays our Eclipse plugin that contains a fragment of the public
smart contract ExtraBalToken [1] used as running example. We can see its six
state variables and its function fill that we will analyze and optimize. The right
side window shows Gasol’s configuration options to set up the cost model :

(i) Type of resource (gas/instructions): by selecting gas, we estimate the gas
consumption according to the gas model in [27] (hence, use Gasol as a gas ana-
lyzer); by selecting instructions, we estimate the number of bytecode instructions
executed (using Gasol as a standard complexity analyzer).

(ii) Type of instructions : allows selecting which instructions (or group of instruc-
tions) will be measured as follows.

- All : every bytecode instruction will be measured. For instance, by selecting gas
in (i), the function fill, and this option, we obtain as gas bound: 1077 + 40896 ·
data. Besides, by using this option, Gasol also yields the so-called memory gas

(see[27]): 3·(data+5)+
⌊
(data+5)2

512

⌋
. The analyzer abstracts arrays by their length,

hence, these bounds are functions of the length of the input array (denoted as
data) and can be used, e.g., to determine precisely how much gas is necessary
to run a transaction that executes this function.

-Gas-family : [27] classifies bytecode instructions according to their gas consumed
in six groups: zero, base, verylow, low, mid and high. Instructions that do not
belong to any of the previous groups are considered as single families. This option
provides the cost due to each gas-family separately and, by using the filter in (iii),
we can type the name of the desired group(s). As an example, for the function
fill using gas in (i), we obtain gas bounds 297 + 315 · data and 16 + 8 · data for
the gas-families verylow and mid, resp.

GASOL: Gas Analysis and Optimization for Ethereum Smart Contracts 121

Fig. 2. Excerpt of smart contract ExtraBalToken in Solidity within Eclipse plugin.

- Storage: only the instructions that access the storage (namely bytecodes SLOAD
and SSTORE) are accounted. The gas bounds displayed within the Eclipse console
in Fig. 2 correspond to this setting, where we can see that the gas due to the
access of each basic storage variable is shown separately. The first row unknown
accumulates the gas of all accesses to non-basic types (data structures) as we
still cannot identify them. By comparing this storage gas with the overall gas
bound shown above for All, we can observe that most of the gas consumed by
the function is indeed dominated by the storage (namely 40.000 out of 40.896 at
each loop iteration) and it is thus a target for optimization (see Sec. 3).

- Storage-optimization: it bounds the number of SLOAD and SSTORE instructions
executed by the current function (excluding those in transitive calls). It is the
cost model that is used to detect and carry out the optimization described in
Sec. 3. Thus, it is the only selection that enables the Gas optimization that ap-
pears as third option, and forces the selection of “instructions” as type of resource
in (i). We obtain for the state variable totalSuply the bound: 2·data, which cap-
tures that we execute two accesses (one read, one write) to field totalSuply at
each loop iteration.

- Line: this option allows specifying the line number (of the Solidity program)
whose cost will be measured, and the remaining lines will be filtered out. For
instance, if the line number specified in the filter (iii) is 17, i.e., the Solidity
instruction: uint amount = data[i]/D160, the obtained gas bound is 3+97·data.
In the absence of number in the filter, the bounds are given separately for all
program lines. This option is intended to help the programmer in improving the
gas consumption of her code by trying out different implementation options and
comparing the results.

- Selected : allows computing the consumption associated to each different EVM
instruction separately. For instance, if we select the bytecode instructions MLOAD
and SHA3, we obtain the gas bounds 6+15·data and 84·data resp. As in the
previous option, the filter allows the user to select the instructions of interest
and filter out the remaining.

122 E. Albert et al.

(iii) Filter : this is a text field used to filter out information from the UBs. For
gas-family, the user can specify low, mid, etc. For storage, it allows specifying the
name of the basic field(s) whose storage will be measured. For line and selected,
we can type the line numbers and names of bytecode instructions of interest.
Once all options have been selected, we have set up a cost model that is sent
together with the EVM code to the gas analyzer and, after analysis, it outputs
an UB for the selected function w.r.t. the cost model activated by the options.
This UB is displayed, as shown in Fig. 2 in the console of the Eclipse plugin,
and also within markers next to the function definition.

3 Gas Optimization using Gasol

The information yield by the gas analysis is used in Gasol to detect potential
optimizations. Currently, the optimization target is the reduction of the gas con-
sumption associated to the usage of storage. In particular, we aim at replacing
multiple accesses to the same (global) storage data within a fragment of code
(each write access costs 20.000 in the worst case and 5.000 in the best case) by
one access that copies the data in storage to a (local) memory position followed
by accesses to such memory position (an access to the local memory costs only
3) and a final update to the storage if needed. The cost model number of in-
structions for storage-optimization described in Sec. 2 allows us to detect such
storage optimizations, namely for each different field, if we get a bound that is
different from one, we know that there may be multiple accesses to the same po-
sition in the storage and we try to replace them by gas-efficient memory accesses.
Our transformation is done at the level of the Solidity code, by defining a local
variable with the same name as the state variable to transform, and introduc-
ing setter and getter functions to access the storage variable. Currently, we can
transform accesses to variables of basic types, in the future, we plan to extend
it to data structures (maps and arrays). The number of instructions bound for
field totalSupply is 2 · data (hence �= 1), and our optimization of fill is:

1 function fill (uint [] data) {
2 uint256 totalSupply = get field totalSupply () ;
3

4 if ((msg.sender != owner)||(sealed))
5 throw;
6 for (uint i=0; i<data.length; i++) {
7 address a = address(data[i] & (D160−1));

8 uint amount = data[i] / D160;
9 if (balanceOf[a] == 0) {

10 balanceOf[a] = amount;
11 totalSupply += amount;
12 }
13 }
14 set field totalSupply (totalSupply) ;
15 }

The gas bound (using the option All) for the optimized fill yield by Gasol is
21368+20674 ·data, which means that, assuming the worst case for write access
to storage, the gas consumed inside the loop is 49.45% smaller than the one for
the original fill function (the memory gas does not change). Note that, even if
we consider the best case of 5.000 for write access to storage for the accesses we
have optimized, the gas reduction is still around 20%. This is, in fact, what we
have manually estimated using the actual data of the 82 times this function has
been executed in the Ethereum blockchain, achieving with Gasol a total saving
of almost 60M gas. As our transformation is local to the function, in order to
be sound, we check that the transformed global data is not being accessed by

GASOL: Gas Analysis and Optimization for Ethereum Smart Contracts 123

transitive calls. For instance, if there was a call to another function from function
fill that accesses totalSupply, we would not transform it. Besides, for efficiency,
we check if all accesses are read (bytecode SLOAD) and, in such case, we do not
need to invoke the setter at the end (and avoid an unnecessary write access).

4 Related Tools and Conclusions

Numerous tools are being developed to catch different types of vulnerabilities of
smart contracts [20,16,22,19,17,26,18,10,15,9]. As mentioned in Sec. 1, the Solid-
ity compiler solc is not able to give any gas estimation for the running example,
as its gas consumption is not constant. Therefore, new gas analysis tools are be-
ing developed to detect potential gas related vulnerabilities and to infer bounds
in these complex situations. The purpose of the Gasper and MadMax tools is
precisely the detection of gas related vulnerabilities. MadMax [14] focuses on
identifying control- and data-flow patterns inherent for the gas-related vulnera-
bilities, thus, it works as a bug-finder, rather than as a gas analyzer like Gasol.
Similarly, Gasper identifies gas-costly programming patterns [12] by matching
specific control-flow patterns and using SMT solvers and symbolic computation.
Thus, it is an optimization detector, not an automatic optimizer as Gasol. The
recently developed ebso tool [24] also aims at optimizing the gas consumption
of EVM code. In contrast to Gasol, ebso’s optimizations are limited to a basic
block level, while our transformation might involve several blocks of the CFG
and would not be achievable by ebso’s approach. Also, ebso is not guided by
the results of an automatic resource analysis which can capture the expensive
storage patterns as in our case. Instead it is based on a full exploration of all
possible alternative instructions (within the considered block) that would lead to
the same result and consume less gas. They have obtained a number of rewrite
rules that define sequences of bytecode instructions that can be replaced by
equivalent ones that consume less. We could easily incorporate such basic block
replacement optimizations within our tool, and it is part of our agenda.

The approach of [21], like ours, aims at inferring precise gas bounds. Their
approach is based on symbolically enumerating all execution paths [11] and
unwinding loops to a limit. Instead, using resource analysis, Gasol infers the
maximal number of iterations for loops and generates accurate gas bounds which
are valid for any possible execution of the function and not only for the unwound
paths. The approach by Marescotti et al. has not been implemented in the con-
text of EVM and a tool like Gasol has not been delivered. An orthogonal line of
work with ours is the construction of resource-oriented attacks [23] that exploit
the weaknesses of the EVM gas model. Gasol’s cost models could help detect
this resource-oriented attacks by estimating the number of executed bytecode
instructions (very high) and their associated gas consumption (very low).

Finally, there is a tendency to define new languages (see Scilla [25], Michelson
[2]) for programming smart contracts that provide certain safety guarantees, e.g.,
Scilla [25] provides predictable gas consumption by disallowing general recursion
and while-loops. However, Ethereum is today the most widely used blockchain,
and Solidity the most popular programming language to write Ethereum smart
contracts, for which a gas analyzer+optimizer is of clear relevance.

124 E. Albert et al.

References

1. ExtraBalToken contract. https://etherscan.io/address/
0x5c40ef6f527f4fba68368774e6130ce6515123f2

2. The Michelson Language. https://www.michelson-lang.com

3. Oyente: An Analysis Tool for Smart Contracts (2018), https://github.com/
melonproject/oyente

4. Albert, E., Arenas, P., Flores-Montoya, A., Genaim, S., Gómez-Zamalloa, M.,
Martin-Martin, E., Puebla, G., Román-Dı́ez, G.: SACO: Static Analyzer for Con-
current Objects. In: TACAS. LNCS, vol. 8413, pp. 562–567. Springer (2014)

5. Albert, E., Arenas, P., Genaim, S., Puebla, G.: Automatic inference of upper
bounds for recurrence relations in cost analysis. In: SAS. LNCS, vol. 5079, pp.
221–237. Springer (2008)

6. Albert, E., Correas, J., Gordillo, P., Román-Dı́ez, G., Rubio, A.: GASOL: Gas
Analysis and Optimization for Ethereum Smart Contracts (Artifact) (2020),
Figshare 2020, 10.6084/m9.figshare.11876697

7. Albert, E., Gordillo, P., Livshits, B., Rubio, A., Sergey, I.: EthIR: A Framework
for High-Level Analysis of Ethereum Bytecode. In: ATVA. LNCS, vol. 11138, pp.
513–520. Springer (2018)

8. Albert, E., Gordillo, P., Rubio, A., Sergey, I.: Running on Fumes: Preventing Out-
Of-Gas vulnerabilitires in Ethereum Smart Contracts using Static Resource Anal-
ysis. In: VECoS. LNCS, vol. 11847, pp. 63–78. Springer (2019)

9. Amani, S., Bégel, M., Bortin, M., Staples, M.: Towards Verifying Ethereum Smart
Contract Bytecode in Isabelle/HOL. In: CPP. pp. 66–77. ACM (2018)

10. Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Gollamudi, A., Gonthier, G.,
Kobeissi, N., Kulatova, N., Rastogi, A., Sibut-Pinote, T., Swamy, N., Zanella-
Béguelin, S.: Formal verification of smart contracts: Short paper. In: PLAS. pp.
91–96. ACM (2016)

11. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without
bdds. In: TACAS. LNCS, vol. 1579, pp. 193–207. Springer (1999)

12. Chen, T., Li, X., Luo, X., Zhang, X.: Under-optimized smart contracts devour your
money. In: SANER. pp. 442–446. IEEE Computer Society (2017)

13. Ethereum: Solidity (2018), https://solidity.readthedocs.io

14. Grech, N., Kong, M., Jurisevic, A., Brent, L., Scholz, B., Smaragdakis, Y.:
Madmax: surviving out-of-gas conditions in ethereum smart contracts. PACMPL
2(OOPSLA), 116:1–116:27 (2018)

15. Grishchenko, I., Maffei, M., Schneidewind, C.: A Semantic Framework for the Se-
curity Analysis of Ethereum Smart Contracts. In: POST. LNCS, vol. 10804, pp.
243–269. Springer (2018)

16. Grossman, S., Abraham, I., Golan-Gueta, G., Michalevsky, Y., Rinetzky, N., Sagiv,
M., Zohar, Y.: Online detection of effectively callback free objects with applications
to smart contracts. PACMPL 2(POPL), 48:1–48:28 (2018)

17. Kalra, S., Goel, S., Dhawan, M., Sharma, S.: ZEUS: analyzing safety of smart
contracts. In: NDSS. The Internet Society (2018)

18. Kolluri, A., Nikolic, I., Sergey, I., Hobor, A., Saxena, P.: Exploiting The Laws of
Order in Smart Contracts. CoRR abs/1810.11605 (2018)

19. Krupp, J., Rossow, C.: teether: Gnawing at ethereum to automatically exploit
smart contracts. In: USENIX Security Symposium. pp. 1317–1333. USENIX As-
sociation (2018)

https://etherscan.io/address/0x5c40ef6f527f4fba68368774e6130ce6515123f2
https://etherscan.io/address/0x5c40ef6f527f4fba68368774e6130ce6515123f2
https://www.michelson-lang.com
https://github.com/melonproject/oyente
https://github.com/melonproject/oyente
https://10.6084/m9.figshare.11876697
https://solidity.readthedocs.io

GASOL: Gas Analysis and Optimization for Ethereum Smart Contracts 125

20. Luu, L., Chu, D., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts
smarter. In: CCS. pp. 254–269. ACM (2016)

21. Marescotti, M., Blicha, M., Hyvärinen, A.E.J., Asadi, S., Sharygina, N.: Computing
Exact Worst-Case Gas Consumption for Smart Contracts. In: ISoLA. LNCS, vol.
11247, pp. 450–465. Springer (2018)

22. Nikolic, I., Kolluri, A., Sergey, I., Saxena, P., Hobor, A.: Finding the greedy, prodi-
gal, and suicidal contracts at scale. In: ACSAC. pp. 653–663. ACM (2018)

23. Pérez, D., Livshits, B.: Broken metre: Attacking resource metering in EVM. CoRR
abs/1909.07220 (2019), http://arxiv.org/abs/1909.07220

24. Schett, M., Nagele, J.: Blockchain superoptimizer. In: 29th International Sym-
posium on Logic-based Program Synthesis and Transformation (LOPSTR 2019)
(2019)

25. Sergey, I., Nagaraj, V., Johannsen, J., Kumar, A., Trunov, A., Hao, K.C.G.: Safer
smart contract programming with Scilla. In: 34th ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages and Applications (OOPSLA
2019) (2019)

26. Tsankov, P., Dan, A.M., Drachsler-Cohen, D., Gervais, A., Bünzli, F., Vechev,
M.T.: Securify: Practical security analysis of smart contracts. In: CCS. pp. 67–82.
ACM (2018)

27. Wood, G.: Ethereum: A secure decentralised generalised transaction ledger (2014)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

http://arxiv.org/abs/1909.07220
http://creativecommons.org/licenses/by/4.0/

CPU Energy Meter:
A Tool for Energy-Aware Algorithms Engineering

Dirk Beyer and Philipp Wendler

LMU Munich, Germany

Abstract. Verification algorithms are among the most resource-intensive
computation tasks. Saving energy is important for our living environment
and to save cost in data centers. Yet, researchers compare the efficiency of
algorithms still in terms of consumption of CPU time (or even wall time).
Perhaps one reason for this is that measuring energy consumption of
computational processes is not as convenient as measuring the consumed
time and there is no sufficient tool support. To close this gap, we contribute
CPU Energy Meter, a small tool that takes care of reading the energy
values that Intel CPUs track inside the chip. In order to make energy
measurements as easy as possible, we integrated CPU Energy Meter into
BenchExec, a benchmarking tool that is already used by many researchers
and competitions in the domain of formal methods. As evidence for
usefulness, we explored the energy consumption of some state-of-the-art
verifiers and report some interesting insights, for example, that energy
consumption is not necessarily correlated with CPU time.

Keywords: Energy Measurement · RAPL · Benchmarking · BenchExec

1 Introduction

There is a strong demand to save electrical energy, of which nowadays a large
portion is used by computational processes. Most importantly, we need to protect
the environment that we live in, but we also need to consider that energy usage
is one of the most important cost factors in data centers: after computing devices
are purchased and installed, the operational cost is dominated by the cost of
consumed electrical energy. And since most of the used electrical energy is turned
into heat energy, there is follow-up cost for the cooling system, which sets the
limits of used energy for each rack in a data center [16].

In order to control energy consumption, we first need to measure it. Work in
the area of green software engineering identified a lack of data and insufficient
tool support [12]. Energy consumption of an algorithm is often reduced to CPU
time, which seems to be a natural choice at a first look, but after more accurate
measurement we know that this reduction leads to wrong conclusions.

Why is energy usage of verification algorithms not measured but only CPU
time? Most likely it is technically too difficult for researchers to measure energy
consumption, because it would require external hardware that is not common or
because internal energy measurements are not well-known and complex to use.
c© The Author(s) 2020
A. Biere and D. Parker (Eds.): TACAS 2020, LNCS 12079, pp. 126–133, 2020.
https://doi.org/10.1007/978-3-030-45237-7_8

TACAS
Evaluation
Artifact

2020
Accepted

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45237-7_8&domain=pdf
http://orcid.org/0000-0003-4832-7662
http://orcid.org/0000-0002-5139-341X
https://doi.org/10.1007/978-3-030-45237-7_8

CPU Energy Meter: A Tool for Energy-Aware Algorithms Engineering 127

In order to provide a solution to this problem, we contribute an open-source
lightweight tool that enables convenient energy measurement for a large range of
modern CPUs. The tool CPU Energy Meter makes it easy and convenient to
access energy measurements done by the CPU for various of its parts. Furthermore,
we integrate energy measurement in the benchmarking framework BenchExec,
which is widely used by researchers and competitions (e.g., [2]).

Using CPU Energy Meter does not require any extra hardware, but accesses
the existing feature for energy measurement called RAPL that Intel CPUs provide.
This convenience comes with a limitation: We can only access measurement values
for those parts of the computing board that the CPU measures, but no external
equipment, such as hard drives and the power supply itself.

Related Work. Energy measurements should be used for algorithm engineer-
ing [1], and there is a strong need for tool support, such as PowerPack [8]. RAPL
is being studied as a measurement method for energy consumption [6, 9, 10, 13, 17],
and energy measurements that are based on RAPL are being developed for specific
scenarios [11, 15, 18, 19] and used to evaluate algorithms [7]. CPU Energy Meter
makes energy measurement conveniently accessible to verification researchers.
The most closely related project is the Performance API (PAPI) analysis library,
which also supports RAPL [19], but this is a large library with a much larger
scope than just energy measurements. In contrast, our tool is a ready-to-use
solution for energy measurements that is easy to install and use.

2 Intel Running Average Power Limit (RAPL)
The Intel Running Average Power Limit (RAPL) [14] is a feature of Intel CPUs
that allows to measure and limit the energy consumption of CPUs. It is available
since the 2nd generation of the Intel Core architecture (code name “Sandy Bridge”),
i.e., on Intel Core i3/i5/i7 2000 and newer, as well as Intel Xeon E3/E5/E7 CPUs.
This covers a wide range of common CPUs for notebooks, desktops, and servers.

One part of RAPL consists of access to a series of hardware counters in which
the CPU accumulates the energy it has consumed. RAPL supports measuring the
energy consumption of so-called “domains”, and up to five domains are supported
by current CPUs: package, PP0, PP1, DRAM, and PSYS. Which hardware units
are included in which domain is not clearly specified by Intel, but in general we
can use the following assumption: The package domain refers to the whole CPU,
the PP0 domain refers to the processor cores, and the PP1 domain refers to other
units such as an integrated graphics unit. The domains DRAM and PSYS may
provide information on the energy consumption of the RAM and other hardware
on the mainboard, but both need special support from the hardware platform
and its values may not be comparable between different systems.

There is no official information by Intel on the precision of the measurements
except that the counters are updated approximately every 1ms. The resolution
of the values varies between the CPUs, but is typically 1

216 J or 1
214 J, i.e., in

the order of 10−5 J. For the first generation of CPUs with RAPL, the energy
consumption was approximated by the CPU and imprecise, but for subsequent
generations the precision had been improved [6, 7, 10].

128 D. Beyer and P. Wendler

3 CPU Energy Meter

Our tool CPU Energy Meter provides access to the energy-measurement features
of Intel CPUs to users. It was developed based on the tool Intel Power Gadget for
Linux 1. Our tool is available as open source under the permissive 2-clause BSD
license and hosted on GitHub 2. Installation packages of CPU Energy Meter
are available for Debian-based distributions (e.g., Ubuntu).

CPU Energy Meter measures the energy consumption of the CPU(s) of a
system for a specific time interval as reported by the RAPL interface (cf. Sect. 2).
In order to ensure the highest possible measurement precision with the lowest
possible overhead, it reads the RAPL energy counters as rarely as possible instead
of using continuous sampling, while at the same time reading the counters often
enough to safely detect and account for counter overflows. Furthermore, our
tool was developed to use a minimal amount of necessary dependencies and
permissions in order to make its installation as easy as possible.

Requirements. CPU Energy Meter requires a system with one or more Intel
CPUs that support the RAPL feature. It needs direct access to the CPUs, thus
running in a virtual machine is not supported. Accessing the model-specific regis-
ters of CPUs with the energy measurements is done via the Linux kernel module
msr 3, which needs to be loaded and provides device files named /dev/cpu/*/msr.

Typically, access to these device files is granted only to the user root. In order
to not need to execute CPU Energy Meter as root, one can change the file
permissions of the device files appropriately (e.g., by granting read permissions to
a group msr and making CPU Energy Meter always execute as this group using
the “setgid” permission). Furthermore, CPU Energy Meter needs the capability
CAP_SYS_RAWIO 4, which can be granted using setcap 5. The installation packages
of CPU Energy Meter attempt to automatically configure the system such
that every user can execute the tool without granting any other non-standard
permissions to users. In any case (whether executed as root or not), CPU Energy
Meter drops all unnecessary permissions as soon as possible using the library
“libcap” 6 in order to reduce any risk related to the non-standard permissions.

Usage. CPU Energy Meter is intended primarily to be used by benchmarking
frameworks, however, manual execution is also possible. When the tool is executed,
it starts the measurements and prints the consumed energy for all supported
domains and CPUs of the system as soon as it is killed via the interrupt signal
or Ctrl+C. Intermediate measurements are printed when the signal USR1 is
received. To manually measure the energy consumption of the duration of a
specific command, one can execute the following command line, for example:

cpu-energy-meter & some_command ; kill -INT %1
1 https://software.intel.com/en-us/articles/intel-power-gadget
2 https://github.com/sosy-lab/cpu-energy-meter
3 http://man7.org/linux/man-pages/man4/msr.4.html
4 http://man7.org/linux/man-pages/man7/capabilities.7.html
5 http://man7.org/linux/man-pages/man8/setcap.8.html
6 https://sites.google.com/site/fullycapable/

https://software.intel.com/en-us/articles/intel-power-gadget
https://github.com/sosy-lab/cpu-energy-meter
http://man7.org/linux/man-pages/man4/msr.4.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man8/setcap.8.html
https://sites.google.com/site/fullycapable/

CPU Energy Meter: A Tool for Energy-Aware Algorithms Engineering 129

+-----------------------------+
| CPU Energy Meter Socket 0 |
+-----------------------------+
Duration 9.990624 sec
Package 15.898926 Joule
Core 1.695740 Joule
Uncore 0.352661 Joule
DRAM 11.024841 Joule
PSYS 104.778931 Joule

Fig. 1: Example output of CPU
Energy Meter on a single-CPU
system of the SkyLake generation
(with all five domains supported)

This will measure the energy consump-
tion of all CPUs during the whole time that
the specified command is running, regard-
less of whether this energy consumption is
caused by the specified command or by other
processes running in parallel (this is a limita-
tion of the RAPL feature). Thus, measuring
the energy consumption during a specific
time period (e.g., 10 s) can be done by re-
placing some_command with sleep 10.

The output values are given with the
unit Joule, and can be formatted either in
a way that is optimized for being read by
humans (cf. Fig. 1) or parsed by programs.

Integration into BenchExec. We have contributed an integration of CPU
Energy Meter into the benchmarking framework BenchExec [4], because
BenchExec is widely used in the formal-methods community (e.g., SV-COMP [2]).
Starting with version 1.16, BenchExec automatically executes CPU Energy
Meter if the latter is installed, and it reports the energy results in the same
manner as the results of its internal time and memory measurements (BenchExec
supports the creation of CSV tables and interactive HTML tables with plots for
its benchmarking results). BenchExec will report the energy consumption only
if all cores of one or more CPUs are used for each tool execution, because we
cannot distinguish between the energy consumption of individual processes.

4 Applications

The 8th International Competition on Software Verification (SV-COMP’19) [3]
measured energy consumption of verification tools using BenchExec and CPU
Energy Meter and for the first time provided an alternative “green” ranking
based on energy efficiency (CPU-energy usage divided by achieved score). This
ranking was indeed considerably different from the main score-based ranking,
with no overlap between the top three green verifiers and the top three verifiers
in the category “C-Overall”. Furthermore, the winner in the green ranking is two
orders of magnitude more efficient than the last tool in the ranking (64 J per
score point vs. 4 200 J per score point). This shows an enormous potential of
efficiency improvements and energy savings if verification researchers get access
to easy measurements of energy usage.

In the following, we analyze in more detail some energy measurements of
SV-COMP’19, which provides all raw results online 7. We pick the results for
the submissions Cbmc 8 and CPA-Seq 9 across all categories. CPA-Seq is the
winner of the category “C-Overall”, written in Java, and employs several different
algorithms, some of which are partially parallelized. The garbage collector that
7 https://sv-comp.sosy-lab.org/2019/results/results-verified/All-Raw.zip
8 http://www.cprover.org/cbmc/ 9 https://cpachecker.sosy-lab.org/

https://sv-comp.sosy-lab.org/2019/results/results-verified/All-Raw.zip
http://www.cprover.org/cbmc/
https://cpachecker.sosy-lab.org/

130 D. Beyer and P. Wendler

Table 1: Selection of Energy Measurements from SV-COMP’19
Cbmc CPA-Seq

RAPL domain Package PP0 (Core) DRAM Package PP0 (Core) DRAM

Average power used per task with regard to wall time (energy divided by wall time):
Min (W) 1.9 1.2 0.63 4.4 3.4 1.6
Max (W) 25 24 5.5 36 35 7.2
Avg (W) 9.7 8.8 2.4 20 19 2.8
Std. Dev. (W) 3.2 3.2 0.71 6.2 6.2 0.48

Average power used per task with regard to CPU time (energy divided by CPU time):
Min (W) 1.8 1.1 0.58 4.2 3.2 0.70
Max (W) 23 22 5.5 17 16 6.8
Avg (W) 9.6 8.7 2.4 9.6 9.0 1.5
Std. Dev. (W) 3.1 3.1 0.74 1.8 1.7 0.60

is used by the JVM adds some more parallelism. Cbmc is written in C++ and
uses bounded model checking in a strictly sequential implementation. Thus, we
expect that the energy consumption of these tools has different characteristics.
SV-COMP’19 executed both tools for 10 522 tasks (CPU-time limit 900 s per
task, Intel Xeon E3-1230 v5 CPU, quad-core with hyper-threading, 3.4GHz, all
8 processing units of the CPU and 15GB of memory were available to each tool
execution, Ubuntu 18.04 64-bit with Linux kernel 4.15 was the operating system).

We now compare the energy consumption of the RAPL domain “Package”
with the CPU time for Cbmc in Fig. 2 and for CPA-Seq in Fig. 3.10 In the plot,
all results that lie on the same line through the origin belong to tool executions
for which the energy consumption per second of CPU time (in J

s = W) was the
same (this would be the average power of the CPU if measuring wall time instead
of CPU time). We provide additional statistics in Table 1 and two graphs that
compare the CPU time and the energy consumption of the two tools in Fig. 4.

Insight: Also for verification tools, high values for CPU time do not imply high
values for energy. Figure 2 has a large vertical area of data points where the
CPU time is close to the time limit. For those verification runs, the energy is in
the range of 2.0 kJ to 15 kJ. This shows that for a specific CPU time, the energy
consumption (and average power, cf. Table 1) for different verification tasks can
vary by a factor of 7.

Insight: Comparing different verification tools regarding CPU time can lead to
different conclusions than energy-based comparisons. The graph on the left of
Fig. 4 compares Cbmc and CPA-Seq regarding CPU time, the graph on the
right compares them regarding energy consumption. The difference between the
shapes of these two graphs shows that looking at the energy consumption when
comparing tools is an interesting addition to comparing only CPU time, and that

10 For CPA-Seq, the CPU time is sometimes higher than 900 s because SV-COMP lets
tools optionally run for more than the time limit in order to print additional statistics
(but any result after the time limit is of course discarded).

CPU Energy Meter: A Tool for Energy-Aware Algorithms Engineering 131

0 200 400 600 800 1 000
0

5

10

15

CPU time for Cbmc (s)

C
P

U
en

er
gy

fo
r

C
bm

c
(k
J
)

Fig. 2: Comparison of CPU time vs.
energy consumption for Cbmc

0 200 400 600 800 1 000
0

5

10

15

CPU time for CPA-Seq (s)

C
P

U
en

er
gy

fo
r

C
P
A

-S
eq

(k
J
)

Fig. 3: Comparison of CPU time vs.
energy consumption for CPA-Seq

0 200 400 600 8001 000
0

200

400

600

800

1 000

CPU time for Cbmc (s)

C
P

U
ti

m
e

fo
r

C
P
A

-S
eq

(s
)

0 5 10 15
0

5

10

15

CPU energy for Cbmc (kJ)

C
P

U
en

er
gy

fo
r

C
P
A

-S
eq

(k
J
)

Fig. 4: Comparison of Cbmc and CPA-Seq with regard to CPU time and energy

the similar statistics on power usage with regard to CPU time (cf. lower part of
Table 1 and Figs. 2 and 3) can be misleading: if the power-usage characteristics
of both tools were the same, the two graphs in Fig. 4 would look similar.

5 Conclusion

Verification algorithms consume large amounts of energy and thus, it is prohibitive
to ignore the energy characteristics of algorithms when comparing their quality.
Although this matter is understood, the verification community does not measure
energy. We believe that this is because measurement of energy is complex and
requires a lot of additional effort. The lightweight tool CPU Energy Meter
fills this gap: It supports reading Intel-RAPL-based energy measurements in a
convenient way and —via integration into BenchExec— using a tool environment
that many verification researchers use anyway already.

An analysis of a large data set from a verification competition invalidates a
wide-spread assumption: the data quickly reveal that energy consumption can
deviate significantly from the consumed CPU time. Thus, it is not sufficient to
measure CPU time.

132 D. Beyer and P. Wendler

Data Availability Statement. A replication package for this article including
CPU Energy Meter and BenchExec is available at Zenodo [5]. Current ver-
sions of CPU Energy Meter are available at https://github.com/sosy-lab/
cpu-energy-meter and https://doi.org/10.5281/zenodo.1300309. The dataset
from SV-COMP’19 [3] that was analyzed in Sect. 4 is available online at
https://sv-comp.sosy-lab.org/2019/results/results-verified/All-Raw.zip.

References

1. Bekas, C., Curioni, A.: A new energy aware performance metric. Computer Science
- R&D 25(3-4), 187–195 (2010). https://doi.org/10.1007/s00450-010-0119-z

2. Beyer, D.: Reliable and reproducible competition results with BenchExec and
witnesses (Report on SV-COMP 2016). In: Proc. TACAS. pp. 887–904. LNCS 9636,
Springer (2016). https://doi.org/10.1007/978-3-662-49674-9_55

3. Beyer, D.: Automatic verification of C and Java programs: SV-COMP
2019. In: Proc. TACAS (3). pp. 133–155. LNCS 11429, Springer (2019).
https://doi.org/10.1007/978-3-030-17502-3_9

4. Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: Requirements
and solutions. Int. J. Softw. Tools Technol. Transfer 21(1), 1–29 (2019).
https://doi.org/10.1007/s10009-017-0469-y

5. Beyer, D., Wendler, P.: Replication package for article ‘CPU Energy Meter: A
tool for energy-aware algorithms engineering’ in Proc. TACAS ’20. Zenodo (2020).
https://doi.org/10.5281/zenodo.3679337

6. Desrochers, S., Paradis, C., Weaver, V.M.: A validation of DRAM RAPL power
measurements. In: Proc. Int. Symposium on Memory Systems (MEMSYS). pp.
455–470. ACM (2016). https://doi.org/10.1145/2989081.2989088

7. Dongarra, J.J., Ltaief, H., Luszczek, P., Weaver, V.M.: Energy footprint of advanced
dense numerical linear algebra using tile algorithms on multicore architectures. In:
Proc. Int. Conference on Cloud and Green Computing (CGC). pp. 274–281. IEEE
(2012). https://doi.org/10.1109/CGC.2012.113

8. Ge, R., Feng, X., Song, S., Chang, H., Li, D., Cameron, K.W.: Pow-
erPack: Energy profiling and analysis of high-performance systems and
applications. IEEE Trans. Parallel Distrib. Syst. 21(5), 658–671 (2010).
https://doi.org/10.1109/TPDS.2009.76

9. Hackenberg, D., Ilsche, T., Schöne, R., Molka, D., Schmidt, M., Nagel, W.E.: Power
measurement techniques on standard compute nodes: A quantitative comparison.
In: Proc. Int. Symposium on Performance Analysis of Systems & Software (ISPASS).
pp. 194–204. IEEE (2013). https://doi.org/10.1109/ISPASS.2013.6557170

10. Hackenberg, D., Schöne, R., Ilsche, T., Molka, D., Schuchart, J., Geyer, R.: An
energy efficiency feature survey of the Intel Haswell processor. In: Proc. Int. Par-
allel and Distributed Processing Symposium (IPDPS). pp. 896–904. IEEE (2015).
https://doi.org/10.1109/IPDPSW.2015.70

11. Hähnel, M., Döbel, B., Völp, M., Härtig, H.: Measuring energy consumption for
short code paths using RAPL. SIGMETRICS Performance Evaluation Review
40(3), 13–17 (2012). https://doi.org/10.1145/2425248.2425252

12. Hindle, A.: Green software engineering: The curse of methodology. Tech. Rep.
4:e1470v2, PeerJ PrePrints (2016). https://doi.org/10.7287/peerj.preprints.1470v2

13. Ilsche, T., Hackenberg, D., Graul, S., Schöne, R., Schuchart, J.: Power measurements
for compute nodes: Improving sampling rates, granularity and accuracy. In: Proc.

https://github.com/sosy-lab/cpu-energy-meter
https://github.com/sosy-lab/cpu-energy-meter
https://doi.org/10.5281/zenodo.1300309
https://sv-comp.sosy-lab.org/2019/results/results-verified/All-Raw.zip
https://doi.org/10.1007/s00450-010-0119-z
https://doi.org/10.1007/978-3-662-49674-9_55
https://doi.org/10.1007/978-3-030-17502-3_9
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.5281/zenodo.3679337
https://doi.org/10.1145/2989081.2989088
https://doi.org/10.1109/CGC.2012.113
https://doi.org/10.1109/TPDS.2009.76
https://doi.org/10.1109/ISPASS.2013.6557170
https://doi.org/10.1109/IPDPSW.2015.70
https://doi.org/10.1145/2425248.2425252
https://doi.org/10.7287/peerj.preprints.1470v2

CPU Energy Meter: A Tool for Energy-Aware Algorithms Engineering 133

Int. Green and Sustainable Computing Conference (IGSC). pp. 1–8. IEEE (2015).
https://doi.org/10.1109/IGCC.2015.7393710

14. Intel: Intel 64 and IA-32 architectures software developer’s manual, vol. 3B,
chap. 14.9 (December 2017), available at https://software.intel.com/en-us/articles/
intel-sdm

15. Khan, K.N., Ou, Z., Hirki, M., Nurminen, J.K., Niemi, T.: How much power does
your server consume? Estimating wall socket power using RAPL measurements.
Computer Science - R&D 31(4), 207–214 (2016). https://doi.org/10.1007/s00450-
016-0325-4

16. Scaramella, J., Eastwood, M.: Solutions for the data center’s thermal challenges.
Tech. rep., IDC (2007), available at https://www-935.ibm.com/services/fr/igs/pdf/
idc_opinion_coolblue_wp.pdf

17. Schuchart, J., Hackenberg, D., Schöne, R., Ilsche, T., Nagappan, R., Patterson,
M.K.: The shift from processor power consumption to performance variations:
Fundamental implications at scale. Computer Science - R&D 31(4), 197–205 (2016).
https://doi.org/10.1007/s00450-016-0327-2

18. Venkatesh, A., Kandalla, K.C., Panda, D.K.: Evaluation of energy characteris-
tics of MPI communication primitives with RAPL. In: Proc. Int. Symposium
on Parallel & Distributed Processing (IPDPSW). pp. 938–945. IEEE (2013).
https://doi.org/10.1109/IPDPSW.2013.243

19. Weaver, V.M., Johnson, M., Kasichayanula, K., Ralph, J., Luszczek, P., Terp-
stra, D., Moore, S.: Measuring energy and power with PAPI. In: Proc. Int. Con-
ference on Parallel Processing Workshops (ICPPW). pp. 262–268. IEEE (2012).
https://doi.org/10.1109/ICPPW.2012.39

Open Access. This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution, and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

https://doi.org/10.1109/IGCC.2015.7393710
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://doi.org/10.1007/s00450-016-0325-4
https://doi.org/10.1007/s00450-016-0325-4
https://www-935.ibm.com/services/fr/igs/pdf/idc_opinion_coolblue_wp.pdf
https://www-935.ibm.com/services/fr/igs/pdf/idc_opinion_coolblue_wp.pdf
https://doi.org/10.1007/s00450-016-0327-2
https://doi.org/10.1109/IPDPSW.2013.243
https://doi.org/10.1109/ICPPW.2012.39
http://creativecommons.org/licenses/by/4.0/

Logic and Proof

Practical Machine-Checked Formalization of

Change Impact Analysis

Karl Palmskog1, Ahmet Celik2, and Milos Gligoric3

1 KTH Royal Institute of Technology, Stockholm, Sweden
2 Facebook, Seattle, WA, USA

3 The University of Texas at Austin, Austin, TX, USA
palmskog@kth.se, celik@fb.com, gligoric@utexas.edu

Abstract. Change impact analysis techniques determine the compo-
nents affected by a change to a software system, and are used as part
of many program analysis techniques and tools, e.g., in regression test
selection, build systems, and compilers. The correctness of such analyses
usually depends both on domain-specific properties and change impact
analysis, and is rarely established formally, which is detrimental to trust-
worthiness. We present a formalization of change impact analysis with
machine-checked proofs of correctness in the Coq proof assistant. Our
formal model factors out domain-specific concerns and captures system
components and their interrelations in terms of dependency graphs. Us-
ing compositionality, we also capture hierarchical impact analysis for-
mally for the first time, which, e.g., can capture when impacted files are
used to locate impacted tests inside those files. We refined our verified im-
pact analysis for performance, extracted it to efficient executable OCaml
code, and integrated it with a regression test selection tool, one regres-
sion proof selection tool, and one build system, replacing their existing
impact analyses. We then evaluated the resulting toolchains on several
open source projects, and our results show that the toolchains run with
only small differences compared to the original running time. We believe
our formalization can provide a basis for formally proving domain-specific
techniques using change impact analysis correct, and our verified code
can be integrated with additional tools to increase their reliability.

Keywords: Change impact analysis · Regression test selection · Coq.

1 Introduction

Change impact analysis aims to determine the components affected by a change
to a software system, e.g., the modules or files affected by a modified line of
code [3,4]. Change impact analysis techniques are used in many program analyses
and tools, such as regression test selection (RTS) tools [26, 52, 59, 61], build
systems [15,21,43, 45], and incremental compilers [48].

Change impact analysis techniques typically mix domain- and language-
specific concepts, such as method call graphs and class files, with more abstract
notions, such as dependencies, transitive closures, and topological sorts. This can

c© The Author(s) 2020
A. Biere and D. Parker (Eds.): TACAS 2020, LNCS 12079, pp. 137–157, 2020.
https://doi.org/10.1007/978-3-030-45237-7 9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45237-7_9&domain=pdf
https://doi.org/10.1007/978-3-030-45237-7_9

138 K. Palmskog et al.

complicate reasoning about the correctness (safety) of a technique. For exam-
ple, to the best of our knowledge, RTS techniques for Java-like languages have
never been argued to be safe (i.e., to never omit tests affected by a change) by
machine-checked reasoning—only by high-level pen-and-paper proofs [51,55,60].

In this paper, we present a formalization of key concepts used in many change
impact analysis techniques—concepts that are independent of any language or
application domain. Our formalization represents system components and their
interrelations as vertices and edges in explicit dependency graphs. We consider
whether components are impacted by changes between two system revisions by
computing transitive closures of modified graph vertices in the inverse of the
dependency graph from the old revision. This has been described as “invalidating
the upward transitive closure” [14]. Among impacted vertices, we identify those
that are checkable, representing, e.g., a test method, that can be re-executed.

We encoded our formal model as a library in the Coq proof assistant, and
proved two key correctness properties: soundness and completeness. Soundness,
intuitively, states that the outcomes of executing checkable vertices that are
unimpacted in the new revision are the same as they would be in the previ-
ous revision. Completeness roughly states that all checkable vertices in the new
revision are members of the set of all added, impacted, and unimpacted vertices.

Based on our correctness approach, we also defined and proved correct two
strategies for hierarchical change impact analysis that are roughly analogous
to, on the one hand, file-based incremental builds [43, 54], and on the other
hand, hybrid regression test selection [46, 60]. To the best of our knowledge,
hierarchical change impact analysis is previously unexplored in formal settings
like ours. Ultimately, by proving some basic properties about relations between
vertices and results of executing checkable vertices, developers can use our model
and library to obtain end-to-end guarantees for domain-specific impact analyses.

To capture our model of system components and their dependencies in Coq,
we used the Mathematical Components (MC) library [42] and its representation
of relations, finite graphs, and subtypes [25,28,29]. For the formal proofs, we used
the SSReflect proof language and followed the idiom of the MC library of lever-
aging boolean decision procedures in proofs via small-scale reflection [9, 30, 31].
To obtain efficient executable code, we performed several verified refinements of
our initial Coq encoding. From our refined functions and datatypes, we then de-
rived a practical tool, dubbed Chip, by carefully extracting Coq code to OCaml
and linking it with an assortment of OCaml libraries. Chip can be viewed as a
verified component for change impact analysis that can either be integrated into
verified systems or used in conventionally developed systems.

To ensure the adequacy of our formal model, we performed an empirical
study using Chip. Specifically, we integrated Chip with Ekstazi [26], a tool for
class-based regression test selection in Java, with iCoq [11], a tool for regression
proof selection in Coq itself, and with Tup [54], a build system similar to make,
replacing the existing components for change impact analysis in all these tools.
We then compared the outcome and running time between the respective mod-
ified and original tool versions when applied to the revision histories of several

Practical Machine-Checked Formalization of Change Impact Analysis 139

open-source projects. This approach is along the lines of previous evaluations of
formal specifications [8, 20, 33] and RTS techniques [26, 37, 60]. During our eval-
uation of Chip, we also located and addressed several performance bottlenecks.

We make the following contributions:
– Basic formal model: We present a formalization of change impact analysis

in terms of finite graphs and sets, encoded in the Coq proof assistant via the
MC library. We formulated and proved in Coq key correctness requirements
for our analysis, namely, soundness and completeness.

– Hierarchical formal model: We extended our model to capture two strate-
gies for hierarchical change impact analysis, where higher-level components
are implicitly tied to lower-level components, and proved them both correct.

– Library: Our Coq development forms a library of definitions and lemmas
that can assist in formally proving various techniques based on change impact
analysis, such as regression test selection for Java, correct inside Coq.

– Optimizations: We refined our verified Coq functions and data structures
to significantly improve performance in practice of code extracted to OCaml.

– Tool: From our refined Coq code, we derived a verified executable tool in
OCaml for change impact analysis, Chip, by carefully leveraging Coq’s code
extraction mechanism. Chip can be used as a verified component for both
regular and hierarchical change impact analysis in other tools. The Chip code,
compatible with Coq 8.9, MC 1.7, and OCaml 4.07, is publicly available [47].

– Evaluation: We integrated Chip with a tool for regression test selection
in Java projects, Ekstazi, one regression proof selection tool for Coq itself,
iCoq, as well as one build system, Tup, and evaluated the resulting toolchains
on several medium to large-scale open source projects.

2 Background

In this section, we give some brief background on change impact analysis and
its applications, and on the Coq proof assistant.

2.1 Change Impact Analysis

Broadly, we consider change impact analysis as the activity of identifying the
potential consequences of a change to a software system. Formulated in this way,
change impact analysis is an old concern in software engineering [4], and remains
an active research topic as part of techniques and tools [1,34,53]. In early work,
Arnold posited computing transitive closures of statically derived program call
graphs as the fundamental technique for change impact analysis [3]. However,
later research argues that dynamic analysis can be more precise [36] and lead to
faster dependency collection for use in future analyses [26]. Our work aims to
capture general concepts used in both static and dynamic approaches [10, 38].

2.2 Regression Test Selection and Regression Proof Selection

Regression test selection (RTS) techniques optimize regression testing – running
tests at each project revision to check correctness of recent changes – by dese-
lecting tests that are not affected by the recent changes [50, 59]. Traditionally,

140 K. Palmskog et al.

RTS techniques maintain for each test a set of code elements (e.g., statements,
methods, classes) on which the test depends. When code elements are modified,
change impact analysis is used to detect those tests that are potentially affected
by the changes. Prior work has studied RTS for various programming languages
(e.g., C, C++, and Java), built dependency graphs statically or dynamically,
and used various granularities of code elements (e.g., statements, methods, and
classes). The meaning of the dependency graph is language-specific, but if the
graph is properly constructed, the change impact analysis is independent of the
language. For example, Ekstazi [26], a recent RTS tool for Java projects, builds
and maintains Java class file dependency graphs dynamically, and when a class
file is modified, Ekstazi uses change impact analysis to select all test classes
that depend, directly or indirectly, on the modified class.

Regression proof selection (RPS) is the analogue of RTS for formal proofs,
which, similarly to tests, can take a long time to check. The RPS technique
implemented in the iCoq tool for Coq [12] uses hierarchical selection [11], where
impacted files are used to locate impacted proofs to be checked.

2.3 Build Systems

The classic build system make uses file timestamp comparisons to decide whether
a task defined in a build script should be run. Dependency graphs are implic-
itly defined by tasks depending on the completion of other tasks, or on certain
files, as expressed in the build script. In contrast to test execution, build script
task execution typically produces side effects in the form of new files, e.g., files
with object code in ELF format. Modern build systems such as Bazel [5] and
CloudMake [21, 27] can use other ways than timestamps to find modified files,
e.g., comparing cryptographic hashes of files across revisions. Recent alternative
build systems that aim to replace make include Tup [54] and Shake [43]; the
former uses an explicit persisted dependency graph.

2.4 The Coq Proof Assistant and Mathematical Components

Coq consists of, on the one hand, a small and powerful purely functional pro-
gramming language, and on the other hand, a system for specifying properties
about programs and proving them [6]. Coq is based on a constructive type the-
ory [17, 18] which effectively reduces proof checking to type checking, and puts
programming on the same foot as proving. Mathematical Components (MC) [42]
is an extensive Coq library that provides many structures from mathematics, in-
cluding finite sets, relations, and subtypes; we use the module fingraph, which
was derived from Gonthier’s proof of the four-color theorem [28].

Datatypes and functions verified inside Coq to have some correctness prop-
erty can be extracted to a practical programming language such as OCaml [40],
and then integrated with libraries; extraction is used in several large-scale soft-
ware verification projects [39, 57]. Obtaining efficient programs via extraction
may require significant engineering because of discord between the requirements
for formal correctness and agreeable program runtime behavior [19]. When target
languages lack fully formal semantics, as is the case for OCaml, extraction cannot
be fully trusted, but empirical evaluations are nevertheless encouraging [24,58].

Practical Machine-Checked Formalization of Change Impact Analysis 141

3 Formal Model

This section introduces our model, assumptions, and correctness approach.

3.1 Definitions

Components: Our model of change impact analysis uses two finite sets of ver-
tices V and V ′, where V ⊆ V ′. Members of these sets represent the components
of a system (e.g., files or classes) before and after a change, respectively.
Artifacts: We let A be a set of artifacts. An artifact is intended to be a concrete
underlying representation of a component, e.g., an abstract syntax tree or the
content of a file. We assume that the equality of two artifacts is decidable, i.e.,
that we can compute for all a, a′ ∈ A whether a = a′ or a �= a′. To associate
vertices with artifacts, we use two total functions f : V → A and f ′: V ′ → A.
In practice, we expect these functions to map vertices to compact summaries of
component representations, such as checksums computed by cryptographic hash
functions. Whenever f(v) �= f ′(v) for some v ∈ V , we say that the artifact for v
is modified after the revision; otherwise, it is unmodified.
Graphs: Let g be a binary relation on V . For v, v′ ∈ V , we say that v directly

depends on v′ if g(v, v′) holds. For example, if v and v′ represent classes in a Java-
like language, v may be a subclass of v′. We will usually refer to relations like g
as (dependency) graphs. We write g−1 for the inverse of g, i.e., we have g−1(v, v′)
iff g(v′, v). Moreover, we write g∗(v, v′) for when v and v′ are transitively related
in g, and say that v transitively depends on v′. We define the reflexive-transitive

closure of a vertex v ∈ V with respect to a graph g as the set {v′ | g∗(v, v′)},
i.e., as the set of all vertices reachable from v in g (which includes v itself).
Execution: We assume there is a subset E ⊆ V ′ of checkable vertices, i.e., it is
meaningful to apply some (side-effect free) function check on them and obtain
some result. For example, a checkable vertex may represent a test method that
either passes or fails when executed.
Impactedness: Let g be a dependency graph. We then say that a vertex v ∈ V
is impacted if it is reachable in g−1 from some modified vertex. Equivalently,
v is impacted iff there is a v′ ∈ V such that f(v′) �= f ′(v′) and (g−1)∗(v′, v).
Additionally, a vertex v′′ ∈ V ′ is considered fresh whenever v′′ /∈ V .

We take the (disjoint) union of the set I of impacted vertices and the set F
of fresh vertices, and consider the checkable vertices in this set, i.e., vertices in(
I ∪ F

)
∩ E. Intuitively, these are the only vertices that we need to consider in

the new revision, since all other vertices in V ′ are unimpacted—and using check

on unimpacted vertices will have the same outcome as in the old revision.

3.2 Example

Figure 1 illustrates the core idea of the graph-based change impact analysis ap-
proach we model. Figure 1(a) shows the original dependency graph, where, e.g.,
component 3 depends directly on components 1 and 2, and 5 depends directly
on 3 and transitively on 1 and 2; dotted components are checkable. Figure 1(b)
shows the inverse graph, with the modified component 1 bolded, and the com-
ponents impacted by the change in gray (the reflexive-transitive closure of 1 in
the inverse graph). Based on these results, we call check on 5, but not on 6.

142 K. Palmskog et al.

1 2

3 4

5 6

(a)

1 2

3 4

5 6

(b)

Fig. 1. Dependency graph where component 1 is changed, impacting 3 and 5.

3.3 Correctness Approach

For correctness, we intuitively show that executing only impacted and fresh
vertices that are checkable is enough in the new revision, since the result of
executing unimpacted vertices is the same as in the old revision. This means
that if we have access to the results of checking vertices in the old revision, we
can use those results to obtain the complete outcome for all checkable vertices
in the new revision, without going through the work usually required.

Having constructed the set T of tuples of checkable vertices and outcomes
from the impacted, fresh, and unimpacted vertices, we can ask (1) whether T
is complete, i.e., whether it contains outcomes for all checkable vertices in V ′,
and (2) whether the outcomes in T are sound, i.e., if they are same as if we had
explicitly called check on the associated vertices.

To be able to prove soundness and completeness, we need to assume several
properties relating the dependency graphs and outcomes of executing vertices in
both revisions. Informally, we make the following assumptions:

A1: The direct dependencies of a vertex v are the same in both revisions if the
artifact of v is the same in both revisions, i.e., if f(v) = f ′(v).

A2: A vertex v with the same artifact in both revisions is checkable in the new
revision iff v is checkable in the old revision.

A3: The outcome of executing a checkable vertex v is the same in both revisions
if the sets of vertices v depends on transitively are the same, and the artifact
of each dependency is the same.

The last assumption implicitly rules out that the underlying operation (e.g., test
execution) on a vertex is nondeterministic, which it can be in practice [41].

4 Model Encoding

In this section, we give an overview of our encoding in Coq of the formal model
described in the previous section, using theories of finite sets and graphs from the
MC library. We use a simplified version of Coq’s specification language, Gallina.

4.1 Encoding in Coq

We represent the vertex set V ′ as a finite type (finType) V’ , and its subset V as
a subtype (subType) V, induced by a decidable predicate P on vertices in V’ (of
type pred V’). This allows us to define the graph g as a binary decidable relation
g on V, i.e., a variable of type rel V, and use the MC library predicate connect

Practical Machine-Checked Formalization of Change Impact Analysis 143

to express whether two vertices are transitively related in g. The inverse of g is
defined as [rel x y | g y x] , which we write as g−1. We use connect to form the
set of vertices in the reflexive-transitive closure of a given vertex x with respect
to a graph g, and a canonical big operator [7] to form the union of all such
closures for elements in a given set m of modified vertices:

Def impacted (g : rel V) (m : {set V}) : {set V} :=
\bigcup_(x | x \in m) [set y | connect g x y].

We characterize this function through MC’s reflect (“if and only if”):

Thm impactedP g m x : reflect (∃ v, v \in m & connect g v x) (x \in impacted g m).

The MC library function val injects a subtype element into the corresponding
supertype. We use this to capture impacted and fresh vertices in V’ :

Def impacted_V’ m : {set V’} := [set (val v) | v in impacted g−1 m].
Def fresh_V’ : {set V’} := [set v | ¬ P v].

We represent the set of artifacts A as a type A with decidable equality (eqType),
and functions f and f ′ as regular Coq functions f and f’ . This allows us to
define the set of modified vertices in V’ , and then take the union (operator :|:)
of impacted and fresh vertices:

Def mod_V : {set V} := [set v | f v != f’ (val v)].
Def impacted_fresh_V’ : {set V’} := impacted_V’ mod_V :|: fresh_V’.

We then use a predicate checkable to form the subset of vertices in V’ that can
be executed:

Def chk_impacted_fresh_V’:{set V’} := [set v in impacted_fresh_V’ | checkable v].

We use a function check, which takes a vertex and returns a term in a result
type R (an eqType, e.g., bool), to define a sequence of vertices and results:

Def res_impacted_fresh_V’ : seq (V’ ∗ R) :=
[seq (v, check v) | v ← enum chk_impacted_fresh_V’].

Note that by using a sequence instead of a finite set for these tuples, we ensure
R can be any type with decidable equality, such as a message of arbitrary length.

4.2 Correctness Statements

For stating and proving correctness, we assume we have dependency graphs for
the old and new revision, as well as definitions of whether vertices are checkable,
and checking functions:

Vars (g : rel V) (g’ : rel V’).
Vars (checkable : pred V) (checkable’ : pred V’) (check : V → R) (check’ : V’ → R).

We then define the graph g for vertices in V’ , named g_V’:

Def insub_g (x y : V’) : bool := match insub x, insub y with

Some x’, Some y’ ⇒ g x’ y’ | _, _ ⇒ false end.
Def g_V’ : rel V’ := [rel x y | insub_g x y].

144 K. Palmskog et al.

This allows us to formulate the assumption A1 from above:

Hyp fg_eq : ∀ (v : V), f v = f’ (val v) → ∀ (v’ : V’), g_V’ (val v) v’ = g’ (val v) v’.

The assumption A2 is equally straightforward to define:

Hyp chk_f : ∀ v, f v = f’ (val v) → checkable v = checkable’ (val v).

Finally, the assumption A3, when formalized, establishes a relation between
vertices in g and g’ :

Hyp chk_V : ∀ (v : V), checkable v → checkable’ (val v) →
(∀ (v’ : V’), connect g_V’ (val v) v’ = connect g’ (val v) v’) →
(∀ (v’ : V’), connect g_V’ (val v) (val v’) →
f v’ = f’ (val v’)) → check v = check’ (val v).

We now assume we are given a sequence of results for checkable vertices in the
old revision, and that this sequence is sound, complete, and duplicate-free:

Var res_V : seq (V ∗ R).
Hyp res_VP : ∀ v r, reflect (checkable v ∧ check v = r) ((v,r) \in res_V).
Hyp res_v_uniq : uniq [seq vr.1 | vr ← res_V].

We can then filter the sequence of old results to locate unimpacted vertices in
the new revision:

Def res_unimpacted_V’ : seq (V’ ∗ R) := [seq (val vr.1, vr.2) |
vr ← res_V & val vr.1 \notin impacted_V’ mod_V].

This allows us to form a final sequence of vertex-result pairs:

Def res_V’ : seq (V’ ∗ R) := res_impacted_fresh_V’ ++ res_unimpacted_V’.

For sanity-checking, we prove the absence of duplicates:

Def chk_V’ : seq V’ := [seq vr.1 | vr ← res_V’].
Thm chk_V’_uniq : uniq chk_V’.

We prove that the sequence contains all checkable vertices in V’ (completeness):

Thm chk_V’_complete (v : V’) : checkable’ v → v \in chk_V’.

Finally, we prove that the results in the sequence are consistent with explicitly
calling check’ on all vertices in V’ (soundness):

Thm chk_V’_sound (v : V’) (r : R) : (v, r) \in res_V’ → checkable’ v ∧ check’ v = r.

The formal proofs, which we elide here, mostly reduce to reasoning over the
connect predicate and inductively on graph paths.

5 Component Hierarchies

Let V be a set of vertices representing fine-grained components (e.g., methods),
with dependency graph g⊥. Let U be a different set of vertices representing
coarse-grained components (e.g., files), associated with a function p: U → 2V

that defines a partition of V . The partition indicates how components in U encap-

sulate components in V , and is associated with a graph g� of vertices in U that is

Practical Machine-Checked Formalization of Change Impact Analysis 145

U

p

V

Fig. 2. Hierarchy with component sets U and V , partition p, and dependencies.

consistent with dependencies expressed in g⊥. This approach can be repeated to
produce component hierarchies, each time coalescing sets of finer-grained depen-
dencies into single coarser-grained dependencies. Figure 2 illustrates a two-level
hierarchy and its component dependencies.

Some change impact analysis techniques consider both fine-grained and coarse-
grained component levels [11, 46, 60]. A key idea behind these techniques is to
exploit the relationships between vertices across granularity levels. In particular,
if a vertex u ∈ U is unmodified after a change, we may be able to immediately
conclude that all vertices v ∈ p(u) are unmodified as well, potentially ruling out
that a large subset of V is impacted. In this section, we formalize this intuition
using our existing notions to express hierarchical change impact analysis.

5.1 Formal Model of Hierarchies

Let f⊥ and f ′
⊥ be the functions mapping vertices to artifacts for V and V ′ with

V ⊆ V ′, and let f� and f ′
� be the corresponding functions for U and U ′ with

U ⊆ U ′. Let p and p′ be partition-inducing functions from U and U ′ to subsets
of V and V ′, respectively. We make the following assumptions:

H1: For all u, u′ ∈ U and v, v′ ∈ V , if u �= u′, g⊥(v, v′), v ∈ p(u), and v′ ∈ p(u′),
then g�(u, u′).

H2: For all u ∈ U , if f�(u) = f ′
�(u), then p(u) = p′(u).

H3: For all u ∈ U and v ∈ V , if f�(u) = f ′
�(u) and v ∈ p(u), then f⊥(v) = f ′

⊥(v).

Intuitively, H1 expresses that whenever two fine-grained components that reside
in different coarse-grained components are related, there must be a correspond-
ing relation between their respective coarse-grained components. H2 expresses
that whenever a coarse-grained component is unchanged, it contains the same
fine-grained components as before. Finally, H3 expresses that a fine-grained com-
ponent is unchanged if the coarse-grained component that contains it is un-
changed. Under these assumptions, there are essentially two distinct strategies
we can use to leverage impact analysis for coarse-grained components to analyze
fine-grained components.
Overapproximation strategy: Let U ′

i be the set of impacted and fresh vertices
in U ′, computed as above without considering vertices in V ′. Consider the set
V ′

p =
⋃

u∈U ′

i

p′(u) which contains fresh and potentially impacted vertices in V ′.

146 K. Palmskog et al.

Executing all checkable vertices in V ′
p may perform needless work for unimpacted

vertices, but completely elides analysis of g⊥. This approach essentially corre-
sponds to relying on comparing whole files to decide whether to rerun commands
that operate on every component inside these files, as in make.
Compositional strategy: Let Ui be the set of impacted vertices in U , com-
puted as above. Consider the set Vp =

⋃
u∈Ui

p(u) of potentially impacted ver-
tices in V . We use this set to scope further analysis. In particular, we use the
subgraph gp of g⊥ induced by Vp to precisely find the impacted vertices in V .
While unimpacted vertices are then avoided, the additional analysis of gp may
be time-consuming to perform compared to the first strategy. At a high level,
this strategy corresponds to the one used in RPS [11] and hybrid RTS [60].

5.2 Encoding and Correctness in Coq

To encode hierachical analysis, we use finite types and functions (now suffixed by
top and bot) in the same way as before, while adding partitioning assumptions:

Vars (p : U → {set V}) (p’ : U’ → {set V’}).
Hyp p_pt : partition (\bigcup_(u | u \in U) [set (p u)]) [set: V].
Hyp p’_pt : partition (\bigcup_(u | u \in U’) [set (p’ u)]) [set: V’].

For the overapproximation strategy, we first define impacted sets:

Def if_top : {set U’} := impacted_fresh_V’ f’_top f_top g_top.
Def p’_if_bot : {set V’} := \bigcup_(u | u \in if_top) (p’ u).

Under the assumptions outlined above, we then show formally that p’_if_bot is
a superset of the results of analysis of V, V’ , and the graph g_bot:

Thm in_p’ (v : V’) : v \in impacted_fresh_V’ f’_bot f_bot g_bot → v \in p’_if_bot.

The key fact we use to prove this theorem is the following:

Thm connect_top_bot v v’ u u’ : v \in (p u) → v’ \in (p u’) →
connect g_bot v v’ → connect g_top u u’.

To encode the compositional strategy, we first define impacted sets:

Def i_top : {set U} := impacted g_top−1 (mod_V f’_top f_top).
Def p_i_bot : {set V} := \bigcup_(u | u \in i_top) (p u).

Then, we define a subtype and accompanying graph:

Def P_V_sub : pred V := fun v ⇒ v \in p_i_bot.
Def V_sub : finType := sig_finType P_V_sub.
Def g_bot_sub : rel V_sub := [rel x y | g_bot (val x) (val y)].

This allows us to use our previously defined analysis functions compositionally:

Def mod_V_sub := [set v : V_sub | val v \in mod_V f’_bot f_bot].
Def impacted_V_sub := impacted g_bot_sub−1 mod_V_sub.
Def impacted_V’_sub := [set val (val v) | v in impacted_V_sub].
Def impacted_fresh_V’_sub := impacted_V’_sub :|: fresh_V’ P_bot.

We finally show that the last set is the same as the one we would have obtained
by directly analysing the graph g_bot:

Practical Machine-Checked Formalization of Change Impact Analysis 147

Thm impacted_fresh_V’_sub_eq :
impacted_fresh_V’_sub = impacted_fresh_V’ f’_bot f_bot g_bot.

Using these definitions and results, we proved soundness and completeness for
both strategies using the same approach as in Section 4.2.

6 Tool Implementation

While our core definitions of change impact analysis described in Section 4 are
executable inside Coq, this does not mean they are efficient or that code ex-
tracted from the definitions is immediately usable. We describe two aspects of
bringing verified Coq code into our tool Chip: optimizations and encapsulation.

6.1 Optimizations

Our basic transitive closure function impacted is simple to reason about but not
particularly fast in practice, since it fully explores the closures of all elements
in the set of modified vertices. To mitigate this, we refined the function by
leveraging the depth-first search function dfs from the fingraph MC module
to incrementally compute the closure. dfs takes a graph as a function from
vertices to neighbor sequences and a depth bound, and terminates as soon as it
encounters a known vertex. We perform a stack-efficient left fold with dfs over
an input sequence of vertices:

Def clos (l : seq V) : seq V := foldl (dfs g #|V|) [::] l.

Note that we set the dfs depth bound to the number of elements in the finite
type V (written #|V|) to fully explore the graph g. However, one limitation of the
MC dfs function is its linear-time sequence membership lookups. We therefore
defined a better closure function with logarithmic membership lookup time using
sets backed by red-black trees as found in the Coq standard library [2, 23]:

Fixpoint sdfs (g : V → seq V) (n : nat) (s : RBT.t) (x : V) : RBT.t :=
if RBT.mem x s then s else

if n is n’.+1 then foldl (sdfs g n’) (RBT.add x s) (g x) else s.
Def sclos (l : seq V) : seq V := RBT.elements (foldl (sdfs g #|V|) RBT.empty l).

We used this closure function to define a function seq_impacted_fresh which we
proved extensionally equivalent to impacted_fresh_V’ defined in Section 4.1. We
also added many custom extraction directives in Coq to ensure the extracted
code uses efficient OCaml library functions, e.g., for list operations [22].

6.2 Encapsulation

Before extraction to OCaml, we instantiate the finite types for graph vertices
to ordinal finite types, which intuitively contain all natural numbers from 0 up
to (but not including) some bound k. These numbers can then become machine
integers during extraction, which allows us to provide a simple OCaml interface:

val impacted_fresh : int -> int -> (int -> string) ->

(int -> string) -> (int -> int list) -> int list

148 K. Palmskog et al.

Here, the first argument is the number of vertices in the new graph, while the
second is the number of vertices in the old graph. After these integers follow two
functions that map new and old vertices, respectively, to their artifacts in the
form of OCaml strings. Then comes a function that defines the adjacent vertices
of vertices in the old graph. The result is a list of impacted and fresh vertices.

Not all computationally meaningful types in Coq can be directly represented
in OCaml’s type system. Some function calls must therefore circumvent the type
system by using calls to the special Obj.magic function [40]. We use this approach
in our implementation of the above interface:

let impacted_fresh num_new num_old f’ f succs =

Obj.magic (ordinal_seq_impacted_fresh num_new num_old

(Obj.magic (fun x -> char_list_of_string (f’ x)))

(Obj.magic (fun x -> char_list_of_string (f x)))

(Obj.magic succs))

The interface and implementation for two-level compositional hierarchical se-
lection is a straightforward extension, with an additional argument p of type
int -> int list for between-level partitioning.

7 Evaluation of the Model

To evaluate our model and its Coq encoding, we performed an empirical study
by integrating Chip with a recently developed RTS tool, Ekstazi, one RPS
tool, iCoq, and one build system, Tup. We then ran the modified RTS tool on
open-source Java projects used to evaluate RTS techniques [26,37], the modified
RPS tool on Coq projects used in its evaluation [11], and the modified build
system on C/C++ projects. Finally, we compared the outcomes and running
times with those for the unmodified versions of Ekstazi, iCoq, and Tup.

7.1 Tool Integration

Integrating Chip with Ekstazi was challenging, since Ekstazi collects depen-
dencies dynamically and builds only a flat list of dependencies rather than an
explicit graph. To overcome this limitation, we modified Ekstazi to build an ex-
plicit graph by maintaining a mapping from method callers to their callees. The
integration with iCoq was also challenging because of the need for hierarchical
selection of proofs and support for deletion of dependency graph vertices. We
handle deletion of a vertex in iCoq by temporarily adding it to the new graph
with a different artifact (checksum) from before, marked as non-checkable; then,
after selection, we purge the vertex. In contrast, the integration with Tup was
straightforward, since Tup stores dependencies in an SQLite database. We sim-
ply query this database to obtain a graph in the format expected by Chip.

7.2 Projects

RTS: We use 10 GitHub projects. Table 1 (top) shows the name of each project,
the number of lines of code (LOC) and the number of tests in the latest version
control revision we used in our experiments, the SHA of the latest revision, and

Practical Machine-Checked Formalization of Change Impact Analysis 149

Table 1. List of Projects Used in the Evaluation (RTS at the Top, RPS in the Middle,
and Tup at the Bottom).

Project LOC #Tests SHA URL (github.com/)

Asterisk 57,219 257 e36c655f asterisk-java/asterisk-java
Codec 22,009 887 58860269 apache/commons-codec
Collections 66,356 24,589 d83572be apache/commons-collections
Lang 81,533 4,119 c3de2d69 apache/commons-lang
Math 186,388 4,858 eb57d6d4 apache/commons-math
GraphHopper 70,615 1,544 14d2d670 graphhopper/graphhopper
La4j 13,823 799 e77dca70 vkostyukov/la4j
Planner 82,633 398 f12e8600 opentripplanner/OpenTripPlanner
Retrofit 20,476 603 7a0251cc square/retrofit
Truth 29,591 1,448 14f72f73 google/truth

Total 630,643 39,502 N/A N/A

Project LOC #Proofs SHA URL

Flocq 33,544 943 4161c990 gitlab.inria.fr/flocq/flocq
StructTact 2,497 187 8f1bc10a github.com/uwplse/StructTact
UniMath 45,638 755 5e525f08 github.com/UniMath/UniMath
Verdi 57,181 2,784 15be6f61 github.com/uwplse/Verdi

Total 138,860 4,669 N/A N/A

Project LOC #Cmds SHA URL (github.com/)

guardcheader 656 5 dbd1c0f kalrish/guardcheader
LazyIterator 1,276 18 d5f0b64 matthiasvegh/LazyIterator
libhash 347 10 b22c27e fourier/libhash
Redis 162,366 213 39c70e7 antirez/redis
Shaman 925 7 73c048d HalosGhost/shaman
Tup 200,135 86 f77dbd4 gittup/tup

Total 365,705 339 N/A N/A

URL on GitHub. We chose these projects because they are popular Java proj-
ects (in terms of stars) on GitHub, use the Maven build system (supported by
Ekstazi), and were recently used in RTS research [37,60].
RPS: We use 4 Coq projects. Table 1 (middle) shows the name of each project,
the number of LOC and the number of proofs in the latest revision we used,
the latest revision SHA, and URL. We chose these projects because they were
used in the evaluation of iCoq [11]; as in that evaluation, we used 10 revisions
of StructTact and 24 revisions of the other projects.
Build system: We use 6 GitHub projects. Table 1 (bottom) shows the name
of each project, the number of LOC and the number of build commands in
the latest revision we used, the latest revision SHA, and URL. We chose these
projects from the limited set of projects on GitHub that use Tup. We looked
for projects that could be built successfully and had at least five revisions; the
largest project that met these requirements, in terms of LOC, was Tup itself.

7.3 Experimental Setup

Our experimental setup closely follows recent work on RTS [37, 60]. That is,
our scripts (1) clone one of the projects; (2) integrate the (modified) Ekstazi,
iCoq, or Tup; and (3) execute tests on, check proofs for, or build the (up to) 24
latest revisions. For each run, we recorded the end-to-end execution time, which
includes time for the entire build run. We also recorded the execution time for
change impact analysis alone. Finally, we recorded the number of executed tests,

https://github.com/asterisk-java/asterisk-java
https://github.com/apache/commons-codec
https://github.com/apache/commons-collections.git
https://github.com/apache/commons-lang
https://github.com/apache/commons-math.git
https://github.com/graphhopper/graphhopper.git
https://github.com/vkostyukov/la4j.git
https://github.com/opentripplanner/OpenTripPlanner
https://github.com/square/retrofit
https://github.com/google/truth
https://gitlab.inria.fr/flocq/flocq
https://github.com/uwplse/StructTact
https://github.com/UniMath/UniMath
https://github.com/uwplse/Verdi
https://github.com/kalrish/guardcheader
https://github.com/matthiasvegh/LazyIterator
https://github.com/fourier/libhash
https://github.com/antirez/redis
https://github.com/HalosGhost/shaman
https://github.com/gittup/tup

150 K. Palmskog et al.

Table 2. Execution Time and CIA Time in Seconds for Ekstazi and Chip.

Project
Total CIA

RetestAll Ekstazi Chip Ekstazi Chip

Asterisk 461.92 188.67 194.65 2.74 6.51
Codec 896.00 135.11 136.35 2.44 4.10
Collections 2,754.99 342.07 350.95 2.87 9.31
Lang 1,844.19 359.36 367.16 2.71 8.68
Math 2,578.09 1,459.98 1,495.71 1.79 7.13
GraphHopper 1,871.01 423.63 449.94 11.19 21.33
La4j 272.96 202.10 209.41 1.12 3.91
Planner 4,811.63 1,144.09 1,228.61 40.62 89.17
Retrofit 1,181.09 722.14 747.76 11.30 19.97
Truth 745.11 700.26 724.22 3.03 8.82

Total 17,416.99 5,677.41 5,904.76 79.81 178.93

Table 3. Execution/CIA Time in Seconds for iCoq and Chip.

Project
Total CIA

RecheckAll iCoq Chip iCoq Chip

Flocq 1,028.01 313.08 318.19 50.65 53.43
StructTact 45.86 43.90 44.49 14.45 14.98
UniMath 14,989.09 1,910.56 2,026.75 124.79 239.12
Verdi 37,792.07 3,604.23 4,637.27 139.09 1,171.57

Total 53,855.03 5,871.76 7,026.70 328.98 1,479.10

proofs, or commands, which we use to verify the correctness of the results, i.e.,
we checked that the results for the unmodified tool and Chip were equivalent.
We ran all experiments on a 4-core Intel i7-6700 CPU @ 3.40GHz machine with
16GB of RAM, running Ubuntu Linux 17.04. We confirmed that the execution
time for each experiment was similar across several runs.

7.4 Results

RTS: Table 2 shows the execution times for Ekstazi. Column 1 shows the
names of the projects. Columns 2 to 4 show the cumulative end-to-end time for
RetestAll (i.e., running all tests at each revision), the unmodified RTS tool, and
the RTS tool with Chip. Columns 5 and 6 show the cumulative time for change
impact analysis (CIA time). The last row in the table shows the cumulative ex-
ecution time across all projects. We have several findings. First, Ekstazi with
Chip performs significantly better than RetestAll, and only slightly worse than
the unmodified tool. Considering that we did not prioritize optimizing the inte-
gration, we believe that the current execution time differences are small. Second,
the CIA time using Chip is slightly higher than the CIA time for the unmodified
tool, but we believe this could be addressed by integrating Chip via the Java
Native Interface (JNI). The selected tests for all projects and revisions were the
same for the unmodified Ekstazi and Ekstazi with Chip.
RPS: Table 3 shows the total proof checking time for iCoq and the CIA time
for iCoq and Chip. All time values are cumulative time across all the revi-
sions we used. We find that iCoq with Chip has only marginal differences in
performance from iCoq for all but the largest project, Verdi. While iCoq with

Practical Machine-Checked Formalization of Change Impact Analysis 151

Chip is notably slower in that case, it still saves a significant fraction of time
from checking every revision from scratch (RecheckAll). StructTact is an outlier
in that RecheckAll is actually faster than both iCoq and iCoq with Chip, due
to the overhead from bookkeeping and graph processing in comparison to the
project’s relatively small size. The selected proofs for all projects and revisions
were the same for the unmodified iCoq and iCoq with Chip.

Table 4. Execution Time in
Milliseconds for Tup and Chip.

Project Tup
CIA

Tup Chip

guardcheader 20,358 1,788 1,785
LazyIterator 61,476 869 1,007
libhash 15,279 433 446
Redis 68,076 1,919 4,779
Shaman 8,702 609 614
Tup 87,547 1,949 4,168

Total 261,438 7,567 12,799

Build system: Table 4 shows the total execu-
tion time for Tup and the CIA time for Tup

and Chip. All time values are cumulative time
across all the revisions we used. Unfortunately,
the build time for most of the projects is short.
However, we can still observe that Chip takes
only slightly more time than the original tool to
perform change impact analysis. In the future,
we plan to evaluate our toolchain on larger proj-
ects. The lists of commands for all projects and
all revisions were the same for the unmodified Tup and Tup with Chip.

Overall, we believe these results indicate that our formal model is practically
relevant and that it is feasible to use Chip as a verified component for change
impact analysis in real-world tools.

8 Related Work

Formalizations of graph algorithms: Pottier [49] encoded and verified Kosa-
raju’s algorithm for computing strongly connected graph components in Coq. He
also derived a practical program for depth-first search by extracting Coq code
to OCaml, demonstrating the feasibility of extraction for graph-based programs.
Théry subsequently formalized a similar encoding of Kosaraju’s algorithm in
Coq using the MC fingraph module [56]. Théry and Cohen then formalized
and proved correct Tarjan’s algorithm for computing strongly connected graph
components in Coq [13,16]. Our formalization takes inspiration from Théry and
Cohen’s work, and adapts some of their definitions and results in a more applied
context, with focus on performance of extracted code. Similar graph algorithm
formalizations have also been done in the Isabelle/HOL proof assistant [35]. In
work particularly relevant to build systems, Guéneau et al. [32] verified both
the functional correctness and time complexity of an incremental graph cycle
detection algorithm in Coq. In contrast to our reasoning on pure functions and
use of extraction, they reason directly on imperative OCaml code.
Formalizations of build systems: Christakis et al. [15] formalized a general
build language called CloudMake in the Dafny verification tool. Their language
is a purely functional subset of JavaScript, and allows describing dependencies
between executions of tools and files. Having embedded their language in Dafny,
they verify that builds with cached files are equivalent to builds from scratch.
In contrast to the focus on generating files in CloudMake, we consider a formal
model with an explicit dependency graph and an operation check on vertices
whose output is not used as input to other operations. The CloudMake for-
malization assumes an arbitrary operation exec that can be instantiated using

152 K. Palmskog et al.

Dafny’s module refinement system; we use Coq section variables to achieve sim-
ilar parametrization for check . We view our Coq development as a library useful
to tool builders, rather than a separate language that imposes a specific idiom
for expressing dependencies and build operations.

Mokhov et al. [45] presented an analysis of several build systems, including
a definition what it means for such systems to be correct. Their correctness
formulation is similar to that of Christakis et al. for cached builds, and relies
on a notion of abstract persistent stores expressed via monads. Our vertices and
artifacts correspond quite closely to their notions of keys and values, respectively.
However, their basic concepts are given as Haskell code, which has less clear
meaning and a larger trusted base than Coq or Dafny code. Moreover, they
provide no formal proofs. Mokhov et al. [44] subsequently formalized in Haskell
a static analysis of build dependencies as used in the Dune build system.

Stores could be added to our model, e.g., by letting checkable vertices be
associated with commands that take lists of file names and the current store
state as parameters, producing a new state. However, this would in effect entail
defining a specific build language inside Coq, which we consider outside the scope
of our library and tool.

9 Conclusion

We presented a formalization of change impact analysis and its encoding and
correctness proofs in the Coq proof assistant. Our formal model uses finite sets
and graphs to capture system components and their interdependencies before
and after a change to a system. We locate impacted vertices that represent,
e.g., tests to be run or build commands to be executed, by computing transitive
closures in the pre-change dependency graph. We also considered two strategies
for change impact analysis of hierarchical systems of components. We extracted
optimized impact analysis functions in Coq to executable OCaml code, yielding
a verified tool dubbed Chip. We then integrated Chip with a regression test
selection tool for Java, Ekstazi, one regression proof selection tool for Coq
itself, iCoq, and one build system, Tup, by replacing their existing components
for impact analysis. We evaluated the resulting toolchains on several open-source
projects by comparing the outcome and running time to those for the respective
original tools. Our results show the same outcomes with only small differences
in running time, corroborating the adequacy of our model and the feasibility of
practical verified tools for impact analysis. We also believe our Coq library can
be used as a basis for proving correct domain-specific incremental techniques
that rely on change impact analysis, e.g., regression test selection for Java and
regression proof selection for type theories.

Acknowledgments

The authors thank Ben Buhse, Cyril Cohen, Pengyu Nie, Zachary Tatlock,
Thomas Wei, Chenguang Zhu, and the anonymous reviewers for their comments
and feedback on this work. This work was partially supported by the US National
Science Foundation under Grant No. CCF-1652517.

Practical Machine-Checked Formalization of Change Impact Analysis 153

References

1. Acharya, M., Robinson, B.: Practical change impact analysis based on static
program slicing for industrial software systems. In: International Conference
on Software Engineering. pp. 746–755. ACM, New York, NY, USA (2011).
https://doi.org/10.1145/1985793.1985898

2. Appel, A.W.: Efficient verified red-black trees (2011), https://www.cs.princeton.
edu/∼appel/papers/redblack.pdf, last accessed 21 Feb 2020.

3. Arnold, R.S.: Software Change Impact Analysis. IEEE Computer Society, Los
Alamitos, CA, USA (1996)

4. Arnold, R.S., Bohner, S.A.: Impact analysis - towards a framework
for comparison. In: International Conference on Software Maintenance.
pp. 292–301. IEEE Computer Society, Washington, DC, USA (1993).
https://doi.org/10.1109/ICSM.1993.366933

5. Bazel team: Bazel Blog, https://blog.bazel.build, last accessed 20 Feb 2020.
6. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development:

Coq’Art: the calculus of inductive constructions. Springer, Heidelberg, Germany
(2004). https://doi.org/10.1007/978-3-662-07964-5

7. Bertot, Y., Gonthier, G., Ould Biha, S., Pasca, I.: Canonical big operators. In:
Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) International Conference on Theorem
Proving in Higher Order Logics. LNCS, vol. 5170, pp. 86–101. Springer, Heidelberg,
Germany (2008). https://doi.org/10.1007/978-3-540-71067-7 11

8. Bishop, S., Fairbairn, M., Norrish, M., Sewell, P., Smith, M., Wansbrough, K.:
Rigorous specification and conformance testing techniques for network protocols,
as applied to TCP, UDP, and sockets. In: SIGCOMM Conference. pp. 265–276.
ACM, New York, NY, USA (2005). https://doi.org/10.1145/1080091.1080123

9. Boutin, S.: Using reflection to build efficient and certified decision proce-
dures. In: Abadi, M., Ito, T. (eds.) Theoretical Aspects of Computer Soft-
ware. LNCS, vol. 1281, pp. 515–529. Springer, Heidelberg, Germany (1997).
https://doi.org/10.1007/BFb0014565

10. Cai, H., Santelices, R.: A comprehensive study of the predictive accuracy
of dynamic change-impact analysis. J. Syst. Softw. 103(C), 248–265 (2015).
https://doi.org/10.1016/j.jss.2015.02.018

11. Celik, A., Palmskog, K., Gligoric, M.: iCoq: Regression proof selection for large-
scale verification projects. In: International Conference on Automated Software
Engineering. pp. 171–182. IEEE Computer Society, Washington, DC, USA (2017).
https://doi.org/10.1109/ASE.2017.8115630

12. Celik, A., Palmskog, K., Gligoric, M.: A regression proof selection tool for Coq. In:
International Conference on Software Engineering, Tool Demonstrations. pp. 117–
120. ACM, New York, NY, USA (2018). https://doi.org/10.1145/3183440.3183493

13. Chen, R., Cohen, C., Lévy, J.J., Merz, S., Théry, L.: Formal Proofs of Tarjan’s
Strongly Connected Components Algorithm in Why3, Coq and Isabelle. In: Har-
rison, J., O’Leary, J., Tolmach, A. (eds.) International Conference on Interactive
Theorem Proving. pp. 13:1–13:19. Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik, Dagstuhl, Germany (2019). https://doi.org/10.4230/LIPIcs.ITP.2019.13

14. Chodorow, K.: Trimming the (build) tree with Bazel, https://www.kchodorow.
com/blog/2015/07/23/trimming-the-build-tree-with-bazel/, last accessed 20 Feb
2020.

15. Christakis, M., Leino, K.R.M., Schulte, W.: Formalizing and verifying a modern
build language. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) Symposium on For-

https://doi.org/10.1145/1985793.1985898
https://www.cs.princeton.edu/~appel/papers/redblack.pdf
https://www.cs.princeton.edu/~appel/papers/redblack.pdf
https://doi.org/10.1109/ICSM.1993.366933
https://blog.bazel.build
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-540-71067-7_11
https://doi.org/10.1145/1080091.1080123
https://doi.org/10.1007/BFb0014565
https://doi.org/10.1016/j.jss.2015.02.018
https://doi.org/10.1109/ASE.2017.8115630
https://doi.org/10.1145/3183440.3183493
https://doi.org/10.4230/LIPIcs.ITP.2019.13
https://www.kchodorow.com/blog/2015/07/23/trimming-the-build-tree-with-bazel/
https://www.kchodorow.com/blog/2015/07/23/trimming-the-build-tree-with-bazel/

154 K. Palmskog et al.

mal Methods. LNCS, vol. 8442, pp. 643–657. Springer, Cham, Switzerland (2014).
https://doi.org/10.1007/978-3-319-06410-9 43

16. Cohen, C., Théry, L.: Formalization of Tarjan 72 algorithm in Coq with Math-
ematical Components and SSReflect, https://github.com/CohenCyril/tarjan, last
accessed 21 Feb 2020.

17. Coquand, T., Huet, G.: The calculus of constructions. Information and Computa-
tion 76(2), 95–120 (1988). https://doi.org/10.1016/0890-5401(88)90005-3

18. Coquand, T., Paulin-Mohrin, C.: Inductively defined types. In: Martin-Löf, P.,
Mints, G. (eds.) International Conference on Computer Logic. LNCS, vol. 417,
pp. 50–66. Springer, Heidelberg, Germany (1990). https://doi.org/10.1007/3-540-
52335-9 47

19. Cruz-Filipe, L., Letouzey, P.: A large-scale experiment in executing extracted pro-
grams. Electronic Notes in Theoretical Computer Science 151(1), 75–91 (2006).
https://doi.org/10.1016/j.entcs.2005.11.024

20. Delaware, B., Suriyakarn, S., Pit-Claudel, C., Ye, Q., Chlipala, A.: Narcissus:
Correct-by-construction derivation of decoders and encoders from binary formats.
Proc. ACM Program. Lang. 3(ICFP) (2019). https://doi.org/10.1145/3341686

21. Esfahani, H., Fietz, J., Ke, Q., Kolomiets, A., Lan, E., Mavrinac, E., Schulte,
W., Sanches, N., Kandula, S.: CloudBuild: Microsoft’s distributed and caching
build service. In: International Conference on Software Engineering, Soft-
ware Engineering in Practice. pp. 11–20. ACM, New York, NY, USA (2016).
https://doi.org/10.1145/2889160.2889222

22. ExtLib team: OCaml Extended standard Library, https://github.com/ygrek/
ocaml-extlib, last accessed 20 Feb 2020.

23. Filliâtre, J.C., Letouzey, P.: Functors for proofs and programs. In: Schmidt, D. (ed.)
European Symposium on Programming. LNCS, vol. 2986, pp. 370–384. Springer,
Heidelberg, Germany (2004). https://doi.org/10.1007/978-3-540-24725-8 26

24. Fonseca, P., Zhang, K., Wang, X., Krishnamurthy, A.: An empirical study on
the correctness of formally verified distributed systems. In: European Confer-
ence on Computer Systems. pp. 328–343. ACM, New York, NY, USA (2017).
https://doi.org/10.1145/3064176.3064183

25. Garillot, F., Gonthier, G., Mahboubi, A., Rideau, L.: Packaging mathematical
structures. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) Interna-
tional Conference on Theorem Proving in Higher Order Logics. LNCS, vol. 5674,
pp. 327–342. Springer, Heidelberg, Germany (2009). https://doi.org/10.1007/978-
3-642-03359-9 23

26. Gligoric, M., Eloussi, L., Marinov, D.: Practical regression test selection
with dynamic file dependencies. In: International Symposium on Software
Testing and Analysis. pp. 211–222. ACM, New York, NY, USA (2015).
https://doi.org/10.1145/2771783.2771784

27. Gligoric, M., Schulte, W., Prasad, C., van Velzen, D., Narasamdya, I., Livshits,
B.: Automated migration of build scripts using dynamic analysis and search-
based refactoring. In: Conference on Object-Oriented Programming, Systems,
Languages, and Applications. pp. 599–616. ACM, New York, NY, USA (2014).
https://doi.org/10.1145/2714064.2660239

28. Gonthier, G.: Formal proof—the four-color theorem. Notices of the American
Mathematical Society 55(11), 1382–1393 (2008), http://www.ams.org/notices/
200811/tx081101382p.pdf

29. Gonthier, G., Asperti, A., Avigad, J., Bertot, Y., Cohen, C., Garillot, F., Le Roux,
S., Mahboubi, A., O’Connor, R., Ould Biha, S., Pasca, I., Rideau, L., Solovyev,

https://doi.org/10.1007/978-3-319-06410-9_43
https://github.com/CohenCyril/tarjan
https://doi.org/10.1016/0890-5401(88)90005-3
https://doi.org/10.1007/3-540-52335-9_47
https://doi.org/10.1007/3-540-52335-9_47
https://doi.org/10.1016/j.entcs.2005.11.024
https://doi.org/10.1145/3341686
https://doi.org/10.1145/2889160.2889222
https://github.com/ygrek/ocaml-extlib
https://github.com/ygrek/ocaml-extlib
https://doi.org/10.1007/978-3-540-24725-8_26
https://doi.org/10.1145/3064176.3064183
https://doi.org/10.1007/978-3-642-03359-9_23
https://doi.org/10.1007/978-3-642-03359-9_23
https://doi.org/10.1145/2771783.2771784
https://doi.org/10.1145/2714064.2660239
http://www.ams.org/notices/200811/tx081101382p.pdf
http://www.ams.org/notices/200811/tx081101382p.pdf

Practical Machine-Checked Formalization of Change Impact Analysis 155

A., Tassi, E., Théry, L.: A machine-checked proof of the odd order theorem. In:
Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) International Conference on
Interactive Theorem Proving. LNCS, vol. 7998, pp. 163–179. Springer, Heidelberg,
Germany (2013). https://doi.org/10.1007/978-3-642-39634-2 14

30. Gonthier, G., Mahboubi, A.: An introduction to small scale reflec-
tion in Coq. Journal of Formalized Reasoning 3(2), 95–152 (2010).
https://doi.org/10.6092/issn.1972-5787/1979

31. Gonthier, G., Ziliani, B., Nanevski, A., Dreyer, D.: How to make ad
hoc proof automation less ad hoc. In: International Conference on Func-
tional Programming. pp. 163–175. ACM, New York, NY, USA (2011).
https://doi.org/10.1145/2034773.2034798

32. Guéneau, A., Jourdan, J.H., Charguéraud, A., Pottier, F.: Formal proof and
analysis of an incremental cycle detection algorithm. In: Harrison, J., O’Leary,
J., Tolmach, A. (eds.) International Conference on Interactive Theorem Proving.
pp. 18:1–18:20. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Ger-
many (2019). https://doi.org/10.4230/LIPIcs.ITP.2019.18

33. Kell, S., Mulligan, D.P., Sewell, P.: The missing link: Explaining ELF static
linking, semantically. In: Conference on Object-Oriented Programming, Systems,
Languages, and Applications. pp. 607–623. ACM, New York, NY, USA (2016).
https://doi.org/10.1145/2983990.2983996

34. Lahiri, S.K., Vaswani, K., Hoare, C.A.R.: Differential static analysis: Op-
portunities, applications, and challenges. In: Workshop on Future of Soft-
ware Engineering Research. pp. 201–204. ACM, New York, NY, USA (2010).
https://doi.org/10.1145/1882362.1882405

35. Lammich, P., Neumann, R.: A framework for verifying depth-first search algo-
rithms. In: Conference on Certified Programs and Proofs. pp. 137–146. ACM, New
York, NY, USA (2015). https://doi.org/10.1145/2676724.2693165

36. Law, J., Rothermel, G.: Whole program path-based dynamic im-
pact analysis. In: International Conference on Software Engineering.
pp. 308–318. IEEE Computer Society, Washington, DC, USA (2003).
https://doi.org/10.1109/ICSE.2003.1201210

37. Legunsen, O., Hariri, F., Shi, A., Lu, Y., Zhang, L., Marinov, D.: An extensive
study of static regression test selection in modern software evolution. In: Inter-
national Symposium on Foundations of Software Engineering. pp. 583–594. ACM,
New York, NY, USA (2016). https://doi.org/10.1145/2950290.2950361

38. Lehnert, S.: A review of software change impact analysis. Tech. rep., Technis-
che Universität Ilmenau, Ilmenau, Germany (2011), https://nbn-resolving.org/urn:
nbn:de:gbv:ilm1-2011200618

39. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–
115 (2009). https://doi.org/10.1145/1538788.1538814

40. Letouzey, P.: A new extraction for Coq. In: Geuvers, H., Wiedijk, F. (eds.) Types
for Proofs and Programs. LNCS, vol. 2646, pp. 200–219. Springer, Heidelberg,
Germany (2003). https://doi.org/10.1007/3-540-39185-1 12

41. Luo, Q., Hariri, F., Eloussi, L., Marinov, D.: An empirical analysis of flaky tests.
In: International Symposium on Foundations of Software Engineering. pp. 643–653.
ACM, New York, NY, USA (2014). https://doi.org/10.1145/2635868.2635920

42. MathComp team: Mathematical Components project, https://math-comp.github.
io, last accessed 20 Feb 2020.

43. Mitchell, N.: Shake before building: Replacing Make with Haskell. In: International
Conference on Functional Programming. pp. 55–66. ACM, New York, NY, USA
(2012). https://doi.org/10.1145/2364527.2364538

https://doi.org/10.1007/978-3-642-39634-2_14
https://doi.org/10.6092/issn.1972-5787/1979
https://doi.org/10.1145/2034773.2034798
https://doi.org/10.4230/LIPIcs.ITP.2019.18
https://doi.org/10.1145/2983990.2983996
https://doi.org/10.1145/1882362.1882405
https://doi.org/10.1145/2676724.2693165
https://doi.org/10.1109/ICSE.2003.1201210
https://doi.org/10.1145/2950290.2950361
https://nbn-resolving.org/urn:nbn:de:gbv:ilm1-2011200618
https://nbn-resolving.org/urn:nbn:de:gbv:ilm1-2011200618
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1007/3-540-39185-1_12
https://doi.org/10.1145/2635868.2635920
https://math-comp.github.io
https://math-comp.github.io
https://doi.org/10.1145/2364527.2364538

156 K. Palmskog et al.

44. Mokhov, A., Lukyanov, G., Marlow, S., Dimino, J.: Selective applica-
tive functors. Proc. ACM Program. Lang. 3(ICFP), 90:1–90:29 (2019).
https://doi.org/10.1145/3341694

45. Mokhov, A., Mitchell, N., Peyton Jones, S.: Build systems à la carte. Proc. ACM
Program. Lang. 2(ICFP), 79:1–79:29 (2018). https://doi.org/10.1145/3236774

46. Orso, A., Shi, N., Harrold, M.J.: Scaling regression testing to large
software systems. In: International Symposium on Foundations of Soft-
ware Engineering. pp. 241–251. ACM, New York, NY, USA (2004).
https://doi.org/10.1145/1041685.1029928

47. Palmskog, K., Celik, A., Gligoric, M.: Chip code release 1.0, https://github.com/
palmskog/chip/releases/tag/v1.0, last accessed 20 Feb 2020.

