
26th International Conference, TACAS 2020
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2020
Dublin, Ireland, April 25–30, 2020, Proceedings, Part I

Tools and Algorithms 
for the Construction 
and Analysis of SystemsLN

CS
 1

20
78

A
RC

oS
S

Armin Biere
David Parker (Eds.)



Lecture Notes in Computer Science 12078

Editorial Board Members

Elisa Bertino, USA
Wen Gao, China
Bernhard Steffen , Germany

Gerhard Woeginger , Germany
Moti Yung, USA

Advanced Research in Computing and Software Science
Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany
Benjamin C. Pierce, University of Pennsylvania, USA
Bernhard Steffen , University of Dortmund, Germany
Deng Xiaotie, Peking University, Beijing, China
Jeannette M. Wing, Microsoft Research, Redmond, WA, USA

Founding Editors

Gerhard Goos, Germany
Juris Hartmanis, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693
https://orcid.org/0000-0001-9619-1558


More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407


Armin Biere • David Parker (Eds.)

Tools and Algorithms
for the Construction
and Analysis of Systems
26th International Conference, TACAS 2020
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2020
Dublin, Ireland, April 25–30, 2020
Proceedings, Part I



Editors
Armin Biere
Johannes Kepler University
Linz, Austria

David Parker
University of Birmingham
Birmingham, UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-45189-9 ISBN 978-3-030-45190-5 (eBook)
https://doi.org/10.1007/978-3-030-45190-5

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© The Editor(s) (if applicable) and The Author(s) 2020. This book is an open access publication.
Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes were made.
The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-7170-9242
https://orcid.org/0000-0003-4137-8862
https://doi.org/10.1007/978-3-030-45190-5
http://creativecommons.org/licenses/by/4.0/


ETAPS Foreword

Welcome to the 23rd ETAPS! ETAPS 2020 was originally planned to take place in
Ireland in its beautiful capital Dublin. Because of the Covid-19 pandemic, this was
changed to an online event on July 2, 2020.

ETAPS 2020 is the 23rd instance of the European Joint Conferences on Theory and
Practice of Software.

ETAPS is an annual federated conference established in 1998, and consists of four
conferences: ESOP, FASE, FoSSaCS, and TACAS.

Each conference has its own Program Committee (PC) and its own Steering
Committee (SC).

The conferences cover various aspects of software systems, ranging from theoretical
computer science to foundations of programming language developments, analysis
tools, and formal approaches to software engineering.

Organizing these conferences in a coherent, highly synchronized conference pro-
gramme, enables researchers to participate in an exciting event, having the possibility
to meet many colleagues working in different directions in the field, and to easily attend
talks of different conferences.

On the weekend before the main conference, numerous satellite workshops take
place that attract many researchers from all over the globe. Also, for the second time, an
ETAPS Mentoring Workshop is organized.

This workshop is intended to help students early in the program with advice on
research, career, and life in the fields of computing that are covered by the ETAPS
conference.

ETAPS 2020 received 424 submissions in total, 129 of which were accepted,
yielding an overall acceptance rate of 30.4%.

I thank all the authors for their interest in ETAPS, all the reviewers for their
reviewing efforts, the PC members for their contributions, and in particular the PC (co-)
chairs for their hard work in running this entire intensive process.

Last but not least, my congratulations to all authors of the accepted papers!
Because of the change to an online event, most of the original ETAPS program had

to be cancelled. The ETAPS afternoon featured presentations of the three best paper
awards, the Test-of-Time award and the ETAPS PhD award. The invited and tutorial
speakers of ETAPS 2020 will be invited for ETAPS 2021, and all authors of accepted
ETAPS 2020 papers will have the opportunity to present their work at ETAPS 2021.

ETAPS 2020 originally was supposed to place in Dublin, Ireland, organized by the
University of Limerick and Lero. The local organization team consisted of Tiziana
Margaria (UL and Lero, general chair), Vasileios Koutavas (Lero@UCD), Anila Mjeda
(Lero@UL), Anthony Ventresque (Lero@UCD), and Petros Stratis (Easy Confer-
ences). I would like to thank Tiziana and her team for all the preparations, and we hope
there will be a next opportunity to host ETAPS in Dublin.

ETAPS 2020 is further supported by the following associations and societies:
ETAPS e.V., EATCS (European Association for Theoretical Computer Science),



EAPLS (European Association for Programming Languages and Systems), and EASST
(European Association of Software Science and Technology).

The ETAPS Steering Committee consists of an Executive Board, and representa-
tives of the individual ETAPS conferences, as well as representatives of EATCS,
EAPLS, and EASST.

The Executive Board consists of Holger Hermanns (Saarbrücken), Marieke Huis-
man (Twente, chair), Joost-Pieter Katoen (Aachen and Twente), Jan Kofron (Prague),
Gerald Lüttgen (Bamberg), Tarmo Uustalu (Reykjavik and Tallinn), Caterina Urban
(INRIA), and Lenore Zuck (Chicago).

Other members of the steering committee are:
Armin Biere (Linz)
Jordi Cabot (Barcelona)
Jean Goubault-Larrecq (Cachan)
Jan-Friso Groote (Eindhoven)
Esther Guerra (Madrid)
Jurriaan Hage (Utrecht)
Reiko Heckel (Leicester)
Panagiotis Katsaros (Thessaloniki)
Stefan Kiefer (Oxford)
Barbara König (Duisburg)
Fabrice Kordon (Paris)
Jan Kretinsky (Munich)
Kim G. Larsen (Aalborg)
Tiziana Margaria (Limerick)
Peter Müller (Zurich)
Catuscia Palamidessi (Palaiseau)
Dave Parker (Birmingham)
Andrew M. Pitts (Cambridge)
Peter Ryan (Luxembourg)
Don Sannella (Edinburgh)
Bernhard Steffen (Dortmund)
Mariëlle Stoelinga (Twente)
Gabriele Taentzer (Marburg)
Christine Tasson (Paris)
Peter Thiemann (Freiburg)
Jan Vitek (Prague)
Heike Wehrheim (Paderborn)
Anton Wijs (Eindhoven), and
Nobuko Yoshida (London)
I’d like to take this opportunity to thank all authors, attendants, organizers of the

satellite workshops, and Springer-Verlag GmbH for their support.
I hope you all enjoyed the ETAPS 2020 afternoon.

July 2020 Marieke Huisman
ETAPS SC Chair

ETAPS e.V. President
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Preface

TACAS 2020 was the 26th edition of the International Conference on Tools and
Algorithms for the Construction and Analysis of Systems conference series. TACAS
2020 was part of the 23rd European Joint Conferences on Theory and Practice of
Software (ETAPS 2020).

TACAS is a forum for researchers, developers, and users interested in rigorously
based tools and algorithms for the construction and analysis of systems. The conference
aims to bridge the gaps between different communities with this common interest and
to support them in their quest to improve the utility, reliability, flexibility, and effi-
ciency of tools and algorithms for building systems. TACAS solicited four types of
submissions:

• Research papers advancing the theoretical foundations for the construction and
analysis of systems

• Case study papers with an emphasis on a real-world setting
• Regular tool papers presenting a new tool, a new tool component, or novel

extensions to an existing tool and requiring an artifact submission
• Tool demonstration papers focusing on the usage aspects of tools, also subject to

the artifact submission requirement

This year 155 papers were submitted to TACAS, consisting of 111 research papers,
8 case study papers, 19 regular tool papers, and 17 tool demo papers. Individual authors
were limited to a maximum of three submissions. Each paper was reviewed by at least
three Program Commitee (PC) members, who also provided feedback whether certain
papers should go through a rebuttal process.

The chairs asked for 59 rebuttals, usually following such rebuttal recommendations
by PC members. In parallel to PC reviewing, the Artifact Evaluation Committee
(AEC) reviewed the artifacts. A formal summary review of this evaluation was made
available to the PC members and taken into account in the discussion phase. The case
study chair and the tools chair made sure that identical reviewing and selection criteria
were applied within their respective class of papers. After this thorough reviewing,
rebuttal and discussion phase, a total of 48 papers were accepted, including 31 research
papers, 4 case study papers, 5 regular tool papers and 8 tool demo papers.

As in 2019, TACAS 2020 included an artifact evaluation (AE) for all types of
papers. There were two rounds of the AE: for regular tool papers and tool demon-
stration papers AE was compulsory and artifacts had to be submitted to the first round.
For research and case study papers, it was voluntary, and artifacts could be submitted to
either the first or the second round. The results of the first round were communicated to



the TACAS PC before their discussion phase so that the quality of the artifact could be
considered prior to the TACAS decision making. Each artifact was evaluated inde-
pendently by at least three reviewers. All accepted papers with accepted artifacts
received a badge which is added to the title page of the respective paper if desired by
the authors.

The AEC used a two-phase reviewing process: reviewers first performed an initial
check to see whether the artifact was technically usable and whether the accompanying
instructions were consistent, followed by a full evaluation of the artifact. The main
criteria for artifact acceptance was consistency with the paper, with completeness, and
documentation being handled in a more lenient manner as long as the artifact was
useful overall.

In the first round, out of 44 artifact submissions, 29 were accepted and 15 were
rejected. This corresponds to an acceptance rate of 66%. Out of the 36 artifacts for
regular tool papers and tool demonstration papers, 25 artifacts were accepted and 11
artifacts were rejected resulting in an acceptance rate of 69%. In all but five cases, tool
papers whose artifacts did not pass the evaluation were rejected. Those 5 artifacts were
invited for submission in the second evaluation round and 3 of these artifacts were
resubmitted and successfully evaluated. Overall, out of the 20 artifacts submitted to the
second evaluation round, 17 were accepted and 3 were rejected resulting in an
acceptance rate of 85%.

TACAS 2020 also hosted the 9th International Competition on Software Verifica-
tion (SV-COMP 2020), chaired and organized by Dirk Beyer. The competition had
again a high participation: 28 verification systems with developers from 11 countries
were submitted for the systematic comparative evaluation, including 3 submissions
from industry. Six teams contributed validators for verification witnesses. The TACAS
proceedings includes the competition report and short papers describing 11 of the
participating verification systems. These papers were reviewed by a separate
SV-COMP program committee; each of the papers was assessed by at least three
reviewers. Two sessions in the TACAS program were reserved for the presentation
of the results: the summary by the SV-COMP chair and the participating tools by the
developer teams in the first session, and the open community meeting in the second
session.

We are grateful to everyone who helped to make TACAS 2020 a success. In
particular, we would like to thank all PC members, external reviewers, and the
members of the AEC for their detailed and informed reviews and for their discussions
during the virtual PC and AEC meetings. The collection and selection of papers was
organized through the EasyChair Conference System and the proceedings volumes
were published with the help of Springer; we thank them all for their assistance. We
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also thank the SC for their advice, the Organizing Committee of ETAPS 2020 and
its general chair (Tiziana Margaria) and the chair of the ETAPS Executive Board
(Marieke Huisman).

March 2020 Armin Biere
David Parker

PC Chairs

Marijn Heule
Case Study Chair

Falk Howar
Tools Chair

Dirk Beyer
Competition Chair

Arnd Hartmanns
Martina Seidl
AEC Chairs
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Software Verification with PDR:
An Implementation of the State of the Art

Dirk Beyer1 and Matthias Dangl1

LMU Munich, Germany

Abstract. Property-directed reachability (PDR) is a SAT/SMT-based
reachability algorithm that incrementally constructs inductive invariants.
After it was successfully applied to hardware model checking, several
adaptations to software model checking have been proposed. We con-
tribute a replicable and thorough comparative evaluation of the state
of the art: We (1) implemented a standalone PDR algorithm and, as
improvement, a PDR-based auxiliary-invariant generator for k -induction,
and (2) performed an experimental study on the largest publicly available
benchmark set of C verification tasks, in which we explore the effectiveness
and efficiency of software verification with PDR. The main contribution
of our work is to establish a reproducible baseline for ongoing research in
the area by providing a well-engineered reference implementation and an
experimental evaluation of the existing techniques.

Keywords: Software verification · Program analysis · Invariant genera-
tion · Property-directed reachability (PDR) · IC3 · k -Induction· VVT ·
CPAchecker

1 Introduction

Automatic software verification [24] is a broad research area with many success
stories and large impact on technology that is applied in industry [2, 14, 27].
It complements other general approaches to ensure functional correctness, like
software testing [31] and interactive software verification [3]. One large sub-area
of automatic software verification includes algorithms and approaches that are
based on SMT technology. Classic approaches like bounded model checking [10],
predicate abstraction [1, 19], and k -induction [5, 26, 32] are well understood and
evaluated; a recent survey [6] provides a uniform overview and sheds light on
the differences of the algorithms. Property-directed reachability (PDR) [12] is a
relatively recent (2011) approach that is not yet included in comparative evalua-
tions that go beyond applying different implementations of the same or different
techniques to a set of benchmark tasks, but additionally pair such experiments
with a discussion of how the concepts can be expressed in a common formalism.
The approach was originally applied to transition systems from hardware designs,
but was also adapted to software verification [11, 12, 13, 15, 16, 25, 28, 29].

An extended version of this article is available as technical report [8].
A replication package is available on Zenodo [9].
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While in theory, given the aforementioned body of work on the topic, the
advantages and disadvantages of using PDR seem clear, we are interested in
understanding the effect of applying PDR to a large set of verification tasks
that were collected from academia and also from industrial software, such as
the Linux kernel. To achieve this goal, we implemented one PDR adaptation for
software verification, and another approach that integrates a PDR-like invariant-
generation module into a k -induction approach.
PDR Adaptation for Software Verification. PDR is a model-checking algorithm
that tries to construct an inductive safety invariant by incrementally learning
clauses that are inductive relative to previously learned clauses. The clause-
learning strategy is guided by counterexamples to induction, i.e., each time a
proof of inductiveness fails, the algorithm attempts to learn a new clause to avoid
the same counterexample to induction in the future. Originally, this algorithm
was designed as a SAT-based technique for Boolean finite-state systems. Every
adaptation of PDR to software verification therefore needs to consider how to
effectively and efficiently handle the infinite state space and how to transfer
the algorithm from SAT to SMT. Furthermore, the adaptation to software has
to deal with the program counter.
PDR-like Invariant Generation. Whenever an induction-proof attempt fails with
a counterexample, the counterexample describes a state s that can transition
into a bad state (that violates the safety property), which means that in order to
make the proof succeed, s must be removed from consideration by an auxiliary
invariant. From this bad-state predecessor s, the clause-learning strategy of
PDR proceeds to generate such an auxiliary invariant by applying the following
two steps: (1) s is first generalized to a set of states C that all transition into
a bad state; (2) an invariant is constructed that is (a) inductive relative to
previously found invariants1 and (b) at least strong enough to eliminate all
states in C. If it fails to construct such an invariant and prove its inductiveness,
then the steps are recursively re-applied to the counterexample obtained from
the failed induction attempt.

We experimentally investigate two implementations of adaptations of PDR
to software verification (CPAchecker-CTIGAR and Vvt-CTIGAR), as well as
several combinations that use the PDR-like invariant-generation module that
we designed and implemented for this study.
Example. Figure 1 shows an example C program (eq2.c) that contains four
unsigned integer variables w, x, y, and z. In line 10, the variable w is initialized to
an unknown value via the input function __VERIFIER_nondet_uint(); then, its
value is copied to x in line 11. In line 12, variable y is initialized with the value
of w + 1, and in line 13, variable z is initialized with the value of x + 1, such
1 An assertion F is said to be inductive relative to an invariant Inv if
Inv can be used as an auxiliary invariant for the proof of inductive-
ness ∀sj , sj+1 : F (sj) ∧ T (sj , sj+1) ⇒ F (sj+1) by conjoining Inv to the
induction hypothesis F (sj), such that the modified induction query
∀sj , sj+1 : F (sj)∧ Inv(sj) ∧ T (sj , sj+1) ⇒ F (sj+1) allows a proof by induction to
succeed. [12]

https://github.com/sosy-lab/sv-benchmarks/blob/svcomp19/c/loop-invariants/eq2_true-unreach-call_true-valid-memsafety_true-no-overflow_false-termination.c
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1 extern void __VERIFIER_error() __attribute__
↪→ ((__noreturn__));

2 extern unsigned int __VERIFIER_nondet_uint(void);
3 void __VERIFIER_assert(int cond) {
4 if (!(cond)) {
5 ERROR: __VERIFIER_error();
6 }
7 return;
8 }
9 int main(void) {

10 unsigned int w = __VERIFIER_nondet_uint();
11 unsigned int x = w;
12 unsigned int y = w + 1;
13 unsigned int z = x + 1;
14 while (__VERIFIER_nondet_uint()) {
15 y++;
16 z++;
17 }
18 __VERIFIER_assert(y == z);
19 return 0;
20 }

Fig. 1: Example C program eq2.c

that at this point, w and x are equal to each other, and y and z are also equal to
each other. Then, from line 14 to line 17, a loop with a nondeterministic exit
condition (and therefore an unknown number of iterations) increments in each
iteration both variables y and z. Lastly, line 18 asserts that after the loop, y and z

are (still) equal to each other. Since y and z are equal before the loop, and are
always incremented together within the loop, the invariant y = z is inductive.
However, since there is no direct connection between y and z but only an indirect
one via their shared dependency on w, naïve data-flow-based techniques may fail
to find this invariant. In fact, we tried several configurations of the verification
framework CPAchecker, and found that many of them fail to prove this program:

• Plain k -induction without auxiliary-invariant generation fails, because it
never checks if y = z is a loop invariant and instead only checks the reach-
ability of the assertion failure (located after loop). The reachability of the
assertion failure, in turn, depends on the nondeterministic loop-exit condition.
Therefore we cannot conclude from “the assertion failure was not reached in
k previous iterations” that “the assertion failure cannot be reached in the
next iteration”: In the absence of auxiliary invariants, a valid counterexample
to this induction hypothesis would always be that in the previous iterations
the assertion condition was in fact violated and an assertion failure was not
reached only because the loop was not exited.

• A data-flow analysis based on the abstract domain of Boxes [21] fails, because
it is not able to track variable equalities.

• A data-flow analysis based on a template Eq for tracking the equality of pairs
of variables fails, because while it detects the invariant w = x, it is unable to

https://github.com/sosy-lab/sv-benchmarks/blob/svcomp19/c/loop-invariants/eq2_true-unreach-call_true-valid-memsafety_true-no-overflow_false-termination.c
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make the step to y = z due to the inequalities between w and y, and x and z,
respectively.

• For consistency with our evaluation, we also applied a data-flow analysis
based on a template for tracking whether a variable is even or odd; obviously
this is not useful for this program, and thus, this configuration also fails.

• Even combining the previous three techniques into a compound invariant
generator that computes auxiliary invariants for k -induction does not yield a
successful configuration for this verification task.

• The invariant generator KIPDR (the above-mentioned adaptation of PDR to
k -induction, which we present in more detail in Sect. 3), however, detects the
invariant y = z and is therefore able to construct a proof by induction for
this verification task.

We will now briefly sketch how KIPDR detects the invariant y = z for the
example verification task. At first, KIPDR attempts to prove by induction that
when line 18 is reached, the assertion condition holds, which fails as discussed
previously. However, this failed induction attempt yields a counterexample to
induction where the values of y and z differ from each other, e.g., y = 0 ∧ z = 1,
which is then generalized to y �= z, i.e., a set of states that includes the concrete
predecessor of a bad state from the counterexample, as well as many other states
that would violate the assertion, if they were reachable themselves. Then, KIPDR
attempts to find an inductive invariant that eliminates all of these states, and
the attempt succeeds with the invariant y = z. Afterwards, KIPDR re-attempts
its original induction proof to show that the assertion is never violated, which
now succeeds due to the auxiliary invariant y = z.
Contributions. We present the following contributions:

• We implement one adaptation of PDR to software verification (based
on [11, 20]) in the open-source verification framework CPAchecker, in order
to establish a baseline for comparison with new ideas for improvement.

• We design and implement the algorithm KIPDR, as a new module for
invariant generation that is based on ideas from PDR and use this module
as an extension to a state-of-the-art approach to k -induction [5].

• We conduct a large experimental study to compare several tools and ap-
proaches to software verification using PDR as a component, to highlight
strengths and weaknesses of PDR in the domain of software verification.

• We contribute a set of small examples that need invariants that are more
difficult to obtain for standard data-flow-based approaches than the invariants
necessary for programs in the large benchmark set.

Related Work. While PDR (also known as IC3 for its first implementation [12])
was introduced as a SAT-based algorithm for model checking finite-state Boolean
transition systems [13], several approaches have since then been presented to
extend it to SMT and to apply it to the verification of software models: PDR
has been suggested as an interpolation engine for Impact, but experiments have
shown that it is too expensive in the general case, and is most effective if only
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applied as a fall-back engine for cases where a cheaper interpolation engine fails
to produce useful interpolants [15]. It also has been proposed to improve this
approach by tracking control-flow locations explicitly instead of symbolically [28],
thereby avoiding the problem that many iterations of the algorithm are spent
only to learn the control flow, and this idea has later been extended by several
improvements to the generalization step of PDR [29]. Another approach is to
model the program using a Boolean abstraction, which has the advantage that it
requires only few changes to the original algorithm, but the disadvantage that a
refinement procedure is necessary to handle the spurious paths introduced by the
abstraction: One such approach uses infeasible error paths (i.e., counterexample-
guided abstraction refinement (CEGAR) [17]) to refine the abstraction [16],
while another (CTIGAR) uses counterexamples to induction [11]; both of these
refinement techniques use interpolation to obtain abstraction predicates; the
latter of the two techniques is used in two of the configurations we compare
in our evaluation (CPAchecker-CTIGAR and Vvt-CTIGAR [20]). A different
extension of PDR to verify infinite-state systems that does not require abstraction
refinement is property-directed k -induction [25], which increases the power of the
induction checks used in PDR by applying k-induction instead of 1-induction, and
which uses model-based generalization in addition to interpolation to reason about
potentially-infinite sets of states. Unfortunately, support for effective model-based
generalization is rare in SMT solvers 2, making this approach impractical. In
contrast, our KIPDR algorithm presented in Sect. 3 only requires support for
interpolation, which is available in several SMT solvers.

Despite this multitude of adaptations of PDR to infinite-state systems, most
implementations in practice require their input to be encoded as transition systems.
The only available software verifiers applicable to actual C programs and imple-
ment PDR-based techniques are CPAchecker [7], SeaHorn [23], and Vvt [20].

2 Background

In this section, we briefly introduce the algorithms PDR and k -induction, which
provide the core concepts on which we base our ideas. In the following description
of PDR and k -induction, we use the following notation: given the state variables s
and s′ within a state-transition system T that represents the program, predicate
I(s) denotes that s is an initial state, T (s, s′) that a transition from s to s′ exists,
and P (s) that the safety property P holds for state s.

2.1 PDR

PDR maintains a list of k frames, where a frame Fi is a predicate that represents
an overapproximation of all states reachable within at most 0 ≤ i ≤ k steps, and
a queue of proof obligations, which guide invariant discovery towards invariants

2 The implementation of the approach of property-directed k -induction combines two
SMT solvers, because neither of them supports all features required by the technique.
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relevant to prove the correctness of a safety property P . For a given state s, the
notation Fi(s) means that the predicate Fi holds for state s. The index i of a
frame Fi is called its level, and the frame Fk is called the frontier, because it
represents the largest overapproximation of reachable states computed by the
algorithm [12]. The algorithm maintains the following invariants:

1. F0(s) = I(s), i.e., the first frame represents precisely the initial states.
2. ∀i ∈ {0, . . . , k} : Fi(s) ⇒ P (s), i.e., every frame contains only states that

satisfy the safety property.
3. ∀i ∈ {0, . . . , k−1} : Fi(s) ⇒ Fi+1(s), i.e., a frame Fi+1 represents in addition

such states that are reachable with i+ 1 steps.
4. ∀i ∈ {0, . . . , k − 1} : Fi(s) ∧ T (s, s′) ⇒ Fi+1(s

′), i.e., each frame is inductive
relative to its predecessor.

Using these data structures and algorithm invariants, the algorithm attempts to
find either a counterexample to P or a 1-inductive invariant Fi such that Fi(s) ⇔
Fi+1(s) for some level i ∈ {0, . . . , k− 1}. Until either of these potential outcomes
is reached, PDR shifts back and forth between the following two phases:

1. If the set of states represented by the frontier Fk does not contain any pre-
decessor states of ¬P -states (i.e., ∀sj , sj+1 : Fk(sj) ∧ T (sj , sj+1) ⇒ P (sj+1),
called frontier-incrementation check), a new frontier Fk+1 is created and
initialized to P . Subsequently, the algorithm attempts to push forward 3 each
predicate c of each frame Fi with 0 ≤ i ≤ k for which the consecution check
Fi(sj) ∧ T (sj , sj+1) ⇒ c(sj+1) holds (see Fig. 2a). If, on the other hand, the
frontier-incrementation check fails, PDR extracts a ¬P -predecessor t in Fk,
which represents a counterexample to induction (CTI), from the failed query
as proof obligation 〈t, k − 1〉 (see Fig. 2b, top).

2. While the queue of proof obligations is not empty, PDR processes the queue
by trying to prove for each proof obligation 〈t, i〉 that the CTI-state t is itself
not reachable from Fi and therefore does not need to be considered as a
relevant ¬P -predecessor. For this proof, PDR chooses some predicate c ⇒ ¬t
with ∀s : Fi(s) ⇒ c(s). PDR then checks if c is inductive relative to Fi by
performing the consecution check Fi(sj) ∧ c(sj) ∧ T (sj , sj+1) ⇒ c(sj+1). If
the consecution check succeeds, the frames F1, . . . , Fi+1 can be strengthened
by adding c, thus ruling out the CTI t in these frames for the future (see
Fig. 2b, left). Also, unless i = k, we add a new proof obligation 〈t, i+ 1〉 to
the queue as an optimization to initiate forward propagation, because we
expect that the CTI-state s would otherwise be rediscovered later at a higher
level [11]. Otherwise, i.e., the consecution check does not succeed for clause c,
the algorithm extracts a predecessor u of t from the failed consecution check,
which is added as a new proof obligation 〈u, i − 1〉 if i > 0 and t ∧ I is
unsatisfiable (see Fig. 2b, right). Otherwise, u represents the initial state of
a real counterexample to P .

An example of this algorithm is presented in a technical report [8, pp. 7–8]. A
more detailed presentation of PDR can be found in the literature [12].
3 By “push forward”, we mean to add a predicate c from frame Fi to frame Fi+1 [12].
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Fi
c1 c2

c3

c4

c5
T⇒ c4

Fi+1

∧ c4

T⇒

(a) Consecution check makes sure
to only conjoin to frame Fi+1

such ci from Fi that are induc-
tive relative to Fi w.r.t. transition
relation T

Fk P

t

⇓
〈t, k − 1〉

Fk−1 Fk P

t

¬cc

Fk−1 Fk P

u t

⇓
〈u, k − 2〉

or

(b) If phase 1 results in a proof obligation 〈t, k − 1〉
(top), then phase 2 resolves either by strengthening
Fk with c (left), or by creating a new (backwards)
proof obligation 〈u, k−2〉 (right); if the chain of proof
obligations propagates back to the initial states, then
a feasible error path is found

Fig. 2: Visualization of (a) the consecution check and (b) the handling of proof-
obligations.

2.2 k-Induction

Like PDR, k -induction attempts to prove a safety property P by applying
induction. However, while PDR strengthens its induction hypothesis by using
clauses extracted from specific counterexamples to induction after failed induction
attempts, k -induction strengthens its induction hypothesis by increasing the
length of the unrolling of the transition relation.

Starting with an initial value for the bound k (usually 1), the k -induction
algorithm increases the value of k iteratively after each unsuccessful attempt at
finding a specification violation (base case), proving correctness via complete
loop unrolling (forward condition), or inductively proving correctness of the
program (inductive-step case).

Base Case. The base case of k -induction consists of running BMC with the
current bound k. 4 This means that starting from all initial program states, all
4 We define the loop bound as the number of visits of the loop head, that is, with loop

bound k = 1, the loop head is visited once, but there was not yet any unwinding
of the loop body. This nicely matches the intuition for k-induction: 1-inductiveness
means that if the invariant holds for one state (without loop unrolling), then it holds
again after one loop unrolling in the successor state; k-inductiveness means that if
the invariant holds for k states (k − 1 loop unrollings), then it holds again after one
more loop unrolling in the successor state.
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states of the program reachable within at most k− 1 unwindings of the transition
relation are explored. If a ¬P -state is found, the algorithm terminates.

Forward Condition. If no ¬P -state is found by the BMC in the base case, the
algorithm continues by performing the forward-condition check, which attempts
to prove that BMC fully explored the state space of the program by checking
that no state with distance k′ > k − 1 to the initial state is reachable. If this
check is successful, the algorithm terminates.

Inductive-Step Case. The forward-condition check, however, can only prove
safety for programs with finite (and, in practice, short) loops. To prove safety
beyond the bound k, the algorithm applies induction: The inductive-step case
attempts to prove that after every sequence of k unrollings of the transition
relation that did not reach a ¬P -state, there can also be no subsequent transition
into a ¬P -state by unwinding the transition relation once more. In the realm
of model checking of software, however, the safety property P is often not
directly k-inductive for any value of k, thus causing the inductive-step-case check
to fail. It is therefore state-of-the-art practice to add auxiliary invariants to
this check to further strengthen the induction hypothesis and make it more
likely to succeed. Thus, the inductive-step case proves a program safe if the
following condition is unsatisfiable:

Inv(sn) ∧
n+k−1∧
i=n

(P (si) ∧ T (si, si+1)) ∧ ¬P (sn+k)

where Inv is an auxiliary invariant, and sn, . . . , sn+k is any sequence of states. If
this check fails, the induction attempt is inconclusive, and the program is neither
proved safe nor unsafe yet with the current value of k and the given auxiliary
invariant. In this case, the algorithm increases the value of k and starts over.

A detailed presentation of k -induction can be found in the literature [5, 6].

3 Combining k-Induction with PDR

Algorithm 1 shows an extension of k -induction with continuously-refined
invariants [5] that applies PDR’s aspect of learning from counterexamples to
induction and that can be applied both as a main proof engine as well as an invari-
ant generator. This allows us to apply this extension of k -induction as an invariant
generator to a main k -induction procedure, similar to the KI ���←−KI approach [5].

Inputs. The algorithm takes the following inputs: The value kinit is used to
initialize the unrolling bound k, whereas the function inc is used to increase k
in line 33 after each major iteration of the algorithm, up to an upper limit
of k defined by the value kmax enforced in line 3. The set of initial program
states is described by the predicate I, the possible state transitions are described



Software Verification with PDR: An Implementation of the State of the Art 11

Algorithm 1 Iterative-Deepening k -Induction with Property Direction
Input: the initial value kinit ≥ 1 for the bound k,

an upper limit kmax for the bound k,
a function inc : N → N with ∀n ∈ N : inc(n) > n,
the initial states defined by the predicate I,
the transfer relation defined by the predicate T ,
a safety property P ,
a function get_currently_known_invariant to obtain auxiliary invariants,
a Boolean pd that enables or disables property direction,
a function lift : N× (S → B)× (S → B)× S → (S → B), and
a function strengthen : N× (S → B)× (S → B) → (S → B),
where S is the set of program states.

Output: true if P holds, false otherwise
Variables: the current bound k := kinit,

the invariant InternalInv := true computed by this algorithm internally, and
the set O := {} of current proof obligations.

1: while k ≤ kmax do
2: Oprev := O
3: O := {}
4: base_case := I(s0) ∧

k−1∨
n=0

(
n−1∧
i=0

T (si, si+1) ∧ ¬P (sn)

)
5: if sat(base_case) then
6: return false

7: forward_condition := I(s0) ∧
k−1∧
i=0

T (si, si+1)

8: if ¬ sat(forward_condition) then
9: return true

10: if pd then
11: for each o ∈ Oprev do

12: base_caseo := I(s0) ∧
k−1∨
n=0

(
n−1∧
i=0

T (si, si+1) ∧ ¬o(sn)
)

13: if sat(base_caseo) then
14: return false
15: else

16: step_caseon :=

n+k−1∧
i=n

(o(si) ∧ T (si, si+1)) ∧ ¬o(sn+k)

17: ExternalInv := get_currently_known_invariant()
18: Inv := InternalInv ∧ ExternalInv
19: if sat(Inv(sn) ∧ step_caseon) then
20: so := satisfying predecessor state
21: O := O ∪ {¬lift(k, Inv , o, so)}
22: else
23: InternalInv := InternalInv ∧ strengthen(k, Inv , o)

24: step_casen :=

n+k−1∧
i=n

(P (si) ∧ T (si, si+1)) ∧ ¬P (sn+k)

25: ExternalInv := get_currently_known_invariant()
26: Inv := InternalInv ∧ ExternalInv
27: if sat(Inv(sn) ∧ step_casen) then
28: if pd then
29: s := satisfying predecessor state
30: O := O ∪ {¬lift(k, Inv , P, s)}
31: else
32: return true
33: k := inc(k)
34: return unknown
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by the transition relation T , and the set of safe states is described by the
safety property P . The accessor get_currently_known_invariant is used to
obtain the strongest invariant currently available via a concurrently running
(external) auxiliary-invariant generator. A Boolean flag pd (reminding of
“property-directed”) is used to control whether or not failed induction checks
are used to guide the algorithm towards a sufficient strengthening of the safety
property P to prove correctness; if pd is set to false, the algorithm behaves
exactly like standard k -induction. Given a failed attempt to prove some candidate
invariant Q 5 by induction, the function lift is used to obtain from a concrete
counterexample-to-induction (CTI) state a set of CTI states described by a
state predicate C. An implementation of the function lift needs to satisfy the
condition that for a CTI s ∈ S where S is the set of program states, k ∈ N,
Inv ∈ (S → B), Q ∈ (S → B), and C = lift(k, Inv , Q, s), the following holds:

C(s)∧
(
∀sn ∈ S : C(sn) ⇒ Inv(sn)∧

n+k−1∧
i=n

(Q(si)∧T (si,si+1))⇒¬Q(sn+k)

)
,

which means that the CTI s must be an element of the set of states described by
the resulting predicate C and that all states in this set must be CTIs, i.e., they
need to be k-predecessors of ¬Q-states, or in other words, each state in the set of
states described by the predicate C must reach some ¬Q-state via k unrollings of
the transition relation T . We can implement lift using Craig interpolation [18, 30]

between A : s = sn and B : Inv(sn) ∧
n+k−1∧
i=n

(Q(si) ∧ T (si, si+1)) ⇒ ¬Q(sn+k),

because s is a CTI, and therefore we know that A ⇒ B holds. 6 Hence, the result-
ing interpolant satisfies the criteria for C to be a valid lifting of s according to the
requirements towards the function lift as outlined above. The function strengthen
is used to obtain for a k-inductive invariant a stronger k-inductive invariant, i.e.,
its result needs to imply the input invariant, and, just like the input invariant, it
must not be violated within k loop iterations and must be k-inductive.

Algorithm. Lines 4 to 6 show the base-case check (BMC) and lines 7 to 9
show the forward-condition check, both as described in Sect. 2. If pd is set
to true, lines 10 to 23 attempt to prove each proof obligation using k -induction:
Lines 12 to 14 check the base case for a proof obligation o. If any violations
of the proof obligation o are found, this means that a predecessor state of
a ¬P -state, and thus, transitively, a ¬P -state, is reachable, so we return false. If,
otherwise, no violation was found, lines 16 to 23 check the inductive-step case
to prove o. 7 We strengthen the induction hypothesis of the step-case check by

5 Depending on the step the algorithm is in, Q may be either the safety property P or
a proof obligation o.

6 The formula C is called Craig interpolant for two formulas A and B with A ⇒ B, if
A ⇒ C, C ⇒ B, and all variables in C occur in both A and B.

7 Note that we do not need to check the forward condition for proof obligations, because
the forward condition is unrelated to the safety property and the proof obligations,
and therefore only needs to be checked once in each major iteration (i.e., once after
each increment of k).
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conjoining auxiliary invariants from an external invariant generator (via a call to
get_currently_known_invariant) and the auxiliary invariant computed internally
from proof obligations that we successfully proved previously. If the step-case
check for o is unsuccessful, we extract the resulting CTI state, lift it to a set of
CTI states, and construct a new proof obligation so that we can later attempt to
prove that these CTI states are unreachable. If, on the other hand, the step-case
check for o is successful, we no longer track o in the set O of unproven proof
obligations (this case corresponds to line 22). We could now directly use the
proof obligation as an invariant, but instead, in line 23 we first try to strengthen
it into a stronger invariant that removes even more unreachable states from
future consideration before conjoining it to our internally computed auxiliary
invariant. In our implementation, we implement strengthen by attempting to
drop components from a (disjunctive) invariant and checking if the remaining
clause is still inductive. In lines 24 to 32, we check the inductive-step case for
the safety property P . This check is mostly analogous to the inductive-step
case check for the proof obligations described above, except that if the check
is successful, we immediately return true.

Note that Alg. 1 eagerly increases k, even if the set O of proof obligations is not
empty. This heuristic prevents the PDR part from iterating through long chains
of proof obligations, it rather delegates the unrolling to the k-induction part.

An in-depth discussion of a practical example of Alg. 1 is presented in a
technical report [8, pp. 12–14].

4 Evaluation

In this section, we present an extensive experimental study on the effectiveness
and efficiency of adaptations of PDR to software verification.

4.1 Compared Approaches

We use the following abbreviations to distinguish between the different tech-
niques that we evaluated:
CTIGAR: CTIGAR [11] is an adaptation of PDR to software verification.

Our evaluation compares two implementations of CTIGAR, namely Vvt-
CTIGAR from the tool Vvt and our own implementation CPAchecker-
CTIGAR. Vvt [20] also provides a configuration that runs a parallel portfolio
combination of Vvt-CTIGAR and bounded model checking, which we call
Vvt-Portfolio.

KI: KI [5] denotes the plain k -induction algorithm without property direction
and without auxiliary invariants, i.e., we configure Alg. 1 such that pd = false
and get_currently_known_invariant() always returns true.

KIPDR: KIPDR denotes a configuration of Alg. 1 such that pd = true
and get_currently_known_invariant() always returns true, i.e., k -induction
with property direction but without additional auxiliary-invariant generation.
KIPDR is, like CTIGAR, an adaptation of PDR to software verification.
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KI ���←−DF: KI ���←−DF [5] denotes a parallel combination of k -induction (without
property direction) with a data-flow-based auxiliary-invariant generator that
continuously supplies the k -induction procedure with invariants. Here, we
configure Alg. 1 such that pd = false and get_currently_known_invariant()
always returns the most recent (strongest) invariant computed by the data-
flow-based auxiliary-invariant generator.

KI ���←−KIPDR: Similarly to KI ���←−DF, KI ���←−KIPDR denotes a parallel com-
bination of k -induction with an auxiliary-invariant generator — in this case,
KIPDR — that continuously supplies invariants to the k -induction proce-
dure. Here, we configure one instance of Alg. 1 such that pd = false and
get_currently_known_invariant() always returns the most recent (strongest) in-
variant computed by KIPDR (a second instance of Alg. 1 that is configured such
that pd = true and get_currently_known_invariant() always returns true).

KI ���←−DF;KIPDR KI ���←−DF;KIPDR denotes a parallel combination of
k -induction with an auxiliary-invariant generator that uses a sequential combi-
nation of a data-flow-based invariant generator and KIPDR to continuously
supply k -induction with auxiliary invariants. We configure one instance of Alg. 1
such that pd = false and get_currently_known_invariant() always returns the
most recent (strongest) invariant computed by a sequential combination of
the data-flow-based invariant generator and KIPDR (a second instance of
Alg. 1 that runs after the invariant generator finishes and is configured such
that pd = true and get_currently_known_invariant() always returns true).

We do not evaluate the used invariant generators as standalone approaches, as
they are designed specifically to be used as auxiliary components and do not per-
form well enough in isolation. For example, data-flow based invariant-generation
approaches are often too imprecise to verify tasks, whereas more precise techniques
like KIPDR might run into too many timeouts to be competitive. Instead, we
use the framework of k -induction with continuously refined invariant generation,
which has been shown to be able to combine quick and precise techniques [5].

4.2 Experimental Setup

Details about the experimental setup can be found in the technical report [8],
which describes in Sect. 4.2 which tool versions and SMT theory we used, in
Sect. 4.3 which benchmark sets we used and why, in Sect. 4.4 which existing
verifiers we compared to and which versions we took, in Sect. 4.5 which computing
resources and execution environment were used, in Sect. 4.6 the scoring schema,
and in Sect. 4.12 which threats to the validity of the evaluation we identified
and how we mitigated them.

4.3 Results

In the following, we pick a few highlights from the results of our experimental eval-
uation, in order to illustrate the potential of the approaches. A complete and more
detailed report of the results is available in the extended version of this article [8].
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Table 1: Results for all 5 591 verification tasks, 1 457 of which contain bugs, while
the other 4 134 are considered to be safe, for the two CTIGAR implementations
CPAchecker-CTIGAR and Vvt-CTIGAR, for a theoretical “virtual best” com-
bination of both CTIGAR implementations where an oracle selects the best
implementation for each task, for k -induction without auxiliary invariants (KI),
and for the best configurations of each tool: CPAchecker’s KI ���←−DF;KIPDR,
SeaHorn, and Vvt as a portfolio verifier.

Verifier CTIGAR KI Best of each tool
CPAchecker Vvt KI ���←−DF;

KIPDR SeaHorn
Vvt -
Portfolio

Score 1 903 879 3 282 5 398 2 848 727
Correct results 1 087 739 2 075 3 095 3 468 839

Correct proofs 832 524 1 239 2 335 2 724 528
Correct alarms 255 215 836 760 744 311

Wrong proofs 0 5 0 0 46 9
Wrong alarms 1 14 2 2 117 22
Timeouts 3 982 110 2 764 2 006 1 476 524
Out of memory 23 28 315 243 231 22
Other inconclusive 498 4 695 435 245 253 4 175

Times for correct results
Total CPU Time (h) 9.0 3.2 30 54 29 5.7
Mean CPU Time (s) 30 16 52 63 31 25
Median CPU Time (s) 4.9 0.24 9.8 10 0.89 0.45

Suitability of CPAchecker for PDR. The first set of experiments showed
that our implementation is at least as good as (and even better than) the only
available implementation of PDR for software model checking. Columns two and
three of Table 1 compare the results obtained by running the two implementations
of CTIGAR on the whole benchmark set, and the last column of the table shows
the results achieved with the standard configuration of Vvt, which runs not only
CTIGAR, but a portfolio analysis of CTIGAR and bounded model checking. The
quantile plot in Fig. 3 shows the CPU times that the two tool configurations
spent on their correct results.

KIPDR versus Data-Flow Techniques. Data-flow-based techniques are usu-
ally more efficient than KIPDR. The higher efficiency of data-flow-based tech-
niques is most likely due to the simple form of the invariants needed to prove
the programs correct. In order to experiment with progams that have some more
interesting invariants, we created a few programs by hand and tried to verify
those. Table 2 shows the results we obtained for these tasks. Our experiments
support the hypothesis that KIPDR can be very strong and efficient on tasks
that other approaches can not solve. It is important to note that this is an ‘exists’
statement and can not be generalized, as shown by the results that KIPDR is
often outperformed by simpler, data-flow-based invariant-generation techniques.
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Fig. 3: Comparing two implementations of CTIGAR; quantile plot for accumulated
number of solved tasks (proofs and alarms) showing the CPU time (linear scale
below 1 s, logarithmic above) for the successful results of CPAchecker-CTIGAR
and Vvt-CTIGAR

Table 2: Results of four k -induction-based configurations in CPAchecker with
different approaches for generating auxiliary invariants for seven manually crafted
verification tasks that do not contain bugs and are not solved by k -induction
without auxiliary invariants; an entry “T” means that the CPU-time limit was
exceeded, an entry “M” means that the memory limit was exceeded, and all other
entries represent the CPU time a configuration spent to correctly solve the task

Task KI←DF KI ���←−KIPDR
Boxes Boxes,

Eq

Boxes,
Eq,
Mod2

const.c 3.3 s 3.3 s 3.2 s 3.8 s
eq1.c T 3.2 s 3.3 s 4.9 s
eq2.c M M M 3.9 s
even.c T T 3.5 s 3.9 s
odd.c T T 3.4 s 4.1 s
mod4.c T T T 3.6 s
bin-suffix-5.c M M M 3.6 s

Comparison with Non-PDR Approaches. The seven example programs 8

were added to the benchmark collection that was also used for SV-COMP 2019, and
thus, results are available for all verifiers that participated in the competition 9.
Table 3 summarizes the results of the best six verifiers in comparison with
the KI ���←−KIPDR approach that we created for the study in this paper. Those
verifiers are, in alphabetical order, Skink, Ultimate Automizer, Ultimate Kojak,

8 https://github.com/sosy-lab/sv-benchmarks/tree/svcomp19/c/loop-invariants/
9 See the last seven rows in this table: https://sv-comp.sosy-lab.org/2019/results/

results-verified/ReachSafety-Loops.table.html

https://github.com/sosy-lab/sv-benchmarks/blob/svcomp19/c/loop-invariants/const_true-unreach-call_true-valid-memsafety_true-no-overflow_false-termination.c
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp19/c/loop-invariants/eq1_true-unreach-call_true-valid-memsafety_true-no-overflow_false-termination.c
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp19/c/loop-invariants/eq2_true-unreach-call_true-valid-memsafety_true-no-overflow_false-termination.c
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp19/c/loop-invariants/even_true-unreach-call_true-valid-memsafety_true-no-overflow_false-termination.c
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp19/c/loop-invariants/odd_true-unreach-call_true-valid-memsafety_true-no-overflow_false-termination.c
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp19/c/loop-invariants/mod4_true-unreach-call_true-valid-memsafety_true-no-overflow_false-termination.c
https://github.com/sosy-lab/sv-benchmarks/blob/svcomp19/c/loop-invariants/bin-suffix-5_true-unreach-call_true-valid-memsafety_true-no-overflow_false-termination.c
https://github.com/sosy-lab/sv-benchmarks/tree/svcomp19/c/loop-invariants/
https://sv-comp.sosy-lab.org/2019/results/results-verified/ReachSafety-Loops.table.html
https://sv-comp.sosy-lab.org/2019/results/results-verified/ReachSafety-Loops.table.html
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Table 3: Results of SV-COMP 2019 for the six verifiers that performed best
on our seven manually crafted verification tasks, compared to the results of
KI ���←−KIPDR approach previously shown in Table 2; an entry “T” means that
the CPU-time limit was exceeded, an entry “M” means that the memory limit
was exceeded, an entry “O” means that the verifier gave up deliberately for other
reasons, and all other entries represent the CPU time a verifier configuration
spent to correctly solve the task; note that SV-COMP 2019 used Ubuntu 18.04
based on Linux 4.15, whereas our evaluation of KI ���←−KIPDR used Ubuntu 16.04
based on Linux 4.4; otherwise, the evaluation environment was the same

Task SV-COMP 2019 KI ���←−KIPDR
Skink UAutomizer UKojak UTaipan VeriAbs VIAP

const.c 4.2 s 8.7 s 9.1 s 8.2 s 13 s 110 s 3.8 s
eq1.c 290 s 7.8 s 7.6 s 8.3 s 14 s 57 s 4.9 s
eq2.c 4.1 s 8.1 s 8.6 s 7.6 s 14 s 4.7 s 3.9 s
even.c 3.7 s 7.4 s 8.2 s 8.6 s 140 s 4.5 s 3.9 s
odd.c O 9.6 s T 11 s 140 s 4.6 s 4.1 s
mod4.c 4.0 s 8.4 s 8.4 s 7.7 s 140 s 4.5 s 3.6 s
bin-suffix-5.c O 14 s T 13 s 13 s 4.7 s 3.6 s

Ultimate Taipan, VeriAbs, and VIAP. Fig. 4a directly compares the CPU times
spent on tasks of in the subcategory ReachSafety-Loops, which is known to contain
many tasks that require effort to be spent on generating loop invariants, by both
VeriAbs, which was the best verifier in that subcategory, and KI ���←−KIPDR.
We observe that for the majority of tasks that were solved by both verifiers,
KI ���←−KIPDR is faster than VeriAbs, often by more than an order of magnitude.
This shows that the invariant generator KIPDR can be significantly faster than
other approaches, depending on the benchmark set. As before, a more in-depth
discussion can be found in the technical report [8].

Comparison against PDR-Based Verification Tools. The last three
columns of Table 1 give an overview over the best configurations of three
software verifiers that use adaptations of PDR: For CPAchecker, we selected
KI ���←−DF;KIPDR. For SeaHorn, we used the same configuration as submit-
ted by the developers to the 2016 Competition on Software Verification (SV-
COMP 2016) [22]. For Vvt, we used the portfolio configuration. We observe that
SeaHorn achieves the highest number of correct proofs, but also has a significant
amount of incorrect proofs. CPAchecker is the slowest of the three tools and
finds fewer proofs than SeaHorn, but CPAchecker has no wrong proofs, and
also closely leads in the amount of found bugs. The score-based quantile plot
of these results displayed in Fig. 4b visualizes the effects of incorrect results on
the computed score. While the graph for SeaHorn is longer, i.e., shows that it
solved the most tasks, it is offset to the left by a total penalty of −3 344 points,
such that in the end, KI ���←−DF;KIPDR accumulates the highest score because
it has a smaller penalty of only −32 points.
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Fig. 4: Plots that support the claim that the conclusions of the evaluation are
relevant

These results confirm our hypothesis that our previous conclusions are relevant,
because they are supported by an implementation that is competitive when
compared to the best available PDR-based tool implementations.

5 Conclusion

Property-directed reachability (a.k.a. IC3) is a verification approach that is pop-
ular and successful in some fields of formal verification (e.g., hardware designs,
Horn clauses). Unfortunately, there is a large gap between this success story and
the applicability in practical software verification. We are closing this gap by
(a) providing a well-engineered implementation of one published adaptation of
PDR to software verification, (b) designing and implementing an invariant gener-
ator based on the ideas of PDR, and (c) providing an evaluation of all applicable
tools and approaches on the largest available benchmark set of C verification tasks.
This provides a good foundation as baseline for ongoing research in this area.

The results of our comparative evaluation extend the knowledge about PDR for
software verification in the following ways: (1) Our implementation outperforms
the existing implementation of PDR (Vvt) and is more precise than the other
software verifier that uses PDR (SeaHorn). Thus, our implementation can serve as
a reference implementation for further research on PDR for software verification.
(2) On most of the programs in the widely used sv-benchmarks collection of
verification tasks, other techniques are more effective (solve more problems)
and more efficient (solve the problems faster). (3) PDR can be an effective and
efficient technique for computing invariants that are difficult to obtain: there
are programs for which our PDR-based approach is more efficient than the best
invariant generator from SV-COMP in the subcategory ReachSafety-Loops.
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5.1 Data Availability Statement

A replication package for this article including all evaluated implementations
and BenchExec is available at Zenodo [9]. Current versions of CPAchecker
are available at https://github.com/sosy-lab/cpachecker. The benchmark
set of SV-COMP 2018 used in Sect. 4 is available online at https://github.
com/sosy-lab/sv-benchmarks/releases/tag/svcomp18 and the dataset from
SV-COMP 2019 [4] that we analyzed is available at https://sv-comp.sosy-lab.
org/2019/results/results-verified/All-Raw.zip.
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Abstract. We present a full-program induction technique for proving (a
sub-class of) quantified as well as quantifier-free properties of programs
manipulating arrays of parametric size N . Instead of inducting over in-
dividual loops, our technique inducts over the entire program (possibly
containing multiple loops) directly via the program parameter N . Signif-
icantly, this does not require generation or use of loop-specific invariants.
We have developed a prototype tool Vajra to assess the efficacy of our
technique. We demonstrate the performance of Vajra vis-a-vis several
state-of-the-art tools on a set of array manipulating benchmarks.

1 Introduction

Programs with loops manipulating arrays are common in a variety of applica-
tions. Unfortunately, assertion checking in such programs is undecidable. Exist-
ing tools therefore use a combination of techniques that work well for certain
classes of programs and assertions, and yield conservative results otherwise. In
this paper, we present a new technique to add to this arsenal of techniques.
Specifically, we focus on programs with loops manipulating arrays, where the
size of each array is a symbolic integer parameter N (> 0). We allow (a sub-
class of) quantified and quantifier-free pre- and post-conditions that may depend
on the symbolic parameter N . Thus, the problem we wish to solve can be viewed
as checking the validity of a parameterized Hoare triple {ϕ(N)} PN {ψ(N)} for
all values of N (> 0), where the program PN computes with arrays of size N ,
and N is a free variable in ϕ(·) and ψ(·). Fig. 1(a) shows an example of one such
Hoare triple, written using assume and assert. This triple effectively verifies

that
∑i−1

j=0

(
1 +

∑j−1
k=0 6 · (k + 1)

)
= i3 for all i ∈ {0 . . .N−1}, and for all N > 0.

Although each loop in Fig. 1(a) is simple, their sequential composition makes it
difficult even for state-of-the-art tools like VIAP [26], VeriAbs [8], FreqHorn

[10], Tiler [4], Vaphor [24], or Booster [1] to prove the post-condition correct. In
fact, none of the above tools succeed in automatically proving the post-condition
in Fig. 1(a). In contrast, the technique presented in this paper, called full-program
induction, proves the post-condition in Fig. 1(a) correct within a few seconds.

Like several earlier approaches [29], full-program induction relies on math-
ematical induction to reason about programs with loops. However, the way in
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// assume(true)
1. for (int t1=0; t1<N; t1=t1+1) {
2. if (t1==0) { A[t1] = 6; }

3. else { A[t1] = A[t1-1]+6; }
4. }

5. for (int t2=0; t2<N; t2=t2+1) {
6. if (t2==0) { B[t2] = 1; }
7. else { B[t2] = B[t2-1]+A[t2-1]; }

8. }
9. for (int t3=0; t3<N; t3=t3+1) {

10. if (t3==0) { C[t3] = 0; }
11. else { C[t3] = C[t3-1]+B[t3-1]; }

12.}
// assert(forall i in 0..N-1, C[i]= i^3)

(a)

// assume(true)

1. A[0] = 6;
2. B[0] = 1;
3. C[0] = 0;

// assert((C[0] = 0^3) and (B[0] = 1^3 - 0^3) and
// (A[0] = 2^3 - 2*1^3 + 0^3))

(b)

// assume((N > 1) and (C_Nm1[N-2] = (N-2)^3) and
// (B_Nm1[N-2] = (N-1)^3 - (N-2)^3) and
// (A_Nm1[N-2] = N^3 - 2*(N-1)^3 + (N-2)^3))

1. A[N-1] = A_Nm1[N-2] + 6;
2. B[N-1] = B_Nm1[N-2] + A_Nm1[N-2];

3. C[N-1] = C_Nm1[N-2] + B_Nm1[N-2];
// assert((C[N-1] = (N-1)^3) and
// (B[N-1] = N^3 - (N-1)^3) and

// (A[N-1] = (N+1)^3 - 2*N^3 + (N-1)^3))

(c)

Fig. 1. Original and simplified Hoare triples

which the inductive claim is formulated and proved differs significantly. Specif-
ically, (i) we do not require explicit or implicit loop-specific invariants to be
provided by the user or generated by a solver (viz. by constrained Horn clause
solvers [21,15,10] or recurrence solvers [26,17]), (ii) we induct on the full program
(possibly containing multiple loops) with parameter N and not on iterations of
individual loops in the program, and (iii) we perform non-trivial correct-by-
construction code transformations, whenever feasible, to simplify the inductive
step of reasoning. The combination of these factors often reduces reasoning about
a program with multiple loops to reasoning about one with fewer (sometimes
even none) and “simpler” loops, thereby simplifying proof goals. In this pa-
per, we demonstrate this, focusing on programs with sequentially composed, but
non-nested loops.

As an illustration of simplifications that can result from application of full-
program induction, consider the problem in Fig. 1(a) again. Full-program induc-
tion reduces checking the validity of the Hoare triple in Fig. 1(a) to checking the
validity of two “simpler” Hoare triples, represented in Figs. 1(b) and 1(c). Note
that the programs in Figs. 1(b) and 1(c) are loop-free. In addition, their pre- and
post-conditions are quantifier-free. The validity of these Hoare triples (Figs. 1(b)
and 1(c)) can therefore be easily proved, e.g. by bounded model checking [6] with
a back-end SMT solver like Z3 [25]. Note that the value computed in each it-
eration of each loop in Fig. 1(a) is data-dependent on previous iterations of the
respective loops. Hence, none of these loops can be trivially translated to a set
of parallel assignments.

Invariant-based techniques, viz. [13,16,23,7,14,30,2,19], are popularly used
to reason about array manipulating programs. If we were to prove the as-
sertion in Fig. 1(a) using such techniques, it would be necessary to use ap-
propriate loop-specific invariants for each of the three loops in Fig. 1(a). The
weakest loop invariants needed to prove the post-condition in this example are:
∀i ∈ [0...t1 − 1] (A[i] = 6i + 6) for the first loop (lines 1-4), ∀j ∈ [0...t2 −
1] (B[j] = 3j2 + 3j + 1) ∧ (A[j] = 6j + 6) for the second loop (lines 5-8), and
∀k ∈ [0...t3 − 1] (C[k] = k3) ∧ (B[k] = 3k2 + 3k + 1) for the third loop (lines
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9-12). Unfortunately, automatically deriving such quantified non-linear loop in-
variants is far from trivial. Template-based invariant generators, viz. [12,9], are
among the best-performers when generating such complex invariants. However,
their abilities are fundamentally limited by the set of templates from which they
choose. We therefore choose not to depend on invariants for individual loops in
our work at all. Instead of inducting over the iterations of each individual loop,
we propose to reason about the entire program (containing one or more loops)
directly, while inducting on the parameter N . Needless to say, each approach
has its own strengths and limitations, and the right choice always depends on
the problem at hand. Our experiments show that full-program induction is able
to solve several difficult problem instances with an off-the-shelf SMT solver (Z3)
at the back-end, which other techniques either fail to solve these instances, or
rely on sophisticated recurrence solvers.

The primary contributions of our work can be summarized as follows.

– We introduce the notion of full-program induction for reasoning about asser-
tions in programs with loops manipulating arrays.

– We present practical algorithms for full-program induction.
– We describe a prototype tool Vajra that implements the algorithms, using

an off-the-shelf SMT solver, viz. Z3, at the back-end to discharge verification
conditions. Vajra outperforms several state-of-the-art tools on a suite of
array-manipulating benchmark programs.

Related Work. Earlier work on inductive techniques can be broadly categorized
into those that require loop-specific invariants to be provided or automatically
generated, and those that work without them. Requiring a “good” inductive in-
variant for every loop in a program effectively shifts the onus of assertion checking
to that of invariant generation. Among techniques that do not require explicit
inductive invariants or mid-conditions for each loop, there are some that require
loop invariants to be implicitly generated by a constraint solver. These include
techniques based on constrained Horn clause solving [21,15,10,24], acceleration
and lazy interpolation for arrays [1] and those that use inductively defined pred-
icates and recurrence solving [26,17], among others. Thanks to the impressive
capabilities of modern constraint solvers and the effectiveness of carefully tuned
heuristics for stringing together multiple solvers, this approach has shown a lot
of promise in recent years. However, at a fundamental level, these formulations
rely on solving implicitly specified loop invariants garbed as constraint solving
problems. There are yet other techniques, such as that in [28], that truly do
not depend on loop invariants being generated. In fact, the technique of [28]
comes closest to our work in principle. However, [28] imposes severe restrictions
on the input programs, and the example in Fig. 1 does not meet these restric-
tions. Therefore, the technique of [28] is applicable only to a small part of the
program-assertion space over which our technique works. Techniques such as
tiling [4] reason one loop at a time and apply only when loops have simple data
dependencies across iterations (called non-interference of tiles in [4]). It effec-
tively uses a slice of the post-condition of a loop as an inductive invariant, and
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also requires strong enough mid-conditions to be generated in the case of sequen-
tially composed loops. We circumvent all of these requirements in the current
work. For some other techniques for analyzing array manipulating programs,
please see [7,19,18].

2 Overview of Full-program Induction

Recall that our objective is to check the validity of the parameterized Hoare triple
{ϕ(N)} PN {ψ(N)} for all N > 0. At a high level, our approach works like any
other inductive technique. Thus, we have a base case, where we verify that the
parameterized Hoare triple holds for some small values of N , say 0 < N ≤ M .
We then hypothesize that {ϕ(N − 1)} PN−1 {ψ(N −1)} holds for some N > M ,
and try to show that this implies {ϕ(N)} PN {ψ(N)}. While this sounds simple
in principle, there are several technical difficulties en route. Our contribution
lies in overcoming these difficulties algorithmically for a large class of programs
and assertions, thereby making full-program induction a viable and competitive
technique for proving properties of array manipulating programs.

We rely on an important, yet reasonable, assumption that can be stated
as follows: For every value of N (> 0), every loop in PN can be statically un-

rolled a fixed number (say f(N)) of times to yield a loop-free program P̂N that
is semantically equivalent to PN . Note that this does not imply that reason-
ing about loops can be translated into loop-free reasoning. In general, f(N) is
a non-constant function, and hence, the number of unrollings of loops in PN

may strongly depend on N . In our experience, loops in a vast majority of array
manipulating programs (including Fig. 1(a)) satisfy the above assumption. Con-
sequently, the base case of our induction reduces to checking a Hoare triple for
a loop-free program. Checking such a Hoare triple is easily achieved by compil-
ing the pre-condition, program and post-condition into an SMT formula, whose
(un)satisfiability can be checked with an off-the-shelf back-end SMT solver.

The inductive step is the most complex one, and is the focus of the rest of the
paper. Recall that the inductive hypothesis asserts that {ϕ(N−1)} PN−1 {ψ(N−
1)} is valid. To make use of this hypothesis in the inductive step, we must relate
the validity of {ϕ(N)} PN {ψ(N)} to that of {ϕ(N − 1)} PN−1 {ψ(N − 1)}.
We propose doing this, whenever possible, via two key notions – that of “differ-
ence” program and “difference” pre-condition. Given a parameterized program
PN , intuitively the “difference” program ∂PN is one such that PN−1; ∂PN is se-
mantically equivalent to PN , where “;” denotes sequential composition. It turns
out that for our purposes, the semantic equivalence alluded to above is not re-
ally necessary; it suffices to have ∂PN such that {ϕ(N)} PN {ψ(N)} is valid iff
{ϕ(N)} PN−1; ∂PN {ψ(N)} is valid. We will henceforth use this interpretation of
a “difference” program. The “difference” pre-condition ∂ϕ(N) is a formula such
that (i) ϕ(N) → (ϕ(N − 1) ∧ ∂ϕ(N)) and (ii) the execution of PN−1 doesn’t
affect the truth of ∂ϕ(N). Computing ∂PN and ∂ϕ(N) is not easy in general,
and we discuss this in detail in the rest of the paper.

Assuming we have ∂PN and ∂ϕ(N) with the properties stated above, the
proof obligation {ϕ(N)} PN {ψ(N)} can now be reduced to proving {ϕ(N −
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1)} PN−1 {ψ(N − 1)} and {ψ(N − 1) ∧ ∂ϕ(N)} ∂PN {ψ(N)}. The first triple
follows from the inductive hypothesis. Proving the second triple may require
strengthening the pre-condition, say by a formula Pre(N − 1), in general. Re-
calling that we are in the inductive step of mathematical induction, we for-
mulate the new proof sub-goal in such a case as {(ψ(N − 1) ∧ Pre(N − 1)) ∧
∂ϕ(N)} ∂PN {ψ(N) ∧ Pre(N)}. While this is somewhat reminiscent of loop in-
variants, observe that Pre(N) is not really a loop-specific invariant. Instead, it
is analogous to computing an invariant for the entire program, possibly con-
taining multiple loops. Specifically, the above process strengthens both the pre-
and post-condition of {ψ(N − 1) ∧ ∂ϕ(N)} ∂PN {ψ(N)} simultaneously using
Pre(N − 1) and Pre(N), respectively. The strengthened post-condition of the re-
sulting Hoare triple may, in turn, require a new pre-condition Pre′(N − 1) to be
satisfied. This process of strengthening the pre- and post-conditions of the Hoare
triple involving ∂PN can be iterated until a fix-point is reached, i.e. no further
pre-conditions are needed for the parameterized Hoare triple to hold. While the
fix-point was quickly reached for all benchmarks we experimented with, we also
discuss how to handle cases where the above process may not converge easily.
Note that since we effectively strengthen the pre-condition of the Hoare triple in
the inductive step, for the overall induction to go through, it is also necessary to
check that the strengthened assertions hold at the end of each base case check.
The technique described above is called full-program induction, and the following
theorem guarantees its soundness.

Theorem 1. Given {ϕ(N)} PN {ψ(N)}, suppose the following are true:

1. For N > 1, {ϕ(N)} PN−1; ∂PN {ψ(N)} holds iff {ϕ(N)} PN {ψ(N)} holds.
2. For N > 1, there exists a formula ∂ϕ(N) such that (a) ∂ϕ(N) doesn’t refer

to any program variable or array element modified in PN−1, and (b) ϕ(N) →
ϕ(N − 1) ∧ ∂ϕ(N).

3. There exists an integer M ≥ 1 and a parameterized formula Pre(M) such
that (a) {ϕ(N)} PN {ψ(N)} holds for 0 < N ≤ M , (b) {ϕ(M)} PM {ψ(M)∧
Pre(M)} holds, and (c) {ψ(N − 1) ∧ Pre(N − 1) ∧ ∂ϕ(N)} ∂PN {ψ(N) ∧
Pre(N)} holds for N > M .

Then {ϕN} PN {ψN} holds for all N ≥ 1.

Proof. For 0 < N ≤ M , condition 3(a) ensures that {ϕ(N)} PN {ψ(N)} holds.
For N > M , note that by virtue of condition 1 and 2(b), {ϕ(N)} PN {ψ(N)}
holds if {ϕ(N − 1) ∧ ∂ϕ(N)} PN−1; ∂PN {ψ(N) ∧ Pre(N)} holds. With ψ(N −
1) ∧ Pre(N − 1) as a mid-condition, and by virtue of condition 2(a), the latter
Hoare triple holds for N > M if {ϕ(M)} PM {ψ(M) ∧ Pre(M)} holds and
{ψ(N − 1) ∧ Pre(N − 1) ∧ ∂ϕ(N)} ∂PN {ψ(N) ∧ Pre(N)} holds for all N > M .
Both these triples are seen to hold by virtue of conditions 3(b) and (c). �	

3 Algorithms for Full-program Induction

We now discuss the full-program induction algorithm, focusing on generation
of three crucial components: difference program ∂PN , difference pre-condition
∂ϕ(N), and the formula Pre(N) for strengthening pre- and post-conditions.
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3.1 Preliminaries

We consider array manipulating programs generated by the grammar shown
below (adapted from [4]).

PB ::= St

St ::= v := E | A[E] := E | if(BoolE) then St else St | St ; St |
for (� := 0; � < E; � := �+1) {St1}

St1 ::= v := E | A[E] := E | if(BoolE) then St1 else St1 | St1 ; St1
E ::= E op E | A[E] | v | � | c | N

op ::= + | - | * | /
BoolE ::= E relop E | BoolE AND BoolE | NOT BoolE | BoolE OR BoolE

This grammar restricts programs to have non-nested loops. While this limits
the set of programs to which our technique currently applies, there is a large
class of useful programs, with possibly long sequences of loops, that are included
in the scope of our work. In reality, our technique also applies to a subclass
of programs with nested loops. However, characterizing this class of programs
through a grammar is a bit unwieldy, and we avoid doing so for reasons of clarity.
A program PN is a tuple (V ,L,A,PB, N), where V is a set of scalar variables,
L ⊆ V is a set of scalar loop counter variables, A is a set of array variables,
PB is the program body, and N is a special symbol denoting a positive integer
parameter. In the grammar shown above, we assume A ∈ A, v ∈ V\L, � ∈ L and
c ∈ Z. Furthermore, “relop” is assumed to be one of the relational operators and
“op”is an arithmetic operator from the set {+, -, *, /}. We also assume that each
loop L has a unique loop counter variable � which is initialized at the beginning of
L and is incremented by 1 at the end of each iteration. Assignments in the body of
L are assumed not to update �. Finally, for each loop with termination condition
� < E, we assume that E is an expression in terms of N . We denote by kL(N)
the number of times loop L iterates in the program with parameter N . We verify
Hoare triples of the form {ϕ(N)} PN {ψ(N)}, where ϕ(N) and ψ(N) are either
universally quantified formulas of the form ∀I (Φ(I,N) =⇒ Ψ(A,V , I, N)) or
quantifier-free formulas of the form Ξ(A,V , N). In the above, I is a sequence of
array index variables, Φ is a quantifier-free formula in the theory of arithmetic
over integers, and Ψ and Ξ are quantifier-free formulas in the combined theory
of arrays and arithmetic over integers.

Static single assignment (SSA) [27] is a well-known technique for renaming
scalar variables such that a variable is written at most once in a program. For
our purposes, we also wish to rename arrays so that each loop updates its own
version of an array and multiple writes to an array element within the same loop
happen on different versions of the array. Array SSA [20] renaming has been
studied earlier in the context of compilers to achieve this goal. We propose using
SSA renaming for both scalars and arrays as a pre-processing step of our analysis.
Therefore, we assume henceforth that the input program is SSA renamed (for
both scalars and arrays). We also assume that the post-condition is expressed in
terms of these SSA renamed scalar and array variables.
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We represent a program using a control flow graph G = (Locs, Edges, μ),
where Locs denotes the set of control locations (nodes) of the program, Edges ⊆
Locs×Locs×{tt,ff ,U} represents the flow of control and μ : Locs → AssignSt ∪
BoolE annotates every node in Locs with either an assignment statement (of the
form v := E or A[E] := E) from the set of assignment statements AssignSt, or a
Boolean condition. Two distinguished control locations, called Start and End in
Locs, represent the entry and exit points of the program. An edge (n1, n2, label)
represents flow of control from n1 to n2 without any other intervening node. It
is labeled tt or ff if μ(n1) is a Boolean condition, and is labeled U otherwise. If
μ(n1) is a Boolean condition, there are two outgoing edges from n1, labeled tt

and ff respectively, and control flows from n1 to n2 along (n1, n2, label) only if
μ(n1) evaluates to label. If μ(n1) is an assignment statement, there is a single
outgoing edge from n1, and it is labeled U. Henceforth, we use CFG to refer to
the control flow graph.

A CFG may have cycles due to the presence of loops in the program. A back-
edge of a loop is an edge from the node corresponding to the last statement in
the loop body to the node representing the loop head. An exit-edge is an edge
from the loop head to a node outside the loop body. An incoming-edge is an edge
to the loop head from a node outside the loop body. We assume that every loop
has exactly one back-edge, one incoming-edge and one exit-edge. For technical
reasons, and without loss of generality, we also assume that the exit-edge of a
loop always goes to a “nop” node (say, having a statement x = x;).

Given a program, the program dependence graph (or PDG) G = (V,DE,CE)
represents data and control dependencies among program statements. Here, V
denotes vertices representing assignment statements and boolean expressions,
DE ⊆ V × V denotes data dependence edges and CE ⊆ V × V denotes control
dependence edges. Standard dataflow analysis identifies dependencies between
program variables and thereby among statements. Dependence between state-
ments updating array elements requires a more careful analysis. Let S1 and S2

be two statements in loops L1 and L2 where there is a control-flow path from
S1 to S2 in the CFG. Suppose S1 is of the form A[f(i1, N)] = F (. . .); where f

is an array index expression, i1 is the loop counter variable of L1, and F is an
arbitrary expression. Suppose S2 is of the form X = G(A[g(i2, N)]);, where X

is a variable or array element, G is an arbitrary expression, and g is an array
index expression.

Definition 1. We say that S2 in L2 depends on S1 in L1 if there exists i1, i2
such that 0 ≤ i1 < kL1(N) and 0 ≤ i2 < kL2(N) and f(i1, N) = g(i2, N).

The routine ComputeRefinedPDG shown in Algorithm 1 constructs and
refines the program dependence graph G = (V,DE,CE) for the input program
PN . It uses the function ConstructPDG (line 1) based on the technique of
[11] to create an initial graph. For a node n in G, let def (n) and uses(n) re-
fer to the set of variables/array elements defined and used, respectively, in the
statement/boolean expression corresponding to n. Similarly, let subscript(v, n)
refer to the index expression of the array element v referred to at node n. Pred-
icate is-array(v) evaluates to true if v is an array element and false if v is a
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Algorithm 1 ComputeRefinedPDG(PN : Program)

1: G(V,DE,CE) := ConstructPDG(PN );
2: if ∃v, n, n′. (n, n′) ∈ DE ∧ is-array(v) ∧ v ∈ def (n) ∧ v ∈ uses(n′) then

3: if n is part of a loop L then

4: � := loop counter of L;
5: Let φ(n) be the constraint (0 ≤ � < kL);
6: else

7: Let φ(n) be true;

8: if n′ is part of a loop L′ then

9: �′ := loop counter of L′;
10: Let φ′(n′) be the constraint (0 ≤ �′ < kL′);
11: else

12: Let φ′(n′) be true;

13: if φ(n) ∧ φ(n′) ∧
(
subscript(v, n) = subscript(v, n′)

)
is unsatisfiable then

14: DE = DE \ {(n, n′)}; � Remove dependence edges with non-overlapping subscripts

15: return G(V,DE,CE);

Algorithm 2 PeelAllLoops((Locs,Edges,μ) : CFG of PN )

1: P
p
N := (Locsp, Edgesp, μp), where Lp = Locs, Edgesp = Edges, μp = μ; � Copy of PN

2: peelNodes := ∅;
3: for each loop L ∈ Loops(Pp

N ) do

4: Let kL(N) be the expression for iteration count of L in P
p
N ;

5: peelCount := Simplify(kL(N) − kL(N − 1));
6: if peelCount is non-constant then throw “Failed to peel non-constant number of iterations”;

7: 〈Pp
N , Locs′〉 := PeelSingleLoop(Pp

N , L, kL(N − 1), peelCount);
� Transforms loop L so that last peelCount iterations of L are peeled/unrolled. Updated

CFG and newly created CFG nodes for the peeled iterations are returned by PeelSingleLoop.
8: peelNodes := peelNodes ∪ Locs′;

9: return 〈Pp
N , peelNodes〉;

scalar variable. Note that lines 2-14 of ComputeRefinedPDG removes data
dependence edges between nodes of G that do not satisfy Definition 1.

3.2 Core Modules in the Technique

Peeling the Loops. To relate PN to PN−1, we first ensure that the correspond-
ing loops in both programs iterate the same number of times by peeling extra
iterations from the loops in PN . This is done by routine PeelAllLoops shown
in Algorithm 2. The algorithm first makes a copy, viz. Pp

N , of the input CFG
PN . Let Loops(Pp

N ) denote the set of loops of Pp
N , and let kL(N) and kL(N−1)

denote the number of times loop L iterates in P
p
N and P

p
N−1 respectively. The

difference kL(N) − kL(N − 1), computed in line 5, gives the extra iterations of
loop L in P

p
N . If this difference is not a constant, we currently report a failure

of our technique (line 6). Otherwise, routine PeelSingleLoop transforms loop
L of Pp

N as follows: it replaces the termination condition (� < kL(N)) of L by
(� < kL(N − 1)). It also peels (or unrolls) the last (kL(N) − kL(N − 1)) iter-
ations of L and adds control flow edges such that the the peeled iterations are
executed immediately after the loop body is iterated kL(N − 1) times. Effec-
tively, PeelSingleLoop unrolls/peels the last (kL(N)− kL(N − 1)) iterations
of loop L in P

p
N . The transformed CFG is returned as the updated P

p
N in line

7. In addition, PeelSingleLoop also returns the set Locs′ of all CFG nodes
newly added while peeling the loop L. The overall updated CFG and the set of
all peeled nodes obtained after peeling all loops in P

p
N is returned in line 9.

Lemma 1. {ϕN} PN {ψN} holds iff {ϕN} P
p
N {ψN} holds.
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Algorithm 3 ComputeAffected(PN : Program, peelNodes : Peeled Statements)

1: G(V,DE,CE) := ComputeRefinedPDG(PN );
2: AffectedVars := {N}; � N is in the affected set
3: repeat

4: WorkList := V \ peelNodes; � all non-peeled nodes in G
5: while WorkList �= {} do

6: Remove a node n from WorkList;
7: if ∃v. is-array(v) ∧ (∃u. u ∈ subscript(v, n) ∧ u ∈ AffectedVars) then

8: AffectedVars := AffectedVars ∪ v;

9: if ∃v. v ∈ uses(n) then

10: if ∃m. m ∈ reaching-def (v, n) ∧ m ∈ peelNodes then

11: AffectedVars := AffectedVars ∪ def(n);

12: if ∃m. m ∈ reaching-def (v, n) ∧ def(m) ∈ AffectedVars then

13: AffectedVars := AffectedVars ∪ def(n);

14: if v ∈ AffectedVars ∧ n is a assignment node then

15: AffectedVars := AffectedVars ∪ def(n);

16: if v ∈ AffectedVars ∧ n is a predicate node then

17: for each edge (n, n′) ∈ CE do

18: AffectedVars := AffectedVars ∪ def(n′);

19: until AffectedVars does not change
20: return AffectedVars;

Affected Variable Analysis. Before we discuss the generation of ∂PN , we
present an analysis that identifies variables/array elements that may take dif-
ferent values in PN and PN−1. For example, the first kL(N − 1) iterations of L
in PN may not be semantically equivalent to the (entire) kL(N − 1) iterations
of L in PN−1. This is because the semantics of statements in L may depend
on the value of N either directly or indirectly. We call variables/array elements
updated in such statements as affected variables. For every loop with statements
having potentially different semantics in PN and PN−1, the difference program
∂PN must have a version of the loop with statements that restore the effect of
the first kL(N−1) iterations of L in PN after the (entire) kL(N−1) iterations of
L in PN−1 have been executed. Furthermore, for statements in PN that are not
enclosed within loops but have potentially different semantics from the corre-
sponding statements in PN−1, ∂PN must also rectify the values of variables/array
elements updated in such statements.

Subroutine ComputeAffected, shown in Algorithm 3, computes the set
of affected variables PN . We first construct the program dependence graph by
calling the function ComputeRefinedPDG (line 1) defined in Algorithm 1. Let
AffectedVars represent the set of affected variables/array elements. We initialize
it (line 2) with variable N since its value is different in PN and PN−1. For a node
n in the PDG G, we use reaching -def (v, n) to refer to the set of nodes where the
variable/array element v is defined and the definition reaches its use at node n.
In line 4, we collect nodes in the graph that are not the ones peeled from loops
in PN . The loop in lines 5-18 iterates over the collected nodes to identify affected
variables. If a variable in the index expression of an array access is affected then
that array element is considered affected (lines 7-8). A definition at a node n is
affected (marked in line 11) if any variable v used in the statement (checked in
line 9) is defined in a peeled node (line 10). Similarly if the reaching definition
of v is affected (line 12) the definition at n is affected (line 13). A variable
defined in terms of an affected variable is also deemed to be affected (lines 14-
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15). Finally, a variable definition that is control dependent on an affected variable
is also considered affected (lines 16-18). The computation of affected variables
is iterated until the set AffectedVars saturates.

Lemma 2. Variables/Array elements not present in AffectedVars have the same
value after kL(N − 1) iterations of its enclosing loop (if any) in PN−1 as in PN .

Generating the Difference Program ∂PN. The routine ProgramDiff in
Algorithm 4 shows how the difference program is computed. We peel each loop
in the program and collect the list of peeled nodes (line 1) using Algorithm 2.
We then compute the set of affected variables (line 2) using Algorithm 3. The
difference program ∂PN inherits the skeletal structure of the program PN after
peeling each loop (line 4). The algorithm then traverses the CFG of each loop in
PN and removes the loops (lines 16-17) that do not update any affected variables
from ∂PN . For every CFG node in other loops, it determines the corresponding
node type (assignment or branch) and acts accordingly (lines 7-14). To explain
the intuition behind the steps of this algorithm, we use the convention that all
variables and arrays of PN−1 have the suffix Nm1 (for N-minus-1), while those of
PN have the suffix N. This allows us to express variables/array elements of PN

in terms of the corresponding variables/array elements of PN−1 in a systematic
way in ∂PN , given that the intended composition is PN−1; ∂PN .

For assignment statements using simple arithmetic operators (+,-,*,/), the
sub-routineAssignmentDiff in Algorithm 4 computes a “difference” statement
as follows. We assume thatNodes(L) returns the set of CFG nodes in loop L. For
every assignment statement of the form v = E; in L, a corresponding statement
is generated in ∂PN that expresses v N in terms of v Nm1 and the difference (or
ratio) between versions of variables/arrays that appear as sub-expressions in E in
PN−1 and PN . For example, the statement A N[i] = B N[i] + v N; in PN gives
rise to the “difference” statement A N[i] = A Nm1[i] + (B N[i] - B Nm1[i])

+ (v N - v Nm1); in ∂PN . Similarly, the statement A N[i] = B N[i] * v N;

in PN gives rise to the “difference” statement A N[i] = A Nm1[i] * (B N[i] /

B Nm1[i]) * (v N / v Nm1); under the assumption B Nm1[i] * v Nm1 = 0.
There are additional kinds of statements that need special processing when

generating ∂PN . These relate to accumulation of differences (or ratios). For
example, if PN has a loop for(i = 0; i < N; i++) sum N = sum N + A N[i];

then the difference A N[i] - A Nm1[i] is aggregated over all indices from 0
through N − 2. In this case, the corresponding “difference” loop in ∂PN has
the following form: sum N = sum Nm1; for(i = 0; i < N-1; i++) sum N =

sum N + (A N[i] - A Nm1[i]);. A similar aggregation for multiplicative ratios
can also be defined. Sub-routine AggregateAssignmentDiff in Algorithm 4
generates these “difference” statements.

Note that expressions like (B N[i] - B Nm1[i]) or (v N/v Nm1) can often be
simplified from the already generated part of ∂PN . For example, if the already
generated part has a statement of the form B N[i] = B Nm1[i] + expr1; or
v N = expr2*v Nm1;, and if expr1 and expr2 are constants or functions of N
and loop counters, then we can use expr1 for B N[i] - B Nm1[i] and expr2 for
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Algorithm 4 ProgramDiff(PN : program)

1: 〈PN , peelNodes〉 := PeelAllLoops(PN );
2: AffectedVars := ComputeAffected(PN , peelNodes);
3: Let the CFG of PN be (Locs, E, μ);
4: ∂PN := (Locs′, E′, μ′), where Locs′ := Locs, E′ := E, and μ′ := ∅;
5: for each loop L ∈ Loops(PN ) do

6: if ∃v such that v is updated in L and v ∈ AffectedVars then

7: for each node n ∈ Nodes(L) do

8: stN := μ(n);
9: if stN is of the form wN := r1N op r2N then

10: μ′(n) := AssignmentDiff( wN := r1N op r2N );

11: else if stN is of the form wN := wN op r1N wherein wN is a scalar then

12: μ′(n) := AggregateAssignmentDiff( L, wN := wN op r1N );
13: else � stN is a conditional statement
14: μ′(n) := BranchDiff( stN , AffectedVars );

15: else � Remove loop L from CFG of ∂PN

16: (n1, n,U) := IncomingEdge(L); (n, n2,ff) := ExitEdge(L);
17: E′ := E′ \ {(n1, n,U), (n, n2,ff)} ∪ {(n1, n2,U)}; Locs′ := Locs′ \ Nodes(L);

18: return ∂PN ;

AssignmentDiff( wN := r1N op r2N )

1: Let invop be the arithmetic inverse operator of op;
� + and − are inverse operators of each other, and so are × and ÷

2: if op ∈ {+,×} then

3: return wN := wNm1 op (Simplify(r1N invop r1Nm1) op Simplify(r2N invop r2Nm1));
4: else if op ∈ {−,÷} then

5: return wN := wNm1 invop (Simplify(r1N op r1Nm1) op Simplify(r2N op r2Nm1));
6: else

7: throw “Specified operator not handled”;

AggregateAssignmentDiff( L: loop, wN := wN op r1N )

1: nfresh := FreshNode(); μ′(nfresh) := (wN := wNm1); Locs′ := Locs′ ∪ {nfresh};
2: (n′, n′′,U) := IncomingEdge(L);
3: E′ := E′ \ {(n′, n′′,U)} ∪ {(n′, nfresh,U), (nfresh, n

′′,U)};
4: if op ∈ {+, ∗} then

5: return wN := wN op Simplify(r1N invop r1Nm1);
6: else if op ∈ {−,÷} then

7: return wN := wN op Simplify(r1N op r1Nm1);
8: else

9: throw “Specified operator not handled”;

BranchDiff( stN : branch condition, AffectedVars : set of affected variables )

1: Let n be CFG node corresponding to stN ;
2: if (∃v such that v is read in stN and v ∈ AffectedVars) ∨ (stN �= stN−1 is satisfiable) then

3: throw “Branch conditions in PN and PN−1 may not evaluate to same value”;
4: else

5: return stN−1;

v N/v Nm1 respectively. We use these optimizations aggressively in the function
Simplify used in AssignmentDiff and AggregateAssignmentDiff.

For every CFG node representing a conditional branch in PN , Algorithm
BranchDiff is used to determine if the result of the condition check can dif-
fer in PN and PN−1. If not, the conditional statement can be retained as such
in the “difference” program. Otherwise, our current technique cannot compute
∂PN and we report a failure of our technique (see body of BranchDiff). For
example, the conditional statement if (t3 == 0) in line 10 of Fig. 1(a) be-
haves identically in PN−1 and PN , and therefore can be used as is in the loop in
the difference program.

Lemma 3. ∂PN generated by ProgramDiff is such that, for all N > 1,
{ϕ(N)} PN−1; ∂PN {ψ(N)} holds iff {ϕ(N)} PN {ψ(N)} holds.
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Algorithm 5 SimplifyDiff(∂PN : difference program)

1: ∂PN := (Locs,E, μ)
2: ∂P′

N := (Locs′, E′, μ′), where Locs′ := Locs, E′ := E, and μ′ := μ;
3: for each loop L ∈ Loops(∂PN ) do

4: (n1, n,U) := IncomingEdge(L); (n, n2,ff) := ExitEdge(L);
5: if Loop body of L is of the form wN := wN op expr, wherein wN is a scalar variable then

6: nacc = FreshNode();
7: if op ∈ {+,−} then

8: μ′(nacc) := (wN := wN op Simplify(kL(N − 1) ∗ expr));
9: else if op ∈ {∗,÷} then

10: μ′(nacc) := (wN := wN op Simplify(exprkL(N−1)));
11: else throw “Specified operator not handled”;

12: E′ := E′ - {(n1, n,U), (n, n2,ff)} ∪ {(n1, nacc,U), (nacc, n2,U)};
13: Locs′ := Locs′ − Nodes(L) ∪ {nacc} ;

14: if Loop body of L is of the form wN := wNm1 or wN := wN then

15: E′ := E′ − {(n1, n,U), (n, n2,ff)} ∪ {(n1, n2,U)}; Locs′ := Locs′ − Nodes(L);

16: return ∂P′

N

Simplifying the Difference Program. While we have described a simple
strategy to generate ∂PN above, this may lead to redundant statements in the
naively generated “difference” code. For example, we may have a loop like for

(i=0; i < N-1; i++) A N[i] = A Nm1[i];. Our implementation aggressively
optimizes and removes such redundant code, renaming variables/arrays as needed
(see routine SimplifyDiff in Algorithm 5). The program ∂PN may also contain
loops that compute values of variables that can be accelerated. For example,
we may have a loop for(i=0; i < N-1; i++) sum = sum + 1;. Algorithm
SimplifyDiff removes this loop and introduces the statement sum = sum +

(N-1);. This helps in ∂PN having fewer and simpler loops in a lot of cases.

Lemma 4. Program ∂P′
N generated by SimplifyDiff is such that, for all N >

1, {ϕ(N)} PN−1; ∂P
′
N {ψ(N)} holds iff {ϕ(N)} PN−1; ∂PN {ψ(N)} holds.

Generating the Difference Pre-condition ∂ϕ(N). We now present a simple
syntactic algorithm, called SyntacticDiff, for generation of the difference pre-
condition ∂ϕ(N). Although this suffices for all our experiments, for the sake of
completeness, we present later a more sophisticated algorithm for generating
∂ϕ(N) simultaneously with Pre(N).

Formally, given ϕ(N), algorithm SyntacticDiff generates a formula ∂ϕ(N)
such that ϕ(N) → (ϕ(N − 1) ∧ ∂ϕ(N)). Observe that if such a ∂ϕ(N) exists,
then ϕ(N) → ϕ(N − 1) holds as well. Therefore, we can use the validity of
ϕ(N) → ϕ(N − 1) as a test to decide the existence of ∂ϕ(N).

If ϕ(N) is of the syntactic form ∀i ∈ {0 . . .N} ϕ̂(i), then ∂ϕ(N) is easily seen
to be ϕ̂(N). If ϕ(N) is of the syntactic form ϕ1(N) ∧ · · · ∧ ϕk(N), then ∂ϕ(N)
can be computed as ∂ϕ1(N) ∧ · · · ∧ ∂ϕk(N). Finally, if ϕ(N) doesn’t belong to
any of these syntactic forms or if condition 2(a) of Theorem 1 is violated by the
heuristically computed ∂ϕ(N), then we over-approximate ∂ϕN by True. For a
large fraction of our benchmarks, the pre-condition ϕ(N) was True, and hence
∂ϕ(N) was also True.

Generating the Formula Pre(N− 1). We use Dijsktra’s weakest pre-condition
computation to obtain Pre(N−1) after the “difference” pre-condition ∂ϕ(N) and
the “difference” program ∂PN have been generated. The weakest pre-condition
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Algorithm 6 FPIVerify(PN : program, ϕ(N): pre-condn, ψ(N): post-condn)

1: if Base case check {ϕ(1)} P1 {ψ(1)} fails then

2: return “Counterexample found!”;

3: ∂ϕ(N) := SyntacticDiff(ϕ(N));
4: ∂PN := ProgramDiff(PN);
5: ∂PN := SimplifyDiff(∂PN ); � Simplify and Accelerate loops
6: i := 0;
7: Prei(N) := ψ(N);
8: c Prei(N) := True; � Cumulative conjoined pre-condition
9: do

10: if {c Prei(N − 1) ∧ ψ(N − 1) ∧ ∂ϕ(N)} ∂PN {c Prei(N) ∧ ψ(N)} then

11: return True; � Assertion verified

12: i := i + 1;
13: Prei(N − 1) := LoopFreeWP(Prei−1(N), ∂PN ); � Dijkstra’s WP sans WP-for-loops
14: if no new Prei(N − 1) obtained then � Can happen if ∂PN has a loop
15: return FPIVerify(∂PN , c Prei−1(N − 1) ∧ ψ(N − 1) ∧ ∂ϕ(N), c Prei−1(N) ∧ ψ(N));
16: else

17: c Prei(N) := c Prei−1(N) ∧ Prei(N);

18: while Base case check {ϕ(1)} P1 {c Prei(1)} passes;
19: return False; � Failed to prove by full-program induction

can always be computed using quantifier elimination engines in state-of-the-art
SMT solvers like Z3 if ∂PN is loop-free. In such cases, we use a set of heuristics
to simplify the calculation of the weakest pre-condition before harnessing the
power of the quantifier elimination engine. If ∂PN contains a loop, it may still
be possible to obtain the weakest pre-condition if the loop doesn’t affect the
post-condition. Otherwise, we compute as much of the weakest pre-condition as
can be computed from the non-loopy parts of ∂PN , and then try to recursively
solve the problem by invoking full-program induction on ∂PN with appropriate
pre- and post-conditions.

Verification by Full-program Induction. The basic full-program induction
algorithm is presented as routine FPIVerify in Algorithm 6. The main steps
of this algorithm are: checking conditions 3(a), 3(b) and 3(c) of Theorem 1
(lines 1, 18 and 10), calculating the weakest pre-condition of the relevant part
of the post-condition (line 13), and strengthening the pre-condition and post-
condition with the weakest pre-condition thus calculated (line 17). Since the
weakest pre-condition computed in every iteration of the loop (Prei(N − 1) in
line 13) is conjoined to strengthen the inductive pre-condition (c Prei(N) in line
17), it suffices to compute the weakest pre-condition of Prei−1(N) (instead of
c Prei(N) ∧ ψ(N)) in line 13. The possibly multiple iterations of strengthening
of pre- and post-conditions is effected by the loop in lines 9-18. In case the loop
terminates via the return statement in line 11, the inductive claim has been
successfully proved. If the loop terminates by a violation of the condition in line
18, we report that verification by full-program induction failed. In case ∂PN has
loops and no further weakest pre-conditions can be generated, we recursively
invoke FPIVerify on ∂PN in line 15. This situation arises if, for example, we
modify the example in Fig. 1(a) by having the statement C[t3] = N; (instead of
C[t3] = 0;) in line 10. In this case, ∂PN has a single loop corresponding to the
third loop in Fig. 1(a). The difference program of ∂PN is, however, loop-free, and
hence the recursive invocation of full-program induction on ∂PN easily succeeds.
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Algorithm 7 FPIDecomposeVerify( i : integer )

1: do

2: 〈Pre′i(N − 1), ∂ϕ′

i(N)〉 := NextDecomposition(Prei(N − 1));
3: Check if (a) ∂ϕ′

i(N) ∧ Pre
′

i(N − 1) → Prei(N − 1),
4: (b) ϕ(N) → ϕ(N − 1) ∧

(
∂ϕ′

i(N) ∧ ∂ϕ(N)
)
,

5: (c) PN−1 does not update any variable or array element in ∂ϕ′

i(N)
6: if any check in lines 3-5 fails then

7: if HasNextDecomposition(Prei(N − 1)) then

8: continue;
9: else

10: return False;

11: if {c Prei−1(N−1)∧ψ(N −1)∧Prei(N−1)∧∂ϕ(N)} ∂PN {c Prei−1(N)∧ψ(N)∧Pre
′

i(N)}
then

12: return True; � Assertion verified
13: else

14: c Prei(N) := c Prei−1(N) ∧ Pre
′

i(N);
15: i := i+ 1;
16: Prei(N − 1) := LoopFreeWP(Pre′i−1(N), ∂PN ); � Dijkstra’s WP sans WP-for-loops

17: if {ϕ(1)} P1 {c Prei−1(1) ∧ Prei(1)} does not hold then

18: i := i − 1;
19: else

20: prev ∂ϕ(N) := ∂ϕ(N);
21: ∂ϕ(N) := ∂ϕ′

i−1(N) ∧ ∂ϕ(N);

22: if FPIDecomposeVerify(i) returns False then

23: i := i − 1; ∂ϕ(N) := prev ∂ϕ(N);
24: else

25: return True;

26: while HasNextDecomposition(Prei(N − 1));
27: return False;

Generalized FPI Algorithm. While algorithm FPIVerify suffices for all of
our experiments, we may not always be so lucky. Specifically, even if ∂PN is loop-
free, the analysis may exit the loop in lines 9-18 of FPIVerify by violating the
base case check in line 18. To handle (at least partly) such cases, we propose the
following strategy. Whenever a (weakest) pre-condition Prei(N−1) is generated,
instead of using it directly to strengthen the current pre- and post-conditions,
we “decompose” it into two formulas Pre′i(N − 1) and ∂ϕ′

i(N) with a two-fold
intent: (a) potentially weaken Prei(N − 1) to Pre′i(N − 1), and (b) potentially
strengthen the difference formula ∂ϕ(N) to ∂ϕ′

i(N) ∧ ∂ϕ(N). The checks for
these intended usages of Pre′i(N − 1) and ∂ϕ′

i(N) are implemented in lines 3, 4,
5, 11 and 17 of routine FPIDecomposeVerify, shown as Algorithm 7. This
routine is meant to be invoked as FPIDecomposeVerify(i) after each itera-
tion of the loop in lines 9-18 of routine FPIVerify (so that Prei(N), c Prei(N)
etc. are initialized properly). In general, several “decompositions” of Prei(N)
may be possible, and some of them may work better than others. FPIDecomp-

seVerify permits multiple decompositions to be tried through the use of the
NextDecomposition andHasNextDecomposition functions. Lines 22-25 of
FPIDecomposeVerify implement a simple back-tracking strategy, allowing a
search of the space of decompositions of Prei(N − 1). Observe that when we
use FPIDecomposeVerify, we simultaneously compute a difference formula
(∂ϕ′

i(N) ∧ ∂ϕ(N)) and an inductive pre-condition (c Prei−1(N) ∧ Pre′i(N)).