48. Pollock, L.L., Soffa, M.L.: Incremental compilation of optimized code. In: Sym-
posium on Principles of Programming Languages. pp. 152–164. ACM, New York,
NY, USA (1985). https://doi.org/10.1145/318593.318629

49. Pottier, F.: Depth-first search and strong connectivity in Coq. In: Baelde, D.,
Alglave, J. (eds.) Journées francophones des langages applicatifs (JFLA). Le Val
d’Ajol, France (2015), https://hal.inria.fr/hal-01096354

50. Ren, X., Shah, F., Tip, F., Ryder, B.G., Chesley, O.: Chianti: A tool for change
impact analysis of Java programs. In: Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications. pp. 432–448. ACM, New York, NY,
USA (2004). https://doi.org/10.1145/1028976.1029012

51. Rothermel, G.: Efficient, Effective Regression Testing Using Safe Test Selection
Techniques. Ph.D. thesis, Clemson University, Clemson, SC, USA (1996)

52. Rothermel, G., Harrold, M.J.: A safe, efficient regression test selection technique.
Transactions on Software Engineering and Methodology 6(2), 173–210 (1997).
https://doi.org/10.1145/248233.248262

53. Rungta, N., Person, S., Branchaud, J.: A change impact analysis to character-
ize evolving program behaviors. In: International Conference on Software Main-
tenance. pp. 109–118. IEEE Computer Society, Washington, DC, USA (2012).
https://doi.org/10.1109/ICSM.2012.6405261

54. Shal, M.: Build system rules and algorithms (2009), http://gittup.org/tup/build
system rules and algorithms.pdf, last accessed 21 Feb 2020.

55. Skoglund, M., Runeson, P.: Improving class firewall regression test se-
lection by removing the class firewall. International Journal of Soft-
ware Engineering and Knowledge Engineering 17(3), 359–378 (2007).
https://doi.org/10.1142/S0218194007003306

56. Théry, L.: Formally-Proven Kosaraju’s algorithm (2015), https://hal.
archives-ouvertes.fr/hal-01095533, last accessed 21 Feb 2020.

57. Woos, D., Wilcox, J.R., Anton, S., Tatlock, Z., Ernst, M.D., Anderson, T.: Planning
for change in a formal verification of the Raft consensus protocol. In: Conference on
Certified Programs and Proofs. pp. 154–165. ACM, New York, NY, USA (2016).
https://doi.org/10.1145/2854065.2854081

58. Yang, X., Chen, Y., Eide, E., Regehr, J.: Finding and understanding
bugs in C compilers. In: Conference on Programming Language Design
and Implementation. pp. 283–294. ACM, New York, NY, USA (2011).
https://doi.org/10.1145/1993498.1993532

59. Yoo, S., Harman, M.: Regression testing minimization, selection and prioritization:
A survey. Journal of Software Testing, Verification and Reliability 22(2), 67–120
(2012). https://doi.org/10.1002/stvr.430

https://doi.org/10.1145/3341694
https://doi.org/10.1145/3236774
https://doi.org/10.1145/1041685.1029928
https://github.com/palmskog/chip/releases/tag/v1.0
https://github.com/palmskog/chip/releases/tag/v1.0
https://doi.org/10.1145/318593.318629
https://hal.inria.fr/hal-01096354
https://doi.org/10.1145/1028976.1029012
https://doi.org/10.1145/248233.248262
https://doi.org/10.1109/ICSM.2012.6405261
http://gittup.org/tup/build_system_rules_and_algorithms.pdf
http://gittup.org/tup/build_system_rules_and_algorithms.pdf
https://doi.org/10.1142/S0218194007003306
https://hal.archives-ouvertes.fr/hal-01095533
https://hal.archives-ouvertes.fr/hal-01095533
https://doi.org/10.1145/2854065.2854081
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1002/stvr.430

Practical Machine-Checked Formalization of Change Impact Analysis 157

60. Zhang, L.: Hybrid regression test selection. In: International Conference on
Software Engineering. pp. 199–209. ACM, New York, NY, USA (2018).
https://doi.org/10.1145/3180155.3180198

61. Zhang, L., Kim, M., Khurshid, S.: FaultTracer: a spectrum-based approach to lo-
calizing failure-inducing program edits. Journal of Software: Evolution and Process
25, 1357–1383 (2013). https://doi.org/10.1002/smr.1634

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

https://doi.org/10.1145/3180155.3180198
https://doi.org/10.1002/smr.1634
http://creativecommons.org/licenses/by/4.0/

What’s Decidable About Program Verification

Modulo Axioms?�

Umang Mathur , P. Madhusudan, and Mahesh Viswanathan

University of Illinois, Urbana Champaign, USA

Abstract. We consider the decidability of the verification problem of
programs modulo axioms — automatically verifying whether programs
satisfy their assertions, when the function and relation symbols are inter-
preted as arbitrary functions and relations that satisfy a set of first-order
axioms. Though verification of uninterpreted programs (with no axioms)
is already undecidable, a recent work introduced a subclass of coherent

uninterpreted programs, and showed that they admit decidable verifica-
tion [26]. We undertake a systematic study of various natural axioms for
relations and functions, and study the decidability of the coherent ver-
ification problem. Axioms include relations being reflexive, symmetric,
transitive, or total order relations, functions restricted to being associa-
tive, idempotent or commutative, and combinations of such axioms as
well. Our comprehensive results unearth a rich landscape that shows that
though several axiom classes admit decidability for coherent programs,
coherence is not a panacea as several others continue to be undecidable.

1 Introduction

Programs are proved correct against safety specifications typically by induction—
the induction hypothesis is specified using inductive invariants of the program,
and one proves that the reachable states of the program stays within the re-
gion defined by the invariants, inductively. Though there has been tremendous
progress in the field of decidable logics for proving that invariants are inductive,
finding inductive invariants is almost never fully automatic. And completely au-
tomated verification of programs is almost always undecidable.

Programs can be viewed as working over a data-domain, with variables stor-
ing values over this domain and being updated using constants, functions and
relations defined over that domain. Apart from the notable exception of finite
data domains, program verification is typically undecidable when the data do-
main is infinite. In a recent paper, Mathur et. al. [26] establish new decidability
results when the data domain is infinite. Two crucial restrictions are imposed —
data domain functions and relations are assumed to be uninterpreted and pro-
grams are assumed to be coherent (the meaning of coherence is discussed later

� Umang Mathur is partially supported by a Google PhD Fellowship. P. Madhusu-
dan is partially supported by NSF CCF 1527395. Mahesh Viswanathan is partially
supported by NSF CCF 1901069

c© The Author(s) 2020
A. Biere and D. Parker (Eds.): TACAS 2020, LNCS 12079, pp. 158–177, 2020.
https://doi.org/10.1007/978-3-030-45237-7 10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45237-7_10&domain=pdf
http://orcid.org/0000-0002-7610-0660
https://doi.org/10.1007/978-3-030-45237-7_10

What’s Decidable About Program Verification Modulo Axioms? 159

in this introduction). The theory of uninterpreted functions is an important the-
ory in SMT solvers that is often used (in conjunction with other theories) to
solve feasibility of loop-free program snippets, in bounded model-checking, and
to validate verification conditions. The salient aspect of [26] is to show that entire
program verification is decidable for the class of coherent programs, without any
user-provided inductive invariants (like loop invariants). While the results of [26]
were mainly theoretical, there has been recent work on applying this theory to
verifying memory-safety of heap-manipulating programs [28].

Data domain functions and relations used in a program usually satisfy special
properties and are not, of course, entirely uninterpreted. The results of [26] can
be seen as an approximate/abstraction-based verification method in practice —
if the program verifies assuming functions and relations to be uninterpreted,
then the program is correct for any data domain. However, properties of the
data domain are often critical in establishing correctness. For example, in order
to prove that a sorting program results in sorted arrays, it is important that the
binary relation < used to compare elements of the array is a total ordering on
the underlying data sort. Consequently, constraining the data domain to satisfy
certain axioms results in more accurate modeling for verification.

In this paper, we undertake a systematic study of the verification of unin-

terpreted programs when the data-domains are constrained using theories speci-

fied by (universally quantified) axioms. The choice of the axioms we study are
guided by two principles. First, we study natural mathematical properties of
functions and relations. Second, we choose to study axioms that have a decid-
able quantifier-free fragment of first order logic. The reason is that even single
program executions (as defined in Section 3.2) can easily encode quantifier-free
formulae (by computing the terms in variables, and assert Boolean combinations
of atomic relations and equality on them). Since we are seeking decidable verifi-
cation for programs with loops/iteration, it makes little sense to examine axioms
where even verification of single executions is undecidable.

Coherence modulo theories: Mathur et. al. [26] define a subclass of pro-
grams, called coherent programs, for which program verification on uninterpreted
domains is decidable; without the restriction of coherence, program verification
on uninterpreted domains is undecidable. Since our framework is strictly more
powerful, we adapt the notion of coherence to incorporate theories. A coherent
program [26] is one where all executions satisfy two properties — memoizing and
early-assumes. The memoizing property demands that the program computes
any term, modulo congruence induced by the equality assumes in the execution,
only once. More precisely, if an execution recomputes a term, the term should be
stored in a current variable. The early-assumes restriction demands, intuitively,
that whenever the program assumes two terms to be equal, it should do so early,
before computing superterms of them.

160 U. Mathur et al.

We adapt the above notion to coherence modulo theories1. The memoizing
and early-assumes property are now required modulo the equalities that are
entailed by the axioms. More precisely, if the theory is characterized by a set of
axioms A, the memoizing property demands that if a program computes a term
t and there was another term t′ that it had computed earlier which is equivalent
to t modulo the assumptions made thus far and the axioms A, then t′ must be
currently stored in a variable. Similarly, the early-assumes condition is also with
respect to the axioms — if the program execution observes a new assumption of
equality or a relation holding between terms, then we require that any equality
entailed newly by it, the previous assumptions and the axioms A do not involve
a dropped term. This is a smooth extension of the notion of coherence from [26];
when A = ∅, we essentially retrieve the notion from [26].

Main Contributions

Our first contribution is an extension of the notion of coherence in [26] to handle
the presence of axioms, as described above; this is technically nontrivial and we
provide a natural extension.

Under the new notion of coherence, we first study axioms on relations. The
EPR (effectively propositional reasoning) [37] fragment of first order logic is
one of the few fragments of first order logic that is decidable, and has been
exploited for bounded model-checking and verification condition validation in the
literature [34,33,32]. We study axioms written in EPR (i.e., universally quantified
formulas involving only relations) and show that verification for even coherent
programs, modulo EPR axioms, is undecidable.

Given the negative result on EPR, we look at particular natural axioms for
relations, which are nevertheless expressible in EPR. In particular, we look at
reflexivity, irreflexivity, and symmetry axioms, and show that verification of co-
herent programs is decidable when the interpretation of some relational symbols
is constrained to satisfy these axioms. Our proof proceeds by instrumenting the
program with auxiliary assume statements that preserve coherence and subtle
arguments that show that verification can be reduced to the case without axioms;
decidability then follows from results established in [26].

We then show a much more nontrivial result that verification of coherent
programs remains decidable when some relational symbols are constrained to
be transitive. The proof relies on new automata constructions that compute
streaming congruence closures while interpreting the relations to be transitive.

Furthermore, we show that combinations of reflexivity, irreflexivity, symme-
try, and transitivity, admit a decidable verification problem for coherent pro-
gram. Using this observation, we conclude decidability of verification when cer-
tain relations are required to be strict partial orders (irreflexive and transitive)
or equivalence relations.

1 We adapt the definition in a way that preserves the spirit of the definition of coher-
ence. Moreover, if we do not adapt the definition, essentially all axioms classes we
study in this paper would be undecidable.

What’s Decidable About Program Verification Modulo Axioms? 161

We then consider axioms that capture total orders and show that they too
admit a decidable coherent verification problem. Total orders are also expressible
in EPR and their formulation in EPR has been used in program verification,
as they can be used in lieu of the ordering on integers when only ordering is
important. For example, they can be used to model data in sorting algorithms,
array indices in modeling distributed systems to model process ids and the states
of processes, etc. [34,33].

Our next set of results consider axioms on functions. Associativity and com-
mutativity are natural and fundamental properties of functions (like + and ∗)
and are hence natural ways to capture/abstract using these axioms. (See [14]
where such abstractions are used in program analysis.) We first show that verifi-
cation of coherent programs is decidable when some functions are assumed to be
commutative or idempotent. Our proof, similar to the case of reflexive and sym-
metric relations, relies on reducing verification to the case without axioms using
program instrumentation that capture the commutativity and idempotence ax-
ioms. However, when a function is required to be associative, the verification
problem for coherent programs becomes undecidable. This undecidability result
was surprising to us.

The decidability results established for properties of individual relation or
function symbols discussed above can be combined to yield decidable verifica-
tion modulo a set of axioms. That is, the verification of coherent programs with
respect to models where relational symbols satisfy some subset of reflexivity/ir-
reflexivity/symmetery/transitivity axioms or none, and function symbols are
either uninterpreted, commutative, or idempotent, is decidable.

Decidability results outlined above, apply to programs that are coherent mod-
ulo the axioms/theories. However, given a program, in order to verify it using our
techniques, we would also like to decide whether the program is coherent mod-
ulo axioms. We prove that for all the decidable axioms above, checking whether
programs are coherent modulo the axioms is a decidable problem. Consequently,
under these axioms, we can both check whether programs are coherent modulo
the axioms and if they are, verify them.

There are several other results that we mention only in passing. For instance,
we show that even for single executions, verifying them modulo equational ax-
ioms is undecidable as it is closely related to the word problem for groups. And
our positive results for program verification under axioms for functions (com-
mutativity, idempotence), also shows that bounded model-checking under such
axioms is decidable, which can have its own applications.

Due to the large number of results and technically involved proofs, we give
only the main theorems and proof gists for some of these in the paper; details
can be found in [27].

2 Illustrative Example

Consider the problem of searching for an element k in a sorted list. There are
two simple algorithms for this problem. Algorithm 1 walks through the list from

162 U. Mathur et al.

Fig. 1. Left: Uninterpreted program for finding a key k in a list starting at x with <

interpreted as a strict total order. The condition a ≤ b is shorthand for a < b ∨ a = b.
Right: A model in which < is not interpreted as a strict total order. The elements
in the universe of the model are denoted using circles. Some elements are labeled
with variables denoting the initial values of these variables. The edges represent
subterm relation. Not all functions are shown in the figure. The model does not satisfy
the post-condition on the program on left.

beginning to end, and if it finds k, it sets a Boolean variable exists to T. Notice
this algorithm does not exploit the sortedness property of the list. Algorithm 2
also walks through the list, but it stops as soon as it either finds k or reaches an
element that is larger than k. If it finds the element it sets a Boolean variable
found to T. If both algorithms are run on the same sorted list, then their answers
(namely, exists and found) must be the same.

Fig. 1 (on the left) shows a program that weaves the above two algorithms
together (treating Algorithm 1 as the specification for Algorithm 2). The variable
x walks down the list using the next pointer. The variable stop is set to T when
Algorithm 2 stops searching in the list. The precondition, namely that the input
list is sorted, is captured by tracking another variable sorted whose value is T

if consecutive elements are ordered as the list is traversed. The post condition
demands that whenever the list is sorted, found and exists be equal when the
list has been fully traversed. Note that the program’s correctness is specified
using only quantifier-free assertions using the same vocabulary as the program.

The program works on a data domain that provides interpretations for the
functions key, next, the initial values of the variables, and the relation <. When
< is interpreted to be a strict total order, the program is correct. However,
if < is not interpreted as a total order, then the program may be incorrectly
deemed as buggy. To see this, consider the data model shown on the right in
Fig. 1. The data domain has 9 elements in its universe, with the functions next
and key interpreted as shown. Initially, x, y have value e1, NIL is e4, k is e7, T
and sorted are e8, and F, found, exists, and stop are e9. The interpretation
of < is as follows — e5 < e6, e6 < e7, and e7 < e5. Clearly < is not an order,

What’s Decidable About Program Verification Modulo Axioms? 163

but the program’s sortedness check “sorted = T” will pass. After the entire
list is processed, exists will be set to T when x = e3. On the other hand,
stop will be set to T when x = e1 because k = e7 < key(x). Therefore, at the
end found = F �= exists. The work presented in [26], where all functions and
relations are uninterpreted, would therefore declare this program to be incorrect.

The goal of this paper is to explore several natural restrictions on data models
and study the problem of verifying coherent programs for them. When < is
constrained to be a total order, the program in Fig. 1 is correct and coherent. Our
results (see Section 5.5) show that verification of such programs when relations
are constrained to be strict total orders is decidable, and hence we can build
automatic decision procedures that will correctly verify such programs.

3 Preliminaries

We briefly recall the syntax and semantics of uninterpreted programs and the
verification problem modulo axioms. Our presentation closely follows [26] and
for lack of space, some details have been postponed to [27].

3.1 Program Syntax

We consider imperative programs with loops over a fixed finite set of variables
V and use constant (C), function (F), and predicate (R) symbols belonging to
some first order signature Σ = (C, F , R). Programs are then given by the syntax
below (f ∈ F , R ∈ R, x, y ∈ V , z is a tuple of variables in V):

〈stmt〉 ::= | x := y | x := f(z) | assume (〈cond〉) | skip | 〈stmt〉 ; 〈stmt〉

| while (〈cond〉) 〈stmt〉 | if (〈cond〉) then 〈stmt〉 else 〈stmt〉

〈cond〉 ::= x = y | R(z) | ¬〈cond〉

3.2 Executions and Semantics of Uninterpreted Programs

Executions of programs over 〈stmt〉 are words over the following alphabet

Π = {“x := y”, “x := f(z)”, “assume(x = y)”, “assume(x �= y)”,

“assume(R(z))”, “assume(¬R(z))” | x, y ∈ V, z is in tuples(V)}

For a program s ∈ 〈stmt〉, the set of executions of s, denoted Exec(s) is a regular
language over the alphabet Π and is given as follows (similar to [26]).

Exec(skip) = ε Exec(x := y) = “x := y”
Exec(x := f(z)) = “x := f(z)” Exec(assume(c)) = “assume(c)”

Exec(if c then s1 else s2) = “assume(c)” · Exec(s1) + “assume(¬c)” · Exec(s2)
Exec(s1; s2) = Exec(s1) · Exec(s2)
Exec(while c {s}) = [“assume(c)” · Exec(s1)]

∗ · “assume(¬c)”

164 U. Mathur et al.

The set of partial executions of s is the set of prefixes of words in Exec(s) and
is also regular.

A data model M = (UM, ��M) for signature Σ is a first order structure
where UM is a universe of elements and ��M maps every symbol in Σ to their
interpretations. Given a data model M over Σ, and an execution ρ ∈ Π∗, the
semantics of ρ on M is given by evalM : Π∗ × V → UM that gives the the
valuation of variables in V at the end of an execution; the precise definition is
standard and is defered to [27].

3.3 Feasibility of Executions Modulo Axioms

An execution is said to be feasible in a data model, if every assumption made in
the execution, holds on the model. More precisely, an execution ρ is feasible in
M if for every prefix σ′ = σ · “assume c” of ρ, we have

(a) evalM(σ, x) = evalM(σ, y) if c is ‘(x = y)’,

(b) evalM(σ, x) �= evalM(σ, y) if c is ‘(x �= y)’,

(c) (evalM(σ, z1), . . . , evalM(σ, zr)) ∈ �R�M if c is ‘R(z1, . . . , zr)’, and

(d) (evalM(σ, z1), . . . , evalM(σ, zr)) �∈ �R�M if c is ‘¬R(z1, . . . , zr)’.

Let A be a set of first order sentences, including possible ground atomic
predicates 2. We say that a data model M is an A-model, denoted M |= A, if
for every ϕ ∈ A, we have M |= ϕ. A formula ϕ is A-valid, denoted A |= ϕ, if φ
holds in every model M that satisfies A. An execution ρ is said to be feasible

modulo A if there is an A-model M such that ρ is feasible in M.

3.4 Program Verification Modulo Axioms

We consider programs annotated with post-conditions that are over the following
syntax below. Here, x, y and z belong to the set of program variables V and
R ∈ R is a relation symbol in Σ.

L : ϕ ::= x=y | R(z) | ϕ ∨ ϕ | ¬ϕ

Definition 1 (Program Verification Modulo Axioms). For a program s
and a set of axioms A, we say that s satisfies a postcondition ϕ over the syntax

L modulo A if for every A-model M and for execution ρ ∈ Exec(s) that is

feasible in M, M satisfies ϕ[evalM(ρ, V)/V] (i.e., where each variable x ∈ V is

replaced by evalM(ρ, V)).

We remark that one can alternatively phrase the verification problem stated
above in terms of feasibility. That is, a program s satisfies a postcondition ϕ
modulo A iff every execution ρ of s′ is infeasible modulo A (i.e., there is no
A-model M such that ρ is feasible in M), where s′ = s; assume(¬ϕ).

2 A ground atomic predicate is of the form t1 ∼ t2, or R(t1, . . . tk) or ¬R(t1, . . . tk),
where ∼∈ {=, }, R is a relation symbol, and tis are ground terms.

What’s Decidable About Program Verification Modulo Axioms? 165

4 Coherence Modulo Axioms

In this section we extend the notion of coherence from [26], adapting it to our
current setting where we restrict data models using axioms A. We will first recall
the notion of terms computed by an execution, which will be used to define the
notion of coherence.

4.1 Terms Computed and Assumptions Accumulated by Executions

We will associate a syntactic term TEval(ρ, x) with each variable x ∈ V after a
partial execution ρ. Intuitively, every variable x ∈ V stores a constant term x̂ in
the beginning of an execution. New terms are computed on function computa-
tions, i.e., TEval(ρ · “x := f(z1, . . . , zr)”) = f(TEval(ρ, z1), . . . , TEval(ρ, zr)).
The precise definition is simple and is defered to [27]. The set of terms computed
by an execution ρ is Terms(ρ) = { TEval(ρ′, x) | ρ′ is a prefix of ρ, x ∈ V }.

As an execution proceeds, it accumulates assumptions over the terms it com-
putes, and we will use κ(ρ) to denote the assumptions made by the execution ρ
(see [27] for precise definition). For example, after an equality assume statement
“assume(x = y)”, we accumulate the atomic equality predicate ψ = tx = ty,
where tx and ty are terms associated with x and y when the assume statement is
encountered. Similarly, for the execution ρ = ρ′ · “assume(¬R(z1, z2, . . . , zk))”,
we have κ(ρ) = κ(ρ′) ∪ {¬R(TEval(ρ′, z1), . . . , TEval(ρ′, zk))}.

4.2 Coherence

Our definition of coherence modulo axioms is a smooth generalization of the def-
inition of coherence in [26]. The notion of coherence consists of two properties —
memoizing and early equality assumes. The memoizing property says, intuitively,
when a term t is computed after executing some prefix σ of an execution, if t is
equivalent to some other term modulo the assumptions made in the execution so
far, then t must not have been dropped at the end of σ, i.e., a program variable
must already hold this term. We replace the notion of equivalence of terms in
this definition by equivalence modulo the axioms as well.

The notion of early assumes in [26] intuitively says that assumptions of equal-
ity (on terms t1 and t2) should be encountered early — earlier than dropping any
superterm of t1 or t2. This notion of early assumes allows for effectively comput-
ing congruence closure on the set of terms computed by the execution, which in
turn, is necessary to accurately maintain which terms are equivalent. However,
we observe that the notion in [26] is too restrictive and not entirely necessary. In
our paper, we generalize this notion in several ways, to a more semantic one as
follows. Whenever an execution encounters an assumption of equality between
two term, we instead demand that only the equivalences that are additionally

implied by this new assumption, can be infered locally using the already known
congruence between terms in the window, i.e., the set of terms pointed to by the
program variables when the equality assumption is encountered. Next, we incor-
porate axioms into this definition, by requiring that the notion of equivalence is

166 U. Mathur et al.

also modulo the axioms, and further require that all assumptions (equality, dis-
equality, relational) are required to be early (as against only restricting equality
assumptions to be early like in [26]). We will elaborate on these differences using
an example after presenting the formal definition next.

Given a set of first order sentences Γ and ground terms t1 and t2, we say
that t1 ∼=Γ t2 if Γ |= t1 = t2.

Definition 2 (Coherence modulo axioms). Let A be a set of axioms and

let ρ be a complete or partial execution over variables V . Then, ρ is said to be

coherent modulo A if it satisfies the following two properties.

Memoizing. Let π = σ · “x :=f(z)” be a prefix of ρ and let t = TEval(π, x). If

there is a term t′ ∈ Terms(σ) such that t′ ∼=A∪κ(σ) t, then there must exist

some variable y ∈ V such that TEval(σ, y) ∼=A∪κ(σ) t.

Early Assumes. Let π = σ · “assume(c)” be a prefix of ρ, where c is any of

x=y, x �=y, R(z), or ¬R(z). Let t ∈ Terms(σ) be a term computed in σ such

that t has been dropped, i.e., for every x ∈ V , we have TEval(σ, x)�
A∪κ(σ)t.

For any term t′ ∈ Terms(σ), if t ∼=A∪κ(π) t′, then t ∼=A∪κ(σ) t′.

Remark. We remark that every execution that is coherent as per the defi-
nition in [26], is also coherent modulo A = ∅ as in Definition 2. However, the
converse is not true and we illustrate this difference below.

Example 1. Let us now illustrate the notion of coherence in the presence of
axioms using the execution ρ below.

ρ = z1 := f(x, y) · z2 := f(y, x) · z3 := g(z1) · z4 := g(z2) · z3 := z5 · z6 := g(z1)

Let ρi denote the prefix of ρ of length i. Here, TEval(ρ3, z3) = g(f(x̂, ŷ)),
TEval(ρ5, z3) = ẑ5 �= g(f(x̂, ŷ)) and TEval(ρ6, z6) = g(f(x̂, ŷ)). When the set
of axioms is A = ∅, this execution is not coherent modulo A as it violates the
memoizing requirement at the last statement z6 := g(z1) (no variable stores the
term g(f(x̂, ŷ)) after ρ5).

Now, consider the axiom set denoting commutativity of f, i.e., Acomm =
{∀u, v.f(u, v) = f(u, v)}. In this case, we observe that f(x̂, ŷ) ∼=Acomm

f(ŷ, x̂)
and thus g(f(x̂, ŷ)) ∼=Acomm

g(f(ŷ, x̂)). Also, TEval(ρ5, z4) = g(f(ŷ, x̂)) ∼=Acomm

g(f(x̂, ŷ)). This ensures that ρ is indeed coherent modulo Acomm.

Let CoherentExecs(Σ, V, A) denote the set of executions over the signature Σ
and variables V that are coherent modulo the set of axioms A.

Definition 3. A program s over signature Σ and variables V is said to be co-

herent modulo A if Exec(s) ⊆ CoherentExecs(Σ, V, A).

In this paper, we explore several classes of axioms, studying when the verifi-
cation problem for coherent programs modulo the axioms is decidable.

What’s Decidable About Program Verification Modulo Axioms? 167

5 Axioms over Relations

In this section, we investigate the decidability of the verification problem for
coherent programs modulo relational axioms, i.e., axioms which only involve
relation symbols R in the signature Σ.

5.1 Verification modulo EPR axioms

A first-order formula is said to be an EPR formula [37] if it is of the form

∃x1 . . . xk∀y1, . . . ym ϕ

where ϕ is quantifier-free and purely relational (uses no function symbols).
It is well known that satisfiability of EPR formulas is decidable, in fact by

a reduction to Boolean satisfiability [24]. Consequently, the problem of checking
whether a single execution is feasible under axioms written in EPR can be shown
to be decidable, and has been exploited in bounded model-checking.

Consequently, we could reasonably ask whether verification of coherent pro-
grams under EPR axioms is decidable. Surprisingly, we show that they are not
(proof details can be found in [27]).

Theorem 1. Verification of uninterpreted coherent programs modulo EPR ax-

ioms is undecidable.

Given the above result, we turn to several classes of quantified axioms, which
are all expressible in EPR (and hence have a decidable bounded model checking
problem) and examine their decidability for coherent program verification.

5.2 Reflexivity, Irreflexivity, and Symmetry

We consider program verification under the following axioms (individually):

ϕR
refl � ∀x · R(x, x) (reflexivity)

ϕR
irref � ∀x · ¬R(x, x) (irreflexivity)

ϕR
symm � ∀x, y · R(x, y) =⇒ R(y, x) (symmetry)

(1)

We show that verification is decidable modulo these axioms using a technique
that we call program instrumentation. Let us fix a relation R and an axiom ϕR

p ,
where p ∈ {refl, irref, symm}. The idea is to find a function (in fact, a string
homomorphism) hR

p such that for any program P , P is correct/coherent modulo

{ϕR
p } iff hR

p (Exec(P)) is correct/coherent modulo the empty axiom set. Decid-

ability then follows by exploiting the results of [26]. The function hR
p will capture

the properties of the axiom it is trying to eliminate, and so it will be different
for different axioms. We first outline these function hR

p , then state their property
and prove the decidability result.

168 U. Mathur et al.

x

y

z
¬R

R ¬R

x

y

z
¬R

¬R R

Fig. 2. Implied negative relational assumes for a transitive relation R. The dashed
edges () represent the inferred relationship implied from the relations marked by
bold edges ().

For reflexivity, we transform an execution ρ of P to ρ′ where ρ′ is essentially
ρ, except that whenever we see the computation of a term, using an assignment
of the form “x := f(z)”, we immediately insert an assume statement that states
that R(x, x) holds. More precisely, the homomorphism is defined as,

hR
refl(a) =

{

a · “assume(R(x, x))” if a = “x := f(z)”

a otherwise

The homomorphisms used for irreflexivity and symmetry follow similar lines and
are outlined in [27].

Theorem 2. For any relation symbol R and p ∈ {refl, irref, symm}, the problems

of coherent verification modulo {ϕR
p } and checking coherence modulo {ϕR

p } are

PSPACE-complete.

5.3 Transitivity

We now consider the transitivity axiom for a relation R which says

ϕR
trans = ∀x, y, z · R(x, y) ∧ R(y, z) =⇒ R(x, z) (transitivity) (2)

The proof for decidability modulo this axiom is different and more complex
that the proofs for reflexivity, irreflexivity, and symmetry. Intuitively, the pro-
gram instrumentation approach does not seem to work for transitivity. This is be-
cause transitivity effects can be global. For example, we may have that the execu-
tion asserts the sequence of relational assumes R(t1, t2), R(t2, t3), . . . R(tn−1, tn)
(here, t1, . . . tn are terms computed by the execution), where some of the in-
termediate terms may have been dropped by the program (i.e., the variables
holding these terms were reassigned). Consequently, relating t1 and (the possi-
bly newly constructed term) tn requires a principally new machinery. We modify
the automaton construction from [26] so that it maintains the transitive closure
of the assumptions the program makes. Our main observation is the following:

Theorem 3. Let Σ be a first order signature and V a finite set of program

variables. Let A = {ϕR
trans | R ∈ Rtrans} for some set of relation symbol Rtrans in

Σ. The following observation hold.

What’s Decidable About Program Verification Modulo Axioms? 169

1. There is a finite automaton Ftrans (effectively constructable) of size O(2poly(|V |))
such that for any coherent execution ρ that is coherent modulo A, Ftrans ac-

cepts ρ iff ρ is feasible.

2. There is a finite automaton Ctrans (effectively constructible) of size O(2poly(|V |))
such that L(Ctrans) = CoherentExecs(Σ, V, A).

Proof Sketch. These are in some sense a generalization of the automata con-
structions used to establish decidability in [26].The automata Ftrans and Ctrans

rely on tracking equivalence between values stored in variables, and functional
and relational correspondences between these values. However, now since some
relations maybe transitive, additional relational correspondences (or their ab-
sence) maybe implied for R ∈ Rtrans. The basic idea is to maintain for tran-
sitive relations R (a) the transitive closure of the positive relation assumes
assume(R(·, ·)), and (b) the negative relational assumes implied by the rela-
tional assumes seen in an execution. More precisely, if the execution sees assumes
assume(R(x, y)) and assume(R(y, z)), then we also add the constraint R(x, z)
in the automaton’s state. Further, if the execution observes assume(R(x, y)) and
assume(¬R(x, z)), then one can infer the constraint ¬R(y, z), and in this case,
we accumulate this additional constraint in the state of the automaton. Sim-
ilarly, if the execution observes assume(R(y, z)) and assume(¬R(x, z)), then
one can infer the constraint ¬R(x, y), which is added in the automaton’s state.
Both these scenarios are illustrated in Fig. 2. A detailed proof is in [27].

As a consequence we have the following result.

Theorem 4. For A = {ϕR
trans | R ∈ Rtrans}, the problems of coherent verification

modulo A and checking coherence modulo A are PSPACE-complete.

5.4 Strict Partial Orders

We now turn our attention to axioms that dictate that certain relations be
partial or total orders. The anti-symmetry axiom that holds for non-strict orders
introduces subtle complications. Recall that R is anti-symmetric if ∀x, y.R(x, y)∧
R(y, x) ⇒ x = y; this axiom can imply equality between terms if R holds
between a pair of terms. Concretely, if R is anti-symmetric, and the program
makes assumptions in an execution that R(t1, t2) and R(t2, t1) hold, then any
model in which such an execution is feasible must also ensure that t1 = t2.
This implicit equality assumption interferes with the notions of coherence and
the automata constructions (proofs of the results in [26] and Theorem 4) that
compute a congruence closure on terms in a streaming fashion.

Hence, we only consider strict partial orders in this section. Recall that a
relation R is a strict partial order if it satisfies the irreflexivity axiom and the
transitivity axiom, together denoted AR

SPO. We can prove decidability for prob-
lems modulo AR

SPO by using our algorithm for irreflexivity and transitivity.

Theorem 5. The following problems are PSPACE-complete.

1. Given a program P that is coherent modulo AR
SPO

, determine if P is correct.
2. Given a program P , determine if P is coherent modulo AR

SPO

170 U. Mathur et al.

5.5 Strict Total Orders

A relation R is a strict total order if it is a strict partial order and satisfies:

∀x, y · x �= y =⇒ R(x, y) ∨ R(y, x) (totality) (3)

Strict total orders are again tricky to handle as the axiom for totality can
result in implicit equality between terms. For example, if ¬R(x, y) and ¬R(y, x)
then it must be the case that x = y. However, if we restrict ourselves to execu-
tions that only have assumes of the form assume(R(x, y)) and do not have any
assumes on ¬R, i.e., of the form assume(¬R(x, y)) then there are no implicit
equalities that are entailed.

Unfortunately, in general, program executions can contain negative assumes
on R (i.e., assumes of the form assume(¬R(x, y))). In order to ensure that
executions contain only positive assumptions on R, we must be careful when
identifying executions of programs with conditionals — branches where the as-
sumption ¬R(x, y) holds must be translated to a branch that assumes R(y, x)
and a branch that assumes x = y. We present a detailed translation in [27].

After such a translation, executions can now have additional equality as-
sumes even if they did not appear in the program. When we refer to coherent
programs, we mean that they are coherent according to the above modified no-
tion of executions. This means for such programs to be coherent, all executions
must ensure that the additional equality assumes are early. And when we talk
about coherent verification of programs with total orders, we mean verification
for programs that are coherent after this transformation.

We observe that in the absence of any assumes of the form ¬R(x, y) the ver-
ification problem modulo strict total orders reduces that modulo strict partial
orders, giving us the following (AR

STO denote the axioms of irreflexivity, transi-
tivty and totality for the relation R).

Theorem 6. The problems of coherent verification, and checking coherence mod-

ulo AR
STO

are PSPACE-complete.

6 Axioms Over Functions

We now discuss computational problems modulo axioms that involve function
symbols. The treatment of axioms involving functions in the verification of co-
herent programs is inherently hard. This is because, like in the case of (nonstrict)
partial orders and strict total orders, the axioms along with the assume-steps
in the execution, can imply equalities between terms beyond those entailed
by just the assume steps in the execution. For example, consider the axiom
∀x, y · f(x, y) = f(y, x) constraining f to be a commutative function. Then
terms like f(f(x, y), z) are equal to terms like f(z, f(x, y)), and hence when
building models we must make sure that functions/relations on such terms are
defined in the same way. Terms made equivalent by the functional axioms can be
syntactically very different, and keeping track of the equivalence on unbounded

What’s Decidable About Program Verification Modulo Axioms? 171

executions is hard using finite memory. We consider many natural classes of
axioms, and proving both positive and negative results that help delineate the
decidability/undecidability boundary.

6.1 Associativity

We now consider the associativity axiom for a function f .

ϕf
assoc �∀x, y, z · f(x, f(y, z)) = f(f(x, y), z) (associativity) (4)

We show, surprisingly to us, that coherent verification is undecidable modulo
{ϕf

assoc}, i.e., even when we have only one axiom that requires only one function
to be associative. In fact, the situation is a lot worse — checking the feasibility
of even a single (even coherent) execution is undecidable, in the presence of a
single associative function. The proof of the following result uses a reduction
from the word problem for finitely generated semigroups [36].

Theorem 7. Given a a trace ρ that is coherent modulo {ϕf
assoc}, it is undecidable

to determine if ρ is feasible. Therefore, the problem checking if a program P that

is coherent modulo {ϕf
assoc} is undecidable.

6.2 Commutativity

We now consider the commutativity axiom, which is the following

ϕf
comm �∀x, y · f(x, y) = f(y, x) (commutativity) (5)

We augment executions with an auxiliary variable v∗ �∈ V and transform execu-
tions using the following homomorphism that uses the auxiliary variable v∗

hf
comm(a) =

{

a · “v∗ := f(y, x)” · “assume(z = v∗)” if a = “z := f(x, y)”

a otherwise

We show that the above transformation preserves feasibility and coherence,
giving us the following result.

Theorem 8. Verification of coherent programs and checking coherence modulo

commutativity axioms is decidable and is PSPACE−complete.

6.3 Idempotence

Next we consider the idempotence axiom for a unary function f :

ϕf
idem � ∀x · f(x) = f(f(x)) (idempotence) (6)

Again, we show that there is a simple homomorphism hf
idem that preserves co-

herence and feasibility (see [27]) and reduces verification to one without axioms.

Theorem 9. Verification of coherent programs and checking coherence modulo

idempotence axioms is PSPACE-complete.

172 U. Mathur et al.

7 Combining Axioms

We have thus far proved decidability results when a relation or functions satisfies
certain properties like reflexivity/irreflexivity/symmetry/transitivity or commu-
tativity/idempotence. We now show that all of these results can be combined.
That is, we can consider a signature where relations and functions are assumed
to satisfy some subset of these properties, and with some being uninterpreted,
and the verification problem will remain decidable for coherent programs.

Theorem 10. Let A be a set of axioms where each relation symbol R is ei-

ther a total order or satisfies some (possibly empty) subset of properties out of

reflexivity, irreflexivity, symmetry, transitivity, and each function symbol f sat-

isfies some (possibly empty) subset out of commutativity and idempotence. The

verification problem for coherent programs modulo A is PSPACE-complete.

The proof of the above result proceeds by eliminating axioms one at a time.
We first eliminate the relational axioms (reflexivity, irreflexivity, symmetry) in A
using program instrumentation. We then eliminate the functional axioms in A,
again using program instrumentation. Our proof relies on this order of elimina-
tion of axioms. At this point, the only axioms remaining are those corresponding
to transitivity of a subset of relational symbols, which is handled using the au-
tomata construction discussed in the proof of Theorem 3.

8 Related Work

The theory of equality with uninterpreted functions (EUF) is a widely used the-
ory in many verification applications as it has decidable quantifier free fragment.
EUF has been central to advances in verification of microprocessor control [6,4]
and hardware verification [1,19] and property directed model checking [18]. EUF
has been used as a popular abstraction in software verification [2,3]. Uninter-
preted functions have also been studied for equivalence checking and translation
validation [35]. Bueno et al [5] demonstrated the effectiveness of uninterpreted
programs for verifying SVCOMP benchmarks against control flow properties.

Mathur et al [26] introduced the class of coherent uninterpreted programs
and showed that verification of coherent programs, with or without recursive
function calls, is a decidable problem. This is one of the few subclasses of pro-
gram verification over infinite domains that is known to be decidable. Previous
works [13,14,31] have established decidability of verification of classes of uninter-
preted programs with heavy syntactic restrictions such as disallowing condition-
als inside loops or nested loops, etc. As noted in [26], the notion of coherence is
close to the notion of a bounded pathwidth decomposition [38]. A term that is
created in a coherent execution stays within some program variable (modulo con-
gruence) until the first time all variables containing that term are over-written,
and after this point, the execution never computes it again, and thus, the set of
windows that contain a term form a contiguous segment of the program execu-
tion. Path decomposition and the related notion of tree decomposition have been
exploited many times in the literature to give decidability in verification [25,7,8].

What’s Decidable About Program Verification Modulo Axioms? 173

The work in [28] extends the work of [26] to updatable maps and identifies
extensions of coherence that make verification decidable. It utilizes this to pro-
vide implementation of verification algorithms for memory safety for a class of
heap manipulating programs, including traversal algorithms on data structures
such as singly linked list, sorted lists, binary search trees etc. Combining the
results of this paper with these results is an interesting future direction.

The class of EPR formulas that consist of universally quantified formulas
over relational signatures is a well-known decidable class of first-order logic [37].
EPR-based reasoning has been proved powerful for verification of large-scale sys-
tems [33,29,39] and the Ivy [34,30] system is one of the most notable framework
that exploits EPR based reasoning for verifying program snippets without recur-
sion. EPR encoding of order axioms such as reflexivity, symmetry, transitivity
and total orders has been used in proving programs working over heaps [20].

The work in Kleene Algebra with Tests (KAT) [22] considers problems in-
volving unbounded recursion and choice with abstractions of data, similar to our
work. However, while we treat congruence axioms for equality faithfully in our
work, it is unclear to us how to express these in KAT or its extensions [21,23,9].
Furthermore, the restrictions of coherence studied in [26] and the work here that
are based on bounded path-width notions seem very different from studies of
decidable problems in KAT. A study of whether our results can be adapted to
yield decidable fragments for KAT is an interesting future direction.

A notable verification technique with an automata-theoretic foundation and
that has been very effective in practice is that of trace abstraction due to Heiz-
mann et al [15,16,17,10,11,12]. In this technique, one constructs iteratively regu-
lar sets that (incompletely) capture the set of all infeasible executions, eventually
striving to cover all failing executions of a program, but handling complex the-
ories such as arithmetic. In contrast, our work builds complete automata in one
stroke that accept all infeasible traces over a vocabulary, but handles only simple
theories with restricted sets of axioms, but yielding decidability. Combining these
lines of work for efficient software verification is an interesting future direction.

9 Conclusions

By incorporating axioms on functions and relations, decidability results in this
paper, enable a more faithfully automatic verification of programs. It is worth
noting that the upper bound for all our decidability results is PSPACE, which
is the same as that for Boolean programs. Thus, though we consider programs
over infinite domains with additional structure, our verification results have the
same complexity as that for programs over Boolean domains.

One future direction is to adapt this technique for practical program veri-
fication. In this context, adapting our technique within the automata-theoretic
technique of [15,17,16,12,10] seems most promising. Second, there are several
program verification techniques that use EPR, and in several of these, EPR
is used mainly to establish a linear order on the universe [20]. Automatically
verifying such programs using our technique is worth exploring.

174 U. Mathur et al.

References

1. Andraus, Z.S., Liffiton, M.H., Sakallah, K.A.: Reveal: A formal verification tool
for verilog designs. In: Proceedings of the 15th International Conference on Logic
for Programming, Artificial Intelligence, and Reasoning. pp. 343–352. LPAR ’08,
Springer-Verlag, Berlin, Heidelberg (2008)

2. Babić, D., Hu, A.J.: Structural Abstraction of Software Verification Conditions.
In: Proceedings of the 19th Int. Conf. on Computer Aided Verification (CAV’07),
Berlin, Germany. Lecture Notes in Computer Science, Springer (July 2007)

3. Babic, D., Hu, A.J.: Calysto: Scalable and precise extended static checking. In: Pro-
ceedings of the 30th International Conference on Software Engineering. p. 211–220.
ICSE ’08, Association for Computing Machinery, New York, NY, USA (2008).
https://doi.org/10.1145/1368088.1368118

4. Bryant, R.E., Lahiri, S.K., Seshia, S.A.: Modeling and verifying systems using a
logic of counter arithmetic with lambda expressions and uninterpreted functions.
In: Proceedings of the 14th International Conference on Computer Aided Verifica-
tion. pp. 78–92. CAV ’02, Springer-Verlag, London, UK, UK (2002)

5. Bueno, D., Sakallah, K.A.: euforia: Complete software model checking with unin-
terpreted functions. In: Enea, C., Piskac, R. (eds.) Verification, Model Checking,
and Abstract Interpretation. pp. 363–385. Springer International Publishing, Cham
(2019)

6. Burch, J.R., Dill, D.L.: Automatic verification of pipelined microprocessor control.
In: Proceedings of the 6th International Conference on Computer Aided Verifica-
tion. pp. 68–80. CAV ’94, Springer-Verlag, London, UK, UK (1994)

7. Chatterjee, K., Goharshady, A.K., Ibsen-Jensen, R., Pavlogiannis, A.: Algorithms
for algebraic path properties in concurrent systems of constant treewidth compo-
nents. In: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. pp. 733–747. POPL ’16, ACM, New
York, NY, USA (2016). https://doi.org/10.1145/2837614.2837624

8. Chatterjee, K., Ibsen-Jensen, R., Pavlogiannis, A., Goyal, P.: Faster algorithms
for algebraic path properties in recursive state machines with constant treewidth.
In: Proceedings of the 42Nd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. pp. 97–109. POPL ’15, ACM, New York,
NY, USA (2015). https://doi.org/10.1145/2676726.2676979

9. Doumane, A., Kuperberg, D., Pous, D., Pradic, P.: Kleene algebra with hypothe-
ses. In: Bojańczyk, M., Simpson, A. (eds.) Foundations of Software Science and
Computation Structures. pp. 207–223. Springer International Publishing, Cham
(2019)

10. Farzan, A., Kincaid, Z., Podelski, A.: Inductive data flow graphs. In: Proceedings
of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages. pp. 129–142. POPL ’13, ACM, New York, NY, USA (2013).
https://doi.org/10.1145/2429069.2429086

11. Farzan, A., Kincaid, Z., Podelski, A.: Proofs that count. In: Proceedings
of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages. pp. 151–164. POPL ’14, ACM, New York, NY, USA (2014).
https://doi.org/10.1145/2535838.2535885

12. Farzan, A., Kincaid, Z., Podelski, A.: Proof spaces for unbounded parallelism.
In: Proceedings of the 42Nd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. pp. 407–420. POPL ’15, ACM, New York,
NY, USA (2015). https://doi.org/10.1145/2676726.2677012

https://doi.org/10.1145/1368088.1368118
https://doi.org/10.1145/2837614.2837624
https://doi.org/10.1145/2676726.2676979
https://doi.org/10.1145/2429069.2429086
https://doi.org/10.1145/2535838.2535885
https://doi.org/10.1145/2676726.2677012

What’s Decidable About Program Verification Modulo Axioms? 175

13. Godoy, G., Tiwari, A.: Invariant checking for programs with procedure calls. In:
Proceedings of the 16th International Symposium on Static Analysis. pp. 326–342.
SAS ’09, Springer-Verlag, Berlin, Heidelberg (2009)

14. Gulwani, S., Tiwari, A.: Assertion checking unified. In: Proceedings of the 8th
International Conference on Verification, Model Checking, and Abstract Interpre-
tation. pp. 363–377. VMCAI’07, Springer-Verlag, Berlin, Heidelberg (2007)

15. Heizmann, M., Hoenicke, J., Podelski, A.: Refinement of trace abstraction. In:
Proceedings of the 16th International Symposium on Static Analysis. pp. 69–85.
SAS ’09, Springer-Verlag, Berlin, Heidelberg (2009)

16. Heizmann, M., Hoenicke, J., Podelski, A.: Nested interpolants. In: Proceedings
of the 37th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages. pp. 471–482. POPL ’10, ACM, New York, NY, USA (2010).
https://doi.org/10.1145/1706299.1706353

17. Heizmann, M., Hoenicke, J., Podelski, A.: Software model checking for people who
love automata. In: Sharygina, N., Veith, H. (eds.) Computer Aided Verification.
pp. 36–52. Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

18. Ho, Y.S., Mishchenko, A., Brayton, R.: Property directed reachability with word-
level abstraction. In: Proceedings of the 17th Conference on Formal Methods in
Computer-Aided Design. pp. 132–139. FMCAD ’17, FMCAD Inc, Austin, TX
(2017). https://doi.org/10.23919/FMCAD.2017.8102251

19. Hojati, R., Isles, A., Kirkpatrick, D., Brayton, R.K.: Verification using uninter-
preted functions and finite instantiations. In: Srivas, M., Camilleri, A. (eds.) For-
mal Methods in Computer-Aided Design. pp. 218–232. Springer Berlin Heidelberg,
Berlin, Heidelberg (1996)

20. Itzhaky, S., Banerjee, A., Immerman, N., Lahav, O., Nanevski, A., Sagiv, M.:
Modular reasoning about heap paths via effectively propositional formulas. In:
Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. pp. 385–396. POPL ’14, ACM, New York, NY, USA
(2014). https://doi.org/10.1145/2535838.2535854

21. Kozen, D.: Kleene algebra with tests and commutativity conditions. In: Margaria,
T., Steffen, B. (eds.) Tools and Algorithms for the Construction and Analysis of
Systems. pp. 14–33. Springer Berlin Heidelberg, Berlin, Heidelberg (1996)

22. Kozen, D.: Kleene algebra with tests. ACM Trans. Program. Lang. Syst. 19(3),
427–443 (May 1997). https://doi.org/10.1145/256167.256195

23. Kozen, D., Mamouras, K.: Kleene algebra with equations. In: Esparza, J., Fraigni-
aud, P., Husfeldt, T., Koutsoupias, E. (eds.) Automata, Languages, and Program-
ming. pp. 280–292. Springer Berlin Heidelberg, Berlin, Heidelberg (2014)

24. Lewis, H.: Complexity results for classes of quantificational formulas. Journal of
Computer and System Sciences 21(3), 317–353 (1980)

25. Madhusudan, P., Parlato, G.: The tree width of auxiliary storage. In: Proceedings
of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages. pp. 283–294. POPL ’11, ACM, New York, NY, USA (2011).
https://doi.org/10.1145/1926385.1926419

26. Mathur, U., Madhusudan, P., Viswanathan, M.: Decidable verification of uninter-
preted programs. Proc. ACM Program. Lang. 3(POPL), 46:1–46:29 (Jan 2019).
https://doi.org/10.1145/3290359

27. Mathur, U., Madhusudan, P., Viswanathan, M.: What’s decidable about
program verification modulo axioms? CoRR abs/1910.10889 (2019),
http://arxiv.org/abs/1910.10889

https://doi.org/10.1145/1706299.1706353
https://doi.org/10.23919/FMCAD.2017.8102251
https://doi.org/10.1145/2535838.2535854
https://doi.org/10.1145/256167.256195
https://doi.org/10.1145/1926385.1926419
https://doi.org/10.1145/3290359
http://arxiv.org/abs/1910.10889

176 U. Mathur et al.

28. Mathur, U., Murali, A., Krogmeier, P., Madhusudan, P., Viswanathan, M.: Decid-
ing memory safety for single-pass heap-manipulating programs. Proc. ACM Pro-
gram. Lang. 4(POPL) (Dec 2019). https://doi.org/10.1145/3371103

29. McMillan, K.: Modular specification and verification of a cache-coherent interface.
In: Proceedings of the 16th Conference on Formal Methods in Computer-Aided
Design. pp. 109–116. FMCAD ’16, FMCAD Inc, Austin, TX (2016)

30. McMillan, K.L., Padon, O.: Deductive verification in decidable fragments with ivy.
In: Podelski, A. (ed.) Static Analysis. pp. 43–55. Springer International Publishing,
Cham (2018)

31. Müller-Olm, M., Rüthing, O., Seidl, H.: Checking herbrand equalities and beyond.
In: Proceedings of the 6th International Conference on Verification, Model Check-
ing, and Abstract Interpretation. pp. 79–96. VMCAI’05, Springer-Verlag, Berlin,
Heidelberg (2005)

32. Padon, O., Immerman, N., Shoham, S., Karbyshev, A., Sagiv, M.: Decid-
ability of inferring inductive invariants. In: Proceedings of the 43rd An-
nual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. pp. 217–231. POPL ’16, ACM, New York, NY, USA (2016).
https://doi.org/10.1145/2837614.2837640

33. Padon, O., Losa, G., Sagiv, M., Shoham, S.: Paxos made epr: Decidable reason-
ing about distributed protocols. Proc. ACM Program. Lang. 1(OOPSLA), 108:1–
108:31 (Oct 2017). https://doi.org/10.1145/3140568

34. Padon, O., McMillan, K.L., Panda, A., Sagiv, M., Shoham, S.: Ivy: Safety verifica-
tion by interactive generalization. In: Proceedings of the 37th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation. pp. 614–630. PLDI
’16, ACM, New York, NY, USA (2016). https://doi.org/10.1145/2908080.2908118

35. Pnueli, A., Strichman, O.: Reduced functional consistency of uninterpreted
functions. Electron. Notes Theor. Comput. Sci. 144(2), 53–65 (Jan 2006).
https://doi.org/10.1016/j.entcs.2005.12.006

36. Post, E.L.: Recursive unsolvability of a problem of thue. J. Symbolic Logic 12(1),
1–11 (03 1947)

37. Ramsey, F.P.: On a Problem of Formal Logic, pp. 1–24. Birkhäuser Boston, Boston,
MA (1987)

38. Robertson, N., Seymour, P.D.: Graph minors. i. excluding a forest. Journal of
Combinatorial Theory, Series B 35(1), 39–61 (1983)

39. Taube, M., Losa, G., McMillan, K.L., Padon, O., Sagiv, M., Shoham, S.,
Wilcox, J.R., Woos, D.: Modularity for decidability of deductive verifica-
tion with applications to distributed systems. In: Proceedings of the 39th
ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation. pp. 662–677. PLDI 2018, ACM, New York, NY, USA (2018).
https://doi.org/10.1145/3192366.3192414

https://doi.org/10.1145/3371103
https://doi.org/10.1145/2837614.2837640
https://doi.org/10.1145/3140568
https://doi.org/10.1145/2908080.2908118
https://doi.org/10.1016/j.entcs.2005.12.006
https://doi.org/10.1145/3192366.3192414

What’s Decidable About Program Verification Modulo Axioms? 177

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Formalized Proofs of the Infinity and Normal
Form Predicates in the First-Order Theory of

Rewriting�

Alexander Lochmann and Aart Middeldorp

Department of Computer Science, University of Innsbruck, Austria
{alexander.lochmann,aart.middeldorp}@uibk.ac.at

Abstract. We present a formalized proof of the regularity of the infinity
predicate on ground terms. This predicate plays an important role in the
first-order theory of rewriting because it allows to express the termination
property. The paper also contains a formalized proof of a direct tree
automaton construction of the normal form predicate, due to Comon.

Keywords: Formalization · First-order theory of rewriting · Tree au-
tomata

1 Introduction

Term rewriting [1,18] is an abstract model of computation which underlies much
of declarative programming and automated theorem proving. The foundation of
rewriting is equational logic. Equations are used from left to right to direct the
search for proofs. Fundamental properties like confluence (which ensures that
different computation paths produce the same result) and termination (all com-
putation paths produce a result) are undecidable in general. For terminating
systems, one is interested in estimating the resources needed to evaluate expres-
sions (space and time complexity). Much progress has been made in establishing
sufficient and automatable criteria for confluence, termination, complexity, and
other properties of rewrite systems. These criteria have been implemented in
highly optimized automatic tools that compete on a yearly basis [12, 13]. These
competitions, together with the recent advances in SAT [4] and SMT [2] solving,
have on the one hand led to specialized techniques that are especially suitable for
automation. On the other hand, software bugs observed in the tools gave rise to
the more recent activity of certification of the output of termination, complexity,
and confluence tools. This is done by formalizing the underlying methods in an
interactive proof assistant like Coq [3] or Isabelle [15], and using the code gen-
eration facilities of these proof assistants to obtain trustworthy programs that
can certify the output of the tools.

In this paper we are concerned with the formalization of methods that are
used in FORT [16,17], a tool that implements the first-order theory of rewriting

� This research is supported by FWF (Austrian Science Fund) project P30301.

c© The Author(s) 2020
A. Biere and D. Parker (Eds.): TACAS 2020, LNCS 12079, pp. 178–194, 2020.
https://doi.org/10.1007/978-3-030-45237-7 11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45237-7_11&domain=pdf
http://orcid.org/0000-0002-6145-3893
http://orcid.org/0000-0001-7366-8464
https://doi.org/10.1007/978-3-030-45237-7_11

Formalized Proofs of the Infinity and Normal Form Predicates 179

for the decidable class of left-linear, right-ground rewrite systems. FORT can be
used to decide properties of a given rewrite system and to synthesize rewrite
systems that satisfy arbitrary properties expressible in the first-order theory of
rewriting. The decision procedure is based on tree automata techniques and goes
back to a paper by Dauchet and Tison [7]. In a recent paper [10] the authors
formalized results concerning ground tree transducers and RRn automata for a
fragment of the first-order theory that allows to express confluence, resulting in
a formalized confluence prover for left-linear, right-ground rewrite systems. In
this paper we cover the infinity predicate that is crucial for expressing the termi-
nation property in the first-order theory of rewriting and an efficient automaton
construction of the normal form predicate that is employed in FORT. The former
goes back to a technical report by Dauchet and Tison [8] and the latter is based
on a paper by Comon [5]. The normal form predicate has other applications as
well (e.g. [9,14]). A proof of the construction of [8] is given in [16], but this proof
contains a serious mistake that we report at the end of Section 3.

Our formalizations are based on IsaFoR [19],1 an Isabelle/HOL library con-
taining numerous abstract results and concrete techniques from the rewriting
literature. Our own development can be found at

http://cl-informatik.uibk.ac.at/software/fortissimo/tacas2020/

Most definitions, theorems, and lemmata in this paper directly correspond to
the formalization. These are indicated by the � symbol, which links to a HTML
presentation in the PDF version of the paper.

In the next section we recall basic definitions, notation, and results concerning
term rewriting and tree automata that we need in the sequel. In Section 3 we
present our first main result, a formalized correctness proof of the regularity
of the infinity predicate for regular relations. The tree automaton constructed
in the correctness proof is not directly executable due to the definition of Q∞
which plays an important role in the construction of the tree automaton. In
Section 4 we present our second main result, an equivalent definition of Q∞ that
is constructive. Our third result, a formalized correctness proof of an efficient
tree automata construction of the normal form predicate for left-linear rewrite
systems, is the topic of Section 5. We conclude in Section 6 with some statistics
of our formalizations as well as a list of tasks that remain to be done for a
certified version of FORT.

When we write “formalized” we always mean ”formalized in Isabelle/HOL.”

2 Preliminaries

Familiarity with term rewriting [1] and tree automata [6] is useful, but we briefly
recall important definitions and notation that we use in the remainder.

We assume a given signature F and a set of variables V. Function symbols
in F are equipped with a fixed arity. Function symbols of arity zero are called

1 http://cl-informatik.uibk.ac.at/isafor/

http://cl-informatik.uibk.ac.at/software/fortissimo/tacas2020/
http://cl-informatik.uibk.ac.at/software/fortissimo/tacas2020/INF_NF/
http://cl-informatik.uibk.ac.at/isafor/

180 A. Lochmann and A. Middeldorp

constants. The set of terms built from F and V is denoted by T (F ,V) and
inductively defined: A term is either a variable x ∈ V or f(t1, . . . , tn) for a
function symbol f of arity n and terms t1, . . . , tn ∈ T (F ,V). The set of variables
occurring in a term t is denoted by Var(t). A term t with Var(t) = ∅ is called
ground. We write T (F) for the set of ground terms. Positions are strings of
positive integers which are used to address subterms. The empty string is called
root position and denoted by ε. The set of positions in a term t is denoted by
Pos(t) and the subterm of t at position p ∈ Pos(t) by t|p. We write s � t if s
is a proper subterm of t, i.e., s = t|p with p �= ε. We write t[u]p for the result
of replacing the subterm of t at position p with the term u. The root symbol of
a term t is denoted by root(t) and t(p) denotes root(t|p). We write p < q if p
is a proper prefix of q. A context C is a term with a hole �. Here � /∈ F is a
special constant. We write C[t] for the result of replacing the hole in C by t. A
substitution σ is a mapping from variables to terms. We write tσ for the result
of applying σ to the term t.

A term rewrite system (TRS for short) R consists of rewrite rules � → r
between terms � and r over the same signature F such that Var(r) ⊆ Var(�).
The rewrite relation →R is defined on terms as follows: s →R t if there exist
a position p ∈ Pos(s), a rewrite rule � → r ∈ R, and a substitution σ such
that s|p = �σ and t = s[rσ]p. The reflexive transitive closure of →R is denoted
by →∗

R. A redex is a substitution instance of a left-hand side of a rewrite rule.
Terms that contain a redex as subterm are called reducible. A normal form is a
term without redexes. We write NF(R) for the set of ground normal forms of R.
In this paper we consider finite TRSs over finite signatures. The TRSs handled
by FORT are left-linear (no duplicate variables in left-hand sides of rewrite rules)
and right-ground (no variables in right-hand sides of rewrite rules).

We now recall some basic notions related to tree automata. A tree automaton
is a quadruple A = (F , Q,Qf , Δ) consisting of a finite signature F , a finite set Q
of states, disjoint from F , a subset Qf ⊆ Q of final states, and a set of transition
rules Δ. Every transition rule has one of the following two shapes:

– f(p1, . . . , pn) → q with f ∈ F and p1, . . . , pn, q ∈ Q, or
– p → q with p, q ∈ Q.

Transition rules of the second shape are called epsilon transitions. We write Δε

for the set of epsilon transitions. Furthermore, Δ¬ε = Δ \Δε. Transition rules
can be viewed as rewrite rules between ground terms in T (F ∪Q). The induced
rewrite relation is denoted by →Δ or →A. A ground term t ∈ T (F) is accepted
by A if t →∗

Δ q for some q ∈ Qf . The set of all accepted terms is denoted by L(A)
and a set L of ground terms is regular if L = L(A) for some tree automaton A.

Let A = (F , Q,Qf , Δ) be a tree automaton. A state q ∈ Q is reachable if
t →∗

Δ q for some term t ∈ T (F). We say that q is productive if C[q] →∗
Δ qf

for some ground context C and final state qf ∈ Qf . The automaton A is trim
if all states are both reachable and productive. Any tree automaton can be
transformed into an equivalent trim automaton. This result has been formalized
in IsaFoR by Felgenhauer and Thiemann [11].

Formalized Proofs of the Infinity and Normal Form Predicates 181

Below we present a formalized proof of a version of the pumping lemma that
we need later.

Lemma 1. Let A = (F , Q,Qf , Δ) be a tree automaton and t →∗
Δ q with t ∈

T (F) and q ∈ Q. If height(t) > |Q| then there exist contexts C1 and C2 �= �,
a term u, and a state p such that t = C1[C2[u]], u →∗

Δ p, C2[p] →∗
Δ p, and

C1[p] →∗
Δ q.

Proof. From the assumptions t →∗
Δ q and height(t) > |Q| we obtain a sequence

(t1, . . . , tn+1, q1, . . . , qn+1, D1, . . . , Dn) consisting of ground terms, states, and
non-empty contexts with n > |Q| such that

– ti →∗
Δ qi for all i � n+ 1,

– Di[ti] = ti+1 and Di[qi] →∗
Δ qi+1 for all i � n, and

– qn+1 = q and tn+1 = t

by a straightforward induction proof on t. Because n > |Q| there exist indices
1 � i < j � n such that qi = qj . We construct the contexts C1 = Dn[. . . [Dj] . . .]
and C2 = Dj−1[. . . [Di] . . .]. Note that C2 �= � as i < j. We obtain C2[qi] →∗

Δ qj
and C1[qj] →∗

Δ qn+1 by induction on the difference j − i. By letting p = qi = qj
and u = ti we obtain the desired result. �

We conclude this preliminary section with a brief account of RR2 relations,
which are binary relations on ground terms over a signature F whose encoding
as sets of ground terms over the extended signature F (2) = (F ∪ {⊥})2 with a
fresh constant ⊥ /∈ F is regular. The arity of a symbol fg ∈ F (2) is the maximum
of the arities of f and g. The encoding of two terms t, u ∈ T (F) is the unique
term 〈t, u〉 ∈ T (F (2)) such that Pos(〈t, u〉) = Pos(t)∪Pos(u) and 〈t, u〉(p) = fg
where

f =

{
t(p) if p ∈ Pos(t)

⊥ otherwise
g =

{
u(p) if p ∈ Pos(u)

⊥ otherwise

for all positions p ∈ Pos(t) ∪ Pos(u). We illustrate this on a concrete example.
For the ground terms t = f(g(a), f(b, a)) and u = f(a, g(g(b))) we obtain 〈t, u〉 =
ff(ga(a⊥), fg(bg(⊥b), a⊥)). A tree automaton operating on terms in T (F (2)) is
called an RR2 automaton. The two projection operations effectively transform
RR2 relations on T (F) to regular subsets of T (F).

3 Infinity Predicate

The following formula in the first-order theory of rewriting expresses the termi-
nation property:2

∀ t FIN→+(t) ∧ ¬∃u (u →+ u)

2 The formula characterizes termination of all rewrite systems R with the property
that the induced rewrite relation →R is finitely branching.

http://cl-informatik.uibk.ac.at/software/fortissimo/tacas2020/INF_NF//Tree_Automata_Pumping.html#lem:pigeonhole_tree_automata

182 A. Lochmann and A. Middeldorp

The predicate FIN→+ holds for t ∈ T (F) if there are only finitely many terms
u ∈ T (F) such that t →+ u. We consider its complement as it leads to smaller
automata:

¬∃ t (INF→+(t) ∨ t →+ t)

with INF→+ = {t ∈ T (F) | t →+
R u for infinitely many terms u ∈ T (F)}.

Definition 1. Let ◦ be an arbitrary binary relation on T (F). We write INF◦
for the set {t ∈ T (F) | (t, u) ∈ ◦ for infinitely many terms u ∈ T (F)}.

In [8] the construction of a tree automaton that accepts FIN◦ for an arbi-
trary RR2 relation ◦3 is given. In [16, Appendix A] a correctness proof of the
construction is presented, which contains a serious mistake (reported at the end
of this section). In this section we give a rigorous and formalized proof of the
regularity of INF◦ for arbitrary RR2 relations ◦.

Theorem 1. The set INF◦ is regular for every RR2 relation ◦ ⊆ T (F)×T (F).

The following definition originates from [8].

Definition 2. Given a tree automaton A = (F (2), Q,Qf , Δ), the set Q∞ ⊆ Q
consists of all states q ∈ Q such that 〈⊥, t〉 →∗

Δ q for infinitely many terms
t ∈ T (F).

Example 1. Consider the binary relation

◦ = {(f(a, gn(b)), gm(f(a, b))) | n = 2 and m � 1 or n � 3 and m = 1}

The encoding of ◦ is accepted by the RR2 automaton A = (F (2), Q,Qf , Δ) with
F = {a, b, f, g}, Q = {0, . . . , 11}, Qf = {0}, and Δ consisting of the following
transition rules:

fg(1, 2) → 0 ⊥f(3, 4) → 5 g⊥(6) → 2 b⊥ → 7

fg(8, 9) → 0 ⊥g(5) → 5 g⊥(7) → 6 b⊥ → 11

af(3, 4) → 1 ⊥a → 3 g⊥(10) → 9 ag(5) → 1

af(3, 4) → 8 ⊥b → 4 g⊥(11) → 10 g⊥(11) → 11

For instance,

〈f(a, g(g(b))), g(f(a, b))〉 = fg(af(⊥a,⊥b), g⊥(g⊥(b⊥)))

→∗
Δ fg(af(3, 4), g⊥(g⊥(7))) →∗

Δ fg(1, g⊥(6)) →Δ fg(1, 2) →Δ 0

but 〈f(a, g(b), f(a, b))〉 = ff(aa, gb(b⊥)) is not accepted.

We have Q∞ = {5}. State 5 is reached by 〈⊥, gn(f(a, b))〉 for all n � 0.

3 The relation →+
R is an RR2 relation for left-linear, right-ground TRSs R. Other uses

of FIN (INF) can be found in [16].

Formalized Proofs of the Infinity and Normal Form Predicates 183

Definition 3. � Given a tree automaton A = (F (2), Q,Qf , Δ), we define the
tree automaton A∞ = (F (2), Q ∪ Q̄, Q̄f , Δ ∪ Δ̄). Here Q̄ is a copy of Q where
every state is dashed: q̄ ∈ Q̄ if and only if q ∈ Q. For every transition rule
fg(q1, . . . , qn) → q ∈ Δ we have the following transition rules in Δ̄:

fg(q1, . . . , qn) → q̄ if q ∈ Q∞ and f = ⊥ (1)

fg(q1, . . . , qi−1, q̄i, qi+1, . . . , qn) → q̄ for all 1 � i � n (2)

Moreover, for every ε-transition p → q ∈ Δ we add

p̄ → q̄ (3)

to Δ̄. We write Δ′ for Δ ∪ Δ̄.

Dashed states are created by rules of shape (1) and propagated by rules of
shapes (2) and (3). The above construction differs from the one in [8]; instead
of (1) the latter contains fg(q1, . . . , qn) → q̄ if qi ∈ Q∞ for some i > arity(f). In
an implementation, rather than adding all dashed states and all transition rules
of shape (2), the necessary rules would be computed by propagating the dashes
created by (1) in order to avoid the appearance of unreachable dashed states.
When A∞ is used in isolation, a single bit suffices to record that a dashed state
occurred during a computation.

Example 2. For the tree automaton A from Example 1 we obtain A∞ by adding
the following transition rules (the missing rules of shape (2) involve unreachable
states):

⊥f(3, 4) → 5̄ ⊥g(5) → 5̄ ⊥g(5̄) → 5̄ ag(5̄) → 1̄ fg(1̄, 2) → 0̄

The unique final state of A∞ is 0̄. We have 〈f(a, g(g(b))), g(f(a, b))〉 ∈ L(A∞)
but there is no term u such that 〈f(a, g(b)), u〉 ∈ L(A∞).

The following preliminary lemma is proved by a straightforward induction
argument.

Lemma 2. If t →∗
A p then t →∗

A∞ p. If C[p] →∗
A q then C[p] →∗

A∞ q and
C[p̄] →∗

A∞ q̄. � �

Theorem 2. Suppose ◦ is accepted by the RR2 automaton A. If t ∈ INF◦ then
〈t, u〉 ∈ L(A∞) for some term u ∈ T (F).

Proof. From t ∈ INF◦ and ◦ = L(A) we obtain 〈t, u〉 ∈ L(A) for infinitely many
terms u ∈ T (F). Since the signature is finite, there are only finitely many ground
terms of any given height. Moreover, height(〈t, u〉) = max (height(t), height(u)).
Hence there must exist a term u ∈ T (F) with 〈t, u〉 ∈ L(A) such that

height(t) + |Q|+ 1 < height(u)

http://cl-informatik.uibk.ac.at/software/fortissimo/tacas2020/INF_NF//RR2_Infinite.html#def:Inf_automata
http://cl-informatik.uibk.ac.at/software/fortissimo/tacas2020/INF_NF//RR2_Infinite.html#lem:Inl_A_res_Inf_automata
http://cl-informatik.uibk.ac.at/software/fortissimo/tacas2020/INF_NF//RR2_Infinite.html#lem:Inf_automata_reach_to_dash_reach

184 A. Lochmann and A. Middeldorp

This is only possible if there are positions p and q such that p /∈ Pos(t), pq ∈
Pos(u), and |Q| < |q|. From Pos(〈t, u〉) = Pos(t) ∪ Pos(u) we obtain 〈t, u〉|p =
〈⊥, u|p〉. Since 〈t, u〉 ∈ L(A) there exist states r ∈ Q and q ∈ Qf such that

〈t, u〉 = 〈t, u〉[〈⊥, u|p〉]p →∗
A 〈t, u〉[r]p →∗

A qf

where we assume without loss of generality that the last step in the subsequence
〈⊥, u|p〉 →∗

A r uses a non-epsilon transition rule.

From |Q| < |q| and pq ∈ Pos(u) we infer |Q| < height(〈⊥, u|p〉). Hence we
can use the pumping lemma (Lemma 1) to conclude the existence of infinitely
many terms v ∈ T (F) such that 〈⊥, v〉 →∗

A r. Hence r ∈ Q∞ by Definition 2.
Since the last step 〈⊥, u|p〉 →∗

A r uses a non-epsilon transition rule, we obtain
〈⊥, u|p〉 →∗

A∞ r̄ using Lemma 2 and a final application of a rule of shape (1). Also
using Lemma 2 we obtain 〈t, u〉[r̄]p →∗

A∞ q̄f as 〈t, u〉[r]p →∗
A qf . We conclude

〈t, u〉 ∈ L(A∞) as desired. �

For the reverse direction of Theorem 3 we need two auxiliary results. The
first result is proved by a straightforward induction argument. Here the mapping
ϕ : T (F (2) ∪Q ∪ Q̄) → T (F (2) ∪Q) erases all dashes from states.

Lemma 3. If t ∈ T (F (2) ∪Q ∪ Q̄) and t →∗
A∞ p then ϕ(t) →∗

A ϕ(p). �

With a little bit more effort, we obtain the second auxiliary result. The key
step in the proof is identifying the rule of shape (1) that is used to create the
first dashed state.

Lemma 4. If t ∈ T (F (2)) and t →∗
A∞ p̄ then there exist a state q ∈ Q∞, a

context C, and a term s such that C[s] = t, root(s) = ⊥f for some f ∈ F ,
s →∗

A∞ q̄, and C[q̄] →∗
A∞ p̄. �

Theorem 3. Suppose ◦ is accepted by the RR2 automaton A. If 〈t, u〉 ∈ L(A∞)
for some term u ∈ T (F) then t ∈ INF◦.

Proof. From 〈t, u〉 ∈ L(A∞) we obtain a final state q̄f ∈ Q̄ with 〈t, u〉 →∗
A∞ q̄f .

Using Lemma 4, we obtain a context C, a term s with root(s) = ⊥f for some
f ∈ F , and a state q ∈ Q∞ such that C[s] = 〈t, u〉, s →∗

A∞ q̄, and C[q̄] →∗
A∞ q̄f .

Let p be the position of the hole in C. From C[s] = 〈t, u〉 and root(s) = ⊥f ,
we infer p ∈ Pos(u) \ Pos(t). Since q ∈ Q∞ the set {v ∈ T (F) | 〈⊥, v〉 →∗

A q}
is infinite. Hence the set S = {u[v]p ∈ T (F) | 〈⊥, v〉 →∗

A q} is infinite, too. Let
u[w]p ∈ S. So 〈⊥, w〉 →∗

A q. Since C is ground and C[q̄] →∗
A∞ q̄f , we obtain

C[q] →∗
A qf from Lemma 3. We have C[w] = 〈t, u[w]p〉 as p ∈ Pos(u) \Pos(t). It

follows that 〈t, u[w]p〉 ∈ L(A) and thus there are infinitely many terms u such
that 〈t, u〉 ∈ L(A). Since ◦ = L(A) we conclude the desired t ∈ INF◦. �

The final step to conclude that the infinity predicate is indeed regular is now
easy.

http://cl-informatik.uibk.ac.at/software/fortissimo/tacas2020/INF_NF//RR2_Infinite.html#lem:Inf_to_automata
http://cl-informatik.uibk.ac.at/software/fortissimo/tacas2020/INF_NF//RR2_Infinite.html#lem:Inf_automata_dash_reach_to_reach
http://cl-informatik.uibk.ac.at/software/fortissimo/tacas2020/INF_NF//RR2_Infinite.html#lem:CInr_Inf_automata_to_q_state
http://cl-informatik.uibk.ac.at/software/fortissimo/tacas2020/INF_NF//RR2_Infinite.html#lem:Inf_automata_to_Inf

Formalized Proofs of the Infinity and Normal Form Predicates 185

Proof (of Theorem 1). Combining Theorem 2 and Theorem 3 yields the following
equivalence:

t ∈ INF◦ ⇐⇒ 〈t, u〉 ∈ L(A∞) for some term u

Hence a tree automaton that accepts INF◦ is obtained by subjecting A∞ to a
projection operation (on the first argument). ��

Projection on RRn automata has been formalized in Isabelle/HOL as part
of [10]. �

The mistake in the proof given in the appendix of [16] is quoted below and
corresponds to the proof of Theorem 2:

The set U = {u ∈ T (F) | (t, u) ∈ ◦} is infinite. Since the signature F is
finite, infinitely many terms u in U have a height greater than t. Hence
there exists a position p /∈ Pos(t) such that the set U ′ = {u ∈ U | p ∈
Pos(u)} is infinite. For every u ∈ U ′ we have 〈t, u〉|p = 〈⊥, u|p〉. Since
〈t, u〉 is accepted by A and Q is finite, there must exist a state q′ such
that 〈⊥, u|p〉 →∗

A q′ for infinitely many terms u ∈ U ′. Therefore q′ ∈ Q∞.

The following example refutes the above reasoning, which is the key step in the
proof in [16]. It was found in attempt to formalize the proof.

Example 3. Let t = f(a, b) and consider the infinite set U = {f(f(a, b), gn(b)) |
n � 1}. The automaton

A = ({f, g, a, b}(2), {q1, . . . , q6}, q6, Δ)

with Δ consisting of the transition rules

ff(q4, q5) → q6 ⊥a → q2 bg(q1) → q5 ⊥b → q1

af(q2, q3) → q4 ⊥b → q3 ⊥g(q1) → q1

accepts the relation ◦ = {t} × U . Consider the position p = 11. We have p /∈
Pos(t) and p ∈ Pos(u) for all terms u ∈ U . Hence U ′ = U . Moreover, 〈t, u〉|p =
〈⊥, a〉 = ⊥a for all terms u ∈ U ′. The only state reachable from ⊥a is q2 and
clearly q2 /∈ Q∞.

4 Executable Infinity Predicate

Owing to the definition of Q∞, the automaton A∞ defined in Definition 3 is
not executable. In this section we give an equivalent but executable definition of
Q∞, which we name Qe

∞:

Qe
∞ = {q | p � p and p � q for some state p ∈ Q} �

Here the relation � is defined using the inference rules in Figure 1. Before
proving that the two definitions are equivalent, we illustrate the definition of
Qe

∞ by revisiting Example 1.

http://cl-informatik.uibk.ac.at/software/fortissimo/tacas2020/INF_NF//RRn_Automata.html#lem:drop_automaton
http://cl-informatik.uibk.ac.at/software/fortissimo/tacas2020/INF_NF//RR2_infinite_Impl.html#def:Q_inf_e

186 A. Lochmann and A. Middeldorp

⊥f(p1, . . . , pn) →Δ p

p1 � p · · · pn � p

p � q q →Δ r

p � r

p � q q � r

p � r

Fig. 1. Inference rules for computing Qe
∞.

Example 4. We obtain 3 � 5 and 4 � 5 by applying the first inference rule to
the transition rule ⊥f(3, 4) → 5. Similarly, ⊥g(5) → 5 gives rise to 5 � 5. Since
A has no epsilon transitions, no further inferences can be made. It follows that
Qe

∞ = {5}.

We call a term in T ({⊥} × F) right-only. A term in T (({⊥} × F) ∪ {�})
with exactly one occurrence of the hole � is a right-only context.

Definition 4. We denote the composition of →Δ¬ε
and →∗

Δε
by �Δ.

The proof of the next lemma is straightforward. Note that the relations →∗
Δ

and �∗
Δ do not coincide on mixed terms, involving function symbols and states.

Lemma 5. Let C be a ground context. We have C[p] →∗
Δ q if and only if p →∗

Δ

p′ and C[p′] �∗
Δ q for some state p′. �

Lemma 6. Q∞ ⊆ Qe
∞

Proof. We start by proving the following claim:

if C[p] �∗
Δ q and C is a non-empty right-only context then p � q (∗)

We use induction on the structure of C. If C = � there is nothing to show.
Suppose C = ⊥f(t1, . . . , C

′, . . . , tn) where C ′ is the i-th subterm of C. The
sequence C[p] �∗

Δ q can be rearranged as C[p] = ⊥f(t1, . . . , C
′[p], . . . , tn) �∗

Δ

⊥f(q1, . . . , qn) →Δ q′ →∗
Δ q. We obtain qi � q′ and subsequently qi � q by

using the inference rules in Figure 1. If C ′ = � then p = qi and if C ′ �= �
then the induction hypothesis yields p � qi and thus p � q by transitivity. This
concludes the proof of (∗). �

Assume q ∈ Q∞, so there exist infinitely many terms t such that 〈⊥, t〉 →∗
Δ q.

Since the signature is finite, there exist terms of arbitrary height. Thus there
exists an arbitrary but fixed term t such that the height of t is greater than the
number of states of Q. Write t = f(t1, . . . , tn). Since the height of t is greater
than the number of the states in Q, there exist a subterm s of t, a state p, and
contexts C1 and C2 �= � such that

1. 〈⊥, t〉 = C1[C2[〈⊥, s〉]],
2. 〈⊥, s〉 →∗

Δ p,

3. C2[p] →∗
Δ p, and

http://cl-informatik.uibk.ac.at/software/fortissimo/tacas2020/INF_NF//Tree_Automata_Utils.html#lem:ta_res_to_ta_strict
http://cl-informatik.uibk.ac.at/software/fortissimo/tacas2020/INF_NF//RR2_infinite_Impl.html#lem:ta_res_Q_inf

Formalized Proofs of the Infinity and Normal Form Predicates 187

4. C1[p] →∗
Δ q.

From Lemma 5 we obtain a state q′ such that p →∗
Δ q′ and C2[q

′] �∗
Δ p. Hence

q′ � p by (∗). We obtain q′ � q′ from q′ � p in connection with the inference
rule for epsilon transitions. We perform a case analysis of the context C1.

– If C1 = � then p →∗
Δ q and thus q′ � q follows from q′ � p in connection

with the inference rule for epsilon transitions. Hence q ∈ Qe
∞.

– If C1 �= � then Lemma 5 yields a state q′′ such that p′ →∗
Δ q′′ and C1[q

′′] �∗
Δ

q. Hence q′′ � q by (∗). We also have C2[q
′] �∗

Δ q′′ and thus q′ � q′′ by
(∗). We obtain q′ � q from the transitivity rule. Hence also in this case we
obtain q ∈ Qe

∞. �

For the following lemma, we need the fact that A can be assumed to be trim,
so every state is productive and reachable. We may do so because Theorem 1
talks about regular relations, and any automaton that accepts the same language
as A will witness the fact that the given relation ◦ is regular.

Lemma 7. Qe
∞ ⊆ Q∞, provided that A is trim.

Proof. In connection with the fact that A accepts ◦ ⊆ T (F) × T (F), trimness
of A entails that any run t →∗

Δ q is embedded into an accepting run C[t] →∗
Δ

C[q] →∗
Δ qf ∈ Qf . So C[t] = 〈u, v〉 for some (u, v) ∈ ◦, and hence t must be a

well-formed term. Moreover, if root(t) = ⊥f for some f ∈ F then t = 〈⊥, u〉 for
some term u ∈ T (F). We now show the converse of claim (∗) in the proof of
Lemma 6 for the relation →∗

Δ:

if p � q then C[p] →∗
Δ q for some ground right-only context C �= � (∗∗)

We prove the claim by induction on the derivation of p � q. First suppose
p � q is derived from the transition rule ⊥f(p1, . . . , pi, . . . , pn) → q in Δ
with pi = p. Because all states are reachable by well-formed terms, there ex-
ist terms t1, . . . , tn ∈ T (F) such that 〈⊥, t〉 →∗

Δ pi for all 1 � i � n. Let
C1 = ⊥f(〈⊥, t1〉, . . . ,�, . . . , 〈⊥, tn〉) where the hole is the i-th argument. We
have C1[p] →∗

Δ ⊥f(p1, . . . , pi, . . . , pn) →Δ q. Next suppose p � q is derived
from p � q′ and q′ →Δ q. The induction hypothesis yields a ground right-only
context C �= � such that C[p] →∗

Δ q′. Hence also C[p] →∗
Δ q. Finally, sup-

pose p � q is derived from p � r and r � q. The induction hypothesis yields
non-empty ground right-only contexts C1 and C2 such that C1[p] →∗

Δ r and
C2[r] →∗

Δ q. Hence C[p] →∗
Δ q for the context C = C2[C1]. This concludes the

proof of (∗∗). �

Now let q ∈ Qe
∞. So there exists a state p such that p � p and p � q.

Using (∗∗), we obtain non-empty ground right-only contexts C1 and C2 such
that C1[p] →∗

Δ p and C2[p] →∗
Δ q. Since all states are reachable, there exists

a ground term t ∈ T (F (2)) such that t →∗
Δ p. Hence C2[t] →∗

Δ q and, by the
observation made at the beginning of the proof, C2[t] is a well-formed term.
Since C2 is right-only, it follows that t = 〈⊥, u〉 for some term u ∈ T (F). Now
consider the infinitely many terms tn = C2[C

n
1 [t]] for n � 0. We have tn →∗

Δ q
and tn is right-only by construction. Hence q ∈ Q∞. �

http://cl-informatik.uibk.ac.at/software/fortissimo/tacas2020/INF_NF//RR2_infinite_Impl.html#lem:Q_inf_impl_Q_inf_exec
http://cl-informatik.uibk.ac.at/software/fortissimo/tacas2020/INF_NF//RR2_infinite_Impl.html#lem:Q_inf_reach_state_rule
http://cl-informatik.uibk.ac.at/software/fortissimo/tacas2020/INF_NF//RR2_infinite_Impl.html#lem:Q_inf_exec_impl_Q_inf

188 A. Lochmann and A. Middeldorp

Corollary 1. Qe
∞ = Q∞, provided that A is trim. ��

5 Normal Form Predicate

The normal form predicate NF can be defined in the first-order theory of rewrit-
ing as

NF(t) ⇐⇒ ¬∃u (t → u)

and this gives rise to the following procedure:

1. An RR2 automaton is constructed that accepts the encoding of the rewrite
relation →.

2. The RR2 automaton of step 1 is projected into a tree automaton that accepts
the set of reducible ground terms.

3. Complementation is applied to the automaton of step 2 to obtain a tree
automaton that accepts the set of ground normal forms.

Since projection may transform a deterministic tree automaton into a non-
deterministic one, this is inefficient. In this section we provide a direct con-
struction of a tree automaton that accepts the set of ground normal forms of a
left-linear TRS, which goes back to Comon [5], and present a formalized correct-
ness proof. Throughout this section R is assumed to be left-linear.

We start with defining some preliminary concepts.

Definition 5. Given a signature F , we write F⊥ for the extension of F with a
fresh constant symbol ⊥. Given t ∈ T (F ,V), t⊥ denotes the result of replacing
all variables in t by ⊥:

x⊥ = ⊥ f(t1, . . . , tn)
⊥ = f(t⊥1 , . . . , t

⊥
n) �

We define the partial order � on T (F⊥) as the least congruence that satisfies
⊥ � t for all terms t ∈ T (F⊥):

⊥ � t

t1 � u1 · · · tn � un

f(t1, . . . , tn) � f(u1, . . . , un) �

The partial map ↑ : T (F⊥)× T (F⊥) → T (F⊥) is defined as follows:

⊥ ↑ t = t ↑ ⊥ = t f(t1, . . . , tn) ↑ f(u1, . . . , un) = f(t1 ↑ u1, . . . , tn ↑ un) �

It is not difficult to show that t ↑ u is the least upper bound of comparable
terms t and u.

Definition 6. � Let R be a TRS over a signature F . We write T⊥ for the set
{t⊥ | t � � for some � → r ∈ R} ∪ {⊥}. The set T↑ is obtained by closing T⊥

under ↑.

http://cl-informatik.uibk.ac.at/software/fortissimo/tacas2020/INF_NF//NF.html#def:term_to_bot_term
http://cl-informatik.uibk.ac.at/software/fortissimo/tacas2020/INF_NF//NF.html#ind:bless_eq
http://cl-informatik.uibk.ac.at/software/fortissimo/tacas2020/INF_NF//NF.html#def:merge_terms
http://cl-informatik.uibk.ac.at/software/fortissimo/tacas2020/INF_NF//NF.html#def:states

Formalized Proofs of the Infinity and Normal Form Predicates 189

Example 5. Consider the TRS R consisting of following rules:

h(f(g(a), x, y)) → g(a) g(f(x, h(x), y))) → x h(f(x, y, h(a))) → h(x)

We start by collecting the subterms of the left-hand sides:

T⊥ = {⊥, a, g(a), h(⊥), h(a), f(g(a),⊥,⊥), f(⊥, h(⊥),⊥), f(⊥,⊥, h(a))}

Closing T⊥ under ↑ adds the following terms:

f(g(a),⊥,⊥) ↑ f(⊥, h(⊥),⊥) = f(g(a), h(⊥),⊥)

f(⊥,⊥, h(a)) ↑ f(⊥, h(⊥),⊥) = f(⊥, h(⊥), h(a))

f(g(a), h(⊥),⊥) ↑ f(⊥, h(⊥), h(a)) = f(g(a), h(⊥), h(a))

Lemma 8. The set T↑ is finite.

Proof. If t ↑ u is defined then Pos(t ↑ u) = Pos(t) ∪ Pos(u). It follows that the
positions of terms in T↑ \ T⊥ are positions of terms in T⊥. Since T⊥ is finite,
there are only finitely many such positions. Hence the finiteness of T↑ follows
from the finiteness of F . ��

Although the above proof is simple enough, we formalized the proof below
which is based on a concrete algorithm to compute T↑. Actually, the algorithm
presented below is based on a general saturation procedure, which is of indepen-
dent interest.

Definition 7. Let f : U ×U → U be a (possibly partial) function and let S be a
finite subset of U . The closure Cf (S) is the least extension of S with the property
that f(a, b) ∈ Cf (S) whenever a, b ∈ Cf (S) and f(a, b) is defined.

The following lemma provides a sufficient condition for closures to exist. The
proof gives a concrete algorithm to compute the closure.

Lemma 9. If f is a total, associative, commutative, and idempotent function
then Cf (S) exists and is finite.

Proof. A straightforward induction proof reveals that for every a ∈ Cf (S) there
exist elements a1, . . . , an ∈ S such that a = f(a1, f(a2, . . . f(an−1, an) . . .)).
Select an arbitrary element b ∈ S. If b is among a1, . . . , an then, using the
properties of f , we obtain a ∈ {f(b, c) | c ∈ Cf (S \ {b})}. If b is not among
a1, . . . , an then a ∈ Cf (S \ {b}). Hence

Cf (S) = Cf (S \ {b}) ∪ {b} ∪ {f(b, c) | c ∈ Cf (S \ {b})}

for every b ∈ S. Since S is finite, this gives rise to an iterative algorithm to
compute Cf (S), which is given in Listing 5. In each iteration only finitely many
elements are added. Hence Cf (S) is finite. �

http://cl-informatik.uibk.ac.at/software/fortissimo/tacas2020/INF_NF//Saturation.html#lem:finite_S_finite_closure

190 A. Lochmann and A. Middeldorp

saturate(S):
I ← ∅
for all x ∈ S do

I ← {x} ∪ I ∪ {f(x, y) | y ∈ I}
return I

Listing 1. Iterative closure algorithm.

Since our function ↑ is partial, we need to lift it to a total function that
preserves associativity and commutativity. In our abstract setting this entails
finding a binary predicate P on U such that f(a, b) is defined if P (a, b) holds.
In addition, the following properties need to be fulfilled:

– P is reflexive and symmetric,

– if P (a, f(b, c)) and P (b, c) hold then P (a, b) and P (f(a, b), c) hold as well,
for all a, b, c ∈ U .

For the details we refer to the formalization. � � � �

Definition 8. � The tree automaton ANF(R) = (F , Q,Qf , Δ) is defined as
follows: Q = Qf = T↑ and Δ consists of all transition rules

f(p1, . . . , pn) → q �

such that f(p1, . . . , pn) is no redex and q is the maximal element of Q satisfying
q � f(p1, . . . , pn).

4

Example 6. For the TRS R of Example 5, the tree automaton ANF(R) consists
of the following transition rules:

a → 1 g(p) →
{
2 if p = 1

0 if p /∈ {1, 6, 9, 10}
h(p) →

{
4 if p = 1

3 if p /∈ {1, 8, 10}

f(p, q, r) →

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

5 if p = 2, q /∈ {3, 4}
6 if p �= 2, q ∈ {3, 4}, r �= 4

7 if q /∈ {3, 4}, r = 4

8 if p = 2, q ∈ {3, 4}, r �= 4

9 if p �= 2, q ∈ {3, 4}, r = 4

10 if p = 2, q ∈ {3, 4}, r = 4

0 otherwise

Here we use the following abbrevations:

0 = ⊥ 3 = h(⊥) 6 = f(⊥, h(⊥),⊥) 8 = f(g(a), h(⊥),⊥)

1 = a 4 = h(a) 7 = f(⊥,⊥, h(a)) 9 = f(⊥, h(⊥), h(a))

2 = g(a) 5 = f(g(a),⊥,⊥) 10 = f(g(a), h(⊥), h(a))
4 Since states are terms from T∞ here, Definition 5 applies.

http://cl-informatik.uibk.ac.at/software/fortissimo/tacas2020/INF_NF//Saturation.html#loc:closure_under_pred_fun
http://cl-informatik.uibk.ac.at/software/fortissimo/tacas2020/INF_NF//Saturation.html#def:total_f
http://cl-informatik.uibk.ac.at/software/fortissimo/tacas2020/INF_NF//Saturation.html#lem:pclosure_subset_tclosure
http://cl-informatik.uibk.ac.at/software/fortissimo/tacas2020/INF_NF//Saturation.html#lem:def_impl_tclosure_subset_pclosure
http://cl-informatik.uibk.ac.at/software/fortissimo/tacas2020/INF_NF//NF.html#def:nf_ta
http://cl-informatik.uibk.ac.at/software/fortissimo/tacas2020/INF_NF//NF.html#def:nf_rules

Formalized Proofs of the Infinity and Normal Form Predicates 191

As can be seen from the above example, the tree automaton ANF(R) is not
completely defined. Unlike the construction in [5], we do not have an additional
state that is reached by all reducible ground terms.

Before proving that ANF(R) accepts the ground normal forms of R, we first
show that ANF(R) is well-defined, which amounts to showing that for every
f(p1, . . . , pn) with f ∈ F and p1, . . . , pn ∈ T↑ the set of states q such that
q � f(p1, . . . , pn) has a maximum element with respect to the partial order �.

Lemma 10. For every term t ∈ T↑ the set {s ∈ T↑ | s � t} has a unique
maximal element.

Proof. Let S = {s ∈ T↑ | s � t}. Because ⊥ � t and ⊥ ∈ T↑, S �= ∅. If s1, s2 ∈ T
then s1 � t and s2 � t and thus s1 ↑ s2 is defined and satisfies s1 ↑ s2 � t. Since
T↑ is closed under ↑, s1 ↑ s2 ∈ T↑ and thus s1 ↑ s2 ∈ P . Consequently, S has a
unique maximal element. ��

The next lemma is a trivial consequence of the fact that ANF(R) has no
epsilon transitions.

Lemma 11. The tree automaton ANF(R) is deterministic. �

Lemma 12. If t ∈ T (F) with t →∗
Δ q and s⊥ � t⊥ for a proper subterm s of

some left-hand side of R then s⊥ � q.

Proof. We use structural induction on t. Let t = f(t1, . . . , tn). We have t →∗
Δ

f(q1, . . . , qn) →Δ q. We procede by case analysis on s. If s is a variable then
s⊥ = ⊥ and, as ⊥ is minimal in �, we obtain s⊥ � q. Otherwise we must have
root(s) = f from the assumption s⊥ � t⊥. So we may write s = f(s1, . . . , sn).
The induction hypothesis yields s⊥i � qi for all 1 � i � n. Hence s⊥ =
f(s⊥1 , . . . , s

⊥
n) � f(q1, . . . , qn). Additionally we have s⊥ ∈ Q by Definition 8

as s is a proper subterm of a left-hand side of R. Since f(q1, . . . , qn) → q is a
transition rule, we obtain f(s1, . . . , sn)

⊥ � q from the maximality of q. �

Using the previous result we can prove that no redex of R reaches a state in
ANF(R).

Lemma 13. If t ∈ T (F) is a redex then t →∗
Δ q for no state q ∈ T↑.

Proof. We have �⊥ � t for some left-hand side � of R. For a proof by contradic-
tion, assume t →∗

Δ q. Write t = f(t1, . . . , tn). We have t →∗
Δ f(q1, . . . , qn) →Δ q

and obtain �⊥ � f(q1, . . . , qn) by a case analysis on � and Lemma 12. Therefore
the transition rule f(q1, . . . , qn) →Δ q cannot exist by Definition 8. �

Lemma 14. If t →∗
Δ q and t ∈ T (F) then q � t.

Proof. We use structural induction on t. Let t = f(t1, . . . , tn). We have t →∗
Δ

f(q1, . . . , qn) →∗
Δ q. The induction hypothesis yields qi � ti for all 1 � i � n and

thus also f(q1, . . . , qn) � f(t1, . . . , tn). We have q � f(q1, . . . , qn) by Definition 8
and thus q � t by the transitivity of �. �

http://cl-informatik.uibk.ac.at/software/fortissimo/tacas2020/INF_NF//NF.html#lem:nf_ta_det
http://cl-informatik.uibk.ac.at/software/fortissimo/tacas2020/INF_NF//NF.html#lem:subt_less_eq_res_less_eq
http://cl-informatik.uibk.ac.at/software/fortissimo/tacas2020/INF_NF//NF.html#lem:ta_nf_sound1
http://cl-informatik.uibk.ac.at/software/fortissimo/tacas2020/INF_NF//NF.html#lem:term_instance_of_reach_state

192 A. Lochmann and A. Middeldorp

Lemma 15. If t ∈ NF(R) then t →∗
Δ q for some state q ∈ T↑.

Proof. We use structural induction on t. Let t = f(t1, . . . , tn). Since t1, . . . , tn ∈
NF(R) we obtain f(t1, . . . , tn) →∗

Δ f(q1, . . . , qn) from the induction hypothesis.
Suppose f(q1, . . . , qn) is a redex, so l⊥ � f(q1, . . . , qn) for some left-hand side � of
R. From Lemma 14 we obtain qi � ti for all 1 � i � n and thus f(q1, . . . , qn) �
f(t1, . . . , tn). Hence �

⊥ � f(t1, . . . , tn). This however contradicts the assumption
that t is a normal form. (Here we need left-linearity of R.) Therefore f(q1, . . . , qn)
is no redex and thus, using Lemma 10, there exists a transition f(q1, . . . , qn) → q
in Δ and thus t →∗

Δ q. �

Theorem 4. If R is a left-linear TRS then L(ANF(R)) = NF(R).

Proof. Let t ∈ T (F). If t ∈ NF(R) then t →∗
Δ q for some state q ∈ T↑ by

Lemma 15. Since all states in T↑ are final, t ∈ L(ANF(R)). �

Next assume t /∈ NF(R). Hence t = C[s] for some redex s. According to
Lemma 13 s does not reach a state in ANF(R). Hence also t cannot reach a state
and thus t /∈ L(ANF(R)). �

6 Conclusion and Future Work

In this paper we presented formalized correctness proofs of the regularity of
the infinity and normal form predicates in the first-order theory of rewriting.
For the former we also provided an executable version, which is important for
checking certificates that will be provided in a future version of FORT. Our
results are an important step towards the ultimate goal of proving the correctness
of the decisions reported by FORT, but much work remains to be done. We are
developing a certification language which reflects the high-level proof steps in the
decision procedure for the full first-order theory of rewriting. This language will
be independent of FORT. In particular, details of the intermediate tree automata
computed by FORT will not be part of certificates. This keeps the certificates
small and avoids having to implement a verified (and expensive) equivalence
check on tree automata. We will provide executable Isabelle code for each of
the constructs in the certification language, and so this involves replaying the
automata constructions in Isabelle.

We conclude the paper by providing some details of the size of our formal-
ization in Table 1.

Acknowledgments. We thank Bertram Felgenhauer and T. V. H. Prathamash for
contributions in the early stages of this work. The comments by the reviewers
helped to improve the presentation of the paper.

References

1. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press
(1998). https://doi.org/10.1017/CBO9781139172752

http://cl-informatik.uibk.ac.at/software/fortissimo/tacas2020/INF_NF//NF.html#lem:ta_nf_sound2
http://cl-informatik.uibk.ac.at/software/fortissimo/tacas2020/INF_NF//NF.html#lem:ta_nf_lang_complete
http://cl-informatik.uibk.ac.at/software/fortissimo/tacas2020/INF_NF//NF.html#lem:ta_nf_lang_sound
https://doi.org/10.1017/CBO9781139172752

Formalized Proofs of the Infinity and Normal Form Predicates 193

Table 1. Formalization data.

theory lines facts defs

Saturation.thy 233 22 3
Tree Automata Pumping.thy 371 40 2

NF.thy 404 40 7
RR2 Infinite.thy 603 48 5

RR2 Infinite Impl.thy 240 14 2

total 1851 164 19

2. Barrett, C., Deters, M., de Moura, L., Oliveras, A., Stump, A.: 6 years
of SMT-COMP. Journal of Automated Reasoning 50(3), 243–277 (2013).
https://doi.org/10.1007/s10817-012-9246-5

3. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development –
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science. An EATCS Series, Springer (2004). https://doi.org/10.1007/978-3-662-
07964-5

4. Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.): Handbook of Satis-
fiability, Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press
(2009)

5. Comon, H.: Sequentiality, monadic second-order logic and tree au-
tomata. Information and Computation 157(1-2), 25–51 (2000).
https://doi.org/10.1006/inco.1999.2838

6. Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D.,
Tison, S., Tommasi, M.: Tree automata techniques and applications (2008), http:
//tata.gforge.inria.fr/

7. Dauchet, M., Tison, S.: The theory of ground rewrite systems is decidable. In:
Proc. 5th IEEE Symposium on Logic in Computer Science. pp. 242–248 (1990).
https://doi.org/10.1109/LICS.1990.113750

8. Dauchet, M., Tison, S.: The theory of ground rewrite systems is decidable (ex-
tended version). Tech. Rep. I.T. 197, LIFL (1990)

9. Endrullis, J., Zantema, H.: Proving non-termination by finite automata. In:
Fernández, M. (ed.) Proc. 26th International Conference on Rewriting Techniques
and Applications. Leibniz International Proceedings in Informatics, vol. 36, pp.
160–168 (2015). https://doi.org/10.4230/LIPIcs.RTA.2015.257

10. Felgenhauer, B., Middeldorp, A., Prathamesh, T.V.H., Rapp, F.: A verified ground
confluence tool for linear variable-separated rewrite systems in Isabelle/HOL.
In: Mahboubi, A., Myreen, M.O. (eds.) Proc. 8th ACM SIGPLAN Inter-
national Conference on Certified Programs and Proofs. pp. 132–143 (2019).
https://doi.org/10.1145/3293880.3294098

11. Felgenhauer, B., Thiemann, R.: Reachability, confluence, and termination analysis
with state-compatible automata. Information and Computation 253(3), 467–483
(2017). https://doi.org/10.1016/j.ic.2016.06.011

12. Giesl, J., Rubio, A., Sternagel, C., Waldmann, J., Yamada, A.: The termination
and complexity competition. In: Beyer, D., Huisman, M., Kordon, F., Steffen,
B. (eds.) Proc. 25th International Conference on Tools and Algorithms for the

https://doi.org/10.1007/s10817-012-9246-5
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1006/inco.1999.2838
http://tata.gforge.inria.fr/
http://tata.gforge.inria.fr/
https://doi.org/10.1109/LICS.1990.113750
https://doi.org/10.4230/LIPIcs.RTA.2015.257
https://doi.org/10.1145/3293880.3294098
https://doi.org/10.1016/j.ic.2016.06.011

194 A. Lochmann and A. Middeldorp

Construction and Analysis of Systems. Lecture Notes in Computer Science, vol.
11429, pp. 156–166 (2019). https://doi.org/10.1007/978-3-030-17502-3 10

13. Middeldorp, A., Nagele, J., Shintani, K.: Confluence competition 2019. In:
Beyer, D., Huisman, M., Kordon, F., Steffen, B. (eds.) Proc. 25th Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis
of Systems. Lecture Notes in Computer Science, vol. 11429, pp. 25–40 (2019).
https://doi.org/10.1007/978-3-030-17502-3 2

14. Nagaya, T., Toyama, Y.: Decidability for left-linear growing term rewrit-
ing systems. Information and Computation 178(2), 499–514 (2002).
https://doi.org/10.1006/inco.2002.3157

15. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL – A Proof Assistant for
Higher-Order Logic, Lecture Notes in Computer Science, vol. 2283. Springer (2002).
https://doi.org/10.1007/3-540-45949-9

16. Rapp, F., Middeldorp, A.: Automating the first-order theory of left-linear right-
ground term rewrite systems. In: Kesner, D., Pientka, B. (eds.) Proc. 1st In-
ternational Conference on Formal Structures for Computation and Deduction.
Leibniz International Proceedings in Informatics, vol. 52, pp. 36:1–36:12 (2016).
https://doi.org/10.4230/LIPIcs.FSCD.2016.36

17. Rapp, F., Middeldorp, A.: FORT 2.0. In: Galmiche, D., Schulz, S., Sebastiani, R.
(eds.) Proc. 9th International Joint Conference on Automated Reasoning. LNAI,
vol. 10900, pp. 81–88 (2018). https://doi.org/10.1007/978-3-319-94205-6 6

18. Terese (ed.): Term Rewriting Systems, Cambridge Tracts in Theoretical Computer
Science, vol. 55. Cambridge University Press (2003)

19. Thiemann, R., Sternagel, C.: Certification of termination proofs using CeTA. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) Proc. 22nd International
Conference on Theorem Proving in Higher Order Logics. Lecture Notes in Com-
puter Science, vol. 5674, pp. 452–468 (2009). https://doi.org/10.1007/978-3-642-
03359-9 31

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-030-17502-3_10
https://doi.org/10.1007/978-3-030-17502-3_2
https://doi.org/10.1006/inco.2002.3157
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.4230/LIPIcs.FSCD.2016.36
https://doi.org/10.1007/978-3-319-94205-6_6
https://doi.org/10.1007/978-3-642-03359-9_31
https://doi.org/10.1007/978-3-642-03359-9_31
http://creativecommons.org/licenses/by/4.0/

Fold/Unfold Transformations for Fixpoint Logic

Naoki Kobayashi1 , Grigory Fedyukovich2 , and Aarti Gupta3

1 The University of Tokyo, Tokyo, Japan, koba@is.s.u-tokyo.ac.jp
2 Florida State University, Tallahassee, USA, grigory@cs.fsu.edu
3 Princeton University, Princeton, USA,aartig@cs.princeton.edu

Abstract. Fixpoint logics have recently been drawing attention as com-
mon foundations for automated program verification. We formalize fold/
unfold transformations for fixpoint logic formulas and show how they
can be used to enhance a recent fixpoint-logic approach to automated
program verification, including automated verification of relational and
temporal properties. We have implemented the transformations in a tool
and confirmed its effectiveness through experiments.

1 Introduction

A wide range of program properties can be verified by reducing to satisfiabil-
ity/validity in a fixpoint logic [3–6, 18, 20, 22, 23, 29, 35]. In this paper, we build
on top of MuArith, a first-order logic with least/greatest fixpoint operators and
integer arithmetic, recently proposed by Kobayashi et al. [22]. It offers a powerful
tool to handle the full class of modal μ-calculus properties of while-programs (im-
perative programs with loops but without general recursion). In contrast, earlier
studies on temporal program verification require different methods for each sub-
class of the modal μ-calculus properties, such as LTL [12,16,28], CTL [2,3,13,34],
and CTL∗ [11]. The recent program verifier based on MuArith [22] is effective
in practice, i.e., by exploiting general-purpose solvers for Satisfiability Modulo
Theories (SMT) and Constrained Horn Clauses (CHC), it can outperform tools
designed specifically for CTL verification of C programs [13].

Despite these promising results, the generality of the fixpoint logic approach
come at a cost. Since fixpoint logic formulas obtained by reduction from various
verification problems often involve nested fixpoint operators, it could be chal-
lenging to check the validity of these formulas automatically. To enhance the
capability of fixpoint logic provers, in this paper, we propose novel fold/unfold
transformations and prove their correctness. These transformations are generally
used to simplify relational verification, and in particular, to reduce the num-
ber of recurrences used in the program (or a set of programs) under analysis.
Originally proposed for logic programming [8, 19, 32], they have been recently
adopted for determining the satisfiability of CHC [15,26] and allow discovery of
relational invariants for a pair of loopy (or recursive) programs, as opposed to
invariants within each individual program. Our transformations can be regarded
as extensions of such transformations for a fixpoint logic, where quantifiers and
arbitrarily nested least/greatest fixpoint operators are allowed.

c© The Author(s) 2020
A. Biere and D. Parker (Eds.): TACAS 2020, LNCS 12079, pp. 195–214, 2020.
https://doi.org/10.1007/978-3-030-45237-7 12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45237-7_12&domain=pdf
http://orcid.org/0000-0002-0537-0604
http://orcid.org/0000-0003-1727-4043
http://orcid.org/0000-0001-6676-9400
https://doi.org/10.1007/978-3-030-45237-7_12

196 N. Kobayashi et al.

We also present a procedure that seeks a way to apply the proposed fold/
unfold transformations efficiently. Besides non-determinism in the choice of which
fixpoint formulas to unfold, our “fold” operation replaces a formula φ with P

(where P is the predicate defined by P
�
= φ) and requires various reasoning to

convert the current goal formula to a form E[φ], where the form of E can be more
complex than in the case of fold/unfold transformations for logic programming
or CHC.

We have implemented the transformations and integrated them with the
program verifier Mu2CHC [22] based on MuArith. We considered a number of
examples of MuArith formulas which include formulas obtained from program
verification problems for checking relational and temporal properties. Our new
transformations allowed Mu2CHC to solve these formulas, which would not be
doable otherwise.

To sum up, our contributions are: (i) a formalization of fold/unfold transfor-
mations for a fixpoint logic and proofs of their soundness, (ii) demonstration of
the usefulness of the proposed transformations for verification of relational and
temporal properties of programs, and (iii) a concrete procedure for automated
transformation and its implementation and experiments.

The rest of this paper is structured as follows. Section 2 reviews the defini-
tion of the first-order fixpoint logic MuArith [22], and reductions from program
verification problems to validity checking in MuArith. Section 3 formalizes our
transformations and proves their correctness. Section 4 shows applications of
our transformations to verification of relational and temporal properties of re-
cursive programs. Section 5 reports an implementation and experimental results.
Section 6 discusses related work and Section 7 concludes the paper.

2 First-Order Fixpoint Logic MuArith

We review the first-order fixpoint logic MuArith [22] in this section. MuArith is a
variation of Mu-Arithmetic studied by Lubarsky [25] and Bradfield [7], obtained
by replacing natural numbers with integers.

2.1 Syntax

The set of (propositional) formulas, ranged over by ϕ, is defined in the following
grammar.

ϕ (formulas) ::= a1 ≥ a2 | P (k)(a1, . . . , ak) |

ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | ∀x.ϕ | ∃x.ϕ

P (k) (k-ary predicates) ::= X(k) | λ(x1, . . . , xk).ϕ |

μX(k)(x1, . . . , xk).ϕ | νX(k)(x1, . . . , xk).ϕ

a (arithmetic expressions) ::= n | x | a1 + a2 | a1 − a2

The metavariable ϕ represents a proposition, and P denotes a predicate on
(a tuple of) integers. We write � for 0 ≥ 0 and ⊥ for 0 ≥ 1. In examples,

Fold/Unfold Transformations for Fixpoint Logic 197

we may also use other relational symbols such as > and =. The meta-variable
x denotes an integer, and the meta-variable X(k) denotes a k-ary first-order
predicate variable. We write ar(X(k)) for the arity of the predicate variable
X(k), i.e., k; we often omit the superscript (k) and just write X for a predicate
variable. The predicate μX(k)(x1, . . . , xk).ϕ (resp. νX(k)(x1, . . . , xk).ϕ) denotes
the least (resp. greatest) predicate X such that X(x1, . . . , xk) equals ϕ.

Example 1. Let μX(x).(x = 0 ∨ X(x − 1)) denote the least predicate X , such
that X(x) ≡ x = 0 ∨ X(x − 1) ≡ x = 0 ∨ x − 1 = 0 ∨ X(x − 2) ≡ · · ·, i.e.,
λ(x).x ≥ 0. In contrast, νX(x).(x = 0 ∨X(x− 1)) denotes λ(x).�.
�

We write FV(ϕ) for the set of free (predicate and integer) variables in
ϕ; ∀x, ∃x, μX (k), νX(k), and λx are binders. We sometimes write x̃ for a se-
quence of variables x1, . . . , xk. We often write ϕ and X for the De Morgan
dual of a formula ϕ and a predicate variable X , respectively. For example,
μX(x).x = 0 ∨X(x− 1) = νX(x).x �= 0 ∧ X(x − 1). Here, X is a predicate
variable, so the righthand side is α-equivalent to νX(x).x �= 0 ∧X(x − 1). The
overline for X is used to indicate that it corresponds to the dual of X in the
original formula μX(x).x = 0 ∨X(x− 1).

2.2 Semantics

In this subsection, we define the formal semantics of formulas. Let Z be the set
of integers, and B = {�B,⊥B}, with ⊥B
B �B. Let Dk be the set Zk → B of
functions (where Zk denotes the set of tuples consisting of k integers). We define
the partial order
k on Dk by:

f
k g ⇔ ∀n1, . . . , nk ∈ Z.f(n1, . . . , nk)
B g(n1, . . . , nk).

Note that (Dk,
k) is a complete lattice, with λx1. · · ·λxk.⊥B and λx1. · · ·λxk.�B

as the least and greatest elements. We write ⊥k and �k for λx1. · · ·λxk.⊥B and
λx1. · · ·λxk.�B, respectively. We also write
(k) (resp., �(k)) for the greatest
lower (resp., least upper) bound with respect to
k. We often omit k and B and
just write �,⊥,
,
,�, etc.. We often identify B and D0 = Z0 → B. We write
Dk → D� for the set of monotonic functions from Dk to D�.

We write Env for the set of functions that map each integer variable to an
integer, and each k-ary predicate variable to an element of Dk. For a formula ϕ

(resp., a predicate P and an expression a) and an environment ρ ∈ Env such that
FV(ϕ) ⊆ dom(Env) (resp., FV(P) ⊆ dom(Env) and FV(a) ⊆ dom(Env)),
Fig. 1 defines the semantics �·�ρ of ϕ (resp., P and a), where for a mono-

tonic function F ∈ Dk → Dk, LFP
(k)(F) =

�(k)
{f ∈ Dk | f �k F (f)} and

GFP(k)(F) =
⊔(k){f ∈ Dk | f
k F (f)}. When ϕ and P are closed (i.e., do not

contain free variables), we just write �ϕ� and �P � for �ϕ�∅ and �P �∅ respectively.
By abuse of notation, we often write ϕ � ψ if �ϕ�ρ � �ψ�ρ for any (valid) environ-
ment ρ such that FV(ϕ)∪FV(ψ) ⊆ dom(ρ), and ϕ ≡ ψ if �ϕ�ρ = �ψ�ρ; similarly
for predicates. For example, ∃z.(x > z ∧ z > y) ≡ (x > y + 1) � (x > y + 2).

198 N. Kobayashi et al.

�a1 ≥ a2�ρ =

{

� if �a1�ρ ≥ �a2�ρ
⊥ if �a1�ρ < �a2�ρ

�P (a1, . . . , ak)�ρ = �P �ρ(�a1�ρ, . . . , �ak�ρ)
�X�ρ = ρ(X)

�ϕ1 ∨ ϕ2�ρ = �ϕ1�ρ � �ϕ2�ρ
�ϕ1 ∧ ϕ2�ρ = �ϕ1�ρ � �ϕ2�ρ

�∀x.ϕ�ρ =
�

n∈Z�ϕ�ρ{x
→ n}

�∃x.ϕ�ρ =
⊔

n∈Z�ϕ�ρ{x
→ n}

�λ(x1, . . . , xk).ϕ�ρ = λ(n1, . . . , nk) ∈ Zk.�ϕ�ρ{x1
→ n1, . . . , xk
→ nk}

�μX(k)(x1, . . . , xk).ϕ�ρ =

LFP(k)(λf ∈ Dk.λ(n1, . . . , nk).�ϕ�ρ{X
→ f, x1
→ n1, . . . , xk
→ nk})

�νX(k)(x1, . . . , xk).ϕ�ρ =

GFP(k)(λf ∈ Dk.λ(n1, . . . , nk).�ϕ�ρ{X
→ f, x1
→ n1, . . . , xk
→ nk})

�n�ρ = n

�x�ρ = ρ(x)

�a1 + a2�ρ = �a1�ρ+ �a2�ρ
�a1 − a2�ρ = �a1�ρ− �a2�ρ

Fig. 1. The semantics of formulas.

Example 2. Recall formula μX(x).x = 0 ∨ X(x − 1) from Example 1. We have

�μX(x).x = 0 ∨X(x− 1)�∅ = LFP(1)(F), with F = λf ∈ D1.λn ∈ Z.(n =
0)�f(n−1). Since for any m, Fm(λx ∈ Z.⊥) = λn ∈ Z.0 ≤ n ≤ m−1, we have

LFP(1)(F) = λn ∈ Z.0 ≤ n (here, ≤ denotes the semantic relation on integers).

In contrast, �νX(x).x = 0 ∨X(x− 1)�∅ = GFP(1)(F) = λn ∈ Z.�.
�

2.3 Program Verification as Validity Checking of MuArith Formulas

Various verification problems for first-order recursive programs can be reduced to
validity of MuArith formulas. We refer the reader to [22] for a general reduction
schema from temporal properties to MuArith formulas. However, as shown in
this subsection, some formulas require additional handling that motivates the
need for new transformations to be presented in Section 3.

Consider the following functional program (written in the syntax of OCaml)
that multiplies two numbers.

let rec mult(x, y) = if y=0 then 0 else x + mult(x,y-1)

Then, the ternary relation Mult(x, y, r) that expresses “mult(x, y) terminates
and returns r” is expressed as the following MuArith formula:

μMult(x, y, r).(y = 0 ∧ r = 0) ∨ ∃s.(y �= 0 ∧ r = x+ s ∧Mult(x, y − 1, s)).

Fold/Unfold Transformations for Fixpoint Logic 199

This lets us express a partial correctness property “if P (x, y) holds and mult(x, y)
terminates and returns r, then Q(x, y, r) holds” by: ∀x, y, r.P (x, y)∧Mult(x, y, r)
⇒ Q(x, y, r). It can further be rewritten to the following MuArith formula:

∀x, y, r.P (x, y) ∨Mult(x, y, r) ∨Q(x, y, r), (1)

where P and Mult are respectively De Morgan duals of P and Mult ; Mult can
be expressed by:

νMult(x, y, r).(y �= 0 ∨ r �= 0) ∧ ∀s.(y = 0 ∨ r �= x+ s ∨Mult(x, y − 1, s)).

The total correctness “if P (x, y), then mult(x, y) terminates and returns r,
such that Q(x, y, r)” can be expressed by: ∀x, y.P (x, y) ⇒ ∃r.Mult(x, y, r) ∧
Q(x, y, r), which is equivalent to the MuArith formula:

∀x, y.P (x, y) ∨ (∃r.Mult(x, y, r) ∧Q(x, y, r))

As a special case, the termination property “if y ≥ 0 then mult(x, y) terminates”
can be expressed by:

∀x, y.y < 0 ∨ ∃r.Mult(x, y, r). (2)

We can also express relational properties of programs such as the equivalence
of two programs. Let us consider another implementation of multiplication:

let mult2(x,y) =

let rec multacc(x,y,a) = if y=0 then a else multacc(x,y-1,x+a)

in multacc(x,y,0)

Then predicate Multacc(x, y, a, r) which represents “multacc(x, y, a) terminates
and returns r” can be expressed by:

μMultacc(x, y, a, r).(y = 0 ∧ r = a) ∨ (y �= 0 ∧Multacc(x, y − 1, x+ a, r)).

Thus, the equivalence of mult and mult2 can be expressed by: ∀x, y, r.Mult(x, y, r)
⇔ Multacc(x, y, 0, r), which can be expressed by the conjunction of the MuArith
formulas:

∀x, y, r.Mult(x, y, r) ∨Multacc(x, y, 0, r) (3)

∀x, y, r.Mult(x, y, r) ∨Multacc(x, y, 0, r) (4)

where Multacc is the De Morgan dual of Multacc, defined analogously to Mult .

Motivation. Kobayashi et al. [22] presented a method for proving the validity of
MuArith formulas. It can prove formula (1) valid: since there are neither μ nor ∃,
it is reducible to the problem of satisfiability of CHC [4]. However, the method
is not powerful enough on formulas (2) and (3) for termination and program
equivalence, respectively. It first tries to eliminate existential quantifiers and μ-
formulas, so that the resulting formula can be reduced to the satisfiability of

200 N. Kobayashi et al.

CHC. But it fails when the witness of an existential quantifier (i.e., r such that
∃r.ϕ) is not bounded by a linear expression, e.g., the witness for ∃r is a non-linear
expression x × y in the case of (2). This is unfortunate, as methods specialized
on proving program termination, e.g. [18], can easily prove the termination of
program mult. Thus, in order to exploit the advantage of the uniform approach
to program verification based on MuArith, we need to strengthen the method
for proving MuArith formulas.

2.4 Auxiliary Definitions

We introduce additional definitions on formulas, which will be used later in
our formalization of fold/unfold-like transformations. A (k,)-context (or, just a
context) is an expression obtained from an 	-ary predicate by replacing a k-ary
predicate variable with [] (in other words, a context is a predicate that may con-
tain [] as a special predicate variable). For a context C and a predicate P (that
does not contain free occurrences of variables bound in C), we write C[P] for the

predicate obtained by replacing [] with P . For example, C
�
= λ(x, y).∃z.[](x, z, y)

is a (3, 2)-context, and C[λ(x, y, z).(x > y ∧ y > z)] is λ(x, y).∃z.(λ(x, y, z).(x >

y ∧ y > z))(x, z, y), which is equivalent to λ(x, y).∃z.x > z ∧ z > y.

For a function F ∈ Dk → D�, we say that F is continuous if it pre-
serves the least upper bound, i.e., F (

⊔

f∈S f) =
⊔

f∈S F (f) for any (possi-
bly infinite) set S ⊆ Dk. Similarly, we say that F is co-continuous if it pre-
serves the greatest lower bound, i.e., F (

�
f∈S f) =

�
f∈S F (f). For example,

λf.f ∧ g ∈ D0 → D0 and λf.f ∧ g is both continuous and co-continuous for
any ϕ ∈ D0. In contrast, λf.∃x.f(x) ∈ D1 → D0 is continuous but not co-
continuous;4 λf.∀x.f(x) ∈ D1 → D0 is co-continuous but not continuous. We
say that a context C is continuous if its semantics, i.e., λf.�C[X]�{X �→ f} is;
analogously for co-continuity.

The following lemma (which follows immediately from the definition) pro-
vides a syntactic condition that is sufficient for the co-continuity of a context.

Lemma 1. Let C be a (k,)-context. If C can be generated by the following
syntax, then C is co-continuous.5

C ::= [] | λ(x1, . . . , xk).C | C(a1, . . . , ak) | C ∧ ϕ | ϕ ∧ C | C ∨ ϕ | ϕ ∨ C | ∀x.C

Remark 1. The syntax and semantics of MuArith was defined based on hierar-
chical fixpoint equations (HES) in [22]. The above semantics is equivalent to that
of [22], modulo the standard conversions between fixpoint formulas and HES.

4 In fact, let F = λf.∃x.f(x) ∈ D1 → D0 and S = {λx.x ≥ n | n ∈ Z}. Then
F (f) = � for any f ∈ S, but F (

�
f∈S

f) = F (λx.⊥) = ⊥.
5 Here, for the sake of simplicity, we mix the syntax of contexts that yield predicates
and propositions.

Fold/Unfold Transformations for Fixpoint Logic 201

3 Fold/Unfold-Like Transformations

In this section, we present new fold/unfold-like transformations for MuArith,
to enhance the power of MuArith validity checkers. We first informally review
fold/unfold transformations for logic programming and explain what kind of
transformation we wish to apply to MuArith formulas in Section 3.1. We then
prove theorems that justify such transformations in Sections 3.2 and 3.3.

3.1 Overview of Transformations for MuArith

Revisiting Fold/Unfold Transformations for Logic Programming The
original concept [32] is presented in the following example, where each recurrence
is represented by a CHC (i.e., an implication involving uninterpreted predicates
Even and Odd).

Even(x) ⇐ x = 0 Even(x) ⇐ x > 0,Even(x − 2)
Odd(x) ⇐ x = 1 Odd(x) ⇐ x > 0,Odd(x− 2)

We wish to prove that ⊥ ⇐ Even(x),Odd(x). Many of the existing CHC solvers,
such as HoICE [9] and Z3 [24], fail to prove it as they do not handle the divisibility
constraints well. After defining a new predicate EvenOdd as EvenOdd(x) ⇐
Even(x),Odd(x) and unfolding Even , we obtain the following new CHCs.

EvenOdd(x) ⇐ x = 0,Odd(x) EvenOdd(x) ⇐ x > 0,Even(x− 2),Odd(x)

By unfolding Odd(x) in the first CHC, its body becomes inconsistent. By un-
folding Odd(x) in the second CHC, we obtain the following new CHCs.

EvenOdd(x) ⇐ x > 0,Even(x− 2), x = 1
EvenOdd(x) ⇐ x > 0,Even(x− 2),Odd(x− 2)

By unfolding Even(x−2), the body of the first CHC becomes inconsistent. Now,
the part “Odd(x − 2),Even(x − 2)” in the second CHC matches the definition
of EvenOdd , so we can “fold” it and obtain the following new CHC.

EvenOdd(x) ⇐ x > 0,EvenOdd(x− 2)

The least solution for EvenOdd is λx.⊥, hence we have now obtained ⊥ ⇐
Even(x),Odd(x) without synthesizing interpretations of Even and Odd over the
divisibility constraints.

Transformations for MuArith. The above example can be reformulated in
MuArith. Predicates Even and Odd are expressed as follows.

μEven(x).x = 0 ∨ (x > 0 ∧ Even(x− 2)) (5)

μOdd(x).x = 1 ∨ (x > 0 ∧Odd(x− 2)) (6)

202 N. Kobayashi et al.

We wish to prove that Even(x)∧Odd(x) is inconsistent, i.e. ∀x.Even(x)∨Odd (x)
is valid where Even and Odd are:

νEven(x).x �= 0 ∧ (x ≤ 0 ∨ Even(x− 2)) (7)

νOdd(x).x �= 1 ∧ (x ≤ 0 ∨Odd(x− 2)) (8)

Now, let Y (x)
�
= Even(x) ∨Odd(x), which can be rewritten as follows.

Y (x) ≡ (x �= 0 ∧ (x ≤ 0 ∨ Even(x− 2))) ∨ (x �= 1 ∧ (x ≤ 0 ∨Odd(x− 2)))

≡ (x ≤ 0 ∨ x �= 1 ∨ Even(x− 2))) ∧ (x ≤ 0 ∨ Even(x − 2) ∨Odd(x− 2))

≡ x ≤ 0 ∨ Even(x − 2) ∨Odd(x− 2) ≡ x ≤ 0 ∨ Y (x− 2)

Based on this, we wish to replace Y with νY (x).x ≤ 0 ∨ Y (x − 2); then the
validity of ∀x.Y (x) would follow immediately. As we will see later in Section 3.3,
this transformation is indeed sound.

Intuitively, the above transformation works as follows. Given a formula C[X],
which contains a fixpoint formula X defined by the equation X = D[X], intro-
duce a new predicate Y , such that Y = C[X]. Then, unfold X to D[X] and
obtain Y = C[D[X]]. Then, rewrite C[D[X]] to a formula of the form E[C[X]].
By “folding” C[X], we obtain Y = E[Y], which serves as a new definition clause
for Y . We wish to apply this kind of transformation not only to ν-only formulas
like above, but also to formulas involving μ and quantifiers, as discussed below.

Recall formula (2) from Section 2.3. Let X(x, y)
�
= ∃r.Mult(x, y, r). Then,

X(x, y) ≡ ∃r.((y = 0 ∧ r = 0) ∨ ∃s.(y �= 0 ∧ r = x+ s ∧Mult(x, y − 1, s)))

≡ y = 0 ∨ (y �= 0 ∧ ∃s.Mult(x, y − 1, s))

≡ y = 0 ∨ (y �= 0 ∧X(x, y − 1)).

As justified later in Section 3.2, we can then replaceX with μX(x, y).y = 0∨(y �=
0∧X(x, y− 1)). We are then left with formula ∀x, y.y < 0∨X(x, y), which can
then be proved valid by Mu2CHC [22], the existing MuArith validity checker.

Let us also recall a generalized version of formula (3):

∀x, y, a, r.Mult(x, y, r) ∨Multacc(x, y, a, r + a),

which contains μ and ν. Let Y (x, y, a, r)
�
= Mult(x, y, r)∨Multacc(x, y, a, r+ a).

Then, we have:

Y (x, y, a, r) ≡ ((y �= 0 ∨ r �= 0) ∧ ∀s.(y = 0 ∨ r �= x+ s ∨Mult(x, y − 1, s)))
∨(y = 0 ∧ r + a = a) ∨ (y �= 0 ∧Multacc(x, y − 1, x+ a, r + a))

≡ (y = 0 ⇒ r �= 0 ∨ r + a = a)

∧(y �= 0 ⇒ (Mult(x, y − 1, r − x) ∨Multacc(x, y − 1, x+ a, r + a)))
≡ y �= 0 ⇒ Y (x, y − 1, x+ a, r − x)

As justified in Section 3.3, we can replace Y with νY (x, y, a, r).(y = 0∨Y (x, y−
1, x+ a, r − x)), giving us ∀x, y, a, r.Y (x, y, a, r) immediately.

Fold/Unfold Transformations for Fixpoint Logic 203

Although the above transformations are sound, the soundness of fold/unfold
transformations for MuArith is delicate in general. For example, consider formula
∃x.x ≥ y ∧X(x, y), where:

X
�
= νX(x, y).x ≥ y + 1 ∧X(x, y + 1).

It is obviously false since there exists no x that satisfies x ≥ y ∧ x ≥ y+1∧ x ≥

y + 2 ∧ · · · ≡ ∀n ≥ 0.x ≥ y + n. Let Y (y)
�
= ∃x.x ≥ y ∧X(x, y). Then,

Y (y) ≡ ∃x.(x ≥ y ∧ x ≥ y + 1 ∧X(x, y + 1))
≡ ∃x.(x ≥ y + 1 ∧X(x, y + 1)) ≡ Y (y + 1).

Based on this, one may be tempted to replace Y with νY (y).Y (y + 1) ≡ λy.�,
but that is obviously wrong.

In the next two subsections, we present theorems that justify all the trans-
formations above except the last (invalid) one.

3.2 Transformations for μ-Formulas

In this subsection, we prove a theorem that enables the replacement of a pred-
icate of the form C[μX.D[X]] with one of the form μY.E[Y] and applies it to
justify the transformation for ∃r.Mult(x, y, r) discussed in the previous subsec-
tion. The corresponding transformation for ν-formulas is discussed in the next
subsection. The theorem is stated as follows.

Theorem 1. Let C,D and E be (k,), (k, k), and (,)-contexts respectively. If
C[D[X]] �� E[C[X]] holds for any k-ary predicate X, then we have:

C[μX(x1, . . . , xk).D[X](x1, . . . , xk)] �� μY (y1, . . . , y�).E[Y](y1, . . . , y�).

The theorem follows easily from the definition of the semantics of the least
fixpoint operator.

Proof. Suppose C[D[X]] � E[C[X]]. Then, we have

C[μX(x̃).D[X](x̃)] ≡ C[D[μX(x̃).D[X](x̃)]] � E[C[μX(x̃).D[X](x̃)]].

Since μY (ỹ).E[Y](ỹ) is the least predicate Y such that Y � E[Y], we have
C[μX(x̃).D[X](x̃)] � μY (ỹ).E[Y](ỹ) as required.
�

To see how the theorem above enables fold/unfold-like transformations, sup-
pose that we wish to prove a formula of the form Y ≡ C[μX(x̃).D[X](x̃)]. It
suffices to prove C[D[μX(x̃).D[X](x̃)]], obtained by unfolding X . If the assump-
tion C[D[X]] � E[C[X]] holds, we can change the goal to E[C[μX(x̃).D[X](x̃)]].
Thus, by the theorem, it suffices to prove μY (ỹ).E[Y](ỹ), which is obtained by
“folding” C[μX.D[X](x̃)] to Y . Note that the theorem guarantees only that
the transformation provides an underapproximation of the original predicate. A
stronger condition is required for the equivalence; see Corollary 1 given later.
Note also that finding an appropriate context E may not be easy in general; we
discuss how to mechanically find E in Section 5.

204 N. Kobayashi et al.

Example 3. Recall again formula (2) from Section 2.3. Let us define C,D, and
E by:

C
�
= λ(x, y).∃r.[](x, y, r)

E
�
= λ(x, y).y = 0 ∨ (y �= 0 ∧ [](x, y − 1))

D
�
= λ(x, y, r).(y = 0 ∧ r = 0) ∨ ∃s.(y �= 0 ∧ r = x+ s ∧ [](x, y − 1, s)).

Then, for any ternary predicate X , we have:

C[D[X]] ≡ λ(x, y).∃r.(y = 0 ∧ r = 0) ∨ ∃s.(y �= 0 ∧ r = x+ s ∧X(x, y − 1, s))
≡ λ(x, y).y = 0 ∨ ∃r, s.(y �= 0 ∧ r = x+ s ∧X(x, y − 1, s))
≡ λ(x, y).y = 0 ∨ (y �= 0 ∧ ∃s.X(x, y − 1, s)) ≡ E[C[X]].

By Theorem 1, we have C[D[Mult]] � μY (x, y).y = 0 ∨ (y �= 0 ∧ Y (x, y)). Thus,
the goal ∀x, y.y < 0 ∨ ∃r.Mult(x, y, r) has been reduced to:

∀x, y.y < 0 ∨ (μY (x, y).y = 0 ∨ (y �= 0 ∧ Y (x, y)))(x, y),

which can be proved valid by Mu2CHC.
�

3.3 Fold/Unfold for ν-Formulas

We now prove a theorem that allows us to replace a predicate of the form
C[νX.D[X]] with one of the form νY.E[Y]. It is similar to Theorem 1, but
requires more conditions. Recall Lemma 1, which provides a sufficient syntactic
condition for the co-continuity.

Theorem 2. Let C,D and E be (k,), (k, k), and (,)-contexts respectively.
Suppose that the following conditions hold: (i) C[�(k)] �� �

(�), (ii) C[D[X]] ��

E[C[X]], and (iii) C is co-continuous. Then C[νX(x1, . . . , xk).D[X](x1, . . . , xk)]
� νY (y1, . . . , y�).E[Y](y1, . . . , y�).

Proof. For F ∈ Dk → Dk, f ∈ Dk and an ordinal γ, we define F γ(�(k)) in-
ductively by: F 0(�(k)) = �(k), F γ+1(�(k)) = F (F γ(�(k))), and F γ(�(k)) =

γ′<γF

γ′

(�(k)) if γ is a limit ordinal. By abuse of notation, we write Dγ [�(k)]
for �D�γ(�(k)) if D is a (k, k)-context. Since there exists an ordinal γ such
that νX.D[X] = Dγ [�(k)] and νY.E[Y] = Eγ [�(�)], it suffices to show that
C[Dγ [�(k)]] �� E

γ [�(�)] holds for any ordinal γ, by transfinite induction on γ.
The base case where γ = 0 follows immediately from the first condition. If γ is
a successor ordinal γ′ + 1, then

C[Dγ [�]] � E[C[Dγ′

[�]]] � E[Eγ′

[�]] ≡ Eγ [�].

Here, we have used the induction hypothesis in the second inequality. If γ is a
limit ordinal, then we have:

C[Dγ [�]] ≡ C[
γ′<γ(Dγ′

[�])] ≡
γ′<γC[Dγ′

[�]] �
γ′<γE
γ′

[�] ≡ Eγ [�].

Here we have used the co-continuity in the second inequality. We have thus
proved C[Dγ [�(k)]] �� Eγ [�(�)] holds for any ordinal γ. We, therefore, have
C[νX(x̃).D[X](x̃)] � νY (ỹ).E[Y](ỹ) as required.
�

Fold/Unfold Transformations for Fixpoint Logic 205

Example 4. Recall the formula ∀x, y, a, r.Mult(x, y, r) ∨ Multacc(x, y, a, r + a)
discussed in Section 3.1. Let us define C,D,E by:

C
�
= λ(x, y, a, r).[](x, y, r) ∨Multacc(x, y, a, r + a)

D
�
= λ(x, y, r).((y �= 0 ∨ r �= 0) ∧ ∀s.(y = 0 ∨ r �= x+ s ∨ [](x, y − 1, s)))

E
�
= λ(x, y, a, r).y = 0 ∨ [](x, y − 1, x+ a, r − x)

They satisfy all the three conditions of Theorem 2. In particular, for any ternary
predicate X , we have

C[D[X]] ≡ λ(x, y, a, r).((y �= 0 ∨ r �= 0)∧
∀s.(y = 0 ∨ r �= x+ s ∨X(x, y − 1, s))) ∨Multacc(x, y, a, r + a)

≡ λ(x, y, a, r).((y �= 0 ∨ r �= 0)∧
∀s.(y = 0 ∨ r �= x+ s ∨X(x, y − 1, s)))
∨(y = 0 ∧ r + a = a) ∨ (y �= 0 ∧Multacc(x, y − 1, x+ a, r + a))

≡ λ(x, y, a, r).y = 0 ∨X(x, y − 1, r − x)∨
Multacc(x, y − 1, x+ a, r + a))

≡ E[C[X]],

based on the corresponding transformations shown in Section 3.1. We have thus
∀x, y, a, r.Mult(x, y, r) ∨ Multacc(x, y, a, r + a) � ∀x, y, a, r.(νY (x, y, a, r).y =
0 ∨ Y (x, y − 1, x+ a, r − x))(x, y, a, r), and the righthand side can be proved to
be valid by Mu2CHC.
�

Note that Theorems 1 and 2 guarantee the soundness of the replacement
of C[αX(x1, . . . , xk).D[X](x1, . . . , xk)] with νY (y1, . . . , y�).E[X](y1, . . . , y�) (for
α ∈ {μ, ν}), but not completeness: the validity ofC[αX(x1, . . . , xk).D[X](x1, . . . ,

xk)] does not necessarily imply that of νY (y1, . . . , y�).E[X](y1, . . . , y�). Actually,
by combining Theorem 1 and the dual version of Theorem 2, we obtain the fol-
lowing corollary, which guarantees completeness under a stronger condition.

Corollary 1. Let C,D and E be (k,), (k, k), and (,)-contexts respectively.
Suppose that the following conditions hold: (i) C[⊥(k)]
� ⊥

(�), (ii) C[D[X]] ≡�

E[C[X]], and (iii) C is continuous. Then C[μX(x1, . . . , xk).D[X](x1, . . . , xk)] ≡�

μY (y1, . . . , y�).E[Y](y1, . . . , y�).

4 Further Examples

In this section, we give more examples to demonstrate the utility of our trans-
formations for relational/temporal property verification of recursive programs.

4.1 Relational Reasoning on Recursive Programs

Below we discuss an example which is beyond the reach for state-of-the-art CHC
solvers (see e.g., [33], the end of Section 5).

206 N. Kobayashi et al.

Example 5. Consider the goal ∀x, y, z, r.(Mult(x+ y, z, r) ⇒ ∃s, t.Mult(x, z, s)∧
Mult(y, z, t) ∧ r = s+ t), which is equivalent to:

∀x, y, z, r.(Mult(x+ y, z, r) ∨ ∃s, t.(Mult(x, z, s) ∧Mult(y, z, t) ∧ r = s+ t)),

where Mult and Mult are as given in Section 2.3. The following contexts C,D,
and E satisfy the following three conditions of Theorem 2.

C
�
= λ(x, y, z, r).[](x + y, z, r) ∨ ∃s, t.(Mult(x, z, s) ∧Mult(y, z, t) ∧ r = s+ t)

D
�
= λ(x, z, r).(z �= 0 ∨ r �= 0) ∧ (z = 0 ∨ [](x, z − 1, r − x))

E
�
= λ(x, y, z, r).(z = 0 ∨ (z �= 0 ∧ [](x, y, z − 1, r − x− y))).

By Theorem 2, we have C[Mult] � νY (x, y, z, r).E[Y](x, y, z, r) ≡ λ(x, y, z, r).�.
We have thus proved that ∀x, y, z, r.C[Mult](x, y, z, r) (i.e., ∀x, y, z, r.(Mult(x+
y, z, r) ⇒ ∃s, t.Mult(x, z, s) ∧Mult(y, z, t) ∧ r = s+ t)) is valid.
�

4.2 Proving Temporal Properties

Here we give an example of proving a liveness property of a recursive program by
using our transformation. The example is a variation of the example discussed
in [22], but it cannot be handled by their method for proving MuArith formulas.

Example 6. Consider the following OCaml program:

let rec sum n = if n=0 then 0 else n+sum(n-1)

let rec loop x = if x=0 then () else loop (x-1)

let rec repeat n = let x = sum n in loop x; repeat(n+1)

let main() = repeat 0

Suppose that we wish to prove that the function repeat is called infinitely often.
The reduction from linear-time temporal property verification to MuArith yields
the problem of determining the validity of Repeat(0), where:

Repeat
�
= νRepeat(n).(∃x.Sum(n, x)) ∧ (∀x.Sum(n, x)∨Loop(x))∧Repeat(n+1)

Sum
�
= μSum(n, x).(n = 0 ∧ x = 0) ∨ (n �= 0 ∧ ∃r.Sum(n− 1, r) ∧ x = n+ r)

Loop
�
= μLoop(x).x = 0 ∨ (x �= 0 ∧ Loop(x − 1)).

Here, Sum is the De Morgan dual of Sum. The validity of this formula cannot
be proved by Mu2CHC due to the existential quantifier. Note that Mu2CHC replaces
each existential quantifier ∃x.ϕ with a bounded quantifier ∃x ≤ a.ϕ, and a must
be a linear expression. In the example above, x is not linearly bounded by n. To
remove the existential quantifier, let

C
�
= λn.∃x.[](n, x)

E
�
= λn.n = 0 ∨ (n �= 0 ∧ [](n− 1))

D
�
= λ(n, x).(n = 0 ∧ x = 0) ∨ (x �= 0 ∧ ∃r.[](n− 1, r) ∧ x = n+ r).

Fold/Unfold Transformations for Fixpoint Logic 207

Algorithm 1: Fold/unfold for disjunction

Input: Formula Φ of the form X(f(x, y)) ∨ Y (g(x, y)), where X and Y are
predicates defined by αX , αY ∈ {μ, ν}.

Output: A formula Φ′ such that Φ � Φ′.
1 α ← if ν ∈ {αX , αY } then ν else μ;
2

∧

ψi ← cnf(unfold(Φ));
3 for each ψi do
4 if ψi has the form X(s1) ∨ Y (s2) ∨ ψ′

i, f(t1, t2) ≡ s1 and g(t1, t2) ≡ s2
then

5 ψi ← Z(t1, t2) ∨ ψ′

i;

6 return αZ(x, y).
∧

ψi;

Since C[D[X]] � E[C[X]] holds, we can apply Theorem 1 to underapproximate
∃x.Sum(n, x) by μX(n).n = 0∨ (n �= 0∧X(n−1)). Therefore, the goal has been
reduced to Repeat ′(0) where

Repeat ′
�
= νRepeat ′(n).X(n) ∧ (∀x.Sum(n, x) ∨ Loop(x)) ∧ Repeat ′(n+ 1)

X
�
= μX(n).n = 0 ∨ (n �= 0 ∧X(n− 1)),

which can be proved valid by Mu2CHC automatically.
�

5 Algorithm and Evaluation

In this section, we first present an algorithm for our transformation and then
outline its implementation and report on experimental results.

5.1 Algorithm

Theorems 1 and 2 given in Section 3 state sufficient conditions for our fold/unfold
transformation to be sound. In this subsection, we discuss how to systematically
apply the theorems and how to find a context E.

To make it easy to find E, we restrict input formulas of our transforma-
tions to those of the form X(f(x, y)) ∨ Y (g(x, y)), X(f(x, y)) ∧ Y (g(x, y)), and
∃y.X(f(x, y)), where X and Y are predicates defined by fixpoint operators, and
f(x, y) and g(x, y) denote (possibly sequences of) terms that may contain free
variables x and y. For the sake of simplicity, we assume here that the definitions
for X and Y are independent; X cannot be obtained by unfolding Y , and vice
versa. Transformations for more complex formulas like the one in Example 5 can
be achieved by repeatedly applying the transformations for smaller contexts.

The transformation algorithm for disjunctive formulas is shown in Algo-
rithm 1. It takes as input a formula Φ = X(f(x, y)) ∨ Y (g(x, y)) and out-
puts an underapproximation Φ′ of Φ. It can take [](f(x, y)) ∨ Y (g(x, y)) or
X(f(x, y)) ∨ [](g(x, y)) as the context C and apply Theorem 2 if X or Y is

208 N. Kobayashi et al.

Algorithm 2: Fold/unfold for ∃

Input: Formula Φ of the form ∃y.X(f(x, y)), where X is a predicate defined
by μ or ν.

Output: A formula Φ′ such that Φ � Φ′.
1

∨

ψi ← dnf(normalize∃(unfold(Φ)));
2 for each ψi do
3 if ψi has the form (∃z.X(s)) ∧ ψ′

i, and f(tx, y) ≡ [tz/z]s,
where FV(tx) ⊆ {x},FV(tz) ⊆ {x, y} then

4 ψi ← Z(tx) ∨ ψ′

i;

5 return μZ(x).
∨

ψi;

defined by ν, and Theorem 1 otherwise (line 1). On line 2, the algorithm un-
folds X and Y 6 and then normalizes the resulting formula to a conjunctive
normal form (CNF), where quantified formulas are treated as atomic. It then
applies the “fold” transformation to each conjunct ψi. To this end, for each
ψi that contains X(s1) ∨ Y (s2), the algorithm finds terms t1 and t2 such that
X(s1) ∨ Y (s2) ≡ X(f(t1, t2)) ∨ Y (g(t1, t2)); this is achieved by solving the uni-
fication constraints s1 ≡ f(x′, y′) and s2 ≡ g(x′, y′) modulo arithmetic theories,
where x′ and y′ are treated as variables but x and y are treated as constants.
Finally, the algorithm replaces X(s1) ∨ Y (s2) with Z(t1, t2), where Z(x, y) is a
new predicate that corresponds to X(f(x, y)) ∨ Y (g(x, y)).

We omit the transformation algorithm for conjunctive formulas since it is
similar to the case above, except that the new predicate Z is bound by μ (note
that condition (i) of Theorem 2 may not be satisfied), and that it converts the
unfolded formula to a disjunctive normal form (DNF), instead of CNF.

The algorithm for existential formulas is shown in Algorithm 2. It unfolds X ,
normalizes existential quantifiers, and obtains a DNF. In the normalization of
existential quantifiers, it moves existential quantifiers inwards (by using, e.g., the
law ∃x.(ψ1 ∨ ψ2) ≡ (∃x.ψ1) ∨ (∃x.ψ2)) and eliminates them as much as possible
(by using, e.g., the equality-based quantifier elimination). For each disjunct ψi

of the form (∃z.X(s))∧ψ′
i, it finds tx and tz , such that f(tx, y) ≡ [tz/z]s (again,

by performing unification modulo arithmetic theories), and replaces the disjunct
with Z(tx) ∧ ψ′

i. Here, Z(tx) corresponds to ∃y.X(f(tx, y)), and tz serves as a
witness for X(f(tx, y)) ⇒ ∃z.X(s).

5.2 Implementation and Experiments

We have implemented the transformation in a tool called MuFolder based on the
algorithms discussed above, on top of the AdtInd theorem prover [37], using its
routines for pattern-matching, normalization, and simplification. For the impli-
cation checks, MUnfold uses the Z3 SMT solver [27]. MuFolder can be tested at
https://www.kb.is.s.u-tokyo.ac.jp/∼koba/mu/.

6 If none of ψi’s are changed in the loop on lines 3-5, we may backtrack and unfold X
and Y more than once.

https://www.kb.is.s.u-tokyo.ac.jp/~koba/mu/

Fold/Unfold Transformations for Fixpoint Logic 209

Table 1. Experiments.

input formula Φ output formula Φ′

1 Even(x) ∨ Odd(x+ 1) νZ(x).x = 0 ∨ Z(x − 2)

2 Even(x) ∨ Odd(x) νZ(x).(x 	= 0 ∨ Even(x − 1)) ∧ Z(x − 1)

3 Even(x) ∨ Odd(x + 1) νZ(x).x = 0 ∨ Z(x − 2)

4 Mult(x + y, z, r) ∨ ∃s.Mult(x, z, s) νZ(x, y, z, r).z = 0 ∨ Z(x, y, z − 1, r − (x + y))

5 Mult(x + y, z, r)∨ ∃s1, s2. νZ(x, y, z, r).z = 0 ∨ Z(x, y, z − 1, r − (x + y))
Mult(x, z, s1) ∧Mult(y, z, s2) ∧ r = s1 + s2

6 Mult(2x + 3y, z, r) ∨ ∃s1, s2. νZ(x, y, z, r).z = 0∨
Mult(x, z, s1) ∧Mult(y, z, s2) ∧ r = 2s1 + 3s2 z 	= 0 ∧ Z(x, y, z − 1, r − (2x + 3y))

7 Mult(x, y, r) ∨ Mult(x, y, r) νZ(x, y, r).y = 0 ∨ y 	= 0 ∧ Z(x, y − 1, r − x)

8 Mult(x, y, r) ∨ MultAcc(x, y, a, r + a) νZ(x, y, a, r).y = 0∨
y 	= 0 ∧ Z(x, y − 1, x+ a, r − x)

9 ∃r.Mult(x, y, r) μZ(x, y).y = 0 ∨ y 	= 0 ∧ Z(x, y − 1)

10 Plus(x + y, z, r) ∨ ∃s.P lus(x, z, s) νZ(x, y, z, r).z = 0 ∨ Z(x, y, z − 1, r − 1)

11 Plus(4x − 3y, z, r) ∨ ∃s1, s2. νZ(x, y, z, r).z = 0 ∨ Z(x, y, z − 1, r − 1)
Plus(x, z, s1) ∧ Plus(y, z, s2) ∧ r = 4s1 − 3s2

12 ∃r.Sum(x, r) μZ(x).x = 0 ∨ x 	= 0 ∧ Z(x − 1)

We have evaluated MuFolder on several benchmarks outlined in Table 1.
These benchmarks include formulas obtained from the relational and temporal
verification properties; some of which have been taken from the benchmark set
for Unno et al.’s induction-based CHC solver [33] and modified to include both
μ and ν. We have confirmed that all the benchmark problems can be solved in
our approach within a few seconds. To our knowledge, except the formulas 7, 8
(for which the method of [33] can be used) and 10,11 (for which Mu2CHC works),
Mu2CHC (without our transformation) or the existing CHC solvers cannot directly
prove the validity of the formulas. Note that formula 12 comes from Example 6.
The combination of the transformation with Mu2CHC enables fully automated
verification of Example 6.

6 Related Work

As already mentioned, fold/unfold transformations have been originally proposed
for logic programming [32], and later extended for CHC (a.k.a. constraint logic
programs) [1,17]. Those transformations have originally been proposed to speed
up program execution, but recently, Mordvinov and Fedyukovich [26] and De
Angelis et al. [15] shown that related transformations are also useful in the con-
text of verification based on CHC solving. Those transformations correspond to
the transformation for the ν-only fragment of MuArith.7 Our transformation can
thus be considered an extension of fold/unfold-like transformations to MuArith,
which allows alternations of least/greatest fixpoints. Sato [31] studied an exten-
sion of fold/unfold transformations for a first-order logic, where negations and
quantifiers are allowed in clause bodies; thus, some mixtures of least/greatest fix-
points are allowed. The correctness of his transformation is, however, based on a
three-valued logic, hence different from MuArith. The correctness of most of the

7 This is because, although the semantics of each predicate is interpreted as the least
fixpoint, the predicates occur in negative positions in goal clauses.

210 N. Kobayashi et al.

transformations mentioned above is guaranteed by some syntactic conditions,
while our transformation is based on semantic conditions.

Unno et al. [33] proposed a method for automatically solving CHC prob-
lems by using induction. Their method is based on a tailor-made proof system;
hence it is difficult to integrate the method with other CHC or MuArith solvers
(in fact, that disadvantage motivated the above-mentioned work of De Ange-
lis et al. [15]). Their method slightly goes beyond the CHC satisfiability (or
the ν-only fragment of MuArith) but cannot deal with complex combinations
of least/greatest fixpoints and quantifiers (like ∀x, y, z, r.(Mult(x + y, z, r) ⇒
∃s, t.Mult(x, z, s) ∧Mult(y, z, t) ∧ r = s+ t), discussed in Section 4).

As mentioned in Section 1, fixpoint logic-based approaches to program veri-
fication (including CHC-based ones) have been drawing attention. Kobayashi et
al. [22, 23, 35] have shown that temporal property verification of (higher-order)
programs can be reduced to the validity checking of (higher-order) fixpoint logic
formulas. They proposed a concrete method for checking validity of first-order
fixpoint formulas and implemented a validity checking tool Mu2CHC. As discussed
already, our transformations can be used to improve the capability of Mu2CHC.
Another thread of work on a fixpoint logic-based approach to system verifica-
tion is that of Parameterized Boolean Equation Systems (PBES) [21]. Actually,
MuArith may be considered an instance of PBES, where data are restricted to
integers. Groote, Willemse, and others [10, 14, 21, 30, 36] studied applications of
PBES to verification of infinite state systems, and devised various techniques for
solving PBES. To our knowledge, however, they have not studied fold/unfold
transformations for PBES.

7 Conclusions

We have formalized fold/unfold-like transformations for a fixpoint logic, and
shown that they are useful for verification of relational/temporal properties of
recursive programs. We have implemented the transformations, and shown their
effectiveness through experiments.

Acknowledgments. We would like to thank anonymous referees for useful com-
ments, especially for bringing the work on PBES to our attention. This work was
supported in part by the University of Tokyo-Princeton Strategic Partnership
Grant, JSPS KAKENHI Grant Number JP15H05706, and NSF (USA) award
FMitF 1837030.

References

1. Bensaou, N., Guessarian, I.: Transforming constraint logic programs. In: STACS
94, 11th Annual Symposium on Theoretical Aspects of Computer Science, Caen,
France, February 24-26, 1994, Proceedings. LNCS, vol. 775, pp. 33–46. Springer
(1994). https://doi.org/10.1007/3-540-57785-8 129

https://doi.org/10.1007/3-540-57785-8_129

Fold/Unfold Transformations for Fixpoint Logic 211

2. Berdine, J., Cook, B., Ishtiaq, S.: Slayer: Memory safety for systems-level code. In:
Computer Aided Verification - 23rd International Conference, CAV 2011, Snow-
bird, UT, USA, July 14-20, 2011. Proceedings. LNCS, vol. 6806, pp. 178–183.
Springer (2011). https://doi.org/10.1007/978-3-642-22110-1 15

3. Beyene, T.A., Popeea, C., Rybalchenko, A.: Solving existentially quantified horn
clauses. In: Computer Aided Verification - 25th International Conference, CAV
2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings. LNCS, vol. 8044,
pp. 869–882. Springer (2013). https://doi.org/10.1007/978-3-642-39799-8 61

4. Bjørner, N., Gurfinkel, A., McMillan, K.L., Rybalchenko, A.: Horn clause solvers
for program verification. In: Fields of Logic and Computation II - Essays Dedicated
to Yuri Gurevich on the Occasion of His 75th Birthday. LNCS, vol. 9300, pp. 24–51.
Springer (2015). https://doi.org/10.1007/978-3-319-23534-9 2

5. Bjørner, N., McMillan, K.L., Rybalchenko, A.: Program verification as satisfia-
bility modulo theories. In: 10th International Workshop on Satisfiability Modulo
Theories, SMT 2012, Manchester, UK, June 30 - July 1, 2012. pp. 3–11. EasyChair
(2012)

6. Bjørner, N., McMillan, K.L., Rybalchenko, A.: Higher-order program verification
as satisfiability modulo theories with algebraic data-types. CoRR abs/1306.5264
(2013)

7. Bradfield, J.C.: Fixpoint alternation and the game quantifier. In: Computer Sci-
ence Logic, 13th International Workshop, CSL ’99, 8th Annual Conference of the
EACSL, Madrid, Spain, September 20-25, 1999, Proceedings. LNCS, vol. 1683, pp.
350–361. Springer (1999). https://doi.org/10.1007/3-540-48168-0 25

8. Burstall, R.M., Darlington, J.: A transformation system for developing recursive
programs. J. ACM 24(1), 44–67 (1977). https://doi.org/10.1145/321992.321996

9. Champion, A., Kobayashi, N., Sato, R.: Hoice: An ice-based non-linear horn clause
solver. In: Programming Languages and Systems - 16th Asian Symposium, APLAS
2018, Wellington, New Zealand, December 2-6, 2018, Proceedings. LNCS, vol.
11275, pp. 146–156. Springer (2018). https://doi.org/10.1007/978-3-030-02768-1 8

10. Chen, T., Ploeger, B., van de Pol, J., Willemse, T.A.C.: Equivalence checking
for infinite systems using parameterized boolean equation systems. In: CONCUR
2007 - Concurrency Theory, 18th International Conference, CONCUR 2007, Lis-
bon, Portugal, September 3-8, 2007, Proceedings. LNCS, vol. 4703, pp. 120–135.
Springer (2007). https://doi.org/10.1007/978-3-540-74407-8 9

11. Cook, B., Khlaaf, H., Piterman, N.: On automation of CTL* verifica-
tion for infinite-state systems. In: Computer Aided Verification - 27th In-
ternational Conference, CAV 2015, San Francisco, CA, USA, July 18-24,
2015, Proceedings, Part I. LNCS, vol. 9206, pp. 13–29. Springer (2015).
https://doi.org/10.1007/978-3-319-21690-4 2

12. Cook, B., Koskinen, E.: Making prophecies with decision predicates. In: Proceed-
ings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL 2011, Austin, TX, USA, January 26-28, 2011. pp. 399–410
(2011). https://doi.org/10.1145/1926385.1926431

13. Cook, B., Koskinen, E.: Reasoning about nondeterminism in programs. In: ACM
SIGPLAN Conference on Programming Language Design and Implementation,
PLDI ’13, Seattle, WA, USA, June 16-19, 2013. pp. 219–230. ACM (2013).
https://doi.org/10.1145/2491956.2491969

14. Cranen, S., Luttik, B., Willemse, T.A.C.: Proof graphs for parameterised
boolean equation systems. In: CONCUR 2013 - Concurrency Theory - 24th
International Conference, CONCUR 2013, Buenos Aires, Argentina, August

https://doi.org/10.1007/978-3-642-22110-1_15
https://doi.org/10.1007/978-3-642-39799-8_61
https://doi.org/10.1007/978-3-319-23534-9_2
https://doi.org/10.1007/3-540-48168-0_25
https://doi.org/10.1145/321992.321996
https://doi.org/10.1007/978-3-030-02768-1_8
https://doi.org/10.1007/978-3-540-74407-8_9
https://doi.org/10.1007/978-3-319-21690-4_2
https://doi.org/10.1145/1926385.1926431
https://doi.org/10.1145/2491956.2491969

212 N. Kobayashi et al.

27-30, 2013. Proceedings. LNCS, vol. 8052, pp. 470–484. Springer (2013).
https://doi.org/10.1007/978-3-642-40184-8 33

15. De Angelis, E., Fioravanti, F., Pettorossi, A., Proietti, M.: Solving horn clauses
on inductive data types without induction. TPLP 18(3-4), 452–469 (2018).
https://doi.org/10.1017/S1471068418000157

16. Dietsch, D., Heizmann, M., Langenfeld, V., Podelski, A.: Fairness mod-
ulo theory: A new approach to LTL software model checking. In: Pro-
ceedings of CAV 2015. LNCS, vol. 9206, pp. 49–66. Springer (2015).
https://doi.org/10.1007/978-3-319-21690-4 4

17. Etalle, S., Gabbrielli, M.: Transformations of CLP modules. Theor. Comput. Sci.
166(1&2), 101–146 (1996). https://doi.org/10.1016/0304-3975(95)00148-4

18. Fedyukovich, G., Zhang, Y., Gupta, A.: Syntax-guided termination analysis. In:
Computer Aided Verification - 30th International Conference, CAV 2018, Held
as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-
17, 2018, Proceedings, Part I. LNCS, vol. 10981, pp. 124–143. Springer (2018).
https://doi.org/10.1007/978-3-319-96145-3 7

19. Gardner, P., Shepherdson, J.C.: Unfold/fold transformations of logic programs. In:
Computational Logic - Essays in Honor of Alan Robinson. pp. 565–583. The MIT
Press (1991)

20. Grebenshchikov, S., Lopes, N.P., Popeea, C., Rybalchenko, A.: Synthesizing soft-
ware verifiers from proof rules. In: ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’12, Beijing, China - June 11 - 16,
2012. pp. 405–416. ACM (2012). https://doi.org/10.1145/2254064.2254112

21. Groote, J.F., Willemse, T.A.C.: Parameterised boolean equation systems. Theor.
Comput. Sci. 343(3), 332–369 (2005). https://doi.org/10.1016/j.tcs.2005.06.016,
https://doi.org/10.1016/j.tcs.2005.06.016

22. Kobayashi, N., Nishikawa, T., Igarashi, A., Unno, H.: Temporal verifi-
cation of programs via first-order fixpoint logic. In: Static Analysis -
26th International Symposium, SAS 2019, Porto, Portugal, October 8-
11, 2019, Proceedings. LNCS, vol. 11822, pp. 413–436. Springer (2019).
https://doi.org/10.1007/978-3-030-32304-2 20

23. Kobayashi, N., Tsukada, T., Watanabe, K.: Higher-order program verification via
HFL model checking. In: Programming Languages and Systems - 27th European
Symposium on Programming, ESOP 2018, Held as Part of the European Joint Con-
ferences on Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece,
April 14-20, 2018, Proceedings. LNCS, vol. 10801, pp. 711–738. Springer (2018).
https://doi.org/10.1007/978-3-319-89884-1 25

24. Komuravelli, A., Gurfinkel, A., Chaki, S.: Smt-based model checking for recur-
sive programs. In: Computer Aided Verification - 26th International Conference,
CAV 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Aus-
tria, July 18-22, 2014. Proceedings. LNCS, vol. 8559, pp. 17–34. Springer (2014).
https://doi.org/10.1007/978-3-319-08867-9 2

25. Lubarsky, R.S.: μ-definable sets of integers. Journal of Symbolic Logic 58(1), 291–
313 (1993). https://doi.org/10.2307/2275338

26. Mordvinov, D., Fedyukovich, G.: Synchronizing constrained horn clauses. In: Eiter,
T., Sands, D. (eds.) LPAR-21, 21st International Conference on Logic for Program-
ming, Artificial Intelligence and Reasoning, Maun, Botswana, May 7-12, 2017.
EPiC Series in Computing, vol. 46, pp. 338–355. EasyChair (2017)

27. de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: Tools and Algo-
rithms for the Construction and Analysis of Systems, 14th International Con-

https://doi.org/10.1007/978-3-642-40184-8_33
https://doi.org/10.1017/S1471068418000157
https://doi.org/10.1007/978-3-319-21690-4_4
https://doi.org/10.1016/0304-3975(95)00148-4
https://doi.org/10.1007/978-3-319-96145-3_7
https://doi.org/10.1145/2254064.2254112
https://doi.org/10.1016/j.tcs.2005.06.016
https://doi.org/10.1016/j.tcs.2005.06.016
https://doi.org/10.1007/978-3-030-32304-2_20
https://doi.org/10.1007/978-3-319-89884-1_25
https://doi.org/10.1007/978-3-319-08867-9_2
https://doi.org/10.2307/2275338

Fold/Unfold Transformations for Fixpoint Logic 213

ference, TACAS 2008, Held as Part of the Joint European Conferences on The-
ory and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-
April 6, 2008. Proceedings. LNCS, vol. 4963, pp. 337–340. Springer (2008).
https://doi.org/10.1007/978-3-540-78800-3 24

28. Murase, A., Terauchi, T., Kobayashi, N., Sato, R., Unno, H.: Temporal verification
of higher-order functional programs. In: Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2016, St. Petersburg, FL, USA, January 20 - 22, 2016. pp. 57–68. ACM (2016).
https://doi.org/10.1145/2837614.2837667

29. Nanjo, Y., Unno, H., Koskinen, E., Terauchi, T.: A fixpoint logic and
dependent effects for temporal property verification. In: Proceedings of
the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2018, Oxford, UK, July 09-12, 2018. pp. 759–768. ACM (2018).
https://doi.org/10.1145/3209108.3209204

30. Orzan, S., Willemse, T.A.C.: Invariants for parameterised boolean
equation systems. Theor. Comput. Sci. 411(11-13), 1338–1371 (2010).
https://doi.org/10.1016/j.tcs.2009.11.001

31. Sato, T.: Equivalence-preserving first-order unfold/fold transfor-
mation systems. Theor. Comput. Sci. 105(1), 57–84 (1992).
https://doi.org/10.1016/0304-3975(92)90287-P

32. Tamaki, H., Sato, T.: Unfold/fold transformation of logic programs. In: Tärnlund,
S. (ed.) Proceedings of the Second International Logic Programming Conference,
Uppsala University, Uppsala, Sweden, July 2-6, 1984. pp. 127–138. Uppsala Uni-
versity (1984)

33. Unno, H., Torii, S., Sakamoto, H.: Automating induction for solving horn clauses.
In: Computer Aided Verification - 29th International Conference, CAV 2017, Hei-
delberg, Germany, July 24-28, 2017, Proceedings, Part II. LNCS, vol. 10427, pp.
571–591. Springer (2017). https://doi.org/10.1007/978-3-319-63390-9 30

34. Urban, C., Ueltschi, S., Müller, P.: Abstract interpretation of CTL prop-
erties. In: SAS ’18. LNCS, vol. 11002, pp. 402–422. Springer (2018).
https://doi.org/10.1007/978-3-319-99725-4 24

35. Watanabe, K., Tsukada, T., Oshikawa, H., Kobayashi, N.: Reduction from
branching-time property verification of higher-order programs to HFL validity
checking. In: Proceedings of the 2019 ACM SIGPLAN Workshop on Partial Evalu-
ation and Program Manipulation, PEPM@POPL 2019, Cascais, Portugal, January
14-15, 2019. pp. 22–34. ACM (2019). https://doi.org/10.1145/3294032.3294077

36. Wesselink, W., Willemse, T.A.C.: Evidence extraction from parameterised boolean
equation systems. In: Proceedings of the 3rd International Workshop on Automated
Reasoning in Quantified Non-Classical Logics (ARQNL 2018) affiliated with the
International Joint Conference on Automated Reasoning (IJCAR 2018), Oxford,
UK, July 18, 2018. pp. 86–100 (2018), http://ceur-ws.org/Vol-2095/paper6.pdf

37. Yang, W., Fedyukovich, G., Gupta, A.: Lemma Synthesis for Automating Induction
over Algebraic Data Types. In: CP 2019. LNCS, vol. 11802, pp. 600–617. Springer
(2019). https://doi.org/10.1007/978-3-030-30048-7 35

https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/2837614.2837667
https://doi.org/10.1145/3209108.3209204
https://doi.org/10.1016/j.tcs.2009.11.001
https://doi.org/10.1016/0304-3975(92)90287-P
https://doi.org/10.1007/978-3-319-63390-9_30
https://doi.org/10.1007/978-3-319-99725-4_24
https://doi.org/10.1145/3294032.3294077
http://ceur-ws.org/Vol-2095/paper6.pdf
https://doi.org/10.1007/978-3-030-30048-7_35

214 N. Kobayashi et al.

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Tools and Case Studies

1 3 1

1 2 2

1

2

3

TACAS
Evaluation
Artifact

2020
Accepted

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45237-7_13&domain=pdf
https://orcid.org/0000-0001-9677-6644
https://doi.org/10.1007/978-3-030-45237-7_13

 Formal
Specification

Verification

 Test-case
Generation

 Code
Revision

≥ 231

−1

σ[i] i
σ σ n > 0

σ[0]
σ[n− 1] σ[i] σ[i− 1]
0 < i < n σ[i] σ[i + 1]
0 ≤ i < n−1

σ
σ[0] = first σ[n− 1] = last

LinkedList LinkedList

null null

Node

LinkedList

null

Node

null

Node

first last

prev item next prev item next prev item next

null null

size

0

first lastsize

1

first lastsize

2

0 ≤ i < j < n
σ[i] σ[j]

i σ[i] σ[i] i = n − 1
σ[i] i = 0

−231

231− 1
231 − 1 −231

231

231

232/5

231

232

232

0

= 231 − 1

231 − 1

−1

−1

−1

231

232 − 1
−1

0

−1
−1

231 − 5

231−1

0 < i < size

−1

index − 1 = 0 ↔ x.prev = null

index − 1 = 0 x = self .nodeList[0] = self .first
self .first.prev = null

x.prev = null

index = 1 index > 1 index ≥ 1

x.prev = null x = self .nodeList[index − 1]
self .nodeList[index − 1].prev = self .nodeList[index − 2]
self .nodeList[index − 2] �= null

n > 1
0 ≤ i < j < n i j

j ≤ k < n k
k− (j− i) k = j j
j − (j − i) = i

k k − (j − i) k + 1 < n
k+ 1 k+ 1− (j − i) k+ 1
k + 1− (j − i) k < n− 1 k − (j − i)

j ≤ k < n
k k − (j − i) k = n − 1

k
k − (j − i)
k k − (j − i)

i

≈

231

232

https://doi.org/10.6084/m9.figshare.10033094.v2
https://doi.org/10.5281/zenodo.3517081
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.4204/EPTCS.102.4
https://doi.org/10.1007/978-3-319-66845-1_7
https://doi.org/10.1007/978-3-319-66845-1_7
https://doi.org/10.4204/EPTCS.149.8
https://doi.org/10.1007/s10817-017-9426-4
https://doi.org/10.1007/s10817-013-9300-y
https://doi.org/10.1007/s10817-013-9300-y
https://doi.org/10.1007/978-3-319-21690-4_16
https://doi.org/10.5445/IR/1000041881
http://www.phrack.org/papers/escaping_the_java_sandbox.html
http://www.phrack.org/papers/escaping_the_java_sandbox.html
https://doi.org/10.1007/978-3-642-21437-0_14
https://doi.org/10.1145/1146809.1146811

https://doi.org/10.4204/EPTCS.284.5
https://doi.org/10.1007/978-1-4615-5229-1_12
https://doi.org/10.1145/268946.268960
https://doi.org/10.1007/978-3-319-19249-9_26
http://creativecommons.org/licenses/by/4.0/

Analysing installation scenarios
of Debian packages �

Benedikt Becker1 , Nicolas Jeannerod2 ,
Claude Marché1 , Yann Régis-Gianas2,3 ,
Mihaela Sighireanu2 , and Ralf Treinen2

1 Université Paris-Saclay, Univ. Paris-Sud, CNRS, Inria, LRI, 91405, Orsay, France
2 Université de Paris, IRIF, CNRS, F-75013 Paris, France

3 Inria, F-75013 Paris, France

Abstract. The Debian distribution includes more than 28 thousand
maintainer scripts, almost all of them are written in Posix shell. These
scripts are executed with root privileges at installation, update, and re-
moval of a package, which make them critical for system maintenance.
While Debian policy provides guidance for package maintainers produc-
ing the scripts, few tools exist to check the compliance of a script to it. We
report on the application of a formal verification approach based on sym-
bolic execution to find violations of some non-trivial properties required
by Debian policy in maintainer scripts. We present our methodology
and give an overview of our toolchain. We obtained promising results:
our toolchain is effective in analysing a large set of Debian maintainer
scripts and it pointed out over 150 policy violations that lead to reports
(more than half already fixed) on the Debian Bug Tracking system.

Keywords: Quality Assurance · Safety Properties · Debian · Software
Package Installation · Shell Scripts · High-Level View of File Hierarchies
· Symbolic Execution · Feature Tree Constraints

1 Introduction

The Debian distribution is one of the oldest free software distributions, pro-
viding today 60 000 binary packages built from more than 31 000 software source
packages with an official support for nine different CPU architectures. It is one
of the most used GNU/Linux distributions, and serves as the basis for some
derived distributions like Ubuntu.

A software package of Debian contains an archive of files to be placed on
the target machine when installing the package. The package may come with a
number of so-called maintainer scripts which are executed when installing, up-
grading, or removing the package. A current version4 of the Debian distribution
contains 28 814 maintainer scripts in 12 592 different packages, 9 771 of which
� This work has been partially supported by the ANR project CoLiS, contract number

ANR-15-CE25-0001.
4 sid for amd64, including contrib and non-free, as of October 6, 2019
c© The Author(s) 2020
A. Biere and D. Parker (Eds.): TACAS 2020, LNCS 12079, pp. 235–253, 2020.
https://doi.org/10.1007/978-3-030-45237-7_14

TACAS
Evaluation
Artifact

2020
Accepted

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45237-7_14&domain=pdf
http://orcid.org/0000-0002-0819-8344
http://orcid.org/0000-0003-1969-1246
http://orcid.org/0000-0003-3035-1269
http://orcid.org/0000-0002-0745-8730
http://orcid.org/0000-0002-1925-089X
https://doi.org/10.1007/978-3-030-45237-7_14

236 B. Becker et al.

are completely or partially written by hand. These scripts are used for tasks
like cleaning up, configuration, and repairing mistakes introduced in older ver-
sions of the distribution. Since they may have to perform any action on the tar-
get machine, the scripts are almost exclusively written in some general-purpose
scripting language that allows for invoking any Unix command.

The whole installation process is orchestrated by dpkg, a Debian-specific tool,
which executes the maintainer scripts of each package according to scenarios.
The dpkg tool and the scripts require root privileges. For this reason, the failure
of one of these scripts may lead to effects ranging from mildly annoying (like
spurious warnings) to catastrophic (removal of files belonging to unrelated pack-
ages, as already reported [39]). When an execution error of a maintainer script is
detected, the dpkg tool attempts an error unwind, but the success of this oper-
ation depends again on the correct behaviour of maintainer scripts. There is no
general mechanism to simply undo the unwanted effects of a failed installation
attempt, short of using a file system implementation providing for snapshots.

The Debian policy [4] aims to normalise, in natural language, important tech-
nical aspects of packages. Concerning the maintainer scripts we are interested in,
it states that the standard shell interpreter is Posix shell, with the consequence
that 99% of all maintainer scripts are written in this language. The policy also
sets down the control flow of the different stages of the package installation pro-
cess, including attempts of error recovery, defines how dpkg invokes maintainer
scripts, and states some requirements on the execution behaviour of scripts. One
of these requirements is the idempotency of scripts. Most of these properties are
until today checked on a very basic syntactic level (using tools like lintian [1]),
by automated testing (like the piuparts suite [2]), or simply left until someone
stumbles upon a bug and reports it to Debian.

The goal of our study is to improve the quality of the installation of
software packages in the Debian distribution using a formal and automated ap-
proach. We focus on bug finding for three reasons. Firstly, a real Unix-like oper-
ating system is obviously too complex to be described completely and accurately
by some formal model. Besides, the formal correctness properties may be difficult
to apprehend by Debian maintainers especially when they are expressed on an
abstract model. Finally, when a bug is detected, even on a system abstraction,
one can try to reproduce it on a real system and, if confirmed, report it to the
authors. This has a real and immediate impact on the quality of the software
and helps to promote the usage of formal methods to a community that often is
rather sceptical towards methods and tools coming from academic research.

The bugs in Debian maintainer scripts that we attempt to find may come at
different levels: simple syntax errors (which may go unnoticed due to the unsafe
design of the Posix shell language), non-compliance with the requirements of
the Debian policy, usage of unofficial or undocumented features, or failure of a
script in a situation where it is supposed to succeed.

The challenges are multiple: The Posix shell language is highly dynamic
and recalcitrant to static analysis, both on a syntactic and semantic level. A
Unix file system implementation contains many features that are difficult to

Analysing installation scenarios of Debian packages 237

model, e.g., ownership, permissions, timestamps, symbolic links, and multiple
hard links to regular files. There is an immense variety of Unix commands that
may be invoked from scripts, all of which have to be modelled in order to be
treated by our tools. To address properties of scripts required by the Debian
policy, we need to capture the transformation done by the script on a file system
hierarchy. For this, we need some kind of logic that is expressive enough, and
still allows for automated reasoning methods. A particular challenge is checking
the idempotency property for script execution because it requires relational rea-
soning. For this, we encode the semantics of a script as a logic formula specifying
the relation between the input and the output of the script, and we check that
it is equivalent to its composition with itself. Finally, all these challenges have
to be met at the scale of tens of thousands of scripts.

The contributions of this work for this case study are:

1. A translation of Debian maintainer scripts into a language with formal se-
mantics, and a formalisation of properties required for the execution of these
scripts by the Debian policy.

2. A verification toolchain for maintainer scripts based on an existing symbolic
execution engine [5,6] and a symbolic representation [26]. Some components
of this toolchain have been published independently; we improve them to
cope with this case study. The toolchain is free software available online [35].

3. A formal specification of the transformations done by an important set of
Posix commands [24] in feature tree constraints [26].

4. A number of bugs found by our method in recent versions of Debian packages.

We start in the next section with an overview of our method illustrated on
a concrete example. Section 3 explains in greater detail the elements of our
toolchain, the particular challenges, the hypotheses that we could make for the
specific Debian use case at hand, and the solution that we have found. Section 4
presents the results we have found so far on the Debian packages, and the lessons
learnt. We conclude in Section 5 by discussing additional outcomes of this study,
the related and future work.

2 Overview of the case study and analysis methodology

2.1 Debian packages

Three components of a Debian binary package play an important role in the
installation process: the static content, i.e., the archive of files to be placed on
the target machine when installing the package; the lists of dependencies and pre-
dependencies, which tell us which packages can be assumed present at different
moments; and the maintainer scripts, i.e., a possibly empty subset of four scripts
called preinst, postinst, prerm, and postrm. We found (Section 4.2) that 99%
of the maintainer scripts in Debian are written in Posix shell [22].

Our running example is the binary package rancid-cgi [31]. It comes with
only two maintainer scripts: preinst and postinst. The preinst script is in-
cluded in Fig. 1. If the symbolic link /etc/rancid/lg.conf exists then it is

238 B. Becker et al.

1 if [-h /etc/rancid/lg.conf]; then
2 rm /etc/rancid/lg.conf
3 fi
4 if [-e /etc/rancid/apache.conf]; then
5 rm /etc/rancid/apache.conf
6 fi

Fig. 1. preinst script of the rancid-cgi package

removed; if the file /etc/rancid/apache.conf exists, no matter its type, it is
also removed. Both removal operations use the Posix command rm which, with-
out options, cannot remove directories. Hence, if /etc/rancid/apache.conf is
a directory, this script fails while trying to remove it.

We did a statistical analysis of maintainer scripts in Debian to help us de-
sign our intermediate language, see Section 4.2 for details. We found that, for
instance, most variables in these scripts can be expanded statically and hence are
used like constants; most while loops can be translated into for loops; recursive
functions are not used at all; redirections are almost always used to discard the
standard output of commands.

2.2 Managing package installation

The maintainer scripts are invoked by the dpkg utility when installing, removing
or upgrading packages. Roughly speaking, for installation dpkg calls the preinst
before the package static content is unpacked, and calls the postinst afterwards.
For deinstallation, it calls the prerm before the static content is removed and calls
the postrm afterwards. The precise sequence of script invocations and the actual
script parameters are defined by informal flowcharts in the Debian policy [4,
Appendix 9]. Fig. 2 shows the flowchart for the package installation. dpkg may
be asked to: install a package that was not previously installed (Fig. 2), install a
package that was previously removed but not purged, upgrade a package, remove
a package, purge a package previously removed, remove and purge a package.
These tasks include 39 possible execution paths, 4 of them presented in Fig. 2.

The Debian policy contains [4, Chapters 6 and 10] several requirements on
maintainer scripts. This case study targets checking the requirements regarding
the execution of scripts, and considers out of scope some other kinds of re-
quirements, e.g., the permissions of script files. The requirements of interest are
checked by different tools of our toolchain presented in Section 3. For example,
the different ways to invoke a maintainer script are handled by the analysis of
scenarios (Section 3.5) calling the scripts. Different requirements on the usage
of the shell language are checked by the syntactic analysis (Section 3.1), like
the usage of -e mode or of authorised shell features that are optional in the
Posix standard. Some of the usage requirements can be detected by a semantic
analysis; this is done in our toolchain by a translation into a formally defined
language, called CoLiS (Section 3.1). Finally, requirements concerning the be-

Analysing installation scenarios of Debian packages 239

preinst install

OK

postinst configure

OK

FAILED

Successful exit

postrm abort-install

OK

FAILED

Exit with error mesage

Files are unpacked

FAILED

“Installed” “Failed-Config” “Not Installed” “Half Installed”

Fig. 2. Debian flowchart for installing a package [4, Appendix 9] (The states represent
calls to maintainer scripts with their arguments and the status returned by dpkg at
the end of the process is in bold.)

haviour of scripts include the usage of exit codes and the idempotency of scripts.
The last property is difficult to formalise since it refers to possible unforeseen
failures (see discussion in Section 4.4). Checking behavioural properties requires
to reason about their semantics, which is done by a symbolic execution in our
toolchain (Section 3.4). We also check some requirements that are simply com-
mon sense and that are not stated in the policy, e.g., invoking Unix commands
with correct options. This is done by the semantic analysis (Section 3.1).

2.3 Principles and workflow of the analysis method

Our goal is to check the above properties of maintainer scripts in a formal way,
by analysing each script and the composition of scripts in the execution paths
exhibited by the flowcharts of dpkg. We call scenario either an execution path
of dpkg, a single execution of a script, or a double execution of a script with the
same parameters (to check idempotency); refer to Section 3.5 for more details.

The analysis should consider a variety of states for the system on which the
execution takes place. Yet we assume the following hypotheses: the scripts are
executed in a root process without concurrency with other user or root processes,
the static content of the package is successfully unpacked, the dependencies de-
fined by the package are present (fact checked by dpkg), and the /bin/sh com-
mand implements the standard Posix.1-2017 Shell Command Language with
the additional features described in the Debian policy [4, Chapter 10].

The components of our toolchain for the analysis of a scenario are summarised
on Fig. 3 and detailed in Section 3. Given a package and one scenario, the scenario
player extracts the static content and the maintainer scripts, prepares the initial
symbolic state of the scenario, symbolically executes the steps of the scenario to

240 B. Becker et al.

Scenario Player

Package

Scenario

Static
Contents

Shell
Scripts

Symbolic
Relations

Symbolic
Engine

Diagnosis

Fig. 3. Toolchain for analysis of a scenario on a given package (see Section 2.3)

compute a symbolic relation between the input and the output states of the file
system for each outcome of the scenario, and produces a diagnosis.

2.4 Presentation of results

(symlink)

etc

rancid

lg.conf apache.conf

⊥

etc

rancid

lg.conf

(dir)

∼{etc}

∼{rancid}

∼{lg.conf}

Fig. 4. Example of diagnosis: error case for
preinst call in the package rancid-cgi

The results computed by the sce-
nario player are presented in a set
of web pages, one per scenario,
and a summary page for the pack-
age [34]. Each scenario may have
several computed exit codes; for an
error code, the associated symbolic
relation is translated automatically
into a diagnosis message.

For example, consider the sim-
ple scenario of a call to the script
preinst given in Fig. 1. The result
web page includes the diagram in
Fig. 4, which is obtained by the interpretation of the symbolic relation com-
puted by the scenario player for the error exit code. The diagram represents an
abstraction of the initial file system on the left, an abstraction of the file system
at the end of the script’s execution on the right, and the relation between these
abstractions (dotted lines). In this diagram, a plain edge represents the parent
relation in the file hierarchy. A dotted edge describes a similarity relation, e.g.,
the trees rooted at /etc coincide except on the child named rancid. ⊥ denotes
the absence of a node. Finally, a leaf can be annotated by a property, e.g., the an-
notation dir rooted at /etc/rancid/apache.conf. The diagram shows that the
preinst script leads to an error state when the file /etc/rancid/apache.conf
is a directory since the rm command cannot remove directories.

Analysing installation scenarios of Debian packages 241

Finally, another set of generated web pages provides statistics on the coverage
and the errors found for the full set of scenarios of the Debian distribution.

3 Design and implementation of the tool chain

The toolchain, as described in Fig. 3, hinges on a symbolic execution engine
which computes the overall effect of a script on the file system as a symbolic
relation between the input and the output file system. This section details this
execution engine, which is composed of (i) a front-end that parses the script
and translates it into a script in a formally defined intermediate language called
CoLiS, and (ii) a back-end that symbolically executes the CoLiS scripts to get, for
each outcome of the script, the relation between input and output file systems
encoded by a tree constraint.

3.1 Front-end

Shell parser. The syntax of the Posix shell language is unconventional in many
aspects. For this reason, the implementation of a parser for Posix shell cannot
simply reuse the standard techniques solely based on code generators. Most of
the shell implementations falls back to manually written character-level parsers,
which are difficult to maintain and to trust. morbig [30] is a parser that tries to
use code generators as much as possible to keep the parser implementation at a
high level of abstraction, simplifying maintenance and improving our ability to
check if it complies with the Posix standard.

The CoLiS language. It was first presented in 2017 [23]. Its design aims to avoid
some pitfalls of the shell, and to make explicit the dangerous constructions we
cannot eliminate. It has a clear syntax and a formally defined semantics. We
provide an automated and direct translation from Posix shell. The correctness
of the translation from shell to CoLiS cannot be proven formally but must be
trusted based on manual review of translations and tests.

For this case study, we improved the language proposed formerly [23] to
increase the number of analysed Debian maintainer scripts. First, we added a
number of constructs to the language. Second, we provide a formal semantics for
the new constructs and we align the previous semantics [23] to the one of the
Posix shell for a few other constructs. These changes and a complete description
of the current CoLiS language are described in a technical report [6]. Fig. 5
shows the CoLiS version of the preinst script of the rancid-cgi package, shown
previously in Fig. 1. Notice the syntax for string arguments and for lists of
arguments that requires mandatory usage of delimiters. Generally speaking, the
syntax of CoLiS is designed so as to remove potential ambiguities [6].

The toolchain for analysing CoLiS scripts is designed with formal verification
in mind: the syntax, semantics, and interpreters of CoLiS are implemented using
the Why3 environment [7] for formal verification. More precisely, the syntax
of CoLiS is defined abstractly (as abstract syntax trees, AST for short) by an

242 B. Becker et al.

1 if test [’-h’; ’/etc/rancid/lg.conf ’] then
2 rm [’/etc/rancid/lg.conf ’]
3 fi
4 if test [’-e’; ’/etc/rancid/apache.conf ’] then
5 rm [’/etc/rancid/apache.conf ’]
6 fi

Fig. 5. preinst script of the rancid-cgi package in CoLiS

algebraic datatype in Why3. Then CoLiS semantics is defined by a set of inductive
predicates [6] that encodes a chiefly standard, big-step operational semantics.
The semantic rules cover the contents of variables and input/output buffers used
during the evaluation of a CoLiS script, but they do not specify the contents of
the file system and the behaviour of Posix commands. The judgements and rules
are parameterised by bounds on the number of loop iterations and the number
of (recursively) nested function calls to allow for formalising the correctness of
the symbolic interpreter. The bounds are either a non-negative integer, or ∞ for
unbounded execution, and keep constant throughout the evaluation of a CoLiS
instruction. We refer to [6] for the details.