Lemma 5. Algorithms FPIVerify and FPIDecomposeVerify ensure con-
ditions 2 and 3 of Theorem 1 upon successful termination.
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While we have presented our technique focusing on a single symbolic parame-
ter N , a straightforward extension works for multiple independent parameters,
multiple independent array sizes, different induction directions, and non-uniform
loop termination conditions. For more details, please refer to the long version of
our paper at [3].

Limitations. There are several scenarios under which full-program induction
may not produce a conclusive result. Currently, we only analyze programs with
non-nested loops with +,−,×,÷ expressions in assignments. We also do not
handle branch conditions that are dependent on the parameter N (this doesn’t
include loop conditions, which are handled by unrolling the loop). The technique
also remains inconclusive when the difference program ∂PN does not have fewer
loops than the original program. Reduction in verification complexity of the pro-
gram, in terms of the number of loops and assignment statements dependent on
N , is crucial to the success of full-program induction. Finally, our technique may
fail to verify a correct program if the heuristics used for weakest pre-condition
either fail or return a pre-condition that causes violation of the base case check
in line 18 of FPIVerify. Despite these limitations, our experiments show that
full-program induction performs remarkably well on a large suite of benchmarks.

4 Implementation and Experiments

We have implemented our technique in a prototype tool called Vajra, available
at [5]. It takes a C program in SVCOMP format as input. The tool, written
in C++, is built on top of the LLVM/CLANG [22] 6.0.0 compiler infrastructure
and uses Z3 [25] v4.8.7 as the SMT solver to prove Hoare triples for loop-free
programs.

We have evaluatedVajra on a test-suite of 42 safe benchmarks inspired from
different algebraic functions that compute polynomials as well as a standard
array operations such as copy, min, max and compare. Our programs take a
symbolic parameterN which specifies the size of each array as well as the number
of times each loop executes. Assertions, possibly quantified, are (in-)equalities
over array elements, scalars and (non-)linear polynomial terms over N .

All experiments were performed on a Ubuntu 18.04 machine with 16GB RAM
and running at 2.5 GHz. We have comparedVajra againstVIAP(v1.0) [26],Ve-

riAbs(v1.3.10) [8], Booster(v0.2) [1], Vaphor(v1.2) [24] and FreqHorn(v3)
[10]. C programs were manually converted to mini-Java as required by Vaphor

and CHC’s as required by FreqHorn. Our results are shown in Table 1. Vajra
verified 36 benchmarks, compared to 23 verified by VIAP, 12 by VeriAbs, 8 by
Booster, 5 each by Vaphor and FreqHorn. Vajra was unable to compute
the difference program for 5 benchmarks and was inconclusive on 1 benchmark.

Vajra verified 17 benchmarks on which VIAP diverged, primarily due to
the inability of VIAP’s heuristics to get closed form expressions. VIAP ver-
ified 4 benchmarks that could not be verified by the current version of Va-

jra due to syntactic limiations. Vajra, however, is two orders of magnitude
faster than VIAP on programs that were verified by both. Vajra proved 28
benchmarks on which VeriAbs diverged. VeriAbs ran out of time on pro-
grams where loop shrinking and merging abstractions were not strong enough
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Name #L T1 T2 T3 T4 T5 T6

pcomp 3 �0.68 TO TO ?0.23 TO ?0.58

ncomp 3 �0.68 TO TO ?0.41 TO ?0.68

eqnm2 2 �0.52 TO TO ?0.07 TO ?0.59

eqnm3 2 �0.53 TO TO ?0.07 TO ?0.56

eqnm4 2 �0.51 TO TO ?0.07 TO ?0.60

eqnm5 2 �0.55 TO TO ?0.07 TO ?0.58

sqm 2 �0.51 �69.7 TO ?0.11 TO ?0.57

res1 4 �0.17 TO TO TO TO TO

res1o 4 �0.18 TO TO TO TO TO

res2 6 �0.20 TO TO TO TO TO

res2o 6 �0.22 TO TO TO TO TO

ss1 4 �0.40 TO TO �0.13 ?19.2 ?1.7

ss2 6 �0.46 TO TO �0.13 TO ?9.7

ss3 5 �0.35 TO TO �0.13 TO ?2.1

ss4 4 �0.29 TO TO �0.13 TO ?1.6

ssina 5 �0.41 �72.5 TO TO TO ?2.0

sina1 2 �0.56 �65.4 TO TO TO TO

sina2 3 �0.69 �66.5 TO TO TO TO

sina3 4 �0.83 TO TO TO TO TO

sina4 4 �0.85 TO TO TO TO TO

sina5 5 �0.93 TO TO TO TO TO

Name #L T1 T2 T3 T4 T5 T6

zerosum1 2 �0.33 �62.0 �11 �0.77 �0.29 TO

zerosum2 4 �0.46 �75.8 �18 TO �1.64 TO

zerosum3 6 �0.59 �73.1 �39 TO �3.13 TO

zerosum4 8 �0.76 �76.1 TO ?18.2 �6.85 TO

zerosum5 10 �0.97 �80.6 TO ?16.5 �10.4 TO

zerosumm2 4 �0.46 �71.5 �24 TO �1.22 TO

zerosumm3 6 �0.59 �70.9 TO TO �5.22 TO

zerosumm4 8 �0.77 �76.4 TO ?16.7 �12.39 TO

zerosumm5 10 �0.98 �81.7 TO ?18.7 �22.8 TO

zerosumm6 12 �1.29 �86.8 TO ?16.1 TO TO

copy9 9 �0.69 �86.8 �3.91 �18.8 TO �0.67

min 1 �0.48 �23.6 �3.82 �0.52 �0.14 �0.13

max 1 �0.46 �25.4 �4.70 �1.0 �0.28 �0.18

compare 1 �0.82 �18.8 �17.9 �0.06 �0.84 �0.31

conda 3 �0.72 �13.9 TO �0.07 �0.09 TO

condn 1 ?0.51 �14.7 �18.9 �0.02 �0.15 �0.20

condm 2 ?0.59 �20.5 �16.7 �0.04 TO -

condg 3 ?0.52 TO TO TO TO TO

modn 2 ?0.63 �22.6 TO - TO TO

mods 4 ?0.61 TO �18.2 - - -

modp 2 ?0.71 �17.3 �40 - ?32 -

Table 1. First column is the benchmark name. Second column indicates the number
loops in the benchmark (excluding the assertion loop). Successive columns indicate the
results generated by tools and the time taken where T1 is Vajra, T2 is VIAP, T3
is VeriAbs, T4 is Booster, T5 is Vaphor, T6 is FreqHorn. �indicates assertion
safety, �indicates assertion violation, ? indicates unknown result, and - indicates an
abrupt stop. All the times are in seconds. TO is time-out of 100 secs.

to prove the assertions. VeriAbs reported 1 program as unsafe due to the im-
precision of its abstractions and it proved 4 benchmarks that Vajra could not.
Vajra verified 30 benchmarks that Booster could not. Booster reported 4
benchmarks as unsafe due to imprecise abstractions, its fixed-point computation
engine reported unknown result on 12 benchmarks and it ended abruptly on
3 benchmarks. Booster also proved 2 benchmarks that couldn’t be handled
by the current version of Vajra due to syntactic limitations. Vajra verified
32 benchmarks on which Vaphor was inconclusive. Distinguished cell abstrac-
tion in Vaphor is unable to prove safety of programs, when the value at each
array index needs to be tracked. Vaphor reported 9 programs unsafe due to
imprecise abstraction, returned unknown on 2 programs and ended abruptly on
1 program. Vaphor proved a benchmark that Vajra could not. Vajra veri-
fied 32 programs on which FreqHorn diverged, especially when constants and
terms that appear in the inductive invariant are not syntactically present in the
program. FreqHorn ran out of time on 22 programs, reported unknown result
on 12 and ended abruptly on 3 benchmarks. FreqHorn verified a benchmark
with a single loop that Vajra could not. On an extended set of 231 benchmarks,
Vajra verified 110 programs out of 121 safe programs, falsified 108 out of 110
unsafe programs, and was inconclusive on the remaining 13 programs.

5 Conclusion
We presented a novel property-driven verification method that performs induc-
tion over the entire program via parameter N . Significantly, this obviates the
need for loop-specific invariants. Experiments show that full-program induction
performs remarkably well vis-a-vis state-of-the-art tools for analyzing array ma-
nipulating programs. Further improvements in the algorithms for computing dif-
ference programs and for strengthening of pre- and post-conditions are envisaged
as part of future work.
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Data Availability Statement

The datasets generated and analyzed during the current study are available in
the figshare repository: https://doi.org/10.6084/m9.figshare.11875428.v1
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Abstract. As software verification is gaining traction in academia and
industry the number and complexity of verification tools is growing con-
stantly. This initiated research and interest into exchangeable verifica-
tion witnesses as well as tools for automated witness validation. Initial
witness validators used model checkers that were amended to benefit
from guidance information provided by the witness. This approach comes
with substantial overhead. Second-generation execution-based validators
traded speed for reduced strength in case of incomplete and non-exact
witnesses. This was done by extracting test harnesses and compiling
them with the original program. We present the nitwit tool, a new
interpretation-based violation witness validator for C programs that is
trimmed to be fast and memory efficient. It verifies a record number
of witnesses of SV-COMP’20 in the ReachSafety category. Our novel
tool exchanges initial compilation overhead and optimized execution for
rapid startup performance. nitwit borrows C semantics from the com-
piler used for compilation. This offloads this hard-to-get-right task and
enables using several compilers in parallel to inspect possible semantic
differences.

1 Introduction

The importance of witnesses. Model checking is a very successful automated ver-
ification technique with many applications. Its usage is rapidly increasing and
one may fairly argue that model checking has penetrated various industries. This
is true as well for software model checkers that, as opposed to first generation
model checkers, directly verify program code. Model checking is in particular a
very effective bug hunting technique: in case a property is violated, a counterex-
ample is provided witnessing the property’s violation. This is why they are often
named witnesses. As phrased by Clarke et al. [16] “It is impossible to overesti-
mate the importance of the counterexample feature. The counterexamples are
invaluable in debugging complex systems. Some people use model checking just
for this feature.”

Witness validation. Early model checkers provided witnesses for safety proper-
ties such as “certain bad states should always be avoided” as finite paths that

c© The Author(s) 2020
A. Biere and D. Parker (Eds.): TACAS 2020, LNCS 12078, pp. 40–57, 2020.
https://doi.org/10.1007/978-3-030-45190-5 3

TACAS
Evaluation
Artifact

2020
Accepted

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45190-5_3&domain=pdf
http://orcid.org/0000-0001-8469-0835
http://orcid.org/0000-0002-3942-3217
http://orcid.org/0000-0002-6143-1926
https://doi.org/10.1007/978-3-030-45190-5_3


Interpretation-Based Violation Witness Validation for C: NITWIT 41

end in a bad state. A simple witness-steered simulation could reveal the flaw.
Modern model checkers heavily use abstraction, and witnesses are no longer con-
crete, but rather phrased in terms of some abstract model. This is in particular
true for software model checkers. Witnesses are in fact finite paths through an
abstracted program representing sets of paths in the concrete program that is to
be verified. These sets may contain spurious concrete paths. This raises the ques-
tion whether witnesses are correct. Witness validation is the process of checking
whether a witness produced by a software model checker is indeed a witness
showing that the concrete program violates the property. Software model check-
ers such as CBMC, CPAchecker and so on, that generate witnesses are called
producers, while software tools that perform the witness validation are named
validators. With a single exception [12], existing validators are incorporated or
directly built on top of the existing software model checkers CPAchecker [13] or
Ultimate Automizer [19,18,17].

A format for witnesses. In order to facilitate the validation of witnesses by
various different tools, a witness format has been developed that nowadays is
used by many software model checkers. For safety properties as above, this format
prescribes how to represent a witness for reaching a bad state. Due to this
format, witnesses are exchangeable and witness validation can be done using
different techniques and tools. This format allows (i) a cross-platform exchange
of information that enables “drop-in” replacement of tools such as visualization
and reviews of results [10], (ii) validation of witnesses which strengthens trust in
verification results, especially if the verifier and validator use different techniques
and (iii) a significant amount of false bug alarms to be caught by failed validation.

Witness validation in software verification competitions. Since a few years, the
use of witnesses has become an important part in software competitions such as
the annual TACAS Competition on Software Verification (SV-COMP) [2,3,4,5,6].
SV-COMP is a competition in automatic software verification, in which aca-
demic, but also some industrial, software verifiers participate. In the 2019 edi-
tion [6], 31 verifiers participated in verifying 10 522 verification tasks for C pro-
grams (and 368 for Java programs). SV-COMP has different categories, such as
reachability, memory and concurrency safety, absence of overflows, and termi-
nation. SV-COMP adopted violation witnesses as part of its benchmark scoring
schema since 2015 [3] and adhered to it also in the following editions [4,5,6].
This means that a verifier does not receive a point for a violated property unless
the produced violation witness could be validated by at least one validator. This
applies to all categories. To reflect that violation witnesses contain sufficient in-
formation for validation, the validators are granted only limited resources (e.g.,
only 10% of the amount of time available for verification, and 7GB memory).
Correctness witnesses were incorporated into the score evaluation in 2017 [5] –
since this competition, validated correctness witnesses yield a bonus point for
the producer.

Contributions of this paper. This paper presents the interpretation-based wit-
ness validator nitwit. It validates violation witnesses for safety reachability
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properties as above. It does so for C programs. In contrast to most other valida-
tors (a) it does not rely on an existing software model checker, and (b) exploits
an interpretation-based approach. nitwit uses a home-made extension of the
PicoC interpreter which feeds a witness automaton with steering information
during a step-by-step interpretation of the C program, see Figure 1. nitwit was
evaluated on 11 533 violation witnesses in the ReachSafety category during SV-
COMP 2020 and we compared its outcomes to another five witness validators
that participated. nitwit was able to validate more witnesses in this category
(8 526 in total) than all its competitors, and did so substantially faster. In addi-
tion, nitwit was able to validate 399 witnesses that could not be validated with
any of the five competitors.

Witness Automaton Interpreter

C codeGraphML

false

unknown
NITWIT

replies,
resolves non-determinism

drives and provides
control flow + variables

VERIFIER error()

terminate

Fig. 1: High-level architecture of the nitwit Validator.

2 Background

The need for achieving portability of counterexamples and proofs between tools
gave rise to a type of non-deterministic finite automaton (NFA) called a witness
automaton, or simply a witness [11]. Two types of witnesses exist – a violation
and a correctness witness. In this paper, we focus on violation witnesses.

The concepts defined in this section follow the definitions of [22,11]. We
represent programs by control-flow graphs (CFGs).

Definition 1 (Control-flow graph). A control-flow graph C = (L, l0, G, V ) is
a finite set of locations L, initial location l0 ∈ L, G ⊆ L×Op×L a set of edges
where Op = {skip, assume(ϕ), assign(x,E)} with x ∈ V, ϕ a predicate over the
program variables V and E an expression over V .

In a CFG over V = {x, y}, e.g., an assignment is of the form x := x+ y. The
interpretation of a CFG is given by a (possibly countably infinite) transition
system where states are of the form (l, v) where l ∈ L and v is a variable
assignment over V . For the sake of brevity, we refrain from a formal definition.
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For predicate ϕ over V , let v |= ϕ denote that ϕ holds in valuation v. A witness
automaton (WA) is a finite-state automaton (NFA) used by the validator to run
in parallel to the CFG such that a program run violating the specification is
accepted.

Definition 2 (Witness automaton). A witness automaton (WA)
A = (Q,Σ, δ, q0, qE) for a CFG C = (L, l0, G, V ) is an NFA with states Q,
initial state q0 ∈ Q and δ : Q × Σ → 2Q as usual, qE the accepting state and
Σ ⊆ 2G × Φ, where Φ is the set of predicates over V .

The transitions of A have source code and guards [11] that identify program
edges and place constraints on variable assignments respectively. They corre-
spond to pairs (Di, ϕi), where Di ⊆ G and ϕi is a predicate over variables.

Definition 3 (Simulation). Let A = (Q,Σ, δ, q0, qE) be a WA for a CFG

C = (L, l0, G, V ) and ρ = l0
g1−→ . . .

gn−→ ln a path in C. The run q0
σ1−→ . . .

σn−−→ qn
in A simulates ρ iff σi+1 = (Di+1, ϕi+1) with (li, gi+1, li+1) ∈ Di+1 and vi+1 |=
ϕi+1 for some state (li+1, vi+1). The run is accepted if qn = qE and L(A) is the
set of words σ1 . . . σn for which A has an accepting run.

The path l0
g1−→ . . .

gn−→ ln represents a set of concrete program executions
(l0, v0) → . . . (ln, vn) in which variable x has value vi(x). The state conditions
ϕi+1 restrict the set of concrete program executions to those for which vi+1 |=
ϕi+1, for all i < n. Thus, a predicate ϕi+1 constrains the concrete values in C.

When a verifier checks a property, its output should not only be yes or no,
but preferably also a program execution that leads to the property violation.
It is not always easy to construct a precise program execution path, as various
verification techniques apply abstractions. This is taken into consideration in
the witness format, for they represent a part of the state space that contains a
property violation. The “narrower” the space they represent is, the easier it is
to re-verify that a property is truly violated. A trivial witness automaton, e.g.,
which consists of only an (accepting) state with a self-loop, does not restrict
the program’s execution at all. Witness validation essentially then requires a
verification from scratch. On the other hand, a precise witness permits only
program executions leading to an error state, thereby making the validation as
direct as possible.

Definition 4 (Exact Witness). Let A = (Q,Σ, δ, q0, qE) be a WA for a CFG
C = (L, l0, G, V ) and LE ⊆ L be a set of error locations. A WA A is exact iff

for all (D1, ϕ1) . . . (Dn, ϕn) ∈ L(A) it holds for all path l0
g1−→ . . .

gn−→ ln of C:
if (li, gi+1, li+1) ∈ Di+1 and vi+1 |= ϕi+1 in state (li+1, vi+1) for all 0 ≤ i < n,
then ln ∈ LE.

3 Validators for Violation Witnesses

Apart from a new format for exchanging verification results, [11] also presents
a feasibility study with implementing both a witness producer and a valida-
tor in two well-established tools – CPAchecker and Ultimate Automizer.
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Subsequently, [12] reports on two more validators that extract test harnesses
from violation witnesses to perform validation. A test harness is compiled with
the program to supply input values during runtime and provide definitions
for necessary external functions. This approach differs from tools using formal
verification/model-checking techniques by offloading semantics to a compiler and
only investigating a single path through the program. Validators that explore a
single path through compilation/execution are called execution-based validators.
In addition, a new validator MetaVal1 was introduced in SV-COMP 2020 – we
refrain from describing it as it is yet to be published though we do include it in
the benchmark evaluation. All five validators participated in SV-COMP.

CPAchecker This tool employs a so-called Configurable Program Analysis
(CPA), which allows selecting the desired level of precision to control the trade-
off between performance gain and spurious counterexamples [13]. When wit-
ness validation is enabled, it matches a witness automaton against the pro-
gram’s CFG. Afterwards, as part of the CPA, it strengthens the exploration
with state-space guards from the witness at matched locations. [11] reports that
e.g. their value analysis and predicate analysis are capable of using this strength-
ening [15,14].

Ultimate Automizer This tool uses an automata-based approach to verifica-
tion [19,18,17]. Prior to the analysis, it transforms programs into a variant of
CFGs over an alphabet of program statements. Such a CFG, say Cerror, rec-
ognizes control-flow traces – sequences of statements – that lead to a property
violation. A control-flow trace is feasible if it is a run of Cerror and ends in
an accepting error state. For validation, the tool creates a new CFG Cw from
the Cartesian product of the Cerror and a witness automaton. Subsequently, the
tool runs the same analysis over the CFG Cw as for a usual verification run
and validates the witness if an error trace is found. State-space guards, such as
ϕi+1 in Definition 3 over control edges and source code guards that characterize
branching are ignored.

CPA-witness2test This tool exploits the verifier of CPAchecker. It con-
structs and matches a CFG with the witness, but does not perform a CPA anal-
ysis. It collects the input and initialization values from matched assumptions and
assembles an ordered vector of values for every used nondeterministic function,
which it then transforms into a switch statement supplied as function imple-
mentation. For uninitialized variables, which in C are also nondeterministic, no
values are injected.

In automatic software verification, programs are usually decorated with an
external function VERIFIER error to identify a point which should never be
reached, i.e., an error location. CPA-witness2test implements the function
as a call to exit(107), which immediately terminates an execution with return

1 https://gitlab.com/sosy-lab/software/metaval

https://gitlab.com/sosy-lab/software/metaval
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code 107. This signals the successful validation of a witness, because the error
was reached.

FShell-witness2test This tool does not rely on an existing software model
checker. It begins with reading the specification and parses the program with
pycparser2 – a Python library for C, which constructs an abstract syntax tree
(AST). This AST is traversed to find uninitialized variables and uses of non-
deterministic functions. This yields watch points, indicating where variable(s)
need to be resolved in order to find the right concrete path. Once watch points
are established, the tool reads the provided witness and obtains a sequence of
control states from program start to the error state. Further on, states of the
sequence are matched to the found watch points. For any such match, the tool
tries to determine the watch point value from a corresponding assumption in the
witness. Finally, these values are added to a test vector, which is transformed
into a test harness prepared for compilation. If the function VERIFIER error

is called during execution, then the witness is accepted.

4 Interpretation-based Witness Validation

This section presents a new interpretation-based validator for violation witnesses
of C programs with an embedded3 reachability safety property. The valida-
tor is named Nitwit Validator (or nitwit for short) as a shorthand for
iNterpretation-based vIolaTion WITness Validator. The programs must des-
ignate the error location by a function call to VERIFIER error in order for
nitwit to recognize that a program violates the invariant “begin in main and
never call VERIFIER error”. nitwit is restricted to these programs.

A bird’s eye view on nitwit. Our implementation approach consists of com-
bining an existing C interpreter with a witness automaton that provides witness
assumptions used for resolving variables according to the current position (li, vi)
in the program execution. The WA is fed with information from the interpreter,
which executes the C program step by step. For validations both source code
and state-space guards are taken into account. When a state-space guard (an
assumption) does not hold for the current variable values, then the WA does not
proceed. To illustrate, suppose an integer variable x initiated to one and incre-
mented on every line (numbered from one). A witness control edge consisting of
an assumption x = 7 matches only on line seven and will block the WA until then
if no other edge is satisfied. If, however, the assumption concerns nondeterminis-
tic variables, then we extract a value from it and resolve the nondeterminism in
the interpreter. E.g., if x is not initialized at all, then assumption x = 7 assigns
it the value 7 already on line one.

2 https://github.com/eliben/pycparser
3 The program is enhanced with error location(s) VERIFIER error, assume state-
ments VERIFIER assume with conditions and calls to VERIFIER nondet functions,
which return nondeterministic values.

https://github.com/eliben/pycparser
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As the program executes, the WA progresses through its states until either
the execution ends or the error function is called. The latter we consider a
testament to the property violation, accepting the witness.

Implementing nitwit. An interpreter is a program that takes as input a pro-
gram, parses it and executes commands as part of its own runtime instead of
producing machine code like a compiler. Interpreters translate programs directly
into the behavior they represent; they keep track of all variable values and exe-
cute statements based on results of expressions and control flow [21,1,20].

nitwit’s input is a C program. The choice of C interpreters is limited —
moreover, compiled C often widely outperforms interpreters in terms of speed,
due to extensive compiler optimizations and the unavoidable overhead in parsing
and program state management. Nonetheless, in a witness validation setting,
when a program only needs to be executed once, the advantage of machine
code speed can fade away, because compilation-based validators spend effort on
optimizations and translation, which is part of validation time. Furthermore, we
wanted to control the simulated program during runtime to alter variables and
track the position in source code, which is difficult after compilation.

Our requirements on an interpreter in the order of relevance were: (i) an
open-source license permitting free use and distribution of the source code, (ii) a
moderate learning curve because of the limited time for implementation, (iii) flex-
ibility so that we can easily modify it, (iv) good coverage of C and (v) tested with
realistic C programs. We have chosen PicoC 4, a portable interpreter written in
C with a very small code base originally built as a scripting language interpreter
for unmanned aerial vehicles (UAVs). In its original form, PicoC supports the
basics of ANSI C, but misses some important features like function pointers or
an implementation of const variables. For being able to execute C99-compliant
C code, which is common in the benchmarks of SV-COMP, we extended it with
new functionalities, such as goto constructs, function pointers, the double, long
long and const types, better parsing for numerical constants, variable shadow-
ing, struct initialization and bit fields.

By using an interpreter, nitwit has full control over the simulation of a pro-
gram. For our purposes, we have supplemented PicoC with function callbacks at
locations corresponding to places from which a verifier might extract control-flow
edges. During execution, the interpreter returns control to our witness automa-
ton whenever it reaches a callback. The callbacks carry all of the necessary in-
formation like the current position, variable values, presence of non-determinism
or the selected branch in if-statements, loops and ternary operators.

The validator’s managing component stores the witness automaton and starts
the program’s simulation in PicoC. It also stores the current control state in the
witness and tries to progress to the error state whenever it receives a callback
and the source code and state-space guards match. If a state-space guard in-
volves a nondeterministic variable, nitwit attempts to extract a value from the
given assumption. Upon success, the value is stored in the variable management
system.

4 https://gitlab.com/zsaleeba/picoc

https://gitlab.com/zsaleeba/picoc
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For the assumption evaluation we execute assumptions (recall a WA-transition
may have multiple of them) as conditions in the program context and if any one
of them fails, then the control edge is considered as non-matching. If an assump-
tion resolves a nondeterministic variable (e.g. the assumption x = 2 resolves the
nondeterministic variable x), then we automatically accept it and store the given
variable value. A variable becomes nondeterministic if it has no initialization or
if it is assigned a nondeterministic value (for example from a VERIFIER nondet

function). Analogously, it becomes deterministic when a deterministic value is
assigned to it, e.g., as a result from an expression involving only deterministic
variables and constants. Moreover, if in the assumption evaluator an assumption
involving a nondeterministic variable occurs and is resolved, then the variable
gets assigned the new value and is registered as being deterministic.

5 Evaluation

5.1 Benchmarks

Primarily, we have tested nitwit on witnesses produced during SV-COMP
2019 [6], however, as data from the current edition were already available to
us, we present the results attained during SV-COMP 2020. The set of all wit-
nesses produced is available at [9]. It consists of the witnesses and index files that
contain information about the witness producer, date of creation, corresponding
program file and its hash value (that can be used to find the program in the
SV-COMP program repository), the programming language, specification, type
of witness and so on. The witnesses and programs cover a large spectrum of
possible language features in a variety of applications and settings. We used the
dataset of the previous edition [7] to evaluate nitwit extensively and prepare it
for competing in 2020.

During the competition nitwit was executed only on witnesses in the cate-
gory ReachSafety with a known specification violation as our validator targets
only reachability safety violations. This amounts to a set of 11 533 violation
witnesses produced by 17 different verifiers.

The witnesses were not manually reviewed to check for each if the language
of the WA indeed contains a violating path. This would be a laborious task —
doing it automatically is a better fit, which in fact is precisely what validators
are designed for. Nevertheless, this means that we cannot claim that our or other
validators are incorrect when they do not find a violation, because the witness
may steer them inappropriately. As the dataset does not exclusively contain
exact witnesses, some witnesses might not resolve enough nondeterminism for
nitwit to find a violation based on the selected single execution.

Witnesses show a lot of heterogeneity based on their producer. Whilst some
are very detailed, like in the case of Pinaka and Map2Check with approxi-
mately 23 and 13 thousand nodes on average respectively, others tend to keep the
WA more succinct or even minimal. For example, tools like Brick or DIVINE
usually provide the least verbose witnesses. The average number of edges typi-
cally lies near the average number of nodes due to the fact that witness producers



48 J. Švejda et al.

output automata that lead directly to the error location. Not many specify in-
formation about function enter and return. Except for VeriFuzz, Map2Check
and Symbiotic, tools usually put assumptions on edges selectively, though there
are also some that do not use them – DIVINE and PredatorHP. Assump-
tions are an important part of witness automata, they restrict the exploration of
state space and potentially save the most work during validation. Nevertheless,
having to check a large number of them may prove difficult. On the whole, an
average witness has around 2 000 nodes, 2 200 transitions between them, 1 300
state-space guards in form of assumptions, 360 controls for branching condi-
tions, 15 function calls and return guards. The largest witness was produced
by Pinaka and contains 2.1 million nodes and transitions with assumptions on
almost half of them.

5.2 Evaluation Setting

The runtime was limited to 90 s, while memory was limited to 7GB [6]. Based
on recorded data and extracted results, we distinguish six different outcomes of
a validator:

False Validator found that an error location is reachable in the program. This
is the desired result, nevertheless, be aware that not all witnesses in the
available dataset necessarily describe valid violation paths.

Unknown The validator could not find a definite answer.
True The validator claims the program does not reach an error location in the

state-space restricted by the witness.
Timeout The validator exceeded the granted CPU time before reaching an

answer.
Error An error occurred in the validator during computation (not in the pro-

gram under inspection). Includes errors due to malformed witnesses.
Out of memory The validator exceeded the allowed amount of memory.

5.3 Experimental Results

Figure 2 presents the results on validating 11 533 witnesses by the five viola-
tion witness validators. Note that sometimes validator names in tables or plots
are abbreviated for readability. The colors discern the possible outcomes de-
scribed above. The validators are sorted in ascending order by the number of
False results (blue). nitwit and CPAchecker manage to find the most viola-
tions (8 526 and 7 642 respectively), closely followed by FShell-witness2test
(7 005). CPA-witness2test is able to validate 6 104, Ultimate Automizer
finds 4 393 and MetaVal 1 681.

All validators except for nitwit output True (green) in some cases, which
means the validator rejected the witness. Ultimate Automizer rejects the
majority of witnesses during validation. CPA-witness2test shows the highest
ratio of Unknown results, whereas FShell-witness2test exhibits the largest
amount of unaccepted witnesses due to malformation (Bad witness). MetaVal
exceeds the alloted time in most cases. The results are detailed in Table 2 on
page 52.
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Fig. 2: Validator outcomes on 11 533 witnesses from SV-COMP 2020.

Producing output false. With the result False, validators indicate they have
found a property violation, i.e., a reachable error location. These results are of
particular interest, as the dataset used for our evaluation contains witnesses only
for programs deemed incorrect.

For 10 933 witnesses at least one validator validated the verification result.
Figure 3 presents a Venn diagram that displays the partitioning of these witnesses
between validators based on shared successful validations. The shape as a whole
stands for all of the validated witnesses and each validator is represented by
a distinctly colored enclosure. Circles group intersecting results and the bigger
numbers inside describe their cardinality. The smaller numbers underneath are
for making clear which validators belong to the group (ordering is from top
to bottom, so CPAchecker is number one and so on). The diagram reveals
that only about 226 witnesses are approved by all verifiers, though the largest
shared subset has 2 010 of them – it corresponds to results shared by all of the
validators with exception of Ultimate Automizer and MetaVal. In total,
1 411 instances are validated only once, 1 878 twice, 2 290 thrice, 3 682 four times
and 1 446 five times. nitwit validates 399 witnesses that no other tool validates.
Interestingly, none of the validators subsume each other in terms of False results,
each has some not negligible amount of witnesses validated uniquely.

Concerning resource usage, Figure 4(a) depicts the reached number of suc-
cessfully validated witnesses plotted against the required CPU time (in log-
scale). Data points are sorted by the required CPU time and the black line at
the top marks the timeout. nitwit finds violations systematically faster than
any other tool. Its mean runtime amounts to 0.63 seconds, the median was no-
ticeably smaller at 0.02 seconds, standard deviation was 4.74. The runtime for
nitwit is skewed towards zero with most results achieved under half a second.
We also see that running nitwit more than 10 seconds scarcely produces any
new results. That is not the case for CPAchecker, Ultimate Automizer,
MetaVal and CPA-witness2test, which frequently need more than that,
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even though they rarely finish without a considerable headroom until the limit
of 90 seconds. On average, nitwit is about 4.2 times faster than the runner up
FShell-witness2test, 17.8 times than CPA-witness2test, 22.0 times than
CPAchecker, 35.3 times than Ultimate Automizer and 39.1 times than
MetaVal.

Validator Result Witnesses Mean Median Std.dev. Total

nitwit False 8526 0.63 0.02 4.74 5393
All 11533 0.64 0.02 4.99 7386

FShell-witness2test False 7005 2.67 1.30 5.90 18734
All 11533 3.93 1.40 12.69 45337

CPA-witness2test False 6104 11.21 8.40 8.90 68407
All 11533 13.62 8.60 15.59 157037

CPAchecker False 7642 13.87 11.00 11.29 105968
All 11533 26.02 12.00 30.88 300145

Ultimate Automizer False 4393 22.23 16.00 16.03 97640
All 11533 28.57 16.00 28.01 329488

MetaVal False 1681 24.66 17.00 17.81 41453
All 11533 63.12 96.00 39.82 728008

Table 1: Runtime statistics for validators (in seconds).

Figure 4(b) shows the memory usage in successful validations plotted on a log-
scale with data sorted again in ascending order. nitwit needed the least (5MB
on average; maximum 1GB) RAM, closely followed by FShell-witness2test.
The validators were only rarely approaching the limit of 7GB (black line at
the top); the largest value slightly above 4GB during a successful validation
was exhibited by CPA-witness2test. The tools do not suffer from a lack of
available memory, which is also demonstrated by the low rate of Out of memory

results in Figure 2.

All validations. Figures 4(c) and 4(d) demonstrate the resource consumption of
all validations. Until about the 10 500th witness, nitwit remains consistently
faster than all other validators, usually finishing under one second. Then, it
struggles to find the answers as some witnesses do not resolve enough non-
determinism or contain very long or even infinite paths.

Compilation-based FShell- and CPA-witness2test avoid the overhead of
an interpreter, so are mostly able to finish before the 90 second mark, because
even if the harness they extract is incomplete (still contains nondeterminism),
then after compilation the execution ends quicker than if it were interpreted. In
terms of absolute numbers, nitwit takes an average 0.64 seconds per witness
on the whole dataset with a median of 0.02 and standard deviation 4.99. The
runtime difference on average is 3.3 seconds in favor of Nitwit compared to
FShell-witness2test and 13.0 seconds to CPA-witness2test. More inter-
esting is the median though, this was 0.02 seconds, 1.4 seconds, 8.6 seconds,
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Fig. 3: A Venn diagram showing the coverage of False validation results by
various validators.

(a) CPU time (seconds) in validations
for result False.

(b) Memory consumption (in MB) dur-
ing validations for result False.

(c) CPU time (seconds) in validations
for all results.

(d) Memory consumption (in MB) in
validations for all results.

Fig. 4: Resources for results False (first row) and all together (second row).
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12.0 seconds, 16.0 seconds, 96.0 seconds for Nitwit, FShell-witness2test,
CPA-witness2test, CPAchecker, Ultimate Automizer and MetaVal
respectively.

Figure 5 shows how nitwit compares to the other four validators in terms
of time and successful validation results. In each plot, a validator is compared
against nitwit. Witnesses validated by both have a blue color, validated only
by nitwit yellow, by the other tool green and any other are depicted in red. The
diagonal line is supplemented by two other lines representing a ±30% difference
in CPU time. The result, if not false, is plotted on one of six lines at the end
of its axis. These lines correspond to a Timeout (abbreviated by to), Unknown
(uk), True (tu), Error (er) and Out of memory (om). Every point represents a
witness (identical for both validators).

Figure 5 shows that in instances of agreed False results, nitwit is always
faster than other validators. FShell-witness2test has 1 114 validations within
less than one second difference. This is 0 for all of the others.

Verifier CPAchecker Ult. Auto. CPA-w2t FS-w2t MetaVal NITWIT Virt. best Total

2LS 114 164 166 358 91 332 477 563
BRICK 20 11 38 36 17 38 42 43
CBMC 171 423 456 358 114 488 768 905
CPAchecker 1091 713 927 491 0 1070 1171 1189
DIVINE 400 46 110 280 181 237 448 460
ESBMC 572 131 605 843 249 730 955 1022
GACAL 0 10 0 10 7 15 15 15
Map2Check 80 32 106 129 120 137 211 264
PeSCo 1030 625 845 606 0 988 1064 1081
Pinaka 531 518 541 454 54 440 616 629
PredatorHP 55 35 18 44 53 20 69 70
Symbiotic 1033 12 866 894 134 1047 1103 1106
UAutomizer 391 574 55 189 159 233 630 662
UKojak 291 310 38 151 135 179 348 348
UTaipan 370 379 53 189 150 205 427 452
VeriAbs 501 366 326 892 10 1139 1298 1427
VeriFuzz 992 44 954 1081 207 1228 1291 1297

Total 7642 4393 6104 7005 1681 8526 10933 11533

Table 2: Results on successful validations of violation witnesses generated by the
various verifiers. Column Virtual best aggregates witnesses that are validated at
least once.

5.4 Discussion

Nondeterminism in programs. nitwit is not designed for proving a program
correct with respect to some specification, because the validator explores only a
single path. Nevertheless, to prove a program incorrect it may suffice to look at
a single path and although the program may contain nondeterministic choices
(e.g., if a condition depends on a nondeterministic variable) – if these are resolved
using a witness, then the execution becomes deterministic. This is the main idea
behind execution- and interpretation-based validators, because after resolving



Interpretation-Based Violation Witness Validation for C: NITWIT 53

(a) CPAchecker (b) Ultimate Automizer

(c) CPA-witness2test (d) FShell-witness2test

(e) MetaVal

Fig. 5: Comparing nitwit (x-axis) with the other five validators (y-axis) in terms
of speed and outcome. Each point represents a witness.
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nondeterminism, there exists only a single path through the program. If this
leads to an error location, then the validator may confidently claim that the
provided program and witness constitute a specification violation.

nitwit guarantees (except for implementation bugs, supported syntax and
available stack- and heap size) a validated violation witness iff it allows only such
abstract paths that end in an error location. Thus, given a well-specified exact
witness, nitwit should always find a violation, because it has the program state
space restricted to only such paths which reach an error location. If a witness
allows inexact abstract paths, then nitwit (and in fact also an execution-based
validator) may select the wrong path and see no error state. Results in Section 5
demonstrate that even without the guarantee of exact witnesses, interpretation-
based validators can find a substantial amount of violations.

Finding violations. Results clearly show that nitwit is a competitive validator of
witnesses for C programs and invariant properties. Our validators implemented
independently of any verification platform can efficiently reestablish violations
from witnesses. We outperform other tools especially on the less time intensive
instances as nitwit works well in validating witnesses that restrict the state
space sufficiently. For these witnesses, it is the fastest among state-of-the-art
validators and has the smallest memory footprint.

We attribute the good outcomes in speed and memory to the choice of em-
ploying an interpretation-based approach. As nitwit explores only one path, it
is obviously faster than full fledged model-checking validators that explore many
paths. Interestingly, an interpreter-based execution analysis is often much faster
than compiled. This difference might be attributed to the fact that execution-
based tools build the whole AST and CFG, whereas PicoC saves a lot of time
by not having to construct them. Moreover, a compiler translates the program
into machine code, a non-trivial task which PicoC circumvents.

Weaknesses. One of nitwit’s limitations is inherent to exploring only a sin-
gle execution. Suppose a non-terminating program P , a trivial witness without
assumptions and a property violation, whose reachability depends on a nonde-
terministic variable being zero. nitwit, if it cannot resolve a nondeterministic
variable, assumes it has value one. In such a setting, the simulated program
diverges and so does nitwit, because it cannot recognize an infinite execution.
A similar situation may occur even if the witness is non-trivial. If its transitions
are not matched to the right operations (which can be a fault in both the witness
producer or validator), then P will diverge due to unresolved nondeterminism.

Secondly, as we employ an interpreter, there is a noticeable overhead com-
pared to compiled programs in terms of CPU instructions per operation. There-
fore, even if an execution is finite or reaches a violation in finitely many steps,
it might simply be too computationally intensive for nitwit to provide an an-
swer within time. Combined with unresolved nondeterminism, this explained a
relatively high amount of Timeout results in an early version of nitwit bench-
marked on SV-COMP 2019.

To combat the timeouts, we decided to implement a simple check in the wit-
ness automaton. After a certain number of unsuccessful transitions to a different
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state, we deliberately stop the validation and output Unknown. We experimented
with the threshold and concluded that 1 million attempts is appropriate. By en-
abling this threshold, we went from 784 to 123 killed validations and lost only
25 witnesses that would otherwise have been validated, which is an acceptable
trade-off. An analysis showed that 573 of the 784 timeouts were validations of
possibly non-terminating programs, 18 for terminating and the 193 remaining
validations without specified termination5. The check for the threshold can be
disabled.

Processing witnesses. In some cases, software verifiers do not always produce
witnesses in exactly the correct format. For example, in GraphML it is necessary
to define attributes for the graph, nodes and edges. If a witness happens to
contain no such definitions, we supply a basic configuration that allows for its
successful parsing. By default, we also do not extensively check for correctness
of all of the graph attributes like the program hash.

Furthermore, we consider a reached error location as a proof of violation even
if the witness automaton itself does not finish in an error state. This behavior
can be changed by a compilation flag to rejection. Nevertheless, if a witness
resolves enough determinism for one execution to find an error, we think it is
sufficiently “good” for it to be a viable witness. For some programs, the variable
resolving at the start suffices to reach a violation. However, we output a special
exit code to make it clear that the witness did not in fact accept this path.

6 Conclusion

We presented the new interpretation-based violation witness validator nitwit,
that was able to validate 8 526 witnesses from a dataset of 11 533 witnesses [9]
that were produced in the ReachSafety category of the 2020 edition of SV-
COMP. nitwit was able to validate 399 witnesses that have not been validated
by any other participating tool. In addition, nitwit has a small memory foot-
print and is mostly significantly faster than its competitors.

Data Availability Statement and Acknowledgments. nitwit is available for free
at https://github.com/moves-rwth/nitwit-validator and is licensed under the
New BSD license. The replication artifact can be found at the Zenodo repository
https://doi.org/10.5281/zenodo.3518139 [23] and the datasets analyzed during
the current study at https://doi.org/10.5281/zenodo.3630205 [8]. We thank Dirk
Beyer for very useful feedback on an earlier version of the paper and assistance
with configuring nitwit for SV-COMP 2020.

5 We know whether these programs are (non-)terminating, as they were reviewed in
SV-COMP before including them in the competition on termination analysis.

https://github.com/moves-rwth/nitwit-validator
https://doi.org/10.5281/zenodo.3518139
https://doi.org/10.5281/zenodo.3630205
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Abstract. Loop acceleration can be used to prove safety, reachability,
runtime bounds, and (non-)termination of programs operating on inte-
gers. To this end, a variety of acceleration techniques has been proposed.
However, all of them are monolithic: Either they accelerate a loop suc-
cessfully or they fail completely. In contrast, we present a calculus that
allows for combining acceleration techniques in a modular way and we
show how to integrate many existing acceleration techniques into our
calculus. Moreover, we propose two novel acceleration techniques that
can be incorporated into our calculus seamlessly. An empirical evaluation
demonstrates the applicability of our approach.

1 Introduction

In the last years, loop acceleration techniques have successfully been used to build
static analyses for programs operating on integers [2, 8, 11, 16–18,28]. Essentially,
such techniques extract a quantifier-free first-order formula ψ from a single-path
loop T , i.e., a loop without branching in its body, such that ψ under-approximates
(resp. is equivalent to) T . More specifically, each model of the resulting formula ψ
corresponds to an execution of T (and vice versa). By integrating such techniques
into a suitable program-analysis framework [3, 11, 16–18, 23], whole programs
can be transformed into first-order formulas which can then be analyzed by
off-the-shelf solvers. Applications include proving safety [23] or reachability
[23, 28], deducing bounds on the runtime complexity [16, 17], and proving (non-)
termination [8, 11].

However, existing acceleration techniques only apply if certain prerequisites
are in place. So the power of static analyses built upon loop acceleration depends
on the applicability of the underlying acceleration technique.

In this paper, we introduce a calculus which allows for combining several ac-
celeration techniques modularly in order to accelerate a single loop. Consequently,
it can handle classes of loops where all standalone techniques fail. Moreover, we
present two novel acceleration techniques and integrate them into our calculus.

In the following, we introduce preliminaries in Sec. 2. Then, we discuss existing
acceleration techniques in Sec. 3. In Sec. 4, we present our calculus to combine
acceleration techniques. Sec. 5 shows how existing acceleration techniques can be
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integrated into our framework. Next, we present two novel acceleration techniques
and incorporate them into our calculus in Sec. 6. After discussing related work
in Sec. 7, we demonstrate the applicability of our approach via an empirical
evaluation in Sec. 8 and conclude in Sec. 9. All proofs can be found in [13].

2 Preliminaries

We use bold letters x, y, z, ... for vectors. Let C (z) be the set of closed-form
expressions over the variables z containing, e.g., all arithmetic expressions built
from z, integer constants, addition, subtraction, multiplication, division, and
exponentiation.1 We consider loops of the form

while ϕ do x ← a (Tloop)

where x is a vector of d pairwise different variables that range over the integers,
the loop condition ϕ ∈ Prop(C (x)) is a finite propositional formula over the
atoms {p > 0 | p ∈ C (x)}, and a ∈ C (x)d such that the function2 x �→ a maps
integers to integers. Loop denotes the set of all such loops.

We identify Tloop and the pair 〈ϕ,a〉. Moreover, we identify a and the function
x �→ a where we sometimes write a(x) to make the variables x explicit and we
use the same convention for other (vectors of) expressions. Similarly, we identify
the formula ϕ resp. ϕ(x) and the predicate x �→ ϕ.

Throughout this paper, let n be a designated variable and let:

a :=
(

a1
...
ad

)
x :=

(
x1
...
xd

)
x′ :=

(
x′
1

...
x′
d

)
y :=

(
x
n
x′

)
Intuitively, the variable n represents the number of loop iterations and x′ corre-
sponds to the values of the program variables x after n iterations.

Tloop induces a relation −→Tloop
on Zd:

ϕ(x) ∧ x′ = a(x) ⇐⇒ x −→Tloop
x′

Our goal is to find a formula ψ ∈ Prop(C (y)) such that

ψ ⇐⇒ x −→n
Tloop

x′ for all n > 0. (equiv)

To see why we use C (y) instead of, e.g., polynomials, consider the loop

while x1 > 0 do ( x1
x2

) ←
(
x1−1
2·x2

)
. (Texp)

Here, an acceleration technique synthesizes, e.g., the formula(
x′
1

x′
2

)
=

( x1−n
2n·x2

)
∧ x1 − n+ 1 > 0 (ψexp)

1 Note that there is no widely accepted definition of “closed forms” and the results of
the current paper are independent of the precise definition of C (z).

2 i.e., the (anonymous) function that maps x to a
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where
( x1−n
2n·x2

)
is equivalent to the value of ( x1

x2
) after n iterations and the inequa-

tion x1 − n+ 1 > 0 ensures that Texp can be executed at least n times. Clearly,
the growth of x2 cannot be captured by a polynomial, i.e., even the behavior of
quite simple loops is beyond the expressiveness of polynomial arithmetic.

In practice, one can restrict our approach to weaker classes of expressions to
ease automation, but the presented results are independent of such considerations.

Some acceleration techniques cannot guarantee (equiv), but the resulting
formula is an under-approximation of Tloop, i.e., we have

ψ =⇒ x −→n
Tloop

x′ for all n > 0. (approx)

If (equiv) resp. (approx) holds, then ψ is equivalent to resp. approximates Tloop.
Definition 1 (Acceleration Technique). An acceleration technique is a par-
tial function

accel : Loop ⇀ Prop(C (y)).

It is sound if accel(T ) approximates T for all T ∈ dom(accel). It is exact if
accel(T ) is equivalent to T for all T ∈ dom(accel).

3 Existing Acceleration Techniques

We now recall several existing acceleration techniques. In Sec. 4 we will see how
these techniques can be combined in a modular way. All of them first compute a
closed form c ∈ C (x, n)d for the values of the program variables after n iterations.

Definition 2 (Closed Form). We call c ∈ C (x, n)d a closed form of Tloop if

∀x ∈ Zd, n ∈ N. c = an(x).

Here, an is the n-fold application of a, i.e., a0(x) = x and an+1(x) =
a(an(x)). To find closed forms, one tries to solve the system of recurrence
equations x(n) = a(x(n−1)) with the initial condition x(0) = x. In the sequel, we
assume that we can represent an(x) in closed form. Note that one can always
do so if a(x) = Ax + b with A ∈ Zd×d and b ∈ Zd, i.e., if a is affine. To this
end, one considers the matrix B :=

(
A b
0T 1

)
and computes its Jordan normal form

B = T−1JT where J is a block diagonal matrix (which has complex entries if B
has complex eigenvalues). Then the closed form for Jn can be given directly (see,
e.g., [31]) and an(x) = T−1JnT ( x1 ). Moreover, one can compute a closed form if

a =
(

c1·x1+p1
...

cd·xd+pd

)
where ci ∈ N and each pi is a polynomial over x1, . . . , xi−1 [15].

3.1 Acceleration via Decrease or Increase

The first acceleration technique discussed in this section exploits the following
observation: If ϕ(a(x)) implies ϕ(x) and ϕ(an−1(x)) holds, then Tloop is appli-
cable at least n times. So in other words, it requires that the indicator function
(or characteristic function) Iϕ : Zd → {0, 1} of ϕ with Iϕ(x) = 1 ⇐⇒ ϕ(x) is
monotonically decreasing w.r.t. a, i.e., Iϕ(x) ≥ Iϕ(a(x)).
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Theorem 1 (Acceleration via Monotonic Decrease [28]). If

ϕ(a(x)) =⇒ ϕ(x),

then the following acceleration technique is exact:

Tloop �→ x′ = an(x) ∧ ϕ(an−1(x))

So for example, Thm. 1 accelerates Texp to ψexp. However, the requirement
ϕ(a(x)) =⇒ ϕ(x) is often violated in practice. To see this, consider the loop

while x1 > 0 ∧ x2 > 0 do ( x1
x2

) ←
(
x1−1
x2+1

)
. (Tnon-dec)

It cannot be accelerated with Thm. 1 as

x1 − 1 > 0 ∧ x2 + 1 > 0 =⇒ x1 > 0 ∧ x2 > 0.

A dual acceleration technique is obtained by “reversing” the implication in
the prerequisites of Thm. 1. Then Iϕ is monotonically increasing w.r.t. a. So ϕ
is an invariant and thus {x ∈ Zd | ϕ(x)} is a recurrent set [22] of Tloop.

Theorem 2 (Acceleration via Monotonic Increase). If

ϕ(x) =⇒ ϕ(a(x)),

then the following acceleration technique is exact:

Tloop �→ x′ = an(x) ∧ ϕ(x)

As a minimal example, Thm. 2 accelerates

while x > 0 do x ← x+ 1

to x′ = x+ n ∧ x > 0.

3.2 Acceleration via Decrease and Increase

Both acceleration techniques presented so far have been generalized in [11].

Theorem 3 (Acceleration via Monotonicity [11]). If

ϕ(x) ⇐⇒ ϕ1(x) ∧ ϕ2(x) ∧ ϕ3(x),

ϕ1(x) =⇒ ϕ1(a(x)),

ϕ1(x) ∧ ϕ2(a(x)) =⇒ ϕ2(x), and

ϕ1(x) ∧ ϕ2(x) ∧ ϕ3(x) =⇒ ϕ3(a(x)),

then the following acceleration technique is exact:

Tloop �→ x′ = an(x) ∧ ϕ1(x) ∧ ϕ2(a
n−1(x)) ∧ ϕ3(x)
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Here, ϕ1 and ϕ3 are again invariants of the loop. Thus, as in Thm. 2 it suffices
to require that they hold before entering the loop. On the other hand, ϕ2 needs
to satisfy a similar condition as in Thm. 1 and thus it suffices to require that ϕ2

holds before the last iteration. We also say that ϕ2 is a converse invariant (w.r.t.
ϕ1). It is easy to see that Thm. 3 is equivalent to Thm. 1 if ϕ1 ≡ ϕ3 ≡ � (where
� denotes logical truth) and it is equivalent to Thm. 2 if ϕ2 ≡ ϕ3 ≡ �.

With this approach, Tnon-dec can be accelerated to(
x′
1

x′
2

)
=

(
x1−n
x2+n

)
∧ x2 > 0 ∧ x1 − n+ 1 > 0 (ψnon-dec)

by choosing ϕ1 := x2 > 0, ϕ2 := x1 > 0, and ϕ3 := �.
Thm. 3 naturally raises the question: Why do we need two invariants? To see

this, consider a restriction of Thm. 3 where ϕ3 := �. It would fail for a loop like

while x1 > 0 ∧ x2 > 0 do ( x1
x2

) ←
(
x1+x2
x2−1

)
(T2-invs)

which can easily be handled by Thm. 3 (by choosing ϕ1 := �, ϕ2 := x2 > 0,
and ϕ3 := x1 > 0). The problem is that the converse invariant x2 > 0 is needed
to prove invariance of x1 > 0. Similarly, a restriction of Thm. 3 where ϕ1 := �
would fail for the following variant of T2-invs:

while x1 > 0 ∧ x2 > 0 do ( x1
x2

) ←
(
x1−x2
x2+1

)
Here, the problem is that the invariant x2 > 0 is needed to prove converse
invariance of x1 > 0.

3.3 Acceleration via Metering Functions

Another approach for loop acceleration uses metering functions, a variation of
classical ranking functions from termination and complexity analysis [17]. While
ranking functions give rise to upper bounds on the runtime of loops, metering
functions provide lower runtime bounds, i.e., the definition of a metering function
mf : Zd → Q ensures that for each x ∈ Zd, the loop under consideration can be
applied at least �mf (x)� times.

Theorem 4 (Acceleration via Metering Functions [17]). Let mf be a
metering function for Tloop. Then the following acceleration technique is sound:

Tloop �→ x′ = an(x) ∧ ϕ(x) ∧ n < mf (x) + 1

So using the metering function x, Thm. 4 accelerates Texp to(
x′
1

x′
2

)
=

( x1−n
2n·x2

)
∧ x1 > 0 ∧ n < x1 + 1 ≡ ψexp.

However, synthesizing non-trivial (i.e., non-constant) metering functions is
challenging. Moreover, unless the number of iterations of Tloop equals �mf (x)�
for all x ∈ Zd, acceleration via metering functions is not exact.
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Linear metering functions can be synthesized via Farkas’ Lemma and SMT
solving [17]. However, many loops do not have non-trivial linear metering functions.
To see this, reconsider Tnon-dec. Here, (x1, x2) �→ x1 is not a metering function
as Tnon-dec cannot be iterated at least x1 times if x2 ≤ 0. Thus, [16] proposes
a refinement of [17] based on metering functions of the form x �→ Iξ(x) · f(x)
where ξ ∈ Prop(C (x)) and f is linear. With this improvement, the metering
function (x1, x2) �→ Ix2>0(x2) · x1 can be used to accelerate Tnon-dec to(

x′
1

x′
2

)
=

(
x1−n
x2+n

)
∧ x1 > 0 ∧ x2 > 0 ∧ n < x1 + 1.

4 A Calculus for Modular Loop Acceleration

All acceleration techniques presented so far are monolithic: Either they accelerate
a loop successfully or they fail completely. In other words, we cannot combine
several techniques to accelerate a single loop. To this end, we now present a
calculus that repeatedly applies acceleration techniques to simplify an acceleration
problem resulting from a loop Tloop until it is solved and hence gives rise to a
suitable ψ ∈ Prop(C (y)) which approximates resp. is equivalent to Tloop.

Definition 3 (Acceleration Problem). A tuple

�ψ | qϕ | ϕ̂ | a�

where ψ ∈ Prop(C (y)), qϕ, ϕ̂ ∈ Prop(C (x)), and a : Zd → Zd is an acceleration
problem. It is consistent if ψ approximates 〈qϕ,a〉, exact if ψ is equivalent to
〈qϕ,a〉, and solved if it is consistent and ϕ̂ ≡ �. The canonical acceleration
problem of a loop Tloop is

�x′ = an(x) | � | ϕ(x) | a(x)� .

Example 1. The canonical acceleration problem of Tnon-dec is

�(
x′
1

x′
2

)
=

(
x1−n
x2+n

) ∣∣∣ � ∣∣∣ x1 > 0 ∧ x2 > 0
∣∣∣ ( x1−1

x2+1

)�
.

The first component ψ of an acceleration problem �ψ | qϕ | ϕ̂ | a� is the partial
result that has been computed so far. The second component qϕ corresponds
to the part of the loop condition that has already been processed successfully.
As our calculus preserves consistency, ψ always approximates 〈qϕ,a〉. The third
component is the part of the loop condition that remains to be processed, i.e., the
loop 〈ϕ̂,a〉 still needs to be accelerated. The goal of our calculus is to transform
a canonical into a solved acceleration problem.

More specifically, when we have simplified a canonical acceleration problem
�x′ = an(x) | � | ϕ(x) | a(x)� to �ψ1(y) | qϕ(x) | ϕ̂(x) | a(x)�, then ϕ ≡ qϕ ∧ ϕ̂
and

ψ1 =⇒ x −→n
〈 qϕ,a〉 x

′.
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Thus, it then suffices to find some ψ2 ∈ Prop(C (y)) such that

x −→n
〈 qϕ,a〉 x

′ ∧ ψ2 =⇒ x −→n
〈ϕ̂,a〉 x

′. (1)

The reason is that we have −→〈 qϕ,a〉 ∩−→〈ϕ̂,a〉 = −→〈 qϕ∧ϕ̂,a〉 = −→〈ϕ,a〉 and thus

ψ1 ∧ ψ2 =⇒ x −→n
〈ϕ,a〉 x

′,

i.e., ψ1 ∧ ψ2 approximates Tloop.
Note that the acceleration techniques presented so far would map 〈ϕ̂,a〉 to

some ψ2 ∈ Prop(C (y)) such that

ψ2 =⇒ x −→n
〈ϕ̂,a〉 x

′, (2)

which is more restrictive than (1). In Sec. 5, we will adapt all acceleration
techniques from Sec. 3 to search for some ψ2 ∈ Prop(C (y)) that satisfies (1)
instead of (2), i.e., we will turn them into conditional acceleration techniques.

Definition 4 (Conditional Acceleration). We call a partial function

accel : Loop × Prop(C (x)) ⇀ Prop(C (y)).

a conditional acceleration technique. It is sound if

x −→n
〈 qϕ,a〉 x

′ ∧ accel(〈χ,a〉, qϕ) implies x −→n
〈χ,a〉 x

′

for all (〈χ,a〉, qϕ) ∈ dom(accel), x,x′ ∈ Zd, and n > 0. It is exact if additionally

x −→n
〈χ∧ qϕ,a〉 x

′ implies accel(〈χ,a〉, qϕ)

for all (〈χ,a〉, qϕ) ∈ dom(accel), x,x′ ∈ Zd, and n > 0.

We are now ready to present our acceleration calculus, which combines loop
acceleration techniques in a modular way. In the following, w.l.o.g. we assume
that propositional formulas are in CNF and we identify the formula

∧k
i=1 Ci with

the set of clauses {Ci | 1 ≤ i ≤ k}.
Definition 5 (Acceleration Calculus). The relation � on acceleration prob-
lems is defined by the following rule:

∅ = χ ⊆ ϕ̂ accel(〈χ,a〉, qϕ) = ψ2

�ψ1 | qϕ | ϕ̂ | a� �(e) �ψ1 ∪ ψ2 | qϕ ∪ χ | ϕ̂ \ χ | a�
accel is a sound condition-

al acceleration technique

A �-step is exact (written �e) if accel is exact.

So our calculus allows us to pick a subset χ (of clauses) from the yet un-
processed condition ϕ̂ and “move” it to qϕ, which has already been processed
successfully. To this end, 〈χ,a〉 needs to be accelerated by a conditional accelera-
tion technique, i.e., when accelerating 〈χ,a〉 we may assume x −→n

〈 qϕ,a〉 x
′.

Note that every acceleration technique trivially gives rise to a conditional
acceleration technique (by disregarding the second argument qϕ of accel in Def. 4).
Thus, our calculus allows for combining arbitrary existing acceleration techniques
without adapting them. However, many acceleration techniques can easily be
turned into more sophisticated conditional acceleration techniques (cf. Sec. 5),
which increases the power of our approach.
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Example 2. We continue Ex. 1 and fix χ := x1 > 0. Thus, we need to accelerate
the loop

〈
x1 > 0,

(
x1−1
x2+1

)〉
to enable a �-step. We obtain

�
ψinit
non-dec :=

(
x′
1

x′
2

)
=

(
x1−n
x2+n

) ∣∣∣ � ∣∣∣ x1 > 0 ∧ x2 > 0
∣∣∣ ( x1−1

x2+1

)�
Thm. 1
�e

�
ψinit
non-dec ∧ x1 − n+ 1 > 0

∣∣ x1 > 0
∣∣ x2 > 0

∣∣ ( x1−1
x2+1

)�
Thm. 2
�e

�
ψinit
non-dec ∧ x1 − n+ 1 > 0 ∧ x2 > 0

∣∣ x1 > 0 ∧ x2 > 0
∣∣ � ∣∣ ( x1−1

x2+1

)�
=

�
ψnon-dec

∣∣ x1 > 0 ∧ x2 > 0
∣∣ � ∣∣ ( x1−1

x2+1

)�
where Thm. 2 was applied to the loop

〈
x2 > 0,

(
x1−1
x2+1

)〉
in the second step. Thus,

we successfully constructed the formula ψnon-dec, which is equivalent to Tnon-dec.

The crucial property of our calculus is the following.

Lemma 1. � preserves consistency and �e preserves exactness.

Then the correctness of our calculus follows immediately. The reason is that
�x′ = an(x) | � | ϕ(x) | a(x)� �∗

(e) �ψ(y) | qϕ(x) | � | a(x)� implies ϕ ≡ qϕ.

Theorem 5 (Correctness of �). If

�x′ = an(x) | � | ϕ(x) | a(x)� �∗ �ψ(y) | qϕ(x) | � | a(x)� ,

then ψ approximates Tloop. If

�x′ = an(x) | � | ϕ(x) | a(x)� �∗
e �ψ(y) | qϕ(x) | � | a(x)� ,

then ψ is equivalent to Tloop.

Termination of our calculus is trivial, as the size of the third component ϕ̂ of
the acceleration problem is decreasing.

Theorem 6 (Termination of �). � terminates.

5 Conditional Acceleration Techniques

We now show how to turn the acceleration techniques from Sec. 3 into conditional
acceleration techniques, starting with acceleration via monotonic decrease.

Theorem 7 (Conditional Acceleration via Monotonic Decrease). If

qϕ(x) ∧ χ(a(x)) =⇒ χ(x),

then the following conditional acceleration technique is exact:

(〈χ,a〉, qϕ) �→ x′ = an(x) ∧ χ(an−1(x))

So we just add qϕ to the premise of the implication that needs to be checked to
apply acceleration via monotonic decrease. Thm. 2 can be adapted analogously.
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Theorem 8 (Conditional Acceleration via Monotonic Increase). If

qϕ(x) ∧ χ(x) =⇒ χ(a(x)),

then the following conditional acceleration technique is exact:

(〈χ,a〉, qϕ) �→ x′ = an(x) ∧ χ(x)

Example 3. For the canonical acceleration problem of T2-invs, we obtain:
�
x′ = an

2-invs(x)
∣∣ � ∣∣ x1 > 0 ∧ x2 > 0

∣∣ a2-invs :=
(
x1+x2
x2−1

)�
Thm. 7
�e �x′ = an

2-invs(x) ∧ x2 − n+ 1 > 0 | x2 > 0 | x1 > 0 | a2-invs�
Thm. 8
�e �x′ = an

2-invs(x) ∧ x2 − n+ 1 > 0 ∧ x1 > 0 | x2 > 0 ∧ x1 > 0 | � | a2-invs�

While we could also use Thm. 1 for the first step, Thm. 2 is inapplicable in the
second step. The reason is that we need the converse invariant x2 > 0 to prove
invariance of x1 > 0.

It is not a coincidence that T2-invs, which could also be accelerated with
acceleration via monotonicity (cf. Thm. 3) directly, can be handled by applying
our novel calculus with Theorems 7 and 8.

Remark 1. If applying acceleration via monotonicity to Tloop yields ψ, then

�x′ = an(x) | � | ϕ(x) | a(x)� �≤3
e �ψ(y) | ϕ(x) | � | a(x)�

where either Thm. 7 or Thm. 8 is applied in each �e-step.

Thus, there is no need for a conditional variant of acceleration via monotonicity.
Note that combining Theorems 7 and 8 with our calculus is also useful for loops
where acceleration via monotonicity is inapplicable.

Example 4. Consider the following loop, which can be accelerated by splitting
its guard into one invariant and two converse invariants.

while x1 > 0 ∧ x2 > 0 ∧ x3 > 0 do
(

x1
x2
x3

)
←

(
x1−1
x2+x1
x3−x2

)
(T2-c-invs)

Let

ϕ2-c-invs := x1 > 0 ∧ x2 > 0 ∧ x3 > 0,

a2-c-invs :=
(

x1−1
x2+x1
x3−x2

)
,

ψinit
2-c-invs := x′ = an

2-c-invs(x),

and let x
(m)
i be the ith component of am

2-c-invs(x). Starting with the canonical
acceleration problem of T2-c-invs, we obtain:

�
ψinit
2-c-invs

∣∣ � ∣∣ ϕ2-c-invs

∣∣ a2-c-invs

�

Thm. 7
�e

�
ψinit
2-c-invs ∧ x

(n−1)
1 > 0

∣∣∣ x1 > 0
∣∣∣ x2 > 0 ∧ x3 > 0

∣∣∣ a2-c-invs

�

Thm. 8
�e

�
ψinit
2-c-invs ∧ x

(n−1)
1 > 0 ∧ x2 > 0

∣∣∣ x1 > 0 ∧ x2 > 0
∣∣∣ x3 > 0

∣∣∣ a2-c-invs

�

Thm. 7
�e

�
ψinit
2-c-invs ∧ x

(n−1)
1 > 0 ∧ x2 > 0 ∧ x

(n−1)
3 > 0

∣∣∣ ϕ2-c-invs

∣∣∣ � ∣∣∣ a2-c-invs

�
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Finally, we present a variant of Thm. 4 for conditional acceleration. The
idea is similar to the approach for deducing metering functions of the form
x �→ I

qϕ(x) · f(x) from [16] (see Sec. 3.3 for details). But in contrast to [16], in
our setting the “conditional” part qϕ does not need to be an invariant of the loop.

Theorem 9 (Conditional Acceleration via Metering Functions). Let
mf : Zd → Q. If

qϕ(x) ∧ χ(x) =⇒ mf (x)−mf (a(x)) ≤ 1 and

qϕ(x) ∧ ¬χ(x) =⇒ mf (x) ≤ 0,

then the following conditional acceleration technique is sound:

(〈χ,a〉, qϕ) �→ x′ = an(x) ∧ χ(x) ∧ n < mf (x) + 1

6 Acceleration via Eventual Monotonicity

The combination of the calculus from Sec. 4 and the conditional acceleration
techniques from Sec. 5 still fails to handle certain interesting classes of loops.
Thus, to improve the applicability of our approach we now present two new
acceleration techniques based on eventual monotonicity.

6.1 Acceleration via Eventual Decrease

All (combinations of) techniques presented so far fail for the following example.

while x1 > 0 do ( x1
x2

) ←
(
x1+x2
x2−1

)
(Tev-dec)

The reason is that x1 does not behave monotonically, i.e., x1 > 0 is neither an
invariant nor a converse invariant. Essentially, Tev-dec proceeds in two phases: In
the first (optional) phase, x2 is positive and hence the value of x1 is monotonically
increasing. In the second phase, x2 is non-positive and consequently the value of
x1 decreases (weakly) monotonically. The crucial observation is that once the
value of x1 decreases, it can never increase again. Thus, despite the non-monotonic
behavior of x1, it suffices to require that x1 > 0 holds before the first and before
the nth loop iteration to ensure that the loop can be iterated at least n times.

Theorem 10 (Acceleration via Eventual Decrease). If ϕ(x) ≡
∧k

i=1 Ci

where each Ci contains an inequation expr i(x) > 0 such that

expr i(x) ≥ expr i(a(x)) =⇒ expr i(a(x)) ≥ expr i(a
2(x)),

then the following acceleration technique is sound:

Tloop �→ x′ = an(x) ∧
k∧

i=1

(
expr i(x) > 0 ∧ expr i(a

n−1(x)) > 0
)

If Ci ≡ expr i > 0 for all i ∈ [1, k], then it is exact.
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With Thm. 10, we can accelerate Tev-dec to(
x′
1

x′
2

)
=

(
n−n2

2 +x2·n+x1

x2−n

)
∧ x1 > 0 ∧ n−1−(n−1)2

2 + x2 · (n− 1) + x1 > 0

as we have

(x1 ≥ x1 + x2) ≡ (0 ≥ x2) =⇒ (0 ≥ x2 − 1) ≡ (x1 + x2 ≥ x1 + x2 + x2 − 1).

Turning Thm. 10 into a conditional acceleration technique is straightforward.

Theorem 11 (Conditional Acceleration via Eventual Decrease). If we

have χ(x) ≡
∧k

i=1 Ci where each Ci contains an inequation expr i(x) > 0 such
that

qϕ(x) ∧ expr i(x) ≥ expr i(a(x)) =⇒ expr i(a(x)) ≥ expr i(a
2(x)), (3)

then the following conditional acceleration technique is sound:

(〈χ,a〉, qϕ) �→ x′ = an(x) ∧
k∧

i=1

(
expr i(x) > 0 ∧ expr i(a

n−1(x)) > 0
)

If Ci ≡ expr i > 0 for all i ∈ [1, k], then it is exact.

Example 5. Consider the following variant of Tev-dec.

while x1 > 0 ∧ x3 > 0 do
(

x1
x2
x3

)
←

(
x1+x2
x2−x3

x3

)
Starting with its canonical acceleration problem, we get

�
x′ = an(x)

∣∣∣ � ∣∣∣ x1 > 0 ∧ x3 > 0
∣∣∣ a :=

(
x1+x2
x2−x3

x3

)�

Thm. 8
�e �x′ = an(x) ∧ x3 > 0 | x3 > 0 | x1 > 0 | a�

Thm. 11
�e

�
x′ = an(x) ∧ x3 > 0 ∧ x1 > 0 ∧ x

(n−1)
1 > 0

∣∣∣ x3 > 0 ∧ x1 > 0
∣∣∣ � ∣∣∣ a�

where the second step can be performed via Thm. 11 as

(qϕ(x) ∧ expr(x) ≥ expr(a(x))) ≡ (x3 > 0 ∧ x1 ≥ x1 + x2) ≡ (x3 > 0 ∧ 0 ≥ x2)

implies

(0 ≥ x2 − x3) ≡ (x1 + x2 ≥ x1 + x2 + x2 − x3) ≡ (expr(a(x)) ≥ expr(a2(x))).

6.2 Acceleration via Eventual Increase

Still, all (combinations of) techniques presented so far fail for

while x1 > 0 do ( x1
x2

) ←
(
x1+x2
x2+1

)
. (Tev-inc)

As in the case of Tev-dec, the value of x1 does not behave monotonically, i.e.,
x1 > 0 is neither an invariant nor a converse invariant. However, this time x1 is
eventually increasing, i.e., once x1 starts to grow, it never decreases again. Thus,
in this case it suffices to require that x1 is positive and (weakly) increasing.
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Theorem 12 (Acceleration via Eventual Increase). If ϕ(x) ≡
∧k

i=1 Ci

where each Ci contains an inequation expr i(x) > 0 such that

expr i(x) ≤ expr i(a(x)) =⇒ expr i(a(x)) ≤ expr i(a
2(x)),

then the following acceleration technique is sound:

Tloop �→ x′ = an(x) ∧
k∧

i=1

0 < expr i(x) ≤ expr i(a(x))

With Thm. 12, we can accelerate Tev-inc to(
x′
1

x′
2

)
=

(
n2−n

2 +x2·n+x1

x2+n

)
∧ 0 < x1 ≤ x1 + x2 (ψev-inc)

as we have

(x1 ≤ x1 + x2) ≡ (0 ≤ x2) =⇒ (0 ≤ x2 + 1) ≡ (x1 + x2 ≤ x1 + x2 + x2 + 1).

However, Thm. 12 is not exact, as the resulting formula only covers program
runs where each expr i behaves monotonically. So ψev-inc only covers those runs
of Tev-inc where the initial value of x2 is non-negative. Again, turning Thm. 12
into a conditional acceleration technique is straightforward.

Theorem 13 (Conditional Acceleration via Eventual Increase). If we

have χ(x) ≡
∧k

i=1 Ci where each Ci contains an inequation expr i(x) > 0 such
that

qϕ(x) ∧ expr i(x) ≤ expr i(a(x)) =⇒ expr i(a(x)) ≤ expr i(a
2(x)), (4)

then the following conditional acceleration technique is sound:

(〈χ,a〉, qϕ) �→ x′ = an(x) ∧
k∧

i=1

0 < expr i(x) ≤ expr i(a(x))

Example 6. Consider the following variant of Tev-inc.

while x1 > 0 ∧ x3 > 0 do
(

x1
x2
x3

)
←

(
x1+x2
x2+x3

x3

)
Starting with its canonical acceleration problem, we get

�
x′ = an(x)

∣∣∣ � ∣∣∣ x1 > 0 ∧ x3 > 0
∣∣∣ a :=

(
x1+x2
x2+x3

x3

)�

Thm. 8
�e �x′ = an(x) ∧ x3 > 0 | x3 > 0 | x1 > 0 | a�

Thm. 13
� �x′ = an(x) ∧ x3 > 0 ∧ 0 < x1 ≤ x1 + x2 | x3 > 0 ∧ x1 > 0 | � | a�

where the second step can be performed via Thm. 13 as

(qϕ(x) ∧ expr(x) ≤ expr(a(x))) ≡ (x3 > 0 ∧ x1 ≤ x1 + x2) ≡ (x3 > 0 ∧ 0 ≤ x2)

implies

(0 ≤ x2 + x3) ≡ (x1 + x2 ≤ x1 + x2 + x2 + x3) ≡ (expr(a(x)) ≤ expr(a2(x))).
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We also considered versions of Theorems 11 and 13 where the inequations in
(3) resp. (4) are strict, but this did not lead to an improvement in our experiments.
Moreover, we experimented with a variant of Thm. 13 that splits the loop under
consideration into two consecutive loops, accelerates them independently, and
composes the results. While such an approach can accelerate loops like ψev-inc

exactly, the impact on our experimental results was minimal. Thus, we postpone
an in-depth investigation of this idea to future work.

7 Related Work

Acceleration-like techniques are also used in over-approximating settings (see,
e.g., [10,20,21,25,26,29,32,33]), whereas we consider exact and under-approxi-
mating loop acceleration techniques. As many related approaches have already
been discussed in Sec. 3, we only mention two more techniques here.

First, [4, 7] presents an exact acceleration technique for finite monoid affine
transformations (FMATs), i.e., loops with linear arithmetic whose body is of
the form x ← Ax+ b where {Ai | i ∈ N} is finite. For such loops, Presburger-
Arithmetic is sufficient to construct an equivalent formula ψ, i.e., it can be
expressed in a decidable logic. In general, this is clearly not the case for the
techniques presented in the current paper (which may even synthesize non-
polynomial closed forms, see Texp). As a consequence and in contrast to our
technique, this approach cannot handle loops where the values of variables grow
super-linearly (i.e., it cannot handle examples like T2-invs). Implementations
are available in the tools FAST [2] and Flata [24]. Further theoretical results
on linear transformations whose n-fold closure is definable in (extensions of)
Presburger-Arithmetic can be found in [5].

Second, [6] shows that octagonal relations can be accelerated exactly and
in [27], it is proven that such relations can even be accelerated in polynomial
time. This generalizes earlier results for difference bound constraints [9]. As
in the case of FMATs, the resulting formula can be expressed in Presburger-
Arithmetic. Octagonal relations are defined by a finite conjunction ξ of inequations
of the form ±x ± y ≤ c, x, y ∈ x ∪ x′, c ∈ Z. Then ξ induces the relation
x −→ξ x′ ⇐⇒ ξ(x,x′). So in contrast to the loops considered in the current
paper where x′ is uniquely determined by x, octagonal relations can represent
non-deterministic programs. Therefore and due to the restricted form of octagonal
relations, the work from [6,27] is orthogonal to ours.

8 Implementation and Experiments

We prototypically implemented our approach in our open-source Loop Accelera-
tion Tool LoAT [11, 16,17]:

https://github.com/aprove-developers/LoAT/tree/tacas20

It uses Z3 [30] to check implications and PURRS [1] to compute closed forms.

https://github.com/aprove-developers/LoAT/tree/tacas20
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For technical reasons, the closed forms computed by LoAT are valid only if
n > 0, whereas Def. 2 requires them to be valid for all n ∈ N. The reason is that
PURRS has only limited support for initial conditions. In the future, we plan
to use a different recurrence solver to circumvent this problem. Thus, LoAT’s
results are only correct for all n > 1 (instead of all n > 0). Moreover, LoAT can
currently compute closed forms only if the loop body is triangular, meaning that
each ai is an expression over x1, . . . , xi. The reason is that PURRS cannot solve
systems of recurrence equations, but only a single recurrence equation at a time.
However, LoAT failed to compute closed forms for just 26 out of 1511 loops in our
experiments, i.e., this appears to be a minor restriction in practice. Furthermore,
conditional acceleration via metering functions has not yet been integrated into
the implementation of our calculus. While LoAT can synthesize formulas with
non-polynomial arithmetic, it cannot yet parse them, i.e., the input is restricted
to polynomials. Finally, LoAT does not yet support disjunctive loop conditions.

Apart from these differences, our implementation closely follows the current
paper. It repeatedly applies the conditional acceleration techniques from Sections 5
and 6 with the following priorities: Thm. 8 > Thm. 7 > Thm. 11 > Thm. 13.

To evaluate our approach, we extracted 1511 loops with conjunctive guards
from the category Termination of Integer Transition Systems of the Termination
Problems Database [35], the benchmark collection which is used at the annual
Termination and Complexity Competition [19], as follows:

1. We parsed all examples with LoAT and extracted each single-path loop with
conjunctive guard (resulting in 3829 benchmarks).

2. We removed duplicates by checking syntactic equality (resulting in 2825
benchmarks).

3. We removed loops whose runtime is trivially constant using an incomplete
check (resulting in 1733 benchmarks).

4. We removed loops which do not admit any terminating runs, i.e., loops where
Thm. 2 applies (resulting in 1511 benchmarks).

We compared our implementation with LoAT’s implementation of acceleration
via monotonicity (Thm. 3, [11]) and its implementation of acceleration via
metering functions (Thm. 4, [17]), which also incorporates the improvements
proposed in [16]. We did not include the techniques from Theorems 1 and 2 in our
evaluation, as they are subsumed by acceleration via monotonicity. Furthermore,
we compared with Flata [24], which implements the techniques to accelerate
FMATs and octagonal relations discussed in Sec. 7. Note that our benchmark
collection contains 16 loops with non-linear arithmetic where Flata is bound to
fail, since it only supports linear arithmetic. We did not compare with FAST [2],
which uses a similar approach as the more recent tool Flata.

All tests have been run on StarExec [34]. The results can be seen in Table 1.
They show that our novel calculus was superior to the competing techniques in
our experiments. In all but 7 cases where our calculus successfully accelerated the
given loop, the resulting formula was polynomial. Thus, integrating our approach
into existing acceleration-based verification techniques should not present major
obstacles w.r.t. automation.
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LoAT Monot. Meter Flata

exact 1444 845 03 1231

approx 38 0 733 0

fail 29 666 778 280

avg rt 0.16s 0.11s 0.09s 0.47s
Table 1.

Ev-Inc Ev-Dec Ev-Mon

exact 1444 845 845

approx 0 493 0

fail 67 173 666

avg rt 0.15s 0.14s 0.09s
Table 2.

LoAT: Acceleration calculus + Theorems 7, 8, 11 and 13
Monot.: Acceleration via Monotonicity, Thm. 3
Meter: Acceleration via Metering Functions, Thm. 4
Flata: The tool Flata, see http://nts.imag.fr/index.php/Flata
Ev-Inc: Acceleration calculus + Theorems 7, 8 and 11
Ev-Dec: Acceleration calculus + Theorems 7, 8 and 13
Ev-Mon: Acceleration calculus + Theorems 7 and 8
exact: Number of examples that were accelerated exactly
approx: Number of examples that were accelerated approximately
fail: Number of examples that could not be accelerated
avg rt: Average runtime per example

Furthermore, we evaluated the impact of our new acceleration techniques
from Sec. 6 independently. To this end, we once disabled acceleration via eventual
increase, acceleration via eventual decrease, and both of them. The results can be
seen in Table 2. They show that our calculus does not improve over acceleration
via monotonicity if both acceleration via eventual increase and acceleration via
eventual decrease are disabled (i.e., our benchmark collection does not contain
examples like T2-c-invs). However, enabling either acceleration via eventual de-
crease or acceleration via eventual increase resulted in a significant improvement.
Interestingly, there are many examples that can be accelerated with either of
these two techniques: When both of them were enabled, LoAT (exactly or approx-
imately) accelerated 1482 loops. When one of them was enabled, it accelerated
1444 resp. 1338 loops. But when none of them was enabled, it only accelerated
845 loops. We believe that this is due to examples like

while x1 > 0 ∧ . . . do
(

x1
x2
...

)
←

(
x2
x2
...

)
where Thm. 11 and Thm. 13 are applicable (since x1 ≤ x2 implies x2 ≤ x2 and
x1 ≥ x2 implies x2 ≥ x2).

Flata exactly accelerated 49 loops where LoAT failed or approximated and
LoAT exactly accelerated 262 loops where Flata failed. So there were only 18
loops where both Flata and the full version of our calculus failed to compute an
exact result. Among them were the only 3 examples where our implementation
found a closed form, but failed anyway. One of them was4

3 While acceleration via metering functions may be exact in some cases (see the
discussion after Thm. 4), our implementation cannot check whether this is the case.

4 The other two are structurally similar, but more complex.

http://nts.imag.fr/index.php/Flata
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while x3 > 0 do
(

x1
x2
x3

)
←

(
x1+1
x2−x1
x3+x2

)
.

Here, the updated value of x1 depends on x1, the update of x2 depends on x1

and x2, and the update of x3 depends on x2 and x3. Hence, the closed form of x1

is linear, the closed form of x2 is quadratic, and the closed form of x3 is cubic:

x
(n)
3 = − 1

6 · n3 + 1−x1

2 · n2 +
(
x1

2 + x2 − 1
3

)
· n+ x3

So when fixing x1, x2, and x3, x
(n)
3 has up to 2 extrema, i.e., its monotonicity may

change twice. However, our techniques based on eventual monotonicity require
that the respective expressions behave monotonically once they start to de- or
increase, so these techniques only allow one change of monotonicity.

This raises the question if our approach can accelerate every loop with
conjunctive guard and linear arithmetic whose closed form is a vector of (at most)
quadratic polynomials with rational coefficients. We leave this to future work.

For our benchmark collection, links to the StarExec-jobs of our evaluation,
and a pre-compiled binary (Linux, 64 bit) we refer to [14].

9 Conclusion and Future Work

After discussing existing acceleration techniques (Sec. 3), we presented a calculus
to combine acceleration techniques modularly (Sec. 4). Then we showed how to
combine existing (Sec. 5) and two novel (Sec. 6) acceleration techniques with
our calculus. This improves over prior approaches, where acceleration techniques
were used independently, and may thus improve acceleration-based verification
techniques [6,7,11,16–18,28] in the future. An empirical evaluation (Sec. 8) shows
that our approach is more powerful than state-of-the-art acceleration techniques.
Moreover, if it is able to accelerate a loop, then the result is exact (instead of
just an under-approximation) in most cases. Thus, our calculus can be used for
under-approximating techniques (e.g., to find bugs or counterexamples) as well
as in over-approximating settings (e.g., to prove safety or termination).

In the future, we plan to implement the missing features mentioned in Sec. 8
and integrate our novel calculus into our own acceleration-based program analyses
to prove lower bounds on the runtime complexity [16,17] and non-termination [11]
of integer programs. Furthermore, our experiments indicate that integrating
specialized techniques for FMATs (cf. Sec. 7) would improve the power of our
approach, as Flata exactly accelerated 49 loops where LoAT failed to do so (cf.
Sec. 8). Moreover, we plan to design a loop acceleration library, such that our
technique can easily be incorporated by other verification tools.
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Abstract. Much of an interpolation engine for bit-vector (BV) arith-
metic can be constructed by observing that BV arithmetic can be mod-
eled with linear integer arithmetic (LIA). Two BV formulae can thus be
translated into two LIA formulae and then an interpolation engine for
LIA used to derive an interpolant, albeit one expressed in LIA. The con-
struction is completed by back-translating the LIA interpolant into a BV
formula whose models coincide with those of the LIA interpolant. This
paper develops a back-translation algorithm showing, for the first time,
how back-translation can be universally applied, whatever the LIA inter-
polant. This avoids the need for deriving a BV interpolant by bit-blasting
the BV formulae, as a backup process when back-translation fails. The
new back-translation process relies on a novel geometric technique, called
gapping, the correctness and practicality of which are demonstrated.

1 Introduction

Given two formulae A and B which are inconsistent, an interpolant for the
ordered pair 〈A,B〉 is a formula I over the variables common to both A and B
which is a relaxation of A that is still inconsistent with B. For example, when
working over the theory of linear inequalities, if A = (x = y + 1) ∧ (y = 0)
and B = (x = z + 2) ∧ (1 ≤ z) then interpolants for 〈A,B〉 are I1 = (x = 1),
I2 = (x ≤ 1) and I3 = (x < 3), ordering by increasing generality. The intuition
behind I1, I2 and I3 is that they are abstractions of A which concisely explain the
inconsistency between A and B. Interpolation has attracted growing attention
over the last decade [26], because of the crucial role it plays in model checking in
lazy [18] predicate abstraction [15] and lazy abstraction with interpolants [25],
as exemplified in BLAST [5] and IMPACT [25] respectively. In lazy predicate
abstraction [25], interpolation is used to synthesise predicates which describe
program state. Predicates are added, on demand, to explain why a path through
a program cannot reach an error state. In lazy abstraction with interpolants
[25], program state is described with unrestricted formulae, rather than merely
using predicates, and interpolation is applied to relax sequences of formulae
that describe the states down paths which do not error. Interpolation simplify
these formulae but increasing the likelihood of covering, again accelerating path
exploration. In effect, interpolation is the key abstraction mechanism.
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Context As solvers for richer theories have evolved so have interpolation engines
for these theories, with a notable flurry of activity around one decade ago [10, 11,
19, 20, 23, 24, 30]. However, progress on the important theory of bit-vectors (BV)
has been surprisingly slow, the two key works [2, 16] taking opposing approaches.
One takes advantage of existing interpolation engines [16] and the another de-
velops a bespoke interpolation engine around lazy reduction [2], which supports
bit-vector operations by expanding them, on demand, to Presburger arithmetic
[2]. This paper develops the former approach, aiming to use an LIA solver as is.

The central problem in bit-vector interpolation is to construct an interpolant
which is compact (one might even say beautiful [1]). Although a pair of inconsis-
tent BV formulae can always be bit-blasted (unfolded) into a pair of inconsistent
propositional formulae, it is not always obvious how the resulting propositional
interpolant can be folded back into a compact bit-vector (BV) formula to derive
a BV interpolant. Interpolation engines over linear integer arithmetic (LIA) have
thus been repurposed for BV interpolation [16]. First, operations on bit-vectors
are reformulated as LIA formulae. An interpolant over LIA is then reinterpreted
as a candidate interpolant for a pair of BV formulae. Because of wrap-around,
LIA does not necessarily align with BV arithmetic, hence the LIA interpolant
is adopted as a BV interpolant only if it passes a (unsatisfiability) check over
bit-vectors. This checks that the interpolant relaxes the first BV formula of the
pair and yet is still inconsistent with the second. If the candidate fails the check,
then the two BV formulae are bit-blasted to recover a propositional interpolant,
albeit one which looses the high-level structure of bit-vectors, and therefore is
not compact. This approach is promising: it exploits robust off-the-shelf LIA
interpolation [17] yet is compromised by the quality of the interpolants which
follow from bit-blasting.

Contribution This paper plugs this gap, addressing the issue of interpolant qual-
ity by developing a new, principled encoding LIA formulae into BV formulae
which does not enlarge the bit-width of the BV formulae. This ensures that
the interpolant is still drawn from the language used to define BV formulae.
We show that a näıve encoding of an LIA inequality as a BV inequality can
give a formula which has a completely different meaning from LIA inequality:
the BV inequality can have solutions not admitted by the LIA inequality and
vice versa. Moreover, we illustrate how a straightforward encoding of a single
LIA inequality can require many BV inequalities, which compromises the quality
of a BV interpolant. We therefore propose a technique, which we call gapping,
which adds range constraints to LIA inequality which reduces the LIA inequality
into two or three LIA systems the solutions of which are amenable to compact
BV representation. The term gapping reflects a geometric interpretation of this
transformation which introduces a gap4 between the solutions of the two LIA
systems. We demonstrate the value of this approach with a BV interpolation
engine which side-steps bit-blasting (and the complexity of providing bit-level

4 The title of the paper alludes to both this geometric technique, the conceptual gap
in previous work, and collaboration which entailed traveling through London.



Mind the Gap: Bit-vector Interpolation recast over Linear Integer Arithmetic 81

circuits for arithmetic) and show that the approach usually gives a modest slow-
down relative to LIA. We also prove the validity of the BV encoding, and the
correctness of the reductions the encoding relies on, though the proofs themselves
are omitted here for brevity. To summarise, the contributions of this paper are
as follows:

– We show how interpolating theorem provers for LIA can be used to interpo-
late BV formulae, without recourse to bit-blasting.

– We develop a rigorous theory which explains gapping and proves that the
resulting BV interpolant has exactly the same set of models as the LIA
interpolant of the two BV formulae.

– We provide evaluation, within the established [6] framework of lazy abstrac-
tion with interpolants [25] which demonstrates the practicality of the ap-
proach for BV interpolation.

Use case Since BV formulae are converted to LIA one might wonder why one
cannot work with LIA throughout and avoid BV interpolation all together. First,
such an approach would not fit with a layered approach to interpolation [17]
where one uses one lightweight theory (eg. uninterpreted functors) and then, if
necessary, a more complicated one (eg. LIA) to construct a BV interpolant. BV
formulae provide a uniform way expressing interpolants, no matter how they are
derived. Second, computing LIA interpolants is complex and it is not surprising
that these engines contain subtle5 bugs. Translating a LIA interpolant back
into a BV formula enables interpolants to be validated using a BV solver [3,
7, 27], using the reference (BV) semantics of a program. Moreover, validation
need make no assumption on the correctness of a translation between theories.
Validation can be performed on-the-fly, as the unwinding tree [25] is constructed,
or by translating the complete, stable unwinding tree into its BV counterpart.
The BV version can then be validated as a form of post-processing, akin to
post-fixpoint validation in abstract interpretation [4, 14].

Road map This paper is structured as follows: Section 2 gives the intuition be-
hind boxing and gapping whereas Section 3 argues for the correctness of the
approach. Section 4 presents the experimental work. Section 5 presents the re-
lated work and section 6 concludes.

2 Boxing and Gapping in Pictures

Given a linear inequality �, we seek to find a bit-vector formula f such that�
f
�
BV

=
�
�
�
LIA

where
�
f
�
BV

and
�
�
�
LIA

are respectively the sets of solutions
(models) of f and � in the linear integer arithmetic (LIA) and bit-vector (BV)
semantics. Ideally f should be compact where we measure size by the number
of binary logical connectives in f . This section gives the intuition behind two

5 We refrain from mentioning specific solvers because we do not want to embarrass
any particular research team to whom we are grateful.
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(a) x+ y ≤ 3 (b) x+ y ≤ 3 with box (c) x+ y ≤ 7

(d) x+ y − 4 ≤ 3 (e) x+ y − 4 ≤ 3 with box 1 (f) x+ y − 4 ≤ 3 with box 2

Fig. 1. Gapping and boxing for x+ y ≤ 3 and x+ y ≤ 7

techniques, boxing and gapping, and demonstrate how they are used together to
construct such an f ; the sequel provides a more formal development.

To illustrate boxing and gapping, first consider the set of solutions to the
inequality x + y ≤ 3, when interpreted with both the LIA semantics and BV
semantics. Figure 1(a) gives the LIA solutions in blue and the BV solutions
in red over the non-negative integer grid {(x, y) | 0 ≤ x < 8 ∧ 0 ≤ y < 8}
using a modulo of 8 for bit-vectors. The solution sets differ on, for instance,
(5, 6) since (5 + 6) (mod 8) = 3 ≤ 3 but 5 + 6 = 11 �≤ 3. It does not generally
follow that

�
f
�
LIA

⊆ �
f
�
BV

as Figure 1(d) illustrates for f = x+y−4 ≤ 3. Then

(1, 2) ∈ �
x+ y − 4 ≤ 3

�
LIA

since 1+2−4 = −1 ≤ 3 but (1, 2) �∈ �
x+ y − 4 ≤ 3

�
BV

since (1 + 2− 4) (mod 8) = 7 �≤ 3.

Enumeration A naive approach to finding a formula f such that
�
f
�
BV

=
�
�
�
LIA

is to enumerate all solutions of
�
�
�
LIA

to then summarise them in a single BV
formula. Figure 1(a) illustrates the 4 + 3 + 2 + 1 = 10 LIA solutions for � =
(x+ y ≤ 3) which are summarised in the following BV formula:

f1 = (x = 0 ∧ y = 0) ∨ . . . ∨ (x = 0 ∧ y = 3) ∨ . . . ∨ (x = 3 ∧ y = 0)

This formula has 9 binary disjuncts and 10 binary conjuncts, hence 19 logical
connectives in total. A more compact formulation is to cover the blue triangular
region of Figure 1(a) with columns as realised with the following BV formula:

f2 = (x = 0 ∧ y ≤ 3) ∨ . . . ∨ (x = 3 ∧ y ≤ 0)

Only non-negative solutions on the grid are considered so there is no need to
additionally assert 0 ≤ y. This formula has 3 binary disjuncts and 4 binary
conjuncts giving and 7 connectives in total.
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Boxing Observe from Figure 1(a) that the extra solutions of
�
x+ y ≤ 3

�
BV

over�
x+ y ≤ 3

�
LIA

stem from overflow. Overflow can be avoided by constraining BV
solutions with x ≤ 3 and y ≤ 3 which amounts to placing a box (in general a
hyper-rectangle) around the LIA solutions, as illustrated in Figure 1(b). This
tactic, henceforth called boxing, leads to the following formula:

f3 = (x+ y ≤ 3 ∧ x ≤ 3 ∧ y ≤ 3)

which requires 2 binary conjuncts.