A concrete interpreter for the CoLiS language is implemented in Why3. Its
formal specifications (preconditions and post-conditions) state the soundness of
the interpreter, i.e., that any result corresponds to the formal semantics with
unbounded number of loop iterations and unbounded nested function calls. The
specifications are checked using automated theorem provers [23].

Translation from shell to CoLiS. This is done automatically, but it is not formally
proven. Indeed, a formal semantics of shell was missing until very recently [21].
For the control flow constructs, the AST of the shell script is translated into the
AST of CoLiS. For the strings (words in shell), the translation generates either a
string CoLiS expression or a list of CoLiS expressions depending on the content of
the shell string. This translation makes explicit the string evaluation in shell, in
particular the implicit string splitting. At the present time, the translator rejects
23% of shell scripts because it does not cover the full constructs of the shell, e.g.,
usage of globs, variables with parameters, and advanced uses of redirections.

The conformance of the CoLiS script with the original shell script is not
proven formally but tested by manual review and some automatic tests. For the
latter, we developed a tool that automatically compares the results of the CoLiS
interpreter on the CoLiS script with the results of the Debian default shell (dash)
on the original shell script. This tool uses a test suite of shell scripts built to
cover the whole constructs of the CoLiS language. The test suite allowed us to fix
the translator and the formal semantics of CoLiS and, as an additional outcome,
it revealed a lack of conformance between the Debian default shell and Posix5.

5 https://www.mail-archive.com/dash@vger.kernel.org/msg01683.html

https://www.mail-archive.com/dash@vger.kernel.org/msg01683.html

Analysing installation scenarios of Debian packages 243

t3:
·

·

·

reg symlink

·

dir dir

etc usr

rancid

apache.conf lg.conf

sharelibt2: ·

dir ·

dir dir

bin usr

lib share

t1: ·

dir dir

lib share

Fig. 6. Examples of feature trees showing directories (t1), sub-directories (t2), a regular
file and a symbolic link (t3).

x

y

f x
(reg)

x
(dir)

x y∼F

x

⊥
f

x

y

f?

Fig. 7. Basic constraints, from left to right: a feature, a regular file node, a directory
node, a tree similarity, a feature absence, a maybe

3.2 Feature trees and constraints

We employ models and logics to describe transformations of UNIX file systems.
Feature trees [32,3,33] turn out to be suitable models for this case study. We have
proposed a logic suitable to express file system transformations by extending
previously existing logics. For the sake of space, we provide a concise overview
of the model and logic used in this case study.

Feature trees. The models we consider here are trees with features (taken from F ,
an infinite set of legal file names) on the edges, the dir kind on the nodes and
any kind (dir, reg or symlink) on the leaves. Examples are given in Fig. 6.

Constraints. To specify properties of feature tree models, we modify our first
order logic [26] to suit this case study’s needs. For the sake of presentation, we
use a graphical representation of quantifier-free conjunctive clauses of this logic.
See the technical report [24] for a detailed presentation.

The core basic constraints are presented in Fig. 7. The feature constraint
expresses that y is a subtree of x accessible from the root of x via feature f .
The kind constraints express that the root of a tree has the given kind (dir, reg
or symlink). The similarity constraint expresses that x and y have the same
children with the same names except for the children whose names are in F , a
finite set of features, where they may differ.

244 B. Becker et al.

x

⊥

y

v
(dir)

w
(reg)

z

usr

etc

∼{bin,etc}

bin? etc?

Fig. 8. A conjunctive clause

For performance reasons, we added two more
constraints; these do not increase the expres-
sive power but help to prevent combinatorial ex-
plosion of formulas. The absence constraint ex-
presses that either x is not a directory or x does
not have a feature f at its root. The maybe con-
straint expresses that either x is not a directory,
or it does not have a feature f at its root, or it
has one that leads to y.

A model of a formula is a valuation that maps variables to feature trees.
For instance, consider the valuation that associates t1 to x, t2 to y and t3 to z,
where t1, t2 and t3 are the trees defined in Fig. 6; it satisfies the formula in Fig. 8

Satisfiability. We designed a set of transformation rules [26] that turns any Σ1-
formula into an irreducible form that is either false or a satisfiable formula.
This is convenient in our setting because we can detect unsatisfiable formulas as
soon as possible and keep the irreducible form instead of the original formula,
speeding up further computations. Our toolchain includes an implementation
of this system, using an efficient representation of irreducible Σ1-formulas as
trees themselves. Finally, the system of rules is also extended to a quantifier
elimination procedure, showing that the whole first-order logic is decidable.

3.3 Specifications of UNIX commands

The specification of the UNIX commands uses our feature tree logic to express
their effect on the file system. The specification formalises the description given
in natural language in the Posix standard [22, Chapter Utilities] and, for some
commands, in GNU manual pages. We only specified (most of) the UNIX com-
mands called by the maintainer scripts.

The full specification is available in a separate technical report [24]. We
present here its main ingredients. A UNIX command has the form: “cmd options
paths”, where “cmd” is a command name, “options” is a list of options, and
“paths” is one or more absolute or relative paths (i.e., sequence of file names
and symbols “.” and “..”). For each combination of command name and option,
we provide a list of formulas specifying the success and failure cases. A success or
failure case formula has two free variables r and r′, which represent the root of
the file system before and after the command execution. For some combinations
of command names and options, the specification is not provided, but computed
by the symbolic execution of a CoLiS script. This script captures the command
behaviour by calling other (primitive) commands.

Path resolution. An important ingredient in command specification is the con-
straint encoding the resolution of a path in the file system. For this, we define
a predicate resolve(r, cwd, p, z) stating that “when the root of the file system
is r and the current working directory is the sequence of features cwd, the path
p resolves and goes to variable z”. The constraint defining this predicate is a Σ1

Analysing installation scenarios of Debian packages 245

r

x

y

z
(¬dir)

etc

rancid

lg.conf

r′

x′

y′

⊥

etc

rancid

lg.conf

∼{etc}

∼{rancid}

∼{lg.conf}

Fig. 9. Specification of success case for rm /etc/rancid/lg.conf

r = r′

⊥
etc

r = r′

x

⊥

etc

rancid

r = r′

x

y

⊥

etc

rancid

lg.conf

r = r′

x

y

z
(dir)

etc

rancid

lg.conf

r = r′

x

y

z
(dir)

etc?

rancid?

lg.conf?

Fig. 10. Specification of error cases of rm /etc/rancid/lg.conf: explicit cases on the
left, compact specification on the right

conjunction of basic constraints; it does not deal with symbolic link files on the
path. For example, the constraint resolve(r, cwd, /etc/rancid/lg.conf, z) is
represented by the path starting from r and ending in z in Fig. 9.

For some commands, a failure of path resolution may cause the failure of
the command. To specify these failure cases, we have to use the negation of the
predicate resolve, which generates a number of clauses which is linear in the
length of the resolved path. Fig. 10 shows, in the three left-most constraints,
the error cases for the resolution of the path to /etc/rancid/lg.conf. Because
the internal representation of formulas keeps only conjunctive clauses, this may
produce a state explosion of constraints when the command uses several paths.
To obtain a compact internal representation of these error cases, we employ the
maybe shorthand, as shown on the right of Fig. 10.

Let us consider the command rm /etc/rancid/lg.conf. Its specifica-
tion includes one success case, given on Fig. 9: the resolution of the path
/etc/rancid/lg.conf succeeded in the initial file system denoted by r, and
the resulting file system, denoted by r′ is similar to r except for the absence
of the feature lg.conf. The specification also includes one error case given on
Fig. 10, where the path cannot be resolved to a regular path, and therefore the
initial and final file systems are the same.

It is important to notice that specifications of commands are parameterised
by their path(s) argument(s): for each concrete value of such paths, an appropri-

246 B. Becker et al.

ate constraint is produced. This fact is essential for using our symbolic engine,
because the variables of a constraint denote nodes of the file system, but there
is no notion of variable denoting file names or paths.

3.4 Analysis by symbolic execution

With a similar approach as for the concrete interpreter (Section 3.1), we designed
and implemented a symbolic interpreter for the CoLiS language in Why3. Guided
by a proof-of-concept symbolic interpreter for a simple IMP language [5], the
main design choices for the symbolic interpreter for CoLiS are:

– Variables are not interpreted abstractly: when executing an installation
script, the concrete values of the variables are known. On the other hand,
the state of the file system is not known precisely, and it is represented
symbolically using a feature tree constraint.

– The symbolic engine is generic with respect to the utilities: their specifica-
tions in terms of symbolic input/output relations are taken as parameters.

– The number of loop iterations and the number of (recursively) nested func-
tion calls [6]) is bounded a priori, the bound is given by a global parameter
set at the interpreter call.

The Why3 code for the symbolic interpreter is annotated with post-conditions to
express that it computes an over-approximation [5] of the concrete states that are
reachable without exceeding the given bound on loop iterations. This property
is formally proven using automated provers. The OCaml code is automatically
extracted from Why3, and provides an executable symbolic interpreter with
strong guarantees of soundness with respect to the concrete formal semantics.

Notice that our symbolic engine neither supports parallel executions, nor file
permissions or file timestamps. This is another source of over-approximation,
but also under-approximation, meaning that our approach can miss bugs whose
triggering relies on the former features.

The symbolic interpreter provides a symbolic semantics for the given script:
given an initial symbolic state that represents the possible initial shape of the file
system, it returns a triple of sets of symbolic input/output relations, respectively
for normal result, error result (corresponding to non-zero exit code) and result
when a loop limit is reached. Error results are unexpected for Debian maintainer
scripts, and these cases have to be inspected manually. To help this inspection, a
visualisation of symbolic relations was designed, as already described in Fig. 4.

3.5 Scenarios

So far, we have presented how we analyse individual maintainer scripts. In reality,
the Debian policy specifies in natural language in which order and with which
arguments these scripts are invoked during package installation, upgrade, or
removal (see, for instance, Fig. 2). We have specified these scenarios in a loop-
free custom language. These scenarios define what happens after the success or

Analysing installation scenarios of Debian packages 247

the failure of a script execution. They also specify when the static content is
unpacked. Furthermore, our toolchain allows to define the assumptions that can
be made on an initial filesystem before executing a scenario, for instance the
File System Hierarchy Standard [38]. Our toolchain reports on packages that
may remain in an unexpected state after the execution of one of these scenarios.

For instance, the installation scenario of the package rancid-cgi may leave
that package in the state not-installed, which is reported by our toolchain using
the diagram in Fig. 4.

4 Results and impact

4.1 Coverage of the case study

The tools used and the datasets analysed during the current study are available
in the Zenodo repository [36].

We execute the analysis on a machine equipped with 40 hyperthreaded Intel
Xeon CPU @ 2.20GHz, and 750GB of RAM. To obtain a reasonable execution
time, we limit the processing of one script to 60 seconds and 8GB of RAM.
The time limit might seem low, but the experience shows that the few scripts
(in 30 packages) that exceed this limit actually require hours of processing be-
cause they make a heavy use of dpkg-maintscript-helper. On our corpus of
12 592 packages with 28 814 scripts, the analysis runs in about half an hour.

All of those scripts that are syntactically correct with respect to the Posix
standard (99.9%) are parsed successfully by our parser. The translation of the
parsed scripts into our intermediary language CoLiS succeeds for 77% of them;
the translation fails mainly because of the use of globs, variables with parameters
and advanced uses of redirections.

Our toolchain then attempts to run 113 328 scenarios (12 592 packages with
scripts, 9 scenarios per package). Out of those, 45 456 scenarios (40%) are run
completely and 13 149 (12%) partially. This is because scenarios have several
branches and although a branch might encounter failure, we try to get some
information on execution of other branches. For the same reason, one scenario
might encounter several failures. In total, we encounter 67 873 failures. The ori-
gins of failures are multiple, but the two main ones are (i) trying to execute
a scenario that includes a script that we cannot convert (28% of failures), or
(ii) the scripts might use commands unsupported by our tools, or unsupported
features of supported commands (71% of failures).

Among the scenarios that we manage to execute at least partially, 19 reach
an unexpected end state. These are potential bugs. We have examined them
manually to remove false positives due to approximations done by our method-
ology or the toolchain. We discuss in Section 4.3 the main classes of true bugs
revealed by this process.

4.2 Corpus mining

The latest version of the Debian sid distribution on which we ran our tools dates
from October 6, 2019. It contains 60 000 packages, 12 592 of which contain at

248 B. Becker et al.

Table 1. Bugs found between 2016 and 2019 in Debian sid distributions

Bugs Closed Detected by Reports Examples
95 56 parser [9] not using -e mode
6 4 parser & manual [15] unsafe or non-Posix constructs

34 24 corpus mining [8,10] wrong options, mixed redirections
9 7 translation [11] wrong test expressions
5 2 symbolic execution [13,17,15] try to remove a directory with rm
3 3 formalisation [12] bug in dpkg-maintscript-helper

152 96

least one maintainer script, which leads to 28 814 scripts. In total, these scripts
contain 442 364 source lines of code, 15 lines on average, and up to 1 138 for the
largest script. Among them we find 220 bash scripts, 2 dash scripts, 14 perl
scripts, and one ELF executable – the rest are Posix shell scripts.

In the process of designing our tools, and in order to validate our hypotheses,
we ran statistical analysis on this corpus of scripts. The construction of our tool
for statistical analysis is described in a technical report [25] where we also detail
a few of our findings. To summarise, analysing the corpus revealed that:

– Most variables in scripts were used as constants: only 3 008 scripts contain
variables whose value actually changes.

– There are no recursive functions in the whole corpus.
– There are 2 300 scripts that include a while loop. 93% of the while loops

occur in a pipe reading the output of dpkg -L and are an idiosyncrasy that
is proper to some shell languages. They can be translated to “foreach” loops
in a properly typed language.

– The huge majority of redirections are used to hide the standard output or
merge it into the error output.

This analysis had an important impact on the project by guiding the design
choices of CoLiS, which Unix commands we should specify and in which or-
der, etc. This also helped us to discover a few bugs, e.g., scripts invoking Unix
commands with invalid options.

4.3 Bugs found

We ran our toolchain on several snapshots of the Debian sid distribution taken
between 2016 and 2019, the latest one being October 6, 2019. We reported over
this period a total of 152 bugs to the Debian Bug Tracking System [37]. Some of
them have immediately been confirmed by the package maintainer (for instance,
[16]), and 96 of them have already been resolved.

Table 1 summarises the main categories of bugs we reported. Simple lexical
analysis already detects 95 violations of the Debian Policy, for instance scripts
that do not specify the interpreter to be used, or that do not use the -e mode [9].
The shell parser (Section 3.1) detects 3 scripts that use shell constructs not
allowed by the Posix standard, or in a context where the Posix standard states

Analysing installation scenarios of Debian packages 249

that the behaviour is undefined [15]. There are also 3 miscellaneous bugs, like
using unsafe shell constructs. The mining tool (Section 4.2) detects 5 scripts that
invoke Unix commands with wrong options and 29 scripts that mix up redirection
of standard-output and standard-error. The translation from the shell to the
CoLiS language (Section 3.1) detects 9 scripts with wrong test expressions [11].
These may stay unnoticed during superficial testing since the shell confuses, when
evaluating the condition of an if-then-else, an error exception with the Boolean
value False. Inspection of the symbolic semantics extracted by the symbolic
execution (Section 3.4) finds 5 scripts with semantic errors. Among these is the
bug [16] of the package rancid-cgi already explained in Section 2.4. During the
formalisation of Debian tools (see Section 3.3), we found 3 bugs. These include in
particular a bug [12] in the dpkg-maintscript-helper command which is used
10 306 times in our corpus of maintainer scripts, and was fixed in the meantime.

4.4 Lessons learnt

One basic problem when trying to analyse maintainer scripts is to understand
precisely the meaning of the policy document. For instance, one of the more
intriguing requirements is that maintainer scripts have to be idempotent (Sec-
tion 6.2 in [4]). While it is common knowledge that a mathematical function f
is idempotent when f(f(x)) = f(x) for any x, the meaning is much less clear
in the context of Debian maintainer scripts as the policy goes on to explain “If
the first call failed, or aborted half way through for some reason, the second
call should merely do the things that were left undone the first time, if any, and
exit with a success status if everything is OK.” We suppose that this refers to
causes of error external to the script itself (power failure, full disk, etc.), and
that there might be an intervention by the system administrator between the
two invocations. Since we cannot even explain in natural language what precisely
that means, let alone formalise it, we decided to model at the moment only a
rough under-approximation of that property that only compares executions by
their exit code. This allowed us to detect a bug [14].

We found that identifying bugs in maintainer scripts always requires human
examination. Automated tools allow to point out potential problems in a large
corpus, but deciding whether such a problem actually deserves a bug report,
and of what severity level, requires some experience with the Debian processes.
This is most visible with semantic bugs in scripts, since an error exit code does
not imply that there is a bug. Indeed, if a script detects a situation it cannot
handle then it must signal an error and produce a useful error message. Deciding
whether a detected error case is justified or accidental requires human judgement.

Filing bug reports demands some caution, and observance of rules and com-
mon practices in the community. For instance, the Debian Developers Refer-
ence [18] requires approval by the community before so-called mass bug filing.
Consequently, we always sought for advice before sending batches of bugs, either
on the Debian developers mailing list, or during Debian conferences.

250 B. Becker et al.

5 Conclusion

The corpus of Debian maintainer scripts is an interesting case study for analysis
due to its size, the challenging features of the scripting language, and the re-
lational properties it requires to analyse. The results are very promising. First,
we reported 152 bugs [37] to the Debian Bug Tracking system, 96 of which have
already been resolved by Debian maintainers. Second, the toolchain performs
the analysis of a package in seconds and of the full distribution in less than a
hour, which makes it fit for integration in the workflow of Debian maintainers
or for quality assurance at the the level of the whole distribution. Integration of
our toolchain in the lintian tool will not be possible since it would add a lot of
external dependencies to that tool, and since the reports generated by our tool
still require human evaluation (see Section 4.4).

This study had several additional outcomes. The toolchain includes tools for
parsing and light static analysis of shell scripts [30], an engine for the symbolic
execution of imperative languages based on first-order logics representation of
program configurations [5], and an efficient decision procedure for feature tree
logics. We also provide a formal specification of Posix commands used in Debian
scripts in terms of a first-order logic [24].

We are not aware of a project dealing with this kind of problem or obtaining
comparable results. To our knowledge, the only existing attempt to analyse a
complete corpus of package maintainer scripts was done in the context of the
Mancoosi project [19]. In this work, the analysis, mainly syntactic, resulted in a
set of building blocks used in maintainer scripts that may be used in a DSL. In a
series of papers [20,28,29], Ntzik et al. consider the formal reasoning on the Posix
scripts manipulating the file system based on (concurrent) separation logic. Not
only do they employ a different logic (a second-order logic), but they also focus
on (manual) proof techniques for correctness and not on automatic techniques for
finding bugs. Moreover, they consider general scripts and properties that are not
relational (like idempotency). There have been few attempts to formalise the
shell. Greenberg [21] recently offers an executable formal semantics of Posix
shell that will serve as a foundation for shell analysis tools. Abash [27] contains
a formalisation of parts of the bash language and an abstract interpretation tool
for the analysis of arguments passed by scripts to Unix commands; this work
focused on identifying security vulnerabilities.

The successful outcome of this case study revealed new challenges that we
aim to address in future work. In order to increase the coverage of our analysis
and the acceptance by Debian maintainers, the translation from shell should
cover more features, additional Unix commands should be formally specified,
and the model should capture more features of the file system, e.g., permissions,
or symbolic links. The efficiency of the analysis can still be improved by using a
more compact representation of disjunctive constraints in feature tree logics or by
exploiting the genericity of the symbolic execution engine to include other logic
based symbolic representations that may be more efficient and precise. Finally,
we want to use the computed constraints on scenarios to check new properties
of scripts like equivalence of behaviours.

Analysing installation scenarios of Debian packages 251

References

1. Lintian. https://lintian.debian.org
2. Piuparts. https://piuparts.debian.org/
3. Aït-Kaci, H., Podelski, A., Smolka, G.: A feature-based constraint system for logic

programming with entailment. Theor. Comput. Sci. 122(1–2), 263–283 (Jan 1994)
4. Allbery, R., Whitton, S.: Debian policy manual (Oct 2019), https://www.debian.

org/doc/debian-policy/
5. Becker, B., Marché, C.: Ghost Code in Action: Automated Verification of a

Symbolic Interpreter. In: Chakraborty, S., A.Navas, J. (eds.) Verified Software:
Tools, Techniques and Experiments. Lecture Notes in Computer Science (2019),
https://hal.inria.fr/hal-02276257

6. Becker, B., Marché, C., Jeannerod, N., Treinen, R.: Revision 2 of CoLiS language:
formal syntax, semantics, concrete and symbolic interpreters. Technical report,
HAL Archives Ouvertes (Oct 2019), https://hal.inria.fr/hal-02321743

7. Bobot, F., Filliâtre, J.C., Marché, C., Paskevich, A.: Let’s verify this with Why3.
International Journal on Software Tools for Technology Transfer (STTT) 17(6),
709–727 (2015). https://doi.org/10.1007/s10009-014-0314-5, http://hal.inria.fr/
hal-00967132/en, see also http://toccata.lri.fr/gallery/fm2012comp.en.html

8. Debian Bug Tracker: dibbler-server: postinst contains invalid command. Debian
Bug Reports 841934 (Oct 2016), https://bugs.debian.org/cgi-bin/bugreport.cgi?
bug=841934

9. Debian Bug Tracker: authbind: maintainer script(s) not using strict mode. De-
bian Bug Report 866249 (Jun 2017), https://bugs.debian.org/cgi-bin/bugreport.
cgi?bug=866249

10. Debian Bug Tracker: dict-freedict-all: postinst script has a wrong redirection. De-
bian Bug Report 908189 (Sep 2018), https://bugs.debian.org/cgi-bin/bugreport.
cgi?bug=908189

11. Debian Bug Tracker: python3-neutron-fwaas-dashboard: incorrect test in postrm.
Debian Bug Report 900493 (May 2018), https://bugs.debian.org/cgi-bin/
bugreport.cgi?bug=900493

12. Debian Bug Tracker: [dpkg-maintscript-helper] bug in finish_dir_to_symlink. De-
bian Bug Report 922799 (Feb 2019), https://bugs.debian.org/cgi-bin/bugreport.
cgi?bug=922799

13. Debian Bug Tracker: ndiswrapper: when "postrm purge" fails it may have deleted
some config files. Debian Bug Report 942392 (Oct 2019), https://bugs.debian.org/
cgi-bin/bugreport.cgi?bug=942392

14. Debian Bug Tracker: oz: non-idempotent postrm script. Debian Bug Report 942395
(Oct 2019), https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=942395

15. Debian Bug Tracker: preinst script not posix compliant. Debian Bug Report 925006
(Mar 2019), https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=925006

16. Debian Bug Tracker: rancid-cgi: preinst may fail and not rollback a change. De-
bian Bug Report 942388 (Oct 2019), https://bugs.debian.org/cgi-bin/bugreport.
cgi?bug=942388

17. Debian Bug Tracker: sgml-base: preinst may fail *silently*. Debian Bug Report
929706 (May 2019), https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=929706

18. Developer’s Reference Team: Debian developers reference (Oct 2019), https://
www.debian.org/doc/manuals/developers-reference/

https://lintian.debian.org
https://piuparts.debian.org/
https://www.debian.org/doc/debian-policy/
https://www.debian.org/doc/debian-policy/
https://hal.inria.fr/hal-02276257
https://hal.inria.fr/hal-02321743
https://doi.org/10.1007/s10009-014-0314-5
http://hal.inria.fr/hal-00967132/en
http://hal.inria.fr/hal-00967132/en
http://toccata.lri.fr/gallery/fm2012comp.en.html
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=841934
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=841934
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=866249
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=866249
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=908189
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=908189
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=900493
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=900493
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=922799
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=922799
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=942392
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=942392
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=942395
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=925006
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=942388
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=942388
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=929706
https://www.debian.org/doc/manuals/developers-reference/
https://www.debian.org/doc/manuals/developers-reference/

252 B. Becker et al.

19. Di Cosmo, R., Di Ruscio, D., Pelliccione, P., Pierantonio, A., Zacchi-
roli, S.: Supporting software evolution in component-based FOSS sys-
tems. Science of Computer Programming 76(12), 1144–1160 (2011).
https://doi.org/10.1016/j.scico.2010.11.001

20. Gardner, P., Ntzik, G., Wright, A.: Local reasoning for the POSIX file system.
In: European Symposium On Programming. Lecture Notes in Computer Science,
vol. 8410, pp. 169–188. Springer (2014). https://doi.org/10.1007/978-3-642-54833-
8_10

21. Greenberg, M., Blatt, A.J.: Executable formal semantics for the POSIX shell.
CoRR abs/1907.05308 (2019), http://arxiv.org/abs/1907.05308

22. IEEE, The Open Group: The open group base specifications issue 7. http://pubs.
opengroup.org/onlinepubs/9699919799/ (2018)

23. Jeannerod, N., Marché, C., Treinen, R.: A Formally Verified Interpreter for a Shell-
like Programming Language. In: 9th Working Conference on Verified Software:
Theories, Tools, and Experiments. Lecture Notes in Computer Science, vol. 10712
(2017), https://hal.archives-ouvertes.fr/hal-01534747

24. Jeannerod, N., Régis-Gianas, Y., Marché, C., Sighireanu, M., Treinen, R.: Speci-
fication of UNIX utilities. Technical report, HAL Archives Ouvertes (Oct 2019),
https://hal.inria.fr/hal-02321691

25. Jeannerod, N., Régis-Gianas, Y., Treinen, R.: Having fun with 31.521 shell
scripts. Tech. rep., HAL Archives Ouvertes (2017), https://hal.archives-ouvertes.
fr/hal-01513750

26. Jeannerod, N., Treinen, R.: Deciding the first-order theory of an algebra of
feature trees with updates. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds.)
9th International Joint Conference on Automated Reasoning. Lecture Notes in
Computer Science, vol. 10900, pp. 439–454. Springer, Oxford, UK (Jul 2018),
https://hal.archives-ouvertes.fr/hal-01807474

27. Mazurak, K., Zdancewic, S.: ABASH: finding bugs in bash scripts. In: Workshop
on Programming Languages and Analysis for Security. pp. 105–114 (2007)

28. Ntzik, G., Gardner, P.: Reasoning about the POSIX file system: local update and
global pathnames. In: Object-Oriented Programming, Systems, Languages and Ap-
plications. pp. 201–220. ACM (2015). https://doi.org/10.1145/2814270.2814306

29. Ntzik, G., da Rocha Pinto, P., Sutherland, J., Gardner, P.: A concurrent specifi-
cation of POSIX file systems. In: European Conference on Object-Oriented Pro-
gramming. LIPIcs, vol. 109, pp. 4:1–4:28. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik (2018). https://doi.org/10.4230/LIPIcs.ECOOP.2018.4

30. Régis-Gianas, Y., Jeannerod, N., Treinen, R.: Morbig: A static parser for POSIX
shell. In: Pearce, D., Mayerhofer, T., Steimann, F. (eds.) ACM SIGPLAN In-
ternational Conference on Software Language Engineering. pp. 29–41. Boston,
MA, USA (Nov 2018). https://doi.org/10.1145/3276604.3276615, https://hal.
archives-ouvertes.fr/hal-01890044

31. Rosenfeld, R.: Package rancid-cgi: looking glass cgi based on rancid tools (2019),
https://packages.debian.org/en/sid/rancid-cgi

32. Smolka, G.: Feature constraint logics for unification grammars. Journal of Logic
Programming 12, 51–87 (1992)

33. Smolka, G., Treinen, R.: Records for logic programming. Journal of Logic Pro-
gramming 18(3), 229–258 (Apr 1994)

34. The CoLiS project: The CoLiS bench. http://ginette.informatique.
univ-paris-diderot.fr/~niols/colis-batch/

35. The CoLiS project: The CoLiS toolchain. https://github.com/colis-anr

https://doi.org/10.1016/j.scico.2010.11.001
https://doi.org/10.1007/978-3-642-54833-8_10
https://doi.org/10.1007/978-3-642-54833-8_10
http://arxiv.org/abs/1907.05308
http://pubs.opengroup.org/onlinepubs/9699919799/
http://pubs.opengroup.org/onlinepubs/9699919799/
https://hal.archives-ouvertes.fr/hal-01534747
https://hal.inria.fr/hal-02321691
https://hal.archives-ouvertes.fr/hal-01513750
https://hal.archives-ouvertes.fr/hal-01513750
https://hal.archives-ouvertes.fr/hal-01807474
https://doi.org/10.1145/2814270.2814306
https://doi.org/10.4230/LIPIcs.ECOOP.2018.4
https://doi.org/10.1145/3276604.3276615
https://hal.archives-ouvertes.fr/hal-01890044
https://hal.archives-ouvertes.fr/hal-01890044
https://packages.debian.org/en/sid/rancid-cgi
http://ginette.informatique.univ-paris-diderot.fr/~niols/colis-batch/
http://ginette.informatique.univ-paris-diderot.fr/~niols/colis-batch/
https://github.com/colis-anr

Analysing installation scenarios of Debian packages 253

36. The CoLiS project: Artifact for Analysing installation scenarios of Debian Pack-
ages. Zenodo Repository (Feb 2020). https://doi.org/10.5281/zenodo.3678390

37. The Debian Project: Bugs tagged colis, https://bugs.debian.org/cgi-bin/
pkgreport.cgi?tag=colis-shparser;users=treinen@debian.org

38. The Linux Foundation: Filesystem hierarchy standard, version 3.0 (Mar 2015),
https://refspecs.linuxfoundation.org

39. Ucko, A.M.: cmigrep: broken emacsen-install script. Debian Bug Report 431131
(Jun 2007), https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=431131

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

https://doi.org/10.5281/zenodo.3678390
https://bugs.debian.org/cgi-bin/pkgreport.cgi?tag=colis-shparser;users=treinen@debian.org
https://bugs.debian.org/cgi-bin/pkgreport.cgi?tag=colis-shparser;users=treinen@debian.org
https://refspecs.linuxfoundation.org
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=431131
http://creativecommons.org/licenses/by/4.0/

Endicheck: Dynamic Analysis for Detecting

Endianness Bugs

Roman Kápl and Pavel Parı́zek

Department of Distributed and Dependable Systems,
Faculty of Mathematics and Physics, Charles University,

Prague, Czech Republic

Abstract. Computers store numbers in two mutually incompatible ways: little-
endian or big-endian. They differ in the order of bytes within representation of
numbers. This ordering is called endianness. When two computer systems, pro-
grams or devices communicate, they must agree on which endianness to use, in
order to avoid misinterpretation of numeric data values.
We present Endicheck, a dynamic analysis tool for detecting endianness bugs,
which is based on the popular Valgrind framework. It helps developers to find
those code locations in their program where they forgot to swap bytes prop-
erly. Endicheck requires less source code annotations than existing tools, such
as Sparse used by Linux kernel developers, and it can also detect potential bugs
that would only manifest if the given program was run on computer with an oppo-
site endianness. Our approach has been evaluated and validated on the Radeon SI
Linux OpenGL driver, which is known to contain endianness-related bugs, and on
several open-source programs. Results of experiments show that Endicheck can
successfully identify many endianness-related bugs and provide useful diagnostic
messages together with the source code locations of respective bugs.

1 Introduction

Modern computers represent and store numbers in two mutually incompatible ways:
little-endian (with the least-significant byte first) or big endian (the most-significant
byte first). The byte order is also referred to as endianness.

Processor architectures typically define a native endianness, in which the proces-
sor stores all data. When two computer systems or programs exchange data (e.g., via
a network), they must first agree on which endianness to use, in order to avoid mis-
interpretation of numeric data values. Also devices connected to computers may have
control interfaces with endianness different from the host’s native endianness.

Therefore, programs communicating with other computers and devices need to
swap the bytes inside all numerical values to the correct endianness. We use the term
target endianness to identify the endianness a program should use for data exchanged
with a particular external entity. Note that in some cases it is not necessary to know
whether the target endianness is actually little-endian or big-endian. When the knowl-
edge is important within the given context, we use the term concrete endianness.

If the developer forgets to transform data into the correct target endianness, the bug
can often go unnoticed for a long time because software is nowadays usually devel-
oped and tested on the little-endian x86 or ARM processor architecture. For example,
c© The Author(s) 2020

A. Biere and D. Parker (Eds.): TACAS 2020, LNCS 12079, pp. 254–270, 2020.
https://doi.org/10.1007/978-3-030-45237-7_15

TACAS
Evaluation
Artifact

2020
Accepted

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45237-7_15&domain=pdf
https://doi.org/10.1007/978-3-030-45237-7_15

Endicheck: Dynamic Analysis for Detecting Endianness Bugs 255

if two identical programs running on a little-endian architecture communicate over the
network using a big-endian protocol, a missing byte-order transformation in the same
place in code will not be observed. Our work on this project was, in the first place,
motivated by the following concrete manifestation of the general issue described in the
previous sentence. The Linux OpenGL driver for Radeon SI graphics cards (the Mesa
17.4 version) does not work on big-endian computers due to an endianness-related bug1,
as the first author discovered when he was working on an industrial project that involved
PowerPC computers in which Radeon graphic cards should be deployed.

We are aware of few approaches to detection of endianness bugs, which are based on
static analysis and manually written source code annotations. An example is Sparse [11],
a static analysis tool used by Linux kernel developers to identify code locations where
byte-swaps are missing. The analysis performed by Sparse works basically in the same
way as type checking for C programs, and relies on the usage of specialized bitwise data
types, such as le16 and be32, for all variables with non-native endianness. Integers
with different concrete endianness are considered by Sparse as having mutually incom-
patible types, and the specialized types are also not compatible with regular C integer
types. In addition, macros like le32 to cpu are provided to enable safe conversion
between values of the bitwise integer types and integer values of regular types. Such
macros are specially annotated so that the analysis can recognize them, and developers
are expected to use only those macros.

The biggest advantage of bitwise types is that a developer cannot assign a regular
native endianness integer value to a variable of a bitwise type, or vice versa. Their
nature also prevents the developer from using them in arithmetic operations, which do
not work correctly on values with non-native byte order. On the other hand, a significant
limitation of Sparse is that developers have to properly define the bitwise types for all
data where endianness matters, and in particular to enable identification of data with
concrete endianness — Sparse would produce imprecise results otherwise. Substantial
manual effort is therefore required to create all the bitwise types and annotations.

Our goals in this whole project were to explore an approach based on dynamic anal-
ysis, and to reduce the amount of necessary annotations in the source code of a subject
program. We present Endicheck, a dynamic analysis tool for detecting endianness bugs
that is implemented as a plugin for the Valgrind framework [6]. The main purpose of
the dynamic analysis performed by Endicheck is to track endianness of all data val-
ues in the running subject program and report when any data leaving the program has
the wrong endianness. The primary target domain consists of programs written in C or
C++, and in which developers need to explicitly deal with endianness of data values.

While the method for endianness tracking that we present is to a large degree in-
spired by dynamic taint analyses (see, e.g., [8]), our initial experiments showed that
usage of existing taint analysis techniques and tools does not give good results espe-
cially with respect to precision. For example, an important limitation of the basic taint
analysis, when used for endianness checking, is that it would report false positives on
data that needs no byte-swapping, such as single byte-sized values. Therefore, we had to
modify and extend the existing taint analysis algorithms for the purpose of endianness
checking. During our work on Endicheck, we also had to solve many associated tech-

1 https://bugs.freedesktop.org/show_bug.cgi?id=99859

https://bugs.freedesktop.org/show_bug.cgi?id=99859

256 R. Kapl and P. Parızek´ ´

nical challenges, especially regarding storage and propagation of metadata that contain
the endianness information — this includes, for example, precise tracking of single-byte
values.

Endicheck is meant to be used only during the development and testing phases of
the software lifecycle, mainly because it incurs a substantial runtime overhead that is
not adequate for production deployment. Before our Endicheck tool can be used, the
subject program needs to be modified, but only to inform the analysis engine where the
byte-order is being swapped and where data values are leaving the program. In C and
C++ programs, byte-order swapping is typically done by macros provided in the system
C library, such as htons/htonl or those defined in the endian.h header file. Thus only
these macros need to be annotated. During the development of Endicheck, we redefined
each of those macros such that the custom variant calls the original macro and defines
necessary annotations — for examples, see Figure 1 in Section 4 and the customized
header file inet.h2. Similarly, data also tend to leave the program only through few
procedures. For some programs, the appropriate place to check for correct endianness
is the send/write family of system calls.

Endicheck is released under the GPL license. Its source code is available at https:
//github.com/rkapl/endicheck.

The rest of the paper is structured as follows. Section 2 begins with a more thorough
overview of the dynamic analysis used by Endicheck, and then it provides details about
the way endianness information for data values are stored and propagated — this rep-
resents our main technical contribution, together with evaluation of Endicheck on the
Radeon SI driver and several other real programs that is described in Section 5. Besides
that, we also provide some details about the implementation of Endicheck (Section 3)
together with a short user guide (Section 4).

2 Dynamic Analysis for Checking Endianness

We have already mentioned that the dynamic analysis used by Endicheck to detect
endianness bugs is a special variant of taint analysis, since it uses and adapts some
related concepts. In the rest of this paper, we use the term endianness analysis.

2.1 Algorithm Overview

Here we present a high-level overview of the key aspects of the endianness analysis.
Like common taint and data-flow analysis techniques (see, e.g., [4] and [8]), our dy-
namic endianness analysis tracks flow of data through program execution, together with
some metadata attached to specific data values. The analysis needs to attach metadata to
all memory locations for which endianness matters, and maintain them properly. Meta-
data associated with a sequence of bytes (memory locations) that makes a numeric data
value then capture its endianness. Similarly to many dynamic analyses, the metadata are
stored using a mechanism called shadow memory [7] [9]. We give more details about
the shadow memory in Section 2.2.

2 https://github.com/rkapl/endicheck/blob/master/endicheck/ec-overlay/arpa/inet.h

https://github.com/rkapl/endicheck
https://github.com/rkapl/endicheck

Endicheck: Dynamic Analysis for Detecting Endianness Bugs 257

Although we mostly focus on checking that the program being analyzed does not
transmit data of incorrect endianness to other parties, there is also the opposite problem:
ensuring that the program does not use data of other than native endianness. For this
reason, our endianness analysis could be also used to check whether all operands of an
arithmetic instruction have the correct native endianness — this is important because
arithmetic operations are unlikely to produce correct results otherwise. Note, however,
that checking of native endianness for operands has not yet been implemented in the
Endicheck tool.

The basic principle behind the dynamic endianness analysis is to watch instructions
as they are being executed and check endianness at specific code locations, such as
the calls of I/O functions. We use the term I/O functions to identify all system calls
and other functions that encapsulate data exchange between a program and external
entities (e.g., writing or reading data to/from a hard disk, or network communication) in
a specific endianness. When the program execution reaches the call of an I/O function,
Endicheck checks whether all its arguments have the proper endianness. Note that the
user of Endicheck specifies the set of I/O functions by annotations (listed in Section 4).

In order to properly maintain the endianness information stored in the shadow mem-
ory, our analysis needs to track almost every instruction being executed during the run
of a subject program. The analysis receives notifications about relevant events from the
Valgrind dynamic analysis engine. All the necessary code for tracking individual in-
structions (processing the corresponding events), updating endianness metadata (inside
the shadow memory), and checking endianness at the call sites of I/O functions, is added
to the subject program through dynamic binary instrumentation. Further technical de-
tails about the integration of Endicheck into Valgrind are provided later in Section 3.

Two distinguishing aspects of the endianness analysis — the format of metadata
stored in the shadow memory and the way metadata are propagated during the analysis
of program execution — are described in the following subsections.

2.2 Shadow Memory

A very important requirement on the organization and structure of shadow memory was
full transparency for any C/C++ or machine code program. The original layout of heap
and stack has to be preserved during the analysis run, since Endicheck (and Valgrind
in general) targets C and C++ programs that typically rely on the precise layout of data
structures in memory. Consequently, Endicheck cannot allocate the space for shadow
memory (metadata) within the data structures of the analyzed program.

When designing the endianness analysis, we decided to use the mechanism sup-
ported by Valgrind [7], which allows client analyses to store a tag for each byte in the
virtual address space of the analyzed program without changing its memory layout. This
mechanism keeps a translation table (similar to page tables used by operating systems)
that maps memory pages to shadow pages where the metadata are stored.

The naive approach would be to follow the same principles as taint analyses, i.e.
reuse the idea of taint bits, and mark each byte of memory as being either of native
endianness or target endianness. However, our endianness analysis actually uses a richer
format of metadata and individual tags, which improves the analysis precision.

258

Rich Metadata Format. In this format of metadata, each byte of memory and each
processor register is annotated with one of the following tags that represent available
knowledge about the endianness of stored data values.

– native: The default endianness produced, for example, by arithmetic operations.
– target: Used for data produced by annotated byte-swapping function.
– byte-sized: Marks the first byte of a multi-byte value (e.g., an integer or float).
– unknown: Endianness of uninitialized data (e.g., newly allocated memory blocks).

In addition to these four tags, each byte of memory can also be annotated with the
empty flag, indicating that the byte’s value is zero. Now we give more details about the
meaning of these tags, and discuss some of the associated challenges.

Single-byte values. Our approach to precise handling of single-byte values is moti-
vated by the way arithmetic operations are processed. Determining the correct size of
the result of an arithmetic operation (in terms of the number of actually used bytes)
is difficult in practice, because compilers often choose to use instructions that operate
on wider types than actually specified by the developer in program source code. This
means the analysis cannot, in some cases, precisely determine whether the result of an
arithmetic operation has only a single byte. Our solution is to always mark the least-
significant byte of the result with the tag byte-sized. Such an approach guarantees that if
only the least-significant byte of an integer value is actually used, it does not trigger any
endianness errors when checked, because the respective memory location is not tagged
as native. On the other hand, if the whole integer value is really used (or at least more
than just the least-significant byte), there is one byte marked with the tag byte-sized

and the rest of the bytes are marked as native, thus causing an endianness error when
checked.

Empty byte flag. Usage of the empty flag helps to improve performance of the en-
dianness analysis when processing byte-shuffling instructions, because all operations
with empty flags are simpler than operations with the actual values. However, this flag
can be soundly used only when the operands are byte-wise disjoint, i.e. when each byte
is zero (empty) in at least one of the operands. Arithmetic operations are handled in a
simplified way — they never mark bytes as empty in the result. Consequently, while the
empty tag implies that the given byte is zero, the reverse implication does not hold.

Unknown tag. We introduced the tag unknown in order to better handle data values,
for which the analysis cannot say whether they are already byte-swapped. Endicheck
uses this tag especially for uninitialized data. Values marked with the tag unknown are
not reported as erroneous by default, but this behavior is configurable. We discuss other
related problems, concerning especially precision, below in Section 2.4.

2.3 Propagation of Metadata

An important aspect of the endianness analysis is that data values produced by the
subject program are marked as having the native endianness by default. This behav-

R. Kapl and P. Parızek´ ´

Endicheck: Dynamic Analysis for Detecting Endianness Bugs 259

ior matches the prevailing case, because data produced by most instructions (e.g., by
arithmetic operations) and constant values can be assumed to have native endianness.

In general, metadata are propagated upon execution of an instruction according to
the following policy:

– Arithmetic operations always produce native-endianness result values.
– Data manipulation operations (e.g., load and store) propagate tags from their operands

to results without any changes.

Endicheck correctly passes metadata also through routines such as memcpy and certain
byte-shuffling operations (e.g., shift <<= and >>=). Complete details for all categories
of instructions and routines are provided in the master thesis of the first author [3].

The only way to create data with the target tag is via explicit annotation from the
user. Specifically, the user needs to add annotations to byte-swapping functions in order
to set the target tag on return values.

2.4 Discussion: Analysis Design and Precision

The basic scenario that is obviously supported by our analysis is the detection of endi-
anness bugs when the target and native endianness are different. However, the design of
our analysis ensures that it can be useful even in cases when the native endianness is the
same as the target endianness. Although byte-swapping functions then become identi-
ties, the endianness analysis can still find data that would not be byte-swapped if the
endianities were different — it can do this by setting the respective tags when data pass
through the byte-swapping functions. In addition, the endianness analysis can be also
used to detect the opposite direction of errors — programs using non-native endianness
data values (e.g., received as input) without byte-swapping them first.

Endicheck does not handle constants and immediate values in instructions very well,
since the analysis cannot automatically recognize their endianness and therefore cannot
determine whether the data need byte-swapping or not. Constants stored in the data
section of a binary executable represent the main practical problem to the analysis,
because the data section does not have any structure — it is just a stream of bytes. Our
solution is to mark data sections initially with the tag unknown. If this is not sufficient,
a user must annotate the constants in the program source code to indicate whether they
already have the correct endianness.

A possible source of false bug reports are unused bytes within a block of memory
that has undefined content, unless the memory was cleared with 0s right after its allo-
cation. This may occur, for example, when some fields inside C structures have specific
alignment requirements. Some space between individual fields inside the structure lay-
out is then unused, and marked either with the tag unknown or with the tag left over
from the previous content of the memory block.

3 Implementation

We distribute the Endicheck tool in the form of an open source software package that
was initially created as a fork of the Valgrind source code repository. Although tools

260

and plugins for Valgrind can be maintained as separate projects, forking allowed us
to make changes to the Valgrind core and use its build/test infrastructure. Within the
whole source tree of Endicheck, which includes the forked Valgrind codebase, the code
specific to Endicheck is located in the endicheck directory. It consists of these modules:

– ec main: tool initialization, command-line handling and routines for translation
to/from intermediate representation;

– ec errors: error reporting, formatting and deduplication;
– ec shadow: management of the shadow memory, storing of the endianness meta-

data, protection status and origin tracking information (see below);
– ec util: utility functions for general use and for manipulation with the metadata;
– endicheck.h: public API with annotations to be used in programs by developers.

In the rest of this section, we briefly describe how Endicheck uses the Valgrind
infrastructure and a few other important features. Additional technical details about the
implementation are provided in the master thesis of the first author [3].

Usage of Valgrind infrastructure. Endicheck depends on the Valgrind core (i) for dy-
namic just-in-time instrumentation [6] of a target binary program and (ii) for the actual
dynamic analysis of program execution. The subject binary program is instrumented
with code that carries out all the tasks required by our endianness analysis — especially
recording of important events and tracking information about the endianness of data val-
ues. When implementing the Endicheck plugin, we only had to provide code doing the
instrumentation itself and define what code has to be injected at certain locations in the
subject program. Note also that for the analysis to work correctly and provide accurate
results, Valgrind instruments all components of the subject program that may possibly
handle byte-swapped data, including application code, the system C library and other
libraries. During the analysis run, Valgrind notifies the Endicheck plugin about execu-
tion of relevant instructions and Endicheck updates the information about endianness
of affected data values accordingly. Besides instrumentation and the actual dynamic
analysis, other features and mechanisms of the Valgrind framework used by Endicheck
include: utility functions, origin tracking, and developer-friendly error reporting.

Origin tracking [1] is a mechanism that can help users in debugging the endianness
issues. An error report contains two stack traces: one identifies the source code loca-
tion of the call to the I/O function where the wrong endianness of some data value was
detected, and the second trace, provided by origin tracking, identifies the source code
location where the value has originated. In Endicheck, the origin information (identi-
fier of the stack trace and execution context) is stored alongside the other metadata in
the shadow memory for all values. We decided to use this approach because almost
all values need origin tracking, since they can be sources of errors — in contrast to
Memcheck, where only the uninitialized values can be sources of errors.

During our experiments with the Radeon SI OpenGL driver (described in Sec-
tion 5.1), we have noticed that the driver maps the device memory into the user-space
process. In that case, there is no single obvious point where to check the endianness
of data that leave the program through the mapped memory. To solve this problem and
support memory-mapped I/O, we extended our analysis to automatically check endian-
ness at all writes to regions of the mapped device memory. We implemented this feature

R. Kapl and P. Parızek´ ´

Endicheck: Dynamic Analysis for Detecting Endianness Bugs 261

in such a way that each byte of a device memory region is tagged with a special flag
protected — then, Endicheck can find very quickly whether some region of memory
is mapped to a device or not. Note that the flag is associated with a memory location,
while the endianness tags (described in Section 2.2) are associated with data values.
Therefore, the special flag is not copied, e.g. when execution of memcpy is analyzed; it
can be only set explicitly by the user.

4 User Guide

The recommended way to install Endicheck is building from the source code. Instruc-
tions are provided in the README file at the project web site. When Endicheck has
been installed, a user can run it by executing the following command:

valgrind --tool=endicheck [OPTIONS...] PROGRAM ARGS...

Origin tracking is enabled by the option –track-origins=yes.

Annotations In order to analyze a given program, some annotations typically must be
added into the program source code. A user of Endicheck has to mark the byte-swapping
functions and the I/O functions (through which data values are leaving the program),
because these functions cannot be reliably detected in an automated way.

The specific annotations are defined in the C header file endicheck.h. Here follows
the list of supported annotations, together with explanation of their meaning:

– EC MARK ENDIANITY(start, size, endianness)

This annotation marks a region of memory from start to start+size-1 as having the
given endianness. It should be used in byte-swapping functions. Target endianness
is represented by the symbol EC TARGET.

– EC CHECK ENDIANITY(start, size, msg)

This annotation enforces a check that a memory region from start to start+size-1

contains only data with any or target endianness. It should be used in I/O functions.
Unknown endianness is allowed by passing the –allow-unknown option.

– EC PROTECT REGION(start, size)

Marks the given region of memory as protected. This should be used for mapped
regions of device memory.

– EC UNPROTECT REGION(start, size)

Marks the given memory region as unprotected.
– EC DUMP MEM(start, size)

Dumps endianness of a memory region. This is useful for debugging.

Figure 1 shows an example program that demonstrates usage of the most important
annotations (EC MARK and EC CHECK). If the call to htobe32 inside main is removed,
Endicheck will report an endianness bug. This example also demonstrates possible ways
to easily annotate standard functions, like htobe32 and write.

262

#include <valgrind/endicheck.h>

uint32_t htobe32(uint32_t x) {
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__

x = bswap_32(x);
#endif

EC_MARK_ENDIANITY(&x, sizeof(x), EC_TARGET);
return x;

}

int ec_write(int file, const void *buf, size_t count) {
EC_CHECK_ENDIANITY(buf, count, NULL);
return write(file, buf, count);

}
#define write ec_write

int main() {
uint32_t x = 0xDEADBEEF;
x = htobe32(x);
write(0, &x, sizeof(x));
return 0;

}

Fig. 1. Small example program with Endicheck annotations.

5 Evaluation

We evaluated the Endicheck tool — namely its ability to find endianness bugs, precision
and overhead — by the means of a case study on the Radeon SI driver, several open-
source programs and a standardized performance benchmark. For the Radeon SI driver
and each of the open-source programs, we provide a link to its source code repository
(and identification of the specific version that we used for our evaluation) within the
artifact that is referenced from the project web site.

5.1 Case Study

Our case study is Radeon SI, the Linux OpenGL driver for Radeon graphics cards, start-
ing with the SI (Southern Islands) line of cards and continuing to the current models.

Since these Radeon cards are little-endian, the driver must byte-swap all data when
running on a big-endian architecture such as PowerPC. However, the Radeon SI driver
(in the Mesa 17.4 version) does not perform the necessary byte-swapping operations,
and therefore simply does not work in the case of PowerPC — it crashes either the GPU
or OpenGL programs using the driver. In particular, endianness bugs in this version of
the Radeon SI driver cause the Glxgears demo on PowerPC to crash. We give more
details about the bugs we have found in Section 5.2.

An important feature of the whole Linux OpenGL stack is that all layers, includ-
ing the user-space program, communicate not only using calls of library functions and

R. Kapl and P. Parızek´ ´

Endicheck: Dynamic Analysis for Detecting Endianness Bugs 263

system calls, but they also extensively use mapping of the device memory directly into
the user process. Given such an environment, Endicheck has to correctly handle (1) the
flow of data through the whole OpenGL stack by instrumenting all the libraries used,
and (2) communication through the shared memory that is used by the driver. This is
why the support for mapped memory in Endicheck, through marking of device memory
with a special flag, as described above in Section 3, is essential.

5.2 Search for Bugs

For the purpose of evaluating Endicheck’s ability to find endianness bugs, we picked a
diverse set of open-source programs (in addition to the Radeon SI driver), including the
following: BusyBox, OpenTTD, X.Org and ImageMagick. All programs are listed in
Table 1. The only criterion was to select programs written in C that communicate over
the network or store data in binary files, since only such programs may possibly contain
endianness bugs. We also document our experience with fixing the endianness bugs in
the Radeon SI driver and other programs.

One of the stated goals for Endicheck was to reduce the number of annotations that
a user must add into the program source code in order to enable search for endianness
bugs. Therefore, below we report the relevant measurements and discuss whether (and
to what degree) this goal has been achieved.

In the rest of this section, first we discuss application of Endicheck on the Radeon
SI driver (our case study) and then we present results for other programs.

Radeon SI case study. Within our case study, we have used the Glxgears demo pro-
gram as a test harness for the Radeon SI driver. Initially we have run Glxgears on the
x86 architecture, and after fixing all the issues found and reported by Endicheck, we
moved the same graphics card to a PowerPC host computer and continued testing there.

In the case of the Radeon SI driver, all byte-swapping functions are located in a
single file of one library (Gallium) on the OpenGL stack. Therefore, to enable search
for endianness bugs in Radeon SI, we had to make just two changes: (1) annotate the
function radeon drm cs add buffer as I/O function and (2) annotate the byte-swapping
functions in Gallium. Overall, we had to add or change about 40 lines of source code,
including annotations, in a single place. All our changes are published in the repository
https://rkapl.cz/repos/git/roman/mesa. It contains the source code of
Mesa augmented with our annotations and fixes for the endianness-related bugs in
Radeon SI described below. For fixes of bugs found by Endicheck, we included the
original Endicheck report in the commit message, under the ECNOTE header.

Figure 2 contains an example bug report produced by Endicheck with enabled ori-
gin tracking on Glxgears. The error report itself has three main parts (in this order): the
problem description, origin stack trace (captured when the offending value is created)
and point-of-check stack trace (recorded when some annotated I/O function is encoun-
tered). We show only fragments of stack traces for illustration (and to save space).

The problem description identifies the currently active thread, the nature of the error
and the memory region containing the erroneous value. The memory region is identified
by its address and an optional name provided by the program (“radeon add buffer” in

https://rkapl.cz/repos/git/roman/mesa

264

Thread 9 gallium_drv:0:
Memory does not contain data of Target endianness
Problem was found in block 0x41BF000 (named radeon_add_buffer)
at offset 0, size 8:

0x41BF000: N N N N N N N N
The value was probably created at this point:

at 0x8B787F7: si_init_msaa_functions (si_state_msaa.c:94)
by 0x8B4F979: si_create_context (si_pipe.c:279)

...
by 0x4C46661: glXCreateContext (glxcmds.c:427)
by 0x10B67A: make_window.constprop.1 (glxgears.c:559)
by 0x109A86: main (glxgears.c:777)

The endianness check was requested here:
at 0x8B85C45: radeon_drm_cs_add_buffer (radeon_drm_cs.c:375)
by 0x8B4A58B: si_set_constant_buffer (r600_cs.h:74)
by 0x8B708D0: si_set_framebuffer_state (si_state.c:2934)

...
by 0x55357FB: start_thread (pthread_create.c:465)
by 0x5861B0E: clone (clone.S:95)

Fig. 2. Error report from Endicheck run on the Glxgears demo program

this case). Metadata are printed just for the part of the memory region that contains data
with the wrong endianness, using this convention: N = native, U = undefined.

This particular error report (Figure 2) indicates that an array of floating-point values
describing the multisampling pattern is not byte-swapped. Note that IEEE 754 floating
point values also obey the endianness of the host platform, at least on the architectures
x86, x64 and ARM. To repair the corresponding bug, we had to insert calls of byte-
swapping functions at the code location where the floating-point array is produced.

During our experiments with Radeon SI and Glxgears, four endianness bugs in total
were detected by Endicheck on the x86 architecture before testing on PowerPC. After
we fixed the bugs, the Glxgears demo did successfully run. This shows that Endicheck
detected all bugs it was supposed to and provided reports useful enough so that the bugs
could be fixed. Here we also need to emphasize that the Glxgears demo, naturally, does
not exercise all code in the Radeon SI driver, and fixing the whole driver would require
lot of additional work.

Other programs. As we said at the beginning of this section, we evaluated Endicheck’s
ability to find endianness bugs and precision on a set of realistic programs. Our primary
goal in this part of the evaluation was to assess the following aspects:

– the extent of annotations that is required for Endicheck to work properly,
– whether Endicheck is able to detect a bug in a given kind of programs, and
– how many false warnings are reported.

Before trying to answer these questions, we wanted to be sure that the subject pro-
grams contain endianness bugs. However, some of the programs that we considered

R. Kapl and P. Parızek´ ´

Endicheck: Dynamic Analysis for Detecting Endianness Bugs 265

(OpenTTD, OpenArena and ImageMagick) are written in such a way that realistic en-
dianness bugs cannot be injected into their codebase. ImageMagick uses a C++ ab-
straction layer for binary streams, which also handles endianness. OpenArena uses bit-
oriented encoding for most parts of the network communication. OpenTTD uses an
abstraction layer too, but the developer can still make an endianness-related mistake in
certain cases, such as storing an array of uint16 t values as an array of uint8 t values. We
manually injected synthetic endianness bugs into the code of all the programs where
this was possible. In this process, we also annotated the byte-swapping functions (like
htonl). The bugs were created by removing one usage of byte-swapping functions.

The results of experiments are summarized in Table 1. For each program, the table
provides the following information: whether it was possible to analyze the program at
all, whether some endianness bugs were found, overhead related to false warnings, and
how many lines of source code were added or changed in relation to Endicheck anno-
tations. Data for the Radeon SI driver are also included in the table for completeness.

Program Analyzable Injected bug False positives Actual bugs Annotations
Radeon SI driver �Yes �Found ∅Manageable (2) �Found cca 40 lines
BusyBox �Yes �Found �No None found 20 lines
OpenTTD �Partially �Found ∅Manageable (2) None found 59 lines
Ntpd �Yes �Found �No None found 1 line
X.Org �Yes �Found �No �Found 30 lines
OpenArena ∅No
ImageMagick ∅No

Table 1. Search for bugs: precision and necessary annotations

Data in Table 1 show that Endicheck could find the introduced bug in all the cases.
Furthermore, Endicheck found two genuine endianness-related bugs in X.Org. The bugs
were confirmed by the developers of X.Org and fixed in upstream3.

Endicheck also reports some false warnings, but their numbers are not overwhelm-
ing. Four cases in total occured for the Radeon SI driver and OpenTTD (two in each).
This is a manageable amount, which can be even suppressed using further annotations.

5.3 Performance

In this section, we report on the performance of Endicheck in terms of execution time
overhead it introduces. We compare the performance data for programs instrumented
with Endicheck, programs instrumented by the Memcheck plugin for Valgrind and pro-
grams without any instrumentation. For the purpose of experiments, we used the stan-
dardized benchmark SPEC CPU2000. Even though SPEC CPU2000 is a general bench-
mark, not tailored for endianness analysis, results of experiments with this benchmark

3 https://gitlab.freedesktop.org/search?group_id=&project_id=
371&repository_ref=master&scope=commits&search=Roman+Kapl

https://gitlab.freedesktop.org/search?group_id=&project_id=371&repository_ref=master&scope=commits&search=Roman+Kapl
https://gitlab.freedesktop.org/search?group_id=&project_id=371&repository_ref=master&scope=commits&search=Roman+Kapl

266

indicate the performance of Endicheck when doing a real analysis, because the control-
flow paths exercised within Endicheck and the Valgrind core during an experiment do
not depend on the specific metadata (tag values).

We run all experiments on a T550 ThinkPad notebook with 12 GiB of RAM and
an i5-5200 processor clocked at 2.20 GHz, under Arch Linux from Q2 2018. The
SPEC2000 test harness was used for all the runs, with iteration count set to 3. We
compiled both Memcheck and Endicheck by GCC v7.3.0 with default options. Note
that we had to omit the benchmark program “gap”, because it produced invalid results
when compiled with this version of GCC.

In the description of specific experiments, tables with results and their discussion,
we use the following abbreviations:

– EC: Endicheck (valgrind –tool=endicheck)
– MC: Memcheck (valgrind –tool=memcheck)
– -OT: with precise origin tracking enabled (–track-origins=yes)
– -IT: with origin tracking enabled, but not fully precise (–precise-origins=no)
– -P: with memory protection enabled (–protection=yes)

Execution time. We divided our experiments designed for measuring the execution
time into two groups. Our motivation was to ensure that all experiments, including the
EC-OT configuration that incurs a large overhead, finish within a reasonable time limit.
In the first group, we run the full range of configurations on the “test” data set provided
by SPEC CPU2000, which is small compared to the full “reference” set, and used MC
as the baseline for comparisons. Table 2 shows results for experiments in this group. All
execution time data provided in this table are relative to MC, with the exception of data
for the native configuration. The second group of experiments uses the full “reference”
data set from SPEC CPU2000. Results for this group are provided in Table 3. In this
case, we used the data for native (uninstrumented) programs as the baseline.

Program Native (s) MC (s) MC-OT EC EC-P EC-OT EC-IT
bzip2 1.38 19.40 2.27x 2.07x 2.23x 33.87x 12.58x
crafty 0.70 18.70 2.21x 1.74x 1.78x 30.59x 11.07x
eon 0.09 6.60 1.73x 1.29x 1.34x 12.89x 4.23x
gcc 0.31 12.70 1.96x 1.92x 1.98x 24.17x 9.53x
gzip 0.47 6.29 2.11x 1.86x 1.97x 41.97x 14.96x
mcf 0.05 0.85 2.38x 1.27x 1.32x 11.88x 7.08x
parser 0.66 10.50 2.19x 2.13x 2.28x 41.24x 16.29x
perlbmk 4.31 5.52 1.10x 0.95x 0.95x 1.17x 1.05x
twolf 0.05 1.64 1.88x 1.16x 1.20x 14.09x 5.51x
vortex 1.06 56.90 2.23x 1.95x 2.04x 28.38x 9.86x
vpr 0.49 8.02 2.00x 1.70x 1.75x 22.94x 8.30x
G.mean 0.41 7.86 1.97x 1.59x 1.65x 18.17x 7.56x

Table 2. Execution times for the SPEC CPU2000 test data set, relative to Memcheck.

R. Kapl and P. Parızek´ ´

Endicheck: Dynamic Analysis for Detecting Endianness Bugs 267

Program Native (s) MC EC EC-P
bzip2 66.3 11.63x 23.47x 24.45x
crafty 29.5 26.78x 48.10x 48.54x
eon 24.1 52.12x 93.36x 97.34x
gcc 27.8 27.73x 116.62x 122.48x
gzip 79.9 8.92x 15.93x 16.80x
mcf 67.10 2.71x 6.90x 6.94x
parser 89.9 10.78x 23.04x 23.86x
perlbmk 45.9 38.45x 93.62x 96.27x
twolf 93 12.43x 19.77x 19.52x
vortex 43.8 44.36x 91.03x 92.85x
vpr 54.7 10.49x 20.29x 20.68x
G.mean 51.29 16.59x 35.31x 36.25x

Table 3. Execution times for the SPEC CPU2000 reference data set, relative to native runs.

Data in Table 3 indicate that the average slowdown of Memcheck is by the factor
of 16.59. Endicheck, in comparison, slows down the analyzed program by the factor
of 35.31. This means Endicheck has roughly two times higher overhead than Mem-
check with default options. According to data in Table 2, the same relative slowdown
of Endicheck with respect to Memcheck is 1.65x. This difference between the results
for the reference and test data sets is caused by the different ratio of the time spent
instrumenting the code versus time spent running the instrumented code.

However, data in both tables also show that the performance of Endicheck with ori-
gin tracking is lacking compared to Memcheck with the same option. It was still usable
for our Radeon SI OpenGL tests, but measurements indicate that there is a space for op-
timization. Nevertheless, certain relative slowdown between the configurations EC-OT
and MC-OT probably cannot be avoided, because Endicheck must track origin infor-
mation for much more data than Memcheck. Based on our experiments, we observed
that creating the origin information is the most expensive operation involved. When the
origin tags are created for each superblock, instead of every instruction, the execution
times drop roughly by a factor of two (see the columns EC-OT and EC-IT).

5.4 Discussion

Based on the case study and results of experiments presented in the previous sections,
we make the following general conclusions:

– Endicheck can find true endianness bugs in large real programs, assuming that the
user correctly annotates all the byte-swapping functions and I/O functions.

– Using fairly complex metadata is feasible in terms of performance and encoding.
– Performance of Endicheck is practical even on large programs, despite the overhead

and given that its current version is not yet optimized as well as Memcheck.
– Although Endicheck, due to precise dynamic analysis, requires less annotations to

be specified manually than static analysis-based tools (e.g., Sparse), still it puts
certain burden on the user.

268

Regarding the annotation burden, we already mentioned that the user has to carefully
mark in particular all the I/O functions and byte-swapping functions, so that Endicheck
can correctly update endianness tags associated with memory locations during the run
of the analysis. While it would be possible to recognize byte-swapping functions au-
tomatically, e.g. by static code analysis, then the endianness analysis would have to be
run on a machine with the native endianness different from the target endianness, so
that actual byte-swaps will be present.

Another limitation of Endicheck from the practical perspective is handling of com-
plex data transformations, a problem shared with taint analysis. The metadata cannot
be correctly preserved through transformations such as encryption/decryption and com-
pression/decompression. However, in many cases, the problem could be avoided by re-
quiring an endianness check to be performed just before the respective transformation.

6 Related Work

As far as we know, the Sparse tool [11] used by Linux kernel developers, which we
already mentioned, is the only one publicly available specialized tool tackling the prob-
lem of finding endianness bugs. The main advantage of Endicheck over Sparse is better
precision in some cases, i.e. fewer false bug reports, since dynamic analysis, which ob-
serves actual program execution and runtime data values, is typically more precise than
static analysis. Endicheck also does not require so many annotations of functions and
variables as Sparse — when using Endicheck, typically just few places in the program
source code need to be annotated manually. More specifically, Sparse expects that an
input program code involves (i) the specialized bitwise data types (e.g., le32) for all
variables where endianness matters and (ii) the macros for conversion between regular
types and bitwise types (e.g., le32 to cpu). With Endicheck, developers only have to
annotate the byte-swapping functions used by the program (e.g., htons and htonl from
the C library). On the other hand, Sparse has better coverage of program code, as it is
based on static analysis.

The Valgrind dynamic analysis framework [6] comes bundled with a set of bug de-
tection tools. Very popular is the Memcheck tool [5] for detecting memory access errors
and leaks, which also served as an inspiration for the design and implementation of En-
dicheck. We mention the tool here, because it actually performs a variant of dynamic
taint analysis — it marks each bit of the program memory as valid or invalid (tainted).

Closely related is also the runtime type checker Hobbes [2] for binary executables,
which can detect some kinds of type mismatch bugs common in C programs. In order
to reduce the number of false bug reports and to delimit integer values, Hobbes uses
the mechanism of continuation markers — the first byte of each value has the marker
unset, and the remaining bytes are set to indicate that they represent a continuation of
an existing value. The analysis technique used by Hobbes could be modified to track
endianness of integer values instead of distinguishing between pointers and integers,
since one can model integers of different endianness as values that have different types
(also like in the case of Sparse).

Another approach with functionality similar to Endicheck has been implemented
within the LLVM/Clang plugin called DataFlowSanitizer [10]. It is a dynamic analysis

R. Kapl and P. Parızek´ ´

Endicheck: Dynamic Analysis for Detecting Endianness Bugs 269

framework that (i) enables programs to define tags for data values and check for specific
tags, both through its API functions, and (ii) propagates all tags with the data.

7 Conclusion

We have presented a new dynamic analysis tool, Endicheck, for detecting endianness
bugs in C/C++ programs. The tool is built upon the Valgrind framework. Endicheck pro-
vides a useful, and in many settings also preferable, alternative to static analysis tools
like Sparse, because (1) it reports quite precise results (i.e., a low number of false warn-
ings) due to the nature of dynamic analysis and (2) requires less annotations (and other
changes) in the source code of the subject program in order to be able to detect missing
byte-swap operations. The results of our experimental evaluation show that Endicheck
can (1) handle large complex programs and (2) identify actual endianness bugs, and it
has practical performance overhead. Endicheck could also be used in automated test-
ing scenarios, as a useful alternative to testing programs on both little- and big-endian
processor architecture. A testing environment based on Endicheck might be easier to
set-up than the environment based, for example, on virtual machines.

7.1 Future Work

Possible extensions of Endicheck, which could improve its precision and practical use-
fulness even further, include:

– More complex analysis approach based on explicit tagging of each byte in an inte-
ger data value with its position.

– Reporting arithmetic instructions that use data with target endianness.
– Automatically checking system calls such as write for correct endianness.
– Suppression files for endianness bug reports to eliminate false positives.

Another way to detect endianness bugs more precisely is to use comparative runs
(i.e, a kind of equivalence checking). The key idea is to run a program on two machines,
where one has a big-endian architecture and the other has a little-endian architecture,
and compare the data leaving both variants of the program. This approach has the po-
tential to be the most accurate, because it can even detect problems in cases when data
leaving the program are encrypted or compressed. On the other hand, it cannot always
detect situations when the program forgets to byte-swap input data, unless the error
affects one of the output values with concrete endianness.

Acknowledgments. This work was partially supported by the Czech Science Founda-
tion project 18-17403S and partially supported by the Charles University institutional
funding project SVV 260451.

References

1. Bond, M.D., Nethercote, N., Kent, S.W., Guyer, S.Z., McKinley, K.S.: Tracking Bad Apples:
Reporting the Origin of Null and Undefined Value Errors. In: Proceedings of OOPSLA 2007.
ACM (2007)

270

2. Burrows, M., Freund, S.N., Wiener, J.L.: Run-Time Type Checking for Binary Programs. In:
Proceedings of CC 2003. LNCS, vol. 2622. Springer (2003)

3. Kapl, R.: Dynamic Analysis for Finding Endianity Bugs. Master thesis, Charles University,
Prague, June 2018.

4. Liu, Y., Milanova, A.: Static Analysis for Inference of Explicit Information Flow. In: Pro-
ceedings of PASTE 2008. ACM (2008)

5. Seward, J., Nethercote, N.: Using Valgrind to Detect Undefined Value Errors with Bit-
Precision. In: Proceedings of USENIX 2005 Annual Technical Conference. USENIX As-
sociation (2005)

6. Nethercote, N., Seward, J.: Valgrind: A Framework for Heavyweight Dynamic Binary In-
strumentation. In: Proceedings of PLDI 2007. ACM (2007)

7. Nethercote, N., Seward, J.: How to Shadow Every Byte of Memory Used by a Program. In:
Proceedings of VEE 2007. ACM (2007)

8. Newsome, J., Song, D.: Dynamic Taint Analysis for Automatic Detection, Analysis, and
Signature Generation of Exploits on Commodity Software. In: Proceedings of NDSS 2005.
The Internet Society (2005)

9. Serebryany, K., Bruening, D., Potapenko, A., Vyukov, D.: AddressSanitizer: A Fast Address
Sanity Checker. In: Proceedings of USENIX 2012 Annual Technical Conference. USENIX
Association (2012)

10. Clang 8 documentation / DataFlowSanitizer. https://clang.llvm.org/docs/
DataFlowSanitizer.html (accessed in October 2019)

11. Sparse: a semantic parser for C programs. https://lwn.net/Articles/689907/
(accessed in October 2019)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/
4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not in-
cluded in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.

R. Kapl and P. Parızek´ ´

https://clang.llvm.org/docs/DataFlowSanitizer.html
https://clang.llvm.org/docs/DataFlowSanitizer.html
https://lwn.net/Articles/689907/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Describing and Simulating
Concurrent Quantum Systems

Richard Bornat1,4 , Jaap Boender2,5 , Florian Kammueller1,6 , Guillaume
Poly3,7 , and Rajagopal Nagarajan1,8

1 Department of Computer Science, Middlesex University, London, UK
2 Hensoldt Cyber GmbH, Taufkirchen, Germany

3 Widmee, Région de Bordeaux, France
4 R.Bornat@mdx.ac.uk

5 jacob.boender@hensoldt-cyber.com
6 F.Kammueller@mdx.ac.uk

7 guillaume.gwigwi.poly@gmail.com
8 R.Nagarajan@mdx.ac.uk

Abstract. We present a programming language for describing and analysing
concurrent quantum systems. We have an interpreter for programs in the
language, using a symbolic rather than a numeric calculator, and we give
its performance on examples from quantum communication and cryptog-
raphy.

Quantum cryptographic protocols such as BB84 QKD [3] and E92 QKD [7]
offer unconditional statistical security. These protocols have been implemented in
commercial products; various QKD networks have been built around the world;
and China has launched a dedicated satellite for quantum communication. The
security of the protocols has been established information-theoretically, but their
implementations may have security loopholes. We intend to investigate the se-
curity question, eventually by using formal methods to verify the properties of
implementations, but first by simulation of protocols expressed as programs.

Large companies are developing full-stack solutions for implementing quan-
tum algorithms, and quantum computers will likely be network-linked. Although
we have focused on quantum communication and cryptography protocols, as-
pects of our work will be applicable to distributed quantum computation.

Concurrent quantum systems, such as communication and cryptographic pro-
tocols assume physically-separated agents (Alice, Bob, etc.) who communicate
by sending each other qubits (quantum bits: polarised photons, for example)
and classical bit-strings. There are a few dedicated, high-level programming lan-
guages for quantum systems such as Microsoft’s Q# [2]. They focus on single-
machine computation and lack a treatment of communication, but a protocol
simulation must ensure, for example, that a qubit transferred from one agent
to another can’t be used again by the sender and can’t be used by the receiver
before it is sent. We decided therefore to take a process-calculus approach, and
we have implemented a tool inspired by CQP [9]. Our implementation is called
qtpi [1], and uses symbolic rather than numeric quantum calculation. Programs

c© The Author(s) 2020
A. Biere and D. Parker (Eds.): TACAS 2020, LNCS 12079, pp. 271–277, 2020.
https://doi.org/10.1007/978-3-030-45237-7 16

TACAS
Evaluation
Artifact

2020
Accepted

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45237-7_16&domain=pdf
http://orcid.org/0000-0002-7261-0233
http://orcid.org/0000-0002-7066-8554
http://orcid.org/0000-0001-5839-5488
http://orcid.org/0000-0002-5687-6023
http://orcid.org/0000-0002-9724-4962
https://doi.org/10.1007/978-3-030-45237-7_16

are checked statically, before they run, to ensure that they obey real-world re-
strictions on the use of qubits (no cloning, no sharing). Unlike CQP, which
preserves all possible outcomes, labelling each with a probability, qtpi takes a
single execution path, making probabilistic choices between outcomes.

We have used qtpi to simulate simple protocols such as teleportation, and
some more involved ones including the quantum key-distribution protocols BB84
[3] and E92 [7]. Each of these involves transmission of qubits and public trans-
mission of classical messages (in the case of BB84, over an authenticated channel
[13]), all of which is simulated. It is early days in our development of the tool,
so there is as yet no provision for formal proof, but in these examples we can
already simulate well over 1M qubit transfers per minute on a small laptop – i.e.
we can simulate largish examples in a useful time.

1 Processes

Protocols are carried out by agents which send each other messages but share
no other information. We simulate agents by processes which share no data or
variables. Typical protocol steps from the literature are

– obtain a qubit, perhaps initialised to one of |0〉, |1〉, |+〉 or |−〉;
– put a qubit through a gate such as I, H, X, etc.;
– measure a qubit;
– send or receive a qubit;
– send or receive a classical value, such as a list of numbers or bits.

In addition an agent may perform a calculation, such as generating 1000 ran-
dom bits or encrypting/decrypting a message or checking the values received in a
message. Calculations aren’t protocol steps and don’t affect qubit state, though
they often depend on the results of measuring qubits and their results often
influence subsequent protocol steps. Our processes have analogues of protocol
steps and calculations. In addition we are able to create processes, to choose
conditionally between different processes and to set up a collection of processes
running simultaneously.

The aim of our work is to mathematically analyse programs which describe
quantum systems. Towards that end we have a semantics of quantum-mechanical
calculation [5], written in Coq [10]. That is work in progress: for the time being
we are able to execute our protocol-programs using our simulator [1].

1.1 A programming language

Our language has two distinct notations: a protocol-step language, which is de-
rived from the pi-calculus [11], and a functional calculation language, somewhat
in the style of Miranda [12]. Neither language has assignment, although qubit
measurement does change program state and so needs special attention. The
protocol-step language has recursion, but only tail recursion: i.e. nothing can fol-
low a process invocation step (but note that parallel execution of sub-processes
provides more complexity).

272 R. Bornat et al.

Following the pi-calculus we use channels to communicate between processes.
So Alice doesn’t send to Bob, she sends down a channel which Bob can read from
– or perhaps it might be Eve, if there is interference. Channels are values, so
you can set up communication between two processes by giving them the same
channel-argument when you create them, and you can send channel values in
messages to alter connections dynamically.

In the protocol-step language steps are separated by dots (‘.’) and choices
are made between processes rather than single or multiple steps. Channels are
created by (new c); send is C!E, .., E; receive is C?(x, .., x); qubits are created
by (newq q); quantum gating is Q, .., Q>>G; quantum measurement Q−/−(x).

In the expression language there is function application (f arg), arithmetic
and Boolean calculation, conditional choice and recursion. It uses infinite-precision
rationals for numerical calculations.

1.2 Symbolic quantum calculation

Quantum calculations can be described using quantum circuits : diagrams such
as Fig. 1 show how qubits (one per line) are put through gates (boxes, line-
connectors) and/or measured (meter symbols) giving a classical 0/1 result.

In quantum mechanics the state of a qubit is a vector a |0〉 + b |1〉, with
|a|2 + |b|2 = 1. Here |0〉 and |1〉 are the computational basis vectors, a and b are
complex amplitudes, and |a|2 and |b|2 give the probability of measuring the state
as |0〉 or |1〉. In qtpi a single isolated qubit is therefore a pair of complex numbers,
and quantum gates, such as the H, X and Z gates of Fig. 1, are square matrices
of complex numbers which modify the state by multiplication. The state of n
entangled qubits is a 2n-element vector, matrices which manipulate all of it have
to be 2n × 2n, so calculations with large entanglements can rapidly grow out
of the range of straightforward simulation. Luckily, quantum security protocols
typically work with a small number of qubits at a time.

Because our calculations are simple, we can afford to implement them sym-
bolically. We use h for

√

1/2; it is also equal to sin (π/4) and cos (π/4). A great
deal of formulae can be expressed in terms of powers of h: for example cos (π/8)
=

√

(1 + h)/2.
Symbolic calculation involves lots of symbolic simplification. That makes it

relatively slow, compared to calculation with floating-point numbers, but it is
absolutely accurate – h2 + h2, for example, is exactly 1. When measuring, we
must convert symbolic probabilities into numbers. But that is part of a statistical
calculation, so minor inaccuracy is acceptable.

z |ψ〉 • H �
� •

x |+〉 • �
�

y |0〉 X Z |ψ〉

Fig. 1. Quantum circuit for teleportation

Describing and Simulating Concurrent Quantum Systems 273

proc System () =

(newq x=|+>, y=|0>) x,y>>CNot .

(new c:^bit*bit) | Alice(x,c) | Bob(y,c)

proc Alice (x:qbit, c:^bit*bit) =

(newq z)

out!["initially Alice’s z is "] . outq!(qval z) . out!["\n"] .

z,x>>CNot . z>>H . z-/-(vz) . x-/-(vx) . c!vz,vx . _0

proc Bob(y:qbit, c:^bit*bit) =

c?(b1,b2) .

y >> match b1,b2 . + 0b0,0b0 . I

+ 0b0,0b1 . X

+ 0b1,0b0 . Z

+ 0b1,0b1 . Z*X .

out!["finally Bob’s y is "] . outq!(qval y) . out!["\n"] . _0

Fig. 2. Teleportation of an unknown quantum state, with logging

1.3 No cloning

In the real quantum world there is no way of cloning a qubit – you can’t start
with a qubit in some arbitrary state and finish up with two qubits in that state.
That, plus the fact that measurement irrevocably alters a qubit’s state, is what
provides quantum security protocols with unconditional security – though the
uncertainty of measurement means that the guarantee is probabilistic, not abso-
lute. A programming language which simulates quantum effects should therefore
not allow copying of the value of a qubit variable. We use language restrictions to
facilitate anti-cloning checks: in particular we severely restrict the use of qubits
in data structures, in messages, and after measurement or transmission. Those
checks are partly implemented by typechecking, partly by an efficient static sym-
bolic execution before simulation begins.

1.4 Other notable features

Randomised priority queues of runnable processes and waiting communication
offers ensure non-deterministic execution, and are used to eliminate infinite un-
fairness. Logging steps can be pushed into subprocesses to clarify protocol de-
scriptions, leaving a marker in the logged process to show where it should occur
(see examples in artifact [6]). Type descriptions are almost entirely optional.

2 Straightforward description

Our aim is to provide a programming language in which protocol descriptions
are transparently easy to read. For example, Fig. 2 shows teleportation [4] using
three processes: Alice and Bob carry out the protocol, and System sets up the

R. Bornat et al.274

communication between them. The calculation follows the circuit in Fig. 1, but
is shared between agents obeying the anti-cloning restrictions.

The System process creates qubits x and y (newq ..), initialised to |+〉 and
|0〉, and entangles them using a CNot gate (x,y>> ..). It creates a channel c
which carries pairs of bits (new c ..), and then splits into two subprocesses: one
becomes Alice, taking one of the qubits and the channel; the other becomes Bob,
with the other qubit and the same channel. Those processes run in parallel.

The Alice process creates a new qubit z, without specifying its state, and logs
that state (the anti-cloning restrictions make this tricky). Then it puts z and x

through a CNot gate (z,x>> ..), puts z alone through a Hadamard gate (z>>H),
and finally measures first z (z-/-(vz)), then x (x-/-(vx)), giving bits vz and
vx. Finally it sends those bits to Bob on the c channel (c!...). The overall effect
is subtle, because first System’s actions entangle x and y, so that measurement
of x constrains y, and then Alice entangles z, x and y, so that measurement of
z constrains both x and y.

The Bob process waits to receive Alice’s message (c? ..), and calculates a
gate (match ..) to process the results depending on one of four possibilities for
the two bits it receives (note one of the gates is the matrix product of Z and
X). It puts y through that gate (y>> ..) and logs the result. The output of this
program is always

initially Alice’s z is 2:(a2|0>+b2|1>)

finally Bob’s y is 1:(a2|0>+b2|1>)

where a2 and b2 are unknown symbolic amplitudes. A sample execution trace,
edited for brevity, shows the states produced by Alice’s actions: qubit 0 is x, 1
is y, 2 is z; initially 0 and 1 are entangled, and the first step entangles all three.

Alice (2:(a2|0>+b2|1>),0:[0;1](h|00>+h|11>)) >> Cnot;

result (2:[2;0;1](h*a2|000>+h*a2|011>+h*b2|101>+h*b2|110>),

0:[2;0;1](h*a2|000>+h*a2|011>+h*b2|101>+h*b2|110>))

Alice 2:[2;0;1](h*a2|000>+h*a2|011>+h*b2|101>+h*b2|110>) >> H;

result 2:[2;0;1]

(h(2)*a2|000>+h(2)*b2|001>+h(2)*b2|010>+h(2)*a2|011>

+h(2)*a2|100>-h(2)*b2|101>-h(2)*b2|110>+h(2)*a2|111>)

Alice: 2: (.. as above ..) -/- ;

result 0 and (0:[0;1](h*a2|00>+h*b2|01>+h*b2|10>+h*a2|11>),

1:[0;1](h*a2|00>+h*b2|01>+h*b2|10>+h*a2|11>))

Alice: 0:[0;1](h*a2|00>+h*b2|01>+h*b2|10>+h*a2|11>) -/- ;

result 1 and 1:(b2|0>+a2|1>)

Chan 2: Alice -> Bob (0,1)

Bob 1:(b2|0>+a2|1>) >> X; result 1:(a2|0>+b2|1>)

Tracing several executions shows that Alice’s measurements don’t always give the
same results in vz, vx and qubit 1, so Bob doesn’t always use the same gate(s).
The qubit z is never sent in a message, is destroyed by Alice’s measurement, and
its amplitudes are unknown to the program, but y always finishes up in the state
that z began in. Without symbolic calculation we couldn’t do such a simulation.

Describing and Simulating Concurrent Quantum Systems 275

3 Performance on examples

We can run various simulations of the quantum key-distribution protocol BB84
[3], with Alice and Bob and various Eve processes. In order to generate a one-
time key to encrypt an n-bit message, Alice needs to send many more bits than
n, and our simulation allows us to experiment with various parameters of her
calculation to see what happens. Here is a shortened display of part of the output
of an example simulation (timing measurements made on VirtualBox Ubuntu
18.10, on a 7-year-old MacBook Air with 8GB RAM):

length of message? 4000; length of a hash key? 40;

minimum number of checkbits? 500; number of sigmas? 10;

number of trials? 100

13718 qubits per trial; 0 interfered with; 100 succeeded

It takes about 0.6 seconds for each trial, but overall it makes 1.3M qubit transfers
and measurements in 60 CPU seconds. With an intercept-and-resend Eve, the
same exchanges take 95 seconds, but Eve’s interference is detected every time.
With a very short message and very few checkbits we can show that even such
a naive Eve can sometimes win, as statistical analysis predicts.

Our simulation of E92 QKD [7] uses 20 000 entangled qubit pairs per trial for
the same-sized problem. Because the protocol calculations are more complicated
and our calculation language is interpreted rather than compiled, simulation
takes over 4 CPU minutes.

Qtpi can handle larger entanglements. In about 13 seconds it’s able to set up
and measure one ‘brick’ (ten qubits, all CZ-entangled) of the measurement-based
quantum computing mechanism in [8] – but that’s too small to be useful, and
larger entanglements are exponentially worse.

4 Conclusions

We have a quantum programming language which allows description of protocols
with multiple agents. It has protection, built from well-understood computer
science foundations, against cloning of qubits within a simulation. It is not yet
able to deal efficiently with entanglements of more than a few qubits. Its symbolic
calculator is fast enough for the protocols we have examined.

5 Data Availability and Acknowledgements

The qtpi interpreter and the examples referred to in the paper are available
at https://doi.org/10.6084/m9.figshare.11882592. Our research was supported
by UK National Cyber Security Centre through the VeTSS project “Formal
Verification of Quantum Security Protocols using Coq”. Nagarajan was also
supported by EU Cost Action IC1405 “Reversible Computation - Extending
Horizons of Computing”. We thank Simon Gay for helpful discussions.

R. Bornat et al.276

https://doi.org/10.6084/m9.figshare.11882592

References

3. Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and
coin tossing. In: Proceedings of IEEE International Conference on Computers,
Systems, and Signal Processing. p. 175. India (1984)

4. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.:
Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-
Rosen channels. Physical Review Letters 70(13) (1993)

5. Boender, J., Kammüller, F., Nagarajan, R.: Formalization of quantum protocols
using Coq. In: The 12th International Workshop on Quantum Physics and Logic.
vol. 195, pp. 71–83 (2015). https://doi.org/10.4204/EPTCS.195.6

6. Bornat, R., Boender, J., Kammüller, F., Poly, G., Nagarajan, R.: Figshare (2020),
https://doi.org/10.6084/m9.figshare.11882592, visited 2020/02/21

7. Ekert, A.K., Rarity, J.G., Tapster, P.R., Massimo Palma, G.: Practical quantum
cryptography based on two-photon interferometry. Phys. Rev. Lett. 69, 1293–1295
(Aug 1992). https://doi.org/10.1103/PhysRevLett.69.1293

8. Ferracin, S., Kapourniotis, T., Datta, A.: Reducing resources for verification of
quantum computations. Physical Review A 98(2), 022323 (2018)

9. Gay, S.J., Nagarajan, R.: Communicating quantum processes. In: 32nd Sympo-
sium on Principles of Programming Languages (POPL 2005). pp. 145–157 (2005).
https://doi.org/10.1145/1040305.1040318, also arXiv:quant-ph/0409052

10. INRIA: The Coq Proof Assistant, https://coq.inria.fr, accessed on 2020.02.13
11. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes. Inf. Comput.

100(1), 1–40 (1992)
12. Turner, D.A.: Miranda: a non-strict functional language with polymorphic types.

In: Proc. of a conference on Functional programming languages and computer
architecture. pp. 1–16. Springer-Verlag New York, Inc., New York, NY, USA (1985)

13. Wegman, M.N., Carter, J.L.: New hash functions and their use in authentication
and set equality. Journal of computer and system sciences 22(3), 265–279 (1981)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Describing and Simulating Concurrent Quantum Systems 277

1. Qtpi protocol simulator, https://github.com/mdxtoc/qtpi, accessed on 2020.02.13
2. The Q# Programming Language, https://docs.microsoft.com/en-us/quantum/

quantum-qr-intro, accessed on 2020.02.13

https://github.com/mdxtoc/qtpi
https://docs.microsoft.com/en-us/quantum/quantum-qr-intro
https://doi.org/10.4204/EPTCS.195.6
https://doi.org/10.6084/m9.figshare.11882592
https://doi.org/10.1103/PhysRevLett.69.1293
https://doi.org/10.1145/1040305.1040318
https://coq.inria.fr
http://creativecommons.org/licenses/by/4.0/
https://docs.microsoft.com/en-us/quantum/quantum-qr-intro

EMTST: Engineering the Meta-theory of
Session Types

David Castro , Francisco Ferreira , and Nobuko Yoshida

Imperial College London,
{d.castro-perez, f.ferreira-ruiz, n.yoshida}

@imperial.ac.uk

Abstract Session types provide a principled programming discipline for
structured interactions. They represent a wide spectrum of type-systems
for concurrency. Their type safety is thus extremely important. EMTST
is a tool to aid in representing and validating theorems about session
types in the Coq proof assistant. On paper, these proofs are often tricky,
and error prone. In proof assistants, they are typically long and difficult
to prove. In this work, we propose a library that helps validate the theory
of session types calculi in proof assistants. As a case study, we study two
of the most used binary session types systems: we show the impossibility
of representing the first system in α-equivalent representations, and we
prove type preservation for the revisited system. We develop our tool
in the Coq proof assistant, using locally nameless for binders and small
scale reflection to simplify the handling of linear typing environments.

Keywords: Concurrency · proof assistants ·meta-theory · session-types.

1 Introduction

Given the prevalence of distributed computing and multi-core processors, con-
currency is a key aspect of modern computing. The transition from sequential
models of computation to concurrent systems has huge practical and theoret-
ical consequences. Message passing calculi (like the π-calculus) have been used
to model these systems since their introduction by Milner et al. [15]. Notably,
in many cases typing disciplines are used as a way to control concurrent and
distributed behaviour. Certifying basic typed π-calculi is important for both the
safety of implementations and the trustworthiness of new theories.

In this work, we concentrate on providing tools for reasoning about session
types [10], a typing discipline for structured interactions in distributed systems.
Session types are applied to a wide range of problems, and their properties, such
as deadlock-freedom, are well studied. These calculi are very expressive, and
rather complex, with features like: shared and linear communication channels,
name passing, and fresh name generation. Given this complexity, it is not sur-
prising that some innocent looking extensions violated the type safety properties
of the calculus in several literature (as pointed out by [23]). In consequence, the

c© The Author(s) 2020
A. Biere and D. Parker (Eds.): TACAS 2020, LNCS 12079, pp. 278–285, 2020.
https://doi.org/10.1007/978-3-030-45237-7 17

TACAS
Evaluation
Artifact

2020
Accepted

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45237-7_17&domain=pdf
http://orcid.org/0000-0002-6939-4189
http://orcid.org/0000-0001-8494-7696
http://orcid.org/0000-0002-3925-8557
https://doi.org/10.1007/978-3-030-45237-7_17

EMTST: Engineering the Meta-theory of Session Types 279

interest for mechanisation and formal proofs has risen significantly as a means
to increase the trust on systems.

Type systems offer certain security properties by construction. These guaran-
tees are backed by rigorous proofs (these proofs conform the meta-theory of the
system). Moreover, these proofs are cumbersome to write, maintain and extend.
Proof assistants aim to help with these problems. In this work, we develop the
EMTST library to aid in the implementation of session calculi type systems.
As a form of validation, we implement and replicate results in the meta-theory
of binary session types. Concretely, we use the Coq proof assistant [20] to study
the representation and meta-theory of the two systems described in [23].

EMTST uses locally nameless (LN)[1, 5] variable binders to represent syntax.
The tool implements a LN library with extended support for multiple binding
scopes, a robust environment implementation suitable for the challenges of ses-
sion typing disciplines. The library and lemmas are written taking advantage of
boolean reflection through the use of the Ssreflect [7] library.

We implement two case studies from [23]. The first study that we refer to
as the original system and the second that we refer to as the revised systems.
Notably, the way the original system handles names (in Sect. 3.1), makes its
representation impossible when using intrinsically α-convertible terms (e.g: loc-
ally nameless, de Bruijn indices, and many others). Furthermore in Sect. 3.2, we
discuss how the revised system allows us to implement and prove type preser-
vation. In hindsight, this problem appears as evident, but it is an unexpected
consequence, and it shows that mechanising proofs brings further understanding
even to well-established and thoroughly studied systems. EMTST and our case
studies are available at https://github.com/emtst/emtst-proof.

The rest of the paper is structured in the following way: in the next section
we introduce the ideas and design behind EMTST our library for mechanising
the meta-theory of session types. Subsequently in Sect. 3, we present the two case
studies: in Sect. 3.1 the original system from [23, 11] and the revisited system in
Sect. 3.2. We finalise, by giving a conclusion and related work.