Gapping Figure 1(c) illustrates that in general boxing cannot be applied in
isolation because a box around the LIA solutions would not eliminate any extra-
neous BV solutions. Boxing is successful for Figure 1(b) because of the absence
of solutions (a gap) between the LIA solutions inside the box and the BV so-
lutions outside the box. No such gap exists for the box of Figure 1(c). Yet
boxing can still be applied by decomposing the inequality x + y ≤ 7 into two
inequalities both of which are amenable to boxing. The construction is based on�
x+ y ≤ 7

�
LIA

=
�
x+ y ≤ 3

�
LIA

∪�
4 ≤ x+ y ∧ x+ y ≤ 7

�
LIA

=
�
x+ y ≤ 3

�
LIA

∪�
0 ≤ x+ y − 4 ∧ x+ y − 4 ≤ 3

�
LIA

. Recall that boxing alone allows the LIA so-
lutions of x + y ≤ 3 to be expressed as a BV formula of 2 binary connectives.
Thus consider the compound formula �′ = (0 ≤ x+ y− 4∧ x+ y− 4 ≤ 3) whose
LIA solutions are illustrated in Figure 1(d). Observe that the BV solutions of
�′ can be covered with two rectangles without including the extraneous 6 BV
solutions in top right. Then

�
�′

�
LIA

=
�
x+ y − 4 ≤ 3 ∧ (x ≤ 3 ∨ y ≤ 3)

�
BV

which
leads to the complete formula

f3 = (x+ y ≤ 3 ∧ x ≤ 3 ∧ y ≤ 3) ∨ (x+ y − 4 ≤ 3 ∧ (x ≤ 3 ∨ y ≤ 3))

such that
�
f3

�
BV

=
�
x+ y ≤ 7

�
LIA

. This tactic of artificially introducing a gap,
henceforth called gapping, is equally applicable for larger grids too. For instance,
working over a modulo of 32

�
x+ y ≤ 31

�
LIA

=
�
f4

�
BV

where

f4 = (x+ y ≤ 15 ∧ x ≤ 15 ∧ y ≤ 15) ∨ (x+ y − 16 ≤ 15 ∧ (x ≤ 15 ∨ y ≤ 15))

3 Formal correctness of boxing and gapping

In what follows we consider LIA and BV formulae over an ordered set of variables
{x1, . . . , xd} for some d > 1. We consider bit-vectors of fixed width w > 1
and interpret LIA and BV formulae over the product space Md where M =
{0, 1, 2, . . . ,m− 1} and m = 2w as follows:

Definition 1. Let c, c′ ∈ Zd and b, b′ ∈ Z. If � ≡ (
∑d

i=1 cixi)+b ≤ (
∑d

i=1 c
′
ixi)+

b′ then
�
�
�
LIA

=
{
x ∈ Md

∣∣∣∑d
i=1 cixi + b ≤ ∑d

i=1 c
′
ixi + b′

}
�
�
�
BV

=
{
x ∈ Md

∣∣∣(∑d
i=1 cixi + b) mod m ≤ (

∑d
i=1 c

′
ixi + b′) mod m

}
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Furthermore, the LIA semantics can be lifted from inequalities to LIA formulae
by:

�
f1 ∨ f2

�
LIA

=
�
f1

�
LIA

∪�
f2

�
LIA

,
�
f1 ∧ f2

�
LIA

=
�
f1

�
LIA

∩�
f2

�
LIA

and
�¬f�

LIA
=

Md \ �
f
�
LIA

. Likewise for BV formulae.
In the sequel, N denotes the set of (strictly) positive integers, R the set of

real numbers, and R≥0 the set of non-negative real numbers. We extend the
floor and ceiling function for the sequences in Rd in a component-wise manner:
x�i = xi� and �x�i = �xi�. If x ∈ Rd then |x| = d. The partial order ≤ on Rd

is defined by x ≤ y if and only if xi ≤ yi for all i = 1, . . . , d.

3.1 Boxing

Boxing is founded on the following result and its corollary in which sets of
solutions to inequalities which describe hyper-rectangles are pinched, above and
below, by inclusions to systems of inequalities with positive, unary coefficients:

Lemma 1. Let d > 1 and L ∈ N. Then:{
x ∈ Rd

≥0

∣∣∣∑d
i=1 xi ≤ L · (m/2)− 1

}
⊆ ⋃

p∈Id((d−1)(L+1))

⋂d
i=1

{
x ∈ Rd

≥0 | xi <
pi·(m/2)

d−1

}
⊆

{
x ∈ Rd

≥0

∣∣∣∑d
i=1 xi < (L+ 1) · (m/2)

}
where Id(n) =

{
(i1, . . . , id) ∈ Nd | i1 + · · ·+ id = n

}
.

Corollary 1. Let d > 1, L ∈ N and c ∈ Nd. Then:{
x ∈ Zd

≥0|
∑d

i=1 cixi ≤ L · (m/2)− 1
}

⊆ ⋃
p∈Id((d−1)(L+1))

⋂d
j=1

{
x ∈ Zd

≥0 | xj ≤ �pj ·(m/2)
ci(d−1) � − 1

}
⊆

{
x ∈ Zd

≥0 | ∑d
i=1 cixi ≤ (L+ 1) · (m/2)− 1

}
The corollary leads to two types of box constraint: one for LIA and the other,
reducing boxing, for BV. Boxing formulae are purely conceptual and are used
to reason about correctness; reduced boxing formulae are deployed within BV
interpolants.

Definition 2. Let c ∈ Nd, b ∈ N and L ∈ N be the unique natural number
such that (L− 1) · (m/2) ≤ b ≤ L · (m/2)− 1. The boxing and reduced boxing of∑d

i=1 cixi ≤ b are formulae defined as follows:

boxLIA(c; b) ≡
∨

p∈Id((d−1)(L+1))

d∧
j=1

(
xj ≤ �pj · (m/2)

cj(d− 1)
� − 1

)
(1)

boxBV(c; b) ≡
∨

p∈Id((d−1)(L+1))

d∧
j=1

(
xj ≤ min

(
�pj · (m/2)

cj(d− 1)
� − 1,m− 1

))
(2)
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Given m and b ∈ N, it is always possible to find a unique L ∈ N which satisfies
Definition 2 by putting L =  2b

m � + 1. Then L − 1 =  2b
m � ≤ 2b

m <  2b
m � + 1 = L

hence (L − 1)(m/2) ≤ b < L(m/2) whence (L − 1)(m/2) ≤ b ≤ L(m/2) − 1
because b and L(m/2) are integral.

One might expect that the cardinality of Id((d − 1)(L + 1)) becomes large
as d or L grow large. Yet d is the number of variables occurring in the LIA
interpolant, which is typically small. Furthermore, when L is large, the values
of p are also large, so that many terms become equivalent because of the min
operation in equation (2) of Definition 2. Thus the number of terms required to
define boxBV(c; b) does not grow excessively large in practice.

The following proposition asserts that the boxing and reduced boxing formu-
lae share the same solution set when interpreted with, respectively, the LIA and
BV semantics.

Proposition 1.
�
boxLIA(c; b)

�
LIA

=
�
boxBV(c; b)

�
BV

Example 1. To demonstrate this equivalence, consider again x+y ≤ 3 for m = 8.
Then put L = 6/8�+ 1 = 1 and I2((d− 1)(L+ 1)) = I2(2) = {〈1, 1〉}. Observe
boxLIA(〈1, 1〉; 3) = boxBV(〈1, 1〉; 3) since

boxLIA(〈1, 1〉; 3) = (x ≤ �4/1� − 1 = 3) ∧ (y ≤ �4/1� − 1 = 3)

boxBV(〈1, 1〉; 3) = (x ≤ min(3, 7) = 3) ∧ (y ≤ min(3, 7) = 3)

Example 2. Although
�
boxLIA(c; b)

�
LIA

=
�
boxBV(c; b)

�
BV

, it does not necessarily

follow that
�
boxLIA(c; b)

�
LIA

=
�
boxLIA(c; b)

�
BV

. To illustrate, consider x+ y ≤ 7
for d = 2 and m = 4. Thus c = 〈1, 1〉 and b = 7. Then L = 14/4�+ 1 = 4 and
I2((d− 1)(L+ 1)) = I2(5) = {〈1, 4〉, 〈2, 3〉, 〈3, 2〉, 〈4, 1〉} hence

boxLIA(c; b) = (x ≤ 1 ∧ y ≤ 7) ∨ (x ≤ 3 ∧ y ≤ 5)∨
(x ≤ 5 ∧ y ≤ 3) ∨ (x ≤ 7 ∧ y ≤ 1)

Therefore
�
boxLIA(c; b)

�
LIA

= M2 but (2, 2) �∈ �
boxLIA(c; b)

�
BV

.

The following lemma shows that the solution sets for boxing grow monoton-
ically as the constant of the inequality is relaxed.

Lemma 2. If b ≤ b′ then
�
boxLIA(c; b)

�
LIA

⊆ �
boxLIA(c; b

′)
�
LIA

.

The following results explains how to augment an inequality with a box so
as to align its BV semantics with its LIA semantics.

Theorem 1 (boxing without gapping). Let c ∈ Nd and b ∈ N. If b < m/2
then

� d∑
i=1

cixi ≤ b
�

LIA

=
�
(

d∑
i=1

cixi ≤ b) ∧ boxBV(c; b)
�

BV
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Fig. 2. Gapping and boxing for x+ 2y ≤ 5

Observe that the result requires b < m/2. In this circumstance L = 2b/m� +
1 = 1 and number of logical connectives in boxBV(c; b) is determined by the
cardinality of the set Id((d− 1)(L+ 1)) = Id(2(d− 1)), which is given below:

d 2(d− 1) Id(2(d− 1)) |Id(2(d− 1))|
2 2 Π(〈1, 1〉) 1
3 4 Π(〈1, 1, 2〉) 3
4 6 Π(〈1, 1, 1, 3〉) ∪Π(〈1, 1, 2, 2〉) 10
5 8 Π(〈1, 1, 1, 1, 4〉) ∪Π(〈1, 1, 1, 2, 3〉) ∪Π(〈1, 1, 2, 2, 2〉) 35

where Π(v) denote the set of permutations of the vector v. For d = 4, boxBV(c; b)
thus requires 10(d− 1) = 30 binary conjunctions and 10 − 1 = 9 disjunctions.

3.2 Boxing and Gapping

Example 3. Consider
�
x+ 2y ≤ 5

�
BV

and
�
x+ 2y ≤ 5

�
LIA

for m = 8 as shown
in Figure 2(a). Observe

boxBV(〈1, 2〉; 5) = (x ≤ 3 ∧ y ≤ 3) ∨ (x ≤ 7 ∧ y ≤ 1)

which is illustrated by the two grey rectangles. Hence 〈2, 3〉 /∈ �
x+ 2y ≤ 5

�
LIA

but 〈2, 3〉 ∈ �
x+ 2y ≤ 5 ∧ boxBV(〈1, 2〉; 5)

�
BV

therefore using boxing alone is not
sufficient to encode the LIA inequality x+ 2y ≤ 5.

Example 4. Yet the LIA inequality x+ 2y ≤ 5 can be decomposed as follows:

�
x+ 2y ≤ 5

�
LIA

=
�
x+ 2y ≤ 3

�
LIA

∪ �
4 ≤ x+ 2y ≤ 5

�
LIA

=
�
x+ 2y ≤ 3

�
LIA

∪ �
0 ≤ x+ 2y − 4 ≤ 1

�
LIA

Figures 2(b, c) illustrates boxing for x+ 2y ≤ 3 and 0 ≤ x+ 2y − 4 ≤ 1 where:

�
x+ 2y ≤ 3

�
LIA

=
�
x+ 2y ≤ 3 ∧ boxBV(〈1, 2〉; 3)

�
BV

=
�
x+ 2y ≤ 3 ∧ (x ≤ 3 ∧ y ≤ 1)

�
BV

(a) x+ 2y ≤ 5 with boxes (b) x+ 2y ≤ 3 with box (c) 0 ≤ x+ 2y − 4 ≤ 1 with boxes
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Observe from Figure 2(c) that
�
0 ≤ x+ 2y − 4 ≤ 1

�
LIA

=
�
0 ≤ x+ 2y − 4 ≤ 1

�
BV

∩ �
boxBV(〈1, 2〉; 5)

�
BV

and moreover 0 mod 8 = 0 ≤ (x+ 2y − 4) mod 8 for all (x, y) ∈ M2 thus
�
0 ≤ x+ 2y − 4 ≤ 1

�
LIA

=
�
x+ 2y − 4 ≤ 1 ∧ boxBV(〈1, 2〉; 5)

�
BV

therefore cumulatively
�
x+ 2y ≤ 5

�
LIA

=
�
ϕ1 ∨ ϕ2

�
BV

where

ϕ1 = [x+ 2y ≤ 3 ∧ (x ≤ 3 ∧ y ≤ 1)]
ϕ2 = [x+ 2y − 4 ≤ 1 ∧ ((x ≤ 3 ∧ y ≤ 3) ∨ (x ≤ 7 ∧ y ≤ 1))]

The general rule of the separation of the given inequality and the boxing is
shown in this theorem:

Theorem 2 (boxing with gapping). Let c ∈ Nd and b ∈ N.
�∑d

i=1 cixi ≤ b
�
LIA

=�
φ0 ∨ φ1 ∨ φ2

�
BV

where S = b/(m/2)� and

φ0 ≡
(∑d

i=1 cixi − (S − 2)(m/2) ≤ m/2− 1
)
∧ boxBV(c; (S − 1)(m/2)− 1)

φ1 ≡
(∑d

i=1 cixi − (S − 1)(m/2) ≤ m/2− 1
)
∧ boxBV(c;S(m/2)− 1)

φ2 ≡
(∑d

i=1 cixi − S(m/2) ≤ b mod (m/2)
)

∧ boxBV(c; b)

Corollary 2 (boxing and gapping with simplification). If b/(m/2)� = 1

or b mod m = m/2− 1 then
�∑d

i=1 cixi ≤ b
�
LIA

=
�
φ1 ∨ φ2

�
BV

.

Example 5. Let m = 8 and consider again x + 2y ≤ 5 so that c = 〈1, 2〉. Then
S = 5/4� = 1 and, applying corollary 2,

�
x+ 2y ≤ 5

�
LIA

=
�
φ1 ∨ φ2

�
BV

where

φ1 ≡ (x+ 2y − 0 · 4 ≤ 4− 1) ∧ boxBV(c; 1 · 4− 1) = ϕ1

φ2 ≡ (x+ 2y − 1 · 4 ≤ 5 mod 4) ∧ boxBV(c; 5) = ϕ2

aligning with the intuition given in example 4.

Example 6. Figure 3 illustrates Theorem 2 for 7x + 3y ≤ 17 and m = 8. Then
S = 17/(8/2)� = 4 and

�
7x+ 3y ≤ 17

�
LIA

=
�
φ0 ∨ φ1 ∨ φ2

�
BV

where

φ0 = 7x+ 3y− 8 ≤ 3 ∧ boxBV(c; 11)
φ1 = 7x+ 3y− 12 ≤ 3 ∧ boxBV(c; 15)
φ2 = 7x+ 3y− 16 ≤ 1 ∧ boxBV(c; 17)

The boxBV(c; 11), boxBV(c, 15), boxBV(c; 17) formulae are again depicted in grey.
For example,

boxBV(c; 11) = (x ≤ 0 ∧ y ≤ 3) ∨ (x ≤ 1 ∧ y ≤ 2) ∨ (x ≤ 1 ∧ y ≤ 1)

because d = 2, L = 3 and I2((d−1)(L+1)) = {〈1, 3〉, 〈2, 2〉, 〈3, 1〉}. From Figure 3
observe

�
7x+ 3y ≤ 17

�
LIA

=
�
φ0

�
BV

∪ �
φ1

�
BV

∪ �
φ2

�
BV

.

Example 7. Consider again example 5 where S = 1. Then φ0 = false because
boxBV(c; (S − 1)(m/2) − 1) = boxBV(c;−1) = false. This is because L = 0
and Id((d − 1)(L + 1)) = I2(1) = ∅. Theorem 2 then gives

�
x+ 2y ≤ 5

�
LIA

=�
φ1 ∨ φ2

�
BV

which squares with Corollary 2.
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Fig. 3. Gapping and boxing for 7x+ 3y ≤ 17 where c = 〈7, 3〉, m = 8 and S = 4

3.3 Boxing, Gapping and Flipping

To handle inequalities which have indeterminates with negative coefficients, box-
ing and gapping are augmented with a third technique, which we have informally
named flipping. Flipping transforms an inequality into a syntactic form which
is amenable to boxing and gapping by reflecting the solutions of the inequal-
ity. To detail the transformation, we assume without loss of generality, that an
inequality takes the syntactic form c+ · x+ + c− · x− ≤ b where c+ > 0 and
c− < 0. Hence x = x+ ◦ x− where ◦ denotes vector concatenation. The act of
flipping reflects the solutions of the inequality simultaneously around the axes
x−
1 = 0, . . . , x−

e = 0 where x− = 〈x−
1 , . . . , x

−
e 〉 and e is the dimension of x−.

The development starts with the flipping transformation itself:

Definition 3. Given e ∈ {1, . . . , d}, then the (semantic) flipping function Fe :
Md → Md is defined:

Fe(〈x+
1 , . . . , x

+
d−e, x

−
1 , . . . , x

−
e 〉) = 〈x+

1 , . . . , x
+
d−e,m− 1− x−

1 , . . . ,m− 1− x−
e 〉.

Given an inequality with negative coefficients, we derive a new inequality whose
solutions coincide with the flipped solutions of the given inequality. This trans-
formation is then lifted to formulae as follows:

Definition 4. Given a partition of x into the sub-vectors x+ = 〈x+
1 , . . . , x

+
d−e〉

and x− = 〈x−
1 , . . . , x

−
e 〉, then the (syntactic) flipping function Fx− is defined:

Fx−(c+ · x+ + c− · x− ≤ b) = c+ · x+ − c− · x− + (m− 1)(c− · 1) ≤ b
Fx−(f1 ∨ f2) = Fx−(f1) ∨ Fx−(f2)
Fx−(f1 ∧ f2) = Fx−(f1) ∧ Fx−(f2)

Fx−(¬f) = ¬Fx−(f)

(a) 7x+ 3y ≤ 17 (b) φ0 = 7x+ 3y − 8 ≤ 3 ∧ boxBV(c; 11)

(c) φ1 = 7x+ 3y − 12 ≤ 3 ∧ boxBV(c; 15) (d) φ2 = 7x+ 3y − 16 ≤ 1 ∧ boxBV(c; 17)
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(a)
�
φ
�
LIA

(b)
F〈y〉(φ0) = 7x− 3y + 13 ≤ 3

∧ F〈y〉(boxBV(c; 11))

(c)
F〈y〉(φ1) = 7x− 3y − 9 ≤ 3

∧ F〈y〉(boxBV(c; 15))
(d)

F〈y〉(φ2) = 7x− 3y + 5 ≤ 1
∧ F〈y〉(boxBV(c; 17))

Fig. 4. Flipping φ = 7x− 3y ≤ −4 where m = 8, x = 〈x, y〉, x+ = 〈x〉 and x− = 〈y〉

The overall strategy involves applying boxing and gapping to an inequality de-
rived by the flipping function Fx− . The validity of this strategy is based on the
following proposition:

Proposition 2. If |x−| = e then

–
�
Fx−(f)

�
LIA

= Fe(
�
f
�
LIA

)

–
�
Fx−(f)

�
BV

= Fe(
�
f
�
BV

)

A complete strategy for handling inequalities with negative coefficients is justi-
fied by the following corollary. The strategy entails flipping an LIA inequality,
deriving a BV formula by boxing and gapping, and then flipping the BV formula.

Corollary 3. Suppose c+ > 0, c− < 0 and

�
c+ · x+ − c− · x− ≤ b+ (1−m)(c− · 1)�

LIA
=

�
φ0 ∨ φ1 ∨ φ2

�
BV

Then
�
c+ · x+ + c− · x− ≤ b

�
LIA

=
�
Fx−(φ0) ∨ Fx−(φ1) ∨ Fx−(φ2)

�
BV

Example 8. Consider φ = 7x − 3y ≤ −4 which is illustrated in Fig. 4(a). Then
x+ = 〈x〉, x− = 〈y〉 and Fx−(φ) = F〈y〉(φ) = 7x + 3y − 21 ≤ −4. Fig. 3(a)
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shows
�
7x+ 3y − 21 ≤ −4

�
LIA

=
�
7x+ 3y ≤ 17

�
LIA

and so building on exam-

ple 6
�
7x+ 3y ≤ 17

�
LIA

=
�
φ0 ∨ φ1 ∨ φ2

�
BV

. By corollary 3 it follows
�
φ
�
LIA

=�
F〈y〉(φ0) ∨ F〈y〉(φ1) ∨ F〈y〉(φ2)

�
BV

where F〈y〉(φ0), F〈y〉(φ1) and F〈y〉(φ2) are
given in Fig. 4(b), (c) and (d) respectively. Finally, to illustrate the handling
of boxing, recall boxBV(c; 11) from example 6 and

boxBV(c; 11) = (x ≤ 0 ∧ y ≤ 3)
∨ (x ≤ 1 ∧ y ≤ 2)
∨ (x ≤ 1 ∧ y ≤ 1)

F〈y〉(boxBV(c; 11)) = (x ≤ 0 ∧ (−y + 7 ≤ 3))
∨ (x ≤ 1 ∧ (−y + 7 ≤ 2))
∨ (x ≤ 1 ∧ (−y + 7 ≤ 1))

Finally observe

�
x ≤ 0 ∧ (−y + 7 ≤ 3)

�
LIA

= {(0, y) ∈ M2 | 4 ≤ y ≤ 7}�
x ≤ 1 ∧ (−y + 7 ≤ 2)

�
LIA

= {(x, y) ∈ M2 | 0 ≤ x ≤ 1 ∧ 5 ≤ y ≤ 7}

and that the disjunct (x ≤ 1 ∧ (−y + 7 ≤ 1)) is actually redundant.

3.4 Boxing, Gapping, Flipping and Demoding

Griggio [16] gives a procedure for encoding machine arithmetic in LIA, illus-
trating that the resulting LIA interpolants can include inequalities such as
−x2+x3−256−x2/256� ≤ 255 [16, Example 5]. Relaxing inequalities to include
ceiling (or floor) functions can reduce the size of interpolants whilst simplifying
their derivation [17]. These more general forms of interpolant include inequal-
ities of the form c · x + n′c′ · x/n� ≤ b [9] or c · x + n′�c′ · x/n� ≤ b [17],
though for our purposes it is sufficient to consider c · x+ n′2nc′ · x/2n� ≤ b or
c ·x+n′2n�c′ ·x/2n� ≤ b, where the divisors are powers of 2, stemming from the
way they model wrap-around in machine arithmetic. To extend boxing to these
generalised interpolants we extend the LIA and BV semantics two new types of
atomic constraint (though the definitions are almost vacuous):

Definition 5. If � ≡ c · x+ n′c′ · x/2n� ≤ b then

�
�
�
LIA

=
{
x ∈ Md|c · x+ n′c′ · x/2n� ≤ b

}
�
�
�
BV

=
{
x ∈ Md|(c · x+ n′c′ · x/2n�) mod m ≤ b mod m

}
The following proposition shows generalised LIA interpolants are not an obstacle
to boxing. These inequalities are handled through a transformation scheme which
exploits the property that if n ≤ w then (c · x mod 2n) mod m = c · x mod 2n.
We informally call this transformation tactic demoding, because like gapping
and flipping, it is designed to increase the general applicability of boxing.

Proposition 3. Suppose 0 ≤ n ≤ w and
�
(c+ n′c′) · x− n′y ≤ b

�
LIA

=
�
φ
�
BV

.
If y does not occur in x then

�
c · x+ n′2nc′ · x/2n� ≤ b

�
LIA

=
�
φ[y �→ c′ · x mod 2n]

�
BV
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Inequalities such as c · x + n′2n�c′ · x/2n� ≤ b can be handled similarly. For
completeness, we note that expansion can be applied for non-powers of 2:

Proposition 4. Suppose n > 0. Then

�
c · x+ n′c′ · x/n� ≤ b

�
LIA

=
� u∨
i=�

(c · x ≤ b− n′i ∧ ni ≤ c′ · x ≤ ni− 1)
�

LIA

where � = min{c′ · x/n� | x ∈ Md} and u = max{c′ · x/n� | x ∈ Md}.

4 Experiments

To evaluate the performance of boxing we implemented a model checker based
on the lazy abstraction (IMPACT) [25] algorithm. The model checker is imple-
mented in Python 3.7.2 and uses MathSAT5 [9] for satisfiability checking and
interpolation over LIA. The model checker parses a subset of the C language, but
is rich enough to handle 312 benchmarks drawn from [2, 12]. The model checker
was instantiated in one of three ways to use: (1) LIA interpolation [17]; (2) BV
interpolation by covering the solutions of an LIA interpolate with columns (recall
f2 of section 2); and (3) BV interpolation by covering the solutions of an LIA in-
terpolate using boxing, gapping and flipping. Experiments were performed using
an Amazon Web Service EC2 c3.xlarge cloud architecture of 14 EC2 Computing
Units [31] each equipped with 4 cores and 7.5 GB of RAM. The timeout for each
run of IMPACT was set to 600 seconds.

All arithmetic is idealised in configuration (1) taking no account of integer
overflow and underflow. This is not, in general, safe. In configurations (2) and
(3) the model checker interprets machine arithmetic and bit operations using
the LIA encoding of BV operations outlined in [16, Fig 1]. This is safe but
complicates the LIA formulae, often substantially. One would expect this to
enlarge the interpolants, even before boxing and gapping are deployed. We would
also expect (1) to be substantially faster than (2) and (3). Due to differences
in the semantics of arithmetic, we might also see differences in the number of
programs proved to be safe or found to be unsafe. The experiments quantify
these predictions. To discuss the experiments, (2) will be referred to as the
naive encoding, even though it improves on complete enumeration (recall f1 of
section 2).

4.1 Overall Result

Table 4.1 summarises the outcomes of running IMPACT on all 312 programs,
using the three different instances of interpolation, categorised as to whether
the run proved safety (safe rows) or found a counterexample (unsafe rows).
The Solved column of the left-hand table gives the total of the programs there
were either shown to be safe or unsafe within 600 seconds. Time is the mean
execution of a run (for all those programs which did not timeout). Size is mean



92 T. Okudono and A. King

Table 1. Comparison of the theories: performance and correctness

Theory Safety Solved Time (seconds) Size (inequalities)

LIA
safe 165 15.1 440

unsafe 41 9.0 392
(total) 206 13.9 431

BV
(naive)

safe 87 30.1 32583
unsafe 57 24.2 49138
(total) 144 27.8 39136

BV
(boxing)

safe 99 20.0 6938
unsafe 66 20.1 15246
(total) 165 20.0 10261

LIA
safe unsafe

BV
safe 90 1

unsafe 17 34

total number of atomic constraints in all interpolants encountered over a run
(for those programs which did not timeout). We observe that more programs
can be analysed to completion with LIA than with BV, as one would expect,
but that BV (boxing) improves on BV (naive), the speedup being significant
when proving safety.

The right-hand table compares a terminating run of LIA to a terminating run
of BV (boxing). For 17 of these 142 runs, LIA (incorrectly) verified the program
to be safe whereas BV found a counter-example. Unexpectantly for trex03 true-
unreach-call.i.annot.c from [12], LIA found a counter-example but BV verified
safety. This program contains three integers, x1, x2 and x3, which can become
negative in the idealised arithmetic employed in LIA, triggering an assertion.
But x1, x2 and x3 are actually unsigned.

4.2 Runtime for Naive encoding and Boxing

The scatter plot of Figure 5 compares the runtime of the naive encoding against
that of boxing and its allied techniques of gapping and flipping. The scatter plot
excludes timeouts and depicts 151 pairs of runs. Almost all points are under the
dotted line, indicating the boxing significantly improves performance. The line
graph plots the ratio of the execution times, from which we observe that boxing
does not accelerate the verification for almost half of the runs, but does speed it
up between 2- and 256-fold for the other half.

4.3 Interpolant Size for Naive encoding and Boxing

The line graph on Figure 6 compares the relative size of interpolants for boxing
versus the naive encoding. Size is the sum of the sizes of all the interpolants
generated during a run, where the size of an interpolant is itself defined as the
number of atomic constraints that occur within it. We observe that for most
problems the size ratio is around one, but a second peak occurs at 1/32, giving
an overall size reduction. The scatter plot explores how interpolant size correlates
with runtime, showing how the relative size of interpolants varies with relative
runtimes. We observe that reducing the size of interpolants improves runtime,
and that two peaks of the line graph manifesting themselves as two clusters of
points in the scatter plot.

https://trex03_true-unreach-call.i.annot.c
https://trex03_true-unreach-call.i.annot.c
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Fig. 5. Runtime of boxing versus naive: scatter plot and ratio plot

Fig. 6. Size of interpolants in boxing versus naive and its impact on performance

5 Related work

The problem of reasoning about machine arithmetic and wrapping arises not only
in model checking, but abstract interpretation too, where solvers are augmented
with support for relaxing abstractions by join rather than interpolation.

Despite the long-standing work [3, 7, 27] in deciding BV theories, there has
been scant work on BV interpolation. Although not focussing on BV interpola-
tion, an early work on deriving work-level interpolants [23] uses bit-vectors to
interpolate equality logic. This logic supports equations of the form x = y and
x = c where x and y are variables and c is drawn from a finite set of symbols C.
Bit-vectors with width �log2(|C|)� are used to bit-blast equations [29] so that
formulae are encoded entirely propositionally. Then a propositional resolution
proof of the inconsistence of two formulae is lifted to the work-level.

Seminal work by Griggio [16] advocated encoding BV formulae in theories of
increasing complexity. The pair of BV formulae are encoded in a theory whose
interpolation engine is used to find an interpolant in that theory. The interpolant
is then reinterpreted as a BV formula and tested to see if it is still an interpolant
the pair of BV formulae. The approach resorts to bit-blasting if no simpler the-
ory can find an interpolant, at the cost of losing world-level information. By way
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of contrast, Backeman et al. [2] propose a calculus over a core language, which
supports interpolation and is rich enough to describe BV formulae, even making
use of Groebner bases to express polynomial equality relationships. Since inter-
polation is performed within their core language, they do not aim to derive a
BV interpolant, and therefore their work is orthogonal to ours. Yet if Backe-
man’s procedure returns an interpolant in their core language and it could be
interpreted as an LIA formula, which would seem likely for many cases, then our
work could convert the LIA formula back to BV.

Further afield, polynomial algorithms for interpolation have developed for
systems of linear congruence equations [19, section 4], conjunctions of linear
Diophantine equations and disequations [19, section 6], and systems of mixed
integer linear equations [19, section 7]. This comprehensive study stops short of
using LIA to interpolate BV formula, mentioning the problem as future work.

Abstract domains have been proposed for tracking linear modulo relation-
ships where the module is a power of 2 [13, 22, 28]. These domains, which are es-
sentially specialist solvers, express more than linear equalities [21], while enabling
the domain operations to be realised using machine arithmetic. Surprisingly, sys-
tems of linear inequalities can be reinterpreted to model machine arithmetic by
just changing the concretisation function [32] and the handling of guards [32].

6 Concluding Discussion

To repurpose efficient LIA interpolation engines to BV, we have shown how to
systematically construct a BV formula so its solutions are exactly those of an
LIA interpolant. Since an LIA interpolant summarises the reason for a conflict
between two LIA formula, we seek to retain its compact structure by introduc-
ing no more than simple boxes around the LIA solutions which block extraneous
BV solutions. When this encoding tactic, called boxing, is not applicable, gap-
ping is used to decompose an LIA inequality into two or more inequalities which
are amenable to boxing. We show how the size of the resulting BV interpolants
are smaller than BV interpolants constructed by merely partitioning the LIA
solutions into columns, and demonstrate how boxing and gapping improves the
runtime of an interpolation-based model-checker. We instantiate a model-checker
with LIA and BV to compare their performance, and conclude that with this
encoding BV interpolation is feasible. Because of wrap-around, BV is substan-
tially more complicated than LIA for interpolation, yet BV is no more than
twice as slow as LIA for over half the benchmarks. Furthermore, the resulting
BV interpolants can be validated, independent of LIA, just using a BV solver.
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Abstract. In this paper we employ SMT solvers to soundly synthesise
Lyapunov functions that assert the stability of a given dynamical model.
The search for a Lyapunov function is framed as the satisfiability of a
second-order logical formula, asking whether there exists a function sat-
isfying a desired specification (stability) for all possible initial conditions
of the model. We synthesise Lyapunov functions for linear, non-linear
(polynomial), and for parametric models. For non-linear models, the al-
gorithm also determines a region of validity for the Lyapunov function.
We exploit an inductive framework to synthesise Lyapunov functions,
starting from parametric templates. The inductive framework comprises
two elements: a learner proposes a Lyapunov function, and a verifier
checks its validity - its lack is expressed via a counterexample (a point
over the state space), for further use by the learner. Whilst the veri-
fier uses the SMT solver Z3, thus ensuring the overall soundness of the
procedure, we examine two alternatives for the learner: a numerical ap-
proach based on the optimisation tool Gurobi, and a sound approach
based again on Z3. The overall technique is evaluated over a broad set
of benchmarks, which shows that this methodology not only scales to
10-dimensional models within reasonable computational time, but also
offers a novel soundness proof for the generated Lyapunov functions and
their domains of validity.

Keywords: Lyapunov functions, automated synthesis, inductive synthesis,
counter-example guided synthesis

1 Introduction

Dynamical systems represent a major modelling framework in both theoretical
and applied sciences: they describe how objects move by means of the laws
governing their dynamics in time. Often they encompass a system of ordinary
differential equations (ODE) with nontrivial solutions.

This work aims at studying the stability property of general ODEs, without
knowledge of their analytical solution. Stability analysis via Lyapunov functions
is a known approach to assert such property. As such, the problem of constructing
relevant Lyapunov functions for stability analysis has drawn much attention in
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the literature [1,2]. A brief introduction to the concepts of Lyapunov stability is
presented in Section 3. By and large, existing approaches leverage Linear Algebra
or Convex Optimisation solutions, and are not fully automated nor numerically
sound.

Contributions We apply an inductive synthesis framework, known as Counter-
Example Guided Inductive Synthesis (CEGIS) [3,4] and recently employed in a
number of control applications [5,6,7,8], to construct Lyapunov functions for
linear, polynomial and parametric ODEs, and (for non-linear ODEs) to con-
structively characterise their domain of validity. CEGIS, originally developed for
program synthesis based on the satisfiability of second-order logical formulae, is
employed in this work with template Lyapunov functions and in conjunction
with a Satisfiability Modulo Theory (SMT) solver [9]. Our results offer a formal
guarantee of correctness in combination with a simple algorithmic implementa-
tion.

The synthesis of a Lyapunov function V can be written as a second-order logic
formula F := ∃V ∀x : ψ, where x represents the state variables and ψ represents
requirements that V needs to satisfy in order to be a Lyapunov function.

The CEGIS architecture is structured as a loop between two components, a
“learner” and a “verifier”. The learner provides a candidate function V and the
verifier checks the validity of ψ over the set of x; if the function is not valid, the
verifier provides a counterexample, namely a point x̄ in the state space where the
candidate function does not satisfy ψ. The learner incorporates the generated
counterexample x̄, subsequently computes a new candidate function, and passes
it back to the verifier.

We exploit SMT solvers to (repeatedly) assert the validity of ψ, given V , over
a domain in the space of x. Satisfiability Modulo Theory (SMT) is a powerful
tool to assert the existence of such a function. An SMT problem is a decision
problem – a problem that can be formulated as a yes/no question – for logical
formulae within one or more theories, e.g. the theory of arithmetics over real
numbers. The generation of simple counterexamples x̄ is a key new feature of
our technique.

Furthermore, in this work we provide two alternative CEGIS implementa-
tions: 1) a numerical learner and an SMT-based verifier, and 2) an SMT-based
learner and verifier. The numerical generation of Lyapunov functions is based
on the optimisation tool Gurobi [10], whereas the SMT-based one leverages Z3
[11].

Related Work The construction of Lyapunov functions is recognisably an im-
portant yet hard problem, particularly for non-linear ODE models, and it has
been the objective of classical studies [12,13,14]. A know constructive result has
been introduced in [15], which additionally provides an estimate of the domain
of attraction. It has led to further work based on recursive procedures. Broadly,
these approaches are numerical and based on the solution of optimisation prob-
lems. For instance, linear programming is exploited in [16] to iteratively search
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for stable matrices inside a predefined convex set, resulting in an approximate
Lyapunov function for the given model. Alternative approximate methods in-
clude [1] ε-bounded numerical methods, techniques leveraging series expansion
of a function, the construction of functions from trajectory samples, and the
framework of linear matrix inequalities. The approach in [17] uses sum-of-squares
(SOS) polynomials to synthesise Lyapunov functions, however its scalability re-
mains an issue. The work in [18] uses SOS decomposition to synthesise Lyapunov
functions for (non-polynomial) non-linear systems: the algorithmic implementa-
tion is know as SOSTOOLS [19,20]. [21] focuses on an analytical result involving
a summation over finite time interval, under a stability assumption. Recent de-
velopments are in [22] and subsequent work, whereas surveys on this topic are
in [1,2].

In conclusion, existing constructive approaches either rely on complex can-
didate functions (whether rational or polynomial), on semi-analytical results, or
alternatively they involve state-space partitions (for which scalability with the
state-space dimension is problematic) accompanied by correspondingly complex
or large optimisation problems. These approximate methods evidently lack either
numerical robustness, being bound by machine precision, or algorithmic sound-
ness: they cannot provide formal certificates of reliability which, in safety-critical
applications, can be an evident limit.

In [23] Lyapunov functions are soundly found within a parametric frame-
work, by constructing a system of linear inequality constraints over unknown
coefficients. A twofold linear programming relaxation is made: it includes in-
terval evaluation of the polynomial form and “Handelman representations” for
positive polynomials. Simulations are used in [24] to generate constraints for a
template Lyapunov function, which are then resolved via LP, resulting in can-
didate solutions. Whilst the authors refer to traces as counterexamples, they do
not employ the CEGIS framework, as in this work. When no counterexamples are
found, [24] further uses dReal [25] and Mathematica [26] to verify the obtained
candidate Lyapunov functions. The sound technique, which is not complete, is
tested on low-dimensional models with non-linear dynamics.

The cognate work in [7,8,27] is the first to employ a CEGIS-based approach
to synthesise Lyapunov functions. [7,8] focuses on such synthesis for switching
control models - a more general setup that ours. [7] employs an SMT solver for
the learner, and towards scalability solves an optimisation problem over LMI
constraints for the verifier over a given domain (unlike our approach). As such,
counterexamples are matrices, not points over the state space, and furthermore
the use of LMI solvers does not in principle lead to sound outcomes. Along the
above line, [8] expands this approach towards robust synthesis; [27] instead em-
ploys MPC (Model Predictive Control) techniques within the learner to suggest
template functions, which are later verified via semi-definite programming re-
laxations (again, possibly generating counterexamples by solving optimisation
problems over a given domain). Whilst inspired by this line of work, our con-
tribution provides a simple (with interpretable counterexamples that are points
over the state space) yet effective (scalable to at least 10-dimensional models)
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SAT-based CEGIS implementation, which automates the construction of Lya-
punov functions and associated validity domains, which is is sound, and also
applicable to parameterised models.

The remainder of the paper is organised as follows. In Section 2 we present the
SMT Z3 solver and the inductive synthesis (IS) framework. The implementation
of CEGIS, for both linear and non-linear models, is explained in Section 3.
Experiments and case studies are in Section 4. Finally, conclusions are drawn in
Section 5.

2 Formal Verification – Concepts and Techniques

In this work we use Z3, an SMT solver, and the CEGIS architecture, to build
and to verify Lyapunov functions.

2.1 Satisfiability Modulo Theory

A Satisfiability Modulo Theory problem is a decision problem formulated within
a theory, e.g. first-order logic with equality [28]. The aim is to check whether a
first-order logical formula within such theory, referred to as an SMT instance, is
satisfied. For example, a formula can be the inequality 3x0 + x1 > 0 evaluated
within the theory of linear inequalities. An SMT solver is a software that checks
the satisfiability of an SMT instance, i.e. whether there exists an instantiation
of the formula that evaluates to True. SMT solvers can be useful for function
synthesis, namely to mechanically construct a function, given requirements on
its output.

2.2 The Z3 SMT Solver

Z3 [11,29] is a powerful SMT solver that integrates SAT solvers, theory solvers for
equalities and interpreted functions, satellite solvers for arithmetic, real, array,
and other theories, and an abstract machine to handle quantifiers. Receiving
an input formula, Z3 represents it as an abstract syntax tree and processes it
with its SAT solver core, until it returns SAT if the formula is satisfiable, UNSAT
otherwise.

Example 1 (Operation of Z3). Consider the formula a = b ∧ f(a) = f(b) in the
theory of equality. To verify its satisfiability, Z3 constructs a syntax tree, with
nodes for each variable (a, b) and formulae (a = b, f(a), f(b), f(a) = f(b)). Once
the tree is built, Z3 merges a with b and f(a) with f(b) to represent the equality
operation and, in order to verify the correctness of the assertion, applies the
congruence rule

∧n−1
i=0 xi = yi ⇒ f(x0, . . . xn−1) = f(y0, . . . yn−1) to conclude

that a = b ⇒ f(a) = f(b). Finally, nodes a = b and f(a) = f(b) are merged and
Z3 returns SAT. �
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Of particular interest for the synthesis of Lyapunov functions, is the ability of
Z3 to solve polynomial constraints. Z3 stores and exactly manipulates algebraic
real numbers that are roots of rational univariate polynomials: this is done for
an algebraic real α, by storing a polynomial p(x) for which p(α) = 0 and two
rationals l, u such that p(x) = 0 for x ∈ (l, u) if and only if x = α. In this work,
Z3 has been used through its Python APIs, named Z3Py. An example of a simple
assertion verification follows.

Example 2 (Assertion in Z3). Consider the (valid) formula x ≥ 0 ⇒ 3x+1 > 0.
The code using Z3Py results in:

x = Real('x')

s = Solver()

s.add(Implies(x >= 0, 3 * x + 1 > 0))

print(s.check())

which evaluates (as expected) to SAT. �

2.3 Inductive Synthesis - CEGIS

An approach to solve second-order logic problems, such as those characterising
the synthesis of Lyapunov functions, is inductive synthesis (IS). IS infers general
rules (or functions) from specific examples (observations), entailing the process of
generalisation. Within the IS procedure, a synthesiser attempts the construction
from a (usually small) subset of the original specifications. It then generalises to
the complete specification by identifying patterns in the input data.

An exemplar of IS is the CEGIS framework. Fig. 1 depicts the relation be-
tween its two main components. It sets off with a given specification ψ over a
set I for the synthesis. The synthesis engine (a component that will be also de-
noted as learner) provides a candidate solution for ι, a subset of I, the space of
possible inputs. This candidate solution is passed to a second component, called
verifier, that acts as an oracle: either it approves the solution over the entire I,
so that the process terminates, or it finds an instance x̄ (a counterexample in
I) where the candidate solution does not comply with the specifications. The
learner takes x̄ and adds it to ι, computing a new (more general) candidate solu-
tion for the problem. This cycle is repeated. Note that this algorithm might not
terminate, depending on the structure of I, or might take many cycles to find
a proper solution: in those instances, tailored candidate solutions and insightful
counterexamples are necessary. In this work, the IS is implemented using SMT-
solvers. The verifier finds counterexamples x̄ by seeking a witness of the negated
formula ¬ψ, namely trying to prove that a violation of the formula exists. The
learner might employ SMT solvers to solve the system of constraints generated
by the counterexamples, i.e. to find a valid instance of such constraints, however
in general it does not need to be sound, as it is the verifier that guarantees
the soundness of the proposed solution. Section 3.1 illustrates the two CEGIS
components, the learner L and the verifier Z in relation to Lyapunov function
synthesis.
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Example 3 (CEGIS Operation). Assume the task is the synthesis of a function
g(x) that satisfies the following formula F (g(x)):

∃ g(x) ∀x ∈ R : ψ, where ψ(g(x)) = g(x) + 1 > 0.

The learner L offers an initial (often näıve, random or default) candidate, e.g.
g(x) = x, and passes it to the verifier Z. The verifier checks the validity of
ψ(x) = x + 1 > 0, ∀x ∈ R, by searching an instance x̄ that might invalidate
the formula. Z finds that x̄ = −1 invalidates the formula, thus sends x̄ to L,
which incorporates this counterexample to synthesise a new g(x). The learner
now adds a constraint on the next candidate, as

C := g(−1) + 1 > 0, ∀x ∈ R,

such that the new candidate solution satisfies the formula at x̄ = −1. The
learner now proposes g(x) = x2, which satisfies C, and passes it to Z. The
verifier searches for a counterexample to ψ(x2), but cannot find any. Thus, it
exits the loop with an UNSAT answer, which proves that the synthesised function
g(x) = x2 is valid ∀x ∈ R. �

L Z
x̄

S
done

Fig. 1. CEGIS-based inductive synthesis. The iterative procedure loops between a
learner L and a verifier Z. L provides a candidate solution S to the verifier Z, which
asserts its validity or outputs a counterexample x̄. The learner provides a new solution
encompassing also x̄. The procedure stops once no counterexamples are found.

3 Automated and Sound Synthesis of Lyapunov
Functions via CEGIS and SMT

Consider a dynamical system ẋ = f(x), where f : Rn → Rn, and assume that
the point xe ∈ Rn is an equilibrium, namely such that f(xe) = 0 – without
loss of generality, we assume that xe = 0 (the origin). The goal is assessing
the stability of such equilibrium point via the synthesis of a Lyapunov function
V (x) : Rn → R. The stability of an equilibrium guarantees that trajectories
starting by the equilibrium remain close to it at all times (how close can often be
quantified, as done later in this work). If V (x) fulfils the following two conditions,
∀x ∈ D,

V (x) > 0, V̇ (x) = ∇V (x) · f(x) ≤ 0, (1)
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where D is a domain of interest containing xe then the Lyapunov function en-
sures boundedness of the trajectories. In other words, for every initial point
in a neighbourhood of xe, the trajectories of the model do not escape from D
(with reference to notations introduced above, the condition in (1) represents
the requirement ψ, and D denotes the set of inputs I). We use the following
polynomial expression for the Lyapunov function

V (x) =
c∑

l=1

(xl)T Pl x
l, (2)

where xl represents the element-wise exponentiation of vector x, i.e. element
x(j) to the power l, ∀j = 1, . . . , n; Pl ∈ Rn×n is a weighting matrix associated
with xl, and 2c is the order of the polynomial function. In order to obtain a
proper Lyapunov function V (x), the synthesiser is asked to verify the specifica-
tion expressed by the formula

F (V (x)) : ∀x ∈ D, V (x) > 0 ∧ V̇ (x) ≤ 0. (3)

This specification requires the Lyapunov function to be positive definite, and
not to increase along the trajectories of the model. For linear systems, unless
otherwise stated, we consider D = Rn \ {0} and c = 1, as it is known that
quadratic functions are sufficient to prove the stability of linear models over the
whole state space. Formula (3) keeps the elements of P uninterpreted, and thus
they are parameters to be found. Notice that the second-order formula

∃P ∈ Rn×n : ∀x ∈ D, V (x) > 0 ∧ V̇ (x) ≤ 0,

would return a boolean value, i.e. True or False: to obtain the synthesised V (x)
function, we remove the existential quantifier.