2 EMTST: a Tool for Representing the Meta-theory of
Session Types

The study of meta-theory (i.e: proving a system has the expected properties)
gives us confidence in the design. Additionally, proof formalisations, not only
give us confidence in the results, but also often result in new insights about
a problem. This is due to the fact that successful mechanisations require very
precise specifications and careful thought to define and revisit all the concepts.
In this context, EMTST is a tool that implements locally nameless (initially
proposed by [8, 14, 13], and more recently further developed in [1, 5]) with
multiple binding scopes, and a robust typing environment implementation using
boolean reflection (by building on top of ssreflect [7]).

The key concept of LN is to use de Bruijn indices [2] for bound variables
and names (sometimes called “atoms” in the literature) for free variables. A

https://github.com/emtst/emtst-proof

280 D. Castro et al.

representation of syntax is well formed, namely locally closed, when this invariant
is respected (i.e.: no de Bruijn index is free). Finally, in order to deal with open
terms, there are two convenient operations on syntax, one is to open binders in
terms, and one to close binders. The former substitutes a bound variable with a
fresh name, and the other does the converse. For more details, refer to our tech
report [4], the references, and the implementation.

2.1 Environments and Multiple Name Scopes

Module Type ATOM.
Parameter atom : Set.
Definition t := atom.

(∗ atoms can be compared to booleans ∗)
Parameter eq atom : atom → atom → bool.
Parameter eq reflect : ∀ (a b : atom),
ssrbool.reflect (a = b) (eq atom a b).

Parameter atom eqMixin : Equality.mixin of atom.
Canonical atom eqType := EqType atom atom eqMixin.

Parameter fresh : seq atom → atom.
Parameter fresh not in : ∀ l, (fresh l) /∈ l.
(∗ ... ∗)

End ATOM.

Figure 1. The type of atoms

Locally nameless imple-

mentation is in three files.
The first (theories/Atom.v)
provides the basic definition
and specification of atoms to
act as names, the second one
(theories/AtomScopes.v)
provides a way to create mul-
tiple disjoint sets of names for
representing variables in the
different scopes that session
types require (e.g. variables

and channel names), and the final one (theories/Env.v) implements contexts
and typings as finite maps, with emphasis on supporting the linearity require-
ments of various session typing disciplines.

We use module types and parametrised modules to abstract the type of
atoms together with their supported operations. Figure 1 shows the interface for
working with atoms: how to compare them and functions to obtain a fresh atom
given a finite sequence of atoms (definition: fresh), and to have proof that the
fresh atom is actually fresh (definition: fresh_not_in).

Environments. Environments are parametrised over two types, one for the
keys, and one for the type of values. Environments env are either undefined, or
a finite map of unique keys and values. All the operations keep the invariant
that any operation that would lead to a duplicated entry key makes the tree
undefined. We define the expected operations and lemmas over the type env.
We provide an extensive library of proved theorems about environments that is
tailored to support linear and affine systems.

EMTST is used in the two formalisations in Sect. 3.1 and 3.2 and we claim
they are also suitable for other mechanisations where resource sensitivity and
locally nameless are required. A release version of EMTST is available at [3]
and the public repository at: https://github.com/emtst/emtst-proof.

3 Two Case Studies on Binary Session Types

EMTST is intended to help with the complex binding structure of concurrent
calculi that have names as a first class notion together with linear or affine typing

https://github.com/emtst/emtst-proof

EMTST: Engineering the Meta-theory of Session Types 281

disciplines. We study two seminal session type systems in the literature. First
the original system, from Honda, Vasconcelos and Kubo’s binary session type
system [11] that is a milestone in the development of type systems for concurrent
process calculi. This system types structured interaction between processes and
supports channel mobility, that is higher-order sessions. Second, we implement
the revisited session type presentation from [23], inspired by [6]. Our technical
report [4] contains an extensive presentation.

3.1 The Original System

Process P ,Q,R ::=
| request a (k).P session request
| accept a (k).P session accept
| k ![e]; P data send
| k ?(x).P data receive
| k � m;P selection
| k � {l : P []r : Q} branching
| throw k [k′];P channel send
| catch k (k′).P channel receive

e ::= true | false | . . . expression

| if e then P else Q conditional
| P | Q parallel
| inact inaction
| νn (a).P name hiding
| νc (k).P channel hiding
| !P replication

m ::= l | r labels

Figure 2. Syntax using names

Figure 2 presents the syntax following [23], where names are ranged by
a, b, c,. . . , channels are ranged by k and k′. Notice that all the places where
there are variable binders are denoted with parenthesis followed by a dot (e.g:
k ?(x).P). The syntax is straightforwardly defined as the proc inductive type in
theories/SyntaxO.v and following the LN technique the locally closed predic-
ate, that formalises the binding structure, is defined as the predicate lc.

Besides its syntax, the original system is specified by its reduction, congru-
ence and typing relations. We want to call attention to an important reduction
rule for passing names:

[Pass-Nm] throw k [k′];P | catch k (k′).Q −→ P | Q

This rule states that when passing a channel k’the receiving end has to bind a
channel using the same name (or be α-convertible to that name). Notoriously, the
name k’is a bound name in the receiving end, and the restriction imposed by the
rule is a subtle change to the equality up-to α-conversion convention. Moreover,
relaxations of that requirement may break subject reduction, a complete discus-
sion is presented in Sect. 3 of [23]. As it is, this rule cannot be formalised in
a representation that cannot distinguish between α-equivalent terms. Since in
these representations, one cannot talk about the actual name of a bound variable.
This is fundamentally what it means to be up-to α-equality. As a consequence,
in locally nameless we are forced to specify the following rule:

[Pass-LN]
lcP bodyQ

throw k [k′];P | catch k ().Q −→ P | Qk
′

282 D. Castro et al.

In this version of the rule, the bound name is just an anonymous de Bruijn
index, and when it is opened it is assigned the same name k’. This change might
look innocent, but it breaks subject reduction. In theories/TypesO.v, we show
that the same counter example from [23] is typable and that it breaks subject
reduction. This is presented in the CounterExample module and in the oft_reduced
lemma. In the next section, we discuss how this problem was addressed.

3.2 The Revised System

As discussed in Sect. 3.1 and [23], the presentation of the original session types
calculus [11] makes extending it (and representing it in LN) a delicate opera-
tion. Fortunately, the revised system (also from [23], inspired by [6]) proposes
a solution. Indeed, this solution is readily implementable using LN (and many
other representations with implicit α-equivalence).

The key insight in the design of the revisited system is considering channel

endpoints instead of just channels. As before, a new channel is created when a
requested session is accepted, and each continuation gets one of the endpoints of
the newly created channel.

Inductive proc : Set :=
| request : scvar → proc → proc

| accept : scvar → proc → proc

| send : channel → exp → proc → proc
| receive : channel → proc → proc

| select :
channel → label → proc → proc

| branch :
channel → proc → proc → proc

| throw :
channel → channel → proc → proc

| catch : channel → proc → proc

| ife : exp → proc → proc → proc
| par : proc → proc → proc
| inact : proc

| nu ch : proc → proc (∗ hides a channel name ∗)

| nu nm : proc → proc (∗ hides a name ∗)

| bang : proc → proc (∗ process replication ∗)
.

Legend:

proc process binds variable from ASC

proc process binds variable from AEV

proc process binds variable from ALC

proc process binds variable from ACN

Figure 3. Syntax representation annotated with binders

For the revisited system’s formalisation we distinguish binders in four cat-
egories (as shown in Figure 3): First, expression variables, with names from the
set AEV, then shared channel variables from ASC, also linear channel variables
from ALC, and finally channel names from ACN (these names can also be bound
in restrictions). Channel names are not variables, but objects that exist at run-
time.

EMTST: Engineering the Meta-theory of Session Types 283

Multiple disjoint sets of names simplify reasoning about free names (con-
cretely, it avoids freshness problems among different kinds of binders). This is
an engineering compromise, as having more binders duplicates some easy theor-
ems but, in exchange, they simplify the harder theorems that rely on facts about
LN open/close operations. Other compromises are possible.

This concludes the technical development, and represents a full proof of sub-
ject reduction for binary types, following the revised system1 as defined in [23].

4 Related Work and Conclusions

We presented EMTST, a tool conceived to aid in the mechanisation of session
calculi. Our tool supports locally nameless representations with many disjoint
atom scopes, and a versatile representation of environments. All while taking
advantage of the small scale reflection style of proofs. We validated our design
by formalising the subject reduction proof for a full session calculus type sys-
tem. And, we explored issues with adequacy when, for example, systems contain
fragile specifications.

Tools like Metalib [22] (implemented based on [1]) and AutoSubst [18] exist,
but lack the ability to represent different binding scopes in the same syntax.
Also, Polonowski [17] implements a library for generic environments, while this
library is similar to ours, it does not make use of boolean reflection, that, in
our opinion simplifies dealing with the equality of environments. While these
libraries were influential, our requirements of multiple scopes of binding and
boolean reflection proofs, means that we needed to develop EMTST, our own
fit for purpose library.

Finally, formalisations of session types in proof assistants exist in the literat-
ure (e.g.: [21, 24, 19, 16, 9]). Most of them with ad-hoc binder representations.
They are not necessarily meant to be reused or general enough for other devel-
opments. This paper, and the EMTST library are a step towards helping this
become easier. For that purpose we developed the library and validated its claims
by formalising existing systems from the literature. In the process (see Sect. 3.1
vs Sect. 3.2), we motivate how early mechanisation would help avoid problems
in the presentation of a system. In the future, we plan to extend our use of the
library to reason about multiparty session types [12] and other systems.

Acknowledgements

This work was supported in part by EPSRC projects EP/K011715/1,
EP/K034413/1, EP/L00058X/1, EP/N027833/1, EP/N028201/1,
and EP/T006544/1.

1 A minor difference is that we use a simpler version of recursion compared to the
original paper.

Bibliography

[1] Aydemir, B., Charguéraud, A., Pierce, B.C., Pollack, R., Weirich, S.: En-
gineering formal metatheory. In: Proceedings of the 35th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
pp. 3–15. POPL ’08, ACM, New York, NY, USA (2008)

[2] de Bruijn, N.: Lambda calculus notation with nameless dummies, a tool
for automatic formula manipulation, with application to the Church-Rosser
theorem. Indag. Math 34(5), 381–392 (1972)

[3] Castro, D., Ferreira, F., Yoshida, N.: EMTST - Engineering Meta-theory of
Session Types (Oct 2019), https://doi.org/10.5281/zenodo.3516299

[4] Castro, D., Ferreira, F., Yoshida, N.: Engineering the meta-theory of
session types. Tech. Rep. 2019/4, Imperial College London (2019),
https://www.doc.ic.ac.uk/research/technicalreports/2019/#4

[5] Charguéraud, A.: The locally nameless representation. Journal of Auto-
mated Reasoning 49(3), 363–408 (Oct 2012)

[6] Gay, S., Hole, M.: Subtyping for session types in the pi calculus. Acta
Informatica 42(2), 191–225 (Nov 2005)

[7] Gonthier, G., Mahboubi, A.: An introduction to small scale reflection in
coq. Journal of Formalized Reasoning 3(2), 95–152 (2010)

[8] Gordon, A.D.: A mechanisation of name-carrying syntax up to alpha-
conversion. In: Joyce, J.J., Seger, C.J.H. (eds.) Higher Order Logic Theorem
Proving and Its Applications. pp. 413–425. Springer Berlin Heidelberg, Ber-
lin, Heidelberg (1994)

[9] Goto, M., Jagadeesan, R., Jeffrey, A., Pitchar, C., Riely, J.: An extensible
approach to session polymorphism. Mathematical Structures in Computer
Science 26(3), 465–509 (2016)

[10] Honda, K.: Types for dyadic interaction. In: Best, E. (ed.) CONCUR’93.
pp. 509–523. Springer Berlin Heidelberg, Berlin, Heidelberg (1993)

[11] Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type
discipline for structured communication-based programming. In: Hankin,
C. (ed.) Programming Languages and Systems. pp. 122–138. Springer Berlin
Heidelberg, Berlin, Heidelberg (1998)

[12] Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session
types. In: Proc. of 35th Symp. on Princ. of Prog. Lang. pp. 273–284. POPL
’08, ACM, New York, NY, USA (2008)

[13] McBride, C., McKinna, J.: Functional pearl: I am not a number–i am a free
variable. In: Proceedings of the 2004 ACM SIGPLANWorkshop on Haskell.
pp. 1–9. Haskell ’04, ACM, New York, NY, USA (2004)

[14] McKinna, J., Pollack, R.: Some lambda calculus and type theory formalized.
Journal of Automated Reasoning 23(3), 373–409 (Nov 1999)

[15] Milner, R., Parrow, J., Walker, D.: A Calculus of Mobile Processes, Parts I
and II. Info.& Comp. 100(1) (1992)

284 D. Castro et al.

https://doi.org/10.5281/zenodo.3516299
https://www.doc.ic.ac.uk/research/technicalreports/2019/#4

EMTST: Engineering the Meta-theory of Session Types 285

[16] Orchard, D.A., Yoshida, N.: Using session types as an effect system. In:
Proceedings Eighth International Workshop on Programming Language Ap-
proaches to Concurrency- and Communication-cEntric Software, PLACES
2015, London, UK, 18th April 2015. pp. 1–13 (2015)

[17] Polonowski, E.: Generic environments in coq. CoRR abs/1112.1316 (2011),
http://arxiv.org/abs/1112.1316

[18] Schäfer, S., Tebbi, T., Smolka, G.: Autosubst: Reasoning with de bruijn
terms and parallel substitutions. In: Zhang, X., Urban, C. (eds.) Interactive
Theorem Proving - 6th International Conference, ITP 2015, Nanjing, China,
August 24-27, 2015. LNAI, Springer-Verlag (Aug 2015)

[19] Tassarotti, J., Jung, R., Harper, R.: A higher-order logic for concur-
rent termination-preserving refinement. In: Yang, H. (ed.) Programming
Languages and Systems. pp. 909–936. Springer Berlin Heidelberg, Berlin,
Heidelberg (2017)

[20] The Coq Development Team: The Coq Proof Assistant Reference Manual
v. 8.6.1. Institut National de Recherche en Informatique et en Automatique
(2016)

[21] Thiemann, P.: Intrinsically-typed mechanized semantics for session types.
In: Proceedings of the 21st International Symposium on Principles and
Practice of Programming Languages 2019. pp. 19:1–19:15. PPDP ’19, ACM,
New York, NY, USA (2019)

[22] Weirich, S., collaborators: Metalib – the penn locally nameless metatheory
library. https://github.com/plclub/metalib (2008)

[23] Yoshida, N., Vasconcelos, V.T.: Language primitives and type discipline for
structured communication-based programming revisited: Two systems for
higher-order session communication. Electronic Notes in Theoretical Com-
puter Science 171(4), 73 – 93 (2007), proceedings of the First International
Workshop on Security and Rewriting Techniques (SecReT 2006)

[24] Zalakian, U.: Type-checking session-typed π-calculus with Coq. Master’s
thesis, University of Glasgow (2019)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

http://arxiv.org/abs/1112.1316
https://github.com/plclub/metalib
http://creativecommons.org/licenses/by/4.0/

Games and Automata

Solving Mean-Payoff Games
via Quasi Dominions�

Massimo Benerecetti , Daniele Dell’Erba , and Fabio Mogavero

Università degli Studi di Napoli Federico II, Naples, Italy

Abstract. We propose a novel algorithm for the solution of mean-payoff
games that merges together two seemingly unrelated concepts introduced
in the context of parity games, small progress measures and quasi do-
minions. We show that the integration of the two notions can be highly
beneficial and significantly speeds up convergence to the problem solution.
Experiments show that the resulting algorithm performs orders of mag-
nitude better than the asymptotically-best solution algorithm currently
known, without sacrificing on the worst-case complexity.

1 Introduction

In this article we consider the problem of solving mean-payoff games, namely
infinite-duration perfect-information two-player games played on weighted di-
rected graphs, each of whose vertexes is controlled by one of the two players. The
game starts at an arbitrary vertex and, during its evolution, each player can take
moves at the vertexes it controls, by choosing one of the outgoing edges. The
moves selected by the two players induce an infinite sequence of vertices, called
play. The payoff of any prefix of a play is the sum of the weights of its edges. A
play is winning if it satisfies the game objective, called mean-payoff objective,
which requires that the limit of the mean payoff, taken over the prefixes lengths,
never falls below a given threshold ν.

Mean-payoff games have been first introduced and studied by Ehrenfeucht
and Mycielski in [20], who showed that positional strategies suffice to obtain
the optimal value. A slightly generalized version was also considered by Gur-
vich et al. in [24]. Positional determinacy entails that the decision problem for
these games lies in NPTime∩CoNPTime [34], and it was later shown to belong
to UPTime ∩CoUPTime [25], being UPTime the class of unambiguous non-
deterministic polynomial time. This result gives the problem a rather peculiar
complexity status, shared by very few other problems, such as integer factoriza-
tion [22], [1] and parity games [25]. Despite various attempts [7, 19, 24, 30, 34], no
polynomial-time algorithm for the mean-payoff game problems is known so far.

A different formulation of the game objective allows to define another class of
quantitative games, known as energy games. The energy objective requires that,
given an initial value c, called credit, the sum of c and the payoff of every prefix

�
Partially supported by GNCS 2019 & 2020 projects “Metodi Formali per Tecniche di Verifica
Combinata” and “Ragionamento Strategico e Sintesi Automatica di Sistemi Multi-Agente”.

© The Author(s) 2020
A. Biere and D. Parker (Eds.): TACAS 2020, LNCS 12079, pp. 289–306, 2020.
https://doi.org/10.1007/978-3-030-45237-7 18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45237-7_18&domain=pdf
http://orcid.org/0000-0003-4664-6061
http://orcid.org/0000-0003-1196-6110
http://orcid.org/0000-0002-5140-5783
https://doi.org/10.1007/978-3-030-45237-7_18

290 M. Benerecetti et al.

of the play never falls below 0. These games, however, are tightly connected to
mean-payoff games, as the two type of games have been proved to be log-space
equivalent [11]. They are also related to other more complex forms of quantitative
games. In particular, unambiguous polynomial-time reductions [25] exist from
these games to discounted payoff [34] and simple stochastic games [18].

Recently, a fair amount of work in formal verification has been directed to con-
sider, besides correctness properties of computational systems, also quantitative
specifications, in order to express performance measures and resource require-
ments, such as quality of service, bandwidth and power consumption and, more
generally, bounded resources. Mean-payoff and energy games also have important
practical applications in system verification and synthesis. In [14] the authors
show how quantitative aspects, interpreted as penalties and rewards associated
to the system choices, allow for expressing optimality requirements encoded as
mean-payoff objectives for the automatic synthesis of systems that also satisfy
parity objectives. With similar application contexts in mind, [9] and [8] further
contribute to that effort, by providing complexity results and practical solutions
for the verification and automatic synthesis of reactive systems from quantitative
specifications expressed in linear time temporal logic extended with mean-payoff
and energy objectives. Further applications to temporal networks have been
studied in [16] and [15]. Consequently, efficient algorithms to solve mean-payoff
games become essential ingredients to tackle these problems in practice.

Several algorithms have been devised in the past for the solution of the decision
problem for mean-payoff games, which asks whether there exists a strategy for one
of the players that grants the mean-payoff objective. The very first deterministic
algorithm was proposed in [34], where it is shown that the problem can be solved
with O

(
n3 ·m ·W)

arithmetic operations, with n and m the number of positions
and moves, respectively, and W the maximal absolute weight in the game. A
strategy improvement approach, based on iteratively adjusting a randomly chosen
initial strategy for one player until a winning strategy is obtained, is presented
in [31], which has an exponential upper bound. The algorithm by Lifshits and
Pavlov [29], which runs in time O(n ·m · 2n · log2 W), computes the “potential”
of each game position, which corresponds to the initial credit that the player
needs in order to win the game from that position. Algorithms based on the
solution of linear feasibility problems over the tropical semiring have been also
provided in [2–4]. The best known deterministic algorithm to date, which requires
O(n ·m ·W) arithmetic operations, was proposed by Brim et al. [13]. They adapt
to energy and mean-payoff games the notion of progress measures [28], as applied
to parity games in [26]. The approach was further developed in [17] to obtain the
same complexity bound for the optimal strategy synthesis problem. A strategy-
improvement refinement of this technique has been introduced in [12]. Finally,
Bjork et al. [6] proposed a randomized strategy-improvement based algorithm

running in time min{O(
n2 ·m ·W)

, 2O(
√
n·log n)}.

Our contribution is a novel mean-payoff progress measure approach that
enriches such measures with the notion of quasi dominions, originally introduced
in [5] for parity games. These are sets of positions with the property that as

Solving Mean-Payoff Games via Quasi Dominions 291

long as the opponent chooses to play to remain in the set, it loses the game for
sure, hence its best choice is always to try to escape. A quasi dominion from
where escaping is not possible is a winning set for the other player. Progress
measure approaches, such as the one of [13], typically focus on finding the best
choices of the opponent and little information is gathered on the other player.
In this sense, they are intrinsically asymmetric. Enriching the approach with
quasi dominions can be viewed as a way to also encode the best choices of the
player, information that can be exploited to speed up convergence significantly.
The main difficulty here is that suitable lift operators in the new setting do
not enjoy monotonicity. Such a property makes proving completeness of classic
progress measure approaches almost straightforward, as monotonic operators do
admit a least fixpoint. Instead, the lift operator we propose is only inflationary
(specifically, non-decreasing) and, while still admitting fixpoints [10, 33], need
not have a least one. Hence, providing a complete solution algorithm proves
more challenging. The advantages, however, are significant. On the one hand,
the new algorithm still enjoys the same worst-case complexity of the best known
algorithm for the problem proposed in [13]. On the other hand, we show that
there exist families of games on which the classic approach requires a number of
operations that can be made arbitrarily larger than the one required by the new
approach. Experimental results also witness the fact that this phenomenon is by
no means isolated, as the new algorithm performs orders of magnitude better
than the algorithm developed in [13].

2 Mean-Payoff Games

A two-player turn-based arena is a tuple A =〈Ps⊕,Ps�,Mv〉, with Ps⊕∩Ps� = ∅
and Ps � Ps⊕ ∪ Ps�, such that 〈Ps,Mv〉 is a finite directed graph without sinks.
Ps⊕ (resp., Ps�) is the set of positions of player ⊕ (resp., �) and Mv ⊆ Ps× Ps
is a left-total relation describing all possible moves. A path in V ⊆ Ps is a finite
or infinite sequence π ∈ Pth(V) of positions in V compatible with the move
relation, i.e., (πi, πi+1) ∈ Mv , for all i ∈ [0, |π| − 1). A positional strategy for
player α ∈ {⊕,�} on V ⊆ Ps is a function σα ∈ Strα(V) ⊆ (V ∩ Psα) → Ps,
mapping each α-position v in the domain of σα to position σα(v) compatible
with the move relation, i.e., (v, σα(v)) ∈ Mv . With Strα(V) we denote the set
of all α-strategies on V, while Strα denotes

⋃
V⊆Ps Strα(V). A play in V ⊆ Ps

from a position v ∈ V w.r.t. a pair of strategies (σ⊕, σ�) ∈ Str⊕(V)× Str�(V),
called ((σ⊕, σ�), v)-play, is a path π ∈ Pth(V) such that π0 = v and, for all
i ∈ [0, |π| − 1), if πi ∈ Ps⊕ then πi+1 = σ⊕(πi) else πi+1 = σ�(πi). The play
function play : (Str⊕(V)×Str�(V))×V → Pth(V) returns, for each position v ∈ V
and pair of strategies (σ⊕, σ�) ∈ Str⊕(V)× Str�(V), the maximal ((σ⊕, σ�), v)-
play play((σ⊕, σ�), v). If a pair (σ⊕, σ�) ∈ Str⊕(V) × Str�(V) induces a finite
play starting from position v ∈ V, then play((σ⊕, σ�), v) identifies the maximal
prefix of that play that is contained in V.

A mean-payoff game (MPG for short) is a tuple � =〈A,Wg,wg〉, where A
is an arena, Wg ⊂ Z is a finite set of integer weights, and wg : Ps → Wg is a

292 M. Benerecetti et al.

weight function assigning a weight to each position. Ps+ (resp., Ps−) denotes
the set of positive-weight positions (resp., non-positive-weight positions). For
convenience, we shall refer to non-positive weights as negative weights. Notice
that this definition of MPG is equivalent to the classic formulation in which the
weights label the moves, instead. The weight function naturally extends to paths,

by setting wg(π) �
∑|π|−1

i=0 wg(πi). The goal of player ⊕ (resp., �) is to maximize

(resp., minimize) v(π) � lim infi→∞ 1
i · wg(π≤i), where π≤i is the prefix up to

index i. Given a threshold ν, a set of positions V ⊆ Ps is a ⊕-dominion, if there
exists a ⊕-strategy σ⊕ ∈ Str⊕(V) such that, for all �-strategies σ� ∈ Str�(V)
and positions v ∈ V, the induced play π = play((σ⊕, σ�), v) satisfies v(π) > ν.
The pair of winning regions (Wn⊕,Wn�) forms a ν-mean partition. Assuming
ν integer, the ν-mean partition problem is equivalent to the 0-mean partition
one, as we can subtract ν to the weights of all the positions. As a consequence,
the MPG decision problem can be equivalently restated as deciding whether
player ⊕ (resp., �) has a strategy to enforce lim infi→∞ 1

i · wg(π≤i) > 0 (resp.,
lim infi→∞ 1

i · wg(π≤i) ≤ 0), for all the resulting plays π.

3 Solving Mean-Payoff Games via Progress Measures

The abstract notion of progress measure [28] has been introduced as a way to
encode global properties on paths of a graph by means of simpler local properties
of adjacent vertexes. In the context of MPGs, the graph property of interest,
called mean-payoff property, requires that the mean payoff of every infinite path in
the graph be non-positive. More precisely, in game theoretic terms, a mean-payoff
progress measure witnesses the existence of strategy σ� for player � such that
each path in the graph induced by fixing that strategy on the arena satisfies the
desired property. A mean-payoff progress measure associates with each vertex
of the underlying graph a value, called measure, taken from the set of extended
natural numbers N∞ � N ∪ {∞}, endowed with an ordering relation ≤ and an
addition operation +, which extend the standard ordering and addition over the
naturals in the usual way. Measures are associated with positions in the game
and the measure of a position v can intuitively be interpreted as an estimate
of the payoff that player ⊕ can enforce on the plays starting in v. In this sense,
they measure “how far” v is from satisfying the mean-payoff property, with the
maximal measure ∞ denoting failure of the property for v. More precisely, the
�-strategy induced by a progress measure ensures that measures do not increase
along the paths of the induced graph. This ensures that every path eventually
gets trapped in a non-positive-weight cycle, witnessing a win for player �.

To obtain a progress measure, one starts from some suitable association of
position of the game with measures. The local information encoded by these
measures is then propagated back along the edges of the underlying graph so
as to associate with each position the information gathered along plays of some
finite length starting from that position. The propagation process is performed
according to the following intuition. The measures of positions adjacent to v
are propagated back to v only if those measures push v further away from the

Solving Mean-Payoff Games via Quasi Dominions 293

property. This propagation is achieved by means of a measure stretch operation
+, which adds, when appropriate, the measure of an adjacent position to the
weight of a given position. This is established by comparing the measure of v
with those of its adjacent positions, since, for each position v, the mean-payoff
property is defined in terms of the sum of the weights encountered along the plays
from that position. The process ends when no position can be pushed further
away from the property and each position is not dominated by any, respectively
one, of its adjacents, depending on whether that position belongs to player ⊕
or to player �, respectively. The positions that did not reach measure ∞ are
those from which player � can win the game and the set of measures currently
associated with such positions forms a mean-payoff progress measure.

To make the above intuitions precise, we introduce the notion of measure
function, progress measure, and an algorithm for computing progress measures
correctly. It is worth noticing that the progress-measure based approach as
described in [13], called SEPM from now on, can be easily recast equivalently
in the form below. A measure function μ : Ps → N∞ maps each position v in
the game to a suitable measure μ(v). The order ≤ of the measures naturally
induces a pointwise partial order � on the measure functions defined in the
usual way, namely, for any two measure functions μ1 and μ2, we write η1 � η2 if
μ1(v) ≤ μ2(v), for all positions v. The set of measure functions over a measure
space, together with the induced ordering �, forms a measure-function space.

Definition 1 (Measure-Function Space). The measure-function space is the
partial order F �〈MF,�〉 whose components are defined as follows:

1. MF � Ps → N∞ is the set of all functions μ ∈ MF, called measure functions,
mapping each position v ∈ Ps to a measure μ(v) ∈ N∞;

2. for all μ1, μ2 ∈ MF, it holds that μ1 � μ2 if μ1(v) ≤ μ2(v), for all v ∈ Ps.

The ⊕-denotation (resp., �-denotation) of a measure function μ ∈ MF is the set
‖μ‖⊕ � μ−1(∞) (resp., ‖μ‖� � μ−1(∞)) of all positions having maximal (resp.,
non-maximal) measure associated within μ.

Consider a position v with an adjacent u with measure η. A measure update
of η w.r.t. v is obtained by the stretch operator +: N∞ × Ps → N∞, defined as
η + v � max{0, η + wg(v)}, which corresponds to the payoff estimate that the
given position will obtain by choosing to follow the move leading to the u.

A mean-payoff progress measure is such that the measure associated with
each game position v need not be increased further in order to beat the actual
payoff of the plays starting from v. In particular, it can be defined by taking into
account the opposite attitude of the two players in the game. While the player ⊕
tries to push toward higher measures, the player � will try to keep the measures
as low as possible. A measure function in which the payoff of each ⊕-position
(resp., �-position) v is not dominated by the payoff of all (resp., some of) its
adjacents augmented with the weight of v itself meets the requirements.

Definition 2 (Progress Measure). A measure function μ ∈ MF is a progress
measure if the following two conditions hold true, for all positions v ∈ Ps:

294 M. Benerecetti et al.

1. μ(u) + v ≤ μ(v), for all adjacents u ∈ Mv(v) of v, if v ∈ Ps⊕;
2. μ(u) + v ≤ μ(v), for some adjacent u ∈ Mv(v) of v, if v ∈ Ps�.

The following theorem states the fundamental property of progress measures,
namely, that every position with a non-maximal measures is won by player �.

Theorem 1 (Progress Measure). ‖μ‖� ⊆ Wn�, for all progress measures μ.

In order to obtain a progress measure from a given measure function, one can
iteratively adjust the current measure values in such a way to force the progress
condition above among adjacent positions. To this end, we define the lift operator
lift : MF → MF as follows:

lift(μ)(v) �

{
max{μ(w) + v : w ∈ Mv(v)}, if v ∈ Ps⊕;
min{μ(w) + v : w ∈ Mv(v)}, otherwise.

Note that the lift operator is clearly monotone and, therefore, admits a least
fixpoint. A mean-payoff progress measure can be obtained by repeatedly applying
this operator until a fixpoint is reached, starting from the minimal measure
function μ0 � {v ∈ Ps �→ 0} that assigns measure 0 to all the positions in
the game. The following solver operator applied to μ0 computes the desired
solution: sol � lfpμ . lift(μ) : MF → MF. Observe that the measures generated by
the procedure outlined above have a fairly natural interpretation. Each positive
measure, indeed, under-approximates the weight that player ⊕ can enforce along
finite prefixes of the plays from the corresponding positions. This follows from the
fact that, while player ⊕ maximizes its measures along the outgoing moves, player
� minimizes them. In this sense, each positive measure witnesses the existence
of a positively-weighted finite prefix of a play that player ⊕ can enforce. Let
S �

∑{wg(v) ∈ N : v ∈ Ps ∧ wg(v) > 0} be the sum of all the positive weights
in the game. Clearly, the maximal payoff of a simple play in the underlying
graph cannot exceed S. Therefore, a measure greater than S witnesses the
existence of a cycle whose payoff diverges to infinity and is won, thus, by player
⊕. Hence, any measure strictly greater than S can be substituted with the
value ∞. This observation establishes the termination of the algorithm and is
instrumental to its completeness proof. Indeed, at the fixpoint, the measures
actually coincide with the highest payoff player ⊕ is able to guarantee. Soundness
and completeness of the above procedure have been established in [13], where the
authors also show that, despite the algorithm requiring O(n · S) = O

(
n2 ·W)

lift operations in the worst-case, with n the number of positions and W the
maximal positive weight in the game, the overall cost of these lift operations is
O(S ·m · logS) = O(n ·m ·W · log(n ·W)), with m the number of moves and
O(logS) the cost of arithmetic operations to compute the stretch of the measures.

4 Solving Mean-Payoff Games via Quasi Dominions

Let us consider the simple example game depicted in Figure 1, where the shape
of each position indicates the owner, circles for player ⊕ and square for its

Solving Mean-Payoff Games via Quasi Dominions 295

opponent �, and, in each label of the form �/w, the letter w corresponds to the
associated weight, where we assume k > 1. Starting from the smallest measure
function μ0 = {a, b, c, d �→ 0}, the first application of the lift operator returns
μ1 = {a �→ k; b, c �→ 0; d �→ 1} = lift(μ0). After that step, the following iterations
of the fixpoint alternatively updates positions c and d, since the other ones already
satisfy the progress condition. Being c ∈ Ps�, the lift operator chooses for it the
measure computed along the move (c, d), thus obtaining μ2(c) = lift(μ1)(c) =
μ1(d) = 1. Subsequently, d is updated to μ3(d) = lift(μ2)(d) = μ2(c) + 1 = 2. A
progress measure is obtained after exactly 2k+1 iterations, when the measure of c
reaches value k and d value k+1. Note, however, that the choice of the move (c, d)
is clearly a losing strategy for player �, as remaining in the highlighted region
would make the payoff from position c diverge. Therefore, the only reasonable
choice for player � is to exit from that region by taking the move leading
to position a. An operator able to diagnose this phenomenon early on could
immediately discard the move (c, d) and jump directly to the correct payoff
obtained by choosing the move to position a. As we shall see, such an operator
might lose the monotonicity property and recovering the completeness of the
resulting approach will prove more involved.

In the rest of this article we devise a progress operator that does precisely
that. We start by providing a notion of quasi dominion, originally introduced for
parity games in [5], which can be exploited in the context of MPGs.

Definition 3 (Quasi Dominion). An set of positions Q ⊆ Ps is a quasi ⊕-
dominion if there exists a ⊕-strategy σ⊕ ∈ Str⊕(Q), called ⊕-witness for Q,
such that, for all �-strategies σ� ∈ Str�(Q) and positions v ∈ Q, the play π =
play((σ⊕, σ�), v), called (σ⊕, v)-play in Q, satisfies wg(π) > 0. If the condition
wg(π) > 0 holds only for infinite plays π, then Q is called weak quasi ⊕-dominion.

a/k b/0

c/0 d/1c/0 d/1

Fig. 1: An MPG.

Essentially, a quasi ⊕-dominion consists in a set Q of po-
sitions starting from which player ⊕ can force plays in Q of
positive weight. Analogously, any infinite play that player ⊕ can
force in a weak quasi ⊕-dominion has positive weight. Clearly,
any quasi ⊕-dominion is also a weak quasi ⊕-dominion. More-
over, the latter are closed under subsets, while the former are
not. It is an immediate consequence of the definition above that

all infinite plays induced by the ⊕-witness, if any, necessarily have infinite weight
and, thus, are winning for player ⊕. Indeed, every such a play π is regular, i.e. it
can be decomposed into a prefix π′ and a simple cycle (π′′)ω, i.e. π = π′(π′′)ω,
since the strategies we are considering are memoryless. Now, wg((π′′)ω) > 0, so,
wg(π′′) > 0, which implies wg((π′′)ω) = ∞. Hence, wg(π) = ∞.

Proposition 1. Let Q be a weak quasi ⊕-dominion with σ⊕ ∈ Str⊕(Q) one of its
⊕-witnesses and Q	 ⊆ Q. Then, for all �-strategies σ� ∈ Str�(Q

) and positions
v ∈ Q	 the following holds: if the (σ⊕�Q� , v)-play π = play((σ⊕�Q� , σ�), v) is
infinite, then wg(π) = ∞.

296 M. Benerecetti et al.

From Proposition 1, it directly follows that, if a weak quasi ⊕-dominion Q is
closed w.r.t. its ⊕-witness, namely all the induced plays are infinite, then it is a
⊕-dominion, hence is contained in Wn⊕.

Consider again the example of Figure 1. The set of position Q � {a, c, d} forms
a quasi ⊕-dominion whose ⊕-witness is the only possible ⊕-strategy mapping
position d to c. Indeed, any infinite play remaining in Q forever and compatible
with that strategy (e.g., the play from position c when player � chooses the move
from c leading to d or the one from a to itself or the one from a to d) grants an
infinite payoff. Any finite compatible play, instead, ends in position a (e.g., the
play from c when player � chooses the move from c to a and then one from a

to b) giving a payoff of at least k > 0. On the other hand, Q	 � {c, d} is only a
weak quasi ⊕-dominion, as player � can force a play of weight 0 from position
c, by choosing the exiting move (c, a). However, the internal move (c, d) would
lead to an infinite play in Q	 of infinite weight.

The crucial observation here is that the best choice for player � in any
position of a (weak) quasi ⊕-dominion is to exit from it as soon as it can, while
the best choice for player ⊕ is to remain inside it as long as possible. The idea of
the algorithm we propose in this section is to precisely exploit the information
provided by the quasi dominions in the following way. Consider the example
above. In position a player � must choose to exit from Q = {a, c, d}, by taking
the move (a, b), without changing its measure, which would corresponds to its
weight k. On the other hand, the best choice for player � in position c is to
exit from the weak quasi-dominion Q	 = {c, d}, by choosing the move (c, a)
and lifting its measure from 0 to k. Note that this contrasts with the minimal
measure-increase policy for player � employed in [13], which would keep choosing
to leave c in the quasi-dominion by following the move to d, which gives the
minimal increase in measure of value 1. Once c is out of the quasi-dominion,
though, the only possible move for player ⊕ is to follow c, taking measure k + 1.
The resulting measure function is the desired progress measure.

In order to make this intuitive idea precise, we need to be able to identify
quasi dominions first. Interestingly enough, the measure functions μ defined in the
previous section do allow to identify a quasi dominion, namely the set of positions
μ−1(0) having positive measure. Indeed, as observed at the end of that section, a
positive measure witnesses the existence of a positively-weighted finite play that
player ⊕ can enforce from that position onward, which is precisely the requirement

of Definition 3. In the example of Figure 1, μ−1
0 (0) = ∅ and μ−1

1 (0) = {a, c, d} are
both quasi dominions, the first one w.r.t. the empty ⊕-witness and the second
one w.r.t. the ⊕-witness σ⊕(d) = c.

We shall keep the quasi-dominion information in pairs (μ, σ), called quasi-
dominion representations (qdr, for short), composed of a measure function μ and
a ⊕-strategy σ, which corresponds to one of the ⊕-witnesses of the set of positions
with positive measure in μ. The connection between these two components is
formalized in the definition below that also provides the partial order over which
the new algorithm operates.

Solving Mean-Payoff Games via Quasi Dominions 297

Definition 4 (QDR Space). The quasi-dominion-representation space is the
partial order Q �〈QDR,�〉, whose components are defined as follows:

1. QDR ⊆ MF× Str⊕ is the set of all pairs � � (μ
, σ
) ∈ QDR, called quasi-
dominion-representations, composed of a measure function μ
 ∈ MF and a

⊕-strategy σ
 ∈ Str⊕(Q(�)), where Q(�) � μ−1

 (0), for which:

(a) Q(�) is a quasi ⊕-dominion enjoying σ
 as a ⊕-witness;
(b) ‖μ
‖⊕ is a ⊕-dominion;
(c) μ
(v) ≤ μ
(σ
(v)) + v, for all ⊕-positions v ∈ Q(�) ∩ Ps⊕;
(d) μ
(v) ≤ μ
(u) + v, for all �-positions v ∈ Q(�) ∩ Ps� and u ∈ Mv(v);

2. for all �1, �2 ∈ QDR, it holds that �1 � �2 if μ
1 � μ
2 and σ
1(v) = σ
2(v),
for all ⊕-positions v ∈ Q(�1) ∩ Ps⊕ with μ
1

(v) = μ
2
(v).

The α-denotation ‖�‖α of a qdr �, with α ∈ {⊕,�}, is the α-denotation ‖μ
‖α
of its measure function.

Condition 1a is obvious. Condition 1b, instead, requires that every position
with infinite measure is indeed won by player ⊕ and is crucial to guarantee
the completeness of the algorithm. Finally, Conditions 1c and 1d ensure that
every positive measure under approximates the actual weight of some finite play
within the induced quasi dominion. This is formally captured by the following
proposition, which can be easily proved by induction on the length of the play.

Proposition 2. Let � be a qdr and vπu a finite path starting at position v ∈ Ps
and terminating in position u ∈ Ps compatible with the ⊕-strategy σ
. Then,
μ
(v) ≤ wg(vπ) + μ
(u).

It is immediate to see that every MPG admits a non-trivial QDR space,
since the pair (μ0, σ0), with μ0 the smallest measure function and σ0 the empty
strategy, trivially satisfies all the required conditions.

Proposition 3. Every MPG has a non-empty QDR space associated with it.

The solution procedure we propose, called QDPM from now on, can intuitively
be broken down as an alternation of two phases. The first one tries to lift the
measures of positions outside the quasi dominion Q(�) in order to extend it,
while the second one lifts the positions inside Q(�) that can be forced to exit
from it by player �. The algorithm terminates when no new position can be
absorbed within the quasi dominion and no measure needs to be lifted to allow
the �-winning positions to exit from it, when possible. To this end, we define
a controlled lift operator lift : QDR×2Ps×2Ps ⇀ QDR that works on qdrs and
takes two additional parameters, a source and a target set of positions. The
intended meaning is that we want to restrict the application of the lift operation
to the positions in the source set S, while using only the moves leading to the
target set T. The different nature of the two types of lifting operations is reflected
in the actual values of the source and target parameters.

lift(�, S,T) � �	, where

298 M. Benerecetti et al.

μ
�(v) �

⎧⎪⎨⎪⎩
max{μ
(u) + v : u ∈ Mv(v) ∩ T}, if v ∈ S ∩ Ps⊕;
min{μ
(u) + v : u ∈ Mv(v) ∩ T}, if v ∈ S ∩ Ps�;

μ
(v), otherwise;

and, for all ⊕-positions v ∈ Q(�) ∩ Ps⊕, we choose σ
�(v) ∈ argmaxu∈Mv(v)∩T

μ
(u) + v, if μ
�(v) �= μ
(v), and σ
�(v) = σ
(v), otherwise. Except for the
restriction on the outgoing moves considered, which are those leading to the
targets in T, the lift operator acts on the measure component of a qdr very
much like the original lift operator does. In order to ensure that the result is still
a qdr, however, the lift operator must also update the ⊕-witness of the quasi
dominion. This is required to guarantee that Conditions 1a and 1c of Definition 4
are preserved. If the measure of a ⊕-position v is not affected by the lift, the
⊕-witness must not change for that position. However, if the application of the
lift operation increases the measure, then the ⊕-witness on v needs to be updated
to any move (v, u) that grants measure μ
�(v) to v. In principle, more than one
such move may exist and any one of them can serve as witness.

The solution corresponds to the inflationary fixpoint [10, 33] of the two
phases mentioned above, sol � ifp � . prg+(prg0(�)) : QDR ⇀ QDR, defined by
the progress operators prg0 and prg+. The first phase is computed by the operator

prg0 : QDR ⇀ QDR as follows: prg0(�) � sup{�, lift(�,Q(�),Ps)}. This operator
is responsible of enforcing the progress condition on the positions outside the
quasi dominion Q(�) that do not satisfy the inequalities between the measures
along a move leading to Q(�) itself. It does that by applying the lift operator with
Q(�) as source and no restrictions on the moves. Those position that acquire a
positive measure in this phase contribute to enlarging the current quasi dominion.
Observe that the strategy component of the qdr is updated so that it is a
⊕-witness of the new quasi dominion. To guarantee that measures never decrease,
the supremum w.r.t. the QDR-space ordering is taken as result.

Lemma 1. μ
 is a progress measure over Q(�), for all fixpoints � of prg0.

The second phase, instead, implements the mechanism intuitively described
above, while analyzing the simple example of Figure 1. This is achieved by the
operator prg+ reported in Algorithm 1. The procedure iteratively examines the
current quasi dominion and lifts the measures of the positions that must exit
from it. Specifically, it processes Q(�) layer by layer, starting from the outer layer
of positions that must escape. The process ends when a, possibly empty, closed
weak quasi dominion is obtained. Recall that all the positions in a closed weak
quasi dominion are necessarily winning for player ⊕, due to Proposition 1. We
distinguish two sets of positions in Q(�). Those that already satisfy the progress
condition and those that do not. The measures of first ones already witness an
escape route from Q(�). The other ones, instead, are those whose current choice
is to remain inside it. For instance, when considering the measure function μ2 in
the example of Figure 1, position a belongs to the first set, while positions c and
d to the second one, since the choice of c is to follow the internal move (c, d).

Since the only positions that change measure are those in the second set, only
such positions need to be examined. To identify them, which form a weak quasi

Solving Mean-Payoff Games via Quasi Dominions 299

dominion Δ(�) strictly contained in Q(�), we proceed as follows. First, we collect
the set npp(�) of positions in Q(�) that do not satisfy the progress condition,
called the non-progress positions. Then, we compute the set of positions that
will have no choice other than reaching npp(�), by computing the inflationary
fixpoint of a suitable pre operator.

npp(�) � {v ∈ Q(�) ∩ Ps⊕ : ∃u ∈ Mv(v) . μ
(v) < μ
(u) + v}
∪ {v ∈ Q(�) ∩ Ps� : ∀u ∈ Mv(v) . μ
(v) < μ
(u) + v}.

pre(�,Q) � Q ∪ {v ∈ Q(�) ∩ Ps⊕ : σ
(v) ∈ Q}
∪ {v ∈ Q(�) ∩ Ps� : ∀u ∈ Mv(v) \Q . μ
(v) < μ
(u) + v}.

The final result is Δ(�) � (ifpQ . pre(�,Q))(npp(�)). Intuitively, Δ(�) contains all
the ⊕-positions that are forced to reach npp(�) via the quasi-dominion ⊕-witness
and all the �-positions that can only avoid reaching npp(�) by strictly increasing
their measure, which player � wants obviously to prevent.

It is important to observe that, from a functional view-point, the progress
operator prg+ would work just as well if applied to the entire quasi dominion Q(�),
since it would simply leave unchanged the measure of those positions that already
satisfy the progress condition. However, it is crucial that only the positions in
Δ(�) are processed in order to achieve the best asymptotic complexity bound
known to date. We shall reiterate on this point later on.

Alg. 1: Progress Operator

signature prg+ : QDR ⇀ QDR
function prg+(�)

1 Q ← Δ(�)
2 while esc(�,Q) �= ∅ do
3 E ← bep(�,Q)

4 � ← lift(�,E,Q)
5 Q ← Q \ E
6 � ← win(�,Q)
7 return �

At each iteration of the while-loop
of Algorithm 1, let Q denote the current
(weak) quasi dominion, initially set to
Δ(�) (Line 1). It first identifies the posi-
tions in Q that can immediately escape
from it (Line 2). Those are (i) all the
�-position with a move leading outside
of Q and (ii) the ⊕-positions v whose
⊕-witness σ
 forces v to exit from Q,
namely σ
(v) �∈ Q, and that cannot
strictly increase their measure by choos-
ing to remain in Q. While the condition
for �-position is obvious, the one for ⊕-positions require some explanation. The
crucial observation here is that, while player ⊕ does indeed prefer to remain in
the quasi dominion, it can only do so while ensuring that by changing strategy it
does not enable infinite plays within Q that are winning for the adversary. In
other words, the new ⊕-strategy must still be a ⊕-witness for Q and this can
only be ensured if the new choice strictly increases its measure. The operator
esc : QDR×2Ps → 2Ps formalizes the idea:

esc(�,Q) � {v ∈ Q ∩ Ps� : Mv(v) \Q �= ∅}
∪ {v ∈ Q ∩ Ps⊕ : σ
(v) �∈ Q ∧ ∀u ∈ Mv(v) ∩Q . μ
(u) + v ≤ μ
(v))}.

Consider, for instance, the example in Figure 2 and a qdr � such that
μ
 = {a �→ 3; b �→ 2; c, d, f �→ 1; e �→ 0} and σ
 = {b �→ a; f �→ d}. In this case,

300 M. Benerecetti et al.

we have Q
 = {a, b, c, d, f} and Δ(�) = {c, d, f}, since c is the only non-progress
positions, d is forced to follow c in order to avoid the measure increase required to
reach b, and f is forced by the ⊕-witness to reach d. Now, consider the situation
where the current weak quasi dominion is Q = {c, f}, i.e. after d has escaped
from Δ(�). The escape set of Q is {c, f}. To see why the ⊕-position f is escaping,
observe that μ
(f) + f = 1 = μ
(f) and that, indeed, should player ⊕ choose to
change its strategy and take the move (f, f) to remain in Q, it would obtain an
infinite play with payoff 0, thus violating the definition of weak quasi dominion.

a/3 b/−1

c/1 d/0

e/−3 f/0

c/1 d/0

f/0

Fig. 2: Another MPG.

Before proceeding, we want to stress an easy conse-
quence of the definition of the notion of escape set and
Conditions 1c and 1d of Definition 4, i.e., that every escape
position of the quasi dominion Q(�) can only assume its
weight as possible measure inside a qdr �, as reported
is the following proposition. This observation, together
with Proposition 2, ensures that the measure of a position
v ∈ Q(�) is an under approximation of the weight of all
finite plays leaving Q(�).

Proposition 4. Let � be a qdr. Then, μ
(v) = wg(v) >
0, for all v ∈ esc(�,Q(�)).

Now, going back to the analysis of the algorithm, if the escape set is non-empty,
we need to select the escape positions that need to be lifted in order to satisfy the
progress condition. The main difficulty is to do so in such a way that the resulting
measure function still satisfies Condition 1d of Definition 4, for all the �-positions
with positive measure. The problem occurs when a �-position can exit either
immediately or passing through a path leading to another position in the escape
set. Consider again the example above, where Q = Δ(�) = {c, d, f}. If position d

immediately escapes from Q using the move (d, b), it would change its measure
to μ′(d) = μ(b) + d = 2 > μ(d) = 1. Now, position c has two ways to escape,
either directly with move (c, a) or by reaching the other escape position d passing
through f. The first choice would set its measure to μ(a) + c = 4. The resulting
measure function, however, would not satisfy Condition 1d of Definition 4, as the
new measure of c would be greater than μ′(d) + c = 2, preventing to obtain a
qdr. Similarly, if position d escapes from Q passing through c via the move (c, a),
we would have μ′′(d) = μ′′(c) + d = (μ(a) + c) + d = 4 > 2 = μ(b) + d, still
violating Condition 1d. Therefore, in this specific case, the only possible way to
escape is to reach b. The solution to this problem is simply to lift in the current
iteration only those positions that obtain the lowest possible measure increase,
hence position d in the example, leaving the lift of c to some subsequent iteration
of the algorithm that would choose the correct escape route via d. To do so, we first
compute the minimal measure increase, called the best-escape forfeit, that each
position in the escape set would obtain by exiting the quasi dominion immediately.
The positions with the lowest possible forfeit, called best-escape positions, can all
be lifted at the same time. The intuition is that the measure of all the positions that
escape from a (weak) quasi dominion will necessarily be increased of at least the
minimal best-escape forfeit. This observation is at the core of the proof of Theorem 2

Solving Mean-Payoff Games via Quasi Dominions 301

(see the appendix) ensuring that the desired properties of qdrs are preserved by
the operator prg+. The set of best-escape positions is computed by the operator

bep : QDR×2Ps → 2Ps as follows: bep(�,Q) � argminv∈esc(
,Q) bef(μ
,Q, v), where

the operator bef : MF×2Ps×Ps → N∞ computes, for each position v in a quasi
dominion Q, its best-escape forfeit:

bef(μ,Q, v) �

{
max{μ(u) + v − μ(v) : u ∈ Mv(v) \Q}, if v ∈ Ps⊕;
min{μ(u) + v − μ(v) : u ∈ Mv(v) \Q}, otherwise.

In our example, bef(μ,Q, c) = μ(a) + c− μ(c) = 4− 1 = 3, while bef(μ,Q, d) =
μ(b) + d− μ(d) = 2− 1 = 1. Therefore, bep(�,Q) = {d}.

Once the set E of best-escape positions is identified (Line 3), the procedure
lifts them restricting the possible moves to those leading outside the current quasi
dominion (Line 4). Those positions are, then, removed from the set (Line 5), thus
obtaining a smaller weak quasi dominion ready for the next iteration.

The algorithm terminates when the (possibly empty) current quasi dominion
Q is closed. By virtue of Proposition 1, all those positions belong to Wn⊕ and
their measure is set to ∞ by means of the operator win : QDR×2Ps ⇀ QDR
(Line 6), which also computes the winning ⊕-strategy on those positions, as follows:
win(�,Q) � �	, where μ
� � μ
[Q �→ ∞] and, for all ⊕-positions v ∈ Q(�)∩Ps⊕,
we choose σ
�(v) ∈ argmaxu∈Mv(v)∩Q μ
(u)+ v, if σ
(v) �∈ Q, and σ
�(v) = σ
(v),
otherwise. Observe that, since we know that every ⊕-position v ∈ Q ∩ Ps⊕, whose
current⊕-witness leads outside Q, is not an escape position, any move (v, u) within
Q that grants the maximal stretch μ
(u) + v strictly increases its measure and,
therefore, is a possible choice for a ⊕-witness of the ⊕-dominion Q.

At this point, it should be quite evident that the progress operator prg+ is
responsible of enforcing the progress condition on the positions inside the quasi
dominion Q(�), thus, the following necessarily holds.

Lemma 2. μ
 is a progress measure over Q(�), for all fixpoints � of prg+.

In order to prove the correctness of the proposed algorithm, we first need to
ensure that any quasi-dominion space Q is indeed closed under the operators
prg0 and prg+. This is established by the following theorem, which states that
the operators are total functions on that space.

Theorem 2. The operators prg0 and prg+ are total inflationary functions.

Since both operators are inflationary, so is their composition, which admits
fixpoint. Therefore, the operator sol is well defined. Moreover, following the same
considerations discussed at the end of Section 3, it can be proved the fixpoint is
obtained after at most n · (S + 1) iterations. Let ifpk X .F(X) denote the k-th
iteration of an inflationary operator F. Then, we have the following theorem.

Theorem 3 (Termination). The solver operator sol � ifp � . prg+(prg0(�)) is
a well-defined total function. Moreover, for every � ∈ QDR it holds that sol(�) =
(ifpk �

	 . prg+(prg0(�
)))(�), for some index k ≤ n · (S+1), where n is the number

of positions in the MPG and S �
∑{wg(v) ∈ N : v ∈ Ps ∧ wg(v) > 0} the total

sum of its positive weights.

302 M. Benerecetti et al.

As already observed before, Figure 1 exemplifies an infinite family of games
with a fixed number of positions and increasing maximal weight k over which the
SEPM algorithm requires 2k + 1 iterations of the lift operator. On the contrary,
QDPM needs exactly two iterations of the solver operator sol to find the progress
measure, starting from the smallest measure function μ0. Indeed, the first iteration
returns a measure function μ1 = sol(μ0), with μ1(a) = k, μ1(b) = μ1(c) = 0,
and μ1(d) = 1, while the second one μ2 = sol(μ1) identifies the smallest progress
measure, with μ1(a) = μ1(c) = k, μ1(b) = 0, and μ1(d) = k + 1. From this
observations, the next result immediately follows.

Theorem 4. An infinite family of MPGs {�k}k exists on which QDPM requires
a constant number of measure updates, while SEPM requires O(k) such updates.

From Theorem 1 and Lemmas 1 and 2 it follows that the solution provided
by the algorithm is indeed a progress measure, hence establishing soundness.
Completeness follows from Theorem 3 and from Condition 1b of Definition 4
that ensures that all the positions with infinite measure are winning for player ⊕.

Theorem 5 (Correctness). ‖sol(�)‖� = Wn�, for every � ∈ QDR.

The following lemma ensures that each execution of the operator prg+ strictly
increases the measure of all the positions in Δ(�).

Lemma 3. Let �	 � prg+(�). Then, μ
�(v) > μ
(v), for all positions v ∈ Δ(�).

Recall that each position can at most be lifted S + 1 = O(n ·W) times and,
by the previous lemma, the complexity of sol only depends on the cumulative
cost of such lift operations. We can express, then, the total cost as the sum, over
the set of positions in the game, of the cost of all the lift operations performed
on that positions. Each such operation can be computed in time linear in the
number of incoming and outgoing moves of the corresponding lifted position v,
namely O

(
(|Mv(v)|+ |Mv−1(v)|) · logS), with O(logS) the cost of each arith-

metic operation involved. Summing all up, the actual asymptotic complexity of
the procedure can, therefore, be expressed as O(n ·m ·W · log(n ·W)).

Theorem 6 (Complexity). QDPM requires time O(n ·m ·W · log(n ·W)) to
solve an MPG with n positions, m moves, and maximal positive weight W .

5 Experimental Evaluation

In order to assess the effectiveness of the proposed approach, we implemented
both QDPM and SEPM [13], the most efficient known solution to the problem
and the more closely related one to QDPM, in C++ within Oink [32]. Oink
has been developed as a framework to compare parity game solvers. However,
extending the framework to deal with MPGs is not difficult. The form of the
arenas of the two types of games essentially coincide, the only relevant difference
being that MPGs allow negative numbers to label game positions. We ran the
two solvers against randomly generated MPGs of various sizes. 1

1 The experiments were carried out on a 64-bit 3.9GHz quad-core machine, with Intel
i5-6600K processor and 8GB of RAM, running Ubuntu 18.04.

Solving Mean-Payoff Games via Quasi Dominions 303

10−2.6 10−2.4 10−2.2 10−2 10−1.8

10−2

10−1

100

101

102

103

104

105

×1

×10

×102

×103

×104

×105

×106

×107

QDPM

S
E
P
M

Fig. 3: Random games with 104 positions.

Figure 3 compares the solution time,
expressed in seconds, of the two algo-
rithms on 4000 games, each with 104 po-
sitions and randomly assigned weights
in the range [−15× 103, 15× 103]. The
scale of both axes is logarithmic. The ex-
periments are divided in 4 clusters, each
containing 1000 games. The benchmarks
in different clusters differ in the maximal
number m of outgoing moves per posi-
tion, with m ∈ {10, 20, 40, 80}. These
experiments clearly show that QDPM
substantially outperforms SEPM. Most
often, the gap between the two algo-
rithms is between two and three orders
of magnitude, as indicated by the dashed diagonal lines. It also shows that SEPM
is particularly sensitive to the density of the underlying graph, as its performance
degrades significantly as the number of moves increases. The maximal solution
time was 21000 sec. for SEPM and 0.017 sec. for QDPM. Figure 4, instead,
compares the two algorithms fixing the maximal out-degree of the underlying
graphs to 2, in the left-hand picture, and to 40, in the right-hand one, while
increasing the number of positions from 103 to 105 along the x-axis. Each picture
displays the performance results on 2800 games. Each point shows the total time
to solve 100 randomly generated games with that given number of positions,
which increases by 1000 up to size 2 ·103 and by 10000, thereafter. In both pictures
the scale is logarithmic. For the experiments in the right-hand picture we had to
set a timeout for SEPM to 45 minutes per game, which was hit most of the times
on the bigger ones. Once again, the QDPM significantly outperforms SEPM on
both kinds of benchmarks, with a gap of more than an order of magnitude on
the first ones, and a gap of more than three orders of magnitude on the second
ones. The results also confirm that the performance gap grows considerably as
the number of moves per position increases.

5 10 15 20 30 40 50 60 70 80 90 100

101

102

103

104

104.53
QDPM

SEPM

5 10 15 20 30 40 50 60 70 80 90 100

100.86
101

102

103

104

104.7
QDPM

SEPM

Fig. 4: Total solution times in seconds of SEPM and QDPM on 5600 random games.

304 M. Benerecetti et al.

We are not aware of actual concrete benchmarks for MPGs. However, exploit-
ing the standard encoding of parity games into mean-payoff games [25], we can
compare the behavior of SEPM and QDPM on concrete verification problems
encoded as parity games. For completeness, Table 1 reports some experiments
on such problems. The table reports the execution times, expressed in seconds,
required by the two algorithms to solve instances of two classic verification
problems: the Elevator Verification and the Language Inclusion problems. These
two benchmarks are included in the PGSolver [23] toolkit and are often used
as benchmarks for parity games solvers. The first benchmark is a verification
under fairness constraints of a simple model of an elevator, while the second
one encodes the language inclusion problem between a non-deterministic Büchi
automaton and a deterministic one. The results on various instances of those
problems confirm that QDPM significantly outperforms the classic progress
measure approach. Note also that the translation into MPGs, which encodes
priorities as weights whose absolute value is exponential in the values of the
priorities, leads to games with weights of high magnitude. Hence, the results
in Table 1 provide further evidence that QDPM is far less dependent on the
absolute value of the weights. They also show that QDPM can be very effective
for the solution of real-world qualitative verification problems.

Benchmark Positions Moves SEPM QDPM

Elevator 1 144 234 0.0661 0.0001
Elevator 2 564 950 8.80 0.0003
Elevator 3 2688 4544 4675.71 0.0017

Lang. Incl. 1 170 1094 3.18 0.0021
Lang. Incl. 2 304 1222 16.76 0.0019
Lang. Incl. 3 428 878 20.25 0.0033
Lang. Incl. 4 628 1538 135.51 0.0029
Lang. Incl. 5 509 2126 148.37 0.0034
Lang. Incl. 6 835 2914 834.90 0.0051
Lang. Incl. 7 1658 4544 2277.87 0.0100

Table 1: Concrete verification problems.

It is worth noting, though, that the
translation from parity to MPGs gives
rise to weights that are exponentially
distant from each other [25]. As a con-
sequence, the resulting benchmarks
are not necessarily representative of
MPGs, being a very restricted sub-
class. Nonetheless, they provide evi-
dence of the applicability of the ap-
proach in practical scenarios.

6 Concluding Remarks

We proposed a novel solution algorithm for the decision problem of MPGs that
integrates progress measures and quasi dominions. We argue that the integration
of these two concepts may offer significant speed up in convergence to the solution,
at no additional computational cost. This is evidenced by the existence of a
family of games on which the combined approach can perform arbitrarily better
than a classic progress measure based solution. Experimental results also show
that the introduction of quasi dominions can often reduce solution times up to
three order of magnitude, suggesting that the approach may be very effective
in practical applications as well. We believe that the integration approach we
devised is general enough to be applied to other types of games. In particular,
the application of quasi dominions in conjunction with progress measure based
approaches, such as those of [27] and [21], may lead to practically efficient quasi
polynomial algorithms for parity games and their quantitative extensions.

Solving Mean-Payoff Games via Quasi Dominions 305

References

1. M. Agrawal, N. Kayal, and N. Saxena, “PRIMES is in P.” AM, vol. 160, no. 2, pp.
781–793, 2004.

2. X. Allamigeon, P. Benchimol, and S. Gaubert, “Combinatorial Simplex Algorithms
Can Solve Mean-Payoff Games.” SIAM, vol. 24, no. 4, pp. 2096–2117, 2014.

3. ——, “The Tropical Shadow-Vertex Algorithm Solves Mean-Payoff Games in Poly-
nomial Time on Average.” in ICALP’14, 2014, pp. 89–100.

4. X. Allamigeon, P. Benchimol, S. Gaubert, and M. Joswig, “Tropicalizing the Simplex
Algorithm.” SIAM, vol. 29, no. 2, pp. 751–795, 2015.

5. M. Benerecetti, D. Dell’Erba, and F. Mogavero, “Solving Parity Games via Priority
Promotion.” in CAV’16, ser. LNCS 9780 (Part II). Springer, 2016, pp. 270–290.

6. H. Björklund, S. Sandberg, and S. Vorobyov, “A Combinatorial Strongly Subexpo-
nential Strategy Improvement Algorithm for Mean-Payoff Games.” in MFCS’04,
2004, pp. 673–685.

7. H. Björklund and S. Vorobyov, “A Combinatorial Strongly Subexponential Strategy
Improvement Algorithm for Mean-Payoff Games.” DAM, vol. 155, no. 2, pp. 210–229,
2007.

8. A. Bohy, V. Bruyère, E. Filiot, and J.-F. Raskin, “Synthesis from LTL Specifications
with Mean-Payoff Objectives.” in TACAS’13, 2013, pp. 169–184.

9. U. Boker, K. Chatterjee, T. Henzinger, and O. Kupferman, “Temporal Specifications
with Accumulative Values.” in LICS’11, 2011, pp. 43–52.

10. N. Bourbaki, “Sur le Théorème de Zorn.” AM, vol. 2, no. 6, pp. 434–437, 1949.

11. P. Bouyer, U. Fahrenberg, K. Larsen, N. Markey, and J. Srba, “Infinite Runs
in Weighted Timed Automata with Energy Constraints.” in FORMATS’2008.
Springer, 2008, pp. 33–47.

12. L. Brim and J. Chaloupka, “Using Strategy Improvement to Stay Alive.” IJFCS,
vol. 23, no. 3, pp. 585–608, 2012.

13. L. Brim, J. Chaloupka, L. Doyen, R. Gentilini, and J.-F. Raskin, “Faster Algorithms
for Mean-Payoff Games.” FMSD, vol. 38, no. 2, pp. 97–118, 2011.

14. R. B. K. Chatterjee, T. Henzinger, and B. Jobstmannand, “Better Quality in
Synthesis Through Quantitative Objectives.” in CAV’09, 2009, pp. 140–156.

15. C. Comin, R. Posenato, and R. Rizzi, “Hyper Temporal Networks - A Tractable
Generalization of Simple Temporal Networks and its Relation to Mean-Payoff
Games.” Constraints, vol. 22, no. 2, 2017.

16. C. Comin and R. Rizzi, “Dynamic Consistency of Conditional Simple Temporal
Networks via Mean-Payoff Games: A Singly-Exponential Time DC-checking.” in
TIME’15. IEEECS, 2015, pp. 19–28.

17. ——, “Improved Pseudo-Polynomial Bound for the Value Problem and Optimal
Strategy Synthesis in Mean-Payoff Games.” Algorithmica, vol. 77, no. 4, 2017.

18. A. Condon, “The Complexity of Stochastic Games.” IC, vol. 96, no. 2, pp. 203–224,
1992.

19. V. Dhingra and S. Gaubert, “How to Solve Large Scale Deterministic Games with
Mean Payoff by Policy Iteration.” in VALUETOOLS’06. ACM, 2006, p. 12.

20. A. Ehrenfeucht and J. Mycielski, “Positional Strategies for Mean Payoff Games.”
IJGT, vol. 8, no. 2, 1979.

21. J. Fearnley, S. Jain, S. Schewe, F. Stephan, and D. Wojtczak, “An Ordered Approach
to Solving Parity Games in Quasi Polynomial Time and Quasi Linear Space.” in
SPIN’17. ACM, 2017, pp. 112–121.

306 M. Benerecetti et al.

22. M. Fellows and N. Koblitz, “Self-Witnessing Polynomial-Time Complexity and
Prime Factorization.” in CSCT’92. IEEECS, 1992, pp. 107–110.

23. O. Friedmann and M. Lange, “Solving Parity Games in Practice.” in ATVA’09, ser.
LNCS 5799. Springer, 2009, pp. 182–196.

24. V. Gurvich, A. Karzanov, and L. Khachivan, “Cyclic Games and an Algorithm to
Find Minimax Cycle Means in Directed Graphs.” USSRCMMP, vol. 28, no. 5, pp.
85–91, 1988.

25. M. Jurdziński, “Deciding the Winner in Parity Games is in UP ∩ co-UP.” IPL,
vol. 68, no. 3, pp. 119–124, 1998.

26. ——, “Small Progress Measures for Solving Parity Games.” in STACS’00, ser.
LNCS 1770. Springer, 2000, pp. 290–301.

27. M. Jurdziński and R. Lazic, “Succinct Progress Measures for Solving Parity Games.”
in LICS’17. ACM, 2017, pp. 1–9.

28. N. Klarlund, “Progress Measures for Complementation of omega-Automata with
Applications to Temporal Logic.” in FOCS’91. IEEECS, 1991, pp. 358–367.

29. Y. Lifshits and D. Pavlov, “Potential theory for mean payoff games.” JMS, vol. 145,
no. 3, pp. 4967–4974, 2007.

30. N. Pisaruk, “Mean-Cost Cyclical Games.” MOR, vol. 24, no. 4, pp. 817–828, 1999.
31. S. Schewe, “An Optimal Strategy Improvement Algorithm for Solving Parity and

Payoff Games.” in CSL’08, ser. LNCS 5213. Springer, 2008, pp. 369–384.
32. T. van Dijk, “Oink: an Implementation and Evaluation of Modern Parity Game

Solvers.” in TACAS’18, ser. LNCS 10805. Springer, 2018, pp. 291–308.
33. E. Witt, “Beweisstudien zum Satz von M. Zorn.” MN, vol. 4, no. 1-6, pp. 434–438,

1950.
34. U. Zwick and M. Paterson, “The Complexity of Mean Payoff Games on Graphs.”

TCS, vol. 158, no. 1-2, pp. 343–359, 1996.

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source,

provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Partial-Order Reduction for Parity Games with
an Application on Parameterised Boolean

Equation Systems

Thomas Neele(), Tim A.C. Willemse, and Wieger Wesselink

Eindhoven University of Technology, Eindhoven, The Netherlands
{t.s.neele, t.a.c.willemse, j.w.wesselink}@tue.nl

Abstract. Partial-order reduction (POR) is a well-established technique
to combat the problem of state-space explosion. We propose POR tech-
niques that are sound for parity games, a well-established formalism for
solving a variety of decision problems. As a consequence, we obtain the
first POR method that is sound for model checking for the full modal
μ-calculus. Our technique is applied to, and implemented for the fixed
point logic called parameterised Boolean equation systems, which pro-
vides a high-level representation of parity games. Experiments indicate
that substantial reductions can be achieved.

1 Introduction

In the field of formal methods, model checking [2] is a popular technique to anal-
yse the behaviour of concurrent processes. However, the arbitrary interleaving
of these parallel processes can cause an exponential blowup, which is known as
the state-space explosion problem. Several approaches have been identified to
alleviate this issue, by reducing the state space on-the-fly, i.e., while generating
it. Two established techniques are symmetry reduction [13] and partial-order re-
duction (POR) [8,26,30]. Whereas symmetry reduction can only be applied to
systems that contain several copies of a component, POR also applies to het-
erogeneous systems. However, a major drawback of POR is that most variants
at best preserve only a fragment of a given logic, such as LTL or CTL* with-
out the next operator (LTL−X/CTL∗

−X) [7] or the weak modal μ-calculus [28].
Furthermore, the variants of POR that preserve a branching time logic impose
significant restrictions on the reduction by only allowing the prioritisation of
exactly one action at a time. This decreases the amount of reduction achieved.

In this paper, we address these shortcomings by applying POR on parity
games. A parity game is an infinite-duration, two-player game played on a di-
rected graph with decorations on the nodes, in which the players even (denoted
�) and odd (denoted �) strive to win the nodes of the graph. An application of
parity games is encoding a model checking question: a combination of a model,
in the form of a transition system, and a formal property, formulated in the
modal μ-calculus [16]. In such games, every node v represents the combination

© The Author(s) 2020
A. Biere and D. Parker (Eds.): TACAS 2020, LNCS 12079, pp. 307–324, 2020.
https://doi.org/10.1007/978-3-030-45237-7_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45237-7_19&domain=pdf
https://doi.org/10.1007/978-3-030-45237-7_19

308 T. Neele et al.

of a state s from the transition system and a (sub)formula ϕ. Under a typical
encoding, player � wins in v if and only if ϕ holds in s.

In the context of model checking, parity games suffer from the same state-
space explosion that models do. Exploring the state space of a parity game under
POR can be a very effective way to address this. Our contributions are as follows:
– We propose conditions (Def. 4) that ensure that the reduction function used

to reduce the parity game is correct, i.e., preserves the winning player of the
parity game (Thm. 1).

– We identify improvements for the reduction by investigating the typical
structure of a parity game that encodes a model checking question.

– We illustrate how to apply our POR technique in the context of solving
parameterised Boolean equation systems (PBESs) [10]—a fixed point logic
closely related to LFP—as a high-level representation of a parity game.

– We extend the ideas of [17] with support for non-determinism and experiment
with an implementation for solving PBESs.

Our approach has two distinct benefits over traditional POR techniques that
operate on transition systems. First, it is the first work that enables the use of
partial-order reduction for model checking for the full modal μ-calculus. Second,
the conditions that we propose are strictly weaker than those necessary to pre-
serve the branching structure of a transition system used in other approaches to
POR for branching time logics [7,28], increasing the effectiveness of POR.

The experiments with our implementation for solving PBESs are quite promis-
ing. Our results show that, in particular, those instances in which PBESs en-
code model checking problems involving large state spaces benefit from the use
of partial-order reduction. In such cases, a significant size reduction is possible,
even when checking complex μ-calculus formulae, and the time penalty of con-
ducting the static analysis is more than made up for by the speed-up in the state
space exploration phase.

Related Work There are several proposals for using partial-order reduction for
branching-time logics. Groote and Sellink [9] define several forms of confluence
reduction and prove which behavioural equivalences (and by extension, which
fragments of logics) are preserved. In confluence reduction, one tries to identify
internal transitions that can safely be prioritised, leading to a smaller state
space. Ramakrishna and Smolka [28] propose a notion that coincides with strong
confluence from [9], preserving weak bisimilarity and the corresponding logic
weak modal μ-calculus.

Similar ideas are presented by Gerth et al. in [7]. Their approach is based on
the ample set method [26] and preserves a relation they call visible bisimulation
and the associated logic CTL−X . To preserve the branching structure, they
introduce a singleton proviso which, contrary to our theory, can greatly impair
the amount of reduction that can be achieved (see our Example 3, page 313).

Valmari [33] describes the stubborn sets method for LTL−X model checking.
In general, stubborn sets allow for larger reductions than ample sets. While
investigating the use of stubborn sets for parity games, we identified a subtle issue
in one of the stubborn set conditions (called D1 in [33]). When applied to LTSs

Partial-Order Reduction for Parity Games 309

or KSs, this means that LTL−X is not necessarily preserved. Moreover, using
the condition in the setting of parity games may result in games with different
winners; for an example, see our technical report [24]. In [21], we further explore
the consequences of the faulty condition for stubborn-set based POR techniques
that can be found in the literature. We here resort to a strengthened version of
condition D1 that does not suffer from these issues.

Similar to our approach, Peled [27] applies POR on the product of a transition
system and a Büchi automaton, which represents an LTL−X property. It is
important to note, though, that this original theory is not sound, as discussed
in [29]. Kan et al. [14] improve on Peled’s ideas and manage to preserve all of LTL.
To achieve this, they analyse the Büchi automaton that corresponds to the LTL
formula to identify which part is stutter insensitive. With this information, they
can reduce the state space in the appropriate places and preserve the validity of
the LTL formula under consideration.

The recent work by Bønneland et al. [3] is close to ours in spirit, applying
stubborn-set based POR to reachability games. Such games can be used for
synthesis and for model checking reachability properties. Although the conditions
on reduction they propose seem unaffected by the aforementioned issue with D1,
unfortunately, their POR theory is nevertheless unsound, as we next illustrate.

In reachability games, player 1 tries to reach one of the goal states, while
player 2 tries to avoid them. Bønneland et al. propose a condition R that guar-
antees that all goal states in the full game are also reachable in the reduced game.
However, the reverse is not guaranteed: paths that do not contain a goal state
are not necessarily preserved, essentially endowing player 1 with more power.

b

a

a

b

Consider the (solitaire) reachability game depicted on the
right, in which all edges belong to player 2 and the only goal
state is indicated with grey. Player 2 wins the non-reduced
game by avoiding the goal state via the edges labelled with
a and then b. However, {b} is a stubborn set—according to
the conditions of [3]—in the initial state, and the dashed
transitions are thus eliminated in the reduced game. Hence, player 2 is forced to
move the token to the goal state and player 1 wins in the reduced game. In the
mean time, the authors of [3] confirmed and resolved the issue in [4].

Outline. We give a cursory overview of parity games in Section 2. In Section 3 we
introduce partial-order reduction for parity games, and we introduce a further
improvement in Section 3.3. Section 4 briefly introduces the PBES fixed point
logic, and in Section 5, we describe how to effectively implement parity-game
based POR for PBESs. We present the results of our experiments of using parity-
game based POR for PBESs in Section 6. We conclude in Section 7.

2 Preliminaries

Parity games are infinite-duration, two-player games played on a directed graph.
The objective of the players, called even (denoted by �) and odd (denoted by
�), is to win nodes in the graph.

310 T. Neele et al.

Definition 1. A parity game is a directed graph G = (V,E,Ω,P), where

– V is a finite set of nodes, called the state space;
– E ⊆ V × V is a total edge relation;
– Ω : V → N is a function that assigns a priority to each node; and
– P : V → {�,�} is a function that assigns a player to each node.

We write s −→ t whenever (s, t) ∈ E. The set of successors of a node s is
denoted with succ(s) = {t | s → t}. We use � to denote an arbitrary player and
�̄ to denote its opponent.

A parity game is played as follows: initially, a token is placed on some node
of the graph. The owner of the node can decide where to move the token; the
token may be moved along one of the outgoing edges. This process continues ad
infinitum, yielding an infinite path of nodes that the token moves through. Such
a path is called a play. A play π is won by player � if the minimal priority that
occurs infinitely often along π is even. Otherwise, it is won by player �.

To reason about moves that a player may want to take, we use the con-
cept of strategies. A strategy σ� : V + → V for player � is a partial func-
tion that determines where � moves the token next, after the token has passed
through a finite sequence of nodes. More formally, for all sequences s1 . . . sn
such that P(sn) = �, it holds that σ�(s1 . . . sn) ∈ succ(sn). If sn belongs to
�̄, σ�(s1 . . . sn) is undefined. A play s1, s2, . . . is consistent with a strategy σ if
and only if σ(s1 . . . si) = si+1 for all i such that σ(s1 . . . si) is defined. A player
� wins in a node s if and only if there is a strategy σ� such that all plays that
start in s and that are consistent with σ� are won by player �.

1s1 0 s2

1s3 2 s4

Example 1. Consider the parity game on the right. Here,
priorities are inscribed in the nodes and the nodes are
shaped according to their owner (� or �). Let π be
an arbitrary, possibly empty, sequence of nodes. In this
game, the strategy σ�, partially defined as σ�(πs1) = s2
and σ�(πs2) = s1, is winning for � in s1 and s2. After
all, the minimal priority that occurs infinitely often along
(s1s2)

ω is 0, which is even. Player� can win node s3 with the strategy σ�(πs3) =
s4. Note that player � is always forced to move the token from node s4 to s3. ��

3 Partial-Order Reduction

In model checking, arbitrary interleaving of concurrent processes can lead to
a combinatorial explosion of the state space. By extension, parity games that
encode model checking problems for concurrent processes suffer from the same
phenomenon. Partial-order reduction (POR) techniques help combat the blowup.
Several variants of POR exist, such as ample sets [26], persistent sets [8] and
stubborn sets [30,31]. The current work is based on Valmari’s stubborn set theory
as it can easily deal with nondeterminism [32].

Partial-Order Reduction for Parity Games 311

3.1 Weak Stubborn Sets

Partial-order reduction relies on edge labels, here referred to as events and typ-
ically denoted with the letter j, to categorise the set of edges in a graph and
determine independence of edges. In a typical application of POR, such events
and edge labellings are deduced from a high-level syntactic description of the
graph structure (see also Section 4). A reduction function subsequently uses
these events when producing an equivalent reduced graph structure from the
same high-level description. For now, we tacitly assume the existence of a set of
events and edge labellings for parity games and refer to the resulting structures
as labelled parity games.

Definition 2. A labelled parity game is a triple L = (G,S, �), where G =
(V,E,Ω,P) is a parity game, S is a non-empty set of events and � : S → 2E is
an edge labelling.

For the remainder of this section, we fix an arbitrary labelled parity game L =
(G,S, �). We write s

j
−→ t whenever s −→ t and (s, t) ∈ �(j). The same notation

extends to longer executions s
j1...jn
−−−−→ t. We say an event j is enabled in a node

s, notation s
j
−→, if and only if there is a transition s

j
−→ t for some t. The set of all

enabled events in a node s is denoted with enabledG(s). An event j is invisible if
and only if s

j
−→ t implies P(s) = P(t) and Ω(s) = Ω(t). Otherwise, j is visible.

A reduction function indicates which edges are to be explored in each node,
based on the events associated to the edges. Given some initial node ŝ, such a
function induces a unique reduced labelled parity game as follows.

Definition 3. Given a node ŝ ∈ V and a reduction function r : V → 2S. The
reduced labelled parity game induced by r and starting from ŝ is defined as
Lr = (Gr,S, �r), where �r(j) = �(j) ∩ Er and Gr = (Vr , Er, Ω,P) is such that:

– Er = {(s, t) ∈ E | ∃j ∈ r(s) : (s, t) ∈ �(j)} is the transition relation under r;
– Vr = {s | ŝE∗

r s} is the set of nodes reachable with Er, where E∗
r is the

reflexive transitive closure of Er.

Note that a reduced labelled parity game is only well-defined when r(s) ∩
enabledG(s) 	= ∅ for every node s ∈ Vr; if this property does not hold, Er is
not total. Even if totality of Er is guaranteed, the same node s may be won by
different players in L and Lr if no restrictions are imposed on r. The follow-
ing conditions on r, as we will show, are sufficient to ensure both. Below, we
say an event j is a key event in s iff for all executions s

j1...jn
−−−−→ s′ such that

j1 /∈ r(s), . . . , jn /∈ r(s), we have s′
j
−→. Key events are typically denoted jkey.

Definition 4. We say that a reduction function r : V → 2S is a weak stubborn
set iff for all nodes s ∈ V , the following conditions hold1:

1 As noted before, the condition D1 that we propose is stronger than the version in
literature [30,33] since that one suffers from the inconsistent labelling problem [21]
which also manifests itself in the parity game setting, see our technical report [24].

312 T. Neele et al.

D1 For all j ∈ r(s) and j1 /∈ r(s), . . . , jn /∈ r(s), if s
j1
−→ s1

j2
−→ · · ·

jn
−→ sn

j
−→

s′n, then there are nodes s′, s1, . . . , s
′
n−1 such that s

j
−→ s′

j1
−→ s′1

j2
−→ · · ·

jn
−→

s′n. Furthermore, if j is invisible, then si
j
−→ s′i for every 1 ≤ i < n.

D2w r(s) contains a key event in s.
V If r(s) contains an enabled visible event, then it contains all visible events.
I If an invisible event is enabled, then r(s) contains an invisible key event.
L For every visible event j, every cycle in the reduced game contains a node

s′ such that j ∈ r(s′).

Below, we also use (weak) stubborn set to refer to the set of events r(s) in some
node s. First, note that every key event, which we typically denote by jkey, in
a node s is enabled in s, by taking n = 0 in D2w; this guarantees totality of
Er. Condition D1 ensures that whenever an enabled event is selected for the
stubborn set, it does not disable executions not in r(s). A stubborn set can
never be empty, due to D2w. In a traditional setting where POR is applied on
a transition system, the combination of D1 and D2w is sufficient to preserve
deadlocks. Condition V enforces that either all visible events are selected for the
stubborn set, or none are. Condition L prevents the so called action-ignoring
problem, where a certain event is never selected for the stubborn set and ignored
indefinitely. Combined, I and L preserve plays with invisible events only.

We use the example below to further illustrate the purpose of—and need for—
conditions V, I and L. In particular, the example illustrates that the winning
player in the original game and the reduced game might be different if one of
these conditions is not satisfied.

Example 2. See the three parity games of Figure 1. From left to right, these
games show a reduced game under a reduction function satisfying D1 and D2w
but not V, I or L, respectively. In each case, we start exploration from the node
called ŝ, using the reduction function to follow the solid edges; consequently, the
winning strategy σ� for player � in the original game is lost. ��

Note that the games in Figure 1 are from a subclass of parity games called
weak solitaire, illustrating the need for the identified conditions even in restricted

1ŝ 2

3 5

k

j

l

j

k
l

σ�: klω

D1, D2w, I, L

0

ŝ

1

j

k

j

σ�: jω

D1, D2w, V, L

1

ŝ

2

j

k

j

σ�: kjω

D1, D2w, V, I

Fig. 1. Three games that show the winner is not necessarily preserved if we drop one
of the conditions V, I or L, respectively. The dashed nodes and edges are present in
the original game, but not in the reduced game. The edges taken from ŝ by the winning
strategy for player � in the original game are indicated below each game.

Partial-Order Reduction for Parity Games 313

settings. A game is weak if the priorities along all its paths are non-decreasing,
i.e., if s → t then Ω(s) ≤ Ω(t). A game is solitaire if only one player can make
non-trivial choices. Weak solitaire games can encode the model checking of safety
properties; solitaire games can capture logics such as LTL and ACTL∗.

Before we argue for the correctness of our POR approach in the next section,
we finish with a small example that illustrates how our approach improves over
existing methods for branching time logics.

Example 3. The conditions C1-C3 of Gerth et al. [7] preserve LTL−X and are
similar in spirit to our conditions. However, to preserve the branching structure,
needed for preservation of CTL−X , the following singleton proviso is introduced:
C4 Either enabledG(s) ⊆ r(s) or |r(s)| = 1.
This extra condition can severely impact the amount of reduction achieved:
consider the following two processes, where n ≥ 1 is some large natural number.

. . .
a1

a′

1

an

a′

n

. . .
b1

b′
1

bn

b′
n

The cross product of these processes contains (n+1)2 states. In the initial state,
neither {a1, a

′
1} nor {b1, b

′
1} is a valid stubborn set, due to C4. However, the la-

belled parity game constructed using these processes and the μ-calculus formula
νX.([−]X∧μY.(〈−〉Y ∨〈an〉true)), has a very similar shape that can be reduced
by prioritising transitions that correspond to bi or b

′
i for some 1 ≤ i ≤ n. Note

that this formula cannot be represented in LTL; condition C4 is therefore essen-
tial for the correctness. While several optimisations for CTL−X model checking
under POR are proposed in [19], unlike our approach, those optimisations only
work for certain classes of CTL−X formulas and not in general. ��

3.2 Correctness

Condition D2w suffices, as we already argued, to preserve totality of the tran-
sition relation of the reduced labelled parity game. Hence, we are left to argue
that the reduced game preserves and reflects the winner of the nodes of the
original game; this is formally claimed in Theorem 1. We do so by constructing
a strategy in the reduced game that mimics the winning strategy in the original
game. The plays that are consistent with these two strategies are then shown to
be stutter equivalent, which suffices to preserve the winner.

Fix a labelled parity game L = (G,S, �), a node ŝ, a weak stubborn set r

and the reduced labelled parity game Lr = (Gr,S, �r) induced by r and ŝ. We
assume r and ŝ are such that Gr has a finite state space. Below, ω is the set
containing all natural numbers and the smallest infinite ordinal number.

Definition 5. Let π = s0s1s2 . . . and π′ = t0t1t2 . . . be two paths in G. We
say π and π′ are stutter equivalent, notation π � π′, if and only if one of the
following conditions holds:
– π and π′ are both finite and there exists a non-decreasing partial function

f : ω → ω, with f(0) = 0 and f(|π|−1) = |π′|−1, such that for all 0 ≤ i < |π|
and i′ ∈ [f(i), f(i+ 1)), it holds that P(si) = P(ti′) and Ω(si) = Ω(ti′).

314 T. Neele et al.

– π and π′ are both infinite and there exists an unbounded, non-decreasing total
function f : ω → ω, with f(0) = 0, such that for all i and i′ ∈ [f(i), f(i+1)),
it holds that P(si) = P(ti′) and Ω(si) = Ω(ti′).

Lemma 1. All infinite stutter equivalent paths have the same winner.

In the lemmata below, we write →r to stress which transition must occur in Gr.

Lemma 2. Suppose s0
j1
−→ · · ·

jn
−→ sn

j
−→ s′n for j1 /∈ r(s0), . . . , jn /∈ r(s0)

and j ∈ r(s0). Then for some s′0, . . . , s
′
n, both s0

j
−→r s′0

j1
−→ · · ·

jn
−→ s′n and

s0 . . . sns
′
n � s0s

′
0 . . . s

′
n.

Lemma 3. Suppose s0
j1
−→ s1

j2
−→ . . . such that ji /∈ r(s0) for every ji occurring

on this execution. Then, the following holds:
– If the execution ends in sn, there exists a key event jkey, and nodes s′0, . . . , s

′
n

such that sn
jkey
−−→ s′n and s0

jkey
−−→r s′0

j1
−→ · · ·

jn
−→ s′n, and s0 . . . sn �

s0s
′
0 . . . s

′
n.

– If the execution is infinite, there exists another execution s0
jkey
−−→r s′0

j1
−→

s′1
j2
−→ . . . for some key event jkey and s0s1 · · · � s0s

′
0s

′
1

We remark that Lemma 3 also holds for reduced labelled parity games that
have an infinite state space, but where all the events are finitely branching. The
proof of correctness, viz., Theorem 1, uses the alternative executions described
by Lemma 2 and 3. For full details, we refer to [24]; we here limit ourselves to
sketching the intuition behind the application of these lemmata.

Example 4. The structure of Figure 2, in which parallel edges have the same
label, visualises part of a game in which the solid edges labelled j1j2j3 are part
of a winning play for player �. This play is mimicked by path that follows the
edges jkeyj2j1j

′
keyj3, drawn with dashes. The new play reorders the events j1, j2

and j3 according to the construction of Lemma 2 and introduces the key events
jkey and j′key according to the construction of Lemma 3. ��

The following theorem shows that partial-order reduction preserves the winning
player in all nodes of the reduced game. Its proof is inspired by [30] and [2,
Lemma 8.21], and uses the aforementioned lemmata.

j1

j2

j3

jkey

j′key

Fig. 2. Example of how j1, j2, j3 is mimicked by introducing jkey and j′key and moving
j2 to the front (dashed trace). Transitions that are drawn in parallel have the same
label.

Partial-Order Reduction for Parity Games 315

Theorem 1. If Gr has a finite state space then it holds that for every node s

in Gr, the winner of s in Gr is equal to the winner of s in G.

3.3 Optimising D2w

The theory we have introduced identifies and exploits rectangular structures in
the parity game. This is especially apparent in condition D1. However, par-
ity games obtained from model checking problems also often contain triangular
structures, due to the (sometimes implicit) nesting of conjunctions and disjunc-
tions, as the following example demonstrates.

Example 5. Consider the process (a ‖ b)·c, in which actions a and b are executed
in (interleaved) parallel, and action c is executed upon termination of both a and
b. The μ-calculus property μX.([a]X ∧ [b]X ∧ 〈−〉true), also expressible in LTL,
expresses that the action c must unavoidably be done within a finite number of
steps; clearly this property holds true of the process. Below, the LTS is depicted
on the left and a possible parity game encoding of our liveness property on this
state space is depicted on the right. The edges in the labelled parity game that
originate from the subformula 〈−〉true are labelled with d.

a

a

b b

c

1 1

1 1

0

a

a

b
b

d d

d d

d

Whereas the state space of the process can be reduced by prioritising a or b, the
labelled parity game cannot be reduced due to the presence of a d-labelled edge
in every node. For example, if s is the top-left node in the labelled parity game,
then r(s) = {a, d} violates condition D1, since the execution s

bd
−→ exists, but

s
db
−→ does not. ��

In order to deal with games that contain triangular structures, we propose a
condition that is weaker than D2w.

D2t There is an event j ∈ r(s) such that for all j1 /∈ r(s), . . . , jn /∈ r(s), if
s

j1
−→ s1

j2
−→ · · ·

jn
−→ sn, then either sn

j
−→ or there are nodes s′, s′1, . . . , s

′
n

such that s
j
−→ s′

j1
−→ s′1

j2
−→ · · ·

jn
−→ s′n and for all i, si = s′i or si

j
−→ s′i.

Theorem 1 holds even for reduction functions satisfying the weak stubborn set
conditions in which condition D2t is used instead of condition D2w. The proof
thereof resorts to a modified construction of a mimicking winning strategy that
is based on Lemma 4, described below, instead of Lemma 3.

Lemma 4. Let r be a reduction function satisfying conditions D1, D2t, V, I
and L. Suppose s0

j1
−→ s1

j2
−→ . . . such that ji /∈ r(s0) for every ji occurring on

this execution. Then, the following holds:
– If the execution ends in sn, there exist a key event jkey and nodes s′0, . . . , s

′
n

such that:
• sn

jkey
−−→ s′n or sn = s′n; and

316 T. Neele et al.

• s0
jkey
−−→r s

′
0

j1
−→ · · ·

jn
−→ s′n and s0 . . . sn � s0s

′
0 . . . s

′
n.

– If the execution is infinite, there exists another execution s0
jkey
−−→r s′0

j1
−→

s′1
j2
−→ . . . and s0s1 · · · � s0s

′
0s

′
1

We remark that the concepts of triangular and rectangular structures bear sim-
ilarities to the concept of weak confluence from [9].

4 Parameterised Boolean Equation Systems

Parity games are used, among others, to solve parameterised Boolean equation
systems (PBESs) [10], which, in turn, are used to answer, e.g., first-order modal
μ-calculus model checking problems [5]. In the remainder of this paper, we show
how to apply POR in the context of solving a PBES (and, hence, the encoded
decision problem). We first introduce PBESs and show how they induce labelled
parity games.

Parameterised Boolean equation systems are sequences of fixed point equa-
tions over predicate formulae, i.e., first-order logic formulae with second order
variables. A PBES is given in the context of an abstract data type, which is used
to reason about data. Non-empty data sorts of the abstract data type are typ-
ically denoted with the letters D and E. The corresponding semantic domains
are D and E. We assume that sorts B and N represent the Booleans and the
natural numbers respectively, and have B and N as semantic counterpart. The
set of data variables is V , and its elements are usually denoted with d and e. To
interpret expressions with variables, we use a data environment δ, which maps
every variable in V to an element of the corresponding sort. The semantics of an
expression f in the context of such an environment is denoted �f�δ. For instance,
�x < 2 + y�δ holds true iff δ(x) < 2 + δ(y). To update an environment, we use
the notation δ[v/d], which is defined as δ[v/d](d) = v and δ[v/d](d′) = δ(d′) for
all variables d 	= d′.

For lack of space, we only consider PBESs in standard recursive form [22,23],
a normal form in which each right-hand side of an equation is a guarded formula
instead of an arbitrary (monotone) predicate formula. We remark that a PBES
can be rewritten to SRF in linear time, while the number of equations grows
linearly in the worst case [23, Proposition 2].

Let X be a countable set of predicate variables. In the exposition that follows
we assume for the sake of simplicity (but without loss of generality) that all
predicate variables X ∈ X are of type D. We permit ourselves the use of non-
uniformly typed predicate variables in our example.

Definition 6. A guarded formula φ is a disjunctive or conjunctive formula of
the form:

∨

j∈J

∃ej :Ej . fj ∧Xj(gj) or
∧

j∈J

∀ej :Ej . fj ⇒ Xj(gj)

where J is an index set, each fj is a Boolean expression, referred to as guard,
every ej is a (bound) variable of sort Ej, each gj is an expression of type D and

Partial-Order Reduction for Parity Games 317

each Xj is a predicate variable of type D. A guarded formula φ is said to be total
if for each data environment δ, there is a j ∈ J and v ∈ Ej such that �fj�δ[v/ej]
holds true.

The denotational semantics of a guarded formula is given in the context of a
data environment δ for interpreting data expressions and a predicate environment
η : X → 2D, yielding an interpretation ofXj(gj) as the truth value �gj�δ ∈ η(Xj).
Given a predicate environment and a data environment, a guarded formula in-
duces a monotone operator on the complete lattice (2D,⊆). By Tarski’s theorem,
least (μ) and greatest (ν) fixed points of such operators are guaranteed to exist.

Definition 7. A parameterised Boolean equation in SRF is an equation that
has the shape (μX(d:D) = φ(d)) or (νX(d:D) = φ(d)), where φ(d) is a to-
tal guarded formula in which d is the only free data variable. A parameterised
Boolean equation system in SRF is a sequence of parameterised Boolean equa-
tions in SRF, in which no two equations have the same left-hand side variable.

Henceforward, let E = (σ1X1(d:D) = ϕ1(d)) . . . (σnXn(d:D) = ϕn(d)) be a fixed,
arbitrary PBES in SRF, where σi ∈ {μ, ν}. The set of bound predicate variables of
E , denoted bnd(E), is the set {X1, . . . , Xn}. If the predicate variables occurring
in the guarded formulae ϕi(d) of E are taken from bnd(E), then E is said to
be closed ; we only consider closed PBESs. Every bound predicate variable is
assigned a rank, where rankE(Xi) is the number of alternations in the sequence
of fixpoint symbols νσ1σ2 . . . σi. Observe that rankE(Xi) is even iff σi = ν. We
use the function opE : bnd(E) → {∨,∧} to indicate for each predicate variable in
E whether the associated equation is disjunctive or conjunctive. As a notational
convenience, we write Ji to refer to the index set of the guarded formula ϕi(d),
and we assume that the index sets are disjoint for different equations.

The standard denotational fixed point semantics of a closed PBES associates
a subset of D to each bound predicate variable (i.e., their meaning is independent
of the predicate environment used to interpret guarded formulae). For details of
the standard denotational fixed point semantics of a PBES we refer to [10]. We
forego the denotational semantics and instead focus on the (provably equivalent,
see e.g. [23,6]) game semantics of a PBES in SRF.

Definition 8. The solution to E is a mapping �E� : bnd(E) → 2D, defined as
�E�(Xi) = {v ∈ D | (Xi, v) is won by � in GE}, where Xi ∈ bnd(E) and GE is
the parity game associated to E. The game GE = (V,E,Ω,P) is defined as:
– V = bnd(E)× D is the set of nodes;
– E is the edge relation, satisfying (Xi, v) → (Xj , w) for given Xi, j ∈ Ji, v

and w if and only if for some δ, both �fj�δ[v/d] and w = �gj�δ[v/d] hold;
– Ω((Xi, v)) = rankE(Xi); and
– P((Xi, v)) = � iff opE(Xi) = ∨.

Note that the parity game GE may have an infinite state space when D is in-
finite. In practice, we are often interested in the part of the parity game that
is reachable from some initial node (X, v); this is often (but not always) finite.
This is illustrated by the following example.

318 T. Neele et al.

Example 6. Consider the following PBES in SRF:

(νX(b:B) = (b ∧X(false)) ∨ ∃n:N.n ≤ 2 ∧ Y (b, if (b, n, 0)))

(μY (b:B, n:N) = true ⇒ Y (false , 0))

The six nodes in the parity game which are reachable from (X, true) are depicted
in Figure 3. The horizontally drawn edges all stem from the clause ∃n:N.n ≤
2∧Y (b, if (b, n, 0)). Vertical edges stem from the clause b∧X(false) (on the left)
or the clause true ⇒ Y (false , 0) (on the right). The selfloop also stems from
the clause true ⇒ Y (false, 0). Player � wins all nodes in this game, and thus
true /∈ �E�(X). ��

0(X, true)

0(X, false)

11
1

(Y, true, 0)
(Y, true, 1)
(Y, true, 2)

1 (Y, false, 0)

Fig. 3. Reachable part of the parity
game underlying the PBES of Exam-
ple 6, when starting from node (X, true).

As suggested by the above example,
each edge is associated to (at least) one
clause in E . Consequently, we can use
the index sets Ji to event-label the edges
emanating from nodes associated with
the equation for Xi. We denote the set
of all events in E by evt(E), defined as
evt(E) =

⋃

Xi∈bnd(E) Ji. Event j ∈ Ji is

invisible if rankE(Xi) = rankE(Xj) and
opE(Xi) = opE(Xj), and visible other-
wise.

Definition 9. Let GE be the parity game associated to E. The labelled parity
game associated to E is the structure (GE , evt(E), �), where GE is as defined
in Def. 8, and, for j ∈ Ji, �(j) is defined as the set {〈(Xi, v), (Xj , w)〉 ∈ E |
�fj�δ[v/d] holds true and w = �gj�δ[v/d] for some δ}.

5 PBES Solving Using POR

A consequence of the partial-order reduction theorem is that a reduced parity
game suffices for computing the truth value to X(e) for a given PBES E withX ∈
bnd(E). However, D1, D2w/D2t and L are conditions on the (reduced) state
space as a whole and, hence, hard to check locally. We therefore approximate
these conditions in such a way that we can construct a stubborn set on-the-fly.

From hereon, let E be a PBES in SRF and (G,S, �), with G = (V,E,Ω,P),
its labelled parity game. The most common local condition for L is the stack
proviso LS [26]. This proviso assumes that the state space is explored with
depth-first search (DFS), and it uses the Stack that stores unexplored nodes to
determine whether a cycle is being closed. If so, the node will be fully expanded,
i.e., r(s) = S.
LS For all nodes s ∈ Vr, either succGr

(s) ∩ Stack = ∅ or r(s) = S.
Locally approximating conditions D1 and D2w requires a static analysis of

the PBES. For this, we draw upon ideas from [17] and extend these to properly
deal with non-determinism. To reason about which events are independent, we
rely on the idea of accordance.

Partial-Order Reduction for Parity Games 319

Definition 10. Let j, j′ ∈ S. We define the accordance relations DNL, DNS,
DNT and DNA on S as follows:
– j left-accords with j′ if for all nodes s, s′ ∈ V , if s

j′j
−−→ s′, then also s

jj′

−−→ s′.
If j does not left-accord with j′, we write (j, j′) ∈ DNL.

– j square-accords with j′ if for all nodes s, s1, s2 ∈ V , if s
j
−→ s1 and s

j′

−→ s2,
then for some s′ ∈ V , s1

j′

−→ s′ and s2
j
−→ s′. If j does not square-accord with

j′ we write (j, j′) ∈ DNS.
– j triangle-accords with j′ if for all nodes s, s1, s2 ∈ V , if s

j′

−→ s1 and s
j
−→ s2,

then s2
j′

−→ s1. If j does not triangle-accord with j′ we write (j, j′) ∈ DNT.
– j accords with j′ if j square-accords or triangle-accords with j′. If j does not

accord with j′ we write (j, j′) ∈ DNA.

Note that DNL and DNT are not necessarily symmetric. An illustration of the
left-according, square-according and triangle-according conditions is given below.

s s1

s′

j

j′

⇒

s

s2

s1

s′

j

j′

j′

j

s

s2

s1

j

j′

⇒

s

s2

s1

s′

j

j′

j′

j

s

s2

s1

j

j′

⇒

s

s2

s1

j

j′

j′

s′
j′

Accordance relations safely approximate the independence of events. The depen-
dence of events, required for satisfying D2w can be approximated using Gode-
froid’s necessary enabling sets [8].

Definition 11. Let j be an event that is disabled in some node s. A necessary-
enabling set (NES) for j in s is any set NESs(j) ⊆ S such that for every
execution s

j1...jnj
−−−−−→ there is at least one ji such that ji ∈ NESs(j).

For every node and event there might be more than one NES. In particular, every
superset of a NES is also a NES. A larger-than-needed NES may, however, have a
negative impact on the reduction that can be achieved. In a PBES with multiple
parameters per predicate variable, computing a NES can be done by determining
which parameters influence the validity of guards fj and which parameters are
changed in the update functions gj . A more accurate NES may be computed
using techniques to extract a control flow from a PBES [15].

The following lemmata show how the accordance relations and necessary-
enabling set can be used to implement conditions D1, D2w and D2t, respec-
tively. A combination of Lemma 5 and 6 in a deterministic setting appeared as
Lemma 1 in [17]. Note that as a notational convention we write R(j) to denote
the projection {j′ | (j, j′) ∈ R} of a binary relation.

Lemma 5. A reduction function r satisfies D1 in node s ∈ V if for all j ∈ r(s):
– if j is disabled in s, then NES s(j) ⊆ r(s) for some NESs; and
– if j is enabled in s, then DNL(j) ⊆ r(s).

Lemma 6. A reduction function r satisfies D2w in a node s ∈ V if there is an
enabled event j ∈ r(s) such that DNS(j) ⊆ r(s).

Lemma 7. A reduction function r satisfies D2t in a node s if there is an enabled
event j ∈ r(s) such that DNA(j) ⊆ r(s).

320 T. Neele et al.

More reduction can be achieved if a PBES is partly or completely ‘deterministic’,
in which case some of the conditions can be relaxed. We say that an event j is
deterministic, denoted by det(j), if for all nodes t, t′, t′′ ∈ V , if t

j
−→ t′ and t

j
−→ t′′,

then also t′ = t′′. This means event-determinism can be characterised as follows:

det(j) iff �fj�δ and �fj�δ
′ implies �gj�δ = �gj�δ

′ for all δ, δ′ with δ(d) = δ′(d).

The following lemma specialises Lemma 5 and shows how knowledge of de-
terministic events can be applied to potentially improve the reduction.

Lemma 8. A reduction function r satisfies D1 in a node s if for all j ∈ r(s):
– if j is disabled in s, then NES s(j) ⊆ r(s) for some NESs; and
– if det(j) and j is enabled in s, then DNS(j) ⊆ r(s) or DNL(j) ⊆ r(s).
– if ¬det(j) and j is enabled in s, then DNL(j) ⊆ r(s).

Since relations DNS and DNL are incomparable we cannot decide a priori which
should be used for deterministic events. However, Lemma 8 permits choosing one
of the accordance sets on-the-fly. This choice can be made based on a heuristic
function, similar to the function for NESs proposed in [17].

6 Experiments

We implemented the ideas from the previous section in a prototype tool, called
pbespor, as part of the mCRL2 toolset [5]; it is written in C++. Our tool
converts a given input PBES to a PBES in SRF, runs a static analysis to compute
the accordance relations (see Section 5), and uses a depth-first exploration to
compute the parity game underlying the PBES in SRF. The static analysis relies
on an external SMT solver (we use Z3 in our experiments). To limit the amount
of static analysis required and to improve the reduction, the implementation
contains a rudimentary way of identifying whether the same event occurs in
multiple PBES equations. Experiments are conducted on a machine with an Intel
Xeon 6136 CPU @ 3 GHz, running mCRL2 with Git commit hash dd36f98875.

To measure the effectiveness of our implementation, we analysed the following
mCRL2 models2: Anderson’s mutual exclusion protocol [1], the dining philoso-
phers problem, the gas station problem [11], Hesselink’s handshake register [12],
Le Lann’s leader election protocol [18], Milner’s Scheduler [20] and the Krebs
cycle of ATP production in biological cells (model inspired by [25]). Most of
these models are scalable. Each model is subjected to one or more requirements
phrased as mCRL2’s first-order modal μ-calculus formulae. Where possible, Ta-
ble 1 provides a CTL∗ formula that captures the essence of the requirement.

We analyse the effectiveness of our partial-order reduction technique by mea-
suring the reduction of the size of the state space, and the time that is required to
generate the state space. Since the static analysis that is conducted can require
a non-neglible amount of time, we pay close attention to the various forms of
static analysis that can be conducted. In particular, we compare the total time
and effectiveness (in terms of reduction) of running the following static analysis:

2 The models are archived online at https://doi.org/10.5281/zenodo.3602969.

https://doi.org/10.5281/zenodo.3602969

Partial-Order Reduction for Parity Games 321

Table 1. Runtime (analysis + exploration; in seconds) and number of states when
exploring either the full state space or the reduced state space, for four different static
analysis approaches. Figures printed in boldface indicate which of the additional static
analyses is able to achieve the largest reduction over ‘basic’ (if any).

full basic +DNL +NES +D2t

model property nodes time nodes time nodes time nodes time nodes time

gas station.c3 ∃�accept 1 197 0.14 1 077 0.98 1 077 2.48 1 077 1.87 735 1.62
gas station.c3 ∃�∃�pumping 1 261 0.15 967 0.98 967 2.61 967 1.99 967 1.72
gas station.c3 no deadlock 1 197 0.18 735 0.95 735 2.52 735 2.04 735 1.52
scheduler8 no deadlock 3 073 0.29 34 0.19 34 0.70 34 0.51 34 0.35
scheduler10 no deadlock 15 361 1.65 42 0.25 42 0.90 42 0.65 42 0.42
anderson.5 ∀�cs 23 597 4.59 2 957 2.85 2 957 6.47 2 957 3.89 2 957 4.61
hesselink cache consistency 91 009 5.28 82 602 8.19 83 602 12.12 81 988 9.00 71 911 8.51
dining10 no deadlock 154 451 17.90 4 743 0.76 4 743 1.61 4 743 1.42 4 743 1.02
krebs.3 ∀�energy 238 877 24.38 232 273 24.59 232 273 25.62 209 345 21.73 232 273 24.42
gas station.c6 ∃�accept 186 381 38.00 150 741 40.55 150 741 45.50 150 741 43.16 75 411 21.40
gas station.c6 ∃�∃�pumping 192 700 38.63 114 130 27.35 114 130 31.42 114 130 30.49 114 130 29.74
gas station.c6 no deadlock 186 381 42.50 75 411 21.03 75 411 24.88 75 411 24.01 75 411 23.02
scheduler14 no deadlock 344 065 53.14 58 0.37 58 1.31 58 0.97 58 0.61
hesselink ∀�(wr ⇒ ∃�fin) 1 047 233 61.02 1 013 441 82.44 1 013 441 86.49 1 013 441 84.59 791 273 61.56
hesselink ∀�(wr ⇒ ∀�fin) 1 047 232 70.14 791 320 64.05 791 374 66.53 749 936 62.98 791 268 67.59
krebs.4 ∀�energy 1 047 406 124.30 971 128 117.38 971 128 117.41 843 349 101.51 971 128 117.41
lann.5 consistent data 818 104 142.38 818 104 170.18 818 104 175.87 818 104 177.78 761 239 155.22
anderson.5 no deadlock 689 901 142.63 257 944 73.62 257 672 79.91 257 711 78.67 257 918 76.47
lann.5 no data loss 1 286 452 199.74 453 130 73.28 453 130 77.31 453 130 74.40 453 130 75.52
dining10 ∀�∀�eat 1 698 951 225.10 101 185 12.37 101 056 13.55 101 238 13.01 101 022 12.69
anderson.7 ∀�cs 3 964 599 1 331.91 124 707 63.83 124 707 73.87 124 707 68.67 124 707 69.68

– computing left-accordance (DNL) vs. over-approximating it with all events.
– computing a NES vs. over-approximating it with the set of all events S.
– using D2w vs. the use of D2t (i.e., use Lemma 6 vs. Lemma 7);

As a baseline for comparisons, we take a basic static analysis (over-approximated
DNL, over-approximated NES, D2w), see column ‘basic’ in Table 1. In order to
guarantee termination of the static analysis phase, we set a timeout of 200ms per
formula that is sent to the solver. Table 1 reports on the statistics we obtained for
exploring the full state space and the four possible POR configurations described
above; the table is sorted with respect to the time needed for a full exploration.
The time we list consists of the time needed to conduct the analysis plus the
time needed for the exploration.

For most small instances, the time required for static analysis dominates any
speed-up gained by the state space reduction. When the state spaces are larger,
achieving a speed-up becomes more likely, while the highest overhead suffered
by ‘basic’ is 55% (Hesselink, cache consistency). Significant reduction can be
achieved even for non-trivial properties, such as ‘lann.5’ with ‘no data loss’.
Scheduler is an extreme case: its processes have very few dependencies, leading
to an exponential reduction, both in terms of the state space size and in terms
of time. In several cases, the use of a NES or D2t brings extra reduction (high-
lighted in bold). Moreover, the extra time required to conduct the additional
analysis seems limited. The use of DNL, on the other hand, never pays off in our
experiments; it even results in a slightly larger state space in two cases.

322 T. Neele et al.

We note that there are also models, not listed in Table 1, where our static
analysis does not yield any useful results and no reduction is achieved. Even if
in such cases a reduction would be possible in theory, the current static analysis
engines are unable to deal with the more complex data types often used in such
models; e.g., recursively defined lists or infinite sets, represented symbolically
with higher-order constructions. This calls for further investigations into static
analysis theories that can effectively deal with complex data.

Finally, we point out that in the case of, e.g., the dining philosophers problem,
the relative reduction under the ‘no deadlock’ property is much better than
under the ‘∀�∀�eat ’ property. This demonstrates the impact properties can
have on the reductions achievable, and it also points at a phenomenon we have
not stressed in the current work, viz., the impact of identifying events on the
reductions achievable. We explain the phenomenon in the following example.

a2

a1

a1

a2

0 0

0 0

1 1

1 1

1 1

1 1

a2

a1

a1

a2

a1

a1

a2 a2
xy

xy

xy

xy

xy

xy

xy

xy

Example 7. Consider the LTS and the parity game on
the right. The parity game encodes the property
νX.([−]X ∧ ∀i. μY.([ai]Y ∧ 〈−〉true)), which is equiva-
lent to ∀��ai, on this LTS. The event xy represents
the transition from fixpoint X into Y , which does not
involve an action from the LTS. Note that the com-
plete state space is encoded in the fixpoint X . Due to
the absence of some transitions in the part of the state
space encoded in fixpoint Y , neither a1 nor a2 is accord-
ing with xy. Hence, the only stubborn set in the initial
node is {a1, a2, xy}, which yields no reduction. ��

Improving the event identification procedure can yield more reduction. For
instance, if, for each i (bound in the universal quantifier), a different event xyi
is created, then both a1, xy2 and a2, xy1 will be according. If we disregard the
visibility of xy1 and xy2, four nodes can be eliminated.

7 Conclusion

We have presented an approach for applying partial-order reduction on parity
games. This has two main advantages over POR applied on LTSs or Kripke
structures: our approach supports the full modal μ-calculus, not just a fragment
thereof, and the potential for reduction is greater, because we do not require
a singleton proviso. Furthermore, we have shown how the ideas can be imple-
mented with PBESs as a high-level representation. In future work, we aim to
gain more insight into the effect of identifying events across PBES equations in
several ways. We also want to investigate the possibility of solving a reduced
parity game while is it being constructed. In certain cases, one may be able to
decide the winner of the original game from this partial solution.

Partial-Order Reduction for Parity Games 323

References

1. Anderson, T.E.: The Performance of Spin Lock Alternatives for Shared-Memory
Multiprocessors. IEEE Transactions on Parallel & Distributed Systems 1(1), 6–16
(1990). https://doi.org/10.1109/71.80120

2. Baier, C., Katoen, J.P.: Principles of model checking. MIT Press (2008)
3. Bønneland, F.M., Jensen, P.G., Larsen, K.G., Muñiz, M.: Partial Order Reduc-

tion for Reachability Games. In: CONCUR 2019. vol. 140, pp. 23:1–23:15 (2019).
https://doi.org/10.4230/LIPIcs.CONCUR.2019.23

4. Bønneland, F.M., Jensen, P.G., Larsen, K.G., Mũniz, M., Srba, J.: Stubborn Set
Reduction for Two-Player Reachability Games. arXiv:1912.09875 (2019)

5. Bunte, O., Groote, J.F., Keiren, J.J.A., Laveaux, M., Neele, T., de Vink, E.P.,
Wesselink, J.W., Wijs, A.W., Willemse, T.A.C.: The mCRL2 Toolset for Analysing
Concurrent Systems: Improvements in Expressivity and Usability. In: TACAS 2019.
LNCS, vol. 11428, pp. 21–39 (2019). https://doi.org/10.1007/978-3-030-17465-1 2

6. Cranen, S., Luttik, B., Willemse, T.A.C.: Proof graphs for parameterised Boolean
equation systems. In: CONCUR 2013. LNCS, vol. 8052, pp. 470–484 (2013).
https://doi.org/10.1007/978-3-642-40184-8 33

7. Gerth, R., Kuiper, R., Peled, D., Penczek, W.: A Partial Order Approach to
Branching Time Logic Model Checking. Information and Computation 150(2),
132–152 (1999). https://doi.org/10.1006/inco.1998.2778

8. Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems,
LNCS, vol. 1032. Springer (1996). https://doi.org/10.1007/3-540-60761-7

9. Groote, J.F., Sellink, M.P.A.: Confluence for process verifi-
cation. Theoretical Computer Science 170(1-2), 47–81 (1996).
https://doi.org/10.1016/s0304-3975(96)00175-2

10. Groote, J.F., Willemse, T.A.C.: Parameterised boolean equation
systems. Theoretical Computer Science 343(3), 332–369 (2005).
https://doi.org/10.1016/j.tcs.2005.06.016

11. Heimbold, D., Luckham, D.: Debugging ada tasking programs. IEEE Software 2(2),
47–57 (1985). https://doi.org/10.1109/MS.1985.230351

12. Hesselink, W.H.: Invariants for the construction of a handshake register. Inf. Pro-
cess. Lett. 68(4), 173–177 (1998). https://doi.org/10.1016/S0020-0190(98)00158-6

13. Ip, C.N., Dill, D.L.: Better verification through symmetry. Formal Methods in
System Design 9(1-2), 41–75 (1996). https://doi.org/10.1007/BF00625968

14. Kan, S., Huang, Z., Chen, Z., Li, W., Huang, Y.: Partial order reduction for check-
ing LTL formulae with the next-time operator. Journal of Logic and Computation
27(4), 1095–1131 (2017). https://doi.org/10.1093/logcom/exw004

15. Keiren, J.J.A., Wesselink, J.W., Willemse, T.A.C.: Liveness Analysis for Parame-
terised Boolean Equation Systems. In: ATVA 2014. LNCS, vol. 8837, pp. 219–234
(2014). https://doi.org/10.1007/978-3-319-11936-6 16

16. Kozen, D.: Results on the propositional μ-calculus. Theoretical Computer Science
27(3), 333–354 (1982). https://doi.org/10.1016/0304-3975(82)90125-6

17. Laarman, A., Pater, E., van de Pol, J., Hansen, H.: Guard-based partial-order re-
duction. STTT 18(4), 427–448 (2016). https://doi.org/10.1007/s10009-014-0363-9

18. Lann, G.L.: Distributed systems - towards a formal approach. In: IFIP, 1977. pp.
155–160 (1977)

19. Liebke, T., Wolf, K.: Taking Some Burden Off an Explicit CTL Model
Checker. In: Petri Nets 2019. LNCS, vol. 11522, pp. 321–341 (2019).
https://doi.org/10.1007/978-3-030-21571-2 18

https://doi.org/10.1109/71.80120
https://doi.org/10.4230/LIPIcs.CONCUR.2019.23
https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.1007/978-3-642-40184-8_33
https://doi.org/10.1006/inco.1998.2778
https://doi.org/10.1007/3-540-60761-7
https://doi.org/10.1016/s0304-3975(96)00175-2
https://doi.org/10.1016/j.tcs.2005.06.016
https://doi.org/10.1109/MS.1985.230351
https://doi.org/10.1016/S0020-0190(98)00158-6
https://doi.org/10.1007/BF00625968
https://doi.org/10.1093/logcom/exw004
https://doi.org/10.1007/978-3-319-11936-6_16
https://doi.org/10.1016/0304-3975(82)90125-6
https://doi.org/10.1007/s10009-014-0363-9
https://doi.org/10.1007/978-3-030-21571-2_18

324 T. Neele et al.

20. Milner, R.: A Calculus of Communicating Systems, LNCS, vol. 92. Springer (1980)
21. Neele, T., Valmari, A., Willemse, T.A.C.: The Inconsistent Labelling Problem of

Stutter-Preserving Partial-Order Reduction. In: FoSSaCS 2020. LNCS, vol. 12077

22. Neele, T., Willemse, T.A.C., Groote, J.F.: Solving Parameterised Boolean Equa-
tion Systems with Infinite Data Through Quotienting. In: FACS 2018. LNCS, vol.
11222, pp. 216–236 (2018). https://doi.org/10.1007/978-3-030-02146-7 11

23. Neele, T., Willemse, T.A.C., Groote, J.F.: Finding compact proofs for infinite-data
parameterised Boolean equation systems. Science of Computer Programming 188,
102389 (2020). https://doi.org/10.1016/j.scico.2019.102389

24. Neele, T., Willemse, T.A.C., Wesselink, W.: Partial-Order Reduction for Parity
Games with an Application on Parameterised Boolean Equation Systems (Techni-
cal Report). Tech. rep., Eindhoven University of Technology (2019)

25. Pelánek, R.: BEEM: Benchmarks for Explicit Model Check-
ers. In: SPIN 2007. LNCS, vol. 4595, pp. 263–267 (2007).
https://doi.org/10.1007/978-3-540-73370-6 17

26. Peled, D.: All from One, One for All: on Model Checking Using
Representatives. In: CAV 1993. LNCS, vol. 697, pp. 409–423 (1993).
https://doi.org/10.1007/3-540-56922-7 34

27. Peled, D.: Combining partial order reductions with on-the-fly model-checking.
FMSD 8(1), 39–64 (1996). https://doi.org/10.1007/BF00121262

28. Ramakrishna, Y.S., Smolka, S.A.: Partial-Order Reduction in the Weak
Modal Mu-Calculus. In: CONCUR 1997. LNCS, vol. 1243, pp. 5–24 (1997).
https://doi.org/10.1007/3-540-63141-0 2

29. Siegel, S.F.: What’s Wrong with On-the-Fly Partial Order Re-
duction. In: CAV 2019. LNCS, vol. 11562, pp. 478–495 (2019).
https://doi.org/10.1007/978-3-030-25543-5 27

30. Valmari, A.: A Stubborn Attack on State Explosion. Formal Methods in System
Design 1(4), 297–322 (1992). https://doi.org/10.1007/BF00709154

31. Valmari, A.: The state explosion problem. In: ACPN 1996. LNCS, vol. 1491, pp.
429–528 (1996). https://doi.org/10.1007/3-540-65306-6 21

32. Valmari, A.: Stubborn Set Methods for Process Algebras. In: POMIV 1996. DI-
MACS, vol. 29, pp. 213–231 (1997). https://doi.org/10.1090/dimacs/029/12

33. Valmari, A., Hansen, H.: Stubborn Set Intuition Explained. ToPNoC 10470(12),
140–165 (2017). https://doi.org/10.1007/978-3-662-55862-1 7

), which permits use, sharing, adaptation, distribution and reproduction in any

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/

4.0/

medium or format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if changes

were made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

(2020). https://doi.org/10.10 / - 2507 978-3-030 45231-5

https://doi.org/10.1007/978-3-030-02146-7_11
https://doi.org/10.1016/j.scico.2019.102389
https://doi.org/10.1007/978-3-540-73370-6_17
https://doi.org/10.1007/3-540-56922-7_34
https://doi.org/10.1007/BF00121262
https://doi.org/10.1007/3-540-63141-0_2
https://doi.org/10.1007/978-3-030-25543-5_27
https://doi.org/10.1007/BF00709154
https://doi.org/10.1007/3-540-65306-6_21
https://doi.org/10.1090/dimacs/029/12
https://doi.org/10.1007/978-3-662-55862-1_7
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-030-45231-5 25

Polynomial Identification of ω-Automata �

Dana Angluin1 , Dana Fisman2 , and Yaara Shoval2

1 Yale University, New Haven, CT, USA
2 Ben-Gurion University, Be’er Sheva, Israel

Abstract. We study identification in the limit using polynomial time
and data for models of ω-automata. On the negative side we show that
non-deterministic ω-automata (of types Büchi, coBüchi, Parity or Muller)
can not be polynomially learned in the limit. On the positive side we
show that the ω-language classes IB, IC, IP, and IM that are defined
by deterministic Büchi, coBüchi, parity, and Muller acceptors that are
isomorphic to their right-congruence automata (that is, the right congru-
ences of languages in these classes are fully informative) are identifiable
in the limit using polynomial time and data. We further show that for
these classes a characteristic sample can be constructed in polynomial
time.

Keywords: identification in the limit, characteristic sample, ω-regular.

1 Introduction

With the growing success of machine learning in efficiently solving a wide spec-
trum of problems, we are witnessing an increased use of machine learning tech-
niques in formal methods for system design. One thread in recent literature
uses general purpose machine learning techniques for obtaining more efficient
verification/synthesis algorithms. Another thread, following the automata theo-
retic approach to verification [33,21] works on developing grammatical inference
algorithms for verification and synthesis purposes. Grammatical inference (aka
automata learning) refers to the problem of automatically inferring from exam-
ples a finite representation (e.g. an automaton, a grammar, or a formula) for
an unknown language. The term model learning [31] was coined for the task of
learning an automaton model for an unknown system. A large body of works
has developed learning techniques for different automata types (e.g. I/O au-
tomata [1], register automata [20], symbolic automata [14], ω-automata [7], and
program automata [25]) and has shown its usability in a diverse range of tasks.3

In grammatical inference, the learning algorithm does not learn a language,
but rather a finite representation of it. Complexity of learning algorithms may

� This research was supported by grant 2016239 from the United States – Israel Bi-
national Science Foundation (BSF).

3 E.g., tasks such as black-box checking [28], specification mining [2], assume-guarantee
reasoning [13], regular model checking [18], learning verification fixed-points [32],
learning interfaces [27], analyzing botnet protocols [12] or smart card readers [10],
finding security bugs [10], error localization [11], and code refactoring [26,29].

c© The Author(s) 2020
A. Biere and D. Parker (Eds.): TACAS 2020, LNCS 12079, pp. 325–343, 2020.
https://doi.org/10.1007/978-3-030-45237-7 20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45237-7_20&domain=pdf
http://orcid.org/0000-0002-6907-2999
http://orcid.org/0000-0002-6015-4170
https://doi.org/10.1007/978-3-030-45237-7_20

326 D. Angluin et al.

vary greatly by switching representations. For instance, if one wishes to learn
regular languages, she may consider representations using deterministic finite au-
tomata (DFAs), non-deterministic finite automata (NFAs), regular expressions,
linear grammars etc. Since the translation results between two such formalisms
are not necessarily polynomial, a polynomial learnability result for one repre-
sentation does not necessarily imply a polynomial learnability result for another
representation. Let C be a class of representations C with a size measure size(C)
(e.g. for DFAs the size measure can be the number of states in the minimal
automaton). We extend size(·) to the languages recognized by representations in
C by defining size(L) to be the minimum of size(C) over all C representing L. In
this paper we restrict attention to automata representations, namely, acceptors.

There are various learning paradigms considered in the grammatical inference
literature, roughly classified into passive and active. We mention here the two
central ones. In passive learning the model of learning from finite data refers to
the following problem: given a finite sample T ⊆ Σ∗ ×{0, 1} of labeled words, a
learning algorithm A should return an acceptor C that agrees with the sample
T . That is, for every (w, l) ∈ T the following holds: w ∈ �C� iff l = 1 (where
�C� is the language accepted by C). The class C is identifiable in the limit using
polynomial time and data if and only if there exists a polynomial time algorithm
A that takes as input a labeled sample T and outputs an acceptor C ∈ C that
is consistent with T , and A also satisfies the following condition. If L is any
language recognized by an automaton from class C, then there exists a labeled
sample TL consistent with L of length bounded by a polynomial in size(L), and
for any labeled sample T consistent with L such that TL ⊆ T , on input T the
algorithm A produces an acceptor C that recognizes L. In this case, TL is termed
a characteristic sample for the algorithm A. In some cases (e.g., DFAs) there
is also a polynomial time algorithm to compute a characteristic sample for A,
given an acceptor C ∈ C.

In active learning the model of query learning [5] assumes the learner commu-
nicates with an oracle (sometimes called teacher) that can answer certain types
of queries about the language. The most common type of queries are member-
ship queries (is w ∈ L where L is the unknown language) and equivalence queries
(is �A� = L where A is the current hypothesis for an acceptor recognizing L).
Equivalence queries are typically assumed to return a counterexample, i.e. a
word in �A� \ L or in L \ �A�.

With regard to ω-automata (automata on infinite words) most of the works
consider query learning. The representations learned so far include: (L)$ [15], a
non-polynomial reduction to finite words; families of DFAs (FDFA) [7,8,6,22];
strongly unambiguous Büchi automata (SUBA) [3]; and deterministic weak par-
ity automata (DWPA) [23]. Among these only the latter is learnable in polyno-
mial time using membership queries and proper equivalence queries.

One of the main obstacles in obtaining a polynomial learning algorithm for
ω-regular languages is that they do not in general have a Myhill-Nerode char-
acterization; that is, there is no theorem correlating the states of a minimal
automaton of some of the common automata types (Büchi, Parity, Muller, etc.)

Polynomial Identification of ω-Automata 327

to the equivalence classes of the right congruence of the language. The right con-
gruence relation for an ω-language L relates two finite words x and y iff there
is no infinite suffix z differentiating them, that is x ∼L y (for x, y ∈ Σ∗) iff
∀z ∈ Σω. xz ∈ L ⇐⇒ yz ∈ L. In our quest for finding a polynomial query
learning algorithm for a subclass of the ω-regular languages, we have studied
subclasses of languages for which such a relation holds [4], and termed them
fully informative. We use IB, IC, IP, IM to denote the classes of languages that
are fully informative of type Büchi, coBüchi, Parity and Muller, respectively. A
language L is said to be fully informative of type X for X ∈ {B,C,P,M} if there
exists a deterministic automaton of type X which is isomorphic to the automaton
derived from ∼L. While a lot of properties about these classes are now known,
in particular that they span the entire hierarchy of ω-regular properties [34], a
polynomial learning algorithm for them has not been found yet.

In this paper we show that the classes IB, IC, IP, IM can be identified in the
limit using polynomial time and data. We further show that there is a polynomial
time algorithm to compute a characteristic sample given an acceptor C ∈ IX. A
corollary of this result is that the class of languages accepted by DWPAs (which
as mentioned above is polynomially learnable in the query learning setting) also
has a polynomial size characteristic sample. On the negative side, we show that
the classes NBA, NCA, NPA, NMA of non-deterministic Büchi, coBüchi, Parity
and Muller automata, resp., cannot be identified in the limit using polynomial
data.

2 Preliminaries

Automata and Acceptors An automaton is a tuple A = 〈Σ,Q, qι, δ〉 consisting of
a finite totally ordered alphabet Σ of symbols, a finite set Q of states, an initial
state qι ∈ Q, and a transition function δ : Q×Σ → 2Q. A run of an automaton
on a finite word v = a1a2 . . . an is a sequence of states q0, q1, . . . , qn such that
q0 = qι, and for each i ≥ 0, qi+1 ∈ δ(qi, ai+1). A run on an infinite word is
defined similarly and results in an infinite sequence of states. We say that A is
deterministic if |δ(q, a)| ≤ 1 and complete if |δ(q, a)| ≥ 1, for every q ∈ Q and
a ∈ Σ. We extend δ to domain Q × Σ∗ in the usual manner, and abbreviate
δ(q, σ) = {q′} as δ(q, σ) = q′.

By augmenting an automaton with an acceptance condition α, obtaining a
tuple 〈Σ,Q, qι, δ, α〉, we get an acceptor, a machine that accepts some words and
rejects others. An acceptor accepts a word if at least one of the runs on that word
is accepting. For finite words the acceptance condition is a set F ⊆ Q and a run
on a word v is accepting if it ends in an accepting state, i.e., if δ(qι, v) contains
an element of F . For infinite words, there are various acceptance conditions in
the literature; we consider four: Büchi, coBüchi, parity, and Muller. The Büchi
and coBüchi acceptance conditions are also a set F ⊆ Q. A run of a Büchi
automaton is accepting if it visits F infinitely often. A run of a coBüchi is
accepting if it visits F only finitely many times. A parity acceptance condition
is a map κ : Q → N assigning each state a natural number termed a color (or
priority). A run is accepting if the minimum color visited infinitely often is odd.

328 D. Angluin et al.

A Muller acceptance condition is a set of sets of states α = {F1, F2, . . . , Fk} for
some k ∈ N and Fi ⊆ Q for i ∈ [1..k]. A run of a Muller automaton is accepting if
the set S of states visited infinitely often in the run is a member of α. We use �A�
to denote the set of words accepted by a given acceptor A. We use NBA, NPA,
NMA, NCA for non-determinstic Büchi, parity, Muller and coBüchi, automata.
We use NBA, NPA, NMA and NCA for the classes of languages they recognize.
The first three recognize the full class of ω-regular languages while the forth only
a subset of it.

Right congruences An equivalence relation ∼ on Σ∗ is a right congruence if
x ∼ y implies xv ∼ yv for every x, y, v ∈ Σ∗. The index of ∼, denoted |∼| is the
number of equivalence classes of ∼. Given a language L ⊆ Σ∗ its canonical right
congruence ∼L is defined as follows: x ∼L y iff ∀z ∈ Σ∗ we have xz ∈ L ⇐⇒
yz ∈ L. For a word v ∈ Σ∗ the notation [v] is used for the equivalence class of
∼ in which v resides.

With a right congruence ∼ of finite index one can naturally associate an
automaton M∼ = 〈Σ,Q, qι, δ〉 as follows: the set of states Q consists of the
equivalence classes of ∼. The initial state qι is the equivalence class [ε]. The
transition function δ is defined by δ([u], a) = [ua]. Similarly, given a complete
deterministic automaton M = 〈Σ,Q, qι, δ〉 we can naturally associate with it a
right congruence as follows: x ∼M y iff M reaches the same state when reading
x or y. The Myhill-Nerode Theorem states that a language L is regular iff ∼L

is of finite index. Moreover, if L is accepted by a DFA A then ∼A refines ∼L.
Finally, the index of ∼L gives the size of the minimal complete DFA for L.

For an ω-language L ⊆ Σω, the right congruence ∼L is defined similarly, by
quantifying over ω-words. That is, x ∼L y iff ∀z ∈ Σω we have xz ∈ L ⇐⇒
yz ∈ L. Given a deterministic automaton M we can define ∼M exactly as for
finite words. However, for ω-regular languages, the relation ∼L does not suffice to
obtain a “Myhill-Nerode” characterization. As an example consider the language
L = (a+ b)∗(bba)ω. We have that ∼L consists of just one equivalence class, since
for any x ∈ Σ∗ and w ∈ Σω we have that xw ∈ L iff w has (bba)ω as a suffix.
But an ω-acceptor recognizing L obviously needs more than a single state.

The classes IB, IC, IP and IM A language L is in IB (resp., IC, IP, IM) if
there exists a deterministic Büchi (resp., coBüchi, parity, Muller) acceptor A
such that L = �A� and there is a 1-to-1 relationship between the states of A
and the equivalence classes of ∼L: if x ∼L y then x and y reach the same state
q in A, and an ω-word z is accepted from q iff xz ∈ L (which holds iff yz ∈ L).
These classes are more expressive than one might conjecture, it was shown in [4]
that in every class of the infinite Wagner hierarchy [34] there are languages in
IM and IP. Moreover, in a small experiment reported in [4], among randomly
generated Muller automata, the vast majority turned out to be in IM.

Examples and samples Since we need finite representations of examples, ω-words
in our case, we work with ultimately periodic words, that is, words of the form
u(v)ω where u ∈ Σ∗ and v ∈ Σ+. It is known that two regular ω-languages are

Polynomial Identification of ω-Automata 329

equivalent iff they agree on the set of ultimately periodic words, so this choice
is not limiting. The example u(v)ω is concretely represented by the pair (u, v)
of finite strings, and its length is |u|+ |v|. A labeled example is a pair (u(v)ω, l),
where the label l is either 0 or 1. A sample is a finite set of labeled examples
such that no example is assigned two different labels. The length of a sample
is the sum of the lengths of the examples that appear in it. A sample T and a
language L are consistent with each other if and only if for every labeled example
(u(v)ω, l) ∈ T , l = 1 iff u(v)ω ∈ L. A sample and an acceptor are consistent with
each other if and only if the sample and the language recognized by the acceptor
are consistent with each other. The following results give two useful procedures
on examples that are computable in polynomial time.

Claim 1. Given u1, u2 ∈ Σ∗ and v1, v2 ∈ Σ+, if u1(v1)
ω
= u2(v2)

ω then they
differ in at least one of the first 	 symbols, where 	 = max(|u1|, |u2|) + |v1| · |v2|.

Let suffixes(u(v)ω) denote the set of all ω-words that are suffixes of u(v)ω.

Claim 2. The set suffixes(u(v)ω) consists of at most |u|+ |v| different examples:
one of the form u′(v)ω for every nonempty suffix u′ of u, and one of the form
(v2v1)

ω for every division of v into a non-empty prefix and suffix as v = v1v2.

Identification in the limit using polynomial time and data We consider the no-
tion of identification in the limit using polynomial time and data. This criterion
of learning was introduced by [16], who showed that regular languages of finite
strings represented by DFAs are learnable in this sense. We follow a more gen-
eral definition given by [19]. The definition has two requirements: (1) a learning
algorithm A that runs in polynomial time on a set of labeled examples and
produces a hypothesis consistent with the examples, and (2) that for every lan-
guage L in the class, there exists a set TL of labeled examples of size polynomial
in a measure of size of L such that on any set of labeled examples containing
TL, the algorithm A outputs a hypothesis correct for L. Condition (1) ensures
polynomial time, while condition (2) ensures polynomial data. The latter is not
a worst-case measure; there could be arbitrarily large finite samples for which
A outputs an incorrect hypothesis. However, de la Higuera shows that identifi-
ability in the limit with polynomial time and data is closely related to a model
of a learner and a helpful teacher introduced by [17].

3 Negative Results

We start with negative results. We show that when the representation at hand
is non-deterministic, polynomial identification is not feasible.

Theorem 3. The class NBA cannot be identified in the limit using polynomial
data.

Proof. The proof follows the idea given in the negative result for learning in the
limit NFAs from polynomial data [19]. For any integer M ≥ 2, let p1, . . . , pm be

330 D. Angluin et al.

0 b

2, 1 2, 0

3, 1 3, 2 3, 0

5, 1 5, 2 5, 3 5, 4 5, 0

b

a

a

a

a

a

a a

a

a a a a

a

b

b

b

b
b

b b

b

Fig. 1: The NBA BM for M = 5.

the set of all primes less than or equal to M . For each such M , consider the NBA
BM over a two letter alphabet Σ = {a, b} with p1+p2+ . . .+pm+2 states, where
state 0 has a-transitions to state (p, 1) for each p ∈ {p1, p2, . . . , pm}. State (p, i)
has an a-transition to state (p, i⊕p 1) where ⊕p is addition modulo p. All states
except the states (p, 0) have a b-transition to state b. The state b has a self-loop
on b. The only accepting state is b. The NBA BM for M = 5 is given in Fig. 1.

The NBA BM accepts the set of all words of the form akbω such that k is
not a positive multiple of 	 = p1 · p2 · · · pm. Note that the size of the shortest
ultimately periodic word in a∗bω \ �BM � is 	 + 1, and thus, to distinguish the
language �BM � from the language a∗bω, a word of at least this size must be
provided. Since the number of primes not greater than M is Θ(M/ logM) and
since each prime is of size at least 2 the data must be of size at least 2Θ(M/ logM)

while the number of states of BM is O(M2).

Since NBAs are a special case of non-deterministic parity automata (NPA)
and non-deterministic Muller automata (NMA) it follows that these models too
cannot be identified in the limit using polynomial data. Note that indeed the
NBA in the proof of Theorem 3 can be regarded as an NPA by setting the color
of state b to 1 and the color of all other states to 0. Likewise it can be regarded
as an NMA by defining the accepting set as {{b}}.

Corollary 1. The classes NPA and NMA cannot be identified in the limit using
polynomial data.

While NBAs are not a special case of non-deterministic coBüchi automata
(NCA) it can be shown that NCA as well cannot be identified in the limit from
polynomial data, which is in some sense surprising, since NCAs are not more
expressive than DCAs, their deterministic counterpart, and accept a very small
subclass of the regular ω-languages.

Theorem 4. The class NCA cannot be identified in the limit using polynomial
data.

Polynomial Identification of ω-Automata 331

Proof. The proof is almost identical to that of Theorem 3. The only difference is
that it considers the automaton CM that takes exactly the same form as BM from
that proof but switching accepting and non-accepting states. Since CM clearly
accepts the same language as that of BM , with the same number of states, the
proof continues exactly the same.

4 Outline for the positive results

The rest of the paper is devoted to the positive results. To show that a class is
identified in the limit using polynomial time and data there are two steps: (i)
constructing a sample of words TL of size polynomial in the given acceptor M for
the language L at hand, the so called, characteristic sample, and (ii) providing a
learning algorithm that for every given sample T returns an acceptor consistent
with that sample, and in addition for any sample T that subsumes TL returns
an acceptor that exactly recognizes L.

Since the construction of the characteristic sample is simpler we start with
that. We show that the classes IB, IC, IP and IM have characteristic samples
of size polynomial in the number of states of the acceptor, and that the char-
acteristic sample can be constructed in polynomial time. The definition of an
acceptor is composed of two steps: (a) the definition of the automaton and (b)
the definition of the acceptance condition. Some words are put in the sample
to help retrieving the automaton and some to help retrieving the acceptance
condition. We view the characteristic sample as a union of two parts TAut (for
retrieving the automaton) and TAcc (for retrieving the acceptance condition).
The learning algorithm first constructs the automaton, then retrieves the accep-
tance condition.

In Section 5 we discuss the construction of TAut which is common to all the
classes we consider, as they all are isomorphic to the automaton of the right
congruence. In Section 6 we show how an algorithm can retrieve the automaton
using the labeled words in TAut. In Section 7 we discuss the construction of
TAcc that regards the acceptance condition of the DPA. This part is the most
involved one. We first associate with a DPA a canonical forest of its strongly
connected components. From this canonical forest we build the TAcc part of the
characteristic sample. In Section 8 we show a learning algorithm that can retrieve
in polynomial time the acceptance condition of the DPA, from labeled examples
in TAcc. This implies that IP (as well as its special cases IB and IC) can be
learned in the limit from polynomial time and data. In Section 9 we show that
the class IM can also be learned in the limit from polynomial time and data.

5 The characteristic sample for the automaton

In this section we show how to construct the TAut part of the sample. We first
show that any two states that are distinguishable in the automaton, are distin-
guishable by words of length polynomial in the number of states.

332 D. Angluin et al.

5.1 Polynomial construction of short distinguishing words

Let M be an acceptor in one of the classes IB, IC, IP or IM with states Q over
alphabet Σ. If M is in one of the first three classes we use max{|Σ|, |Q|} for
its size measure. If M ∈ IM we use max{|Σ|, |Q|,m} for its size measure where
m is the number of sets in the acceptance condition α. We say that states q1
and q2 of M are distinguishable if there exists a word z ∈ Σω that is accepted
from one but not the other (and that z is a distinguishing word). First we show
that any two distinguishable states of M are distinguishable by an ultimately
periodic word of size polynomial in M. Then we show how to use these words
to construct the TAut part of the characteristic sample.

Proposition 5. If two states of a DMA, DPA, DBA or DCA of n states are
distinguishable, then they are distinguishable by an ultimately periodic ω-word of
length bounded by n2 + n4.

Proof. We prove that for a DMA M of n states, if two distinct states q1 and
q2 are distinguishable, then they are distinguishable by an ultimately periodic
ω-word of length bounded by n2+n4. Since any DPA, DBA or DCA is equivalent
to an isomorphic DMA, the above result holds also for DPAs, DBAs and DCAs.

Because q1 and q2 are distinguishable, there exists an ultimately periodic
ω-word x(y)ω that is accepted from exactly one of the two states. For each
nonnegative integer k and i = 1, 2, let qi(k) be the state visited after k symbols
of x(y)ω have been read, starting with state qi. Also, let Ci be the set of states
visited infinitely often by the sequence qi(k), which determines the acceptance
or rejection of x(y)ω from qi. The sequence of pairs (q1(k), q2(k)) for k = 0, 1, . . .
takes on at most n2 different values. Let C be the set of pairs visited infinitely
often by this sequence. The two projections π1(C) and π2(C) are C1 and C2.

Let 	 be the minimum value for which (q1(k), q2(k)) visits only pairs in C
for all k ≥ 	. Let x′ be the prefix of x(y)ω consisting of 	 symbols. By removing
symbols between repeated pairs (q1(k), q2(k)) from x′ we obtain a string u of
length at most n2 that reaches the pair (q1(), q2()) from (q1(0), q2(0)). Let m
be the minimum value for which (q1(k), q2(k)) for 	 ≤ k ≤ m visits all the pairs
of C and returns to (q1(), q2()), and let y′ be the string from symbol 	 to m−1
of x(y)ω. Distinguishing a subsequence of pairs that visits each element of C
once, we can remove from y′ sequences of symbols between repeated pairs that
do not include a distinguished pair between them. Thus we obtain a string v
of length at most |C|n2, that starts at (q1(), q2()), visits all the distinguished
pairs and returns to the starting pair. Since |C| ≤ n2, the length of u(v)ω is at
most n2 + n4. Also, since the set of states visited infinitely often on input u(v)ω

from qi is Ci we have that u(v)ω is accepted from exactly one of q1 and q2.

For DPAs as well as DMAs there is a polynomial time algorithm to determine
whether two states are distinguishable and to find a distinguishing ω-word u(v)ω

if they are. This result relies on a polynomial time algorithm to test the equiv-
alence of two DPAs or two DMAs and return an example u(v)ω on which they
differ if not [9]. Since DBA and DCA are special cases of a DPA, a polynomial
construction of a distinguishing word applies to them as well.

Polynomial Identification of ω-Automata 333

5.2 Constructing the characteristic sample for the automaton

We now show how to construct the TAut part of the characteristic sample, given
an acceptor M in one of the classes IM, IP, IB or IC. Let n be the number of
states of M. We may assume that every state of M is reachable from the initial
state qι. The algorithm constructs a set S of n access strings by breadth-first
search in the transition graph of M such that S is prefix-closed and contains
exactly one lexicographically least string of shortest possible length reaching
each state of M from the initial state. Using Proposition 5, the algorithm may
also construct a set E of at most n2 distinguishing experiments that contains for
each pair q1 and q2 of distinct states of M, an ω-word u(v)ω of length at most
n2 + n4 that is accepted from exactly one of the states q1 and q2.

Part one of the sample, TAut, consists of all the examples in (S ·E)∪(S ·Σ ·E),
labeled to be consistent with M. There are at most (1+ |Σ|)n3 labeled examples
in TAut, each of length bounded by a polynomial in n. This information is enough
to allow the polynomial time learning algorithm to reconstruct a transition graph
isomorphic to that of M.

Proposition 6. Let M′ be any deterministic automaton that is consistent with
the sample TAut. Then M′ has at least n states and if M′ has exactly n states
then M′ and M have isomorphic transition graphs.

Proof. The states of M′ reached from the initial state by the access strings in
S must all be distinct, because for any pair of different strings s1, s2 ∈ S, there
exists a word u(v)ω ∈ E such that s1 · u(v)ω and s2 · u(v)ω have different labels
in TAut. Thus M′ must have at least n distinct states.

Assume that M′ has exactly n states. Given the state q of M′ reached by
some s ∈ S and a symbol σ ∈ Σ, the labeled examples s · σ · u(v)ω in TAut for
all u(v)ω ∈ E uniquely determine which string s′ ∈ S corresponds to the state
reached in M′ from q on input symbol σ. Thus the transition graph of M′ is
isomorphic to the transition graph of M.

6 Learning the automaton

Let L denote the language to be learned, and M denote an acceptor of n states
that is isomorphic to its right congruence automaton and recognizes L. Let the
input sample of labeled examples be T . We now describe a learning algorithm
A that makes use of the information in the given sample T to construct an
automaton. If T subsumes TAut the returned automaton will be isomorphic to
the acceptor M.

From the sample T , the algorithm constructs as follows a set E of strings
that serve as experiments used to distinguish states. For each labeled example
(u(v)ω, l) in T , all of the elements of suffixes(u(v)ω) are placed in E. Thus if the
sample T includes TAut, then for any pair of states of M the set E includes an
experiment that distinguishes them.

Starting with the empty string ε, the algorithm attempts to build up a prefix-
closed set S of finite strings that reach different states of M from the initial state.

334 D. Angluin et al.

Initially, S1 = {ε}. After Sk has been constructed, the algorithm attempts to
determine, for each s ∈ Sk and each symbol σ ∈ Σ in the ordering defined on Σ,
whether s ·σ reaches the same state as some string already in Sk or a new state.
If for each string s′ in Sk, there exists some u(v)ω ∈ E such that the sample
T has different labels for s · σ · u(v)ω and s′ · u(v)ω, then this is evidence that
s · σ reaches a new state, and Sk+1 is set to Sk ∪ {s · σ}. If no such pair s and
σ is found, then the final set S is Sk. Because M has only n states, this case
is reached with k ≤ n. If the sample T subsumes TAut then this process will
discover exactly the strings reaching all n states of M used in the construction
of TAut; otherwise, it may terminate early.

In the second phase, the algorithm uses the strings in S as names for states
and constructs a transition function δ′ using S and E. For each s ∈ S and σ ∈ Σ,
we know that there is at least one s′ ∈ S such that there is no u(v)ω ∈ E for
which s · σ · u(v)ω and s′ · u(v)ω have different labels in T (possibly because one
or more of these examples are not in T at all.) The algorithm selects one such
s′ and defines δ′(s, σ) = s′. If the strings in S actually reach all the states of
M and the choice of s′ is unique in each case, then δ′ will be isomorphic to the
transition function of M. This will be the case if the sample T includes TAut

because then among the elements of E will be experiments that distinguish any
pair of states of M; otherwise, δ′ may not be correct.

7 Characteristic sample for a DPA

The construction of TAcc, the part of the characteristic sample used for retrieving
the accepting condition of a DPA, builds on the construction of a forest of SCCs
associated with a given DPA, which we term the canonical forest. Its properties
and its construction are described next.

7.1 Constructing the canonical forest of a DPA

We start with some definition and simple claims.Let P = (Σ,Q, qι, δ, κ) be
a deterministic parity acceptor (DPA). A set of states C ⊆ Q is a strongly
connected component (SCC) if and only if C is nonempty and for every q1, q2 ∈ C,
there exists a nonempty string v ∈ Σ+ such that δ(q1, v) = q2 and for all u � v,
δ(q1, u) ∈ C. Note that an SCC need not be maximal, and that a singleton {q}
is an SCC if and only if the state q has a self-loop, that is, δ(q, σ) = q for some
σ ∈ Σ. For any ω-word w, the set C of states visited infinitely often in the run
of P on input w is an SCC of P.

Claim 7. If C1 and C2 are SCCs of P and C1 ∩ C2
= ∅, then C1 ∪ C2 is also
an SCC of P.

If P is a DPA and R ⊆ Q is any set of states, define SCCs(R) to be the set
of all C such that C ⊆ R and C is an SCC of P. Also define maxSCCs(R) to
be the maximal elements of SCCs(R) with respect to the subset ordering.

Polynomial Identification of ω-Automata 335

Claim 8. If P is a DPA and R ⊆ Q is any set of states, then the elements of
maxSCCs(R) are pairwise disjoint, and every set C ∈ SCCs(R) is a subset of
exactly one element of maxSCCs(R).

If P is a DPA, we extend its coloring function κ to any nonempty set R of
states by κ(R) = min{κ(q) | q ∈ R}. We define the parity of R to be 1 if κ(R) is
odd, and 0 otherwise. For an ω-word w, if the SCC C is the set of states visited
infinitely often in the run of P on w, then w is accepted by P iff the parity of
C is 1. Note that the union of two sets of parity b is also of parity b. For any
set of states R ⊆ Q, we define minStates(R) to be the set of states q ∈ R such
that κ(q) = κ(R), that is, the states of R that are assigned the minimum color
among all states of R.

The Canonical Forest Using these definitions we can show that there exists
a forest associated with a DPA that has the following interesting properties. We
provide an example for a canonical forest for a given DPA at the end of the
current subsection.

Theorem 9. Let P = (Σ,Q, q0, δ, κ) be a DPA. There exists a canonical forest
F ∗(P) that is unique up to isomorphism and has the following properties.

1. There are at most |Q| nodes in F ∗(P), each one a distinct SCC of P.
2. The root nodes of F ∗(P) are the elements of maxSCCs(Q).
3. The children of a node C of parity b are the maximal SCCs C ′ ⊆ C of parity

1− b.
4. The children of a node C are pairwise disjoint and their union is a proper

subset of C.
5. For any SCC D of P, there is a unique node C in F ∗(P) such that D ⊆ C

and D is not a subset of any of the children of C, and C and D have the
same parity.

Proof. The root nodes of F ∗(P) are the elements of maxSCCs(Q) and are SCCs
that are pairwise disjoint, by Claim 8. Let C be one of them, and assume its
parity is b. Let T be the set of SCCs that are subsets of C and of parity 1 − b.
If T = ∅ then C has no children and is a leaf of F ∗(P). Otherwise, the children
of C are the maximal elements of T with respect to the subset ordering. The
children of C must be pairwise disjoint because if they share a state, then their
union is an SCC contained in C of parity 1 − b and is a proper superset of at
least one of them, violating maximality. No child of C can contain an element
of minStates(C) because otherwise the parity of the child would be b. Thus
the union of the children of C must be a proper subset of C. These conditions
imply that there are at most |Q| nodes in the forest, and that it is unique up to
isomorphism.

Let D be any SCC of P. Then D ∈ SCCs(Q), so by Claim 8, because the
roots of F ∗(P) are the elements of maxSCCs(Q), there is a unique root node C0

such that D ⊆ C0. Suppose the parity of C0 is b. If D is not a subset of any
of the children of C0, then it cannot have parity 1 − b, so the choice C = C0

336 D. Angluin et al.

satisfies the required condition. If, however, D is a subset of some child C1 of
C0, then because the children of C0 are pairwise disjoint, C1 is the only child
of C0 that contains D. Again, if D is not a subset of any of the children of C1

then D and C1 must have the same parity, and the choice C = C1 satisfies the
condition. Otherwise, we continue down the tree rooted at C0 until a node C is
found that satisfies the condition. Note that if we arrive at a leaf Ck, then D is
not a subset of any of the children of Ck (there are none) and D must have the
same parity as Ck because otherwise Ck would have at least one child.

The Canonical Coloring The canonical forest F ∗(P) allows us to define a
canonical coloring κ∗ for P, as follows. The states in (Q \⋃maxSCCs(Q)) are
not contained in any SCC of P and do not affect the acceptance or rejection
of any ω-word. For definiteness, we assign them κ∗(q) = 0. For each node C of
F ∗(P), we define Δ(C) to be the set of states of C that are not contained in the
union of the children of C. For a root node C of parity b, we define κ∗(q) = b for
all q ∈ Δ(C). Let C be an arbitrary node of F ∗(P). If the states of Δ(C) have
been assigned color k by κ∗ and D is a child of C, then the states of Δ(D) are
assigned color k + 1 by κ∗. We observe that if q1 ∈ Δ(C) and q2 is in a child of
C, then κ∗(q1) < κ∗(q2), and κ∗(q1) is of the same parity as C.

Theorem 10. Let P = (Σ,Q, q0, δ, κ) be a DPA, and P ′ be P with the canonical
coloring κ∗ for P in place of κ. Then P and P ′ recognize the same ω-language.

Proof. Let w be an ω-word and let D be the SCC consisting of the states visited
infinitely often in the run of P (and also of P ′) on input w. Let C be the unique
node of F ∗(P) such that D is a subset of C and is not a subset of any of the
children of C. Thus D contains at least one q ∈ Δ(C). In P the parity of D is
the same as the parity of C, which is the same as the parity of κ∗(q), which is
equal to the parity of D in P ′. Thus either both P and P ′ accept w or both
reject w.

Computing the Canonical Forest We now show that, given a DPA P =
(Σ,Q, q0, δ, κ), we can compute the canonical forest of P in polynomial time.
We first define a (possibly non-canonical) forest Fκ(P) using the given coloring
κ. The root nodes are the elements of maxSCCs(Q), the set of all maximal SCCs
of P. Once we have defined a node C of the forest, the children are the elements
of the set maxSCCs(C \ minStates(C)), that is, the maximal SCCs contained
in C with the set of states of minimum color removed. If this set is empty, the
node has no children and is a leaf. Note that in contrast to the case of the
canonical forest, in Fκ(P) the children of a node are not constrained to be of
parity opposite to that of the parent.

By construction each node in the forest Fκ(P) is an SCC of P. If D is a
descendant of C in the forest, then D is a proper subset of C, and κ(C) < κ(D).
Because the roots are pairwise disjoint and the children of any node are pairwise
disjoint, the sets minStates(C) for nodes C in the forest are pairwise disjoint and

Polynomial Identification of ω-Automata 337

a : 1b : 3

h : 4

i : 3c : 1

d : 5

e : 4

f : 4

g : 5

j : 4

k : 5

l : 2

m : 4

(a)

a, b, c, d, e, f, g, h : 1

f, g : 0b, d, e : 1

d, e : 0

i, j, k : 1

j, k : 0

l,m : 0

m : 0

(b)

a, b, c, d, e, f, g, h : 1

f, g : 0d, e : 0

i, j, k : 1

j, k : 0

l,m : 0 a : 1b : 1

h : 1

i : 1c : 1

d : 2

e : 2

f : 2

g : 2

j : 2

k : 2

l : 0

m : 0

(d)(c)

Fig. 2: (a) Transition graph of DPA P with states colored by κ. (b) Non-canonical forest Fκ(P),
with parities of nodes. (c) Canonical forest F∗(P), with parities of nodes. (d) Transition graph of P
with the canonical coloring κ∗.

nonempty, so there are at most |Q| nodes. Because a linear time algorithm for
computing strongly connected components can be used to compute the children
of a node, the forest Fκ(P) may be computed in polynomial time in the size of
the given DPA P.

To obtain the canonical forest F ∗(P) from the possibly non-canonical forest
Fκ(P), we may repeatedly merge pairs of adjacent nodes of the same parity until
every pair of adjacent nodes are of different parity. That is, if C is a node of
parity b and D is a child of C of parity b, then D ⊆ C, and we merge D into C
by deleting D and making all the children of D direct children of C. Repeating
this operation until there are no parent/child pairs of equal parity yields the
canonical forest F ∗(P). This computation can be done in polynomial time.

Note that to obtain a canonical forest for a given DBA (resp., DCA) we can
simply first color states in F by 1 (resp. 0) and in Q \F by 2 (resp., 1) and then
compute the canonical forest for the resulting DPA. In both cases the canonical
forest will be of depth at most two, since in DBA an accepting SCC cannot be
subsumed by a rejecting SCC (and vice versa in DCA).

An Example Figure 2(a) shows the transition graph of an example DPA P with
states a through m, labeled by the colors assigned by κ. There is a directed edge
from state q1 to state q2 if there exists a symbol σ ∈ Σ such that δ(q1, σ) = q2.

338 D. Angluin et al.

Figure 2(b) shows the non-canonical SCC forest Fκ(P) of P, with the nodes
labeled by their parities. Figure 2(c) shows the canonical SCC forest F ∗(P) of
P, with the nodes labeled by their parities. Figure 2(d) shows the transition
graph of P re-colored using the canonical coloring κ∗.

7.2 Constructing the characteristic sample for a DPA

We can now construct TAcc, the second part of the characteristic sample for a
DPA P. The sample TAcc consists of one example u(v)ω for each node C of the
canonical forest F ∗(P), where u is a string that reaches a state q in C from the
initial state q0, and v is a nonempty string that, starting from q, visits every
state of C and no state outside of C and returns to q. The length of the example
u(v)ω can be taken to be bounded by n + n2. The example u(v)ω is labeled 1
if it is accepted by P and otherwise is labeled 0. Then TAcc contains at most
n labeled examples, each of length polynomial in n. The final characteristic
sample for L = �P� is TL = TAut ∪ TAcc. The sample TL contains O(|Σ|n3)
labeled examples, each of length at most O(n4), which is polynomial in size(L).

8 The learning algorithm for a DPA

We can now describe the learning algorithm A that makes use of the informa-
tion in TL. Similar to Gold’s construction, the algorithm optimistically assumes
that the sample includes a characteristic sample, and if that assumption fails to
produce an acceptor consistent with the sample, the algorithm defaults to pro-
ducing a table-lookup acceptor to ensure that its hypothesis is consistent with
the sample. The algorithm we describe is sufficient to establish the theoretical
results, but for practical applications much more effort should be expended to
find good heuristic choices to avoid defaulting too easily.

Let L denote the language to be learned, and P denote a DPA of n states
that is isomorphic to its right congruence automaton and recognizes L. The
first and second phases of the algorithm are as described in Section 6: in the
first phase the algorithm builds the set S of states of the automaton, and in the
second step it builds the transition relation δ′. In the third phase, the acceptance
(namely the coloring) is determined. In this phase, the algorithm may default to
returning the table-lookup DPA for T . We first explain the construction of the
table-lookup DPA then describe the third phase.

0

0

0 1

0

1

0

1

0 0
a

b

a

b

b

a

b

a b

a

a

b

Fig. 3: Table-lookup DPA for T =
{(a(b)ω, 1), ((ab)ω, 1), (ab(baa)ω, 0)}.

A table-lookup DPA A table-lookup DPA
for a given sample T is constructed by find-
ing the shortest prefix of each example u(v)ω

in T that distinguishes it from all other ex-
amples in T and placing these prefixes in a
trie-like structure. At each leaf of the trie is
a structure accepting (or rejecting, depending
on the label of the example) the appropriate
suffix of the unique example that arrives at that leaf. By Claim 1, this DPA

Polynomial Identification of ω-Automata 339

can be constructed in time polynomial in the length of the sample T . Note that
this construction is easily modified to give a DBA, DCA or DMA instead of a
DPA. As an example, for the sample T = {(a(b)ω, 1), ((ab)ω, 1), (ab(baa)ω, 0)},
the corresponding prefixes are abbb, aba, and abba, and the table-lookup DPA
for T is shown in Figure 3, with states labeled by colors 0 and 1.

Determining the coloring In the third phase, the algorithm attempts to
define a coloring of the states in S. The algorithm constructs the set Z of all
subsets C of S such that for some labeled example (u(v)ω, l) in T , the subset C is
the set of elements of S that are visited infinitely often in the run on input u(v)ω

starting at ε using the transition function δ′. If in this process two examples with
different labels are found to yield the same set C, the learning algorithm defaults
to the table-lookup DPA for T . Otherwise, each set C in Z is associated with
the label of the example(s) that yield C. The set Z is partially ordered by the
subset relation. The learning algorithm then attempts to construct a forest F ′

with nodes that are elements of Z, corresponding to the canonical forest of P.
Initially, F ′ contains as roots all the maximal elements of Z. If these are not
pairwise disjoint, it defaults to the table-lookup DPA for T . Otherwise, for each
unprocessed element C in F ′, it computes the set of all D ∈ Z such that D ⊆ C,
D has the opposite label to C, and D is maximal with these properties, and
makes D a child of C. When all the children of a node C have been determined,
the algorithm checks two conditions: (1) that the children of C are pairwise
disjoint, and (2) there is at least one s ∈ C that is not in any child of C. If either
of these conditions fail, then it defaults to the table-lookup DPA for T . If both
conditions are satisfied, then the node C is marked as processed. When there
are no more unprocessed nodes, the construction of F ′ is complete. Note that
F ′ can have at most n nodes, because S has at most n elements.

When the construction of F ′ completes, for each node C in F ′ let Δ(C)
denote the elements of C that do not appear in any of its children. Then the
learning algorithm assigns colors to the elements of S starting from the roots
of F ′, as follows. If C is a root with label l, then κ′(s) = l for all s ∈ Δ(C). If
the elements of Δ(C) have been assigned color k and D is a child of C, then
κ′(s) = k + 1 for all s ∈ Δ(D). When this process is complete, any uncolored
strings s are assigned κ′(s) = 0. If the resulting DPA P ′ is consistent with the
sample T , the learning algorithm outputs P ′ and halts. If the sample T includes
both TAut (to specify the automaton) and TAcc (to specify the coloring), then
F ′ will be isomorphic to the canonical forest F ∗(P) and κ′ will correspond to
the canonical coloring κ∗, and P ′ will recognize the target language L.

If the process described above does not result in a DPA that is consistent
with the sample T , then the algorithm defaults to constructing the table-lookup
DPA for T .

The learning algorithm also works for the classes IB and IC: In the case of
IB and IC we need to define a set F rather than a coloring κ. After constructing
the forest, the set F is determined to contain the states in the root nodes that
are not in the leaves. Thus we have the following.

340 D. Angluin et al.

Theorem 11. The classes IB, IC and IP are identifiable in the limit using poly-
nomial time and data. Moreover, characteristic samples can be computed in poly-
nomial time.

A corollary of Theorem 11 is that the class of languages recognized by der-
ministic weak parity acceptors (DWPA) which was shown to be polynomially
learnable using membership and equivalence queries in [24] is identified in the
limit using polynomial time and data. This class (which is equivalent to the in-
tersection of classes DBA ∩ DCA) was shown to be a subset of IM in [30], and
to be a subset of IP in [4].

Corollary 2. The class DWPA is identifiable in the limit using polynomial time
and data. Moreover, characteristic samples can be computed in polynomial time.

9 The sample TAcc and the learning algorithm for a DMA

The above results can be extended to the class IM. Recall that we define the
size measure for a DMA to be max{|Σ|, |Q|,m}, where m is the number of sets
in the acceptance condition. For the characteristic sample TL, TAut remains the
same, but TAcc contains for each accepting set C, an example u(v)ω for which
C is the set of states visited infinitely often. In the learning algorithm, the
construction of the transition function remains the same. Instead of attempting
to construct a coloring function, the learning algorithm finds for each labeled
example (u(v)ω, 1) ∈ T , the set C of states s that are visited infinitely often
on input u(v)ω starting from ε and using the transition function δ′, and adds
C to the acceptance condition. If the construction does not result in a DMA
consistent with T , then it defaults to producing a table-lookup DMA for T .
Because in addition, as stated in Section 5.1, a characteristic samples can be
computed in polynomial time, we have the following.

Theorem 12. The class IM is identifiable in the limit using polynomial time
and data. Moreover, a characteristic sample can be computed in polynomial time.

10 Discussion

We have shown that the non-deterministic classes of ω-automata NBA, NPA,
NMA and NCA cannot be identified in the limit using polynomial data. A nega-
tive result regarding query learning of the first three classes was recently obtained
in [3]. That result makes a plausible assumption of cryptographic hardness, which
is not required here. On the positive side we have shown that the classes IB, IC,
IP and IM can be identified in the limit using polynomial time and data. And
moreover, a characteristic sample can be constructed in polynomial time. The
construction builds on the definition of a canonical forest for a DPA which may
be of use in other contexts as well. The question whether the deterministic classes
DBA, DPA, DMA and DCA can be polynomially learned in the limit remains
open.

Polynomial Identification of ω-Automata 341

References

1. Aarts, F., Vaandrager, F.: Learning I/O automata. In: Gastin, P., Laroussinie,
F. (eds.) CONCUR 2010 - Concurrency Theory: 21th International Conference,
CONCUR 2010, Paris, France, August 31-September 3, 2010. Proceedings. pp.
71–85. Springer Berlin Heidelberg, Berlin, Heidelberg (2010)

2. Ammons, G., Bod́ık, R., Larus, J.R.: Mining specifications. In: Conference Record
of POPL 2002: The 29th SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, Portland, OR, USA, January 16-18, 2002. pp. 4–16 (2002)

3. Angluin, D., Antonopoulos, T., Fisman, D.: Strongly unambiguous Büchi automata
are polynomially predictable with membership queries. In: 28th EACSL Annual
Conference on Computer Science Logic, CSL 2020, January 13-16, 2020, Barcelona,
Spain. pp. 8:1–8:17 (2020)

4. Angluin, D., Fisman, D.: Regular omega-languages with an informative right con-
gruence. In: GandALF. EPTCS, vol. 277, pp. 265–279 (2018)

5. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987)

6. Angluin, D., Boker, U., Fisman, D.: Families of DFAs as acceptors of omega-
regular languages. In: 41st International Symposium on Mathematical Foundations
of Computer Science, MFCS 2016, August 22-26, 2016 - Kraków, Poland. pp. 11:1–
11:14 (2016)

7. Angluin, D., Fisman, D.: Learning regular omega languages. In: Algorithmic Learn-
ing Theory - 25th International Conference, ALT 2014, Bled, Slovenia, October
8-10, 2014. Proceedings. pp. 125–139 (2014)

8. Angluin, D., Fisman, D.: Learning regular omega languages. Theor. Comput. Sci.
650, 57–72 (2016)

9. Angluin, D., Fisman, D.: Polynomial time algorithms for inclusion and equivalence
of deterministic omega acceptors. In: arXiv:2002.03191v2, cs.FL (2020)

10. Chalupar, G., Peherstorfer, S., Poll, E., de Ruiter, J.: Automated reverse engineer-
ing using Lego R©. In: 8th USENIX Workshop on Offensive Technologies (WOOT
14). USENIX Association, San Diego, CA (Aug 2014)

11. Chapman, M., Chockler, H., Kesseli, P., Kroening, D., Strichman, O., Tautschnig,
M.: Learning the language of error. In: Automated Technology for Verification and
Analysis - 13th International Symposium, ATVA 2015, Shanghai, China, October
12-15, 2015, Proceedings. pp. 114–130 (2015)

12. Cho, C.Y., Babic, D., Shin, E.C.R., Song, D.: Inference and analysis of formal
models of botnet command and control protocols. In: Proceedings of the 17th
ACM Conference on Computer and Communications Security, CCS 2010, Chicago,
Illinois, USA, October 4-8, 2010. pp. 426–439 (2010)

13. Cobleigh, J.M., Giannakopoulou, D., Păsăreanu, C.S.: Learning assumptions for
compositional verification. In: Proceedings of the 9th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems. pp. 331–346.
TACAS ’03, Springer-Verlag, Berlin, Heidelberg (2003)

14. Drews, D., D’Antoni, L.: Learning symbolic automata. In: Tools and Algorithms for
the Construction and Analysis of Systems - 23rd International Conference, TACAS
2017, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, Part I.
pp. 173–189 (2017)

15. Farzan, A., Chen, Y.F., Clarke, E., Tsay, Y.K., Wang, B.Y.: Extending automated
compositional verification to the full class of omega-regular languages. In: TACAS.
pp. 2–17 (2008)

342 D. Angluin et al.

16. Gold, E.M.: Complexity of automaton identification from given data. Information
and Control 37(3), 302–320 (1978)

17. Goldman, S.A., Mathias, H.D.: Teaching a smarter learner. J. Comput. Syst. Sci.
52(2), 255–267 (1996)

18. Habermehl, P., Vojnar, T.: Regular model checking using inference of regular lan-
guages. Electr. Notes Theor. Comput. Sci. 138(3), 21–36 (2005)

19. de la Higuera, C.: Characteristic sets for polynomial grammatical inference. Ma-
chine Learning 27(2), 125–138 (1997)

20. Howar, F., Steffen, B., Jonsson, B., Cassel, S.: Inferring canonical register au-
tomata. In: Verification, Model Checking, and Abstract Interpretation - 13th Inter-
national Conference, VMCAI 2012, Philadelphia, PA, USA, January 22-24, 2012.
Proceedings. pp. 251–266 (2012)

21. Kupferman, O., Vardi, M.Y., Wolper, P.: An automata-theoretic approach to
branching-time model checking. J. ACM 47(2), 312–360 (2000)

22. Li, Y., Chen, Y., Zhang, L., Liu, D.: A novel learning algorithm for büchi automata
based on family of dfas and classification trees. In: Tools and Algorithms for the
Construction and Analysis of Systems - 23rd International Conference, TACAS
2017, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, Part I.
pp. 208–226 (2017)

23. Maler, O., Pnueli, A.: On the learnability of infinitary regular sets. Inf. Comput.
118(2), 316–326 (1995)

24. Maler, O., Pnueli, A.: On the learnability of infinitary regular sets. In: Proceedings
of the Fourth Annual Workshop on Computational Learning Theory, COLT 1991,
Santa Cruz, California, USA, August 5-7, 1991. pp. 128–136 (1991)

25. Manevich, R., Shoham, S.: Inferring program extensions from traces. In: ICGI.
Proceedings of Machine Learning Research, vol. 93, pp. 139–154. PMLR (2018)

26. Margaria, T., Niese, O., Raffelt, H., Steffen, B.: Efficient test-based model genera-
tion for legacy reactive systems. In: HLDVT. pp. 95–100. IEEE Computer Society
(2004)

27. Nam, W., Alur, R.: Learning-based symbolic assume-guarantee reasoning with
automatic decomposition. In: ATVA. Lecture Notes in Computer Science, vol. 4218,
pp. 170–185. Springer (2006)

28. Peled, D., Vardi, M.Y., Yannakakis, M.: Black box checking. In: FORTE. pp. 225–
240 (1999)

29. Schuts, M., Hooman, J., Vaandrager, F.W.: Refactoring of legacy software using
model learning and equivalence checking: An industrial experience report. In: In-
tegrated Formal Methods - 12th International Conference, IFM 2016, Reykjavik,
Iceland, June 1-5, 2016, Proceedings. pp. 311–325 (2016)

30. Staiger, L.: Finite-state omega-languages. J. Comput. Syst. Sci. 27(3), 434–448
(1983)

31. Vaandrager, F.: Model learning. Commun. ACM 60(2), 86–95 (2017)
32. Vardhan, A., Sen, K., Viswanathan, M., Agha, G.: Using language inference to

verify omega-regular properties. In: Tools and Algorithms for the Construction and
Analysis of Systems, 11th International Conference, TACAS 2005, Held as Part of
the Joint European Conferences on Theory and Practice of Software, ETAPS 2005,
Edinburgh, UK, April 4-8, 2005, Proceedings. pp. 45–60 (2005)

33. Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. In: Banff
Higher Order Workshop. Lecture Notes in Computer Science, vol. 1043, pp. 238–
266. Springer (1995)

Polynomial Identification of ω-Automata 343

34. Wagner, K.W.: A hierarchy of regular sequence sets. In: 4th Symposium on Math-
ematical Foundations of Computer (MFCS). pp. 445–449 (1975)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

SV-COMP 2020

Advances in Automatic Software Verification:
SV-COMP 2020

Dirk Beyer

LMU Munich, Germany

Abstract. This report describes the 2020 Competition on Software Veri-
fication (SV-COMP), the 9th edition of a series of comparative evaluations
of fully automatic software verifiers for C and Java programs. The compe-
tition provides a snapshot of the current state of the art in the area, and
has a strong focus on replicability of its results. The competition was based
on 11 052 verification tasks for C programs and 416 verification tasks
for Java programs. Each verification task consisted of a program and a
property (reachability, memory safety, overflows, termination). SV-COMP
2020 had 28 participating verification systems from 11 countries.

Keywords: Formal Verification · Program Analysis · Competition

1 Introduction

The Competition on Software Verification (SV-COMP) serves as the showcase of
the state of the art in the area of automatic software verification. SV-COMP 2020
is the 9th edition of the competition and presents an overview of the currently
achieved results by tool implementations that are based on the most recent ideas,
concepts, and algorithms for fully automatic verification. This competition report
describes the (updated) rules and definitions, presents the competition results,
and discusses some interesting facts about the execution of the competition
experiments. The competition measures its own success by evaluating whether
the objectives of the competition were achieved. To the objectives discussed
earlier (1-4 [14]) we add two further objectives that deserve mentioning (5-6):

1. provide an overview of the state of the art in software-verification technology
and increase visibility of the most recent software verifiers,

2. establish a repository of software-verification tasks that is publicly available
for free use as standard benchmark suite for evaluating verification software,

3. establish standards that make it possible to compare different verification
tools, including a property language and formats for the results,

4. accelerate the transfer of new verification technology to industrial practice
by identifying the strengths of the various verifiers on a diverse set of tasks,

5. educate PhD students and others on performing replicable benchmarking,
packaging tools, and running robust and accurate research experiments, and

6. provide research teams that do not have sufficient computing resources with
the opportunity to obtain experimental results on large benchmark sets.

c© The Author(s) 2020
A. Biere and D. Parker (Eds.): TACAS 2020, LNCS 12079, pp. 347–367, 2020.
https://doi.org/10.1007/978-3-030-45237-7_21

TACAS
SV-COMP
Artifact

2020
Accepted

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45237-7_21&domain=pdf
https://orcid.org/0000-0003-4832-7662
https://doi.org/10.1007/978-3-030-45237-7_21

348 D. Beyer

We now discuss the outcome of SV-COMP 2020 with respect to these objec-
tives: (1) There were 28 participating software systems from 11 countries, using
many different technologies (cf. Table 6). SV-COMP is considered an important
event in the verification community. (2) The sv-benchmarks repository is consid-
ered one of the largest and most diverse collections of verification tasks in C and
Java. The community dedicates a lot of maintenance effort, as the issue tracker 1

and the pull requests 2 on GitHub show. (3) SV-COMP has established a format
for defining verification tasks, a standard specification language, and a set of
functions to express non-deterministic values. Verification results are validated
using verification witnesses and six different validators. (4) We received positive
feedback from industry, reporting that it is helpful to look up the newest and best
available verification tools, regarding the categories of interest. There are several
participating systems from industry since 2017. (5) Participating in SV-COMP
is also a challenge because the entry requirements are strict: the tools have to
be packaged such that all necessary non-standard components are contained,
the tools need to provide meaningful log output, the tool parameters have to be
specified in the BenchExec benchmark-definition format, and a tool-info module
needs to be implemented. All experiments are required to be fully replicable.
It is a motivating experience to observe the learning of first-time participants.
(6) Running large-scale performance experiments requires an infrastructure with
considerable computing resources — which are not necessarily available to all
tool developers. Through this competition and the preruns, the participants get
the opportunity to repeatedly run experiments on the full benchmark set of
verification tasks of the competition. The preruns and final run sum up to over
one million verification runs and ten million witness-validation runs.

Related Competitions. It is well-understood that competitions are an impor-
tant evaluation method, and there are many other competitions in the field of
formal methods. The TOOLympics 3 [7] event in 2019 (part of the 25-years-of-
TACAS celebration) presented 16 competitions in the area. Most closely related
are the competitions RERS 4 [45] and VerifyThis 5 [46]. While SV-COMP 6 per-
forms replicable experiments in a controlled environment (dedicated resources,
resource limits), the RERS Challenges give more room for exploring combina-
tions of interactive with automatic approaches without limits on the resources,
and the VerifyThis Competition focuses on evaluating approaches and ideas
rather than on fully automatic verification.

Large benchmark collections are extremely important to make approaches
comparable and to agree on what constitutes interesting problems to solve.
There are other large benchmark collections as well (e.g., by SPEC 7), but the

1 https://github.com/sosy-lab/sv-benchmarks/issues
2 https://github.com/sosy-lab/sv-benchmarks/pulls
3 https://tacas.info/toolympics.php
4 http://rers-challenge.org
5 http://etaps2016.verifythis.org
6 https://sv-comp.sosy-lab.org
7 https://www.spec.org

https://github.com/sosy-lab/sv-benchmarks/issues
https://github.com/sosy-lab/sv-benchmarks/pulls
https://tacas.info/toolympics.php
http://rers-challenge.org
http://etaps2016.verifythis.org
https://sv-comp.sosy-lab.org
https://www.spec.org

Advances in Automatic Software Verification: SV-COMP 2020 349

sv-benchmarks suite 8 is (a) free of charge, and (b) tailored to the state of the
art in software verification. Benchmark repositories of various competitions and
challenges also contribute to each other. For example, the sv-benchmarks suite
contains programs that were originally used in RERS 9, in termCOMP 10, and
in VerifyThis 11. There is a flow of benchmarks in the other direction as well:
The competition SMT-COMP [32] uses SMT formulas that were generated from
programs of the sv-benchmarks collection. For example, the k-induction engine
of CPAchecker was used to generate more than 1000 SMT formulas for the
quantifier-free theory of arrays and bit-vectors (QF_ABV) 12.

2 Organization, Definitions, Formats, and Rules

Procedure. SV-COMP 2020’s overall organization did not change in comparison
to the earlier editions [8, 9, 10, 11, 12, 13, 14]. SV-COMP is an open competition,
where all verification tasks are known before the submission of the participating
verifiers, which is necessary due to the complexity of the C language. During the
benchmark submission phase, new verification tasks were collected, classified, and
added to the existing benchmark suite (i.e., SV-COMP uses an accumulating
benchmark suite), during the training phase, the teams inspected the verification
tasks and trained their verifiers (also, the verification tasks received fixes and
quality improvement), and during the evaluation phase, verification runs were
preformed with all competition candidates, and the system descriptions and
archives were reviewed by the competition jury. The participants received the
results of their verifier directly via e-mail, and after a few days of inspection, the
results were publicly announced on the competition web site. The Competition
Jury consisted again of the chair and one member of each participating team.
Team representatives of the jury are listed in Table 5.

Qualification and License Requirements. As a new feature in SV-COMP
2020, a rule was introduced that allows the organizer to reuse systems that
participated in previous years, and to enter new systems, provided that the
developers were given the chance to contribute a submission themselves (both
options were not used this time). Starting 2018, SV-COMP required that the
verifier must be publicly available for download and has a license that

(i) allows replication and evaluation by anybody (including results publication),
(ii) does not restrict the usage of the verifier output (log files, witnesses), and
(iii) allows any kind of (re-)distribution of the unmodified verifier archive.

8 https://github.com/sosy-lab/sv-benchmarks
9 https://github.com/sosy-lab/sv-benchmarks/blob/svcomp20/c/eca-rers2012/README.txt

10 https://github.com/sosy-lab/sv-benchmarks/blob/svcomp20/c/termination-restricted-15/
README.txt

11 https://github.com/sosy-lab/sv-benchmarks/blob/svcomp20/c/verifythis/README.txt
12 https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks-inc/QF_ABV/tree/master/

20190307-CPAchecker_kInduction-SoSy_Lab

https://github.com/sosy-lab/sv-benchmarks
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp20/c/eca-rers2012/README.txt
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp20/c/termination-restricted-15/README.txt
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp20/c/termination-restricted-15/README.txt
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp20/c/verifythis/README.txt
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks-inc/QF_ABV/tree/master/20190307-CPAchecker_kInduction-SoSy_Lab
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks-inc/QF_ABV/tree/master/20190307-CPAchecker_kInduction-SoSy_Lab

350 D. Beyer

1 format_version: ’1.0’
2

3 # old file name: floppy_true−unreach−call_true−valid−memsafety.i.cil.c
4 input_files: ’floppy.i.cil−3.c’
5

6 properties:
7 − property_file: ../properties/unreach−call.prp
8 expected_verdict: true
9 − property_file: ../properties/valid−memsafety.prp

10 expected_verdict: false
11 subproperty: valid−memtrack

Fig. 1: Example task definition for program floppy.i.cil-3.c

Validation of Results. The validation of the results based on verification
witnesses [19, 20] was done as in previous years (2017–2019), mandatory for both
answers True or False. A few categories were excluded from validation if the
validators did not sufficiently support a certain kind of program or property. Two
new validators participated in SV-COMP 2020: Nitwit [66] and MetaVal [25].

Verification Tasks — Explicit Task-Definition Files. The notion of verifica-
tion tasks did not change and we refer to previous reports for more details [10, 13].
We developed a new format for task definitions that was used for the Java cate-
gory already in SV-COMP 2019. Technically, we need a verification task (a pair
of a program and a specification to verify) to feed as input to the verifier, and
an expected result against which we check the answer that the verifier returns.
Previously, the above-mentioned three components were specified in the file name
of the program; now all the information is stored in an extra file that contains a
structured definition of the verification tasks for a program. For each program, the
repository contains the program file and a task-definition file. Consider an exam-
ple program that is available under the name floppy.i.cil-3.c: This program
comes now with its task-definition file floppy.i.cil-3.yml. Figure 1 shows
this task definition. The new format was used in SV-COMP 2019 for the Java
category [14] and in the competition on software testing, Test-Comp 2019 [15].

The task definition uses the YAML format as underlying structured data
format. It contains a version id of the format (line 1) and can contain com-
ments (line 3). The field input_files specifies the input program (exam-
ple: ’floppy.i.cil-3.c’), which is either one file or a list of files. The field
properties lists all properties of the specification for this program. Each
property has a field property_file that specifies the property file (example:
../properties/unreach-call.prp) and a field expected_verdict that spec-
ifies the expected result (example: true).

Categories, Properties, Scoring Schema, and Ranking. The categories
are listed in Tables 7 and 8 and described in detail on the competition web site.13
Figure 2 shows the category composition. For the definition of the properties
and the property format, we refer to the 2015 competition report [11]. All
specifications are available in the directory c/properties/ of the benchmark
13 https://sv-comp.sosy-lab.org/2020/benchmarks.php

https://github.com/sosy-lab/sv-benchmarks/blob/svcomp20/c/ntdrivers/floppy.i.cil-3.c
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp20/c/ntdrivers/floppy.i.cil-3.c
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp20/c/ntdrivers/floppy.i.cil-3.yml
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp20/c/ntdrivers/floppy.i.cil-3.c
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp20/c/properties/unreach-call.prp
https://sv-comp.sosy-lab.org/2020/benchmarks.php

Advances in Automatic Software Verification: SV-COMP 2020 351

Arrays

BitVectors

ControlFlow

ECA

Floats

Heap

Loops

ProductLines

Recursive

Sequentialized

ReachSafety

Arrays

Heap

LinkedList

Other

TerminCrafted

MemCleanup

MemSafety

MainConcurrencySafety

BitVectors

Other
NoOverflows

MainControlFlow

MainHeap

Other

Termination

AWS-C-Common
ReachSafety

BusyBox MemSafety

BusyBox NoOverflows

DeviceDriversLinux64
ReachSafety

OpenBSD MemSafety

SoftwareSystems

C-FalsificationOverall

Java-Overall

C-Overall

Fig. 2: Category structure for SV-COMP 2020; category C-FalsificationOverall
contains all verification tasks of C-Overall without Termination; Java-Overall
contains all Java verification tasks

352 D. Beyer

Table 1: Properties used in SV-COMP 2020 (unchanged since 2019 [14])
Formula Interpretation
G ! call(foo()) A call to function foo is not reachable on any finite execution.
G valid-free All memory deallocations are valid (counterexample: invalid free).

More precisely: There exists no finite execution of the program
during which an invalid memory deallocation occurs.

G valid-deref All pointer dereferences are valid (counterexample: invalid
dereference). More precisely: There exists no finite execution of
the program during which an invalid pointer dereference occurs.

G valid-memtrack All allocated memory is tracked, i.e., pointed to or deallocated
(counterexample: memory leak). More precisely: There exists
no finite execution of the program during which the program lost
track of some previously allocated memory.

G valid-memcleanup All allocated memory is deallocated before the program
terminates. In addition to valid-memtrack: There exists
no finite execution of the program during which the program
terminates but still points to allocated memory.
(Comparison to Valgrind: This property can be violated even
if Valgrind reports ’still reachable’.)

F end All program executions are finite and end on proposition end,
which marks all program exits (counterexample: infinite loop).
More precisely: There exists no execution of the program on
which the program never terminates.

Table 2: Scoring schema for SV-COMP 2020 (unchanged since 2017 [13])
Reported result Points Description
Unknown 0 Failure to compute verification result
False correct +1 Violation of property in program was correctly found

and a validator confirmed the result based on a witness
False incorrect −16 Violation reported but property holds (false alarm)
True correct +2 Program correctly reported to satisfy property

and a validator confirmed the result based on a witness
True correct +1 Program correctly reported to satisfy property,

unconfirmed but the witness was not confirmed by a validator
True incorrect −32 Incorrect program reported as correct (wrong proof)

repository. Table 1 lists the properties and their syntactical representation as
overview. Property G valid-memcleanup, and thus, the category MemCleanup,
was used for the first time in SV-COMP 2019. The categories AWS-C-Common
and OpenBSD were added for SV-COMP 2020.

The scoring schema is identical for SV-COMP 2017–2020: Table 2 provides
the overview and Fig. 3 visually illustrates the score assignment for one prop-
erty. The scoring schema still contains the special rule for unconfirmed cor-
rect results for expected result True that was introduced in the transitioning
phase: one point is assigned if the answer matches the expected result but
the witness was not confirmed.

Advances in Automatic Software Verification: SV-COMP 2020 353

TASK

VERIFIERtrue-unreach

VERIFIER

false-unreach

WITNESS_VALIDATOR

true

0unknown

-16

false

2true (witness confirmed)

1unconfirmed (false, unknown, or ressources exhausted)

0invalid (error in witness syntax)

-32
true

0
unknown

WITNESS_VALIDATOR

false 0invalid (error in witness syntax)

0unconfirmed (true, unknown, or ressources exhausted)

1false (witness confirmed)

Fig. 3: Visualization of the scoring schema for the reachability property (from [13],
c© Springer-Verlag)

The ranking was again decided based on the sum of points (normalized for
meta categories). In case of a tie, the ranking was decided based on success run
time, which is the total CPU time over all verification tasks for which the verifier
reported a correct verification result. Opt-out from Categories and Score Nor-
malization for Meta Categories was done as described previously [9] (page 597).