3.1 The CEGIS Architecture for Lyapunov Function Synthesis

We introduce the CEGIS architecture to find Lyapunov functions. To better il-
lustrate the methodology, we start by considering linear models (the non-linear
case is further discussed in Section 3.2). As mentioned earlier, two components
characterise the CEGIS approach: a learner and a verifier. The CEGIS architec-
ture takes the system matrix A and outputs a matrix P as the key component
of the function V (x), verifying the conditions in Eq. (1). We denote by P̄i,
i = 0, 1, 2, . . . the candidate matrices yet to be verified, i.e. the outputs of the
learner. As anticipated earlier, referring to Eq. (2), we set c = 1 and D = Rn\{0}.

Verifier The scope of a verifier is twofold: generate a counterexample to the
validity of the candidate Lyapunov function, or certify its validity over a domain
of interest. We implement the verifier in Z3.

The methodology to assert the correctness of a Lyapunov function is as fol-
lows. Assume the learner computes a candidate Lyapunov function V (x) and
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passes it to the verifier (in case of a linear function, the learner offers a matrix
P̄i). The goal of the verifier is to assert the validity of formula F from (3) ac-
cording to the specification ψ in (1). The check is performed by negating F : if
there exists a vector x̄ that satisfies ¬F , it is a counterexample for F ; if it does
not exist, formula F is valid and the candidate Lyapunov function is an actual
Lyapunov function. The domain D is encoded as an additional formula. Assume,
as an example, the domain is an hyper-sphere of radius one: D can be written
formally as d: ||x||2 ≤ 1. The final formula thus results in ¬F ∧ d.

A counterexample x̄must satisfy the formula V (x̄) ≤ 0∨V̇ (x̄) > 0. Reasoning
on either condition, it is easy to show that if there exists a counterexample x̄
invalidating a matrix P̄ , then there exists an infinite number of counterexamples
for this P̄ . Thus, particularly for high-dimensional models the generation of
meaningful counterexamples is crucial to find a Lyapunov function quickly.

Let us denote x̄i, i = 1, . . . , the series of counterexamples provided by the
verifier and P̄i the series of candidate Lyapunov function matrices provided by
the learner. In this setting, the learner proposes the first default candidate matrix
P̄0; the verifier will (possibly) provide a counterexample x̄0; the learner includes
x̄0 in the set of constraints (cf. Section 3.1) and offers a new candidate P̄1.

In this work, we let Z3 generate counterexamples without any further goals.
However, counterexamples can be generated adding constraints, e.g. linear inde-
pendence or orthogonality. Intuitively, more constraints might generate “better”
candidates by the learner, albeit at an increase in computational cost.

As intuition suggests, if we were to work with models having a diagonal ma-
trix A, then the synthesis of diagonal candidates P̄i and of a diagonal solution P
would reduce the number of variables needed, thus speeding up the computation.
As such, if A is not diagonal but diagonalisable, the algorithm pre-computes the
system diagonalisation and feeds it to the CEGIS architecture returning a ma-
trix P for the diagonal system, which is then converted to a solution for the
original model.

Learner A learner is the CEGIS component designated to suggest a candidate
solution for the problem under consideration. Within our framework, a learner
solves linear inequalities derived from F (V (x̄)) as per Eq. (3), while memorising
the set of counterexamples {x̄i | ¬F (x̄i)} generated by the verifier. Whilst the
verifier works over continuous domains, note that the learner only considers a
finite number of points to synthesise the candidate Lyapunov function. At each
iteration i, the learner is tasked to solve 2i linear inequalities: i inequalities for
V ≥ 0 and i for V̇ ≤ 0 – this is two inequalities per counterexample, so a set of
useful counterexamples is vital to achieve efficiency.

We implement two learners, for comparison: 1) a numerical and 2) a Z3-
based learner. However, our CEGIS architecture can in principle accommodate
any learner. The first learner uses Gurobi [10], a fast, commercial optimisation
solver for, among others, linear and quadratic programming problems, support-
ing continuous variables. Notice that the synthesis is a linear program: variables
pi,j , the entries of matrix P , appear linearly within the inequalities in F (V (x̄i)).
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Gurobi is thus expected to outperform an SMT solver in this specific task. How-
ever these variables do not represent real numbers, but floating point numbers
that are approximated at machine precision. The second learner instead em-
ploys Z3, which is numerically sound and not affected by machine precision. Z3
solves an SMT instance to synthesise V (x): it asserts the satisfiability of Eq. (3)
F (V (x̄i)) for all collected counterexamples x̄i.

As mentioned earlier, the number of inequalities to be solved depends on the
number of counterexamples, which can grow to be quite large. Whilst the verifier
ought to generate useful counterexamples, the learner is optimised to output a
matrix P̄i that is easy to handle. The comparison between a numerical learner
(running on Gurobi) and a sound one (based on Z3) shows that the compromise
between speed and soundness results is evident (cf. Section 4). Z3 is sound, yet
slower when compared to the numerical learner.

Z3 offers an incremental feature to the learner. During each CEGIS loop,
on the verification side the memory is cleared from the previous constraints as
the verifier re-initialises the verification problem with a new candidate V (x).
On the other hand, the learner keeps the previous synthesis instance adding a
new constraint related to the latest counterexample. This incremental approach
reduces the computational effort, as the learner does not initialise a new problem
for every CEGIS loop.

3.2 Lyapunov Function Synthesis for Non-linear Models

The problem of synthesizing Lyapunov functions and their region of validity for
a general non-linear system ẋ = f(x(t)) is approached via linearisation or via
direct computation.

The linearisation approach consists of three steps for the learner: we first
linearise the f(x(t)), obtaining

˙̃x(t) = ALx̃(t),

where AL is the Jacobian of f(x(t)) evaluated at xe; we then compute matrix
P – and quadratic Lyapunov function V (x) = xTPx – on the linearised system;
finally, we find R, defined as the set in which the linear Lyapunov function
is valid. Next, we detail the synthesis of region R. Consider, without loss of
generality, an autonomous non-linear system with (at least one) equilibrium
point xe = 0. Assume the CEGIS procedure is successful, i.e. it finds a Lyapunov
function VL(x) = xTPx that guarantees the asymptotic stability of system ˙̃x =
ALx̃ around xe. We now compute the region where VL(x) guarantees stability
with the original system, i.e. ẋ = f(x). In view of the existence of VL(x) and by
definition of linearisation, there exists a neighbourhood of the origin B0 in which
the derivative of the Lyapunov function V̇ (x) is non-positive; formally such set
is defined as

B0 = {x ∈ Rn\{0} | V̇ (x) ≤ 0},
where V̇ (x) is computed on the original system, namely

V̇ (x) = ∇VL(x) · f(x).
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Let us define the boundary of B0 as ∂B0 = {x ∈ Rn\{0} | V̇ (x) = 0}. This set
may be composed by single points or regions of the state space: in this case, we
find r, the closest point to the equilibrium that belongs to ∂B0, as

r = min
x∈∂B0

∑
l

x(l)2.

We finally compute region R as a hyper-sphere of radius r,

R = {x ∈ Rn\{0} | ‖x‖2 < r2}, (4)

defining the region where the Lyapunov function is valid. Finally, region R is
tested with the verifier: formula F (V (x)) from Eq. (3) is passed to Z3 with
D = R. Our implementation uses a numerical optimisation technique to com-
pute a value for r that is passed to Z3, as Z3 does not natively handle non-linear
optimisation problems. With this selection, the region R represents a sound
under-approximation of the maximal stability region. The linearisation method
is used in view of its rapid and effective synthesis capability. However, it pro-
duces a Lyapunov function that does not ensures global stability when one of
the eigenvalues of AL is equal to zero. This is a well-known limitation of the
linearisation, which suggests a more formal approach, called direct computation
method.

The direct computation method, as the name suggests, analytically computes
V (x) and V̇ (x) from a template V (x) as in Eq. (2). The learner is tasked with
resolving conditions ψ obtained by a light relaxation of the two inequalities in
(1), namely

V (x) ≥ 0, V̇ (x) = ∇V (x) · f(x) ≤ 0.

Note that the first inequality is not strict: this relaxation allows for a faster
computation of a candidate. The verifier, on the other hand, produces coun-
terexamples for V (x) > 0, thus retaining soundness of the overall procedure.
The CEGIS framework allows the separation between synthesis and verification.
So whilst the learner might propose candidates being completely independent
from domain D, the verifier is responsible to assert or to find the domain of
validity D. Our implementation establishes that at first the verifier checks the
validity of V (x) on the whole state space D = Rn; if the computation is not suc-
cessful – namely, the computational time is greater than a predefined timeout –
the verifier checks its validity over a smaller region, e.g. D = [−1, 1]n, and so on.
If also this program fails, the algorithm returns an empty V (x). Recall that our
algorithm is in general not complete - indeed, consider the trivial problem of the
synthesis of a Lyapunov function for an unstable system, which is not possible:
in this case, the CEGIS procedure will surely return an empty V (x).

3.3 Lyapunov Function Synthesis for Parametric Models

Parametric models represent a challenge for both sound and numerical solvers.
Let us remark that both Gurobi and Z3 cannot synthesise functions in the pres-
ence of uncertainty, whereas Z3 can provide counterexamples using one or more
variables as fixed parameters, using the quantifier ForAll.
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Let us consider variable x, a parameter μ and a formula ψ(x, μ): Z3 can find
a counterexample for all values of μ by validating ForAll(μ, ψ). If μ belongs
to a range [l, u], Z3 can find a counterexample by checking ψ ∧ μ ≥ l ∧ μ ≤ u.
This provides a counterexample (x̄, μ̄) for x and μ, respectively.

The synthesis procedure is split into two steps, in view of the inability of
Z3 and Gurobi to propose parametric solutions. The first step synthesises a
candidate Lyapunov function solely using the constraint V (x) > 0, in which no
parameter appears. The second step evaluates the constraint V̇ ≤ 0 to propose
a parametric Lyapunov function exploiting the results from the first step. The
following example details the procedure.

Example 4. Consider a two-dimensional linear parametric system [23] and a can-
didate Lyapunov function{

ẋ = y

ẏ = −(2 + μ)x− y
, V (x, y) = p1x

2 + p2y
2.

Assume the first guess of the learner is invalid, i.e. the verifier finds a counterex-
ample for the validity of V (x, y). The counterexample (x̄, ȳ) is then sent to the
learner. The synthesis procedure is split into two steps: the first step entails the
synthesis solely accounting for V (x̄, ȳ) > 0. The learner is tasked to solve

V (x̄, ȳ) = p1x̄
2 + p2ȳ

2 > 0,

where p1, p2 are the variables of the inequality. The learner will propose values p̄1
and p̄2 satisfying the inequality. The second step removes one of the synthesised
p̄i, e.g. p̄1, in order to re-synthesise it including the parameters found in V̇ . In
practical terms, the expression of V̇ is evaluated at x̄, ȳ and p̄2, as

V̇ = 2p1x̄ȳ − 2p̄2ȳ
2 − 2(μ+ 2)x̄ȳ ≤ 0 =⇒ p1 ≤ p̄2

( ȳ
x̄
+ 2 + μ

)
.

We choose the value p1 that satisfies the equality. The candidate Lyapunov
function thus results in V (x, y) = p̄2

(
ȳ
x̄ + 2 + μ

) · x2 + p̄2 · y2. This procedure
holds as long as x̄ = 0: if this is not the case, we can either choose to synthesise
a new value for p2 or simply maintain the numerical values obtained after the
first step. In the latter case, once the candidate Lyapunov function is passed to
the verifier, a new counterexample will be generated and the procedure can be
repeated until a parametric Lyapunov function is found and verified. Another
possible approach is based on the mixed-terms removal: p1 is synthesised so
that the terms carrying x̄ȳ cancel out. Further, the choice of p1 satisfying the
equality is arbitrary: we can add a negative constant to its value to solve the
strict inequality instead. Finally, more than one parameter p̄i can be removed
in the second step: this can spread the parametric coefficients among more than
one pi. However, this is likely to increase the computational cost in view of the
inequality being a function of more than one variable. �
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4 Case Studies and Experiments

In this Section we outline a few experiments to challenge the validity of our
approach. Our technique is coded in Python 2.7 [30], using external libraries as
the numerical solver Gurobi and the SMT solver Z3 (cf. Section 2). Specifically,
we compare two CEGIS architectures:

1. Gurobi learner and Z3 verifier,
2. Z3 learner and Z3 verifier,

later denoted as Gurobi-CEGIS and Z3-CEGIS, respectively, against the optimi-
sation toolbox SOSTOOLS. Whilst Z3 is an efficient verifier, it carries the weight
of exact representations. We therefore compare its use within the learner to that
of a numerical solver such as Gurobi - recall that the learner does not need to be
sound. A relevant feature of the synthesis procedure is its linearity in the entries
of matrix P : we expect an efficient LP solver to outperform an SMT solver. As
such, we study the expected tradeoff between speed and precision. As specified
earlier, the initial candidate for the learner P̄0 is arbitrary: we challenge the pro-
cedure by setting P̄0 = −I, which does not satisfy the first positivity condition
for Lyapunov functions, thus showing that even with an ill-suited initial guess
the procedure can rapidly synthesise a valid Lyapunov function. SOSTOOLS is a
sum-of-squares optimisation toolbox available for MATLAB, equipped with the
solver SeDuMi [31]. It can be used to solve a wide range of problems, from mixed
continuous-discrete optimisations to finding Lyapunov functions for polynomial
dynamical systems.

We consider linear, non-linear and parametric ODEs with the origin as (one
of) the equilibrium(a), and aim to obtain a Lyapunov function guaranteeing the
stability of such equilibrium point. The procedure entails the following steps:

a) a function f(x), x ∈ Rn, is fed as the input;
b) a Lyapunov function V (x), as in Eq. (2), is computed;
c) in the linearisation case, the stability region R in Eq. (4) for V (x) is found.

Let us emphasise that Z3 is unable to fully handle non-polynomial terms, which
represents the only limitation of our approach. Unlike most of the literature,
counterexamples are not limited to a finite set but searched over the whole Rn.

Linear models are certainly an easier task than polynomial systems. The
study with linear models focuses mainly on the scalability of the method, en-
compassed by the average and maximum/minimum computational time, and the
number of iterations performed. We generate N = 100 random linear models of
dimension n ∈ [3, 10]. For each linear system, the entries of matrix A range
within [−1000, 1000] ∈ R. For each test we set c = 1 (cf. Eq. (2)), namely we
impose a quadratic structure to the Lyapunov function, and collect the num-
ber of iterations of the procedure, i.e. the number of counterexamples needed to
compute a valid Lyapunov function, and the total elapsed time. Recall that the
initial synthesiser’s candidate is P̄0 = −I, which challenges the reliability of our
method with a bad initial condition. A 180 seconds timeout is set for every run.
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Results comparing the numerical learner using Gurobi and the sound learner
using Z3 are reported in Table 1. The average values, as well as the minimum
and maximum value among the N random systems, are computed on the syn-
thesis tests that have not timed out. The number of timed out procedures are
also listed in the Table.

With regards to non-linear and parametric models, we assess our approach
over a suite of examples taken from related work on Lyapunov function synthesis
[18], [19], [20], [23], which are reported in the following. The value c from Eq. (2)
is set heuristically as ceil(d/2), where d is the order of the system (this choice
follows the common interpretation of Lyapunov maps as storage functions). Due
to ease of implementation, only Z3-CEGIS performs the synthesis with c > 1
and in the case of parametric models. Results in terms of computational time
and iterations are reported in Table 2. Experiments are run on a 4-core Dell
laptop with Fedora 30 and 8GB RAM.

Example 5. Consider the model [18]

ẋ1 = −x2
1 − 4x3

2 − 6x3x4, ẋ4 = x1x3 + x3x6 − x3
4,

ẋ2 = −x1 − x2 + x3
5, ẋ5 = −2x3

2 − x5 + x6,
ẋ3 = x1x4 − x3 + x4x6, ẋ6 = −3x3x4 − x3

5 − x6.

Z3-CEGIS finds the Lyapunov function V (x) = 2x2
1+4x4

2+x2
3+11x2

4+2x4
5+4x2

6,
ensuring stability over the whole state space. SOSTOOLS fails to find a 2nd−
or 4th−order Lyapunov function for this model. �

Example 6. Consider the model [23]{
ẋ = −x3 + y

ẏ = −x− y.

Gurobi-CEGIS finds the Lyapunov function V (x) = 5 · 10−5x2 + 5 · 10−5y2,
whereas Z3-CEGIS finds V (x) = 0.5x2 + 0.5y2, both ensuring global stability.
The linearised Gurobi-CEGIS finds V (x) = 3.2 · 10−3x2 + 3.2 · 10−3y2, whereas
SOSTOOLS finds V (x) = 0.7844(x2+y2), also ensuring stability over the whole
state space. �

Example 7. Consider the system [20]⎧⎪⎪⎨⎪⎪⎩
ẋ1 = −x3

1 − x1x
2
3,

ẋ2 = −x2 − x2
1x2,

ẋ3 = −x3 − 3x3

x2
3 + 1

+ 3x2
1x3.

Note that the term x2
3+1 is always non-negative, therefore we can consider V̇ (x)·

(x2
3 + 1) ≤ 0. Gurobi-CEGIS finds the Lyapunov function V (x) = 32 · 10−4x2

1 +
32 · 10−4x2

2 + 8 · 10−4x2
3, whereas Z3-CEGIS finds V (x) = 3x2

1 + x2
2 + x2

3, and
finally SOSTOOLS finds the function V (x) = 6.659x12 + 4.628x22 + 2.073x32,
all ensuring global stability. �
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Example 8. Consider the system [23]{
ẋ = −x− 1.5x2y3,

ẏ = −y3 + 0.5x3y2.

Z3-CEGIS finds V (x) = 1/3x2 + y2, valid on the whole R2, whereas SOS-
TOOLS finds V (x) = 0.4707x2 + 1.412y2, with a stability region of radius
r = 68. Gurobi-CEGIS returns an error, as it finds V (x) = 1.00066454641347x2+
2.99933545358653y2 that is not a valid Lyapunov function. The correct solution,
V (x) = x2 + 3y2, can not be attained in view of lack of convergence of the op-
timisation algorithm. On the other hand, the linearised Gurobi-CEGIS delivers
V (x) = 32 · 10−4x2 + 2 · 10−4y2 with a radius r = 1.25. �

Example 9. Consider the system [23]:

ẋ1 = −x1 + x3
2 − 3x3x4, ẋ3 = x1x4 − x3,

ẋ2 = −x1 − x3
2, ẋ4 = x1x3 − x3

4.

Z3-CEGIS finds the Lyapunov function V (x) = 2x2
1 + x4

2 + 3201/1024x2
3 +

2943/1024x2
4, ensuring global stability. SOSTOOLS, on the other hand, finds

a complex 4th order polynomial, omitted here for brevity, with a stability region
that is hard to characterise analytically. �

Example 10. Consider the parametric linear system [23]{
ẋ = y,

ẏ = −(2 + μ)x− y,

where μ ∈ (−2, 5]. Z3-CEGIS discovers the Lyapunov function V (x) = (μ +
2)x2 + y2, ensuring stability on the whole state space. On the other hand, SOS-
TOOLS fails to find a solution when setting V (x, μ) to be independent from,
linear in, or quadratic in μ. �

Example 11. Consider the parametric system [23]{
ẋ = −(1 + μ1)x+ (4 + μ2)y,

ẏ = −(1 + μ3)x− μ4y
3,

where μi ∈ [0, 100] for i = 1, . . . 4. Z3-CEGIS discovers the Lyapunov function

V (x) =
μ3 + 1

μ2 + 4
x2 + y2 that asserts stability on the whole state space, whereas

SOSTOOLS can not find a solution considering V (x) independent from, linear
in, or quadratic in μi, where i = 1, . . . , 4. �

As expected, Gurobi is faster than Z3 in terms of iterations and computa-
tional time. The gap becomes larger with a high-dimensional system, as the SMT
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learner does not implement any optimisation techniques. The Z3-CEGIS synthe-
sis is performed via an SMT call, which grows in complexity as the number of
constraints – related to the number of counterexamples – increases. Gurobi, on
the other hand, using optimisation techniques converges faster to a candidate
solution that is closer to the actual solution. Our approach outperforms SOS-
TOOLS in terms of computational time, and it is able to handle parametric and
complex models.

Notice that the coefficients of the Lyapunov function synthesised by Gurobi
are small in magnitude, as the linear programming problem can encompass the
minimisation of coefficients in its setup. On the other hand those obtained from
Z3 (rational fractions) are arguably more interpretable. A very interesting result
comes from Example 8. Gurobi-CEGIS converges towards the correct Lyapunov
function, yet it can not reach the exact numerical values in view of the algorith-
mic precision. Gurobi numerical guidelines [10] suggest that, as a rule of thumb,
the ratio of the largest to the smallest coefficient of the LP problem should
be less than 109. In our setting, the coefficients are the counterexamples found
by Z3, which might require higher precision. In this case, the issue is (proba-
bly) caused by a counterexample x̄ � [−755145, 1/8], where the first element
is actually represented as a (very long) ratio between two integers. The ratio
between the two x̄ coefficient is in the order of 107. Roughly speaking, the coun-
terexamples generated by Z3 depend on the complexity of the tested model: a
high-order system might generate numerically ill-conditioned counterexamples,
as this example shows. It is also significant how the numerical algorithm tries to
converge to a correct solution. The first candidate Lyapunov function results in
V (x) = 1.07079661938449x2+2.92920338061551y2 and it takes 99 counterexam-
ples to reach the final value (cf. Example 8), until the procedure stops, resulting
in an infeasible problem. Even enveloping the numerical values with the Python
Sympy objects Rational, Decimal, Fraction, or the function simplify do not
help in this context, the limitation being Gurobi’s numerical precision.

n Gurobi-CEGIS Z3-CEGIS

3
4
5
6
7
8
9
10

Iterations Time [sec] Oot

3 [3, 3] 0.48 [0.33, 0.77] –
3.10 [3, 4] 0.53 [0.36, 1.20] –
4.15 [4, 5] 1.33 [1.08, 1.97] –
6.99 [4, 10] 3.88 [2.41, 4.97] –
8.56 [4, 12] 12.64 [2.9, 62.3] –
9.14 [3, 13] 21.50 [3.9, 114.16] 1
15.72 [3, 32] 29.98 [3.87, 78.5] 2
18.45 [3,41] 40.63 [6.17, 46.65] 5

Iterations Time [sec] Oot

3.03 [3, 4] 0.49 [0.4, 0.70] –
5.93 [4, 7] 0.68 [0.54,1.07] –
7.38 [5, 12] 1.67 [1.10, 3.03] –
9.10 [6, 10] 7.48 [2.40, 54.44] –
12.88 [5, 17] 17.63 [5.41, 20.3] 1
16.2 [3, 25] 23.91 [4.05, 35.08] 1
22.47 [4, 35] 34.41 [5.67, 48.96] 5
27.25 [5, 47] 44.63 [6.32, 101.2] 7

Table 1. Comparison between Gurobi-CEGIS and Z3-CEGIS over n-dimensional lin-
ear models. The first values are the average performance on the N = 100 randomly
generated models, and within brackets the minimum and maximum values. Oot is the
number of runs (out of N) not finishing after 180 [sec].
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Example # Gurobi-CEGIS Z3-CEGIS SOSTOOLS

5
6
7
8
9
10
11

Time [sec] Iterations

– –
0.32 2
0.37 4
0.16 2
– –
– –
– –

Time [sec] Iterations

18.38 4
1.27 5
0.60 3
0.27 2
9.26 3
0.14 3
0.23 3

Time [sec]

–
3.66
4.38
3.83
21.31
–
–

Table 2. Comparison between Gurobi-CEGIS, Z3-CEGIS and SOSTOOLS for non-
linear models (see Examples description in main text). The result for Gurobi-CEGIS
in Example 8 is obtained via linearisation.

5 Conclusions and Future Work

In this work, we have studied the problem of automated and sound synthesis
of Lyapunov functions. We have exploited a CEGIS framework, equipped with
a sound verifier (the Z3 SMT solver) and with either a numerical LP solver
(Gurobi) or a sound (Z3) learner.

We have provided a simple – yet effective – methodology to synthesise Lya-
punov functions for linear, polynomial and parametric systems and shown ev-
idence of scalability and reliability of our method using benchmarks from the
literature. We have in particular synthesised quadratic Lyapunov functions for
linear models and verified their validity on the whole state space. We have tack-
led non-linear models following two approaches: either 1) the computation of
Lyapunov functions over the linearised system and the synthesis of its validity
region; or 2) the direct computation of a higher-order Lyapunov function.

Future work includes the implementation of synthesis techniques for Gurobi-
CEGIS for high-order and parametric models, together with the study of optimi-
sation techniques for the synthesis in Z3-CEGIS: the tuning of the SMT solvers
leaves much room, for example in order to provide insightful counterexamples
or to additionally optimise an objective function. Further, we aim at embedding
CEGIS with neural networks (as function approximators) to replace the learner,
whilst maintaining the verification in the hands of an SMT solver - this approach
has been recently pursued also in [32].
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Abstract. Propositional model counting is a classic problem that has
recently witnessed many technical advances and novel applications. While
the basic model counting problem requires computing the number of all
solutions to the given formula, in some important application scenarios,
the desired count is not of all solutions, but instead, of all unique solu-
tions up to isomorphism. In such a scenario, the user herself must try to
either use the full count that the model counter returns to compute the
count up to isomorphism, or ensure that the input formula to the model
counter adequately captures the symmetry breaking predicates so it can
directly report the count she desires.
We study the use of CNF-level and domain-level symmetry breaking
predicates in the context of the state-of-the-art in model counting, specif-
ically the leading approximate model counter ApproxMC and the re-
cently introduced exact model counter ProjMC. As benchmarks, we use
a range of problems, including structurally complex specifications of soft-
ware systems and constraint satisfaction problems. The results show that
while it is sometimes feasible to compute the model counts up to isomor-
phism using the full counts that are computed by the model counters,
doing so suffers from poor scalability. The addition of symmetry breaking
predicates substantially assists model counters. Domain-specific predi-
cates are particularly useful, and in many cases can provide full symme-
try breaking to enable highly efficient model counting up to isomorphism.
We hope our study motivates new research on designing model counters
that directly account for symmetries to facilitate further applications of
model counting.

1 Introduction
Propositional model counting is the classic problem of counting the number of
all solutions for the given formula in propositional logic. While the core problem
is an integral part of complexity theory literature, advances in propositional
satisfiability (SAT) solvers and other decision procedures in the last decade have
led to much progress in tackling this problem in innovative ways [7,9,10,15,17,
31,39,40,47,49,50,56,64]. These advances have fueled the application of model
counters in various software verification and reliability domains, e.g., to perform
© The Author(s) 2020
A. Biere and D. Parker (Eds.): TACAS 2020, LNCS 12078, pp. 115–134, 2020.
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probabilistic analyses [13, 26, 28], check and repair string manipulation code [9,
41], and estimate information leakage using quantified information flow [19,44].

While the basic model counting problem requires computing the number
of all solutions, in some important application scenarios, the desired count is
not of all solutions, but instead, of all unique solutions up to isomorphism, i.e.,
non-isomorphic (also called non-symmetric) solutions. For example, consider the
context of software reliability analysis [26] where a goal is to find the number of
inputs that can lead to an assertion violation, or bounded exhaustive testing [14,
42,62,68] where the goal is to estimate the total number of inputs that exist for
a certain bound on the input size to decide what bound to use to stay within
the testing budget. The desired counts in these cases are of non-isomorphic
inputs, which are non-equivalent with respect to behaviors that a program can
have because two inputs that are equivalent (and possibly not identical) produce
the same output [66]. As another example, consider computing the number of
solutions to a constraint satisfaction problem (CSP) [45], e.g., the number of
unique ways 8 queens can be arranged on a fixed chess board such that no queen
is under attack [6]. Once again, one is typically interested in the number of
non-symmetric solutions because the indistinguishability of queens implies that
a user does not consider two solutions obtained by swapping positions of queens
to be unique.

In such scenarios, the user has two basic options. One option is to compute
the full count using the model counter, and then use mathematical reasoning
about symmetries to project the full count to the desired count. Doing so is
straightforward in some cases, e.g., if each solution consists of n indistinguishable
objects of the same type and the composition of each solution implies that each
permutation of those n objects leads to a distinct (albeit isomorphic) solution,
dividing the full count by n! gives the count for non-isomorphic solutions; doing
so is however, not always easy, for example when different solutions have different
number of objects that can be permuted to form non-identical solutions. The
other option is to ensure the formula that is input to the model counter includes
symmetry breaking predicates [20,21], i.e., additional constraints that only allow
canonical solutions from each isomorphism class, so the model counter can report
the desired count.

Symmetry breaking predicates can be added using three basic approaches [29].
Perhaps the most common approach is to add them at the CNF-level by using
an off-the-shelf tool [8,23], which takes as input a CNF formula and creates sym-
metry breaking predicates for it. Another common approach is to create them at
the problem domain level using a domain-specific tool [58], and then translate
the formula and predicates together to CNF. A third approach is to add them
manually at the problem domain level [38,59], and then translate to CNF.

A goal of our work is to study what is the best way to add symmetry break-
ing predicates (if at all) to obtain precise counts of non-isomorphic solutions.
We conduct the study in the context of the state-of-the-art in model count-
ing, specifically the leading approximate model counter ApproxMC [16, 17, 52]
and the recently introduced exact model counter ProjMC [40]. ApproxMC and
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ProjMC embody very different algorithms for model counting and provide us
a diverse set of tools for the study. ApproxMC employs novel approximation
methods to efficiently predict highly accurate model counts with formal guaran-
tees, and is now in its third generation (called ApproxMC3 [52]). ProjMC uses
a recursive algorithm and employs a disjunctive decomposition method together
with a search for disjoint components, and just had its first public release.

As benchmark formulas, we use a range of problems, including structurally
complex specifications of software systems [34] and constraint satisfaction prob-
lems [45]. To create the benchmark formulas, we employ the Alloy toolset [34]
and its Kodkod backend [58]. Alloy allows writing formulas in relational first
order logic with transitive closure, and has been used in academia and indus-
try for design and specification of systems [11, 18, 35, 37, 65, 67, 70] as well as
for various forms of analyses of code [27, 32, 36, 42, 48, 69]. The Alloy analyzer
translates Alloy formulas with respect to a scope, i.e., bound on the universe of
discourse, into propositional logic to create CNF problems that are solved using
off-the-shelf SAT solvers [25]. Alloy supports fully automatic (partial) symmetry
breaking at the level of Alloy specifications [51,57] by adapting Crawford’s sym-
metry breaking predicates [20], which are statically added to the formula before
the solvers solve it. Alloy provides an ideal vehicle for evaluating the different
approaches to symmetry breaking that are our focus in this study.

Similar to other techniques that use CNF-based backends, the Alloy ana-
lyzer translates problems from a higher-level (Alloy) to a lower-level (CNF).
This translation often introduces new boolean variables in the resulting formula,
which are not essential for creating the CNF formula but are required for a
compact (feasible) encoding in CNF [60]. As a result, the translated formula
is equisatisfiable to the original formula but may not be equivalent to it, and
hence it may be the case that the model count for the CNF formula is very
different from the original formula. Several modern model counters [16, 40, 50]
readily handle this case by providing support for projected model counting [10],
i.e., computing the model count with respect to a subset of all the variables. For
Alloy, the subset is the primary variables, i.e., all boolean variables that directly
correspond to the variables in the Alloy specification.

For each benchmark formula f , we create three model counting problems
using automatic tools: 1) f with no symmetry breaking, which we create by
setting Alloy’s default symmetry breaking to off ; 2) f with symmetry break-
ing predicates added at the problem domain level, which we create by having
Alloy’s default symmetry breaking turned on; and 3) f with symmetry break-
ing predicates added at the CNF level, which we create by first using Alloy to
create a CNF formula with no domain-level symmetry breaking, and then us-
ing the BreakID [23] tool to add CNF-level symmetry breaking predicates using
its default settings. In addition, for select benchmarks we create formulas with
manually added domain-specific symmetry breaking predicates, which we write
in Alloy following previous work [38].

The results show that while it is sometimes feasible to compute the model
counts up to isomorphism using the full counts that are computed by the model
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counters, doing so suffers from poor scalability. The addition of symmetry break-
ing predicates substantially assists model counters, although it is a well-known
feature in SAT solving supported by theory finding [46, 61]. Domain specific
predicates are particularly effective, and in many cases, can provide full sym-
metry breaking to enable highly efficient model counting up to isomorphism.
We were surprised by the extent of the impact. Since the addition of symme-
try breaking predicates introduces new dependencies among the variables, we
expected these dependencies to make the formula more complex and perhaps
less amenable to efficient model counting. However, the sheer reduction in the
number of solutions caused by symmetry breaking more than compensates for
the additional logical complexity of the formula. In cases where it was possible
to create full symmetry breaking predicates, the model count for the formula
with the predicates was computed up to a few orders of magnitude faster than
the formula with no symmetry breaking predicates.

A key lesson of our study (in the context of the model counting problems
considered) is: if non-isomorphic solution counts are desired, use full symmetry
breaking predicates at the domain-level whenever feasible – even if it is straight-
forward to compute the number of non-isomorphic solutions from the number
of all solutions, or even if the symmetry breaking constraints have to be written
manually. This paper makes the following contributions:

– Study. To the best of our knowledge, we present the first study of symmetry
breaking in the context of model counting. As pointed out earlier, there is
a tradeoff between the reduction of solution space and the likely increase in
complexity due to added symmetry breaking predicates. In prior work, the
benefit of symmetry breaking in SAT solving were typically observed largely
for unsatisfiable problems [43], our study shows the importance of symmetry
breaking and its deep relation to problem formulation in the context of
satisfiable problems, albeit for model counting.

– Dataset. All CNF files we used for the experiments are being made pub-
licly available: https://github.com/wenxiwang/TACAS2020. We expect the
dataset to be useful for future work on evaluating the performance of differ-
ent model counters, and of the different strategies they employ, as well as
for evaluating model enumeration tools.

We believe there is an important bi-directional relation between symmetry
breaking and model counting whereas: 1) in one direction the model counters
directly support computing the counts for non-isomorphic solutions to facilitate
applications that so require; and 2) in the other direction symmetry breaking
helps model counters become more efficient. We hope our study motivates future
work that further investigates this relation.

2 Examples
This section provides two illustrative examples that require computing the num-
ber of unique solutions up to isomorphism. We specify the examples in the Alloy
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module nqueens -- name of the specification

sig Queen {} -- set of queen atoms

one sig Board { state: Queen -> Int -> Int } -- one board

fact StateOkay {
all q: Queen | one q.(Board.state) -- each queen occupies exactly one cell
all x: Queen.(Board.state).Int | ValidIndex[x] -- all x-coordinates are valid
all y: Int.(Queen.(Board.state)) | ValidIndex[y] -- all y-coordinates are valid
all disj q, r: Queen | q.(Board.state) != r.(Board.state) } -- queens do not share cells

pred ValidIndex[x: Int] { x.gte[0] and x.lte[(#Queen).minus[1]] } -- x >= 0 && x <= |Queen|-1

fun X[q: Queen]: Int { (q.(Board.state)).Int } -- x-coordinate of q

fun Y[q: Queen]: Int { Int.(q.(Board.state)) } -- y-coordinate of q

fun Abs[x: Int]: Int { x.lt[0] implies negate[x] else x } -- absolute value of x

pred SameRow[q, r: Queen] { X[q] = X[r] } -- q and r are in the same row

pred SameColumn[q, r: Queen] { Y[q] = Y[r] } -- q and r are in the same column

pred SameDiagonal[q, r: Queen] { -- q and r share a diagonal
Abs[X[q].minus[X[r]]] = Abs[Y[q].minus[Y[r]]] }

pred NQueensProblem { -- no queen attacks another queen
all disj q, r: Queen | !SameRow[q, r] and !SameColumn[q, r] and !SameDiagonal[q, r] }

Fig. 1: Alloy specification of n-Queens.

language, which allows us to explore different approaches for applying symmetry
breaking. We provide intuitive descriptions of Alloy constructs as we introduce
them; further details can be found elsewhere [34].

The first example illustrates a CSP problem [45] where Alloy’s default sym-
metry breaking provides full symmetry breaking; we use ApproxMC to solve
this problem (Section 2.1). The second example illustrates a software testing
problem [42] where manually written symmetry breaking predicates provide full
symmetry breaking; we use ProjMC to solve this problem (Section 2.2). Sec-
tion 5 presents a detailed experimental evaluation where we use the two tools
against many additional benchmarks.

2.1 n-Queens
Consider specifying the well-known n-Queens problem of placing n interchange-
able queens4 on a fixed n×n chess-board, and computing the number of solutions
to the problem using a modern propositional model counter [16,40,50].

Figure 1 shows a fragment of an Alloy specification of the n-Queens problem,
which has been studied before using Alloy [2,4,55]. The keyword sig introduces
a set of (interchangeable) atoms. The keyword one makes the set a singleton. The
field state introduces a quaternary relation of type “Board x Queen x Int x Int”
where Int is a built-in type that represents integers. The fact StateOkay describes
the basic constraints for the state of the board to be valid; the fact contains
4 Here, we only consider symmetries based on permuting the queens (and not other

forms, e.g., rotations of the board.)
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Queen={Queen$0, Queen$1, Queen$2, Queen$3,
Queen$4, Queen$5, Queen$6, Queen$7}

Board={Board$0}

Board<:state={Board$0->Queen$0->7->5, Board$0->Queen$1->6->0,
Board$0->Queen$2->5->4, Board$0->Queen$3->4->1,
Board$0->Queen$4->3->7, Board$0->Queen$5->2->2,
Board$0->Queen$6->1->6, Board$0->Queen$7->0->3}

80Z0l0Z0Z
7ZqZ0Z0Z0
60Z0Z0Z0l
5Z0Z0ZqZ0
4qZ0Z0Z0Z
3Z0l0Z0Z0
20Z0ZqZ0Z
1Z0Z0Z0l0

a b c d e f g h

Fig. 2: A solution to 8-queens created by the Alloy analyzer illustrated.

4 sub-formulas that are implicitly conjoined; each of them uses universal quan-
tification (all); the keyword disj constrains the quantified variables to represent
distinct values. The dot operator (‘.’) is relational join [34]. A predicate (pred)
is a parameterized formula that can be invoked elsewhere; likewise, a fun is a
parameterized expression. The predicate NQueensProblem represents the overall
specification of the n-Queens constraints. Any model of the Alloy specification
must satisfy the constraints in all the facts and any predicates that are invoked
(directly or transitively).

The Alloy user writes a command and executes it to solve desired constraints.
For example, “run NQueensProblem for 5 int, exactly 8 Queen” asks the ana-
lyzer to find a solution to the 8-Queens problem. This command creates a con-
straint solving problem such that the integer bit-width is 5, and there are exactly
8 queens. Figure 2 shows a valuation for each set and relation created by the
Alloy analyzer to solve this problem, and graphically illustrates the solution.

Next, we illustrate the use of the approximate model counter ApproxMC [16].
For the nqueens specification, for each 7 ≤ n ≤ 12, we create three constraint
solving problems: 1) no symmetry breaking (no-sb); 2) BreakID’s default CNF-
level symmetry breaking [23] (cnf-sb); and 3) Alloy’s default domain-level sym-
metry breaking [58] (dom-sb). Table 1 shows the number of solutions found and
time taken in each case. The model count with no symmetry breaking is the high-
est and takes the longest to compute; this approach times out for 8×8 and larger
boards. BreakID’s default CNF-level symmetry breaking significantly reduces

Table 1: ApproxMC results for n-Queens for 7 ≤ n ≤ 12. Model count (“#”) and
time taken in seconds (“t[s]”) for different problem sizes are shown. Time-out
(t.o.) is 5000 sec.

7× 7 8× 8 9× 9 10× 10 11× 11 12× 12
# t[s] # t[s] # t[s] # t[s] # t[s] # t[s]

ap
pr

ox no-sb 208896 3727.1 - t.o. - t.o. - t.o. - t.o. - t.o
cnf-sb 67584 1446.4 - t.o. - t.o. - t.o. - t.o. - t.o
dom-sb 40 1.14 92 13.67 304 16.27 784 44.97 2752 199.77 15360 822.14
OEIS 40 92 352 724 2680 14200
error 0 0 0.158 -0.077 -0.026 0.076
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the counts and the time. Alloy’s default domain-level symmetry breaking is the
most effective, and for this problem, removes all symmetries. Some of the approx-
imate model counts reported by ApproxMC are coincidentally the exact counts.
We validated the counts using the On-line Encyclopedia of Integer Sequences
(OEIS) [6]: the sequence #A000170 represents the number of solutions for the
n-Queen problem. The counts computed using Alloy’s default symmetry break-
ing with ApproxMC up to board size 8× 8 form a subsequence of A000170. For
the other board sizes, the table lists the error, which is max(approxexact ,

exact
approx )− 1,

based on multiplicative guarantees.
Note that the non-isomorphic solution count can easily be estimated from the

full count for this problem. For example, for the 7×7 board we can estimate it as
208896

7! = 41.44, which is quite close to the actual count of 40. While the calcula-
tion is simple, the time to compute the full count is much higher (3727.1 seconds
instead of 1.14 seconds). Moreover, for larger board sizes, computing the full
count times out, so using it for those sizes may be simply infeasible. This ex-
ample illustrates a case where symmetry breaking predicates reduce both the
model count and the time to compute it by relatively large factors.
3-queens. Table 2 shows the results for a variation of the n-queens problem
where the number of queens is fixed to 3, and the board size varies. To specify this
variation, we replace the expression “(#Queen).minus[1]” in predicate ValidIndex
with the value of “k − 1” for the board size k × k, and set the scope for Queen
to “exactly 3” in the run command. We validate the ApproxMC counts using
the OEIS sequence #A047659 [6]. Once again, BreakID’s CNF-level predicates
significantly reduce the model count and time to compute it, and Alloy’s domain-
level predicates reduce them further. Since the number of queens is fixed to
3, the ratio of total number of solutions (no-sb) to number of non-isomorphic
solution is 3! = 6. For example, for 11 × 11 board, the ratio for ApproxMC
counts is exactly 6; however, the time to compute the full count is, as before,
much higher (1307.04 seconds instead of 45.1 seconds). This example shows a
case where symmetry breaking predicates reduce the model count by a relatively
small factor but the time to compute the counts by a much larger factor.

2.2 Data structure invariants
Next, consider the context of bounded exhaustive testing where the program
under test is run against every non-equivalent input within a bound on the

Table 2: ApproxMC results for 3-Queens where 3 queens are placed on n × n
board for 8 ≤ n ≤ 12.

8× 8 9× 9 10× 10 11× 11 12× 12
# t[s] # t[s] # t[s] # t[s] # t[s]

ap
pr

ox no-sb 64512 107.56 176128 368.65 335872 695.55 688128 1307.04 1081344 4811.86
cnf-sb 18944 30.26 51200 67.43 122880 153.16 241664 280.15 417792 567.48
dom-sb 9728 7.94 25088 12.78 57344 26.14 114688 45.1 200704 111.76
OEIS 10320 25096 54400 107880 199400
error 0.061 0.000 -0.051 -0.059 -0.006
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input size, and the inputs are characterized by a logical formula [42]. Assume
the goal is to identify a bound that will lead to a feasible number of inputs that
can be executed within the testing budget. We use model counting to estimate
the number of solutions for different bounds.

Assume the inputs to the program under test are binary trees. Figure 3a shows
a partial Alloy specification for binary trees. The singleton sig BT represents the
tree, which has a root node and an integer size; the keyword lone defines a partial
function, so, e.g., the tree root is either exactly one node or none. Each node
has an integer key and a left and a right child. The predicate RepOk specifies
the constraints for a valid binary tree, which must be acyclic. The predicate
Acyclic specifies acyclicity; the operator “ˆ” is transitive closure, “*” is reflexive
transitive closure, “+” is set union, “&” is set intersection, and “˜” is transpose.

Consider the constraint solving problem for size k so that the binary tree
has exactly k nodes and the keys are 1, . . . , k. Figure 3b illustrates the 5 non-
isomorphic trees for size 3.

To show that the impact of symmetry is not limited to only approximate
counting, we perform this case study with the exact model counter ProjMC [40].
Table 3 shows the model counts for different sizes. As before, CNF-level sym-
metry breaking reduces the model count, which is further reduced by Alloy’s

Table 3: ProjMC results for binary tree constraints for trees with 6, 7, 8, 9, and
10 nodes. Time-out (t.o.) is 5000 sec.

6 7 8 9 10
# t[s] # t[s] # t[s] # t[s] # t[s]

ex
ac

t

no-sb 95040 5.57 2162160 129.25 57657600 3673.89 - t.o. - t.o.
cnf-sb 61538 7.39 1538628 184.97 25955296 3466.19 - t.o. - t.o.
dom-sb 357 0.10 1866 0.70 10286 4.94 60616 40.21 373001 610.35
man-sb 132 0.03 429 0.09 1430 0.34 4862 1.48 16796 10.53
OEIS 132 429 1430 4862 16796

one sig BT {
root: lone Node }

sig Node {
left, right: lone Node }

pred Acyclic(t: BT) {
all n: t.root.*(left + right) {

n !in n.^(left + right) -- no directed cycle
lone n.~(left + right) -- at most one parent
no n.left & n.right }} -- children are different

pred RepOk(t: BT) { Acyclic[t] }
...

N0

N1

N2

N0

N1

N2

N0

N1

N2

N0

N1

N2

N0

N1 N2

trees with 3 nodes. N0 is the root.
Fig. 3: (a) Alloy specification of binary trees. (b) Five non-isomorphic binary
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fact SymmetryBreaking { // pre-order
BT.root in first[]
all n: BT.root.*(left + right) {

some n.left implies n.left in next[n]
no n.left implies n.right in next[n]
some n.right and some n.left implies

n.right in next[max[n.left.*(left + right)]] }}

Fig. 4: Full symmetry breaking predicates in Alloy [38].

default symmetry breaking. However, unlike before, CNF-level symmetry break-
ing sometimes makes the model counter, which is ProjMC in this case, slower.
Moreover, Alloy’s default symmetry breaking does not break all symmetries. For
this example, they can be broken using manually written predicates. Binary trees
belongs to a restricted class of data structures for which full symmetry break-
ing can be achieved by writing predicates in Alloy so that only the canonical
solution from each isomorphism class is allowed [38]. Figure 4 shows a fact that
embodies this approach. Intuitively, the fact requires that a pre-order traversal
starting at the root visits the nodes in the same order as a pre-defined linear
ordering of the nodes; the ordering module in Alloy allows defining a linear or-
der. The manually written predicates provide the most efficient counting. In this
example the count up to isomorphism can, once again, be computed from the
full count but at a much higher computational cost. For example, for 8 nodes,
the full count is 57657600, which divided by 8! is 1430, i.e., the count up to
isomorphism, but ProjMC takes 3673 seconds to compute the full count whereas
once the manual symmetry breaking predicates are added it takes 0.34 seconds.
The number of binary trees with n nodes is the OEIS sequence #A000108, which
allows us to validate that the manually written predicates are indeed breaking
all symmetries.

3 Background: Model counting
This section gives the relevant background on model counting, with a focus on
projected and approximate model counting.