3 Reproducibility

All major components used in the competition are available in public version
repositories. This allows independent replication of the SV-COMP experiments.
An overview of the components that contribute to the reproducible setup of SV-
COMP is provided in Fig. 4, and the details are given in Table 3. The SV-COMP
2016 report [12] describes all components of the SV-COMP organization and how
we ensure that all parts are publicly available for maximal replicability.

We have published the competition artifacts at Zenodo to guarantee their
long-term availability and immutability. These artifacts comprise the verification
tasks, the produced competition results, and the produced verification witnesses.
The DOIs and references are given in Table 4. The archive for the competition
results includes the raw results in BenchExec’s XML exchange format, the log
output of the verifiers and validators, and a mapping from files names to SHA-256
hashes. The hashes of the files are useful for validating the exact contents of a file,
and accessing the files inside the archive that contains the verification witnesses.

To provide a more transparent way of accessing the exact versions of the
verifiers that were used in the competition, all verifier archives are stored in a
public Git repository. GitLab was used to host the repository for the verifier
archives due to its generous repository size limit of 10GB. The final size of
the Git repository is 5.78GB.

354 D. Beyer

(a) Verification Tasks

(e) Verification Run

(b) Benchmark Definitions (c) Tool-Info Modules (d) Verifier Archives

FALSE UNKNOWN TRUE(f) Violation
Witness

(f) Correctness
Witness

Fig. 4: SV-COMP components and the execution flow

Table 3: Publicly available components for replicating SV-COMP 2020

Component Fig. 4 Repository Version

Verification Tasks (a) github.com/sosy-lab/sv-benchmarks svcomp20
Benchmark Definitions (b) github.com/sosy-lab/sv-comp svcomp20
Tool-Info Modules (c) github.com/sosy-lab/benchexec 2.5.1
Verifier Archives (d) gitlab.com/sosy-lab/sv-comp/archives-2020 svcomp20
Benchmarking (e) github.com/sosy-lab/benchexec 2.5.1
Witness Format (f) github.com/sosy-lab/sv-witnesses svcomp20

4 Results and Discussion

The results of the competition experiments represent the state of the art in fully
automatic software-verification tools. The report shows the results, in terms of
effectiveness (number of verification tasks that can be solved and correctness of
the results, as accumulated in the score) and efficiency (resource consumption
in terms of CPU time). The results are presented in the same way as in last
years, such that the improvements compared to last year are easy to identify. The
results presented in this report were inspected and approved by the participating
teams. We now discuss the highlights of the results.

Participating Verifiers. Table 5 and the competition web site 14 provide an
overview of the participating verification systems. Table 6 lists the algorithms
and techniques that are used in the verification tools.

Computing Resources. The resource limits were the same as in the previous
competitions [12]: Each verification run was limited to 8 processing units (cores),
15GB of memory, and 15min of CPU time. The witness validation was limited
to 2 processing units, 7GB of memory, and 1.5min of CPU time for violation
witnesses and 15min of CPU time for correctness witnesses. The machines
for running the experiments are part of a compute cluster that consists of

14 https://sv-comp.sosy-lab.org/2020/systems.php

https://github.com/sosy-lab/sv-benchmarks/tree/svcomp20/c
https://github.com/sosy-lab/sv-comp/tree/svcomp20/benchmark-defs
https://github.com/sosy-lab/benchexec/tree/2.5.1/benchexec/tools
https://gitlab.com/sosy-lab/sv-comp/archives-2020/tree/svcomp20/2020
https://github.com/sosy-lab/benchexec/tree/svcomp20
https://github.com/sosy-lab/sv-witnesses/tree/svcomp20
https://sv-comp.sosy-lab.org/2020/systems.php

Advances in Automatic Software Verification: SV-COMP 2020 355

Table 4: Artifacts published for SV-COMP 2020

Content DOI Reference

Verification Tasks 10.5281/zenodo.3633334 [17]
Competition Results 10.5281/zenodo.3630205 [16]
Verification Witnesses 10.5281/zenodo.3630188 [18]

Table 5: Competition candidates with tool references and representing jury members

Participant Ref. Jury member Affiliation

2ls [26, 55] Viktor Malík BUT, Brno, Czechia
Brick Lei Bu Nanjing U., China
Cbmc [51] Michael Tautschnig Amazon Web Services, UK
Coastal [67] Willem Visser Stellenbosch U., South Africa
CPA-BAM-BnB [3, 68] Vadim Mutilin ISP RAS, Russia
CPA-Lockator [4] Pavel Andrianov ISP RAS, Russia
CPA-Seq [22, 36] Martin Spiessl LMU Munich, Germany
Dartagnan [40, 53] Hernán Ponce de León Bundeswehr U. Munich, Germany
Divine [6, 52] Henrich Lauko Masaryk U., Czechia
Esbmc [38, 39] Felipe R. Monteiro Federal U. of Amazonas, Brazil
Gacal [61] Benjamin Quiring Northeastern U., USA
Java-Ranger [65] Vaibhav Sharma U. of Minnesota, USA
JayHorn [49, 50] Philipp Ruemmer Uppsala U., Sweden
JBmc [33, 34] Peter Schrammel U. of Sussex, UK
JDart [54, 56] Falk Howar TU Dortmund, Germany
Lazy-CSeq [47, 48] Omar Inverso Gran Sasso Science Inst., Italy
Map2Check [63, 64] Herbert Rocha Federal U. of Roraima, Brazil
PeSCo [35, 62] Cedric Richter Paderborn U., Germany
Pinaka [30] Saurabh Joshi IIT Hyderabad, India
PredatorHP [44, 59] Veronika Šoková BUT, Brno, Czechia
SPF [57, 60] Willem Visser Amazon, USA
Symbiotic [28, 29] Marek Chalupa Masaryk U., Czechia
UAutomizer [42, 43] Matthias Heizmann U. of Freiburg, Germany
UKojak [27, 58] Alexander Nutz U. of Freiburg, Germany
UTaipan [37, 41] Daniel Dietsch U. of Freiburg, Germany
VeriAbs [1, 2] Priyanka Darke Tata Consultancy Services, India
VeriFuzz [31] Raveendra Kumar M. Tata Consultancy Services, India
Yogar-Cbmc [70, 71] Liangze Yin Nat. U. of Defense Techn., China

168 machines; each verification run was executed on an otherwise completely
unloaded, dedicated machine, in order to achieve precise measurements. Each
machine had one Intel Xeon E3-1230 v5 CPU, with 8 processing units each,
a frequency of 3.4GHz, 33GB of RAM, and a GNU/Linux operating system
(x86_64-linux, Ubuntu 18.04 with Linux kernel 4.15). We used BenchExec [23]
to measure and control computing resources (CPU time, memory, CPU energy)
and VerifierCloud 15 to distribute, install, run, and clean-up verification runs,

15 https://vcloud.sosy-lab.org

https://doi.org/10.5281/zenodo.3633334
https://doi.org/10.5281/zenodo.3630205
https://doi.org/10.5281/zenodo.3630188
https://vcloud.sosy-lab.org

356 D. Beyer

Table 6: Algorithms and techniques that the competition candidates offer

Participant C
E
G

A
R

P
re

d
ic

at
e

A
b
st

ra
ct

io
n

S
ym

b
ol

ic
E
xe

cu
ti

on

B
ou

n
d
ed

M
od

el
C

h
ec

ki
n
g

k-
In

d
u
ct

io
n

P
ro

p
er

ty
-D

ir
ec

te
d

R
ea

ch
.

E
xp

li
ci

t-
V

al
u
e

A
n
al

ys
is

N
u
m

er
ic

.
In

te
rv

al
A

n
al

ys
is

S
h
ap

e
A

n
al

ys
is

S
ep

ar
at

io
n

L
og

ic

B
it

-P
re

ci
se

A
n
al

ys
is

A
R

G
-B

as
ed

A
n
al

ys
is

L
az

y
A

b
st

ra
ct

io
n

In
te

rp
ol

at
io

n

A
u
to

m
at

a-
B

as
ed

A
n
al

ys
is

C
on

cu
rr

en
cy

S
u
p
p
or

t

R
an

ki
n
g

F
u
n
ct

io
n
s

E
vo

lu
ti

on
ar

y
A

lg
or

it
h
m

s

2ls � � � � � �

Brick � � � � �

Cbmc � � �

Coastal �

CPA-BAM-BnB � � � � � � �

CPA-Lockator � � � � � � � �

CPA-Seq � � � � � � � � � � � � �

Dartagnan � �

Divine � � � �

Esbmc � � � �

Gacal

Java-Ranger � �

JayHorn � � � � � �

JBmc � � �

JDart � �

Lazy-CSeq � � �

Map2Check � �

PeSCo � � � � � � � � � � � � �

Pinaka � � �

PredatorHP �

SPF � � �

Symbiotic � � � �

UAutomizer � � � � � � � �

UKojak � � � � �

UTaipan � � � � � � � � �

VeriAbs � � � � � �

VeriFuzz � � �

Yogar-Cbmc � � � � �

Advances in Automatic Software Verification: SV-COMP 2020 357

and to collect the results. The values for time and energy are accumulated
over all cores of the CPU. To measure the CPU energy, we use CPU Energy
Meter [24] (integrated in BenchExec [23]).

One complete verification execution of the competition consisted of
138 074 verification runs (each verifier on each verification task of the selected
categories according to the opt-outs), consuming 491 days of CPU time and
130 kWh of CPU energy (without validation). Witness-based result validation
required 684 858 validation runs (each validator on each verification task for
categories with witness validation, and for each verifier), consuming 311 days
of CPU time. Each tool was executed several times, in order to make sure no
installation issues occur during the execution. Including preruns, the infrastruc-
ture managed a total of 1 018 781 verification runs consuming 4.8 years of CPU
time, and 10 705 227 validation runs consuming 6.9 years of CPU time.

Quantitative Results. Table 7 presents the quantitative overview of all tools
and all categories. The head row mentions the category, the maximal score for the
category, and the number of verification tasks. The tools are listed in alphabetical
order; every table row lists the scores of one verifier. We indicate the top three
candidates by formatting their scores in bold face and in larger font size. An
empty table cell means that the verifier opted-out from the respective main
category (perhaps participating in subcategories only, restricting the evaluation
to a specific topic). More information (including interactive tables, quantile plots
for every category, and also the raw data in XML format) is available on the
competition web site 16 and in the results artifact (see Table 4).

Table 8 reports the top three verifiers for each category. The run time (column
‘CPU Time’) and energy (column ‘CPU Energy’) refer to successfully solved
verification tasks (column ‘Solved Tasks’). We also report the number of tasks for
which no witness validator was able to confirm the result (column ‘Unconf. Tasks’).
The columns ‘False Alarms’ and ‘Wrong Proofs’ report the number of verification
tasks for which the verifier reported wrong results, i.e., reporting a counterexample
when the property holds (incorrect False) and claiming that the program fulfills
the property although it actually contains a bug (incorrect True), respectively.

Score-Based Quantile Functions for Quality Assessment. We use score-
based quantile functions [9, 23] because these visualizations make it easier to
understand the results of the comparative evaluation. The web site 16 and the
results archive (see Table 4) include such a plot for each category. As an example,
we show the plot for category C-Overall (all verification tasks) in Fig. 5. A total
of 11 verifiers participated in category C-Overall, for which the quantile plot
shows the overall performance over all categories (scores for meta categories
are normalized [9]). A more detailed discussion of score-based quantile plots,
including examples of what insights one can obtain from the plots, is provided
in previous competition reports [9, 12].

16 https://sv-comp.sosy-lab.org/2020/results

https://sv-comp.sosy-lab.org/2020/results

358 D. Beyer

Table 7: Quantitative overview over all results; empty cells represent opt-outs

Participant
R

ea
ch

S
af

et
y

66
81

po
in

ts
40

79
ta

sk
s

M
em

S
af

et
y

80
9

po
in

ts
51

2
ta

sk
s

C
on

cu
rr

en
cy

S
af

et
y

13
44

po
in

ts
10

82
ta

sk
s

N
oO

ve
rfl

ow
s

61
2

po
in

ts
39

7
ta

sk
s

T
er

m
in

at
io

n
35

63
po

in
ts

20
43

ta
sk

s
S
of

tw
ar

eS
ys

te
m

s
48

79
po

in
ts

29
39

ta
sk

s
F
al

si
fi
ca

ti
on

O
ve

ra
ll

42
11

po
in

ts
90

09
ta

sk
s

O
ve

ra
ll

17
32

8
po

in
ts

11
05

2
ta

sk
s

Ja
va

O
ve

ra
ll

60
2

po
in

ts
41

6
ta

sk
s

2ls 2491 298 0 340 1264 13 914 4924
Brick

Cbmc 2864 -162 554 268 499 30 1256 3365
CPA-BAM-BnB 602
CPA-Seq 4396 355 996 483 1720 746 2772 9219
CPA-Lockator -387
Dartagnan 173
Divine -76 71 550 0 0 -12 585 1151
Esbmc 3481 334 325 264 777 500 1639 5567
Gacal

Lazy-CSeq 1279
Map2Check -68 -89
PeSCo 4376 1590 8023
Pinaka 2585 243 590
PredatorHP 611
Symbiotic 2753 516 0 294 1022 954 1828 5985
UAutomizer 2696 354 296 466 2942 591 893 8178
UKojak 1702 231 0 387 0 501 1148 3710
UTaipan 2185 316 289 461 0 482 805 5057
VeriAbs 5543 0 0 0 0 244 273 2656
VeriFuzz 1206 146
Yogar-Cbmc 1275
Coastal 472
Java-Ranger 549
JayHorn 278
JBmc 527
JDart 524
SPF 410

Advances in Automatic Software Verification: SV-COMP 2020 359

Table 8: Overview of the top-three verifiers for each category (measurement values for
CPU time and energy rounded to two significant digits)

Rank Verifier Score CPU CPU Solved Unconf. False Wrong
Time Energy Tasks Tasks Alarms Proofs
(in h) (in kWh)

ReachSafety
1 VeriAbs 5543 150 1.6 3 412 171
2 CPA-Seq 4396 72 .75 2 700 54 8
3 PeSCo 4376 39 .38 2 518 36 4

MemSafety
1 PredatorHP 611 .78 .010 392 15
2 Symbiotic 516 .51 .010 358 6
3 CPA-Seq 355 .76 .010 264 1

ConcurrencySafety
1 Lazy-CSeq 1279 6.7 .090 1 023 44
2 Yogar-Cbmc 1275 .39 .000 1 024 33
3 CPA-Seq 996 12 .11 830 102

NoOverflows
1 CPA-Seq 483 .93 .010 321 8
2 UAutomizer 466 1.4 .010 326 0
3 UTaipan 461 1.5 .010 323 0

Termination
1 UAutomizer 2942 15 .16 1 606 7
2 CPA-Seq 1720 16 .17 1 247 7
3 2ls 1264 3.2 .030 955 361 3

SoftwareSystems
1 Symbiotic 954 .25 .000 676 36 3 1
2 CPA-Seq 746 21 .24 1 381 363 1
3 CPA-BAM-BnB 602 8.0 .070 1 411 582 3 4

FalsificationOverall
1 CPA-Seq 2772 45 .45 2 240 139 9
2 Symbiotic 1828 27 .35 1 461 10 3
3 Esbmc 1639 14 .18 1 819 385 16

Overall
1 CPA-Seq 9219 120 1.3 6 743 535 9
2 UAutomizer 8178 83 .84 5 523 693 71 2
3 PeSCo 8023 120 1.2 6 402 242 32

JavaOverall
1 Java-Ranger 549 1.3 .010 376
2 JBmc 527 .18 .000 376
3 JDart 524 .26 .000 374

360 D. Beyer

 1

 10

 100

 1000
M

in
. t

im
e

in
 s

2LS
CBMC

CPA-Seq
DIVINE
ESBMC
PeSCo

Symbiotic
UAutomizer

UKojak
UTaipan
VeriAbs

-2000 0 2000 4000 6000 8000
Cumulative score

Fig. 5: Quantile functions for category C-Overall. Each quantile function illustrates
the quantile (x-coordinate) of the scores obtained by correct verification runs
below a certain run time (y-coordinate). More details were given previously [9].
A logarithmic scale is used for the time range from 1 s to 1000 s, and a linear
scale is used for the time range between 0 s and 1 s.

Alternative Rankings. The community suggested to report a couple of al-
ternative rankings that honor different aspects of the verification process as
complement to the official SV-COMP ranking. Table 9 is similar to Table 8, but
contains the alternative ranking categories Correct and Green Verifiers. Column
‘Quality’ gives the score in score points, column ‘CPU Time’ the CPU usage of
successful runs in hours, column ‘CPU Energy’ the CPU usage of successful runs
in kWh, column ‘Solved Tasks’ the number of correct results, column ‘Wrong
Results’ the sum of false alarms and wrong proofs in number of errors, and
column ‘Rank Measure’ gives the measure to determine the alternative rank.

Correct Verifiers — Low Failure Rate. The right-most columns of Table 8 report
that the verifiers achieve a high degree of correctness (all top three verifiers in the C
track have less than 2% wrong results). The winners of category Java-Overall pro-
duced not a single wrong answer. The first category in Table 9 uses a failure rate as
rank measure: number of incorrect results

total score , the number of errors per score point (E/sp).
We use E as unit for number of incorrect results and sp as unit for total score. It
is remarkable to see that the worst result was 0.38E/sp in SV-COMP 2019 and
is now improved to 0.032E/sp, with is an order of magnitude better.

Green Verifiers — Low Energy Consumption. Since a large part of the cost
of verification is given by the energy consumption, it might be important to
also consider the energy efficiency. The second category in Table 9 uses the
energy consumption per score point as rank measure: total CPU energy

total score , with the
unit J/sp. It is interesting to see that the worst result from SV-COMP 2019
was 4 200 J/sp, and now it is improved to 2 200 J/sp.

Advances in Automatic Software Verification: SV-COMP 2020 361

Table 9: Alternative rankings; quality is given in score points (sp), CPU time in
hours (h), energy in kilojoule (kJ), wrong results in errors (E), rank measures in
errors per score point (E/sp), joule per score point (J/sp), and score points (sp)

Rank Verifier Quality CPU CPU Solved Wrong Rank
Time Energy Tasks Results Measure

(sp) (h) (kWh) (E)

Correct Verifiers (E/sp)
1 CPA-Seq 9 219 120 1.3 6 743 9 .0010
2 UKojak 3 710 48 0.49 2 405 4 .0011
3 2ls 4 924 27 0.24 3 044 8 .0016
worst .032

Green Verifiers (J/sp)
1 Cbmc 3 365 15 0.16 3 217 67 170
2 2ls 4 924 27 0.24 3 044 8 180
3 Esbmc 5 567 35 0.41 5 520 51 270
worst 2 200

Table 10: Confirmation rate of verification witnesses in SV-COMP 2020

Result True False

Total Confirmed Unconf. Total Confirmed Unconf.

2ls 2 060 2 049 99% 11 1 449 995 69% 454
Cbmc 1 949 1 821 93% 128 2 095 1 396 67% 699
CPA-Seq 4 347 3 958 91% 389 2 931 2 785 95% 146
Divine 811 793 98% 18 1 099 672 61% 427
Esbmc 3 779 3 701 98% 78 2 204 1 819 83% 385
PeSCo 3 777 3 704 98% 73 2 867 2 698 94% 169
Symbiotic 2 196 2 146 98% 50 1 996 1 879 94% 117
UAutomizer 4 135 4 029 97% 106 2 081 1 494 72% 587
UKojak 1 811 1 801 99% 10 606 604 100% 2
UTaipan 2 496 2 438 98% 58 1 308 730 56% 578
VeriAbs 3 908 3 387 87% 521 1 536 1 332 87% 204

Verifiable Witnesses. All SV-COMP verifiers are required to justify the result
(True or False) by producing a verification witness (except for those categories
for which no witness validator is available). We used six independently developed
witness-based result validators [19, 20, 21, 25, 66].

The majority of witnesses that the verifiers produced can be confirmed
by the results-validation process. Interestingly, the confirmation rate for the
True results is significantly higher than for the False results. Table 10 shows
the confirmed versus unconfirmed results: the first column lists the verifiers

362 D. Beyer

2012 2013 2014 2015 2016 2017 2018 2019 2020
0

20

40

10 11
15

22

35
32

21

31
28

P
ar

ti
ci

pa
ti

ng
te

am
s

Fig. 6: Number of participating teams for each year

of category C-Overall, the three columns for result True reports the total,
confirmed, and unconfirmed number of verification tasks for which the verifier
answered with True, respectively, and the three columns for result False
reports the total, confirmed, and unconfirmed number of verification tasks for
which the verifier answered with False, respectively. More information (for all
verifiers) is given in the detailed tables on the competition web site 16 and in
the results artifact; all verification witnesses are also contained in the witnesses
artifact (see Table 4). Result validation is an important topic also in other
competitions (e.g., in the SAT competition [5, 69]).

5 Conclusion

SV-COMP 2020, the 9th edition of the Competition on Software Verification,
attracted 28 participating teams from 11 countries (see Fig. 6 for the participation
numbers). SV-COMP continues to offer a broad overview of the state of the art
in automatic software verification. The competition does not only execute the
verifiers and collect results, but also validates the verification results, using six
independently developed results validators. The number of verification tasks was
increased to 11 052 in C and to 416 in Java. As before, the large jury and the
organizer made sure that the competition follows the high quality standards of
the TACAS conference, in particular with respect to the important principles
of fairness, community support, and transparency.

Data Availability Statement. The verification tasks and results of the com-
petition are published at Zenodo, as described in Table 4. All components
and data that are necessary for reproducing the competition are available in
public version repositories, as specified in Fig. 4 and Table 3. Furthermore,
the results are presented online on the competition web site for easy access:
https://sv-comp.sosy-lab.org/2020/results/.

https://sv-comp.sosy-lab.org/2020/results/

Advances in Automatic Software Verification: SV-COMP 2020 363

References

1. Afzal, M., Asia, A., Chauhan, A., Chimdyalwar, B., Darke, P., Datar, A., Kumar,
S., Venkatesh, R.: VeriAbs: Verification by abstraction and test generation. In:
Proc. ASE. pp. 1138–1141 (2019). https://doi.org/10.1109/ASE.2019.00121

2. Afzal, M., Chakraborty, S., Chauhan, A., Chimdyalwar, B., Darke, P., Gupta,
A., Kumar, S., M., C.B., Unadkat, D., Venkatesh, R.: VeriAbs: Verification by
abstraction and test generation (competition contribution). In: Proc. TACAS (2).
LNCS 12079, Springer (2020)

3. Andrianov, P., Friedberger, K., Mandrykin, M.U., Mutilin, V.S., Volkov, A.: CPA-
BAM-BnB: Block-abstraction memoization and region-based memory models for
predicate abstractions (competition contribution). In: Proc. TACAS. pp. 355–359.
LNCS 10206, Springer (2017). https://doi.org/10.1007/978-3-662-54580-5_22

4. Andrianov, P., Mutilin, V., Khoroshilov, A.: Predicate abstraction based config-
urable method for data race detection in Linux kernel. In: Proc. TMPA. CCIS 779,
Springer (2018). https://doi.org/10.1007/978-3-319-71734-0_2

5. Balyo, T., Heule, M.J.H., Järvisalo, M.: SAT Competition 2016: Recent develop-
ments. In: Proc. AAAI. pp. 5061–5063. AAAI Press (2017)

6. Baranová, Z., Barnat, J., Kejstová, K., Kučera, T., Lauko, H., Mrázek, J., Ročkai, P.,
Štill, V.: Model checking of C and C++ with Divine 4. In: Proc. ATVA. pp. 201–207.
LNCS 10482, Springer (2017). https://doi.org/10.1007/978-3-319-68167-2_14

7. Bartocci, E., Beyer, D., Black, P.E., Fedyukovich, G., Garavel, H., Hartmanns, A.,
Huisman, M., Kordon, F., Nagele, J., Sighireanu, M., Steffen, B., Suda, M., Sutcliffe,
G., Weber, T., Yamada, A.: TOOLympics 2019: An overview of competitions in
formal methods. In: Proc. TACAS (3). pp. 3–24. LNCS 11429, Springer (2019).
https://doi.org/10.1007/978-3-030-17502-3_1

8. Beyer, D.: Competition on software verification (SV-COMP). In: Proc. TACAS. pp.
504–524. LNCS 7214, Springer (2012). https://doi.org/10.1007/978-3-642-28756-
5_38

9. Beyer, D.: Second competition on software verification (Summary of SV-
COMP 2013). In: Proc. TACAS. pp. 594–609. LNCS 7795, Springer (2013).
https://doi.org/10.1007/978-3-642-36742-7_43

10. Beyer, D.: Status report on software verification (Competition summary SV-
COMP 2014). In: Proc. TACAS. pp. 373–388. LNCS 8413, Springer (2014).
https://doi.org/10.1007/978-3-642-54862-8_25

11. Beyer, D.: Software verification and verifiable witnesses (Report on SV-
COMP 2015). In: Proc. TACAS. pp. 401–416. LNCS 9035, Springer (2015).
https://doi.org/10.1007/978-3-662-46681-0_31

12. Beyer, D.: Reliable and reproducible competition results with BenchExec and
witnesses (Report on SV-COMP 2016). In: Proc. TACAS. pp. 887–904. LNCS 9636,
Springer (2016). https://doi.org/10.1007/978-3-662-49674-9_55

13. Beyer, D.: Software verification with validation of results (Report on SV-
COMP 2017). In: Proc. TACAS. pp. 331–349. LNCS 10206, Springer (2017).
https://doi.org/10.1007/978-3-662-54580-5_20

14. Beyer, D.: Automatic verification of C and Java programs: SV-COMP
2019. In: Proc. TACAS (3). pp. 133–155. LNCS 11429, Springer (2019).
https://doi.org/10.1007/978-3-030-17502-3_9

15. Beyer, D.: First international competition on software testing (Test-Comp 2019).
Int. J. Softw. Tools Technol. Transf. (2020)

https://doi.org/10.1109/ASE.2019.00121
https://doi.org/10.1007/978-3-662-54580-5_22
https://doi.org/10.1007/978-3-319-71734-0_2
https://doi.org/10.1007/978-3-319-68167-2_14
https://doi.org/10.1007/978-3-030-17502-3_1
https://doi.org/10.1007/978-3-642-28756-5_38
https://doi.org/10.1007/978-3-642-28756-5_38
https://doi.org/10.1007/978-3-642-36742-7_43
https://doi.org/10.1007/978-3-642-54862-8_25
https://doi.org/10.1007/978-3-662-46681-0_31
https://doi.org/10.1007/978-3-662-49674-9_55
https://doi.org/10.1007/978-3-662-54580-5_20
https://doi.org/10.1007/978-3-030-17502-3_9

364 D. Beyer

16. Beyer, D.: Results of the 9th International Competition on Software Verification
(SV-COMP 2020). Zenodo (2020). https://doi.org/10.5281/zenodo.3630205

17. Beyer, D.: SV-Benchmarks: Benchmark set of 9th Intl. Competition on Software Ver-
ification (SV-COMP 2020). Zenodo (2020). https://doi.org/10.5281/zenodo.3633334

18. Beyer, D.: Verification witnesses from SV-COMP 2020 verification tools. Zenodo
(2020). https://doi.org/10.5281/zenodo.3630188

19. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M.: Correctness witnesses: Exchanging
verification results between verifiers. In: Proc. FSE. pp. 326–337. ACM (2016).
https://doi.org/10.1145/2950290.2950351

20. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Stahlbauer, A.: Witness validation
and stepwise testification across software verifiers. In: Proc. FSE. pp. 721–733. ACM
(2015). https://doi.org/10.1145/2786805.2786867

21. Beyer, D., Dangl, M., Lemberger, T., Tautschnig, M.: Tests from witnesses:
Execution-based validation of verification results. In: Proc. TAP. pp. 3–23.
LNCS 10889, Springer (2018). https://doi.org/10.1007/978-3-319-92994-1_1

22. Beyer, D., Keremoglu, M.E.: CPAchecker: A tool for configurable soft-
ware verification. In: Proc. CAV. pp. 184–190. LNCS 6806, Springer (2011).
https://doi.org/10.1007/978-3-642-22110-1_16

23. Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: Requirements
and solutions. Int. J. Softw. Tools Technol. Transfer 21(1), 1–29 (2019).
https://doi.org/10.1007/s10009-017-0469-y

24. Beyer, D., Wendler, P.: CPU Energy Meter: A tool for energy-aware algorithms
engineering. In: Proc. TACAS (2). LNCS 12079, Springer (2020)

25. Beyer, D., Spiessl, M.: MetaVal: Witness validation via verification. In: unpublished
manuscript (2020)

26. Brain, M., Joshi, S., Kröning, D., Schrammel, P.: Safety verification and refutation
by k-invariants and k-induction. In: Proc. SAS. pp. 145–161. LNCS 9291, Springer
(2015). https://doi.org/10.1007/978-3-662-48288-9_9

27. Brückner, I., Dräger, K., Finkbeiner, B., Wehrheim, H.: Slicing abstractions. Fundam.
Inform. 89(4), 369–392 (2008)

28. Chalupa, M., Jašek, T., Tomovič, L., Hruška, M., Šoková, V., Ayaziová, P., Strejček,
J., Vojnar, T.: Symbiotic 7: Integration of Predator and more (competition
contribution). In: Proc. TACAS (2). LNCS 12079, Springer (2020)

29. Chalupa, M., Strejcek, J., Vitovská, M.: Joint forces for memory safety checking.
In: Proc. SPIN. pp. 115–132. Springer (2018). https://doi.org/10.1007/978-3-319-
94111-0_7

30. Chaudhary, E., Joshi, S.: Pinaka: Symbolic execution meets incremental solv-
ing (competition contribution). In: Proc. TACAS (3). pp. 234–238. LNCS 11429,
Springer (2019). https://doi.org/10.1007/978-3-030-17502-3_20

31. Chowdhury, A.B., Medicherla, R.K., Venkatesh, R.: VeriFuzz: Program-aware
fuzzing (competition contribution). In: Proc. TACAS (3). pp. 244–249. LNCS 11429,
Springer (2019). https://doi.org/10.1007/978-3-030-17502-3_22

32. Cok, D.R., Déharbe, D., Weber, T.: The 2014 SMT competition. JSAT 9, 207–242
(2016)

33. Cordeiro, L.C., Kesseli, P., Kröning, D., Schrammel, P., Trtík, M.: JBmc: A
bounded model checking tool for verifying Java bytecode. In: Proc. CAV. pp. 183–
190. LNCS 10981, Springer (2018). https://doi.org/10.1007/978-3-319-96145-3_10

34. Cordeiro, L.C., Kröning, D., Schrammel, P.: JBmc: Bounded model checking for
Java bytecode (competition contribution). In: Proc. TACAS (3). pp. 219–223.
LNCS 11429, Springer (2019). https://doi.org/10.1007/978-3-030-17502-3_17

https://doi.org/10.5281/zenodo.3630205
https://doi.org/10.5281/zenodo.3633334
https://doi.org/10.5281/zenodo.3630188
https://doi.org/10.1145/2950290.2950351
https://doi.org/10.1145/2786805.2786867
https://doi.org/10.1007/978-3-319-92994-1_1
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/978-3-662-48288-9_9
https://doi.org/10.1007/978-3-319-94111-0_7
https://doi.org/10.1007/978-3-319-94111-0_7
https://doi.org/10.1007/978-3-030-17502-3_20
https://doi.org/10.1007/978-3-030-17502-3_22
https://doi.org/10.1007/978-3-319-96145-3_10
https://doi.org/10.1007/978-3-030-17502-3_17

Advances in Automatic Software Verification: SV-COMP 2020 365

35. Czech, M., Hüllermeier, E., Jakobs, M.C., Wehrheim, H.: Predicting rank-
ings of software verification tools. In: Proc. SWAN. pp. 23–26. ACM (2017).
https://doi.org/10.1145/3121257.3121262

36. Dangl, M., Löwe, S., Wendler, P.: CPAchecker with support for recursive programs
and floating-point arithmetic (competition contribution). In: Proc. TACAS. pp.
423–425. LNCS 9035, Springer (2015). https://doi.org/10.1007/978-3-662-46681-
0_34

37. Dietsch, D., Heizmann, M., Nutz, A., Schätzle, C., Schüssele, F.: Ultimate Taipan
with symbolic interpretation and fluid abstractions (competition contribution). In:
Proc. TACAS (2). LNCS 12079, Springer (2020)

38. Gadelha, M.Y.R., Monteiro, F.R., Cordeiro, L.C., Nicole, D.A.: Esbmc v6.0: Ver-
ifying C programs using k -induction and invariant inference (competition con-
tribution). In: Proc. TACAS (3). pp. 209–213. LNCS 11429, Springer (2019).
https://doi.org/10.1007/978-3-030-17502-3_15

39. Gadelha, M.Y., Ismail, H.I., Cordeiro, L.C.: Handling loops in bounded model
checking of C programs via k -induction. Int. J. Softw. Tools Technol. Transf. 19(1),
97–114 (Feb 2017). https://doi.org/10.1007/s10009-015-0407-9

40. Gavrilenko, N., Ponce de León, H., Furbach, F., Heljanko, K., Meyer, R.: BMC
for weak memory models: Relation analysis for compact SMT encodings. In: Proc.
CAV. pp. 355–365. LNCS 11561, Springer (2019). https://doi.org/10.1007/978-3-
030-25540-4_19

41. Greitschus, M., Dietsch, D., Podelski, A.: Loop invariants from counterexamples. In:
Proc. SAS. pp. 128–147. LNCS 10422, Springer (2017). https://doi.org/10.1007/978-
3-319-66706-5_7

42. Heizmann, M., Chen, Y.F., Dietsch, D., Greitschus, M., Hoenicke, J., Li, Y., Nutz,
A., Musa, B., Schilling, C., Schindler, T., Podelski, A.: Ultimate Automizer and
the search for perfect interpolants (competition contribution). In: Proc. TACAS (2).
pp. 447–451. LNCS 10806, Springer (2018). https://doi.org/10.1007/978-3-319-
89963-3_30

43. Heizmann, M., Hoenicke, J., Podelski, A.: Software model checking for people
who love automata. In: Proc. CAV. pp. 36–52. LNCS 8044, Springer (2013).
https://doi.org/10.1007/978-3-642-39799-8_2

44. Holík, L., Kotoun, M., Peringer, P., Šoková, V., Trtík, M., Vojnar, T.: Predator
shape analysis tool suite. In: Hardware and Software: Verification and Testing. pp.
202–209. LNCS 10028, Springer (2016). https://doi.org/10.1007/978-3-319-49052-6

45. Howar, F., Isberner, M., Merten, M., Steffen, B., Beyer, D.: The RERS grey-box
challenge 2012: Analysis of event-condition-action systems. In: Proc. ISoLA. pp.
608–614. LNCS 7609, Springer (2012). https://doi.org/10.1007/978-3-642-34026-
0_45

46. Huisman, M., Klebanov, V., Monahan, R.: VerifyThis 2012: A program verification
competition. STTT 17(6), 647–657 (2015). https://doi.org/10.1007/s10009-015-
0396-8

47. Inverso, O., Tomasco, E., Fischer, B., La Torre, S., Parlato, G.: Lazy-CSeq: A lazy
sequentialization tool for C (competition contribution). In: Proc. TACAS. pp. 398–
401. LNCS 8413, Springer (2014). https://doi.org/10.1007/978-3-642-54862-8_29

48. Inverso, O., Trubiani, C.: Parallel and distributed bounded model checking of
multi-threaded programs. In: Proc. PPoPP. ACM (2020)

49. Kahsai, T., Rümmer, P., Sanchez, H., Schäf, M.: JayHorn: A framework for
verifying Java programs. In: Proc. CAV. pp. 352–358. LNCS 9779, Springer (2016).
https://doi.org/10.1007/978-3-319-41528-4_19

https://doi.org/10.1145/3121257.3121262
https://doi.org/10.1007/978-3-662-46681-0_34
https://doi.org/10.1007/978-3-662-46681-0_34
https://doi.org/10.1007/978-3-030-17502-3_15
https://doi.org/10.1007/s10009-015-0407-9
https://doi.org/10.1007/978-3-030-25540-4_19
https://doi.org/10.1007/978-3-030-25540-4_19
https://doi.org/10.1007/978-3-319-66706-5_7
https://doi.org/10.1007/978-3-319-66706-5_7
https://doi.org/10.1007/978-3-319-89963-3_30
https://doi.org/10.1007/978-3-319-89963-3_30
https://doi.org/10.1007/978-3-642-39799-8_2
https://doi.org/10.1007/978-3-319-49052-6
https://doi.org/10.1007/978-3-642-34026-0_45
https://doi.org/10.1007/978-3-642-34026-0_45
https://doi.org/10.1007/s10009-015-0396-8
https://doi.org/10.1007/s10009-015-0396-8
https://doi.org/10.1007/978-3-642-54862-8_29
https://doi.org/10.1007/978-3-319-41528-4_19

366 D. Beyer

50. Kahsai, T., Rümmer, P., Schäf, M.: JayHorn: A Java model checker (competition
contribution). In: Proc. TACAS (3). pp. 214–218. LNCS 11429, Springer (2019).
https://doi.org/10.1007/978-3-030-17502-3_16

51. Kröning, D., Tautschnig, M.: Cbmc: C bounded model checker (competition
contribution). In: Proc. TACAS. pp. 389–391. LNCS 8413, Springer (2014).
https://doi.org/10.1007/978-3-642-54862-8_26

52. Lauko, H., Ročkai, P., Barnat, J.: Symbolic computation via program transformation.
In: Proc. ICTAC. pp. 313–332. Springer (2018). https://doi.org/10.1007/978-3-030-
02508-3_17

53. de Leon, H.P., Furbach, F., Heljanko, K., Meyer, R.: Dartagnan: Bounded model
checking for weak memory models (competition contribution). In: Proc. TACAS (2).
LNCS 12079, Springer (2020)

54. Luckow, K.S., Dimjasevic, M., Giannakopoulou, D., Howar, F., Isberner, M.,
Kahsai, T., Rakamaric, Z., Raman, V.: JDart: A dynamic symbolic analy-
sis framework. In: Proc. TACAS. pp. 442–459. LNCSS 9636, Springer (2016).
https://doi.org/10.1007/978-3-662-49674-9_26

55. Malík, V., Schrammel, P., Vojnar, T.: 2ls: Heap analysis and memory safety
(competition contribution). In: Proc. TACAS (2). LNCS 12079, Springer (2020)

56. Mues, M., Howar, F.: JDart: Dynamic symbolic execution for Java bytecode
(competition contribution). In: Proc. TACAS (2). LNCS 12079, Springer (2020)

57. Noller, Y., Păsăreanu, C.S., Le, X.B.D., Visser, W., Fromherz, A.: Symbolic
Pathfinder for SV-COMP (competition contribution). In: Proc. TACAS (3).
pp. 239–243. LNCS 11429, Springer (2019). https://doi.org/10.1007/978-3-030-
17502-3_21

58. Nutz, A., Dietsch, D., Mohamed, M.M., Podelski, A.: Ultimate Kojak with
memory safety checks (competition contribution). In: Proc. TACAS. pp. 458–460.
LNCS 9035, Springer (2015). https://doi.org/10.1007/978-3-662-46681-0_44

59. Peringer, P., Šoková, V., Vojnar, T.: PredatorHP revamped (not only) for interval-
sized memory regions and memory reallocation (competition contribution). In: Proc.
TACAS (2). LNCS 12079, Springer (2020)

60. Păsăreanu, C.S., Visser, W., Bushnell, D.H., Geldenhuys, J., Mehlitz, P.C., Rungta,
N.: Symbolic PathFinder: integrating symbolic execution with model check-
ing for Java bytecode analysis. Autom. Software Eng. 20(3), 391–425 (2013).
https://doi.org/10.1007/s10515-013-0122-2

61. Quiring, B., Manolios, P.: Gacal: Conjecture-based verification (competition con-
tribution). In: Proc. TACAS (2). LNCS 12079, Springer (2020)

62. Richter, C., Wehrheim, H.: PeSCo: Predicting sequential combinations of veri-
fiers (competition contribution). In: Proc. TACAS (3). pp. 229–233. LNCS 11429,
Springer (2019). https://doi.org/10.1007/978-3-030-17502-3_19

63. Rocha, H.O., Menezes, R., Cordeiro, L., Barreto, R.: Map2Check: Using sym-
bolic execution and fuzzing (competition contribution). In: Proc. TACAS (2).
LNCS 12079, Springer (2020)

64. Rocha, H., Barreto, R.S., Cordeiro, L.C.: Memory management test-case generation
of C programs using bounded model checking. In: Proc. SEFM. pp. 251–267.
LNCS 9276, Springer (2015). https://doi.org/10.1007/978-3-319-22969-0_18

65. Sharma, V., Hussein, S., Whalen, M., McCamant, S., Visser, W.: Java Ranger at
SV-COMP 2020 (competition contribution). In: Proc. TACAS (2). LNCS 12079,
Springer (2020)

66. Svejda, J., Berger, P., Katoen, J.P.: Interpretation-based violation witness validation
for C: NitWit. In: Proc. TACAS. LNCS , Springer (2020)

https://doi.org/10.1007/978-3-030-17502-3_16
https://doi.org/10.1007/978-3-642-54862-8_26
https://doi.org/10.1007/978-3-030-02508-3_17
https://doi.org/10.1007/978-3-030-02508-3_17
https://doi.org/10.1007/978-3-662-49674-9_26
https://doi.org/10.1007/978-3-030-17502-3_21
https://doi.org/10.1007/978-3-030-17502-3_21
https://doi.org/10.1007/978-3-662-46681-0_44
https://doi.org/10.1007/s10515-013-0122-2
https://doi.org/10.1007/978-3-030-17502-3_19
https://doi.org/10.1007/978-3-319-22969-0_18

Advances in Automatic Software Verification: SV-COMP 2020 367

67. Visser, W., Geldenhuys, J.: Coastal: Combining concolic and fuzzing for Java
(competition contribution). In: Proc. TACAS (2). LNCS 12079, Springer (2020)

68. Volkov, A.R., Mandrykin, M.U.: Predicate abstractions memory modeling method
with separation into disjoint regions. Proceedings of the Institute for System
Programming (ISPRAS) 29, 203–216 (2017). https://doi.org/10.15514/ISPRAS-
2017-29(4)-13

69. Wetzler, N., Heule, M.J.H., Jr., W.A.H.: Drat-trim: Efficient checking and trim-
ming using expressive clausal proofs. In: Proc. SAT. pp. 422–429. LNCS 8561,
Springer (2014). https://doi.org/10.1007/978-3-319-09284-3_31

70. Yin, L., Dong, W., Liu, W., Li, Y., Wang, J.: Yogar-CBmc: Cbmc with schedul-
ing constraint based abstraction refinement (competition contribution). In: Proc.
TACAS. pp. 422–426. LNCS 10806, Springer (2018). https://doi.org/10.1007/978-
3-319-89963-3_25

71. Yin, L., Dong, W., Liu, W., Wang, J.: On scheduling constraint abstrac-
tion for multi-threaded program verification. IEEE Trans. Softw. Eng. (2018).
https://doi.org/10.1109/TSE.2018.2864122

Open Access. This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution, and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

https://doi.org/10.15514/ISPRAS-2017-29(4)-13
https://doi.org/10.15514/ISPRAS-2017-29(4)-13
https://doi.org/10.1007/978-3-319-09284-3_31
https://doi.org/10.1007/978-3-319-89963-3_25
https://doi.org/10.1007/978-3-319-89963-3_25
https://doi.org/10.1109/TSE.2018.2864122
http://creativecommons.org/licenses/by/4.0/

2LS: Heap Analysis and Memory Safety

(Competition Contribution)�

Viktor Malı́k ��3 , Peter Schrammel1,2 , and

Tomáš Vojnar3

1Diffblue Ltd, Oxford, UK
2University of Sussex, Brighton, UK

3FIT, Brno University of Technology, Brno, CZ

Abstract 2LS is a framework for analysis of sequential C programs based on the

CPROVER infrastructure and template-based synthesis techniques for checking

both safety and termination. The paper presents the main improvements done in

2LS since 2018, which concern mainly the way 2LS handles dynamically alloc-

ated objects and structures as well as combinations of abstract domains.

1 Overview

2LS is a static analysis and verification tool for sequential C programs. At its core, it

uses the kIkI algorithm (k-invariants and k-induction) [1], which integrates bounded

model checking, k-induction, and abstract interpretation into a single, scalable frame-

work. kIkI relies on incremental SAT solving in order to find proofs and refutations of

assertions, as well as to perform termination analysis [2].

The 2019 and 2020 competition versions of 2LS feature product and power abstract

domain combinations supporting invariant inference for programs manipulating shape

and content of dynamic data structures [4]. Moreover, the 2020 version came with fur-

ther enhancements for handling advanced features of memory allocation and made a

step towards a support of generic abstract domain combinations.

Architecture. The architecture of 2LS has been described in previous competition

contributions [7,5]. In brief, 2LS is built upon the CPROVER infrastructure [3] and thus

uses GOTO programs as the internal program representation. The analysed program is

translated into an acyclic, over-approximate single static assignment (SSA) form, in

which loops are cut at the edges returning to the loop head. Subsequently, 2LS refines

this over-approximation by computing inductive invariants in various abstract domains

represented by parametrised logical formulae, so-called templates [1]. The competition

version uses the zones domain for numerical variables combined with our shape domain

for pointer-typed variables. The SSA form is bit-blasted into a propositional formula

and given to a SAT solver. The kIkI algorithm then incrementally amends the formula to

perform loop unwindings and invariant inference based on template-based synthesis [1].

� The Czech authors were supported by the project 20-07487S of the Czech Science Foundation.
�� Jury member: imalik@fit.vut.cz.

c© The Author(s) 2020
A. Biere and D. Parker (Eds.): TACAS 2020, LNCS 12079, pp. 368–372, 2020.

https://doi.org/10.1007/978-3-030-45237-7 22

TACAS
SV-COMP
Artifact

2020
Accepted

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45237-7_22&domain=pdf
http://orcid.org/0000-0002-0608-0748
http://orcid.org/0000-0002-5713-1381
http://orcid.org/0000-0002-2746-8792
https://doi.org/10.1007/978-3-030-45237-7_22

2LS: Heap Analysis and Memory Safety 369

2 New Features

The major improvements of 2LS since 2018 are mostly related to analysis of heap-

manipulating programs. We build on the shape domain presented in 2018 [5] and in-

troduce abstract domain combinations that allow us to analyse both shape and content

of dynamic data structures. Furthermore, we introduce a special handling for the case

when an address of a freed heap object is re-used for the next allocation.

Apart from an improved verification of heap-manipulating programs, we also intro-

duce a generic skeleton of an abstract domain join algorithm, which is a step towards

a support of generic abstract domain combinations.

2.1 Combinations of Abstract Domains

The capability of 2LS to jointly analyse shape and content of dynamic data structures

takes advantage of the template-based synthesis engine of 2LS. Invariants are computed

in various abstract domains where each domain has the form of a template while relying

on the analysis engine to handle the domain combinators.

Memory model In our memory model, we represent dynamically allocated objects by

so-called abstract dynamic objects. Each such object is an abstraction of a number of

concrete dynamic objects allocated by the same malloc call [4].

Shape Domain For analysing the shape of the heap, we use an improved version of

the shape domain that we introduced in 2018 [5]. The domain over-approximates the

points-to relation between pointers and symbolic addresses of memory objects in the

analysed program: for each pointer-typed variable and each pointer-typed field of an

abstract dynamic object p, we compute the set of all addresses that p may point to [4].

Template Polyhedra Domain For analysing numerical values, we use the template

polyhedra abstract domains, particularly the interval and the zones domains [1].

Shape and Polyhedra Domain Combination Since both domains have the form of

a template formula, we simply use them side-by-side in a product domain combination—

the resulting formula is a conjunction of the two template formulae [4].

next

val= 3

next

val= 10

NULL. . .

ao
1

Figure 1. Unbounded singly-linked list abstrac-

ted by an abstract dynamic object ao1.

This combination allows 2LS to infer,

e.g., invariants describing an unbounded

singly-linked list whose nodes contain

values between 1 and 10. We show an ex-

ample of such a list in Figure 1. Here, all

list nodes are abstracted by a single ab-

stract dynamic object ao
1

(i.e. we assume

that they are all allocated at the same pro-

gram location). The invariant inferred by 2LS for such a list might look as follows:

(ao
1
.next = &ao

1
∨ ao

1
.next = NULL) ∧ ao

1
.val ∈ [1, 10].

370 V. Malı́k et al.

The first disjunction describes the shape of the list—the next field of each node points

to some node of the list or to NULL
1. The second part of the conjunct is then an invariant

in the interval domain over all values stored in the list—it expresses the fact that the

value of each node lies in the interval between 1 and 10.

2.2 Symbolic Paths

To improve precision of the analysis, we let 2LS compute different invariants for dif-

ferent symbolic paths taken by the analysed program. We require a symbolic path to

express which loops were executed at least once. This allows us to distinguish situ-

ations when an abstract dynamic object does not represent any really allocated object

and hence the invariant for such abstract dynamic object is not valid [4].

The symbolic path domain allows us to iteratively compute a set of symbolic paths

p1, . . . , pn (represented by guard variables in the SSA) with associated shape and data

invariants I1, . . . , In. The aggregated invariant is then p1 ⇒ I1 ∧ · · · ∧ pn ⇒ In, which

corresponds to a power domain combination.

2.3 Re-using Freed Memory Object for Next Allocations

In C, it is possible that, after a free is called, the freed memory is subsequently re-used

int *a = malloc(sizeof(int));

free(a);

int *b = malloc(sizeof(int));

if (a == b)

// error state

Figure 2. Re-using a freed object

when a malloc is called afterwards. Due to this,

it may happen that the error state in the program

in Figure 2 is reachable. This situation is, how-

ever, difficult to handle for 2LS as its memory

model creates a unique abstract dynamic object

for each malloc call. To overcome this limitation,

we have introduced a special variable fr that is

non-deterministically set to the value of the freed pointer at each free call. If two point-

ers x, y are compared in the analysed program using a relational operator op, we trans-

form the comparison x op y into

(x op y) ↔ ((x �= fr ∨ nondetx) ∧ (y �= fr ∨ nondety)). (1)

Here, nondetx and nondety are unconstrained boolean variables modelling a non-

deterministic choice. If neither x nor y has been freed, then the result of Eq. (1) is

equal to x op y, but if either of the pointers might have been freed, then the result of

Eq. (1) is non-deterministic, which makes our analysis sound for the described case.

2.4 Generic Abstract Domain Templates

As is mentioned in Section 1, abstract domains are represented in 2LS by so-called tem-

plates. The main reason of templates is that they reduce the second-order problem of

finding an inductive invariant to a first-order problem of finding values of template para-

meters. Apart from defining the form of the template (a parametrised logical formula),

each abstract domain also needs to specify an algorithm to perform join of the current

1 Here, ao1.f is an abstraction of the f fields of all concrete objects represented by ao1. Ana-

logously, &ao1 is an abstraction of symbolic addresses of all represented objects.

2LS: Heap Analysis and Memory Safety 371

values of template parameters with a model of satisfiability returned by an SMT solver.

However, most of the domains use a similar approach to this algorithm, and therefore

adding a new abstract domain to 2LS requires one to write an algorithm whose skeleton

has already been written in existing domains.

To overcome this problem, we proposed a generic algorithm suitable for all existing

abstract domains (see [6] for details). The main idea is based on the fact that most of the

templates are conjunctions of multiple formulae, where each has its own parameter and

describes a part of the analysed program, e.g., properties of a single program variable.

While this extension did not bring any additional functionality that would increase

the score of 2LS in this year’s edition of SV-COMP, it opened up possibilities for future

enhancements, in particular (1) it simplifies adding of new abstract domains capable

of analysing program properties that 2LS is currently not able to handle and (2) it is

a significant step towards a support of generic abstract domain combinations that would

allow 2LS to arbitrarily combine abstract domains and therefore analyse complex prop-

erties of programs requiring simultaneous reasoning in multiple domains.

3 Strengths and Weaknesses

One of the main strengths of 2LS is verification of programs requiring joint reason-

ing about shape and content of dynamic data structures. In 2019, we contributed 10

benchmarks into the ReachSafety category requiring such reasoning. The domain com-

bination described in Section 2.1 allows 2LS to successfully verify 9 out of 10 of these

benchmarks (the last one has timed out), making it the only tool capable of this apart

from the category winner. Also, 2LS is notably strong in analysing termination, which

is supported by the third place in the Termination category.

Still, there remain a lot of challenges and limitations. The main problem is that 2LS

still lacks reasoning about array contents, and that it does not yet support recursion.

4 Tool Setup

The competition submission is based on 2LS version 0.8.2 The archive contains the bin-

aries needed to run 2LS (2ls-binary, goto-cc), and so no further installation is needed.

There is also a wrapper script 2ls which is used by Benchexec to run the tools over

the verification benchmarks. See the wrapper script also for the relevant command line

options given to 2LS. The further information about the contents of the archive could

be find in the README file. The tool info module for 2LS is called two ls.py and the

benchmark definition file 2ls.xml. As a back end, the competition submission of 2LS

uses Glucose 4.0. 2LS competes in all categories except Concurrency and Java.

5 Software Project

2LS is implemented in C++ and it is maintained by Peter Schrammel with contributions

by the community.3 It is publicly available at http://www.github.com/diffblue/2ls un-

der a BSD-style license.

2 Executable available at https://doi.org/10.5281/zenodo.3678347.
3 https://github.com/diffblue/2ls/graphs/contributors

372 V. Malı́k et al.

References

1. Brain, M., Joshi, S., Kroening, D., Schrammel, P.: Safety Verification and Refutation by k-

Invariants and k-Induction. In: Proc. of SAS’15. LNCS, vol. 9291. Springer (2015)

2. Chen, H.Y., David, C., Kroening, D., Schrammel, P., Wachter, B.: Bit-Precise Procedure-

Modular Termination Proofs. TOPLAS 40 (2017)

3. Clarke, E.M., Kroening, D., Lerda, F.: A Tool for Checking ANSI-C Programs. In: Proc. of

TACAS’04. LNCS, vol. 2988. Springer (2004)

4. Malı́k, V., Hruška, M., Schrammel, P., Vojnar, T.: Template-Based Verification of Heap-

Manipulating Programs. In: Proc. of FMCAD’18. IEEE (2018)

5. Malı́k, V., Martiček, Š., Schrammel, P., Srivas, M., Vojnar, T., Wahlang, J.: 2LS: Memory

Safety and Non-termination (Competition Contrib.). In: Proc. of TACAS’18. Springer (2018)

6. Marušák, M.: Generic Template-Based Synthesis of Program Abstractions. Master’s thesis,

Brno University od Technology (2019), https://www.fit.vut.cz/study/thesis/21674/

7. Schrammel, P., Kroening, D.: 2LS for Program Analysis (Competition Contribution). In: Proc.

of TACAS’16. LNCS, vol. 9636. Springer (2016)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits

use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you

give appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not in-

cluded in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain

permission directly from the copyright holder.

https://www.fit.vut.cz/study/thesis/21674/
http://creativecommons.org/licenses/by/4.0/

COASTAL: Combining Concolic and Fuzzing for
Java (Competition Contribution)

Willem Visser � and Jaco Geldenhuys

Stellenbosch University, Stellenbosch, South Africa
{visserw,geld}@sun.ac.za

Abstract. COASTAL is a program analysis tool for Java programs. It
combines concolic execution and fuzz testing in a framework with built-in
concurrency, allowing the two approaches to cooperate naturally.

1 Verification Approach and Software Architecture

COASTAL analyses Java bytecode with an approach that combines concolic
execution and fuzz testing in a unified framework. It uses the ASM bytecode
manipulation library [2] to add code to compiled class files to monitor and inter-
act with the system under test (SUT). The concurrent COASTAL components
that carry out the analysis are shown in Figure 1:

– Multiple divers (for concolic analysis) execute the SUT with different con-
crete input values. A diver run is triggered when a vector of concrete input
values is added to the diver input queue d in. As a diver executes, the in-
strumented code mirrors the state of the program with symbolic values. At
the end of the run, the symbolic path condition that corresponds to the
execution is enqueued in the diver output queue d out.

– Multiple surfers (for fuzzing analysis) also execute the SUT with concrete
input values. A surfer run is triggered when a vector of concrete input values
is added to the surfer input queue s in. As a surfer executes, lighter instru-
mentation records the “shape” of the execution path, and at the end of the
run, this information is enqueued in the surfer output queue s out.

– One or more strategies remove and process the information that appears on
the diver and surfer output queues. For example, a strategy may remove a
path condition, negate one or more constraints, invoke an SMT solver to find
input values that will explore the modified path, and enqueue them on d in
or s in or both. Instrumentation injects the input values into the SUT.

– To share information between components, discovered execution paths are
stored in a shared execution tree known as the pathtree. The pathtree keeps
track of which sub-trees have been fully explored. The pathtree data struc-
ture allows for efficient concurrent updates.

� Jury member

c© The Author(s) 2020
A. Biere and D. Parker (Eds.): TACAS 2020, LNCS 12079, pp. 373–377, 2020.
https://doi.org/10.1007/978-3-030-45237-7 23

TACAS
SV-COMP
Artifact

2020
Accepted

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45237-7_23&domain=pdf
http://orcid.org/0000-0002-0913-3091
http://orcid.org/0000-0002-5636-6656
https://doi.org/10.1007/978-3-030-45237-7_23

374 W. Visser and J. Geldenhuys

message broker

observer observer observer observer

Strategy 1

Strategy 2

Strategy 3

pathtree

d in

d out

diver diver diver

concolic analysis

s in

s out

surfer surfer surfer

fuzzing analysis

Fig. 1. COASTAL architecture

– Divers, surfers, strategies, and the pathtree signal their actions via a publish-
subscribe system. When events are published to the message broker, one or
more observers are notified. The observers may, in turn, emit messages that
direct the operation of COASTAL.

1.1 Strategies

As an example, a depth-first strategy is a simple configuration of COASTAL
where the strategy employs only a single diver. The diver produces one path
condition that is processed by the strategy by negating the last (deepest) con-
straint, and sending it to an SMT solver, which produces new input values (if
any) that will explore the modified path. If a modified path condition is unsatisfi-
able, the last constraint is discarded and the process repeats. All path conditions
are added to the pathtree as they are discovered. At the end of the analysis, the
pathtree contains a summary of the execution tree of the SUT.

Other strategies include breadth-first and random exploration. Like depth-
first exploration, these strategies use only one diver and explore one path con-
dition at a time. On the other hand, a generational strategy negates all the
constraints of a path condition, one by one, and produces many potential input
values. In this case, multiple divers can be used concurrently. Users can also
deploy multiple strategies at the same time.

Fuzzing strategies. The user can employ surfers to perform straightforward
fuzz testing (in the style of AFL [1,5,6]). Surfers use very little instrumentation.

COASTAL: Combining Concolic and Fuzzing 375

Unlike the divers — that instrument every bytecode instruction — only the
outcomes of branching points are recorded. The “path condition” produced by
a surfer is therefore a series of (mostly binary) choices that can be added to
the pathtree; it lacks any details about the reason for the choice (for example,
instead of “x > 5” it may simply record “false”), but the shape of the path is
preserved. Multiple divers and multiple surfers are deployed concurrently and
operate interactively.

Hybrid strategies.More advanced strategies can combine concolic and fuzzing
analysis to exploit the strengths of both approaches: surfers (fuzzing) can rapidly
explore new territory of the execution space, while divers (concolic) can investi-
gate hard-to-reach corners. Such hybrid strategies enqueue (semi-)random inputs
on s in and the results contribute to a “skeletal” pathtree. Since surfers produce
results at a high rate, the easy-to-explore parts of the execution space are more
quickly saturated. Unexplored regions of the pathtree are passed to the divers,
and their results, in turn, open up new regions for the surfers to explore.

1.2 Observers and Models

COASTAL was designed with extensibility in mind. One example is the use
of observers. Any component is allowed to subscribe to the various message
streams, and can interact with the system by publishing messages of their own,
or by making direct calls to the public COASTAL API. Examples of observer
tasks include:

– monitor assertions and halt COASTAL when they are violated,
– record instruction, line, and condition coverage,
– enforce assumptions and prune undesired execution paths,
– gather information and display progress in a GUI.

In theory, strategies themselves could be implemented as observers. But since
they are central to the operation of COASTAL, they are given special treatment.

Users can replace system- or user-level libraries by more appropriate mod-
els, either as a whole or on a method-by-method basis. For example, a complex
library implementation of String.substring() can be replaced with a sim-
pler, more efficient model that produces the same result and the same symbolic
constraints.

2 Strengths and weaknesses

The tool’s strength lies in the combination of concolic and fuzzing analysis, but
COASTAL is still under development and a “deep” bug (now fixed) prevented
the use of fuzzing. Participation in SV-COMP [3] was invaluable in this regard:
Several bugs and missing functionality were revealed and corrected.

Results. COASTAL does not output any incorrect answers, but produces an
unknown result in 19% of cases. This is shown in column “Count” below.

376 W. Visser and J. Geldenhuys

Answer Count Immediate
true 135 32.45% 121 89.63%
false 202 48.57% 134 66.34%

unknown 79 18.99% 27 34.18%
All 416 100% 282 67.79%

For many cases, the answer is produced instantaneously (column “Immediate”).
In the case of unknown answers, this indicates that COASTAL aborted its analy-
sis because of an as-yet unsupported feature such as symbolic array sizes. For the
79 − 27 = 52 non-immediate unknown answers, COASTAL timed out because
of large search spaces.

The longest-running true answer required 2 diver runs, each taking 20.48sec
(printtokens eqchk.yml), whereas the longest-running false answer required
141 diver runs, each taking 0.54sec (spec1-5 product1.yml). This highlights a
fundamental weakness of the tool: a long-running SUT takes longer to analyse.
A generational strategy where multiple divers execute concurrently can amelio-
rate this problem, but on average does not find errors as quickly as the breadth-
first strategy. This points to the need to refine the generational strategy to
prioritize shallow unexplored paths.

3 Tool setup

Download. http://doi.org/10.5281/zenodo.3679243 [7]

Configuration. COASTAL is configured to use a breath-first search strategy
and a single diver. Z3 [4] is set as the constraint solver. (It is the only external
tool required to run COASTAL and a Linux executable version is included in the
download above.) Path conditions are limited to 800 conjuncts, and a time limit
of 240 second is set. Symbolic strings are limited to 25 characters. Custom models
are used for some Java classes: Character, String, StringBuilder, Pattern,
Matcher, Scanner. COASTAL competed in the JavaOverall category.

Installation. The download above is self-contained. The COASTAL project
at https://github.com/DeepseaPlatform/coastal/ includes shell scripts to pack-
age and run COASTAL for SV-COMP in the extra/svcomp subdirectory. The
scripts needs an external copy of the Z3 solver to be available.

4 Software Project

COASTAL is developed by the authors at Stellenbosch University, South Africa.
It is available at https://github.com/DeepseaPlatform/coastal/ and is distributed
under the GNU Lesser General Public License version 3.

http://doi.org/10.5281/zenodo.3679243
https://github.com/DeepseaPlatform/coastal/
https://github.com/DeepseaPlatform/coastal/

COASTAL: Combining Concolic and Fuzzing 377

References

1. American Fuzzy Lop, http://lcamtuf.coredump.cx/afl/. Accessed 11 Jan 2020
2. ASM Library, https://asm.ow2.io/. Accessed 10 Jan 2020
3. Beyer, D.: Advances in Automatic Software Verification: SV-COMP 2020. In: Biere,

A., Parker, D. (eds.) TACAS 2020 (2), LNCS, vol. 12079. Springer, Heidelberg
(2020).

4. de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008, LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008).

5. Miller, B.P., Fredriksen, L., So, B.: An Empirical Study of the Reliability of UNIX
Utilities. Communications of the ACM 33(12), 32–44, (1990)

6. Sutton, M., Greene, A., Amini, P.: Fuzzing: Brute Force Vulnerability Discovery.
Addison-Wesley Professional (2007).

7. Visser, W., Geldenhuys, J.: (2020, February 22). COASTAL: Com-
bining Concolic and Fuzzing for Java (Competition Contribution).
http://doi.org/10.5281/zenodo.3679243 Zenodo. (2020)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

http://lcamtuf.coredump.cx/afl/
https://asm.ow2.io/
http://doi.org/10.5281/zenodo.3679243
http://creativecommons.org/licenses/by/4.0/

Dartagnan: Bounded Model Checking for
Weak Memory Models

(Competition Contribution)

Hernán Ponce-de-León�1 , Florian Furbach2,
Keijo Heljanko3, and Roland Meyer2

1University of the Bundeswehr Munich, Munich, Germany
2TU Braunschweig, Braunschweig, Germany

3University of Helsinki and HIIT, Helsinki, Finland

Abstract. Dartagnan is a bounded model checker for concurrent pro-
grams under weak memory models. What makes it different from other
tools is that the memory model is not hard-coded inside Dartagnan
but taken as part of the input. For SV-COMP’20, we take as input
sequential consistency (i.e. the standard interleaving memory model) ex-
tended by support for atomic blocks. Our point is to demonstrate that
a universal tool can be competitive and perform well in SV-COMP.
Being a bounded model checker, Dartagnan’s focus is on disproving
safety properties by finding counterexample executions. For programs
with bounded loops, Dartagnan performs an iterative unwinding that
results in a complete analysis. The SV-COMP’20 version of Dartag-
nan works on Boogie code. The C programs of the competition are
translated internally to Boogie using SMACK.

1 Overview and Software Architecture

Dartagnan is a bounded model checker for concurrent programs under weak
memory models. It expects as input a program P annotated with a reachability
condition S, a memory model M, and an unrolling bound k. It recursively un-
winds all loops in P up to the bound k. The unwound program is converted into
an SMT formula that symbolically represents all candidate executions. The mem-
ory model will filter out some candidates using a second formula, we explain this
below. Events of a candidate execution model (instances of) program instruc-
tions, like memory accesses, local computations, and conditional/unconditional
jumps. Edges model relations between events, including program order (the or-
der within a thread), data-dependencies (an assigned variable is used within an
expression), reads-from (matching each read with the write from which it takes
its value), and coherence (the order in which writes commit to the memory).

A memory model can be understood as a predicate over candidate execu-
tions that declares some of them valid. We describe memory models in the CAT
language [2]. A memory model is defined as a set of relations (those mentioned
� Jury member.
c© The Author(s) 2020
A. Biere and D. Parker (Eds.): TACAS 2020, LNCS 12079, pp. 378–382, 2020.
https://doi.org/10.1007/978-3-030-45237-7_24

TACAS
SV-COMP
Artifact

2020
Accepted

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45237-7_24&domain=pdf
http://orcid.org/0000-0002-4225-8830
https://doi.org/10.1007/978-3-030-45237-7_24

com = co ∪ fr ∪ rf come = com ∩ ext
acyclic po ∪ com empty rmw ∩ (come ; (po ∪ com)∗ ; come)

SC+atomicity

Fig. 1. CAT model used for SV-COMP’20.

above and others derived as unions, transitive/reflexive closures, compositions,
etc.) and constraints over them (emptiness, acyclicity and irreflexivity). Given
a memory model, we construct a formula that evaluates to true precisely un-
der the candidate executions that are valid according to the memory model.
Figure 1 shows the memory model used for SV-COMP’20. To support atomic
blocks, Dartagnan adds a specific edge (rmw) for every pair of events be-
tween VERIFIER_atomic_begin() and its matching VERIFIER_atomic_end()
or in a VERIFIER_atomic_ function. We encode atomicity for sequential consis-
tency (SC) as the empty intersection of rwm and paths starting and ending with
an external communication (i.e. between different threads). This means once an
atomic block starts, external communications with the block are forbidden until
all events in the block have been executed.

Dartagnan comes with a rich assertion language inspired by Herd [1].
Assertions define inequalities over the values of local and global variables. They
can be used freely throughout the code, rather than being limited to the end
of the execution. Semantically, our assertions do not stop the execution but
record the failure and continue. To achieve this, each instructions assert(exp)
is transformed to a local computation f ← exp where the fresh variable f ∈ F
stores the value of exp at the corresponding point of the execution. We refer to
the formula

∨
f∈F ¬f as the reachability condition.

The formula for candidate executions of the program, the formula for valid-
ity under the given memory model, and the reachability condition together (in
conjunction) yield the SMT encoding of the reachability problem at hand. Any
solution to the conjunction corresponds to an execution that is valid according
to the memory model and violates at least one assertion. Details on the encoding
can be found in [8,9].

Dartagnan implements a may-alias analysis to improve pointer precision
and a novel relation analysis. The latter technique reduces the SMT encoding to
those parts of the relations that might affect the consistency with the memory
model, resulting in a considerably smaller formula. Relation analysis improves
the performance up to two orders of magnitude [4,5]. We remark that related
approaches represent each candidate execution explicitly [1,6]. Thanks to the
symbolic representation of executions and static analysis techniques such as re-
lation analysis, Dartagnan is often more efficient [4,5].

Figure 2 shows the overall architecture of Dartagnan. It reads programs
written in the litmus format of Herd [1] or the intermediate verification language
Boogie [7]. For the competition, C programs are compiled to LLVM and then

Dartagnan: Bounded Model Checking 379

Fig. 2. Dartagnan’s architecture.

translated internally to Boogie using the SMACK tool [11]. The SMT solver
is Z3 [3]. When a violation is found, Dartagnan returns a witness execution.

2 Strengths and Weaknesses

The main strength of Dartagnan is its fully configurable memory model. Un-
fortunately, in SV-COMP’20 there is no category for verification tasks under
weak memory models. On the SV-COMP’20 benchmarks, Dartagnan reports
only one incorrect result, being beaten in that aspect only by CPAchecker,
DIVINE, Lazy-CSeq and Yogar-CBMC; three of them category winners.
The incorrect result is related to the use of pointer arithmetic which is currently
not supported by our alias analysis.

Its main strength is also its main weakness: Dartagnan’s performance can-
not quite match that of other verifiers that were developed specifically for se-
quential consistency. Dartagnan performs particularly poor on benchmarks
with big atomics blocks. This is the case for most of the verification tasks in
the pthread-wmm group which represent 83% of the ConcurrencySafety cate-
gory. The problem is that Dartagnan adds rmw edges for all pairs in an atomic
block. This results in a large encoding (even using relation analysis) and highly
impacts its performance.

3 Tool Setup and Configuration

Besides the program to be verified, Dartagnan expects a CAT file containing
the memory model of interest. For SV-COMP’20, this is the extension of se-
quential consistency given in Figure 1. The tool is run by executing the following
command:
$ java -jar dartagnan/target/dartagnan-V-jar-with-dependencies.jar

-cat <CAT file> -i <program file> [options]

380 H. Ponce-de-León et al.

Placeholder V is the tool version (currently 2.0.5) and options is used to config-
ure the unrolling bound, the alias analysis, and the fixpoint encoding. The full
list of options can be found on the project website (see Section 4).

To make sure not to miss a violation, the competition version of Dartag-
nan implements an iterative approach. Initially, the bounded model checking
algorithm is called with an unrolling bound of one. If it finds a violation or can
prove that all loops have been unrolled completely (this is done using unwinding
assertions), the verification process terminates with a conclusive answer. If not,
Dartagnan increases the bound by one and repeats the process. For program
with an infinite state space, our tool does not terminate.

Dartagnan participates in the ConcurrencySafety category. No specification
file is required. The artifact is available on [10]. To reproduce the results of the
competition, the tool can be executed with the following wrapper script:
$ Dartagnan-SVCOMP.sh <program file>

4 Software Project and Contributors

The project home page is https://github.com/hernanponcedeleon/Dat3M. Dartag-
nan is open source software distributed under the MIT license.

Acknowledgement: We thank Dirk Beyer and Philipp Wendler for their help
during the process of integrating Dartagnan into the competition framework.
We also thank Natalia Gavrilenko for her contributions to the development of
the bounded model checking engine of the tool [4,5].

References

1. The herdtools7 tool suite. https://github.com/herd/herdtools7.
2. Jade Alglave, Patrick Cousot, and Luc Maranget. Syntax and semantics of the weak

consistency model specification language CAT. CoRR, abs/1608.07531, 2016.
3. Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In TACAS,

volume 4963 of LNCS, pages 337–340. Springer, 2008.
4. Natalia Gavrilenko. Improving scalability of bounded model checking for weak

memory models. Master’s thesis, Aalto University, Department of Computer Sci-
ence, 2019.

5. Natalia Gavrilenko, Hernán Ponce de León, Florian Furbach, Keijo Heljanko, and
Roland Meyer. BMC for weak memory models: Relation analysis for compact SMT
encodings. In CAV, volume 11561 of LNCS, pages 355–365. Springer, 2019.

6. Stella Lau, Victor B. F. Gomes, Kayvan Memarian, Jean Pichon-Pharabod, and
Peter Sewell. Cerberus-BMC: A principled reference semantics and exploration tool
for concurrent and sequential C. In CAV, volume 11561 of LNCS, pages 387–397.
Springer, 2019.

7. K. Rustan M. Leino. This is Boogie 2. 2008.
8. Hernán Ponce de León, Florian Furbach, Keijo Heljanko, and Roland Meyer. Porta-

bility analysis for weak memory models. PORTHOS: One tool for all models. In
SAS, volume 10422 of LNCS, pages 299–320. Springer, 2017.

Dartagnan: Bounded Model Checking 381

https://github.com/hernanponcedeleon/Dat3M
https://github.com/herd/herdtools7

9. Hernán Ponce de León, Florian Furbach, Keijo Heljanko, and Roland Meyer. BMC
with memory models as modules. In FMCAD, pages 1–9. IEEE, 2018.

10. Hernán Ponce de León, Florian Furbach, Keijo Heljanko, and Roland Meyer. Repli-
cation package for the Dartagnan tool for SVCOMP 2020. http://dx.doi.org/10.
5281/zenodo.3678318, February 2020.

11. Zvonimir Rakamaric and Michael Emmi. SMACK: Decoupling source language
details from verifier implementations. In CAV, volume 8559 of LNCS, pages 106–
113. Springer, 2014.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

382 H. Ponce-de-León et al.

http://dx.doi.org/10.5281/zenodo.3678318
http://dx.doi.org/10.5281/zenodo.3678318
http://creativecommons.org/licenses/by/4.0/

VeriAbs : Verification by Abstraction and Test Generation

(Competition Contribution)

Mohammad Afzal1, Supratik Chakraborty2 , Avriti Chauhan1, Bharti Chimdyalwar1,
Priyanka Darke1,�, Ashutosh Gupta2, Shrawan Kumar1, Charles Babu M3,

Divyesh Unadkat1,2 , and R Venkatesh1

1 Tata Research Development and Design Center, Pune, India
2 Indian Institute of Technology, Bombay, India
3 Chennai Mathematical Institute, Chennai, India

Abstract. VeriAbs is a strategy selection based reachability verifier for C code. It ana-
lyzes the structure of loops, and intervals of inputs to choose one of the four verification
strategies implemented in VeriAbs. In this paper, we present VeriAbs version 1.4 with
updates in three strategies. We add an array verification technique called full-program
induction, and enhance the existing techniques of loop pruning, k-path interval analysis,
and disjunctive loop summarization. These changes have improved the verification of
programs with arrays, and unstructured loops and unstructured control flows.

1 Verification Approach

VeriAbs is a reachability checker for C code that employs a portfolio of techniques and works
by smartly selecting a sequence of techniques for each problem instance. Specifically, it
performs structural and interval analysis of the input code to determine a sequence of suitable
verification techniques, or a strategy [2]. An earlier version of the tool appeared in [9]. Figure 1
shows the architecture with this year’s enhancements in dashed lines. When the input program
contains unstructured loops, VeriAbs performs fuzz testing in parallel with k-induction. If the
program does not contain unstructured loops but loops manipulating arrays, VeriAbs applies
array abstraction techniques like loop shrinking, loop pruning, and full-program induction [7]
in sequence. If the program contains inputs of very short ranges, VeriAbs applies explicit
state model checking, and loop invariant generation using program behaviour, syntax and
counter-examples in parallel [2]. Otherwise VeriAbs applies k-path interval analysis, loop
abstraction, loop summarization, bounded model checking, and k-induction in the order pre-
sented in the architecture. If any technique successfully (in)validates the encoded properties,
the tool reports the result, generates the witness, and exits. We next explain the enhancements
made to VeriAbs this year.

1.1 Tool Enhancements

Full-Program Induction. VeriAbs applies full-program induction as presented in [7] to pro-
grams manipulating arrays of a symbolic size N given as a parameter. It takes as input

� Jury member, corresponding author : priyanka.darke@tcs.com
c© The Author(s) 2020

A. Biere and D. Parker (Eds.): TACAS 2020, LNCS 12079, pp. 383–387, 2020.
https://doi.org/10.1007/978-3-030-45237-7 25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45237-7_25&domain=pdf
http://orcid.org/0000-0002-7527-7675
http://orcid.org/0000-0001-6106-4719
https://doi.org/10.1007/978-3-030-45237-7_25

384 M. Afzal et al.

Fig. 1. Architecture Diagram

a parameterized program represented by PN , annotated with parameterized pre- and post-
conditions represented by ϕ(N) and ψ(N) respectively and checks the validity of the Hoare
triple {ϕ(N)}PN {ψ(N)} for all values of N (>0). We summarize the technique in [7] here.

In the base case, it verifies that the given Hoare triple holds for a fixed number of values
of N (say for N=1). If the check fails, a property violation is reported. It then hypothesizes
that the Hoare triple {ϕ(N−1)}PN−1 {ψ(N−1)} holds for N > 1, where PN−1 is the
program with parameter N − 1. In the induction step, the technique synthesizes a code
fragment ∂PN , called the difference program, such that {ϕ(N)} PN {ψ(N)} is valid iff
{ϕ(N)}PN−1;∂PN {ψ(N)} is valid. The difference program is the computation to be per-
formed after the program PN−1 has executed to get the same state as PN . It then computes a
formula ∂ϕ(N), called the difference pre-condition, such thatϕ(N) is implied by the conjunc-
tion of ϕ(N−1) and ∂ϕ(N), and that ∂ϕ(N) continues to hold after the execution of PN−1.
The induction step now needs to prove the validity of {ψ(N−1)∧∂ϕ(N)}∂PN {ψ(N)}.
It uses weakest pre-condition computation to infer formulas pre(N) over the variables and
arrays whose values were computed by PN−1 and subsequently read in ∂PN . Base case is
checked for pre(N) and it is subsequently used to strengthen the pre- and post-conditions
in the inductive step. The technique, thus, inducts over the entire program via the parameter
N , in place of inducting over individual loops by using specialized predicates as in [6].
Full-program induction does not rely on inductive invariants for each loop in the program.

1 b=0, d=0, c=30;
2 a = *;
3 if (a == 10)
4 c = 30; //Path P1
5 else if (a < 10)
6 b = 3; //Path P2
7 else if (a > 10)
8 d = 31; //Path P3
9 if (c==30 && a==10)

10 d = 31;
11 if(a >= 10)
12 assert(d == 31);

Fig. 2. Example

k-Path Interval Analysis. VeriAbs implements a k-path
interval analysis which is an extension of the standard non-
relational interval domain [2]. It maintains the path-wise data
ranges of variables along a configurable k number of paths at
each program point, thus matching the precision of relational
domains. When the number of paths at the join point exceeds k,
a subset of paths are merged to maintain k paths at the join point.
In previous versions, arbitrary subsets of paths were merged.
For SV-COMP 2020, the join operation identifies variables of
interest (VOIs) with respect to the given property to decide
which paths to merge such that VOIs can retain precise values.

Consider the example shown in Figure 2 with a valid property at line 12 to be analyzed
with k=2 and the VOI d. It can be seen that three paths – P1, P2 and P3 join at line number 9.
The enhanced join operation merges paths P1 and P2 so that the resultant paths are as follows:

VeriAbs: Verification by Abstraction and Test Generation 385

P1+P2: {a=[MIN,10], b=[0,3], c=30, d=0},
P3: {a =[11,MAX], b=0, c=30, d=31}.
This information at the join point helps validate the property. Earlier, the join operation could
merge the path P3 with P1 or P2, leading to an imprecise interval – [0,31] of d at the join
point, resulting in spurious property violation. Our implementation considers variables used
in the encoded property as the VOIs.

Loop Pruning is an array abstraction technique that defines a set of criteria (and a
resulting set of program transformation rules) which if satisfied by loops processing arrays, it
is sufficient to analyze the first few elements instead of the entire array [14]. In this version,
pruning has been extended to programs containing nested loops and multidimensional arrays.
By structural analysis, we identify if elements of the multidimensional array are processed
uniformly in loops. If yes, we compute reduced dimensions of the array (for example,
a[m][m] may be reduced to a[4][4]). We have also refined the pruning criteria to improve
its applicability over multidimensional and dynamically allocated arrays, 56 additional SV-
COMP’20 ReachSafety benchmarks are solved by the current implementation of array
pruning as compared to the previous version.

Disjunctive Loop Summarization. VeriAbs analyses interleavings of unique paths within a
loop to produce its disjunctive summary to find errors and proofs [2]. In the current version,
VeriAbs extends this technique in the following situations: (a) while it earlier restricted affine
transformations to identity matrices, we now allow diagonal matrices with finite monoid [4];
(b) we use the approach of generating flattenings as shown in [4] for loops which are flattable;
(c) we use VeriAbs’ general philosophy of deriving over-approximate summaries using the
techniques in [12], when precise disjunctive summary is not derivable.

2 Software Architecture

VeriAbs is primarily developed in Java and Perl. It implements all program analyses (except
full-program induction) and program transformers in Prism [13], the TCS Research program
analysis framework. It transforms programs processing multidimensional or dynamically
allocated arrays in loops to equivalent programs with symbolically sized 1D arrays. This
transformed program is consumed by VAJRA v1.0 [7], the tool that implements full-program
induction. VAJRA uses LLVM v6.0.0 [15] compiler infrastructure for program transformations
and Z3 SMT solver v4.8.7 [10] for checking the validity of Hoare triples and for computing
weakest pre-conditions. For BMC VeriAbs uses the C Bounded Model Checker (CBMC)
v5.10 [8] with the Glucose Syrup SAT solver v4.0 [3]. For fuzz testing we enhance American
Fuzzy Lop [16] to allow test case mutation within valid data ranges generated by k-path
interval analysis for better path coverage. VeriAbs uses k-induction with continuously refined
invariants as implemented in CPAchecker v1.8 [5] for an improved precision over our existing
light weight implementation of k-induction.

In this version, we additionally derive disjunctive invariants for correctness witnesses
using abstract acceleration and abstract interpretation, and add them to the control flow
automaton generated by CPAchecker. If all implemented techniques fail, we use techniques
implemented in Ultimate Automizer v3204b741 [11] to generate correctness witnesses.

3 Strengths and Weaknesses

The main strengths of VeriAbs are (1) strategy selection that correlates strengths of verification
techniques and input code properties, and (2) a portfolio of sound techniques. Weaknesses:

386 M. Afzal et al.

(1) long strategies – the lengths of strategies executed by VeriAbs in the worst case can be ten
techniques, thus time consuming. Hence, smarter and shorter strategies are needed. (2) Non-
linear expressions in loops – loop abstractions in VeriAbs assign non-deterministic values to
variables modified in such expressions. (3) Multidimensional arrays in loops manipulating non-
contiguous locations – these are limitations of loop shrinking and pruning. These weaknesses
are not limitations of the state-of-the-art, and appropriate techniques if integrated into VeriAbs
can be easily invoked by the strategy selector to enable verification of such programs.

4 Tool Setup and Configuration

The VeriAbs SV-COMP 2020 executable is available for download at https://gitlab.com/
sosy-lab/sv-comp/archives-2019/tree/master/2020/veriabs.zip. To install the tool, download the
archive, extract its contents, and then follow the installation instructions in VeriAbs/IN-

STALL.txt. To execute VeriAbs, the user needs to specify the property file of the respective
verification category using the --property-file option and the -64 option for pro-
grams with a 64 bit architecture. The witness is generated in the current working directory as
witness.graphml. A sample command is as follows:
VeriAbs/scripts/veriabs <-64> --property-file ALL.prp example.c

VeriAbs participated in the ReachSafety and the SoftwareSystems-ReachSafety categories
of SV-COMP 2020. The BenchExec wrapper script for the tool is veriabs.py and the
benchmark description file is veriabs.xml.

5 Software Project and Contributors

VeriAbs is maintained by some members of the Foundations of Computing group at TCS Re-
search [1]. They can be contacted at veriabs.tool@tcs.com. We are thankful to the developers
of American Fuzzy Lop, CBMC, CPAchecker, Glucose Syrup, LLVM, UAutomizer and Z3
for allowing us to use the tools within VeriAbs.

References

1. TCS Research. http://www.tcs.com/research/Pages/default.aspx
2. Afzal, M., Asia, A., Chauhan, A., Chimdyalwar, B., Darke, P., Datar, A., Kumar, S., Venkatesh, R.:

VeriAbs: Verification by Abstraction and Test Generation. In: ASE. pp. 1138–1141 (2019)
3. Audemard, G., Simon, L.: On the glucose sat solver. IJAIT 27(01) (2018)
4. Bardin, A., Finkel, A., Leroux, J., Schnoebelen, P.: Flat acceleration in symbolic model checking.

In: ATVA. pp. 474–488 (2005)
5. Beyer, D., Dangl, M., Wendler, P.: Boosting k-induction with continuously-refined invariants. In:

CAV. pp. 622–640 (2015)
6. Chakraborty, S., Gupta, A., Unadkat, D.: Verifying array manipulating programs by tiling. In: SAS.

pp. 428–449 (2017)
7. Chakraborty, S., Gupta, A., Unadkat, D.: Verifying array manipulating programs with full-program

induction. In: TACAS (2020)
8. Clarke, E., Kroening, D., Lerda, F.: A Tool for Checking ANSI-C Programs. In: TACAS (2004)
9. Darke, P., Prabhu, S., Chimdyalwar, B., Chauhan, A., Kumar, S., Basakchowdhury, A., Venkatesh,

R., Datar, A., Medicherla, R.K.: VeriAbs: Verification by Abstraction and Test Generation -
(Competition Contribution). In: TACAS. pp. 457–462 (2018)

10. De Moura, L., Bjørner, N.: Z3: An efficient smt solver. In: TACAS. pp. 337–340 (2008)

https://gitlab.com/sosy-lab/sv-comp/archives-2019/tree/master/2020/veriabs.zip
https://gitlab.com/sosy-lab/sv-comp/archives-2019/tree/master/2020/veriabs.zip
mailto:veriabs.tool@tcs.com
http://www.tcs.com/research/Pages/default.aspx

VeriAbs: Verification by Abstraction and Test Generation 387

11. Heizmann, M., Chen, Y., Dietsch, D., Greitschus, M., Hoenicke, J., Li, Y., Nutz, A., Musa, B.,
Schilling, C., Schindler, T., Podelski, A.: Ultimate automizer and the search for perfect interpolants
- (competition contribution). In: TACAS. pp. 447–451 (2018)

12. Jeannet, B., Schrammel, P., Sankaranarayanan, S.: Abstract acceleration of general linear loops.
SIGPLAN Not. 49(1), 529–540 (2014)

13. Khare, S., Saraswat, S., Kumar, S.: Static program analysis of large embedded code base: an
experience. In: ISEC. pp. 99–102 (2011)

14. Kumar, S.: Scaling up Property Checking. https://www.cse.iitb.ac.in/∼as/thesis soft.pdf (2019)
15. Lattner, C.: LLVM and Clang: Next generation compiler technology. In: The BSD Conference

(2008)
16. Zalewski, M.: American fuzzy lop. http://lcamtuf.coredump.cx/afl/

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source, provide a link to the Creative Commons license
and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Com-
mons license, unless indicated otherwise in a credit line to the material. If material is not included in the
chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.

https://www.cse.iitb.ac.in/~as/thesis_soft.pdf
http://lcamtuf.coredump.cx/afl/
http://creativecommons.org/licenses/by/4.0/

GACAL: Conjecture-based Verification

(Competition Contribution)

Benjamin Quiring � and Panagiotis Manolios

Northeastern University, Boston MA, USA

Abstract. GACAL verifies C programs by searching over the space of
possible invariants, using traces of the input program to identify poten-
tial invariants. GACAL uses the ACL2s theorem prover to verify these
potential invariants, using an interface provided by ACL2s for connecting
with external tools. GACAL iteratively searches for and proves invariants
of increasing complexity until the program is verified.

1 Verification Approach

GACAL is a tool for verifying reachability queries in C programs by iteratively
and efficiently performing conjecture generation and conjecture verification. Con-
jecture generation involves searching through the space of possible conjectures
using evaluation-based testing to identify likely-to-hold conjectures, and conjec-
ture verification consists of using software verification technology to verify these
conjectures. Our initial motivation was to develop a computational agent that
can automatically complete the Invariant Game [1], in which players suggest in-
variants that are used by a reasoning engine to verify imperative programs, which
we did with success- GACAL is a more fully developed form of the underlying
conjecture generation ideas. This section presents a brief overview of GACAL’s
basic structure and methods for conjecture-based verification, and then discusses
these, as well as associated challenges, in more depth. Section 2 provides infor-
mation about the GACAL project, Section 3 provides an evaluation of GACAL,
and Section 4 concludes this paper and discusses future work.

In GACAL, conjectures are potential invariants paired with program loca-
tions. Evaluation-based testing consists of evaluating possible invariants using
execution-produced program traces. The ACL2s theorem prover [2] verifies con-
jectures using a graph representation of the input program. To search through
the space of conjectures, GACAL first constructs a space of terms, which are
C-expressions composed of the constants, variables, and arithmetic/bitwise oper-
ators in the program. Terms are combined using relational and logical operators
to create possible invariants, and possible invariants which hold in all generated
program traces are promoted to potential invariants and turned into conjectures.
Discovered potential invariants are then analyzed using ACL2s and, if proven,
used to verify the program. In the case that the program cannot be verified from
the currently proven invariants, the above process is repeated: construct new,
more complex, terms, find potential invariants via testing on program traces,

� Jury member: quiring.b@northeastern.edu

c© The Author(s) 2020
A. Biere and D. Parker (Eds.): TACAS 2020, LNCS 12079, pp. 388–392, 2020.
https://doi.org/10.1007/978-3-030-45237-7 26

TACAS
SV-COMP
Artifact

2020
Accepted

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45237-7_26&domain=pdf
https://orcid.org/0000-0002-6922-9706
https://orcid.org/0000-0003-0519-9699
https://doi.org/10.1007/978-3-030-45237-7_26

GACAL: Conjecture-based Verification 389

prove potential invariants, attempt program verification, and repeat. At a high-
level, this loop is the heart of GACAL’s conjecture-based verification.

GACAL’s approach to verification presents challenges which can be summa-
rized into two categories: how to minimize the number of generated conjectures,
and how to optimize the interactions with ACL2s. The techniques GACAL uses
to address these challenges, as well as a more in-depth explanation of the previ-
ously mentioned methods are outlined below.

Term and Invariant Construction GACAL builds the space of terms by
iteratively constructing all terms of a fixed size, where the size of a term is the
number of constants, variables, and operators in that term. GACAL uses a col-
lection of rewrite rules to filter the newly constructed terms: terms which can be
rewritten to an equivalent form that has already been constructed are not kept.
The size partial order on terms allows GACAL to perform rewriting effectively.
Furthermore, the term constructor searches for new rewrite rules by evaluating
and comparing terms under a set of random assignments to find pairs of equiva-
lent terms. The discovered equivalences are generalized and turned into rewrite
rules which are added to the collection of rewrite rules. We designed the rewrit-
ing techniques to have the property that all terms which cannot be rewritten
are semantically distinct. In general, the term space is at least asymptotically
exponential in size, and the rewriting techniques above, for the class of problems
we consider, significantly improve the asymptotics.

Possible invariants are C-expressions of the form x == y, x < y, x <= y,
and P || Q, where x, y are terms and P , Q are possible invariants. We allow
multiple invariants to be associated with each program location, hence, we do
not need explicit conjunction. We note that the space of possible invariants is
closed under logical negation. GACAL filters out possible invariants which can
be rewritten to an equivalent form that has already been created, reducing the
size of the invariant space. The order the invariant space is searched over is
deterministic and independent of the given program, and was chosen because it
worked well for the benchmark programs. At a high level, GACAL inspects more
specific invariants before more general invariants (e.g. x == y before x <= y).

Trace Generation To produce traces through the program GACAL creates
many initial program states which randomly seed the result of all nondetermin-
istic behaviors that occur during execution of the program, making them de-
terministic. For example, a seeded pseudo-random number generator can obtain
values for ’nondeterministic integer’ expressions. The initial states are propa-
gated through the program for a bounded number of steps, generating a set
of states associated with each program location. These initial traces are not
changed during the course of verification.

Testing on program traces is essential to GACAL’s conjecture generation, but
programs may, for example, contain loops with many iterations or not terminate,
and so obtaining traces which correspond to complete program executions may
be computationally infeasible or impossible. To address this, GACAL creates

390 B. Quiring and P. Manolios

additional types of traces which approximate the input program’s behavior. The
first type of these traces generalizes large constants to small and/or nondetermin-
istic values, which allows loops with originally many iterations to be completed.
The second type uses the counter-example generation abilities of ACL2s [3,4,5]
to generate states at any program location which satisfy all currently proven
invariants at that location, which are then propagated through the program.
As GACAL proves more invariants, it recomputes the second type of traces to
obtain a better approximation of the program. Since invariants tested on these
traces are later checked for correctness, the fact that the traces may not reflect
the original program’s behavior does not introduce unsoundness. The states from
the above two methods are only used to test invariants at a program location
if there are no states from the original traces produced for that location, and if
traces cannot be found at all then GACAL assumes all invariants are potential.

Conjecture Verification To prove conjectures, GACAL uses an algorithm
which takes previously proven invariants as well as currently unproven potential
invariants and iteratively removes invariants which cannot be proven until it
reaches a fixpoint. This process requires a large number of verification queries
and for the majority of programs checking these queries using ACL2s is where
the majority of execution time is spent. To improve the ability of ACL2s to
reason about GACAL queries, we developed an arithmetic library consisting
of ACL2s theorems about the GACAL-supported C operators. Additionally,
GACAL caches previous queries and their results, which allows it to answer
queries that are similar to cached queries, without using the theorem prover.
Finally, GACAL saves counter-examples that ACL2s provides when it falsifies
queries and uses them to falsify new queries.