Let ϕ be a Boolean formula in conjunctive normal form (CNF) over the
variable set X. An assignment σ of truth values to the variables in ϕ is called
solution of ϕ if it makes ϕ evaluate to true. We denote the set of all witnesses of
F by RF . Given a set of variables S ⊆ X and an assignment σ, we use σ ↓ S to
denote the projection of σ on S. Similarly, Rϕ↓S denotes projection of Rϕ on S.

The projected model counting problem is to compute |Rϕ↓S | for a given CNF
formula F and sampling set S ⊆ X. When S = X, the problem is referred
to as model counting. A probably approximately correct (or PAC) counter is a
probabilistic algorithm ApproxCount(·, ·, ·, ·) that takes as inputs a formula F , a
sampling set S, a tolerance ε > 0, and a confidence 1− δ ∈ (0, 1], and returns a
count c such that Pr

[
|Rϕ↓S |/(1 + ε) ≤ c ≤ (1 + ε)|Rϕ↓S |

]
≥ 1 − δ. For clarity,

we omit mention of S unless needed for a given context.
Projected Model counting is a fundamental problem in computer science with

applications ranging from reliability of networks to information leakage. Valiant
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initiated complexity theoretic studies of model counting and showed that model
counting is #P-hard [63]. The earliest practical approaches to model counting
such as Relsat [12], were based on extending DPLL approaches. The advent of
CDCL solvers led to the paradigm of combining conflict driven search with com-
ponent caching leading to the development of solvers such as Cachet [49] and
sharpSAT [56]. Furthermore, Darwiche and Marquis [22] pioneered a knowledge-
compilation-based approach, relying on the static partitioning of the solution
space, which led to development of c2d. The recent years have witnessed combi-
nation of CDCL and static approaches with solvers such as D4 and DSharp. Re-
cently, Lagniez and Marquis proposed a recursive algorithm, called ProjMC [40],
that exploits the disjunctive decomposition technique pioneered in earlier works
to perform projected model counting. Concurrently, another approach, called
Ganak [50], for projected model counting has been developed that provides
probabilistic exact bounds via usage of universal hash functions. In this work,
we focus on ProjMC due to its ability to provide exact counts and demonstrated
scalability in comparison to other approaches.

The theoretical studies of approximation led to the introduction of PAC style,
also referred to as (ε, δ), guarantees wherein the underlying algorithm returns
an estimate within (1 + ε) factor of the exact count with confidence at least
1− δ. Stockmeyer [54] demonstrated that PAC guarantees can be achieved by a
probabilistic polynomial Turing machine with access to NP oracle. The practical
exploration of Stockmeyer’s approach was pursued with Gomes et al with the
development of MBound [31] and SampleCount [30]. Chakraborty, Meel, and
Vardi proposed a scalable approximate counter, called ApproxMC, with formal
(ε, δ) guarantees which seeks to combine the advances in SAT solving with design
of efficient universal hash functions.

ApproxMC is now in its third generation, called ApproxMC3. The central
idea behind ApproxMC is to employ universal hash functions, represented by
randomly chosen XOR constraints, to partition the solution space into roughly
equal small cells where every cell can be defined by the original constraints
augmented with randomly chosen XOR constraints. ApproxMC invokes Cryp-
toMinisat [53], a solver designed specifically for combination of CNF and XOR
constraints, to enumerate solutions in a randomly chosen small cell. ApproxMC2
achieves a significant reduction in the number of SAT calls from linear in |S| to
log(|S|) by exploiting dependence among different SAT calls. Soos and Meel
proposed ApproxMC3 by augmenting ApproxMC2 with a new architecture to
handle CNF+XOR formulas [52].

4 Study methodology
This section describes the overall design of our study, including the model count-
ing tools, the generation of constraint solving problems, and the measurements
for evaluation.

4.1 Tools
For approximate model counting, we use ApproxMCv3 (https://github.com/
meelgroup/ApproxMC), which is the latest public release of ApproxMC [52]. For
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each model counting problem, we list the primary variables in the input CNF file
as a comment as required by ApproxMC. For exact model counting, we use the
latest public release of ProjMC [40] (http://www.cril.univ-artois.fr/kc/
projmc.html). For each model counting problem, we list the primary variables
in a separate file as required by ProjMC.

4.2 Benchmarks
Base formulas. We use four sources of base formulas.
(1) Alloy specs. We consider all Alloy specifications in the standard distribu-
tion [1]; each command in an Alloy spec defines a constraint solving problem
and provides a scope; we use the given scope. We remove unsatisfiable problems
since their model count is 0 (regardless of symmetry breaking), and our focus
in this study is on satisfiable problems. We also remove all “easy” cases that
complete within 1 second for both tools and all symmetry settings. This creates
a set of 47 base problems derived from Alloy specifications.
(2) Kodkod problems. We consider all Kodkod programs in the standard distri-
bution [5]. Once again, we remove the unsatisfiable problems and “easy” cases.
In addition, we remove problems that do not admit symmetry breaking, i.e.,
where Kodkod does not add any symmetry breaking by default (e.g., when there
is a given partial solution, which prevents Kodkod’s greedy base partitioning [57]
from having an effect). Some of the Kodkod programs are parameterized over
integer bounds and input files. We manually create those inputs in the appro-
priate format. This gives us a total of 13 base problems derived from Kodkod
programs.
(3) n-Queens. We use 2 common variations of the n-Queens problem: 1) k queens
are placed on a k × k board (1 ≤ k ≤ 12); 2) 3 queens are placed on a k × k
board (1 ≤ k ≤ 12). This gives us a total of 24 base problems derived from the
n-Queens problem5.
(4) Complex data structures. We use 6 complex data structures: (1) singly-linked
lists; (2) sorted lists; (3) doubly-linked lists; (4) binary trees; (5) binary search
trees; and (6) red-black trees. For each structure, we bound the number of nodes
to be between 6 and 9 (inclusive). This gives us a total of 24 base problems based
on structural invariants.
Model counting benchmarks. For each base formula f , we create 3 model
counting problems using automatic tools: 1) f with no symmetry breaking, which
we create by setting Alloy’s default symmetry breaking to off ; 2) f with symme-
try breaking predicates added at the CNF level, which we create by first using
Alloy to create a CNF formula with no domain-level symmetry breaking, and
then using the BreakID [23] tool to add CNF-level symmetry breaking predicates
using the same arguments as in the SATRACE’15 competition [3]; and 3) f with
symmetry breaking predicates added at the problem domain level, which we cre-
ate by having Alloy’s default symmetry breaking turned on. Moreover, for data
5 Unfortunately, we were not able to get the results for majority of the n-Queens

benchmarks with ProjMC due to an unknown issue with the tool, so we do not
use the n-Queens benchmarks for experiments with ProjMC; we have requested the
ProjMC team to look into the issue.
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structures, we create formulas with manually added domain-specific symmetry
breaking predicates, which we write in Alloy following previous work [38]. This
gives us a total of 348 model counting problems.

Table 4 shows some characteristics of the benchmarks, specifically the mini-
mum and maximum numbers of primary variables, and all variables and clauses
under the different symmetry breaking settings.

4.3 Metrics
We use two key metrics – the model counts and the time to compute them – and
measure them under different symmetry breaking settings. For model counts, we
report the tool output and the ratio of the count under one setting to the count
under another setting. For time, we report the actual wall-clock times, and the
ratio of time taken under one setting to the time taken under another setting.
In line with prior work [17], we report the error rate of the approximate model
counting which is max(approxexact ,

exact
approx )− 1, based on multiplicative guarantees.

5 Experimental evaluation
The section reports the results of the experimental evaluation. Section 5.1 de-
scribes the results for ApproxMC. Section 5.2 describes the results for ProjMC.

5.1 Symmetry breaking and approximate model counting
Time. Figures 5a, 5c, and 5e illustrate the time performance of ApproxMC
on the benchmarks based on Alloy, Kodkod, and data structure invariants re-
spectively. With no symmetry breaking, ApproxMC times out on 21 (of 47)
Alloy benchmarks, 6 (of 13) Kodkod benchmarks, and 10 (of 24) data struc-
ture benchmarks. In all but 16 cases, formulas with Alloy’s default symmetry
breaking take less time than with CNF-level symmetry breaking. In all but 10
cases, formulas with CNF-level symmetry breaking take less time than with no
symmetry breaking. Moreover, for data structure benchmarks, in all but 1 cases,
formulas with manual symmetry breaking take less time than Alloy’s default
symmetry breaking. Among all the problems that time out with no symmetry
breaking, the smallest time taken by the corresponding problem with Alloy’s
default symmetry breaking was 0.14 seconds, and the smallest time taken by

Table 4: Benchmark characteristics.
source #prim. no-sb cnf-sb dom-sb man-sb

#var. #clause #var. #clause #var. #clause #var. #clause
Alloy: min 46 384 620 522 1037 384 620 - -
Alloy: max 2048 93764 291349 93764 289725 93764 291349 - -
Kodkod: min 48 631 188 932 628 990 188 - -
Kodkod: max 8188 388755 764957 397566 834629 453358 877429 - -
n-Queens: min 1024 3762 7163 3762 7163 3762 7163 - -
n-Queens: max 12288 200074 532527 201064 523947 269141 704396 - -
Data Str.: min 43 992 3039 1091 3337 1209 3401 1006 3155
Data Str.: max 510 18694 48290 19045 45562 19808 50212 18993 50696



A Study of Symmetry Breaking Predicates and Model Counting 127

0.01

0.1

1

10

100

1000

10000
0 5 10 15 20 25 30 35 40 45 50

Ti
m

e

Alloy Subjects

cnf_nosb domain_sb cnf_sb

(a) Time: ApproxMC – Alloy

0.01

0.1

1

10

100

1000

10000
0 5 10 15 20 25 30 35 40 45 50

tim
e

Alloy Subjects

no_sb domain_sb cnf_sb

(b) Time: ProjMC – Alloy

0.1

1

10

100

1000

10000
0 2 4 6 8 10 12 14

Ti
m

e

Kodkod Subjects

no_sb domain_sb cnf_sb

(c) Time: ApproxMC – Kodkod

0.1

1

10

100

1000

10000
0 2 4 6 8 10 12 14

Ti
m

e

Kodkod Subjects

no_sb domain_sb cnf_sb

(d) Time: ProjMC – Kodkod

0.001

0.01

0.1

1

10

100

1000

10000
0 4 8 12 16 20 24

Ti
m

e

Data Structure Subjects

no_sb alloy_sb cnf_sb manual_sb

(e) Time: ApproxMC – Data structures

0.001

0.01

0.1

1

10

100

1000

10000
0 4 8 12 16 20 24

Ti
m

e

Data Structure Subjects

no_sb domain_sb cnf_sb manual_sb

(f) Time: ProjMC – Data structures

Fig. 5: Time results. x-axis has benchmark model counting problems. y-axis has
time in seconds (log-scale). Benchmarks on x-axis are sorted in ascending order
based on the number of primary variables; moreover, the data structure bench-
marks are grouped by the type of the structure. Blue diamond is no symmetry
breaking (no-sb) ; red triangle is CNF-level symmetry breaking (cnf-sb); green
square is Alloy’s default symmetry breaking (dom-sb); and orange cross is man-
ual symmetry breaking (man-sb).

the corresponding problem with manual symmetry breaking was 0.008 seconds.
For the Alloy benchmarks, ApproxMC does not time-out under any symmetry
breaking setting for benchmarks that have up to 90 primary variables. The time
results for the n-Queens benchmarks were presented in Section 2.1.
Model counts. Figure 6a graphically illustrates how the model counts vary
under different symmetry breaking settings. For the Alloy and Kodkod bench-
marks, in all but 10 cases the model count for the formula with Alloy’s default
symmetry breaking is less than the corresponding count with CNF-level sym-
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(a) Model count: ApproxMC

(b) Model count: ProjMC

Fig. 6: Model count results. x-axis has benchmark model counting problems. y-
axis (log-scale) has count ratio n/c where n is the model count for the formula
with no symmetry breaking and c is the corresponding count with CNF-level
symmetry breaking (green-square), Alloy’s default symmetry breaking (blue-
diamond), and manual symmetry breaking (red-triangle – only for data struc-
tures). Only cases where the calculation of n did not time out are shown.

metry breaking. For the data structures, the model count for the formula with
Alloy’s symmetry breaking is less than the corresponding count with CNF-level
symmetry breaking in all cases; moreover, in all but 5 cases, manual symmetry
breaking gives the lowest count (the 5 exceptions are due to approximation in
computing the model counts). Among all problems where ApproxMC reports a
count with no symmetry breaking, the largest ratio of count with no symmetry
breaking to count with Alloy’s default symmetry breaking was 61167, and the
largest ratio of count with no symmetry breaking to count with manual symme-
try breaking was 45056. The model count results for the n-Queens benchmarks
were presented in Section 2.1.
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Error. For the Alloy, Kodkod, and data structure benchmarks, we compute the
error in ApproxMC with respect to the counts reported by ProjMC for the cases
where ProjMC reported a count. The error ranges were: [0, 0.168] for the Alloy
benchmarks, [0, 0.168] for the Kodkod benchmarks, and [0, 0.165] for the data
structure benchmarks. Section 2.1 presented the error results for the n-Queens
benchmarks with respect to the number in OEIS [6].

5.2 Symmetry breaking and exact model counting
Time. Figures 5b, 5d, and 5f illustrate the time performance of ProjMC on the
benchmarks based on Alloy, Kodkod, and data structure invariants respectively.
With no symmetry breaking, ProjMC times out on 21 (of 47) Alloy benchmarks
(which is the same number as ApproxMC although the two sets of benchmarks
are not the same), 9 (of 13) Kodkod benchmarks (which is more that the num-
ber for ApproxMC), and 9 (of 24) data structure benchmarks (which is more
than ApproxMC). In all but 8 cases, formulas with Alloy’s default symmetry
breaking take less time than with CNF-level symmetry breaking. In all but 24
cases, formulas with CNF-level symmetry breaking take less time than with no
symmetry breaking. Moreover, for data structure benchmarks, in all but 2 cases,
formulas with manual symmetry breaking take less time than Alloy’s default
symmetry breaking. Among all the problems that time out with no symmetry
breaking, the smallest time taken by the corresponding problem with Alloy’s
default symmetry breaking was 3.12 seconds, and the smallest time taken by the
corresponding problem with manual symmetry breaking was 0.01 seconds.
Model counts. Figure 6b graphically illustrates how the model counts vary
under different symmetry breaking settings. For the Alloy and Kodkod bench-
marks, in all but 9 cases the model count for the formula with Alloy’s default
symmetry breaking is less than the corresponding count with CNF-level sym-
metry breaking. For the data structures, the model count for the formula with
Alloy’s symmetry breaking is less than the corresponding count with CNF-level
symmetry breaking in all cases; moreover, in all cases, manual symmetry break-
ing gives the lowest count. Among all problems where ApproxMC reports a
count with no symmetry breaking, the largest ratio of count with no symme-
try breaking to count with Alloy’s default symmetry breaking was 40320, and
the largest ratio of count with no symmetry breaking to count with manual
symmetry breaking was 362880.

Overall, the impact of symmetry breaking is significant for both ApproxMC
and ProjMC. In majority of the cases, Alloy’s default symmetry breaking is more
effective than CNF-level symmetry breaking using BreakID. For data structure
benchmarks, manual symmetry breaking is the most effective, and reports ex-
actly the counts of the non-isomorphic solutions as desired; moreover, in cases
where Alloy’s default symmetry breaking provides full symmetry breaking, man-
ual symmetry breaking provides much faster solving.

5.3 Discussion
The empirical evaluation in the preceding subsections clearly demonstrates the
significant impact of symmetry breaking on ApproxMC and ProjMC. While a
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detailed study to explain the observed behavior is beyond the scope of this work,
we offer some explanations. As pointed out by Soos and Meel [52], over 99% of
the runtime of ApproxMC is consumed by the underlying SAT solver handling
CNF-XOR formulas. The usage of symmetry breaking predicates for satisfiable
instances typically leads to smaller overheads in runtime in the context of sat-
isfiability queries. As discussed above, the use of symmetry breaking predicates
significantly reduces the number of solutions and thereby leads to the significant
reduction in the number of XORs to be added by ApproxMC. Note that the
number of XORs to be added is logarithmically proportional to the number of
solutions of a formula. The performance of SAT solvers has been observed to be
sensitive to the number of XORs [24] and therefore, we believe that reduction
in the required number of XORs is the primary reason behind the performance
improvements in the context of ApproxMC.

The performance improvement of ProjMC is, however, more surprising since
it is not necessarily the case that reduction in the number of solutions would lead
to reduction in the size of the corresponding d-DNNF (decision-Deterministic De-
composable Negation Normal Form), which represents the trace of the execution
of ProjMC [33]. Furthermore, given the lack of noticable difference in runtime
performance improvement via off-the-shelf symmetry breaking tools, it would
be an interesting direction of future work to understand the difference in the
traces between the formulas generated via Alloy’s default symmetry breaking
and CNF-level symmetry breaking.

6 Conclusions

This paper presented, to the best of our knowledge, the first study of symmetry
breaking and model counting. A goal of the study was to determine what is the
best way to add symmetry breaking predicates (if at all) to obtain precise counts
of non-isomorphic solutions. We studied two model counters from two different
classes and four scenarios of applying symmetry breaking. A key lesson of our
study is that domain-specific symmetry breaking predicates are most effective
at enabling precise computation of model counts up to isomorphism. We believe
the results of our study can provide insights into more effective use of cutting
edge model counters in important domains where the number of unique solutions
up to isomorphism is desired, and also enable developing novel model counting
methods that exploit symmetries.
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Abstract. In many areas of computer science, we are given an unsat-
isfiable set of constraints with the goal to provide an insight into the
unsatisfiability. One of common approaches is to identify minimal un-
satisfiable subsets (MUSes) of the constraint set. The more MUSes are
identified, the better insight is obtained. However, since there can be
up to exponentially many MUSes, their complete enumeration might be
intractable. Therefore, we focus on algorithms that enumerate MUSes
online, i.e. one by one, and thus can find at least some MUSes even in
the intractable cases.
Since MUSes find applications in different constraint domains and new
applications still arise, there have been proposed several domain agnos-
tic algorithms. Such algorithms can be applied in any constraint domain
and thus theoretically serve as ready-to-use solutions for all the emerg-
ing applications. However, there are almost no domain agnostic tools, i.e.
tools that both implement domain agnostic algorithms and can be easily
extended to support any constraint domain. In this work, we close this
gap by introducing a domain agnostic tool called MUST. Our tool out-
performs other existing domain agnostic tools and moreover, it is even
competitive to fully domain specific solutions.

Keywords: Minimal unsatisfiable subsets · Unsatisfiability analysis ·
Infeasibility analysis · MUS · Diagnosis.

1 Introduction

In various areas of computer science, we are given a set C of constraints with the
goal to determine whether the set is satisfiable, i.e. whether all the constraints
can hold simultaneously. In the case where the set is shown to be unsatisfiable,
we are often interested in analysing the unsatisfiability. Identification of minimal
unsatisfiable subsets (MUSes) of C is a kind of such analysis. A set M ⊆ C is
a MUS of C iff M is unsatisfiable and all proper subsets of M are satisfiable.
The more MUSes are identified, the better insight into the unsatisfiability of C
is obtained. However, the complete MUS enumeration is often intractable since
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there can be up to exponentially many MUSes w.r.t. the number of constraints in
C. Therefore, several online MUS enumeration algorithms (e.g. [3,29,22,1,25,10])
were proposed, i.e. algorithms that identify MUSes gradually, one by one, and
thus identify at least some MUSes even in the intractable cases.

Various applications of MUSes arise for example in requirements analy-
sis [4,6], during formal equivalence checking [15], proof based abstraction refine-
ment [23], Boolean function bi-decomposition [12], circuit error diagnosis [21],
type debugging in Haskell [30], or proof explanation in symbolic model check-
ing [20]. The domain of the constraint sets ranges from Boolean formulas [23,14],
over temporal logic formulas [4,6], to transition state predicates constraining
transition systems [20]. Since the list of constraint domains where MUSes find
an application is quite long and new applications still arise, there have been pro-
posed several domain agnostic MUS enumeration algorithms (e.g. [3,22,9,7,10]).
Such algorithms can be used in an arbitrary constraint domain, and thus theo-
retically serve as ready-to-use solutions for any constraint domain where MUSes
might eventually find an application.

Unfortunately, there is no available domain agnostic tool implementation of
the algorithms that would actually serve as a ready-to-use solution for an ar-
bitrary constraint domain. Although the papers that present existing domain
agnostic algorithms provide results of an experimental evaluation, it is often the
case that the implementation is either not publicly available [4,3], or there is a
hard-coded support for a particular constraint domain [10,20]. The closest to a
domain agnostic tool is a tool by Liffiton et al. [22] where the authors imple-
ment their domain agnostic MUS enumeration algorithm MARCO. Their tool
currently supports the SAT and the SMT domains and can be relatively eas-
ily extended to support also another constraint domains. However, our recent
evaluation [8] of contemporary domain agnostic algorithms in various constraint
domains has shown that the efficiency of the algorithms (including MARCO)
varies a lot in different constraint domains. There is no silver bullet algorithm
that would be efficient in all the domains. Thus, to deal with a particular con-
straint domain, one has to wisely choose from individual algorithms.

In this work, we present the first stable release of our domain agnostic tool,
called MUST, for MUS enumeration. The tool implements several domain agnostic
MUS enumeration algorithms and currently provides support for 3 constraint
domains: SAT, SMT, and LTL. Moreover, due to a modular architecture of the
tool, the tool can be easily extended to support another constraint domain: it
requires only to implement an API for communication with a satisfiability solver
for the constraint domain. We also provide a guidance on which algorithms are
suitable for which kinds of input constraint systems.

To demonstrate the efficiency of our tool, we experimentally compare it to
the tool by Liffiton et al. [22] in the SAT and SMT domains, and we show
that our tool clearly wins in both the domains. Moreover, we also provide a
comparison with two contemporary tools that are tailored to the SAT domain:
MCSMUS [1] and FLINT [25]. The results show that MUST is competitive to the two
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domain specific solutions. Moreover in case of many benchmarks, MUST actually
significantly dominates the other tools.

Finally, to advocate the practical applicability of our tool in industrial set-
tings, we provide a use case from the area of requirements analysis. In partic-
ular, we have employed our tool in the European Unions Horizon 2020 project
called AMASS. The project focused on development and verification of cyber-
physical systems in the largest industrial markets including automotive, railway,
aerospace, space, and energy. One of the verification tasks is to verify that re-
quirements on the system are consistent, i.e., to ensure that there can be even
built a system that satisfies the requirements. If the requirements are found to
be inconsistent, an identification of minimal inconsistent (unsatisifable) subsets
of the requirements helps to fix the conflicts among the requirements. Our tool
has proved to be very efficient in dealing with this task.

2 Preliminaries

2.1 Basic Definitions

We are given a set C = {c1, c2, . . . , cn} of constraints such that each subset of C
is either satisfiable or unsatisfiable. The notion of satisfiability varies in particular
constraint domains. We only assume that if a set N , N ⊆ C, is satisfiable then
all subsets of N are also satisfiable. Dually, if a set K, K ⊆ C, is unsatisfiable
then all supersets of K are also unsatisfiable. We will use C to denote the input
set of constraints throughout the whole paper.

Definition 1 (MUS). A subset N of C is a minimal unsatisfiable subset (MUS)
of C if and only if N is unsatisfiable and for all c ∈ N the set N\{c} is satisfiable.

Note that the minimality concept used here is set minimality, not minimum
cardinality. Therefore, there can be MUSes with different cardinalities. Also,
there can be up to exponentially many MUSes w.r.t. the number of constraints
in C (see the Sperner’s theorem [28]).

Definition 2 (critical constraint). Let U be an unsatisfiable subset of C and
c ∈ U . The constraint c is critical for U if and only if U \ {c} is satisfiable.

Note that U is a MUS of C if and only if all constraints in U are critical for
U . Furthermore, if c is critical for U then c has to be contained in every MUS
of U .

Example 1. We illustrate the concepts on a small example. Assume that we are
given a set C of four Boolean satisfiability constraints: c1 = a, c2 = ¬a, c3 = b,
and c4 = ¬a∨¬b. Clearly, the whole set is unsatisfiable as the first two constraints
are negations of each other. There are two MUSes: {c1, c2}, {c1, c3, c4}. As for the
critical constraints, we can for example see that c1 is the only critical constraint
for C, and that c1, c2 are critical for {c1, c2, c3}.
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Algorithm 1: Domain Agnostic Shrinking

input : an unsatisfiable set S of constraints
input : a set crits of constraints that are critical for S
output: A MUS of S

1 for c ∈ S \ crits do
2 if not CheckSat(S \ {c}) then
3 S ← S \ {c}
4 return S

2.2 Shrink

Let us now define an operation, called Shrink, that is used in our tool to identify
individual MUSes.

– Shrink(S, crits) takes an unsatisfiable subset S of C together with a set
crits of constraints that are critical for S and returns a MUS Smus of S.

We say that S is shrunk into a MUS Smus. The shrinking is maintained in
in our algorithms as a black-box subroutine and thus can be implemented using
any available single MUS extraction algorithm. Especially, we can implement the
operation using a domain specific solution and thus indirectly exploit domain
specific properties of particular constraint domains.

To shed more light on how a shrinking can be done, we describe in Algo-
rithm 1 a domain agnostic single MUS extraction approach that forms the basis
of many contemporary domain specific solutions. To find a MUS of S, the al-
gorithm iteratively attempts to remove individual constraints in S \ crits from
S, checking each new set for satisfiability, and keeping only the changes that
preserve S to be unsatisfiable. The most expensive part of the shrinking are the
satisfiability checks. In total, the algorithm performs |S| − |crits| satisfiability
checks. Domain specific algorithms (e.g. [5,24,1,19]) that are based on Algo-
rithm 1 are often able to further reduce the number of performed satisfiability
checks by exploiting domain specific properties of particular constraint domains.

2.3 Unexplored Subsets

Our algorithms for MUS enumeration during their computation gradually explore
satisfiability of individual subsets of C. The explored subsets are those, whose
satisfiability is already known by the algorithm whereas unexplored subsets are
those whose satisfiability is not determined yet. We use Unexplored to denote
the set of all unexplored subsets of C. Recall that all subsets of a satisfiable set
are also satisfiable. Thus, if a set S is determined to be satisfiable, then not just
S but also all of its subsets become explored. Dually, if a set U is determined
to be unsatisfiable, then all supersets of U become explored. We further classify
unexplored subsets as follows:
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0000
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1111

Fig. 1: Illustration of Example 2. We encode individual subsets of C as bit-
vectors; for example, the subset {c1, c3, c4} is written as 1011.

Definition 3 (Minimal Unexplored Subset). A set S is a minimal unex-
plored subset, if S is unexplored and for all c ∈ S is S \ {c} explored.

Definition 4 (Maximal Unexplored Subset). A set S is a maximal unex-
plored subset, if S is unexplored and for all c ∈ C \ S is S ∪ {c} explored.

Details on how we actually store, maintain, and use unexplored subsets are
described later in Section 4.2. Here, we conclude by defining the concept of
minable critical constraints:

Definition 5 (minable critical). Let N be an unsatisfiable subset of C such
that N ∈ Unexplored, and let c ∈ N . The constraint c is a minable critical
constraint for N if N \ {c} �∈ Unexplored.

Example 2. Let us illustrate the concepts on an example. Assume that we are
given the same set of four constraints as in Example 1: c1 = a, c2 = ¬a, c3 = b,
and c4 = ¬a ∨ ¬b. Fig. 1 shows a possible state of exploration of the power-set.
Satisfiable subsets are drawn with a solid border and unsatisfiable ones with a
dashed border. There are 2 explored unsatisfiable subsets (red color), 7 explored
satisfiable subsets (green color), and 7 unexplored subsets (black color). There
are two minimal unexplored subsets: {c2} and {c1, c3, c4}, and three maximal
unexplored subsets: {c1, c2, c3}, {c1, c3, c4} and {c2, c3, c4}. As for the minable
critical constraints, we can for example see that c2 is minable critical for the set
{c1, c2, c3}, and that all constraints are minable critical for the set {c1, c3, c4}.

3 Implemented Algorithms

Our tool currently implements three domain agnostic algorithms for online MUS
enumeration: MARCO [22], TOME [7], and ReMUS [9]. MARCO was originally
developed by Liffiton et al. [22]; the other two algorithms are originally ours.
All the three algorithms are based on a common scheme that we call seed-shrink
scheme. In this section, we first describe the base scheme and then briefly com-
ment also on the individual algorithms.
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Algorithm 2: Seed-Shrink Scheme

input : an unsatisfiable set C of constraints
output: All MUSes of C

1 Unexplored ← P(C)
2 while there is a seed do
3 S ← find a seed
4 crits ← collect minable critical constraints for S
5 Smus ← Shrink(S, crits)
6 Unexplored ← Unexplored \ {T |T ⊂ Smus or Smus ⊆ T ⊆ C}
7 output Smus

3.1 Seed-Shrink Scheme

The seed-shrink scheme is shown in Algorithm 2. The computation starts by
initializing the set Unexplored to P(C), i.e. all subsets of C are initially un-
explored. Subsequently, the scheme iteratively identifies all MUSes of C. Each
iteration starts by finding a so called seed, i.e. an unexplored subset that is un-
satisfiable. Subsequently, the set crits of all constraints that are minable critical
for the seed are collected and the shrinking procedure is used to find a MUS of
the seed. The iteration is concluded by marking all subsets and supersets of the
MUS as explored (the subsets are necessarily satisfiable, and the supersets are
unsatisfiable). The computation terminates once there is no more seed.

The scheme does not specify how to find a seed; this part differs for individual
algorithms implementing the scheme. In general, to find a seed, the algorithms
check several unexplored subsets for satisfiability and reduce the set Unexplored.
The difference between the algorithms is in which and how many subsets they
check, and how large is the resultant seed. In general, the smaller the seed is,
the easier is to shrink it. On the other hand, unsatisfiable subsets are naturally
more concentrated among the larger subsets, thus looking for a seed among small
unexplored subsets might come with the price of checking many unexplored sub-
sets for satisfiability. Individual seed-shrink algorithms make a different trade-off
between the size of identified seeds and the number of satisfiability checks that
are performed to identify the seeds. In some constraint domains, it is worth to
find a small seed even if it requires performing many satisfiability checks, and
in other constraint domains the situation is exactly the opposite. The optimal
choice of a seed-shrink algorithm thus differs for individual constraint domains.

MARCO [22] searches for a seed S among the maximal unexplored subsets and
often performs only few satisfiability checks to identify a seed. Since maximal
unexplored subsets are usually very large, the seeds identified by MARCO are
generally hard to be shrunk. Yet, in some constraint domains, such as SAT
and SMT, the size of the seed has just a negligible effect on the complexity
of the shrinking. In particular, in the SAT and SMT domains, contemporary
satisfiability solvers can extract an unsat core of the seed S, i.e. unsatisfiable,
yet not necessarily minimal, subset of S. The extraction comes with almost no
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overhead compared to an ordinary check for satisfiability, and the unsat core
is usually very close, in terms of cardinality, to a MUS of S. Thus, instead of
shrinking the whole S, the unsat core is passed to the shrinking procedure.

TOME [7] identifies seeds iteratively as follows. Each iteration of the algorithm
starts by picking a minimal unexplored subset N1 and a maximal unexplored
subset Np such that N1 ⊆ Np. Subsequently, TOME builds a chain N1 ⊂ N2 ⊂
· · · ⊂ Np of unexplored subsets. Such a chain necessarily either contains only
unsatisfiable subsets, only satisfiable subsets, or it contains an element Ni such
that ∀j, 1 ≤ j < i, is Nj satisfiable and ∀k, i ≤ k ≤ p, is Nk unsatisfiable. In the
first case, it is guaranteed that N1 is a MUS. In the second case, the chain does
not give us any seed. Finally, in the third case, TOME finds Ni using binary
search (which takes only O(log2 p) satisfiability checks). Subsequently Ni is used
as a seed for the shrinking procedure and shrunk into a MUS.

There are no guarantees on distribution of satisfiable and unsatisfiable sub-
sets on the chain, since the subsets are unexplored. In the best case, where N1

is unsatisfiable, TOME identifies a MUS using just a single satisfiability check.
In the worst case, the whole chain is satisfiable and TOME has to build another
chain. Based on our experience, TOME on average performs more satisfiability
checks to find a seed than MARCO does, but the seeds are much smaller than in
the case of MARCO. Thus, TOME is efficient especially in constraint domains
where the size of the seed highly affects the complexity of the shrinking.

ReMUS [9] is based on the following observation: if C, Ck, and M are unsatis-
fiable sets such that Ck ⊆ C and M is a MUS of Ck, then M is necessarily also
a MUS of C. Note that the smaller Ck is the smaller seeds are in Ck. ReMUS
tends to identify Ck that is very small, yet contains many MUSes, and searches
for seeds in Ck. In particular, the very first seed S is found among the maximal
unexplored subsets of C0 = C and then shrunk to a MUS Smus. To find a next
seed, ReMUS chooses C1 such that Smus ⊆ C1 ⊆ S, and searches for a seed S1

among maximal unexplored subsets of C1. If a seed S1 is identified, then it is
again shrunk to a MUS S1

mus and again used to reduce the search space, i.e. the
a next seed S2 is searched for in a set C2 such that S1

mus ⊆ C2 ⊆ S1. The search
space reduction is recursively repeated as long as possible. Once the current
search space is completely explored, ReMUS backtracks from the recursion and
searches for a seed on the previous recursion level. Moreover, ReMUS employs
several heuristics to pre-emptively backtrack from a search space that contains
a lot of unexplored subsets but only few MUSes.

The larger the input set C of constraints is, the more extensive recursive
reduction is possible, and thus the smaller seeds can be found. We recommend to
use ReMUS, rather than MARCO or TOME, if the input constraint set contains
at least hundreds of constraints and hundreds of MUSes, no matter what the
constraint domain is.

For a more elaborated description of the three algorithms, please refer to the
original papers [22,7,9] or to our recent work [8] where we have experimentally
compared the algorithms in various constraint domains.
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4 Architecture of the Tool

Our tool is implemented in C++ and is available under the MIT license at:

https://github.com/jar-ben/mustool

The tool consists of six logical components: SatSolver, Explorer, Master, Al-
gorithms, Heuristics, and Initializer. In the following section 4.1 we provide a
brief description of the individual components. Subsequently, in Sections 4.2 and
4.3 we provide a more detailed description of Explorer and SatSolver. Finally, in
Section 4.4, we give instructions on how to install and use our tool.

4.1 Logical Components

SatSolver SatSolver (declared in SatSolver.h) is the only domain specific part
of our tool. It provides the functionality for checking sets of constraints for
satisfiability, and implements the shrinking procedure. Also, SatSolver copes
with parsing the input set of constraints (provided by the user) and exporting
the identified MUSes in particular domain specific formats. A more detailed
description of SatSolver is provided in Section 4.3.

Explorer Explorer (declared in Explorer.h) maintains the set Unexplored of all
unexplored subsets and handles related operations including: marking sets as
explored, obtaining unexplored subsets, and mining critical constraints based on
the set Unexplored. For more information, see Section 4.2.

Master Master (declared in Master.h) is the coordinator of the whole computa-
tion. In particular, it holds an instance of Explorer and an instance of SatSolver
and provides wrappers for calling their methods. Moreover, it runs a MUS enu-
meration algorithm that is specified by the user via a command line argument
(see below).

Algorithms The algorithms MARCO [22], TOME [7], and ReMUS [9] are
declared in Master (Master.h) and implemented in marco.cpp, tome.cpp, and
remus.cpp, respectively. All calls to SatSolver and Explorer are made via the
wrappers defined in Master. This means that any improvement to Explorer and
especially to SatSolver (i.e. a more efficient shrinking procedure or satisfiability
solver) is immediately reflected by all the algorithms.

Heuristics There are several heuristics that are bound to the wrappers defined
in Master, and thus can be exploited by all the three algorithms. For example, in
the wrapper for invoking the shrinking procedure, we provide two heuristics for
computing critical constraints for the set that is being shrunk. One of the two
heuristics uses Explorer to compute critical constraints based on the set Unex-
plored. The other heuristic uses SatSolver to obtain additional critical constraints
that cannot be mined from Unexplored.

https://github.com/jar-ben/mustool
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Initializer Initializer (implemented in main.cpp) parses the command line ar-
guments provided by the user, and creates, sets-up, and runs the Master.

4.2 Explorer

Since there can be up to exponentially many unexplored subsets w.r.t. the num-
ber of constraints in C, it is intractable to represent them explicitly. Instead, we
adopt a symbolic representation that was first proposed by Liffiton et al. [22]
and subsequently used in many other works (e.g. [1,20,10]).

Given a set C = {c1, c2, . . . , cn} of constraints, we introduce a set X =
{x1, x2, . . . , xn} of Boolean variables, and maintain two Boolean formulas, map+

and map−, over X such that each model of map+ ∧ map− corresponds to an
unexplored subset and vice versa. The formulas are maintained as follows:

• Initially map+ = map− = True since all of P(C) are unexplored.
• To mark a satisfiable set N ⊆ C and all its subsets as explored we add to
map+ the clause

∨
i:ci �∈N xi.

• Symmetrically, to mark an unsatisfiable set N ⊆ C and all its supersets as
explored we add to map− the clause

∨
i:ci∈N ¬xi.

We use the SAT solver miniSAT [18] to hold and query the formulas map+ and
map−. To get an arbitrary element of Unexplored , we can ask miniSAT for a
model of map+∧map−. However, in our algorithms, we need to be able to obtain
two specific kinds of unexplored subsets.

First, given a set N , N ⊆ C, we need to be able to find a maximal unexplored
subset of N . We exploit that miniSAT allows the user to fix values of some
variables and also to set the default polarity of variables, i.e. the default value
assignment to variables in decision points during the solving. To get a maximal
unexplored subset of N , we fix the values of the variables {xi|ci �∈ N} to False,
set the default polarity to True, and ask miniSAT for a model of map+ ∧map−.

Second, given an unexplored N ,N ⊆ C, we need to find a minimal unexplored
subset B of N (this is used by TOME while constructing a chain of unexplored
subsets). To do this, we fix the values of the variables {xi|ci �∈ N} to False, set
the default polarity to False, and ask miniSAT for a model of map+. Note that
we do not include map− in the query. Intuitively, map− requires an absence of
constraints and since N satisfies map−, every subset of N also satisfies map−.

As for the implementation, we integrate miniSAT via it’s C API and we main-
tain two instances of the solver. One instance holds the formula map+ ∧map−

whereas the other instance holds just map+. Both the instances are used in-
crementally, i.e. the formulas are incrementally build during the whole MUS
enumeration and simplified (internally by miniSAT) when possible. Let us note
that Liffiton et al. also incrementally use miniSAT in their tool1. However, they
maintain just the whole conjunction map+ ∧ map− since a separate mainte-
nance of map− or map+ would not bring any speed-up in case of their MUS
enumeration algorithm.

1 https://sun.iwu.edu/%7eliffito/marco/

https://sun.iwu.edu/%7eliffito/marco/
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Finally, Explorer provides one more functionality. Given an unexplored subset
N , Explorer can collect minable critical constraints of N . Recall that a constraint
c ∈ N is minable critical for N iff N \ {c} is explored. All the minable critical
constraints can be determined based on the formula map+∧map−. In particular,
if we simplify the formula by fixing the variables {xi|ci �∈ N} to False, then
values of some variables from {xi|ci ∈ N} will be implied to be True. These
implicants correspond to the minable critical constraints. This observation has
been already exploited by Liffiton et al. [22] and they use miniSAT to obtain
the implicants in their tool. However, the miniSAT’s procedure for computing
the implicants is not dedicated solely to this purpose; it is optimized w.r.t. the
overall satisfiability solving process. Therefore, a use of miniSAT for this task
brings an unnecessary overhead. In our tool, we directly compute the implicants
from the formula map+ instead of using a SAT solver to do it.

4.3 SatSolver

SatSolver (declared in SatSolver.h) is an abstract class stating all the domain
specific functionality that needs to be implemented (in a derived class) to support
a particular constraint domain in our tool. There are three methods that have
to be implemented by every derived class:

– toString(N) takes as an input a set N , N ⊆ C, and returns a textual
representation of the constraints contained in N (e.g. in the SMT-LIB 2
format if N is a set of SMT constraints). We use this method to output the
identified MUSes.

– solve(N, core = False, extension = False) takes as an input a subset N
of C and returns True iff N is satisfiable and False otherwise. Moreover,
solve takes two optional Boolean parameters, core and extension, with de-
fault values set to False. If core is set to True and N is unsatisfiable, solve
also finds an unsat core of N , i.e. an unsatisfiable M such that M ⊆ N .
Similarly, if extension is set to True and N is satisfiable, solve finds an
extension of N , i.e. a satisfiable set M such that N ⊆ M ⊆ C. We use the
unsat cores in our tool to reduce seeds before shrinking. The extensions are
used to further prune the set Unexplored when an unexplored subset is found
to be satisfiable.

– constructor(filepath). Every derived class of SatSolver has to implement
its constructor. The constructor accepts a path filepath to a file that specifies
the input set C of constraints in some domain specific format (e.g. SMT-
LIB 2 for SMT formulae). We invoke the constructor during the initialisation
phase of our tool and its goal is to parse the input set of constraints and
internally store the constraints for future manipulations. SatSolver is the
only one of the six logical components of our tool that directly works with
particular constraints of C. All the other components work just with a bit-
vector representation of subsets of C. For example, if C = {c1, c2, c3, c4} is a
set of four constraints and K = {c1, c2}, the bitvector representation of K is
1100. Therefore, whenever another component communicates with SatSolver,
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e.g. invokes the procedure solve(N), it passes the bit-vector representation
of N to SatSolver and SatSolver converts it to particular constraints.

Besides the above three methods that have to be implemented by every de-
rived class, SatSolver defines and implements a method that can be overridden
by a derived class:

– shrink(N, crits) performs the shrinking, i.e. it takes an unsatisfiable set
N together with a set crits of constraints that are critical for N and returns
a MUS of N . The default domain agnostic implementation of this method
is carried out by Algorithm 1 (Section 2.2).

Currently, our tool supports 3 constraint domains via the following 4 derived
classes of SatSolver:

– MSHandle (implemented inMSHandle.cpp) provides a functionality for the
Boolean CNF domain, i.e. the set of constraints is a set of Boolean clauses.
The input and output format is the DIMACS CNF format. For shrinking,
we integrate two single MUS extraction tools: muser2 [5] by Belov and Silva,
and a tool [1] by Bacchus and Katsirelos. Finally, we use miniSAT [18] to
implement the method solve. Besides checking N for satisfiability, we also
use miniSAT to obtain an unsat core or an extension of N . In particular, an
unsat core is directly provided by miniSAT. To get an extension of N , we
obtain a model π of N from miniSAT and collect the set {c|c ∈ C ∧ π |= c}
of all constraints in C that are satisfied by π.

– Z3Handle (implemented in Z3Handle.cpp) processes SMT constraints that
are represented in the SMT-LIB2 format. We use z3 [16] to parse the in-
put and to implement solve. Moreover, in the same way as in the case of
MSHandle, we obtain unsat cores from z3 and we also obtain models of sat-
isfiables formulas to compute their extensions. The shrinking is implemented
using our custom procedure.

– SpotHandle (implemented in SpotHandle.cpp) supports the LTL domain.
We use SPOT [17] to implement solve and the default domain agnostic
implementation of shrink. In this case, we do not provide support for com-
puting non-trivial unsat cores and non-trivial extension. Therefore, if an
extension or unsat core is required while calling solve(N), we simply use
N itself (N is a trivial unsat core/extension of N).

– NuxmvHandle (implemented in NuxmvHandle.cpp) is another alternative
for the LTL domain. Instead of SPOT, it uses nuXmv [11] as a satisfiability
solver, which is, based on our experience, much more efficient than SPOT.
However, nuXmv’s license2 is more restrictive than the SPOT’s license and
thus not every user of our tool might use it. In this case, we also do not
support an extraction of non-trivial unsat cores and extensions.

If anyone wants to add support for another constraint domain to our tool, it
is enough to implement a derived class of SatSolver. For example, the implemen-
tation of SpotHandle takes only 45 lines of code, including several empty lines

2 https://es-static.fbk.eu/tools/nuxmv/index.php?n=Main.License

https://es-static.fbk.eu/tools/nuxmv/index.php?n=Main.License
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caused by formatting and lines containing only closing brackets (”}”). Therefore,
we claim our tool to be indeed domain agnostic and ready-to-use solution for
any constraint domain.

4.4 Installation and Execution of the Tool

For detailed installation and usage instructions, please follow the README.md
file at: https://github.com/jar-ben/mustool.

Briefly, our tool can be built either in lightweight settings with support
only for SAT domain, or with support also for the SMT and/or LTL domains.
Whereas in the SAT domain, we use miniSAT that can be built very quickly,
the z3 and SPOT solvers that we use in the SMT and LTL domains can take
several hours to install. Once you have installed all the solvers you want to use,
our tool can be simply built with an invocation of the command ”make”.

To run our tool in its default settings, execute:

./must input file,

where input file specifies the input file of constraints, and it has to have either
.cnf, smt2, or .ltl extension. Based on the extension, Master selects and uses an
appropriate derived class of SatSolver. To specify a MUS enumeration algorithm
to be used, invoke the tool by:

./must -a alg input file,

where alg can be either marco, tome, or remus (the default one). To see all the
available settings, run

./must -h.

5 Experimental Evaluation

5.1 Evaluated Tools

The only other existing MUS enumeration tool that can be seen as domain agnos-
tic is the implementation3 of the domain agnostic algorithm MARCO (invented
by Liffiton et al. [22] and implemented by Liffiton and Zhao). In the following,
we refer to the tool as MARCO. Currently, MARCO supports the SAT and SMT do-
mains and can also relatively easily be extended to support another constraint
domains. Here, we provide results of an experimental comparison of our tool
MUST with MARCO in both the SAT and SMT domains. Moreover, to demonstrate
that our domain agnostic tool can be competitive even to fully domain specific
solutions, we include a comparison with two state-of-the-art MUS enumeration
tools from the SAT domain: MCSMUS4 [2] and FLINT5 [25].

Due to the space limitation, we show here only results achieved by the best
(default) configurations of our tool. In particular, in both domains, we use the

3 https://sun.iwu.edu/%7emliffito/marco/
4 https://bitbucket.org/gkatsi/mcsmus/src
5 The tool was kindly provided to us by its author, Nina Narodytska.

https://github.com/jar-ben/mustool
https://sun.iwu.edu/%7emliffito/marco/
https://bitbucket.org/gkatsi/mcsmus/src
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algorithm ReMUS. As for the shrinking, in SMT domain, we use our custom
shrinking solution, and in the SAT domain we employ a single MUS extraction
algorithm by Bacchus and Katsirelos [1]. Complete results of the evaluation are
available at: https://www.fi.muni.cz/%7exbendik/research/must.

All experiments were run using a time limit of 3600 seconds and computed on
an Intel(R) Core(TM) i5-4690 CPU, 3.50GHz, 16 GB memory machine running
Arch Linux 4.19.69-1-lts. The comparison criterion used in our evaluation is the
number of identified MUSes within the given time limit.

5.2 Benchmarks

In the SAT domain, we used a collection of 291 Boolean CNF benchmarks that
were taken from the MUS track of the SAT 2011 Competition6. This collection
has been used in many recent MUS related papers (e.g. [22,7,9,25,2]), including
the ones that present MARCO, FLINT, and MCSMUS. The benchmarks range in their
size from 70 to 16 million constraints and use from 26 to 4.4 million variables.
In case of 28 benchmarks, all the evaluated algorithms identified all the MUSes
within the given time limit. Since the comparison criterion of our evaluation is
the number of identified MUSes, the 28 benchmarks are irrelevant for the eval-
uation (all three tools found the same number of MUSes for these benchmarks).
Therefore, only the remaining 263 benchmarks are the subject of our evaluation.