2 Tool Setup and Software Project and Architecture

The competition submission1 uses GACAL version 1.0. GACAL requires Python
3, Java, and Common Lisp, and the competition archive contains all files neces-
sary to run GACAL without further installation. Other relevant information may
be found in the README file. GACAL only competes in the C ReachSafety-
Loops category. GACAL is maintained by Benjamin Quiring and Panagiotis
Manolios, and is implemented primarily in Common Lisp. The external tools
used by GACAL are the Eclipse CDT parser and the ACL2 Sedan [2]. GACAL
is publicly available at https://gitlab.com/acl2s/conjecture-generation/gacal un-
der a GNU GPLv3 license.

GACAL does not handle all C language features. Most importantly, GACAL
does not handle arrays and types other than 32-bit unsigned and signed integers.
There is no theoretical reason for this. GACAL does not correctly model C
semantics for undefined behavior in signed arithmetic. There is a bug in the
contest submission for translating goto statements into our graph representation
of programs which affects a small number of benchmarks.

1 Available at https://gitlab.com/sosy-lab/sv-comp/archives-2020 and Zenodo [6].

https://gitlab.com/acl2s/conjecture-generation/gacal
https://gitlab.com/sosy-lab/sv-comp/archives-2020

GACAL: Conjecture-based Verification 391

3 Evaluation

GACAL performs best on programs it can execute to completion because this
allows us to produce high quality traces covering all program locations. When
this is not the case, GACAL often creates false conjectures which lead to a large
number of theorem prover queries. Additionally, we note GACAL’s execution
time depends on the size of the term and invariant spaces, which grow exponen-
tially based on the number of program variables, constants, and operations. The
current version of GACAL verifies 66 of the 109 benchmark programs it parses,
and the top three tools on this distribution verified 102, 70, and 70. There was
one program which no other tools could verify, though GACAL succeeded.

The core of GACAL consists of potential invariant generation using program
traces and the rewriting methods as outlined above. We found that the addition
of the arithmetic library is essential to our ability to reason about unsigned
arithmetic and the mod operator, allowing GACAL to verify 10% more total
programs (which deal primarily with the listed features) and cuts the average
time to query ACL2s by 33% on the verification queries which were not caught
by the caching. We found that the additional trace generation methods did not
significantly increase the number of programs that were verified, though they
did decrease the average time for verifying a program. The caching of proof
results and counter-examples is able to eliminate 85% of all verification queries
from being submitted to ACL2s for checking, which increases the number of
programs which are verified by over 10% and almost halves the average cost to
verify a program. The caching methods also amplifies the benefits of the library
and extra trace generation methods.

4 Conclusions and Future Work

There are many ways to improve GACAL, including incorporating classical anal-
yses such as range analysis, abstract interpretation, symbolic evaluation, etc,
as well as handling a larger subset of the C language. Another improvement
to GACAL is to perform the search for disjunctive invariants more efficiently;
currently GACAL often finds many potential but false disjunctive conjectures,
which result in a large number of verification queries. One way to improve the
search may be to analyze the program to find meaningful hypotheses, which
could considerably lower the number of tested and generated conjectures.

We believe that GACAL provides evidence that our conjecture-based verifi-
cation techniques can be used to improve current software verification tools, as
we were able to verify a competitive number of programs on the distribution we
parse and we were able to verify a program that all other tools failed to verify,
despite not using any of the classical analyses identified above.

392 B. Quiring and P. Manolios

References

1. Walter, A., et. al., Gamification of Loop-Invariant Discovery from Code. HCOMP,
2019.

2. Chamarthi, H., Dillinger, P., Manolios, P., Vroon, D. The ACL2 Sedan theorem
proving system. TACAS, 2011.

3. Manolios, P. Counterexample Generation Meets Interactive Theorem Proving: Cur-
rent Results and Future Opportunities. ITP, 2013.

4. Chamarthi, H., et. al. Integrating Testing and Interactive Theorem Proving. ACL2,
2011.

5. Chamarthi, H., Manolios, P. Automated Specification Analysis Using an Interactive
Theorem Prover. FMCAD, 2011.

6. Quiring, B., Manolios, P. GACAL v1.0 SV-comp 2020 submission (Version 1.0).
Zenodo, 2019. http://doi.org/10.5281/zenodo.3681607.

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

http://doi.org/10.5281/zenodo.3681607
http://creativecommons.org/licenses/by/4.0/

Java Ranger at SV-COMP 2020 (Competition
Contribution)

Vaibhav Sharma1� , Soha Hussein1,2 , Michael W. Whalen1 , Stephen
McCamant1, and Willem Visser3

1 University of Minnesota, Minneapolis, MN, USA
{vaibhav, husse200, mwwhalen, smccaman}@umn.edu

2 Ain Shams University, Cairo, Egypt
soha.hussien@cis.asu.edu.eg

3 Stellenbosch University, Stellenbosch, South Africa
visserw@sun.ac.za

Abstract. Path-merging is a known technique for accelerating symbolic
execution. One technique, named “veritesting” by Avgerinos et al. uses
summaries of bounded control-flow regions and has been shown to accel-
erate symbolic execution of binary code. But, when applied to symbolic
execution of Java code, veritesting needs to be extended to summarize
dynamically dispatched methods and exceptional control-flow. Such an
extension of veritesting has been implemented in Java Ranger by imple-
menting as an extension of Symbolic PathFinder, a symbolic executor
for Java bytecode. In this paper, we briefly describe the architecture of
Java Ranger and describe its setup for SV-COMP 2020.

1 Approach

Symbolic execution is a well-known program analysis technique that has been
applied to many applications such as test generation [3,7], equivalence check-
ing [6,8], and vulnerability finding [13]. However, when applied to large soft-
ware, symbolic execution can suffer from scalability challenges caused by path
explosion. Path-merging techniques such as veritesting [1] and dynamic state
merging [4] help alleviate these scalability limitations. In particular, veritest-
ing attempts to construct a static summary of a multi-path region and use it.
Veritesting has been shown to significantly accelerate symbolic execution of bi-
nary code. Given that a large amount of software in use today is still written in
Java, it is desirable to bring the benefits of veritesting to symbolic execution of
Java as well. However, features such as dynamic dispatch make path-merging for
Java code challenging [11]. The summary of a multi-path region that contains
a dynamically-dispatched method call can only be constructed if the method to
be called can also be summarized. Java Ranger (JR) extends the current state-
of-the-art path-merging ideas presented by Avgerinos et al. [1] by first building
static summaries which are later transformed using runtime information such as

� Jury Member

c© The Author(s) 2020
A. Biere and D. Parker (Eds.): TACAS 2020, LNCS 12079, pp. 393–397, 2020.
https://doi.org/10.1007/978-3-030-45237-7 27

TACAS
SV-COMP
Artifact

2020
Accepted

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45237-7_27&domain=pdf
http://orcid.org/0000-0001-9877-8926
http://orcid.org/0000-0002-5071-6811
http://orcid.org/0000-0003-3824-1435
http://orcid.org/0000-0002-0913-3091
https://doi.org/10.1007/978-3-030-45237-7_27

394 V. Sharma et al.

the dynamic type of an object reference used for accessing a field. Java Ranger
is built as an extension to Symbolic PathFinder (SPF) [5].

2 Architecture

Java Ranger is implemented as an SPF listener that watches for symbolic branch
conditions in branching instructions. On encountering a symbolic branch instruc-
tion, JR attempts to create a summary for the multi-path region that begins at
that branch instruction and ends at its exit points. A multi-path region is a
region of code that begins at a branch instruction with a symbolic branch condi-
tion. An exit point of a multi-path region is either (1) the first program location
in a control-flow path through the multi-path region which could not be sum-
marized, or (2) the location of the immediate post-dominator of the multi-path
region. This mechanism is also explained by Sharma et al. [12] in Figure 4.

3 Strengths And Weaknesses

Since JR improves scalability limitations of symbolic execution, its strength can
only be observed when running it over large software. However, JR falls back
to vanilla symbolic execution when it finds no opportunity for path-merging.
SV-COMP 2020 had 416 verification tasks in the Java track. More information
on SV-COMP 2020 can be found in its competition report [2]. JR instantiated
at least one static summary on 96 different benchmarks of the 416 benchmarks.
The summary for a multi-path region can be instantiated more than once on
each benchmark because it is possible that the symbolic executor will encounter
the same multi-path region more than once while running the benchmark. In
total, JR instantiated 356 unique summaries. The total number of instantiated
summaries used by JR was 20,182. JR also inlined a method summary a total
of 62,857 times while instantiating these summaries.

JR also had a “unknown” conclusion on 40 of the 416 SV-COMP 2020 verifi-
cation tasks. 22 of the 40 were caused due to our JR configuration which turned
off support for symbolic strings because we found SPF’s support for solving
string constraints was not stable. 9 “unknown” conclusions were reached due to
missing support for symbolic array lengths in multi-dimensional arrays. 8 of the
40 occurred due to a timeout. The last “unknown” result occurs in the equiva-
lence check verification task in the ApacheCLI benchmark due to JR’s use of a
depth limit.

We made use of two depth limit parameters in SV-COMP 2020. The first
was a limit on the exploration depth of our baseline symbolic executor, SPF.
The second was a depth limit on the recursive depth to which our method
summaries would be inlined. While we wished to avoid the use of any such limit,
we found similar kinds of limits were used by many participanting tools in SV-
COMP 2019. It is common to use some kind of limitation when applying symbolic
execution tools in practice, since they can get bogged down by path explosion or
related problems, and path-merging helps with but does not eliminate this issue.

Java Ranger at SV-COMP 2020 (Competition Contribution) 395

The Java verification category of SV-COMP 2020 did not score a tool’s answer
differently if it used a depth limit for producing that answer. Instead, the use of
depth limit is reflected in each tool’s score only if it caused the tool to produce an
incorrect answer. We describe these depth limits and JR’s configuration options
in the following section.

4 Tool Setup and Configuration

Java Ranger’s setup is very similar to the setup used by SPF. Since Java Ranger
is simply an extension of SPF, the Java Ranger directory can be specified as
a valid jpf-symbc extension of JPF. A JR configuration requires the following
additions.
veritestingMode = <1-5>

veritestingMode specifies the path-merging features to be enabled with each
higher number adding a new feature to the set of features enabled by the previous
number. Setting veritestingMode to 1 runs vanilla SPF. Setting it to 2 enables
path-merging for multi-path regions with no method calls and a single exit point.
Setting it to 3 adds path-merging for multi-path regions that make method calls
where the method can be summarized by Java Ranger. Setting it to 4 adds path-
merging for multi-path regions with more than one exit point caused due to
exceptional behavior and unsummarized method calls. Setting it to 5 adds path-
merging for summarizing return instructions in multi-path regions by treating
them as an additional exit point.

performanceMode = <true or false>

Setting performanceMode to true causes Java Ranger to minimize the number
of solver calls to check the feasibility of the path condition when summarizing a
multi-path region with multiple exit points.

TARGET CLASSPATH WALA=<classpath of target code>

Java Ranger needs this variable to be set up as environment variable. It is not
part of the .jpf configuration file. This environment variable tells Java Ranger
where it should be expecting to find code that needs to be statically summarized.

jitAnalysis=<true or false>

When turned on (the default value), this option causes JR to summarize multi-
path regions when it encounters them. When turned off, JR attempts to sum-
marize all multi-path regions reachable in a statically-computed interprocedural
call graph up to a configurable limit.

recursiveDepth=<an integer value>

This option forces JR to restrict inlining of method summaries up to the value
provided for this option. We set this parameter to 12 for SV-COMP 2020.

The following option is a JPF [14] configuration option which we also used
for SV-COMP 2020.

search.depth limit=<an integer value>

This option forces JPF to restrict its exploration to the depth provided as the
value for this option. JPF constructs a tree of possible choices and explores the
tree in a heuristic order, depth-first by default. Since JR is built as an extension

396 V. Sharma et al.

to SPF, which is in turn built as an extension to JPF, we were able to restrict
JR’s exploration of choices using this option. We set this parameter to the value
13 for SV-COMP 2020.

5 Software Project and Contributors

Java Ranger is an extension of SPF. It is maintained on GitHub [9]. The version
of Java Ranger that participated in Sv-COMP 2020 is publicly available [10].
For more information, please contact the authors of this paper.

6 Acknowledgments

The research described in this paper has been supported in part by the National
Science Foundation under grant 1563920.

References

1. Avgerinos, T., Rebert, A., Cha, S.K., Brumley, D.: Enhancing Symbolic Execution
with Veritesting. In: Proceedings of the 36th International Conference on Software
Engineering. pp. 1083–1094. ICSE 2014, ACM, New York, NY, USA (2014)

3. Godefroid, P., Klarlund, N., Sen, K.: DART: Directed Automated Random Testing.
In: Proceedings of the 2005 ACM SIGPLANConference on Programming Language
Design and Implementation. pp. 213–223. ACM, New York, NY, USA (2005)

4. Kuznetsov, V., Kinder, J., Bucur, S., Candea, G.: Efficient State Merging in Sym-
bolic Execution. In: PLDI. pp. 193–204. PLDI ’12, ACM, New York, NY, USA
(2012)

5. Păsăreanu, C.S., Visser, W., Bushnell, D., Geldenhuys, J., Mehlitz, P., Rungta, N.:
”Symbolic PathFinder: Integrating Symbolic Execution With Model Checking For
Java Bytecode Analysis”. Automated Software Engineering 20(3), 391–425 (Sep
2013)

6. Ramos, D.A., Engler, D.R.: Practical, Low-effort Equivalence Verification of Real
Code. In: Proceedings of the 23rd International Conference on Computer Aided
Verification. pp. 669–685. CAV’11, Springer-Verlag, Berlin, Heidelberg (2011)

7. Sen, K., Marinov, D., Agha, G.: CUTE: A Concolic Unit Testing Engine for C. In:
Proceedings of the 10th European Software Engineering Conference Held Jointly
with 13th ACM SIGSOFT International Symposium on Foundations of Software
Engineering. pp. 263–272. ESEC/FSE-13, ACM, New York, NY, USA (2005)

8. Sharma, V., Hietala, K., McCamant, S.: Finding Substitutable Binary Code By
Synthesizing Adaptors. In: 11th IEEE Conference on Software Testing, Validation
and Verification (ICST) (Apr 2018)

9. Sharma, V., Hussein, S., Whalen, M.W., McCamant, S., Visser, W.: Java Ranger.
https://github.com/vaibhavbsharma/java-ranger (2019–2020)

10. Sharma, V., Soha, Michael, Stephen, Willem: Java Ranger at SV-COMP 2020 (Feb
2020). https://doi.org/10.5281/zenodo.3678718

2. Beyer, D.: Advances in automatic software verification: SV-COMP 2020. In: Proc.
TACAS (2). LNCS 12079, Springer (2020), https://www.sosy-lab.org/research/
pub/2020-TACAS.Advances in Automatic Software Verification SV-COMP
2020.pdf

https://www.sosy-lab.org/research/pub/2020-TACAS.Advances_in_Automatic_Software_Verification_SV-COMP_2020.pdf
https://github.com/vaibhavbsharma/java-ranger
https://doi.org/10.5281/zenodo.3678718
https://www.sosy-lab.org/research/pub/2020-TACAS.Advances_in_Automatic_Software_Verification_SV-COMP_2020.pdf
https://www.sosy-lab.org/research/pub/2020-TACAS.Advances_in_Automatic_Software_Verification_SV-COMP_2020.pdf

Java Ranger at SV-COMP 2020 (Competition Contribution) 397

11. Sharma, V., Whalen, M.W., McCamant, S., Visser, W.: Veritesting Challenges in
Symbolic Execution of Java. In: Java PathFinder Workshop (Jan 2018)

12. Sharma, V., Whalen, M.W., McCamant, S., Visser, W.: Veritesting challenges in
symbolic execution of Java. SIGSOFT Softw. Eng. Notes 42(4), 1–5 (Jan 2018).
https://doi.org/10.1145/3149485.3149491

13. Stephens, N., Grosen, J., Salls, C., Dutcher, A., Wang, R., Corbetta, J., Shoshi-
taishvili, Y., Kruegel, C., Vigna, G.: Driller: Augmenting Fuzzing Through Selec-
tive Symbolic Execution. In: Network and Distributed System Security Symposium
(NDSS) (2016)

14. Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F.: Model check-
ing programs. Automated Software Engineering 10(2), 203–232 (Apr 2003).
https://doi.org/10.1023/A:1022920129859

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

https://doi.org/10.1145/3149485.3149491
https://doi.org/10.1023/A:1022920129859
http://creativecommons.org/licenses/by/4.0/

JDart: Dynamic Symbolic Execution for Java
Bytecode (Competition Contribution)

Malte Mues and Falk Howar

Dortmund University of Technology
Dortmund, Germany

malte.mues@tu-dortmund.de
falk.howar@tu-dormtund.de

Abstract. JDart performs dynamic symbolic execution of Java pro-
grams: it executes programs with concrete inputs while recording sym-
bolic constraints on executed program paths. A constraint solver is then
used for generating new concrete values from recorded constraints that
drive execution along previously unexplored paths. JDart is built on
top of the Java PathFinder software model checker and uses the JCon-
straints library for the integration of constraint solvers.

1 Overview

JDart is a dynamic symbolic execution engine for the JVM build on top of
Java PathFinder (JPF) [11]. Dynamic symbolic execution [4,6] (sometimes also
referred to as concolic execution) executes programs with concrete values while
recording symbolic constraints for execution paths. The approach combines the
benefits of fast concrete execution with the possibility of generating new concrete
values, triggered by symbolic constraints, that exercise previously unexplored
program behaviors. JDart can be used for checking assertions in Java programs:
Concolic execution will explore new program paths until either (a) an assertion
violation is discovered, (b) all program paths have been explored, or (c) resource
limits of the analysis are exhausted.

The initial driver of the development of JDart was the need for an analysis
that is robust enough to handle large and complex systems, concretely the Au-
toResolver software for prediction and resolution of airplane loss of separation
developed at NASA Ames Research Center [7]. Though JDart provides a robust
and scalable platform for dynamic symbolic analysis of Java programs [7], we
had to extend its functionality in several ways in order to be able to compete at
SV-COMP 2020 [1]. We developed:

1. a new analysis mode in which fresh symbolic variables are introduced during
analysis (in contrast to a fixed number of manually declared symbolic values),

2. a number of symbolic models encoding environment behavior (driven by
SV-COMP 2020 benchmarks), and

3. a new mode for solving constraints in a sequence of attempts using succes-
sively weaker bounds on variables (cf. Section 2).

© The Author(s) 2020
A. Biere and D. Parker (Eds.): TACAS 2020, LNCS 12079, pp. 398–402, 2020.
https://doi.org/10.1007/978-3-030-45237-7_28

TACAS
SV-COMP
Artifact

2020
Accepted

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45237-7_28&domain=pdf
http://orcid.org/0000-0002-6291-9886
http://orcid.org/0000-0002-9524-4459
https://doi.org/10.1007/978-3-030-45237-7_28

JDart: Dynamic Symbolic Execution for Java Bytecode 399

Fig. 1: Architecture of JDart [7].

While (1) enabled JDart to enter the competition, (2) accounts for the largest
part of improvements over our own baseline, and (3) contributes to better per-
formance on some benchmarks with assertion violations in big state spaces.

2 Architecture

JDart combines dynamic execution with recording and analysis of symbolic
path constraints. It runs as an extension of the JPF software model checker [11].
In particular, JDart uses the Java virtual machine implemented by JPF and
its capabilities for annotating values on the stack and the heap with symbolic
information. The tool itself is written in Java and uses JConstraints [5] for
encoding SMT problems. Moreover, JConstraints acts as a frontend to an
SMT solver (e.g., Z3 [3]) used for finding concrete values that drive the analysis.

Figure 1 illustrates the architecture of JDart: The tool consists of three lay-
ers: Concrete analysis frontends make up the top layer (e.g., generation of method
summaries, generation of test suites, assertion checking). The main components
record and analyze execution paths (Explorer) and perform concolic execution
(Executor). The Executor uses concolic implementations of bytecode instruc-
tions. These bytecodes are executed instead of the original JPF bytecodes. A
concolic bytecode tracks the symbolic representation of a value and annotates
a concrete value with its symbolic counterpart. Whenever execution takes a

400 M. Mues and F. Howar

branching decision based on a concrete value with a symbolic annotation, the
symbolic value is added to the constraints tree maintained by the Explorer. A
constraint solver is used for finding concrete values that drive execution along
unexplored paths of the tree.

Leveraging the modular architecture of JDart and JConstraints, we im-
plemented a meta-constraint solver for finding small concrete values for symbolic
numeric variables. This allows JDart to find assertion violations faster and with
less resource consumption in cases where a symbolic variable controls the number
or length of execution paths (e.g., symbolic array size or a symbolic loop bound).
The meta-constraint solver performs multiple calls to an SMT solver, adding suc-
cessively weaker bounds to numeric variables. E.g., for a path constraint ϕ over
symbolic numeric variable x, the solver adds bounds (−z ≤ x) ∧ (x ≤ z) with
z ∈ (1, 2, 3, 5, 8, 13, 21, . . .), i.e., the first numbers in the Fibonacci sequence.
If the solver finds a model for the constraint, JDart uses this model for driving
concolic execution. In case no model is found in a fixed number of attempts,
the SMT solver is called without added bounds. The number of attempts is a
configuration parameter of JDart and was fixed to 7 for SV-COMP 2020.

Analysis of JDart can be bounded by termination strategies. When checking
assertions the termination strategy is stopping on the first occurrence of an as-
sertion violation. Additional strategies could be bounding depth of the symbolic
analysis, bounding runtime, or termination on specific errors. We refer the reader
to [7] for a more detailed and complete discussion of the features of JDart.

3 Strengths and Weaknesses

JDart scored 524 points (max. of 602) in the Java track and was declared
third winner for Java, behind JBMC (527 points) [2] and Java Ranger (549
points) [9]. All other tools scored considerably fewer points than JDart (next
best is COASTAL [10] with 472). As Java Ranger and JBMC, JDart did
not report a single incorrect verdict. JDart exhibits the general strengths and
weaknesses of dynamic and symbolic analysis approaches for Java programs:

Runtime. Driven by concrete execution, the analysis is fairly fast. JDart is
overall the second fastest tool in cases where it can provide an answer. Not
using bounds JDart, on the other hand, has a relatively high number of
timeouts and runs that terminate due to resource limitations — and thus
only the fourth lowest cumulative runtime.

Symbolic Strings. Particular to Java verification is the challenge of provid-
ing models for the behavior of classes in the Java standard library. In
SV-COMP 2020 such models are mostly required for analyzing benchmarks
that extensively incorporate String processing. We made a substantial contri-
bution to the code base of JDart and implemented models for java.lang.
String and related classes. As a consequence, JDart can analyze all but
one corresponding benchmark examples (JDart currently cannot analyze
regular expressions symbolically).

JDart: Dynamic Symbolic Execution for Java Bytecode 401

Unbounded Behavior. Based on principles of symbolic execution, JDart
does not terminate on unbounded loops or in case of unbounded recursion,
leading to a number of timeouts on the corresponding set of benchmarks.

4 Tool Setup

The source code of JDart used for the competition artifact [8] is available
on GitHub1. JDart is designed as a plug-in to JPF and relies on ant as a
build system. One of its dependencies is the jpf-core project [11]. The other
dependency is the JConstraints library, which was configured to use Z3 [3]
with incremental solving as a constraint solver for SV-COMP 2020.

For the competition, JDart is wrapped by the run-jdart.sh shell script
which generates .jpf configuration files, specifying which benchmark to analyze
and the global configuration options to JDart: For SV-COMP 2020 all termi-
nation criteria except for assertion violations are disabled, executing JDart as
an almost unbounded assertion checker (the only bound in place is an upper
bound of 127 on maximal length of String variables). The shell script records
and interprets the output of JDart and can also report the version of JDart.

5 Software Project

The version of JDart that was used in SV-COMP 2020 is maintained by the
Automated Quality Assurance Group at Technical University of Dortmund (in
particular by the authors of this paper) and is available under the Apache Li-
cense, version 2.0, on GitHub1. An initial version of JDart was developed by the
authors of [7] at NASA Ames Research Center and Carnegie Mellon University.
The original version of JDart is available on GitHub2.

Acknowledgments. We are grateful for the work on JDart and JConstraints
by the respective original authors. Our success would not have been possible
without their contributions.

References

1. Beyer, D.: Advances in automatic software verification: SV-COMP 2020. In:
Proc. TACAS (2). LNCS 12079, Springer (2020), https://www.sosy-lab.org/
research/pub/2020-TACAS.Advances_in_Automatic_Software_Verification_
SV-COMP_2020.pdf

2. Cordeiro, L., Kroening, D., Schrammel, P.: Jbmc: Bounded model checking for java
bytecode. In: Beyer, D., Huisman, M., Kordon, F., Steffen, B. (eds.) Tools and
Algorithms for the Construction and Analysis of Systems. pp. 219–223. Springer
International Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-17502-
3_17

1 https://github.com/tudo-aqua/jdart,
Commit c7e30a29b98a69df2c7c96ae39b90ba0fe00e204

2 https://github.com/psycopaths/jdart

https://www.sosy-lab.org/research/pub/2020-TACAS.Advances_in_Automatic_Software_Verification_SV-COMP_2020.pdf
https://www.sosy-lab.org/research/pub/2020-TACAS.Advances_in_Automatic_Software_Verification_SV-COMP_2020.pdf
https://www.sosy-lab.org/research/pub/2020-TACAS.Advances_in_Automatic_Software_Verification_SV-COMP_2020.pdf
https://doi.org/10.1007/978-3-030-17502-3_17
https://doi.org/10.1007/978-3-030-17502-3_17
https://github.com/tudo-aqua/jdart
https://github.com/psycopaths/jdart

402 M. Mues and F. Howar

3. De Moura, L., Bjørner, N.: Z3: An efficient smt solver. In: International conference
on Tools and Algorithms for the Construction and Analysis of Systems. pp. 337–
340. Springer (2008). https://doi.org/10.1007/978-3-540-78800-3_24

4. Godefroid, P., Klarlund, N., Sen, K.: Dart: Directed automated random test-
ing. In: Proceedings of the 2005 ACM SIGPLAN Conference on Programming
Language Design and Implementation. pp. 213–223. PLDI ’05, ACM (2005).
https://doi.org/10.1007/978-3-642-19237-1_4

5. Howar, F., Jabbour, F., Mues, M.: JConstraints: A library for working with
logic expressions in Java. In: Models, Mindsets, Meta: The What, the How, and
the Why Not?, pp. 310–325. Springer (2019). https://doi.org/10.1007/978-3-030-
22348-9_19

6. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–
394 (1976). https://doi.org/10.1145/360248.360252

7. Luckow, K.S., Dimjasevic, M., Giannakopoulou, D., Howar, F., Isberner, M., Kah-
sai, T., Rakamaric, Z., Raman, V.: JDart: A dynamic symbolic analysis framework.
In: Proceedings of TACAS 2016. pp. 442–459 (2016). https://doi.org/10.1007/978-
3-662-49674-9_26

8. Mues, M., Howar, F.: JDart artifact used in SV-COMP 2020. Zenodo (2020).
https://doi.org/10.5281/zenodo.3678593

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

11. Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F.: Model check-
ing programs. Automated Software Engineering 10(2), 203–232 (Apr 2003).
https://doi.org/10.1023/A:1022920129859

9. Sharma, V., Hussein, S., Whalen, M., McCamant, S., Visser, W.: Java Ranger
at SV-COMP 2020 (competition contribution). In: Biere, A., Parker, D.
(eds.) TACAS 2020. LNCS, vol. 12079, pp. 393–397. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45237-7_27

10. Visser, W., Geldenhuys, J.: COASTAL: Combining concolic and fuzzing
for Java (competition contribution). In: Biere, A., Parker, D. (eds.)

https://doi.org/10.1007/978-3-030-45237-7_23
TACAS 2020. LNCS, vol. 12079, pp. 373–377. Springer, Cham (2020).

https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-642-19237-1_4
https://doi.org/10.1007/978-3-030-22348-9_19
https://doi.org/10.1007/978-3-030-22348-9_19
https://doi.org/10.1145/360248.360252
https://doi.org/10.1007/978-3-662-49674-9_26
https://doi.org/10.1007/978-3-662-49674-9_26
https://doi.org/10.5281/zenodo.3678593
https://doi.org/10.1023/A:1022920129859
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-030-45237-7_27
https://doi.org/10.1007/978-3-030-45237-7_23

Map2Check: Using Symbolic Execution and Fuzzing

(Competition Contribution)

Herbert Rocha1� , Rafael Menezes3 ,

Lucas C. Cordeiro2 , and Raimundo Barreto3

1Department of Computer Science, Federal University of Roraima, Roraima, Brazil

herbert.rocha@ufrr.br
2Department of Computer Science, University of Manchester, Manchester, United Kingdom

3Institute of Computing, Federal University of Amazonas, Amazonas, Brazil

Abstract. Map2Check is a software verification tool that combines fuzzing, sym-

bolic execution, and inductive invariants. It automatically checks safety proper-

ties in C programs by adopting source code instrumentation to monitor data (e.g.,

memory pointers) from the program’s executions using LLVM compiler infras-

tructure. For SV-COMP 2020, we extended Map2Check to exploit an iterative

deepening approach using LibFuzzer and Klee to check for safety properties. We

also use Crab-LLVM to infer program invariants based on reachability analysis.

Experimental results show that Map2Check can handle a wide variety of safety

properties in several intricate verification tasks from SV-COMP 2020.

1 Overview

Fuzzing involves providing random data as input to a program and then checks for

crashes. By contrast, path-based symbolic execution is an entirely static method that

symbolically explores the program state-space [1]. Due to a focus on single runs, fuzzing

techniques scale up relatively well. Path-based symbolic execution gives more confi-

dence in the verification results, but it suffers from the path-explosion problem, thus

limiting scalability. Here we exploit an iterative approach using fuzzing and symbolic

execution to implement a tool named Map2Check v7.3.1 . Our main original contribu-

tions include: (i) use LibFuzzer [7] to provide random data as input to C programs to

quickly expose “shallow” bugs, i.e., those that do not require complex data input; (ii)

implement a new runtime library and instrumentation approach to monitor for crashes,

failing built-in assertions and pointer safety; (iii) adopt Crab-LLVM [11] to infer invari-

ants; (iv) exploit a sequential approach with LibFuzzer and KLEE [3] to check safety

properties in a novel way; and (v) adopt MetaSMT as a wrapper around various SMT

solvers, e.g., Boolector [2] and Yices [4], previously not supported by our tool. The SV-

COMP’20 results show that Map2Check can be useful in both falsifying and proving

reachability error and pointer safety-related properties.

� Jury member

c© The Author(s) 2020
A. Biere and D. Parker (Eds.): TACAS 2020, LNCS 12079, pp. 403–407, 2020.

https://doi.org/10.1007/978-3-030-45237-7_29

TACAS
SV-COMP
Artifact

2020
Accepted

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45237-7_29&domain=pdf
http://orcid.org/0000-0002-2648-8468
http://orcid.org/0000-0002-6102-4343
http://orcid.org/0000-0002-6235-4272
https://doi.org/10.1007/978-3-030-45237-7_29

404 H. Rocha et al.

2 Verification Approach

Map2Check uses compiler techniques to analyze C programs using LLVM compiler in-

frastructure, thereby tracking pointer addresses and variable assignments in the LLVM

bitcode [8]. In order to hold all values used in the analysis, a container API is employed

in Map2Check. The tool also generates built-in assertions and checks them adopting an

approach with fuzzing (to falsify properties) and symbolic execution (to prove the cor-

rectness). Fig. 1 illustrates the Map2Check flow, which has the following main steps:

(i) convert the C code into the LLVM IR using Clang [5]; (ii) simplify the code via

constant propagation and dead code elimination after the code instrumentation; (iii) to

apply further Clang optimizations (e.g., canonicalize natural loops and promote mem-

ory to register); (iii) add Map2Check library functions to check the analyzed LLVM

bitcode; (iv) generate inputs for Map2Check instrumented functions by executing Lib-

Fuzzer and then KLEE with Crab-LLVM; and (v) generate the witness file by identify-

ing each basic block executed in the control-flow graph of the LLVM IR.

Fig. 1. Map2Check Verification Flow.

In order to explore the program states and to generate inputs for the Map2Check in-

strumented functions, the LibFuzzer implementation works by creating a custom entry

point, which contains an array of bytes (of uint8_t). Thus, our implementation con-

sists of generating concrete values from non-deterministic inputs that are our fuzzy tar-

gets. Additionally, we run multiple libFuzzer processes in parallel, where N fuzzing jobs

should run to completion, i.e., until a bug is found or time/iteration limits are reached.

Our fuzzing is coverage-guided (e.g., clang coverage), which tries to maximize the code

coverage of a program. In our case, we adopted an inline-8bit-counters option

from LLVM (SanitizerCoverage) for code coverage instrumentation built-in, where the

compiler will insert inline counter that should be incremented on every edge.

The KLEE implementation works by creating a variable for the used data type,

makes it symbolic, and then returns its value. As a result, KLEE produces concrete in-

puts for different program executions. We extend our KLEE implementation by adopt-

ing MetaSMT [6], which is an Embedded Domain Specific Language for SMT solvers.

The API provided by MetaSMT is translated at compile-time, through template meta-

programming, into the native APIs provided by the SMT solvers [9]. Therefore, the

overhead introduced by MetaSMT is small.

Map2Check: Using Symbolic Execution and Fuzzing 405

In order to improve the KLEE core solver execution, the KLEE tool is ran adopt-

ing: counterexample caching solver, which can be used to avoid calling the underlying

solver in certain situations; and MetaSMT, which is employed to construct expressions

that will be cached for each constraint to facilitate expression reuse. Note that symbolic

execution often requires concrete solutions for satisfiable queries, e.g., before calling an

external function, all symbolic bytes need to be replaced by concrete values, simplify

constraints, and reuse query results [9]. Therefore, the KLEE cache solver is an impor-

tant optimization, mainly of the counterexample cache that is based on the observation

that many constraint sets are in a subset/superset relation.

To check the unreachability of an error location, we reduced the number of states

in the analyzed program to be explored, thereby supplying invariants to the back-end

solvers. We adopted Crab-LLVM [11] to infer inductive invariants as constraints to the

error location. Therefore, the invariants are automatically introduced into the program

as assumptions (before verification), and then KLEE receives the code as input. Crab-

LLVM is a static analyzer that employs an abstract interpretation engine over LLVM

bitcode based on the Crab library, which uses abstract domains such as intervals, oc-

tagon, and polyhedra. Crab is built on the top of IKOS1 (Inference Kernel for Open

Static Analyzers) to support a collection of abstract domains and fixpoint iterators.

3 Software Architecture

Map2Check v7.3.1 is implemented as a source-to-source transformation tool in C/C++

using LLVM (v6.0). Map2Check uses Clang (v6.0) as a front-end to parse a C program

and to generate the respective LLVM bitcode to be used in the code transformation

to track pointers and variable assignments. It uses LibFuzzer [7] (v6.0) and KLEE [3]

(v2.0, as a symbolic execution) to automatically produce inputs to execute different pro-

gram paths. MetaSMT (v4.rc2) is the API of reasoning engines. For SV-COMP’20, we

adopt Yices (v2.5.1) that is used by KLEE to check constraints over bit-vectors and ar-

rays, which substantially improved our results. Crab-LLVM [11] is used on reachability

mode to infer inductive invariants for LLVM bitcode.

4 Strengths and Weaknesses of the Approach

Map2Check analyzed intricate verification tasks. The tool achieved the 2nd place in the

ReachSafety-Arrays subcategory; in the ReachSafety-BitVectors category, Map2Check

achieved a score of 46, thereby presenting better results than Pinaka, UKojak, VeriFuzz,

and DIVINE. In other subcategories, our tool generated correct-unconfirmed and incor-

rect true results. These results are, in part, explained due to the Map2Check bugs in

the witness generation and limitation to handle Crab-LLVM invariants from the over-

approximations. We are investigating how to extend our tool by combining the data

from fuzzing with KLEE as program assumptions using template invariant.

In the MemSafety category, Map2Check achieved a score of −68. However, our

tool achieved essential results in comparison with the state-of-art tools, e.g., in the

1 https://ti.arc.nasa.gov/opensource/ikos/

406 H. Rocha et al.

MemSafety-heap subcategory achieved a score of 174, which outperforms UAutomizer,

ESBMC, DIVINE, and CBMC. Most incorrect results are, in part, explained due to bugs

in the pointer tracking from our memory model, which could be improved by a trace

semantics with program optimizations as relations on sets of the trace. Sadly, in the

NoOverflows category, the score was −89. The incorrect results are, in part, explained

due to bugs in the overflow analyzer. One way to improve this result is by combining

the CPU flag postcondition test (LLVM supports several intrinsic functions, e.g., an add

operation returns a structure with the result and overflow flag) with Sanitizers checking.

5 Tool Setup and Configuration

In order to run our map2check-wrapper.py script [10],2 one must set the property file

(-p) and the verification task; it provides as result: TRUE +Witness, FALSE +Witness,

or UNKNOWN. For each error-path or correctness witness, a file (called witness.

graphml) with the witness proof is generated in the Map2Check root-path folder. The

dependencies, e.g., Clang and Yices tools, are included in the Map2Check distribution.

The Benchexec tool info module is named map2check.py and Map2Check participates

in SV-COMP’20 (as in the map2check.xmlbenchmark definition) in the following cat-

egories: ReachSafety-Arrays, ReachSafety-BitVectors, ReachSafety-ControlFlow, Reach

Safety-Heap, ReachSafety-Loops, ReachSafety-Recursive, MemSafety, and NoOver-

flows.

6 Software Project

Map2Check v7.3.1 3 is open source software distributed under the GPL license. We

provide instructions for building Map2Check from the source in the file README

(including the description of all dependencies). Map2Check is a joint project with the

Federal University of Roraima and the Federal University of Amazonas in Brazil.

References

1. Baldoni, R., Coppa, E., D’Elia, D.C., Demetrescu, C., Finocchi, I.: A Survey of Symbolic

Execution Techniques. ACM Comput. Surv. 51(3) (2018)

2. Brummayer, R., Biere, A.: Boolector: An Efficient SMT Solver for Bit-Vectors and Arrays.

In: TACAS. pp. 174–177. Springer (2009)

3. Cadar, C., Dunbar, D., Engler, D.: KLEE: Unassisted and Automatic Generation of High-

Coverage Tests for Complex Systems Programs. In: OSDI. pp. 209–224. USENIX (2008)

4. Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) CAV. pp. 737–744. Springer (2014)

5. Fandrey, D.: Clang/LLVM Maturity Report. In: Computer Science Dept., University of Ap-

plied Sciences Karlsruhe (2010), See http://www.iwi.hs-karlsruhe.de.

6. Haedicke, F., Frehse, S., Fey, G., Große, D., Drechsler, R.: metaSMT: Focus on Your Appli-

cation not on Solver Integration. In: Intl. Workshop on DIFTS. CEUR-WS.org (2011)

2 https://gitlab.com/sosy-lab/sv-comp/archives-2020/blob/master/2020/map2check.zip
3 https://github.com/hbgit/Map2Check

 http://www.iwi.hs-karlsruhe.de

Map2Check: Using Symbolic Execution and Fuzzing 407

7. LibFuzzer: A library for coverage-guided fuzz testing. https://llvm.org/docs/LibFuzzer.html

(2019), [Online; accessed September-2019]

8. Menezes, R., Rocha, H., Cordeiro, L., Barreto, R.: Map2Check using LLVM and KLEE. In:

TACAS. pp. 437–441. Springer (2018)

9. Palikareva, H., Cadar, C.: Multi-solver Support in Symbolic Execution. In: Intl. Workshop

on SMT. p. 15. CEUR-WS.org (2014)

10. Rocha, H., Menezes, R., Cordeiro, L.C., Barreto, R.: Map2Check Tool: Using Symbolic

Execution and Fuzzing. Zenodo. (Feb 2020), https://doi.org/10.5281/zenodo.3678748

11. SeaHorn: Crab-LLVM: Abstract Interpretation of LLVM bitcode.

https://github.com/seahorn/crab-llvm (2019), [Online; accessed November-2019]

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which per-

mits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as

you give appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not in-

cluded in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain

permission directly from the copyright holder.

https://llvm.org/docs/LibFuzzer.html
https://doi.org/10.5281/zenodo.3678748
https://github.com/seahorn/crab-llvm
http://creativecommons.org/licenses/by/4.0/

PredatorHP Revamped (Not Only) for Interval-Sized

Memory Regions and Memory Reallocation

(Competition Contribution) �

Petr Peringer, Veronika Šoková��(�), and Tomáš Vojnar

Brno University of Technology, Faculty of Information Technology,
Centre of Excellence IT4Innovations, Czech Republic

Abstract. This paper concentrates on improvements of the PredatorHP shape an-
alyzer in the past two years, including, e.g., improved handling of interval-sized
memory regions or new support of memory reallocation. The paper character-
izes PredatorHP’s participation in SV-COMP 2020, pointing out its strengths and
weakness and the way they were influenced by the latest changes in the tool.

1 Verification Approach and Software Architecture

We first briefly recap the main ideas behind PredatorHP and then discuss significant
improvements that have been done in the tool in the past two years.

1.1 The Predator Shape Analyzer

Predator is implemented using C++ and the Boost libraries as a GCC plug-in on top of
the Code Listener framework [2], which we recently upgraded to work with GCC 7.4.0.
Moreover, as shown below, we extended Code Listener by adding a type analysis phase
before the compiled code is passed to the shape analysis implemented in Predator. In
case a memory safety property is to be checked and there are no complex types, such as
structures, unions, arrays, strings, or pointers in the program under analysis (including
possibly unreachable code), we directly assume the program to be memory safe.

predator
verifier
kernel

errors

errors with location info

code parser
interfaceGCC

front end
compiler

GIMPLE

code
storagefilters

Code Listener IR

source files
.c,.h

loc info

stderr

compiler
options

analysis
options

on CL IR

iterators

config.h
(re-build)

analyzers
VarKiller

ComplexTypeChk
...

witness.xml

The main aim of Predator is shape analysis of sequential C programs that use low-
level C pointer statements to implement various kinds of lists (singly- or doubly-linked,
possibly circular, nested, and/or shared). Predator looks for various memory-related er-
rors (invalid pointer dereferences, double free operations, memory leaks, etc.), and it
� This work was supported by the Czech Ministry of Education, Youth and Sports within the

IT4Innovations Excellence in Science (NPUII) project No. LQ1602.
�� Jury member, email: isokova@fit.vutbr.cz.

c© The Author(s) 2020
A. Biere and D. Parker (Eds.): TACAS 2020, LNCS 12079, pp. 408–412, 2020.
https://doi.org/10.1007/978-3-030-45237-7 30

TACAS
SV-COMP
Artifact

2020
Accepted

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45237-7_30&domain=pdf
http://orcid.org/0000-0002-2746-8792
https://doi.org/10.1007/978-3-030-45237-7_30

PredatorHP Revamped 409

also checks validity of assertions present in the code. Predator uses abstract interpre-
tation based on the domain of symbolic memory graphs (SMGs) [1]. Predator abstracts
uninterrupted sequences of singly- or doubly-linked memory regions into appropriate
kinds of list segments. Further, Predator abstracts numerical values (either values stored
in memory regions, sizes of the regions, or offsets of pointers) using intervals with con-
stant bounds. The constants used as the bounds have a pre-defined maximum/minimum
value defined in the configuration of Predator (+32/-32 for SV-COMP’20). If the max-
imum/minimum value is exceeded, the bound is set to plus or minus infinity. Predator
uses summaries to speed up analysis of programs structured into functions. Recursive
programs are, however, analysed up to a given call depth only.

scheduler: BFS
no VarKiller

scheduler: DFS
heap abstraction
join
call cache

scheduler: DFS
 depth 1900
sampled intervals

scheduler: DFS
 depth 900
sampled intervals

D
F

S
hu

nt
er

D
F

S
hu

nt
er

B
F

S
hu

nt
er

V
er

ifi
er

safe + witness.xml error + witness.xml

propertyfilesource filePredatorHP, i.e., the Preda-
tor Hunting Party [3,4], whose
flow of control is shown on
the right, is implemented as
a Python script, and used to in-
crease the efficiency and pre-
cision of the analysis. Namely,
PredatorHP runs the base Predator verifier in parallel with several Predator hunters that
do not use the list-segment abstraction, do not join semantically different SMGs, nor use
function summaries with matching of call parameters based on SMG entailment. While
the Predator verifier can claim a program correct, it cannot report errors to avoid false
alarms caused by abstraction. Predator hunters are classified as breadth-first (BFS) and
depth-first (DFS). The DFS hunters have a limit on the search depth defined as a certain
number of GCC’s GIMPLE instructions. The hunters can normally only report errors.
The only exception is when the verified program has a finite state space that is fully
explored by the BFS hunter in the given time limit.

In SV-COMP’20, based on empirical data, the BFS hunter does not use the Preda-
tor’s VarKiller, which removes dead variables from SMGs. This led to a significant
speedup on 5 verification tasks (and some slowdown on 3 tasks). Further, the most
shallow DFS 200 hunter, searching up to the depth of 200 instructions and used in
PredatorHP up to SV-COMP’19, was removed as it was not bringing any advantage
wrt the DFS 900 hunter, and a DFS 1900 hunter was added to handle more complex
tasks (in particular, memsafety-ext2/split_list_test05-1, ntdrivers/
floppy.i.cil-3). However, note that the DFS 900 hunter remains needed as oth-
erwise 11 verification tasks would time out.

1.2 Recent Modifications of PredatorHP

One of the main improvements of the latest version of Predator is that its SMG-based
analysis has been extended to support memory reallocation on the heap. If a reallocation
operation is executed on an SMG, two new SMGs are produced. The first one models
the case when a new object of the required size is created, data from the old object are
copied into the new object, and the old object is freed. In the second case, the existing
object is resized. If the size decreases, Predator checks that no memory leak happens
due to some pointer field is removed or invalidated (in case it is partially removed).

Another improvement concerns working with interval-sized memory regions, which
arise when allocating structures or arrays of parametric size. Despite even older versions

410 P. Peringer et al.

of Predator were able to create such regions, the way in which they could have been
treated in the subsequent analysis of the program was very limited. In particular, it was
impossible to dereference interval-sized regions, and hence Predator was very weak
when analysing programs with structures or arrays of an in-advance-not-fixed size. This
situation was first improved for SV-COMP’19 in the following pragmatic way.

Namely, whenever Predator hits a conditional statement that would previously yield
an interval value with fixed bounds (such as the statement if (n>=0 && n<10) for
so-far unconstrained n), it will split the further analysis into as many branches as the
number of values in the interval is, each of them evaluating for a concrete value from the
interval. After the split, no further interval-based allocations and dereferences, which
the previous version of Predator used to fail on, happen. In order for the splitting not
to cause a memory explosion, the latest version of Predator contains a parameter that
controls the maximum size of split intervals, which was set to 300 in SV-COMP’20.

The above modification of Predator concerned dealing with memory regions whose
size is given by an interval with finite bounds. In case one of the bounds is infinite,
Predator has been extended to sample the interval and perform the further analysis with
the sampled values. Currently, the sampling is done simply by taking some number of
concrete values from the given interval starting/ending with the bound that is fixed (of
course, for memory regions, unboundedness from above does only make sense). The
number of considered samples is currently set to 3. Of course, this strategy cannot be
used to soundly verify correctness of programs, and so it is used for detecting bugs only.

Despite the above mentioned treatment of intervals was primarily designed for deal-
ing with interval-sized memory regions, it can help in other cases of dealing with in-
tegers too. Namely, it can help both when dealing with integer data as well as when
dealing with interval-based pointer offsets.

Next, we have implemented checking whether all dynamically allocated memory
has been deallocated when a function with the noreturn attribute (such as abort or
exit) is called. The implementation simply searches the SMG representing the mem-
ory at the moment of a call of a noreturn function and checks that it does not contain
any valid dynamically allocated object.

We have also added a support of the clobber instruction of GIMPLE, which termi-
nates the life time of local variables of code blocks. Upon this instruction, Predator now
marks the concerned memory region as deallocated, allowing it to detect invalid deref-
erences of objects local to a block from outside of the block. Further, we have added
a support of the instructions modulo and bitwise-or and created models of the stan-
dard library functions for strcmp and realloc. This fixed several problems such as
reporting false alarms when assigning fully-overlapping structures.

Finally, we improved the generation of witnesses. Apart from some bug fixes, we
changed the trace generation for the reachability category. Namely, in this category,
if some trace ends with an error other than calling VERIFIER error, the analysis
recovers and continues to search for other traces.

2 Strengths and Weaknesses

The main strength of PredatorHP is that it treats code with various kinds of unbounded
lists in a sound and efficient way. Predator hunters then allow it to quickly handle pro-
grams with a small finite state space (e.g., benchmarks from list-simple) and avoid

PredatorHP Revamped 411

many false alarms that could otherwise happen. Interestingly, among the 328 correct
tasks in ReachSafety-Heap, MemSafety-Heap, and MemSafety-LinkedLists, only 98 use
unbounded data structures, out of which the Predator verifier (and, of course, no hunter)
handles 56 %. Next, out of the 328 tasks, 83 do not use linked data structures nor arrays,
and 147 use them but are finite-state. The Predator verifier and the BFS hunter handle
93 % of the 83 tasks that are so trivial that even the verifier does not use any abstraction.
Out of the 147 tasks, 53 tasks are handled by both of them, while 2 tasks are handled
solely by the verifier and 75 solely by the BFS hunter.

A weakness of Predator is that it specialises in dealing with lists, and so it handles
structures such as trees, skip-lists, or arrays in a bounded way, i.e., for error detection,
only. Another weakness of Predator has traditionally been its weak treatment of non-
pointer data. We have tried to improve on the latter weakness by the described heuristics
for dealing with intervals of integers with a specific aim to improve the way Predator
handles memory regions of parametric size. The results of PredatorHP on SV-COMP’20
benchmarks with arrays show that the heuristics did help. Indeed, the interval sampling
heuristic allowed us to correctly detect 10 errors in tasks from array-memsafety,
array-examples, and loops. Moreover, the interval-splitting heuristic also helped
on some benchmarks for dealing with interval-based sizes, offsets, and/or integer data.
Namely, it removed 8 unknown results in ReachSafety and 4 such results in MemSafety.

The new type analysis looking for presence of complex types allowed Predator to
skip its main analysis loop in 77 tasks in the MemSafety category, of which 13 tasks
(from termination-crafted) contain recursion, which Predator could not han-
dle, and 6 tasks (from locks) would otherwise timeout. Due to the new support of
reallocation, Predator verifies all tasks containing a call of realloc. Due to the added
support of clobber instructions, Predator detects invalid memory accesses in bench-
marks accessing variables outside of the block in which they were created. All other new
improvements described above did also help in some cases and allowed PredatorHP to
win the 1st place in the MemSafety category and in the ReachSafety-Heap sub-category.

3 Contributors, Software Project, and the Tool Setup

The main author of Predator is Kamil Dudka. Besides him and the PredatorHP team,
Petr Müller, Michal Kotoun, and numerous other people listed in the docs/THANKS
file in the distribution of Predator have contributed to the distribution of Predator.

Predator is an open source software project distributed under GNU GPLv3. The
source code used in SV-COMP’20 is available too1. The README-SVCOMP-2020 file
shipped with it describes how to build the tool. The script predatorHP.py serves to
run the tool, taking a verification task file as a single positional argument. Paths to both
the property file and the desired witness file are accepted via long options, i.e., 64-bit
compiler options. The verification outcome is printed to the standard output. To run
PredatorHP in the BenchExec environment, the predatorhp.py wrapper and the
predatorhp.xml benchmark definition can be used. In SV-COMP’20, PredatorHP
participated in the MemSafety category and in the ReachSafety-Heap sub-category.

1 http://www.fit.vutbr.cz/research/groups/verifit/tools/predator-hp

http://www.fit.vutbr.cz/research/groups/verifit/tools/predator-hp

412 P. Peringer et al.

References

1. Dudka, K., Peringer, P., Vojnar, T.: Byte-Precise Verification of Low-Level List Manipu-
lation. In: Logozzo, F., Fähndrich, M. (eds.) SAS 2013. LNCS, vol. 7935, pp. 215–237.
Springer, Heidelberg (2013)

2. Dudka, K., Peringer, P., Vojnar, T.: An Easy to Use Infrastructure for Building Static Analysis
Tools. In: Moreno-Dı́az, R., Pichler, F., Quesada-Arencibia, A. (eds.) EUROCAST 2011,
Part I. LNCS, vol. 6927, pp. 527–534. Springer, Heidelberg (2012)

3. Muller, P., Peringer, P., Vojnar, T.: Predator Hunting Party (Competition Contribution). In:
Baier, C., Tinelli, C. (eds) TACAS 2015, LNCS, vol. 9035, pp. 443–446. Springer, Heidel-
berg (2015). https://doi.org/10.1007/978-3-662-46681-0 40

4. Peringer, P., Šoková, V., Vojnar, T.: PredatorHP (Version 3.141). Zenodo (2020). http://doi.
org/10.5281/zenodo.3678356

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which per-
mits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not in-
cluded in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.

https://doi.org/10.1007/978-3-662-46681-0_40
http://doi.org/10.5281/zenodo.3678356
http://doi.org/10.5281/zenodo.3678356
http://creativecommons.org/licenses/by/4.0/

Symbiotic 7: Integration of Predator and More�

(Competition Contribution)

Marek Chalupa1��, Tomáš Jašek1, Lukáš Tomovič1,
Martin Hruška2, Veronika Šoková2, Pauĺına Ayaziová1,

Jan Strejček1 , and Tomáš Vojnar2

1 Masaryk University, Brno, Czech Republic
2 Brno University of Technology, FIT,

IT4Innovations Centre of Excellence, CZ, Brno, Czech Republic

Abstract. Symbiotic 7 brings improvements in all parts of the tool.
In particular, we integrated the advanced shape analysis implemented
in Predator to our instrumentation process for memory safety checking.
Further, we extended our slicer to correctly handle non-terminating pro-
grams. This new slicing is applied in termination analysis, where we also
added instrumentation for detection of simple cycles in the program state
space. The witness generation process changed as well.

1 Verification Approach

Symbiotic 7 follows the same basic schema as all previous versions [4,5]: the
program to be verified is first instrumented (if needed), then reduced by static
program slicing, and finally symbolically executed using Klee [2]. We describe
the main modifications since Symbiotic 5 (participating in SV-COMP 2018)
as modifications in Symbiotic 6 (competing in 2019) have not been published.

Memory safety checking improvements Symbiotic uses a static pointer
analysis to detect instructions that can potentially violate memory safety. To
check these instructions, Symbiotic 5 [5,3] instrumented the program with code
that keeps records about allocated memory and uses the records to assert the
validity of potentially misbehaving instructions. Then we sliced the program
with respect to these assertions and called Klee to check assertion validity.

Since Symbiotic 6, we slice the program directly with respect to the poten-
tially misbehaving instructions without inserting any additional code. Then we
call Klee to check memory safety of the sliced program.

Symbiotic 7 newly integrates Predator [6], a static analyzer specialized
on memory safety. We first run Predator in its over-approximating mode and

� M. Chalupa, T. Jašek, P. Ayaziová, and J. Strejček have been supported by the Czech
Science Foundation grant GA18-02177S. M. Hruška, V. Šoková, and T. Vojnar have
been supported by the IT4Innovations Excellence in Science project (LQ1602) and
the FIT BUT internal project FIT-S-20-6427.

�� Jury member and corresponding author: chalupa@fi.muni.cz.

c© The Author(s) 2020
A. Biere and D. Parker (Eds.): TACAS 2020, LNCS 12079, pp. 413–417, 2020.
https://doi.org/10.1007/978-3-030-45237-7 31

TACAS
SV-COMP
Artifact

2020
Accepted

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45237-7_31&domain=pdf
http://orcid.org/0000-0001-5873-403X
http://orcid.org/0000-0002-2746-8792
https://doi.org/10.1007/978-3-030-45237-7_31

414 M. Chalupa et al.

in a configuration that analyses all branches in the given program and tries to
recover from found errors. If Predator says that the program is safe, we simply
answer true. Otherwise, we take bug reports from Predator and combine them
with results of our static pointer analysis to get a more precise (i.e., smaller) set
of potentially misbehaving instructions. Then we proceed like Symbiotic 6.

Symbiotic 7 is also the first version that can distinguish between valid-
memcleanup and valid-memtrack properties. To do this, our clone of Klee now
reconstructs the shape of memory at the program exit if unfreed memory is
found: Klee starts with local and global variables and resolves pointers in these
(if any). Then it resolves pointers in the pointed memory, etc. This way we can
find out if the unfreed memory is reachable via a chain of dereferences or not.

Termination analysis Symbiotic 6 introduced a simple support for termi-
nation property: a call to VERIFIER error is inserted before trivial infinite
loops, e.g., while (true); loops. If the symbolic execution detects that such a
call is reachable, Symbiotic answers false as the program can reach an infinite
loop. If all paths of the program are explored by symbolic execution without
reaching any of these calls, all program executions are clearly terminating and
we answer true (an infinite program path cannot be fully explored by symbolic
execution). Note that program slicing was disabled for non-termination checking
in Symbiotic 6 as the slicer could remove infinite loops in some specific cases.

Symbiotic 7 brings two improvements. First, since we extended our slicer
to correctly handle non-terminating programs [7], we now apply slicing with
slicing criteria set to all exit points (including the instrumented error calls) of the
program. Second, we instrument the program with checks for simple cycles in the
state space. The instrumentation detects non-nested loops with a single entry
for which it can conservatively determine a set {V1, . . . , Vk} that includes all
variables potentially modified by the loop. At the beginning of the loop body, we
insert assignments that store the value of each variable Vi into a new variable V ′

i .
At the end of the loop body, we insert the assertion assert

V ′
k) to check a change in the vector of these variables. If this assertion is violated,

the program has a non-terminating execution.

Error path replay Although the slicer in Symbiotic now provides algorithms
that preserve non-termination properties of programs, outside the Termination
category we still use the original non-termination insensitive slicing as it may re-
move more instructions. The price is, however, that Symbiotic may report false
alarms: an unreachable error location situated below an infinite loop may be-
come reachable when the loop is sliced out. To fix this issue, we try to reproduce
each error found by symbolic execution in the original (unsliced) program. If the
error is reproduced, we report it as a real error. Otherwise, we say unknown.

Improved witness generation Symbiotic 5 and 6 generated violation wit-
nesses that describe only the initialization of non-deterministic variables at the

Symbiotic 7: Integration of Predator and More 415

beginning of the main function. Symbiotic 7, on the other hand, generates vi-
olation witnesses that contain a complete test vector, i.e., the whole sequence
of values returned from VERIFIER nondet * functions during the error path
replay. To get and correctly identify all these values, we have modified our fork
of Klee to support interpretation of VERIFIER nondet * functions (and other
undefined functions in general) internally. Currently, more than 99% of our vio-
lation witnesses (outside the Termination category) are confirmed. Symbiotic 7
still generates trivial correctness witnesses if no error is found.

Other improvements Other improvements in Symbiotic 7 used in SV-

COMP 2020 include a faster data dependence analysis (a part of slicing) and
better handling of assume statements in the slicer. Symbiotic is now also able
to continue in verification if the instrumentation or slicer crashes or exceeds the
time limit. In such a case, Klee is run on the original program which has been
only optimized by standard llvm optimizations. For SV-COMP 2020, we set
the time limit of 400 s on instrumentation and the time limit of 300 s on slicing.

2 Software Architecture

Symbiotic 7 is built on top of llvm 8.0.1 [8]. The tool consists of a set of
modules written in C++ that process llvm bitcode, and Python scripts that
chain these modules according to given configuration.

For use in Symbiotic, we have made several bugfixes in Predator’s llvm
backend and ported it to llvm 8.0.1. Further, we have introduced distinguishing
between safe and possibly erroneous program instructions.

Symbiotic uses its own fork of Klee that contains several modifications
compared to the mainstream Klee. In particular, the fork has been extended
to handle symbolic-sized memory allocations, to process marks delimiting the
lifetime of scoped variables, to check for memory leaks, and to generate violation
witnesses in the SV-COMP format.

3 Strengths and Weaknesses

In SV-COMP 2020 [1], Symbiotic 7 won the SoftwareSystems category and
scored second in the MemSafety category and the FalsificationOverall meta cat-
egory. Overall, Symbiotic ended up on the fourth place.

The main reason for winning SoftwareSystems is having only a few incorrect
answers. Indeed, Symbiotic did not win in the number of correct answers in any
of the SoftwareSystems subcategories. However, we had only 4 incorrect answers
and all of them in the subcategory DeviceDriversLinux64. This subcategory is
huge and these incorrect answers have only a small impact on the weighted score.

In MemSafety, we took the second place after PredatorHP which executes
several instances of the Predator tool with different configurations in parallel.
Symbiotic calls just one of these instances as mentioned above. Additionally,

416 M. Chalupa et al.

PredatorHP uses gcc, while we use Predator running on llvm, which is
not as mature as the former. Also, we had a number of new unknown answers
because Klee does not support pointer comparisons, which we incorrectly did
not detect in the previous versions of Symbiotic.

In general, Symbiotic’s results stems from the good performance of Klee

supported by efficient static analysis and slicing: the official results show that
Symbiotic can decide many benchmarks very quickly.

The main weakness of our tool is the inherent complexity of symbolic exe-
cution and the limited possibility of analysing potentially unbounded loops or
infinite paths with this technique. Indeed, as symbolic execution actually fol-
lows all paths in the program, it does not terminate if the program contains an
unbounded loop or an infinite path (unless an error is found). Even when the
number of paths is finite and all the paths are finite, symbolic execution usually
runs out of resources if the number of paths is large. Although this problem
is slightly alleviated by program slicing, our tool still does not scale well on
complex programs.

4 Tool Setup and Configuration

– Download: From the competition archives or via
http://doi.org/10.5281/zenodo.3678328.

– Installation: Unpack the archive.

– Participation Statement: Symbiotic 7 participates in all categories.

– Execution: Run bin/symbiotic --sv-comp OPTS <source>, where avail-
able OPTS include:

• --prp=file, which sets the property specification file to use,

• --witness=file, which sets the output file for the witness,

• --32, which sets the 32-bit environment,

• --help, which shows the full list of possible options.

5 Software Project and Contributors

Symbiotic 6 and 7 have been developed by M. Chalupa, T. Jašek, M. Vitovská,
M. Šimáček, L. Tomovič, and P. Ayaziová under the supervision of J. Strejček.
Predator has been adjusted for the described integration by M. Hruška and
V. Šoková under the supervision of T. Vojnar. Symbiotic and its components
are available under the MIT license. The project is hosted by the Faculty of
Informatics, Masaryk University. Klee, llvm, and Predator are also available
under open-source licenses. Source codes of the project and references to all its
components can be found at:

https://github.com/staticafi/symbiotic

http://doi.org/10.5281/zenodo.3678328
https://github.com/staticafi/symbiotic

Symbiotic 7: Integration of Predator and More 417

References

1. D. Beyer. Advances in automatic software verification: SV-COMP 2020. In Proc.
TACAS (2), LNCS 12079. Springer, 2020.

2. C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In R. Draves and R. van
Renesse, editors, OSDI, pages 209–224. USENIX Association, 2008.

3. M. Chalupa, J. Strejček, and M. Vitovská. Joint forces for memory safety checking.
In M. Gallardo and P. Merino, editors, SPIN, volume 10869 of LNCS, pages 115–132.
Springer, 2018. https://doi.org/10.1007/978-3-319-94111-0 7.

4. M. Chalupa, M. Vitovská, M. Jonáš, J. Slaby, and J. Strejček. Symbiotic
4: Beyond reachability (competition contribution). In A. Legay and T. Mar-
garia, editors, TACAS, volume 10206 of LNCS, pages 385–389. Springer, 2017.
https://doi.org/10.1007/978-3-662-54580-5 28.

5. M. Chalupa, M. Vitovská, and J. Strejček. Symbiotic 5: Boosted in-
strumentation (competition contribution). In D. Beyer and M. Huisman,
editors, TACAS, volume 10806 of LNCS, pages 442–446. Springer, 2018.
https://doi.org/10.1007/978-3-319-89963-3 29.

6. K. Dudka, P. Peringer, and T. Vojnar. Predator: A practical tool for checking ma-
nipulation of dynamic data structures using separation logic. In G. Gopalakrishnan
and S. Qadeer, editors, CAV, volume 6806 of LNCS, pages 372–378. Springer, 2011.
https://doi.org/10.1007/978-3-642-36742-7 49.

7. L. Tomovič. Slicing of parallel programs. Master’s thesis, Masaryk University, 2019.
https://is.muni.cz/th/o1s3u/.

8. LLVM. http://llvm.org/.

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-94111-0_7
https://doi.org/10.1007/978-3-662-54580-5_28
https://doi.org/10.1007/978-3-319-89963-3_29
https://doi.org/10.1007/978-3-642-36742-7_49
https://is.muni.cz/th/o1s3u/
http://llvm.org/
http://creativecommons.org/licenses/by/4.0/

Ultimate Taipan with Symbolic Interpretation
and Fluid Abstractions

(Competition Contribution)

Daniel Dietsch(�) , Matthias Heizmann(�) ,
Alexander Nutz, Claus Schätzle, and

Frank Schüssele

University of Freiburg, Freiburg im Breisgau, Germany
{dietsch,heizmann}@cs.uni-freiburg.de

Abstract. Ultimate Taipan is a software model checker that combines
trace abstraction with abstract interpretation on path programs. In this
year’s version, we replaced our abstract interpretation engine and now use
a combination of multiple abstraction functions, fixpoint computation,
algebraic program analysis, and SMT solving. Our new approachwill allow
us to integrate new techniques more easily.

1 Verification Approach

Ultimate Taipan is a software model checker which combines trace abstrac-
tion [8] and abstract interpretation [5]. The algorithm of Taipan follows the trace
abstraction verification scheme for reachability where it constructs an abstraction
of the program as a nested word automaton (NWA). This NWA has initially the
same graph structure as the program’s interprocedural control flow graph (ICFG),
its states are program locations, its transitions are labeled with program locations,
and states corresponding to error locations are accepting. Hence, the automaton
recognizes a language where the symbols are statements and the words are se-
quences of statements (which we call traces) that lead to an error location. If the
language of the abstraction automaton is empty, no error location can be reached
and the program is safe. If there is a trace in the language, the algorithm needs to
determine if it is a feasible trace, i.e., a trace that corresponds to an actual program
execution, or not. Feasible traces constitute an actual counterexample and if one
is found the algorithm terminates. If an infeasible trace is found, Taipan’s algo-
rithm differs from trace abstraction and does not only analyze the actual trace,
but rather constructs a path program1from this trace. It then tries to synthesize
inductive invariants for the whole path program [7]. From these invariants, a new
automaton is constructed which language only recognizes infeasible traces. The
new abstraction is then constructed as the difference of the automaton that only
recognizes infeasible traces and the old abstraction automaton. If the error loca-
tion’s invariant of the path program is not false, the computed invariants are
too weak to prove infeasibility, and Taipan falls back to using interpolating SMT
solvers to compute new invariants that are strong enough to discharge the trace.

Daniel Dietsch — Jury Member
1 A path program is a projection of the program to the trace.

c© The Author(s) 2020
A. Biere and D. Parker (Eds.): TACAS 2020, LNCS 12079, pp. 418–422, 2020.
https://doi.org/10.1007/978-3-030-45237-7 32

TACAS
SV-COMP
Artifact

2020
Accepted

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45237-7_32&domain=pdf
http://swt.informatik.uni-freiburg.de/staff/dietsch
http://orcid.org/0000-0002-8947-5373
http://swt.informatik.uni-freiburg.de/staff/heizmann
http://orcid.org/0000-0003-4252-3558
http://swt.informatik.uni-freiburg.de/staff/nutz
https://doi.org/10.1007/978-3-030-45237-7_32

Ultimate Taipan with Symbolic Interpretation and Fluid Abstractions 419

Taipan’s old algorithmused abstract interpretation to analyze path programs.
In this year’s iteration, we use a new approach, which is motivated by two draw-
backs of our old algorithm. Firstly, extending an abstract interpretation engine
with new abstract domains is labor-intensive and error-prone. Each abstract do-
main has an abstract post operator describing the effect program statements have
on abstract states. For each abstract domain and each type of program statement
the abstract post operator has to be defined and implemented, and re-use between
domains is complicated. Furthermore, each abstract domain needs their own rep-
resentation of an abstract state, s.t. exchanging information between multiple
domains requires explicit conversions. Secondly, Abstract interpretation always
abstracts. Because each abstract domain has its own abstract state representa-
tion, it is usually not possible to implement a precise post operator. Hence, every
application of post is an abstraction, which leads to unnecessary loss of precision.

Fig. 1: Overview of the symbolic interpretation engine.

Our new approach is inspired by Algebraic Program Analysis [9, 4] and the re-
newed interest in this technique (e.g. [6]), and Logical Interpretation [10]. We use
the modularity of algebraic program analysis to combine different techniques in an
unifying framework and the idea of a shared representation of abstract program
states as SMT formulas over which abstraction operators can compute fixpoints
from logical interpretation.

An overview of our approach is depicted in Figure 1. The approach consists of
two major components, the ICFG interpreter and the DAG interpreter.

The ICFG interpreter component generates for a (partial) interprocedural con-
trol flow graph (ICFG) and a subset of its program locations (locations of interest,
LOI) a set of path expressions represented as RegexDAGs. A RegexDAG is a di-

420 D. Dietsch et al.

rected acyclic graphwith vertices that are labeledwith regular expressions over the
program’s statements without calls and returns butwith summary and enter state-
ments. Each RegexDAG has exactly one sink node that represents a location of in-
terest.We use summary statements whenwe call to and return from a procedure on
a path to aLOI, and enter statementswhenwedonot return until we reach theLOI.

The DAG interpreter component then analyses a RegexDAG in topological
order by applying different operators (Call Sum., Loop Sum., post op.) to the
different vertex labels. All operators take a program state expressed as SMT for-
mula φ and a regular expression over program statements (i.e., a vertex label)
and produce a new (possibly abstracted) program state that captures all the ef-
fects. If a vertex has multiple incoming edges, the different input states are simply
joined with a logical disjunction (∨). Some of these operators depend again on
the ICFG interpreter to compute their result. The most basic operator is the post
operator (post op.), which computes strongest post for star-free regular expres-
sions and optionally applies an abstraction function to the result. The choice of
abstraction function and if to apply them is governed by different heuristics that
can be changed. We call these heuristics fluids. The other operators are the call
summarization (Call Sum.) and loop summarization (Loop Sum.) operators. The
call summarization operator computes a summary for a procedure call, either
with or without considering the context. The loop summarization operator com-
putes a summary for the Kleene-star operator of regular expressions. Our current
implementation does this by computing a fixpoint and resolving nested loops by re-
cursively inserting summaries. The different operators (post, call summarization,
loop summarization) are completely modular and can be considered black-boxes
for the interplay between the two main components. When the DAG interpreter
reaches the sink vertex of the RegexDAG, it returns the disjunction of this sink’s
input program states as invariant for this LOI.

2 Strengths and Weaknesses

Our new approach is easy to extend with new abstraction functions, fluids, and
loop acceleration techniques. Compared to the previous approach we also gain
much more precision by, e.g., having a reduced product between different kinds of
abstraction without writing a transformation function – we can just use the logical
disjunction. Using SMT formulas as representation of program states also allows
us to reuse many of Ultimate’s existing tools that deal with SMT, in particular
simplification, quantifier elimination,, rewriting, and debugging.

Nevertheless, our current implementation is not as effective as the old one,
because we did not finish porting the various abstract domains. We currently
only support a basic interval abstraction and an explicit value abstraction, which
severely limits the efficiency of our approach. We are also missing more intricate
loop acceleration implementations, optimized fluid configurations, and our imple-
mentation does not yet support recursion.

Ultimate Taipan with Symbolic Interpretation and Fluid Abstractions 421

3 Architecture, Setup, Configuration, and Project
Ultimate Taipan is a part of the open-soure program analysis framework Ulti-
mate2,3, written in Java and licensed under LGPLv34. We used Taipan version
0.1.25-f470102c in our competition submission,which is available as a .zip archive
from multiple sources5,6,7. Our submission requires Java 1.8 and Python 3.x. The
submission contains an executable version of Taipan for Linux platforms, the
binaries of the required SMT solvers Z38, CVC49, and Mathsat10, as well as a
Python script, Ultimate.py, whichmaps the SV-COMP interface toUltimate’s
command line interface. Taipan is invoked with

./Ultimate.py --spec prop.prp --file input.c --architecture
32bit|64bit --full-output

where prop.prp is the SV-COMP property file, input.c is the input C file,
32bit or 64bit is the architecture, and --full-output enables verbose output
to stdout. The output of Taipan is written to the file Ultimate.log. A viola-
tion [3] or correctness [2] witness may be written to the file witness.graphml.
The benchmarking tool BenchExec [1] supports Taipan through the tool-info
module ultimatetaipan.py11.Taipan participates in all categories, as declared
in its SV-COMP benchmark definition file utaipan.xml12.

References

[1] D. Beyer. Reliable and Reproducible Competition Results with BenchExec and
Witnesses (Report on SV-COMP 2016). In TACAS 2016, pages 887–904, 2016.

[2] D. Beyer, M. Dangl, D. Dietsch, and M. Heizmann. Correctness Witnesses: Ex-
changing Verification Results between Verifiers. In FSE 2016, pages 326–337, 2016.

[3] D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, and A. Stahlbauer. Witness
Validation and Stepwise Testification across Software Verifiers. In ESEC/FSE 2015,
pages 721–733, 2015.

[4] J. A. Brzozowski. Derivatives of Regular Expressions. J. ACM, 11(4):481–494, 1964.
[5] P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for

Static Analysis of Programs by Construction or Approximation of Fixpoints. In
POPL 1977, pages 238–252, 1977.

[6] J. Cyphert, J. Breck, Z. Kincaid, and T. W. Reps. Refinement of Path Expressions
for Static Analysis. PACMPL, 3(POPL):45:1–45:29, 2019.

[7] M. Greitschus, D. Dietsch, and A. Podelski. Loop Invariants from Counterexamples.
In SAS 2017, pages 128–147, 2017.

[8] M. Heizmann, J. Hoenicke, and A. Podelski. Refinement of Trace Abstraction. In
SAS 2009, pages 69–85, 2009.

[9] R. E. Tarjan. A Unified Approach to Path Problems. J. ACM, 28(3):577–593, 1981.

2
https://ultimate.informatik.uni-freiburg.de

3
https://github.com/ultimate-pa/ultimate

4
https://www.gnu.org/licenses/lgpl-3.0.en.html

5
https://gitlab.com/sosy-lab/sv-comp/archives-2020/blob/master/2020/utaipan.zip

6
https://github.com/ultimate-pa/ultimate/releases/download/v0.1.25/UltimateTaipan-linux.zip

7
https://doi.org/10.5281/zenodo.3678625

8
https://github.com/Z3Prover/z3

9
https://cvc4.cs.nyu.edu/

10
http://mathsat.fbk.eu/

11
https://github.com/sosy-lab/benchexec/blob/master/benchexec/tools/ultimatetaipan.py

12
https://github.com/sosy-lab/sv-comp/blob/master/benchmark-defs/utaipan.xml

https://ultimate.informatik.uni-freiburg.de
https://github.com/ultimate-pa/ultimate
https://www.gnu.org/licenses/lgpl-3.0.en.html
https://gitlab.com/sosy-lab/sv-comp/archives-2020/blob/master/2020/utaipan.zip
https://github.com/ultimate-pa/ultimate/releases/download/v0.1.25/UltimateTaipan-linux.zip
https://doi.org/10.5281/zenodo.3678625
https://github.com/Z3Prover/z3
https://cvc4.cs.nyu.edu/
http://mathsat.fbk.eu/
https://github.com/sosy-lab/benchexec/blob/master/benchexec/tools/ultimatetaipan.py
https://github.com/sosy-lab/sv-comp/blob/master/benchmark-defs/utaipan.xml

422 D. Dietsch et al.

[10] A. Tiwari and S. Gulwani. Logical Interpretation: Static Program Analysis Using
Theorem Proving. In CADE, volume 4603 of LNCS, pages 147–166. Springer, 2007.

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source,

provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Author Index

Abate, Alessandro I-97
Afzal, Mohammad II-383
Ahmed, Daniele I-97
Akshay, S. I-387
Albert, Elvira II-118
Almaawi, Alyas I-115
Almeida, Bernardo II-39
An, Jie I-444
Angluin, Dana II-325
Ayaziová, Paulína II-413

Babu M, Charles II-383
Baier, Christel I-324
Barreto, Raimundo II-403
Barrett, Clark I-367
Bartocci, Ezio I-492
Becker, Benedikt II-235
Bendík, Jaroslav I-135
Benerecetti, Massimo II-289
Berger, Philipp I-40
Beyer, Dirk I-3, II-126, II-347
Biagi, Marco I-463
Bian, Jinting II-217
Bockenek, Joshua A. II-98
Boender, Jaap II-271
Bornat, Richard II-271
Bozga, Marius I-228
Budde, Carlos E. I-463, I-483

Castro, David II-278
Celik, Ahmet II-137
Černá, Ivana I-135
Chakraborty, Supratik I-22, II-383
Chalupa, Marek II-413
Chauhan, Avriti II-383
Chen, Mingshuai I-444
Chimdyalwar, Bharti II-383
Cimatti, Alessandro I-155
Cordeiro, Lucas C. II-403
Correas, Jesús II-118
Cubuktepe, Murat I-287

D’Argenio, Pedro R. I-463
Dangl, Matthias I-3
Darke, Priyanka II-383
de Boer, Frank S. II-217
de Gouw, Stijn II-217
Delgrange, Florent I-346
Dell’Erba, Daniele II-289
Deng, Yuxin II-21
Dietsch, Daniel II-418
Dixon, Alex I-405
Du, Wenjie II-21
Dubut, Jérémy I-191

Esparza, Javier I-228

Fan, Chuchu I-173
Fedyukovich, Grigory II-195
Ferreira, Francisco II-278
Fisman, Dana II-325
Frenkel, Hadar I-211
Frohn, Florian I-58
Funke, Florian I-324
Furbach, Florian II-378

Gastin, Paul I-387
Geatti, Luca I-155
Geldenhuys, Jaco II-373
Giacobbe, Mirco II-79
Gligoric, Milos II-137
Goel, Aman I-413
Gordillo, Pablo II-118
Griggio, Alberto I-155
Groote, Jan Friso II-3
Grumberg, Orna I-211
Gupta, Aarti II-195
Gupta, Ashutosh I-22, II-383

Hahn, Ernst Moritz I-306
Hamers, Ruben I-266
Hasuo, Ichiro I-191
Heizmann, Matthias II-418

Heljanko, Keijo II-378
Henzinger, Thomas A. II-79
Hiep, Hans-Dieter A. II-217
Howar, Falk II-398
Hruška, Martin II-413
Huisman, Marieke I-247
Hussein, Soha II-393

Iosif, Radu I-228

Jansen, David N. II-3
Jansen, Nils I-287
Jantsch, Simon I-324
Jašek, Tomáš II-413
Jeannerod, Nicolas II-235
Jongmans, Sung-Shik I-266
Joosten, Sebastiaan J. C. I-247
Junges, Sebastian I-287

Kammueller, Florian II-271
Kápl, Roman II-254
Katoen, Joost-Pieter I-40, I-287, I-346
Katsumata, Shin-ya I-191
Keiren, Jeroen J. A. II-3
Khurshid, Sarfraz I-115
Kimberly, Greg I-155
King, Andy I-79
Kobayashi, Naoki II-195
Kolčák, Juraj I-191
Kovács, Laura I-492
Krishna, S I-387
Kumar, Shrawan II-383

Lang, Frédéric II-57
Lazić, Ranko I-405
Lechner, Mathias II-79
Lochmann, Alexander II-178

Maathuis, Olaf II-217
Madhusudan, P. II-158
Malík, Viktor II-368
Mann, Makai I-367
Manolios, Panagiotis II-388
Marché, Claude II-235
Mateescu, Radu II-57
Mathur, Umang II-158
Mazzanti, Franco II-57
McCamant, Stephen II-393
Meel, Kuldeep S. I-115

Menezes, Rafael II-403
Meyer, Roland II-378
Middeldorp, Aart II-178
Mitra, Sayan I-173
Mogavero, Fabio II-289
Mokhlesi, Navid I-173
Monti, Raúl E. I-463
Mordido, Andreia II-39
Mues, Malte II-398
Mutius, Joshua von I-425

Nagarajan, Rajagopal II-271
Neele, Thomas II-307
Nutz, Alexander II-418

Okudono, Takamasa I-79
Oortwijn, Wytse I-247

Palmskog, Karl II-137
Parízek, Pavel II-254
Pasareanu, Corina I-211
Perez, Mateo I-306
Peringer, Petr II-408
Peruffo, Andrea I-97
Poly, Guillaume II-271
Ponce-de-León, Hernán II-378

Qin, Xudong II-21
Quatmann, Tim I-346
Quiring, Benjamin II-388

Randour, Mickael I-346
Ravindran, Binoy II-98
Régis-Gianas, Yann II-235
Rocha, Herbert II-403
Román-Díez, Guillermo II-118
Roychowdhury, Sparsa I-387
Rubio, Albert II-118

Sakallah, Karem I-413
Schätzle, Claus II-418
Schewe, Sven I-306
Schrammel, Peter II-368
Schüssele, Frank II-418
Sharma, Vaibhav II-393
Sheinvald, Sarai I-211
Shoval, Yaara II-325
Sibai, Hussein I-173
Sifakis, Joseph I-228

424 Author Index

Sighireanu, Mihaela II-235
Šoková, Veronika II-408, II-413
Somenzi, Fabio I-306
Sprunger, David I-191
Stankovič, Miroslav I-492
Stoelinga, Mariëlle I-463
Strejček, Jan II-413
Švejda, Jan I-40

Tomovič, Lukáš II-413
Tonetta, Stefano I-155
Topcu, Ufuk I-287
Treinen, Ralf II-235
Trivedi, Ashutosh I-306

Unadkat, Divyesh I-22, II-383
Usman, Muhammad I-115

van de Pol, Jaco I-247
van Eekelen, Marko II-217
Vasconcelos, Vasco T. II-39
Venkatesh, R II-383

Verbeek, Freek II-98
Visser, Willem II-373, II-393
Viswanathan, Mahesh II-158
Vojnar, Tomáš II-368, II-408, II-413

Wang, Kaiyuan I-115
Wang, Wenxi I-115
Welzel, Christoph I-228
Wendler, Philipp II-126
Wesselink, Wieger II-307
Whalen, Michael W. II-393
Wijs, Anton II-3
Willemse, Tim A. C. II-307
Wimmer, Simon I-425
Wojtczak, Dominik I-306

Yamada, Akihisa I-191
Yoshida, Nobuko II-278

Zhan, Bohua I-444
Zhan, Naijun I-444
Zhang, Miaomiao I-444

Author Index 425

	ETAPS Foreword
	Preface
	Organization
	Contents – Part II
	Contents – Part I
	Bisimulation
	An O(m log n) algorithm for branching bisimilarity on labelled transition systems
	1 Introduction
	2 Branching bisimilarity
	3 The algorithm
	3.1 High-level description of the algorithm
	3.2 Abstract algorithm
	3.3 Correctness
	3.4 In-depth description of the algorithm
	3.5 Time complexity

	4 Splitting blocks
	5 Experimental evaluation
	References

	Verifying Quantum Communication Protocols with Ground Bisimulation*
	1 Introduction
	2 Quantum CCS
	3 Algorithm
	4 Implementation and Experiments
	4.1 Implementation
	4.2 BB84 Quantum Key Distribution Protocol
	4.3 Experimental Results

	5 Conclusion and Future Work
	Appendix
	References

	Deciding the bisimilarity of context-free session types
	1 Introduction
	2 Context-free session types
	3 An algorithm to decide type bisimilarity
	4 Correctness of the algorithm
	5 Evaluation
	6 Conclusion
	References

	Sharp Congruences Adequate with Temporal Logics Combining Weak and Strong Modalities
	1 Introduction
	2 Processes, Compositions, and Reductions
	3 Temporal Logics
	4 Sharp Bisimilarity
	5 LTS Reduction
	6 Experimentation
	7 Related Work
	8 Conclusion
	References

	Verification and Efficiency
	How Many Bits Does it Take to Quantize Your Neural Network?
	1 Introduction
	2 Quantization of Feed-forward Networks
	3 Robustness is Non-monotonic in the Number of Bits
	4 Verification of Quantized Networks using Bit-precise SMT-solving
	5 Experimental Results
	5.1 Scalability and performance
	5.2 Comparison to other methods
	5.3 The effect of quantization on robustness
	5.4 Network specifications beyond robustness

	6 Conclusion
	Acknowledgments
	References

	Highly Automated Formal Proofs over Memory Usage of Assembly Code
	1 Introduction
	2 Formal Memory Usage Certificates
	3 FMUC Verification
	3.1 Verification Tools Used
	3.2 Per-block Verification
	3.3 Verification of Function Body
	3.4 Composition

	4 Case Study: Xen Project
	5 Related Work
	6 Conclusion
	References

	GASOL: Gas Analysis and Optimization for Ethereum Smart Contracts
	1 Introduction and Main Applications
	2 Gas Analysis using Gasol
	3 Gas Optimization using Gasol
	4 Related Tools and Conclusions
	References

	CPU Energy Meter: A Tool for Energy-Aware Algorithms Engineering
	1 Introduction
	2 Intel Running Average Power Limit (RAPL)
	3 CPU Energy Meter
	4 Applications
	5 Conclusion
	References

	
Logic and Proof
	Practical Machine-Checked Formalization of Change Impact Analysis
	1 Introduction
	2 Background
	2.1 Change Impact Analysis
	2.2 Regression Test Selection and Regression Proof Selection
	2.3 Build Systems
	2.4 The Coq Proof Assistant and Mathematical Components

	3 Formal Model
	3.1 Definitions
	3.2 Example
	3.3 Correctness Approach

	4 Model Encoding
	4.1 Encoding in Coq
	4.2 Correctness Statements

	5 Component Hierarchies
	5.1 Formal Model of Hierarchies
	5.2 Encoding and Correctness in Coq

	6 Tool Implementation
	6.1 Optimizations
	6.2 Encapsulation

	7 Evaluation of the Model
	7.1 Tool Integration
	7.2 Projects
	7.3 Experimental Setup
	7.4 Results

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

	What’s Decidable About Program Verification Modulo Axioms?
	1 Introduction
	2 Illustrative Example
	3 Preliminaries
	3.1 Program Syntax
	3.2 Executions and Semantics of Uninterpreted Programs
	3.3 Feasibility of Executions Modulo Axioms
	3.4 Program Verification Modulo Axioms

	4 Coherence Modulo Axioms
	4.1 Terms Computed and Assumptions Accumulated by Executions
	4.2 Coherence

	5 Axioms over Relations
	5.1 Verification modulo EPR axioms
	5.2 Reflexivity, Irreflexivity, and Symmetry
	5.3 Transitivity
	5.4 Strict Partial Orders
	5.5 Strict Total Orders

	6 Axioms Over Functions
	6.1 Associativity
	6.2 Commutativity
	6.3 Idempotence

	7 Combining Axioms
	8 Related Work
	9 Conclusions
	References

	Formalized Proofs of the Infinity and Normal Form Predicates in the First-Order Theory of Rewriting
	1 Introduction
	2 Preliminaries
	3 Infinity Predicate
	4 Executable Infinity Predicate
	5 Normal Form Predicate
	6 Conclusion and Future Work
	References

	Fold/Unfold Transformations for Fixpoint Logic
	1 Introduction
	2 First-Order Fixpoint Logic MuArith
	2.1 Syntax
	2.2 Semantics
	2.3 Program Verification as Validity Checking of MuArith Formulas
	2.4 Auxiliary Definitions

	3 Fold/Unfold-Like Transformations
	3.1 Overview of Transformations for MuArith
	3.2 Transformations for μ-Formulas
	3.3 Fold/Unfold for ν-Formulas

	4 Further Examples
	4.1 Relational Reasoning on Recursive Programs
	4.2 Proving Temporal Properties

	5 Algorithm and Evaluation
	5.1 Algorithm
	5.2 Implementation and Experiments

	6 Related Work
	7 Conclusions
	References

	Tools and Case Studies
	Verifying OpenJDK’s LinkedList using KeY
	1 Introduction
	2 LinkedList in OpenJDK
	2.1 Integer overflow bug
	2.2 Reproduction

	3 Specification and verification of BoundedLinkedList
	3.1 Specification
	3.2 Verification

	4 Discussion
	4.1 Related work

	Self-references
	References

	Analysing installation scenarios of Debian packages
	1 Introduction
	2 Overview of the case study and analysis methodology
	2.1 Debian packages
	2.2 Managing package installation
	2.3 Principles and workflow of the analysis method
	2.4 Presentation of results

	3 Design and implementation of the tool chain
	3.1 Front-end
	3.2 Feature trees and constraints
	3.3 Specifications of UNIX commands
	3.4 Analysis by symbolic execution
	3.5 Scenarios

	4 Results and impact
	4.1 Coverage of the case study
	4.2 Corpus mining
	4.3 Bugs found
	4.4 Lessons learnt

	5 Conclusion
	References

	Endicheck: Dynamic Analysis for Detecting Endianness Bugs
	1 Introduction
	2 Dynamic Analysis for Checking Endianness
	2.1 Algorithm Overview
	2.2 Shadow Memory
	2.3 Propagation of Metadata
	2.4 Discussion: Analysis Design and Precision

	3 Implementation
	4 User Guide
	5 Evaluation
	5.1 Case Study
	5.2 Search for Bugs
	5.3 Performance
	5.4 Discussion

	6 Related Work
	7 Conclusion
	7.1 FutureWork

	Acknowledgments
	References

	Describing and Simulating Concurrent Quantum Systems
	1 Processes
	1.1 A programming language
	1.2 Symbolic quantum calculation
	1.3 No cloning
	1.4 Other notable features

	2 Straightforward description
	3 Performance on examples
	4 Conclusions
	5 Data Availability and Acknowledgements
	References

	EMTST: Engineering the Meta-theory of Session Types
	1 Introduction
	2 EMTST: a Tool for Representing the Meta-theory of Session Types
	2.1 Environments and Multiple Name Scopes

	3 Two Case Studies on Binary Session Types
	3.1 The Original System
	3.2 The Revised System

	4 Related Work and Conclusions
	Acknowledgements
	Bibliography

	Games and Automata
	Solving Mean-Payo Games via Quasi Dominions
	1 Introduction
	2 Mean-Payo� Games
	3 Solving Mean-Payo� Games via Progress Measures
	4 Solving Mean-Payo� Games via Quasi Dominions
	5 Experimental Evaluation
	6 Concluding Remarks
	References

	Partial-Order Reduction for Parity Games with an Application on Parameterised Boolean Equation Systems
	1 Introduction
	2 Preliminaries
	3 Partial-Order Reduction
	3.1 Weak Stubborn Sets
	3.2 Correctness
	3.3 Optimising D2w

	4 Parameterised Boolean Equation Systems
	5 PBES Solving Using POR
	6 Experiments
	7 Conclusion
	References

	Polynomial Identification of w-Automata!
	1 Introduction
	2 Preliminaries
	3 Negative Results
	4 Outline for the positive results
	5 The characteristic sample for the automaton
	6 Learning the automaton
	7 Characteristic sample for a DPA
	7.1 Constructing the canonical forest of a DPA
	7.2 Constructing the characteristic sample for a DPA

	8 The learning algorithm for a DPA
	9 The sample T_Acc and the learning algorithm for a DMA
	10 Discussion
	References

	Part 6 SV-COMP 2020
	Advances in Automatic Software Verification: SV-COMP 2020
	1 Introduction
	2 Organization, Definitions, Formats, and Rules
	3 Reproducibility
	4 Results and Discussion
	5 Conclusion
	References

	2LS: Heap Analysis and Memory Safety (Competition Contribution)
	1 Overview
	2 New Features
	2.1 Combinations of Abstract Domains
	2.2 Symbolic Paths
	2.3 Re-using Freed Memory Object for Next Allocations
	2.4 Generic Abstract Domain Templates

	3 Strengths and Weaknesses
	4 Tool Setup
	5 Software Project
	References

	COASTAL: Combining Concolic and Fuzzing for Java (Competition Contribution)
	1 Verification Approach and Software Architecture
	1.1 Strategies
	1.2 Observers and Models

	2 Strengths and weaknesses
	3 Tool setup
	4 Software Project
	References

	Dartagnan: Bounded Model Checking for Weak Memory Models (Competition Contribution)
	1 Overview and Software Architecture
	2 Strengths and Weaknesses
	3 Tool Setup and Configuration
	4 Software Project and Contributors
	References

	VeriAbs : Verification by Abstraction and Test Generation (Competition Contribution)
	1 Verification Approach
	1.1 Tool Enhancements

	2 Software Architecture
	3 Strengths and Weaknesses
	4 Tool Setup and Configuration
	5 Software Project and Contributors
	References

	GACAL: Conjecture-based Verification (Competition Contribution)
	1 Verification Approach
	2 Tool Setup and Software Project and Architecture
	3 Evaluation
	4 Conclusions and Future Work
	References

	Java Ranger at SV-COMP 2020 (Competition Contribution)
	1 Approach
	2 Architecture
	3 Strengths And Weaknesses
	4 Tool Setup and Configuration
	5 Software Project and Contributors
	6 Acknowledgments
	References

	JDart: Dynamic Symbolic Execution for Java Bytecode (Competition Contribution)
	1 Overview
	2 Architecture
	3 Strengths and Weaknesses
	4 Tool Setup
	5 Software Project
	References

	Map2Check: Using Symbolic Execution and Fuzzing (Competition Contribution)
	1 Overview
	2 Verification Approach
	3 Software Architecture
	4 Strengths andWeaknesses of the Approach
	5 Tool Setup and Configuration
	6 Software Project
	References

	PredatorHP Revamped (Not Only) for Interval-Sized Memory Regions and Memory Reallocation (Competition Contribution)
	1 Verification Approach and Software Architecture
	1.1 The Predator Shape Analyzer
	1.2 Recent Modifications of PredatorHP

	2 Strengths and Weaknesses
	3 Contributors, Software Project, and the Tool Setup
	References

	Symbiotic 7: Integration of Predator and More (Competition Contribution)
	1 Verification Approach
	2 Software Architecture
	3 Strengths and Weaknesses
	4 Tool Setup and Configuration
	5 Software Project and Contributors
	References

	Ultimate Taipan with Symbolic Interpretation and Fluid Abstractions (Competition Contribution)
	1 Verification Approach
	2 Strengths and Weaknesses
	3 Architecture, Setup, Configuration, and Project
	References

	Author Index