In the SMT domain, we used a collection of 433 benchmarks that were taken
from the QF UF, QF IDL, QF RDL, QF LIA and QF LRA divisions of the li-
brary SMT-LIB7. Also this collection has been already used in several works, e.g.
in the work by Cimatti et al. [13] or in our recent papers [9,8]. The benchmarks
range in their size from 70 to 16 million constraints and use from 26 to 4.4 million
variables. In case of 249 benchmarks, both the evaluated algorithms identified
all the MUSes. Therefore, we focus here on the remaining 184 benchmarks.

5.3 Results

In Figs. 2a, 2b, and 2c, we provide scatter plots that compare pair-wise MUST

with the other tools in the SAT domain, and in Fig. 2d a scatter plot comparing
MUST with MARCO in the SMT domain. Each point in a scatter plot corresponds
to a single benchmark and shows the number of MUSes identified by the two
algorithms. The x-coordinate of a point is given by the algorithm that labels
the x-axis and the y-coordinate is given by the algorithm that labels the y-axis.
Moreover, note that each scatter plot contains three additional numbers that are
above/on right/in the right corner of the plot. These numbers show the number
of points that are above/below/on the diagonal, respectively.

In the SMT domain, MUST conclusively dominates MARCO: it found more, less,
and the same number of MUSes as MARCO in case of 100, 32, and 52 benchmarks,
respectively. In the SAT domain, MUST outperforms on majority of benchmarks

6 http://www.cril.univ-artois.fr/SAT11/
7 http://www.smt-lib.org/

https://www.fi.muni.cz/%7exbendik/research/must
http://www.cril.univ-artois.fr/SAT11/
http://www.smt-lib.org/
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Fig. 2: Scatter plots comparing the number of produced MUSes.

both MARCO and FLINT. Finally, MCSMUS outperforms MUST in case of 52 percent
of benchmarks and is worse than MUST in case of 43 percent of benchmarks. Still,
this is a very good result since MUST is a domain agnostic tool whereas MCSMUS
is tailored to the SAT domain.

Besides the pair-wise comparison of the algorithms, we also provide an overall
ranking of the algorithms on individual benchmarks in the SAT domain. In
particular, assume that for a benchmark B both MUST and MCSMUS found 100
MUSes, FLINT found 80 MUSes, and MARCO found 50 MUSes. In such a case, MUST
and MCSMUS share the 1st (best) rank for B , FLINT is 3rd, and MARCO is on the
4th position. In Fig. 3 we show the average ranking (from all benchmarks) of all
algorithms for each subsequent 60 seconds of the computation. We can see that
MARCO ranked the worse during the whole computation. FLINT ranked quite well
during the first 600 seconds, but then its performance degraded. Finally, MUST
and MCSMUS maintained the best and the second best ranking, respectively. This
might be quite surprising since MCSMUS is slightly better than MUST in Fig. 2c.



MUST: Minimal Unsatisfiable Subsets Enumeration Tool 149

 1.8
 2

 2.2
 2.4
 2.6
 2.8

 0  600  1200  1800  2400  3000  3600

av
er

ag
e 

ra
nk

in
g

time in seconds

MUST MARCO FLINT MCSMUS

Fig. 3: Average ranking in time.

The thing is that MUST mostly ranks either as 1st or 2nd on a benchmark and
rarely ranks as 4th, whereas MCSMUS more often ranks as 3rd or 4th.

Finally, let us recall that our tool contains also implementation of the algo-
rithm MARCO and thus one might be interesting in comparing the performance
of MARCO in our tool and MARCO in the tool MARCO. In the SAT domain,
we found our implementation to be more efficient, equal, and less efficient than
MARCO in case of 68, 6, and 26 percent of benchmarks, respectively. In the SMT
domain, our implementation is better, equal, and worse in 37, 29, 34 percent
of benchmarks, respectively8. Therefore, shall anyone want to use the algorithm
MARCO, we recommend to use our implementation.

6 Case Study

During the last 4 years, we participated on the European Union’s Horizon 2020
project called AMASS [26]. The project brought together researchers from aca-
demia and engineers from large industrial companies such as Honeywell, Alstom,
or Infineon. The project focused on improving the process of development and
certification of Cyber-Physical Systems in markets such as automotive, railway,
aerospace, space, and energy. Among others, this included the development of
techniques for assessing quality of system specification/requirements and this is
where our tool found an application.

Establishing the requirements is an important stage in all development. In
general, the requirements can be expressed either informally, e.g. using a natural
language, or formally by employing a kind of mathematical logic such as the
Linear Temporal Logic (LTL). The formalization removes ambiguity and allows
to employ various model-based techniques, such as model checking. Moreover,
we get the opportunity to verify the requirements earlier, even before any system
model is built. In particular, we can verify that the requirements are consistent
(satisfiable), i.e. that there can be even built a system that satisfies all the
requirements. If the requirements are inconsistent, they need to be refined.

8 See the appendix https://www.fi.muni.cz/%7exbendik/research/must

https://www.fi.muni.cz/%7exbendik/research/must
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Fig. 4: Application of MUS enumeration in requirements analysis.

Within the AMASS project, we proposed a scheme [6] that exploits MUSes
to help the user to establish a consistent set of requirements. A basic workflow
of the scheme is depicted in Fig. 4. The process starts by introducing a set of
requirements in some natural-language like format, yet using a restricted gram-
mar that avoids ambiguities. In the next step, the requirements are formalized
using LTL and gathered in a set C. Subsequently, C is checked for consistency. If
C is consistent, then the software development process can continue with a next
stage. Otherwise, a MUS enumeration tool is used to identify a set K of MUSes
of C, and the user uses K to refine C. The MUS identification and refinement
steps are repeated until the set of requirements becomes consistent.

We implemented the scheme in AMASS as a part of a so-called V&V man-
ager [27]: a tool for validation and verification of the system model and system
requirements. Our industrial partners employed the scheme on a set of industrial
benchmarks, and evaluated two contemporary MUS enumeration tools from the
LTL domain: our MUST, and Looney by Bauch et al. [4]. They found MUST to be
faster by several orders of magnitude. Unfortunately, the industrial benchmarks
are confidential and cannot be published in this paper. Yet, authors of Looney
indeed acknowledge in their paper that Looney can handle only small input con-
straint sets containing just low tens of constraints. On the other hand, MUST was
shown [8] to be able to efficiently work with hundreds of constraints.

7 Conclusion

We presented a tool, called MUST, for online enumeration of Minimal Unsatisfi-
able Subsets (MUSes). MUST implements three contemporary domain agnostic
MUS enumeration algorithms, i.e. algorithms that can be applied in any con-
straint domain. Currently, the tool supports enumeration in the SAT, SMT and
LTL domains, and can be easily extended to support another domains. Therefore,
we classify the tool itself as domain agnostic; it serves as (an almost) ready-to-
use solution for any domain where MUSes already find or eventually will find
an application. We experimentally compared MUST to a domain agnostic tool
by Liffiton et al. [22] in the SAT and SMT domains, and we showed that MUST
conclusively dominates in both domains. Moreover, we showed that MUST is
even competitive to contemporary tools that are tailored for the SAT domain.
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tochv́ıla. Analysing sanity of requirements for avionics systems. FAoC, 2016.

5. Anton Belov and João Marques-Silva. MUSer2: An efficient MUS extractor. JSAT,
8:123–128, 2012.

6. Jaroslav Bend́ık. Consistency checking in requirements analysis. In ISSTA, pages
408–411. ACM, 2017.
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Abstract. The initialization of complex cyber-physical systems often
requires the interaction of various components that must start up with
strict timing requirements on the provision of signals (power, refriger-
ation, light, etc.). In order to safely allow an independent development
of components, it is necessary to ensure a safe decomposition, i.e. the
specification of local timing requirements that prevent later integration
errors due to the dependencies.

We propose a high-level formalism to model local timing requirements
and dependencies. We consider the problem of checking the consistency
(existence of an execution satisfying the requirements) and compatibil-
ity (absence of an execution that reaches an integration error) of the
local requirements, and the problem of synthesizing a region of timing
constraints that represents all possible correct refinements of the origi-
nal specification. We show how the problems can be naturally translated
into a model checking and synthesis problem for timed automata with
shared variables. Exploiting the linear structure of the requirements, we
propose an encoding of the problem into SMT. We evaluate the SMT-
based approach using MathSAT and show how it scales better than the
automata-based approach using Uppaal and nuXmv.

1 Introduction

Complex industrial cyber-physical systems often have an initialization procedure
that requires to reach a startup mode within a specified design target time in-
terval. In order for the system as a whole to complete the startup within the
required interval, each subcomponent of the system may have to go through a
number of intermediate phases, within their own target intervals, each of which
may itself be dependent upon other subcomponents reaching startup or interme-
diate phases. E.g. for a power generation system to startup at full power, it may
need to transition first through a low power output phase and a number of sub-
sidiary systems (perhaps cooling or fuel supply) may first have to undergo their
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A. Biere and D. Parker (Eds.): TACAS 2020, LNCS 12078, pp. 155–172, 2020.
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own phase transitions. In turn, these subsidiary systems may require transitions
to occur in systems subsidiary to them and so on.

Traditionally, the integration of these distributed transition targets are vali-
dated via simulation and testing, which while sufficient to reach a desired design
performance are labor and time intensive. Having a more efficient process for
arriving at and validating a set of design targets that satisfy the overall sys-
tem requirements is clearly beneficial in these contexts. Firstly, we would like
to verify that these requirements prevent failed transitions in which the time
performance of the subsidiary systems lead to outcomes where our main sys-
tem (e.g., the power generation system) cannot perform a transition within its
time window. For example, suppose the power system has a time window within
which it must transition from low-power mode to high-power mode; in order for
it to achieve this transition, however, it requires that two subsidiary systems,
a cooling system and a fuel supply system, must themselves transition from a
low-output mode to a high-output mode, each within their own target transition
time windows. If these time windows are not compatible, the power generator
may fail to provide the high power in time. Secondly, if our starting set of re-
quirements is inadequate to provide this guarantee, we would like to be able to
synthesize a set of requirements that is adequate to this task.

In this paper, we formalize the problem starting from a simple industrially
relevant setting, where the components have a linear sequence of phases, must
progress to the next phase within a certain interval of time, and must respect
some dependencies upon the phases of other components. Dependencies are ex-
pressed as Boolean combinations of variables representing the component phases
and are divided into two types: (i) signal dependencies, where the entering of a
component into a phase is conditioned by the presence of other components in
some specific phases; (ii) state dependencies, where a component can stay in a
phase only if, during all its stay, other components are in some specific phases.
We are interested in the following problems: 1) checking if the requirements are
compatible, i.e., if all reachable states can be extended with an execution satis-
fying the requirements; thus, if the components satisfy the local requirements,
they cannot lead the system to an illegal state (where a component does not
receive the input in time); 2) checking if the requirements are consistent, i.e.,
there exists an execution of the components satisfying all requirements (incon-
sistency is actually a pathological case of incompatibility); 3) synthesizing the
set of refinements (same requirements with stricter intervals) that are consis-
tent and compatible. We show how the first two verification problems can be
naturally translated into a model checking problem for timed automata with
shared variables. Exploiting the linear structure of the requirements, we propose
an encoding of the problem into SMT. If all intervals are bounded, the encoding
is quantifier-free. Finally, both approaches have been extended to solve also the
synthesis problem, using synthesis for parametrized model checking of TAs and
quantifier elimination in SMT, respectively.

We implemented the SMT-based approach in a tool called TRICker and car-
ried out experimental evaluation, comparing it with other tools for the verifica-
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tion of timed automata. We used Uppaal [6] and nuXmv [7] to model check TAs
and MathSAT [12] to solve the SMT problems. We performed an experimental
evaluation based on a test-set of randomly generated local requirements. When
comparing the SMT-based approach with the automata-based one, the results
highlight a better performance of the former technique on all three problems.

Related Work The problem of the integration and compatibility of input/output
timed automata has been extensively studied in the literature. Typically, works
in the literature focus on deadlock checking (see, e.g., [4,5]). The work of [2] also
addresses the parameter synthesis to avoid deadlocks in timed automata. In order
to check for livelocks, liveness properties can be addressed with approaches pro-
posed in [10,7]. A general definition of illegal states for timed interface automata
is given in [13]. As shown in the extended version of the paper the compatibil-
ity problem addressed in this paper can be seen as a subcase of the homonym
problem for input/output timed interface automata. As we are considering a
closed system, the problem reduces to the existence of a deadlock or livelock in
a phase of some component (depending if the related time interval is bounded
or not). Moreover, compared to the above model checking approaches we are
considering a specific fragment of timed automata with a linear structure that
can be exploited for specialized solutions.

Related problems have been addressed in the context of task scheduling. In
the formalism introduced in [16,17], called DRT (short for digraph real-time task
model), in which tasks and deadlines are expressed as directed graphs, the prob-
lem of determining whether a schedule exists (feasibility problem) bears some
similarities with the consistency checking problem we study here. The DRT
model allows the use of very general graph topologies, with multiple outgoing
branches and loop-backs, but it does not consider dependencies across different
tasks. The main difference with our work is that the problem is addressed from
a global point of view (i.e., the existence of a global scheduler that can coor-
dinate the execution of the tasks), whereas we are interested in local solutions,
in which each requirement can be considered in isolation. Another difference is
the approach used to tackle the problem: while in [16] dynamic programming is
used to deal with the possible explosion of the search space, we use SMT [14] as
the main framework for all the three above-mentioned problems.

Outline. In Sec. 2, we introduce a suitable formalism to model local require-
ments and we formalize the three problems. In Sec. 3, we propose the reductions
of compatibility checking and consistency checking into TAs and SMT. The cor-
responding solutions for the synthesis problem are then described in Sec. 4. The
experimental results are described in Sec. 5. In Sec. 6, we draw some conclusions
and highlight possible future directions of this work.

2 Problem Statement

Domain formalization We propose a high level formalism to model the local
requirements.
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A

Off

On

[3, 6]

B

Off

On

[2, 4]

(a) Example of system with two local re-
quirements and one state dependency.

E

Off

Normal

[1, 2]

C

Off

Normal

High

[2, 3]

[2, 3]

D

Off

Normal

[4, 6]

(b) Example of system with two local re-
quirements and two signal dependencies.

Definition 1 (Local Requirements) A specification S is given by a set of
local (or component) requirements, where each local requirement C ∈ S is given
by an (ordered) sequence 〈PC

1 , . . . , PC
n 〉 of phases. In turn, each phase Pi of C

is associated when i > 1 with a closed real interval βPi
with non-negative lower

limit lPi
and (finite or infinite) upper limit uPi

, with a formula φPi
(called signal

dependency) and, when i > 0 with a formula ψPi
(called state dependency). Both

φPi
and ψPi

are Boolean formulae over the atoms in {〈D,Q〉}D∈S\{C},Q∈D (i.e.,
the phases of other components).

If a dependency ψP is just a conjunction of atoms, then we say that ψP is
convex. With the notation |C|, we will refer to the number of phases of C.

Figs. 1a and 1b show two examples of sets of local requirements. In Fig. 1a,
we have two local requirements A and B (i.e., S = {A,B}); each local re-
quirement has two phases Off and On (i.e., PA

1 = Off and PA
2 = On and sim-

ilarly for B); the bounds are depicted in square brackets (thus, for example
βA
On = [3, 6]); all dependencies are trivially true apart from the state depen-

dency ψB
On = 〈A,On〉 of the local requirement B, which is plotted as an arrow

from the phase On of B to phase On of A. In Fig. 1b, we have another example
with three components and some signal dependencies; for example, signal de-
pendency φC

Normal = 〈E,Normal〉 is plotted as an arrow from the transition to
phase Normal of C to phase Normal of E.

Definition 2 (Stronger local requirements) We say that a local requirement
C ′ = 〈PC′

1 , . . . , PC′
n 〉 is stronger than C = 〈PC

1 , . . . , PC
n 〉 (written C ′ � C), iff

phase PC′
i is identical to PC

i except that lPC
i

≤ lPC′
i

and uPC′
i

≤ uPC
i
, for all

1 ≤ i ≤ n. Given two specifications S = {C1, . . . , Cn} and S′ = {C ′
1, . . . , C

′
n},

we say that S′ is stronger than S (written S′ � S) iff for all i, 1 ≤ i ≤ n,
|Ci| = |C ′

i| and C ′
i � Ci.

In defining the semantics of a composition of local requirements C1 . . . Cn,
every local requirement Ci is associated with a local clock, which is reset each
time it enters a new phase. Given a local requirements specification {C1, . . . , Cn},
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we define its semantics formally by defining the predicate Reach((C1, j1, t1), . . . ,
(Cn, jn, tn)), which is true iff the phases PC1

j1
. . . PCn

jn
are reachable at local times

t1 . . . tn.

Definition 3 (Reachability for local requirements) Given the specification
{C1 . . . Cn} and the time points t1 ∈ R . . . tn ∈ R, we inductively define the pred-
icate Reach((C1, j1, t1), . . . , (Cn, jn, tn)) as follows:

– (base case) Reach((C1, 1, 0), . . . , (Cn, 1, 0)) holds and for all i ∈ {1 . . . n} it
holds that (state dependencies): ((C1, 1), . . . , (Cn, 1)) |= ψCi

1
– (timed transition) if Reach((C1, j1, t1), . . . , (Cn, jn, tn)) and there exists a

δ ∈ R such that ti + δ ≤ uCi
ji+1 for all i ∈ {1 . . . n}, then

Reach((C1, j1, t1 + δ), . . . , (Cn, jn, tn + δ)).
– (discrete transition) if Reach((C1, j1, t1), . . . , (Cn, jn, tn)) and there exists a

δ ∈ R and a M ⊆ {1, . . . , n} such that:
1. for all i ∈ {1 . . . n} such that ji < |Ci|, ti + δ ∈ [lCi

ji+1, u
Ci
ji+1] if i ∈ M ,

and ti + δ ≤ uCi
ji+1 otherwise;

2. for all i ∈ M , it holds that (signal dependencies):
((C1, j1), . . . , (Cn, jn)) |= φCi

ji+1
3. for all i ∈ M , it holds that (state dependencies - entry):

((C1, j1), . . . , (Cn, jn)) |= ψCi
ji+1

4. for all i ∈ {1 . . . n}, it holds that (state dependencies - invariant):
((C1, j

′
1), . . . , (Cn, j

′
n)) |= ψCi

j′i
then it holds that Reach((C1, j

′
1, t

′
1), . . . , (Cn, j

′
n, t

′
n)), where j′i = ji + 1 and

t′i = 0 if i ∈ M and ji < |Ci|, and j′i = ji and t′i = ti + δ otherwise.

We define the predicate CompS to be true iff there are no reachable states
in S such that no component can proceed to its next phase.

Definition 4 (Compatibility for local requirements) Given the set of lo-
cal requirements S = {C1 . . . Cn}, the predicate CompS is true iff:

∀j1 ∈ {1 . . . |C1| − 1} . . . ∀jn ∈ {1 . . . |Cn| − 1} ∀t1 . . . tn ∈ R
(

Reach((C1, j1, t1), . . . , (Cn, jn, tn)) ⇒
∃M ⊆ {1 . . . n}(M �= ∅ ∧Reach((C1, j

′
1, t

′
1), . . . , (Cn, j

′
n, t

′
n))

))
where j′i = ji + 1 and t′i = 0 for all i ∈ M , or j′i = ji and t′i = ti otherwise.
If CompS holds, we say that C1 . . . Cn are compatible, or equivalently that S is
compatible.

For example, in Fig. 1a, predicate Reach((A, 1, 4), (B, 1, 4)) holds, but pred-
icate Reach((A, 1, 4), (B, 2, 0)) does not, because for all δ ∈ R and for all S ⊆
{1 . . . n}, predicate Reach((A, 1, 4), (B, 2, 0)) is false.

Strict Semantics The above definition adopts a weakly-monotonic model of time,
where discrete transitions are instantaneous and, therefore, the system may be
in two different states at the same instant. The definition and the reductions to
model checking and SMT can be easily adapted to have a strict semantics.
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Verification and Synthesis Problems The core problem we address is to check if
a given specification S = {C1, . . . , Cn} is compatible, i.e., if CompS holds. The
consistency checking problem amounts to checking if there exists a time point in
which the final phase of all the local requirements is reached, that is it amounts
to checking if the following formula holds:

∃t1 . . . ∃tn Reach((C1, |C1|, t1), . . . , (Cn, |Cn|, tn))

If this is the case, then we say that S is consistent. Finally, we can formalize the
synthesis problem as the problem of computing (a symbolic representation of)
the set: {S′ | CompS′ ∧ S′ � S}

2.1 NP-hardness

In this section, we show that the simplest of the problems defined above is
already NP-hard. In fact, we show a reduction from SAT to the consistency
checking problem.

Let ϕ(x̄) be a Boolean formula over the variables x̄ = 〈x1 . . . xn〉; with-
out loss of generality, we assume ϕ(x̄) to be in negated normal form, i.e., with
all the negations only in front of literals. For all 1 ≤ i ≤ n, we define the
local requirement corresponding to variable xi as Ci = 〈P i

1, P
i
2〉, such that

BP i
2

= [0,+∞) and φP i
1

= ψP i
1

= φP i
2

= ψP i
2

= �; the idea is to encode

the values ⊥ and � of each xi with the two phases P i
1 and P i

2, respectively.
Moreover, we define the local requirement G, which will be useful as a gadget
for the reduction, as follows: G = 〈PG

1 , PG
2 〉, where PG

2 = 〈[0,+∞), ϕ[xi �→
〈Ci, P

i
2〉,¬xi �→ 〈Ci, P

i
1〉],�〉. The specification Sϕ corresponding to the Boolean

formula ϕ(x̄) is defined as Sϕ = {G,C1, . . . , Cn}. It holds that ϕ(x̄) is satis-
fiable if and only if Sϕ is consistent. In fact, if Sϕ is consistent, then there
exists a time point in which the signal dependency of the second phase of G
has been satisfied, and thus ϕ(x̄) is satisfiable. Viceversa, let’s suppose that
ϕ(x̄) is satisfiable and let M be an arbitrary model of it, expressed as the
set of true atoms, in which we also substitute every xi in it with the pair
〈Ci, P

i
2〉. Since the local requirements C1 . . . Cn have no dependencies and, to-

gether with G, have only infinite bounds, there exists a time t such that predicate
Reach((G,PG

1 , t), (C1, P
G
b1
, t1), . . . , (Cn, P

n
bn
, tn)) is true, where for all 1 ≤ i ≤ n,

bi = 2 and ti = 0 iff xi ∈ M and ti = t otherwise. By definition of Reach (see Def-
inition 3), this implies that Reach((G,PG

2 , t), (C1, P
1
2 , t), . . . , (Cn, P

n
2 , t)) holds,

i.e., S is consistent.

In Sec. 3.2, we will give an encoding of the consistency checking problem
based on SMT(DL) (i.e., Satisfiability Modulo Theory of Difference Logic). In
particular, we will show that the problem can be reduced to the satisfiability
of a formula in SMT(DL). Since the latter belongs to NP [15], the consistency
checking problem belongs to NP as well, having that consistency checking is
NP-complete.
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3 Verification

3.1 Reduction to Model Checking

In order to formalize the two verification problems into ones of model checking
networks of timed automata, we use timed automata with shared variables. To
this end, besides the clock constraints Ξ(C), we define L = {lA, lB, . . . } as a
set of location variables (one for each automaton A in the network), and Θ(L)
as the set of all Boolean combinations of atoms of type lA = vA, where A is a
timed automata, lA ∈ L and vA is a state of A.

Definition 5 (Timed Automata with Shared Variables) A timed automa-
ton with shared variables (TASV, for short) A = 〈VA, v0A, lA, CA, invclA, inv

loc
A , TA〉

consists of:

– a finite set of locations VA;
– an initial location v0A ∈ VA;
– a location variable lA with range VA;
– a finite set of clocks CA, where a clock is a real-valued variable;
– a clock invariant invclA : VA → Ξ(CA) for each location;
– a location invariant invlocA : VA → Θ(CA) for each location;
– a transition relation TA ⊆ VA × 2CA × Ξ(CA)×Θ(L)× VA.

Given a set of clocks C, we denote with ν : C → R a clock valuation, that is
a function assigning a rational value to each clock; with VC , we denote the set of
all possible clock valuations over C. For t ∈ R, ν+ t is the clock valuation which
maps every clock c ∈ C to the value ν(c) + t. For R ⊆ C, we define ν[R �→ 0]
to be the valuation that maps x to 0 if x ∈ R, and to ν(x) otherwise. When
defining the product of two TASVs, we will deal with tuples (lA1 , . . . , lAn) of
location variables; in this context, we usually denote with λ any function from
the set of n-tuples of location variables to the set VA1

× · · · × VAn
. Moreover,

we write that λ |= Φ (where Φ ∈ Θ(L)) iff Φ[lAi
�→ vAi

, for all 1 ≤ i ≤ n] is
true and λ((. . . , lAi , . . . )) = (. . . , vAi , . . . ). We give the semantics of a TASV in
terms of traces and we define their product as described below.

Definition 6 (Trace of a TASV) A trace τ of a TASV A = 〈VA, v0A, lA, CA,
invclA, inv

loc
A , TA〉 is a (either finite or infinite) sequence of states of the form:

〈v0, ν0, λ0〉 α1−→ 〈v1, ν1, λ1〉 α2−→ 〈v2, ν2, λ2〉 α3−→ . . .

such that vi ∈ VA, αi ∈ R ∪ {τ}, νi ∈ VCA and λi ∈ VL for all i ≥ 0, and:

– (initiation) v0 = v0A, ν0(x) = 0 for all x ∈ CA, ν0 |= invclA(v
0
A), λ0(lA) = v0

and λ0 |= invlocA (v0A);
– (consecution): for all i ≥ 0

• (timed transition) if α ∈ R, then vi+1 = vi and νi+1 = νi + α, νi + δ |=
invclA(vi), for all 0 ≤ δ ≤ α, and λi+1(lA) = vi;
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• (discrete transition) if α = τ then there is a tuple (vi, Ri, Ξi, Φi, vi+1) ∈
TA such that: νi |= invclA(vi) ∧ Ξi; λi |= Φi; νi+1 = νi[Ri �→ 0]; νi+1 |=
invclA(vi+1); λi+1(lA) = vi+1, and λi+1 |= invlocA (vi+1).

Definition 7 (Product of TASVs) Given two TASVs A and B, their product
is the TASV A⊗ B defined as follows:

– VA⊗B = VA × VB and v0A⊗B = (v0A, v
0
B);

– lA⊗B = (lA, lB);
– CA⊗B = CA ∪ CB;
– invclA⊗B(v, u) = invclA(v) ∧ invclB (u), for all (v, u) ∈ VA⊗B;
– invlocA⊗B(v, u) = invlocA (v) ∧ invlocB (u), for all (v, u) ∈ VA⊗B;
– the transition relation is defined as follows:

TA⊗B ={((v, u), R,Ξ, Φ, (v′, u)) | (v,R,Ξ, Φ, v′) ∈ TA} ∪
{((v, u), R,Ξ, Φ, (v, u′)) | (u,R,Ξ, Φ, u′) ∈ TB}

It is worth noting that each TASV corresponds to a timed automaton defined
in the standard way [1], and viceversa. We define now the TASV corresponding
to a local requirement.

Definition 8 (TASV for a Local Requirement) Let C = 〈PC
1 , . . . , PC

n 〉 be
a local requirement. We define the corresponding TASV A = {VA, v0A, lA, CA,
invclA, inv

loc
A , TA} as follows:

– for each phase PC
i of local requirement C, viA is the corresponding location

in VA; PC
0 corresponds to v0A and CA = {cA};

– for each phase PC
i (but the last) of C, invclA(v

i
A) := cA ≤ uPC

i+1
;

– (discrete transition) for each phase PC
i (but the last) of C, it holds that

(viA, {cA}, ΞC
i , ΦPC

i+1
∧ ΨPC

i+1
, vi+1

A ) ∈ TA, where ΞC
i := lPC

i+1
≤ cA ≤ uPC

i+1
.

– (state deps) for each phase PC
i of C, it holds that invlocA (viA) := ΨPC

i
;

where ΦP := φP [(d, j) �→ (ld = vj)], for each phase P (the same holds for Ψ);

A

off inv:
cA ≤ 6

on

3 ≤ cA ≤ 6
cA := 0

B

inv:
cB ≤ 4

inv:
ψon

2 ≤ cB ≤ 4
cB := 0
ψon

Fig. 2: Example of TASV corresponding
to a local requirement.

Example. Consider Fig. 1a: the corre-
sponding TASV is depicted in Fig. 2.
Each phase of each local requirement
corresponds to a location of the cor-
responding TASV; in the example,
phase off is mapped into location off.
The first locations of automata A and
B have attached the invariants cA ≤ 6
and cB ≤ 4, respectively. Automa-
ton A proceeds to location on (cor-
responding to phase A.on) by a tran-

sition labelled with clock constraint 3 ≤ cA ≤ 6 and clock reset cA := 0. Since
the second phase of local requirement A has no dependencies, the transition to
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on has no constraints on the location variables. The situation is different for
automaton B, for which the transition to on is labelled with 2 ≤ cB ≤ 4 and
cB := 0, and also with ψon := (lA = on), that is the state dependency of phase
B.on; moreover, ψon is also an invariant for the second location of automaton
B, since it is a state dependency.

Given a network S := A1 × · · · × An of TASVs, the problem of consistency
checking can be expressed as the reachability of location (A1.last, . . . ,An.last) ∈
VS . A deadlock of a TASV A is defined as a state (v, t) ∈ VA × R such that A
can take neither a timed nor a discrete transition from (v, t). We call livelock
a state (v, t) such that A can take only timed transitions. The compatibility
checking problem can be expressed as the problem of checking if there exists a
trace of S such that (i) either the trace is finite and its final state is a deadlock
of S; we can check this property by adding a sink location to the TASV S to
which all locations can transition to and by checking the reachability of it; (ii) or
the trace is infinite and there exists a location v ∈ VS and a point k ≥ 0 such
that lS = v �= (A1.last, . . . ,An.last), for all the states after k in the trace,
where the ith component of v together with the time of the current state is a
livelock for automata Ai, for some 1 ≤ i ≤ n. The second point is fundamental
for local requirements featuring infinite bounds : in these automata, it is not
sufficient to check for deadlocks, since a timed transition could be always enabled;
instead, an illegal state can be described by a trace of the system that reaches a
livelock whose location has no invariants attached and then stays constantly in
this location. Having reached a livelock, the automaton can proceed only with
timed moves: in particular, it can’t proceed to the next location because its
dependencies are violated. We can check the second point in this way: we first
add a sink location sinkAi

v for each location v ∈ Ai (and of course a transition
from the latter to the former), for each 1 ≤ i ≤ n, and we attach to it the
invariant ¬invlocAi

(v). Now, in the product S of these modified automata, we look
for a trace such that, from a certain time point onwards, it stays constantly in
a location (l1, . . . , ln) such that at least one li is a sink state. This property can
be formalized in Linear Temporal Logic as FG(

∨
1≤i≤n,v∈Ai

sinkAi
v ).

3.2 Encoding into SMT(DL)

We describe the encoding into SMT(DL) (Satisfiability Modulo Theory of Dif-
ference Logic) for the problems of consistency checking and compatibility check-
ing. For all 1 ≤ c ≤ n and 1 ≤ i ≤ |c|, we introduce the following variables:
(i) rci ∈ B represents the fact that phase i of local requirement c is reachable;
(ii) sci = (tci , p

c
i ) represents the superdense time instant in which local require-

ment c enters phase i, where tci ∈ R and pci ∈ N. We can compare two superdense-
valued variables (t, p) and (t′, p′) with the lexicographical order, which we define
as follows: (t, p) � (t′, p′) iff t ≤ t′ ∧ (t = t′ → p ≤ p′). We now give the set of
(conjunctively related) constraints which form our SMT(DL) encoding.

Initialization. Each local requirement starts in its first phase at the same time,
i.e., the real time point 0. Hence, for all 1 ≤ c ≤ n, we add the constraint tc0 = 0.
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Reachability. For all local requirements c and all phases i, it holds that if i− 1
is not reachable then so is phase i, i.e., ¬rci−1 → ¬rci . Moreover, we require the
monotonicity over time, i.e., rci → (sci−1 ≺ sci ).

Bounds. For all local requirements c and all phases i, c can move to i only if
it respects the bounds [lci , u

c
i ] of phase i, namely rci → (lci ≤ tci − tci−1 ≤ uc

i ). If
uc
i = ∞, then we add only the left-most inequality.

Signal and State dependencies. Consider a local requirement c and one of its
phases i. Since we have only a finite number of phases, we can preprocess both
signal and state dependencies to remove from them all negations, as explained
in the extended version of the paper 4; this means that every atom in φc

i and ψc
i

occurs positive.

We want c to reach i only if all its signal and state dependencies are satisfied.
For signal dependencies, we require the time point in which c enters i to be
strictly greater5than the time point of the entry of the target phase and smaller
than or equal to the time point of the exit of the target phase.

rci → φc
i [(d, j) �→ (rdj ∧ sdj ≺ sci � sdj+1)]

Moreover, we have to guarantee that the state dependencies hold as well. In
particular, if phase i is reachable, then surely the time point in which c enters i
has to be strictly greater than the time point in which the other local requirement
reaches the target phase.

rci → ψc
i [(d, j) �→ (rdj ∧ sdj ≺ sci )]

Since state dependencies are invariant properties, i.e., they have to hold for each
time instant a local requirement is in a particular phase, if one state dependency
is violated at some time point of phase i− 1, then phase i is not reachable. The
contrapositive means that if phase i is reachable, then the state dependencies of
phase i− 1 have to be invariant for phase i− 1, namely:

rci → ∀s̃(sci−1 � s̃ � sci → ψc
i−1[(d, j) �→ (rdj ∧ sdj ≺ s̃ � sdj+1)]) (1)

Illegal States. If phase i of local requirement c is not reachable, i.e., i is an illegal
state, then there exists a time point scill such that, for all the next (remaining)
time points s̄ between scill and the upperbound of the transition, at least one
dependency is not satisfied.

(rci−1 ∧ ¬rci ) → ∃scill∀s̄(scill � s̄ � sci−1 + uc
i−1 → VIOLATION(s̄)) (2)

4 http://users.dimi.uniud.it/∼luca.geatti/tricker.html
5 This allows us to model the observability of the events: c first observes d entering
its phase j and then moves.

http://users.dimi.uniud.it/~luca.geatti/tricker.html
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where

VIOLATION(s̄) := ¬φc
i [(d, j) �→ (rdj ∧ sdj ≺ s̄ � sdj+1)] ∨ (3)

¬ψc
i [(d, j) �→ (rdj ∧ sdj ≺ s̄)] ∨ (4)

∃s̃(sci−1 � s̃ � s̄ ∧ ¬ψc
i−1[(d, j) �→ (rdj ∧ sdj ≺ s̃ � sdj+1)]) (5)

We interpret s̄ � sci−1 + uc
i as ∀p̄(s̄ � sci−1 + (uc

i , p̄)) and the + symbol as the
pairwise sum. In the case the upperbound of the transition is infinite, we simply
do not add the s̄ � sci−1 + uc

i inequality. We refer to the conjunction of all these
constraints as W.

For consistency checking, we define END :=
∧

1≤c≤n

r|c| and we call Wcons the

conjunction of W with END. We check consistency by checking the satisfiability
of Wcons.

For compatibility checking, we define ILL :=
∨

1≤c≤n
1≤i≤|c|

¬rci and we call Will the

conjunction of W with ILL. We check the existence of an illegal state in the
system by checking the satisfiability of Will, i.e., Will is satisfiable iff the local
requirements are not compatible.

Strict Semantics In the strict semantics setting, we forbid two events to occur at
the same real-time point. For strict semantics, the encoding is equal to W except
that we interpret ≺ and � as < and ≤, respectively, and all the sci variables as
single real-valued variables tci ∈ R. We call S this encoding and we define Scons

and Sill as above.

Finite bounds and convex dependencies. Despite being very close to the prob-
lem formalization, the W encoding features a high number of quantifications,
also in alternation; therefore, in the general case, it is very burdensome for an
SMT solver to first perform quantifier elimination on W and then to solve the
resulting formula. Nevertheless, if we make some restrictions on the type of local
requirements we consider, we are able to remove upfront all the quantifiers from
W, without the need to use quantifier elimination techniques. In fact, suppose
we consider only local requirements with finite bounds and convex state depen-

dencies (see Sec. 2). We call Ŵill
fin the encoding equal to W except that Eq. (1)

is replaced by:

rci → ψc
i−1[(d, j) �→ (rdj ∧ sci � sdj+1)] (6)

and we add the following constraint:

(rci−1 ∧ ¬rci ) → (tci = tci−1 + uc
i−1) (7)

and we replace Eq. (2) with:

(rci−1 ∧ ¬rci ) → WEAKVIOL(tci ) (8)
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where:

WEAKVIOL(tci ) := ¬φc
i [(d, j) �→ (rdj ∧ tdj ≤ tci < tdj+1)] ∨

¬ψc
i [(d, j) �→ (rdj ∧ tdj ≤ tci )] ∨

¬ψc
i−1[(d, j) �→ (rdj ∧ tci ≤ tdj+1)])

(9)

We can prove that Will and Ŵill
fin are equisatisfiable for every set of local re-

quirements with only finite bounds and convex dependencies. Notably, there are
no quantifiers in Will

fin: as said before, this makes the encoding dramatically more
efficient with respect to W: in Sec. 5, we will consider only local requirements of
this type. The details of the proofs are reported in the extended version of the
paper in which, given that the proofs are a bit involved, we proceed incremen-
tally, showing first how we can remove upfront the quantifiers in case of finite
bounds with strict semantics, then in the case with weak semantics and finally
in case of convex dependencies.

4 Synthesis

In this section, we tackle the synthesis problem, i.e., computing the set of all
stronger local requirements (as defined in Def. 2) of the initial local requirements
such that their composition is compatible. We solve this problem by reducing it
to a parameter synthesis problem (see [9] for a more detailed description); given
a local requirement C, its corresponding parametric local requirement 〈C, π〉 is
defined as C (see Sec. 2), except that the bounds lP and uP of each phase P are
now the parameters l̄P and ūP , respectively, and π := {l̄P | P is a phase of C}∪
{ūP | P is a phase of C}. Given a set of local requirements S = {C1, . . . , Cn},
we write 〈S,Π〉 for its parametric version {〈C1, π1〉, . . . , 〈Cn, πn〉}, where the set
of parameters is defined as Π :=

⋃n
i=1 πi. A parameter valuation γ : Π → Q

assigns a rational value to each parameter; moreover, for each 1 ≤ i ≤ n, it
also induces a (concrete) local requirement 〈Ci, γ(πi)〉, obtained from 〈Ci, πi〉
by replacing every parameter p ∈ πi with the concrete value γ(p). In the same
way, we can define the concrete version 〈S, γ(π)〉 of 〈S, π〉. γ is said to be feasible
for S if 〈Ci, γ(πi)〉 is a stronger local requirement of Ci, for all 1 ≤ i ≤ n, and
〈S, γ(π)〉 is compatible. A feasible region is a set R := {γ | γ is feasible for S}.
Also in this case, we can either use parameter synthesis algorithms over timed
automata [3] or reduce the problem to SMT(LRA); we focus on the latter and in
particular, we will synthesize a symbolic representation of the region R, namely
an SMT formula ϕR with the following property: γ |= ϕR iff γ ∈ R, for each
valuation γ.

Let Will be the encoding equal to Will except that each number lci (resp. uc
i )

is replaced with the variable l̄ci (resp. ūc
i ) and each phase is required to have

finite bounds. We define the sets of variables R := {rci | c ∈ S, i is a phase of c}
and S := {sci | c ∈ S, i is a phase of c}: these are the variables we are going to
remove by means of quantifier elimination. Finally, we define:
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DOMAIN :=
∧

1≤c≤n
1≤i≤|c|

(l̄ci ≥ 0 ∧ l̄ci ≤ ūc
i )

REFINE :=
∧

1≤c≤n
1≤i≤|c|
uc
i �=∞

(aci ≤ l̄ci ∧ ūc
i ≤ bci )

The symbolic representation of the feasible region R is given by:

SYNTH := DOMAIN ∧ REFINE ∧ ¬∃S,R
(
Will

)
(10)

By removing the existential quantification on S and R (this can be done by means
of quantifier elimination techniques), we obtain a quantifier-free formula over the
variables in Π. By construction, we have that each model γ of SYNTH is a fea-
sible valuation, and viceversa. Therefore SYNTH is the symbolic representation
of the feasible region R.

5 Experimental Evaluation

We implemented the encoding described in Sec. 3.2 in a tool called TRICker
(Timing Requirements Integration Checker) 6, which uses MathSAT [12] as the
backend SMT engine. We compared TRICker with Uppaal [6] and Timed-nuXmv
[8], both using the automata-based encoding described in Sec. 3.1.

The test set is partitioned into three categories: (i) bounded convex contains
only systems with finite bounds and convex state dependencies; (ii) bounded

contains systems with only finite bounds, but with arbitrary dependencies (not
necessarily convex); (iii) general contains systems with infinite bounds and
arbitrary dependencies (this is the most general fragment). Each category in turn
consists of ca. 500 randomly-generated systems, divided in 10 sub-categories,
namely 2c3p, 2c15p, 5c3p, 5c20p, 10c4p, 10c30p, 50c5p, 50c30p, 100c3p
and 100c10p, where NcMp is the category containing only systems with N
components and (approximately) M phases for each component. Inside each
sub-category, each benchmark is randomly generated, meaning that the exact
number of phases for each component and the density of its signal and state
dependencies was chosen uniformly at random. For each benchmark, we compare
the time spent by the three tools on the consistency checking and compatibility
checking problems. We ran the experiments on a cluster of Linux machines with
a 2.27GHz Xeon CPU, with a timeout of 360 seconds for each instance.

We consider first the bounded convex category. Fig. 3 shows the comparison
of TRICker with Timed-nuXmv and Uppaal on the two verification problems. In
both cases, Timed-nuXmv runs the infinite-state variant of IC3 described in [11]
after discretizing the timed automata. As for Uppaal, we verify a property in
the form EFϕ, where ϕ is a Boolean formula. For both problems, the SMT-
based approach implemented in TRICker outperforms the model checkers. While
there are a number of instances for which the model checkers perform better

6 http://users.dimi.uniud.it/∼luca.geatti/tricker.html

http://users.dimi.uniud.it/~luca.geatti/tricker.html
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Fig. 3: Comparison on the bounded convex category (consistency checking on
the first row and compatibility checking on the second).

than TRICker (especially for Uppaal), the latter overall solves a significantly
larger amount of problems within the timeout, showing a clear improvement in
scalability. This can be seen also in the survival plots comparing the three tools
with the Virtual Best Solver (vbs for short). We can make similar considerations
for the bounded and general categories, shown respectively in Fig. 4 and Fig. 5.
(Note that for the general case, we could not evaluate Uppaal as it does not
support the verification of fairness properties.) We remark that we did not note
any kind of correlation between the number of signal or state dependencies in
the benchmarks and the time spent by the solver. Finally, Fig. 6 shows the
correlation between the memory (measured in MB) and the time (in seconds)
spent by TRICker on consistency and compatibility checking, respectively.

We also evaluated the parameter synthesis algorithm described in Sec. 4.
Since Uppaal currently does not support parameter synthesis for timed automata,
we could not include it in the comparison. We therefore compared TRICker with
Timed-nuXmv, for which we used the ParamIC3 parameter synthesis algorithm
described in [9]. The algorithm is based on the inverse method, i.e., it finds a
bad configuration for the parameters and it tries to generalize it, maximizing the
set of bad parameters removed from the current approximation of the region.
We took all the consistent benchmarks of the previous test sets, which amounts
to approximately 100 instances (note that for each instance of the class NcMp,
the number of parameters is ≈ 2 · N · M7). The results of the comparison are
shown in Fig. 7; as in the previous cases, TRICker shows better performance and

7 recall that both the lower and the upper bounds are parameters.
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Fig. 4: Comparison on the bounded category (consistency checking on the first
row and compatibility checking on the second).

scalability than ParamIC3, though there are several instances for which synthesis
via quantifier elimination is still very expensive.

6 Conclusions

In this paper, we defined verification and synthesis problems of industrial rel-
evance focused on the decomposition of startup requirements into local timing
constraints and dependencies on components. Namely, we addressed the problem
of checking if the local requirements are free of integration errors (i.e., consis-
tent and compatible), and the problem of synthesizing the region of refinements
of the original specification that are error free. The problem can be naturally
translated into model checking and synthesis problems for timed automata with
shared variables. Exploiting the structure of the requirements, we provide an
encoding into SMT where consistency and incompatibility correspond to satisfi-
ability queries, while synthesis is resolved by means of quantifier elimination.

In the future, we will consider various directions, such as extending the ap-
plicability of the approach to more general structures with loops, enriching the
synthesis problem with cost functions to repair the specification driven by spe-
cific industrial goals, and considering more complex representations of signals
exchanged between components.
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Fig. 5: Comparison on the general category (consistency checking on the first
row and compatibility checking on the second).

Fig. 6: Comparison between time and memory consuption of TRICker (consis-
tency checking on the left and compatibility checking on the right).

Fig. 7: Comparison on parameter synthesis.
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Abstract. We show that symmetry transformations and caching can enable scal-
able, and possibly unbounded, verification of multi-agent systems. Symmetry
transformations map any solution of the system to another solution. We show that
this property can be used to transform cached reachsets to compute new reachsets,
for hybrid and multi-agent models. We develop a notion of a virtual system which
defines symmetry transformations for a broad class of agent models that visit
waypoint sequences. Using this notion of a virtual system, we present a prototype
tool CacheReach that builds a cache of reachsets, in a way that is agnostic of
the representation of the reachsets and the reachability analysis method used.
Our experimental evaluation of CacheReach shows up to 64% savings in safety
verification computation time on multi-agent systems with 3-dimensional linear
and 4-dimensional nonlinear fixed-wing aircraft models following sequences of
waypoints. These savings and our theoretical results illustrate the potential benefits
of using symmetry-based caching in the safety verification of multi-agent systems.

1 Introduction

As the cornerstone for safety verification of dynamical and hybrid systems, reachability
analysis has attracted attention and has delivered automatic analysis of automotive,
aerospace, and medical applications [2,24,17,11]. Notable advances from the last few
years include the development of the generalized star data-structure [14] and the HyLaa
tool [3] which can analyze massive linear models [4]; Taylor model based reachability
analysis algorithms for nonlinear systems and their implementations in Flow* [7]; and a
simulation-based algorithm that guarantees locally optimal precision [15].

Exact symbolic reachability analysis of nonlinear models is generally hard. One
prominent approach is based on generalizing individual behaviors or simulations to
cover a whole set of behaviors. The idea was pioneered in [10] and implemented in
Breach [9] with sound generalization guarantees for linear models based on sensitivity
analysis. Subsequently, the idea has been significantly extended to cover nonlinear,
hybrid, and black-box models and it has been implemented in tools like C2E2 and
DryVR [12,19,17,16].

In all of the above, a single behavior ξ of the system from an initial state, is general-
ized to a compact set of neighboring behaviors that contains all the behaviors starting
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from a small neighborhood around the initial state of ξ . Thus, the computed neighboring
set of behaviors always contains ξ and its size is determined by the algorithms for
sensitivity analysis. In contrast, the type of generalization we pursue here uses symmetry
transforms on the state space. Given a group Γ of operators on the state space, and a sin-
gle behavior ξ , we can generalize ξ to γ(ξ ), for each γ ∈ Γ . Symmetry transformations
can be applied to sets of behaviors symbolically. Not only can this type of generalization
work in conjunction with sensitivity analysis, it captures structural properties of the
system that make behaviors similar in a way that is not covered by sensitivity analysis.

In our recent work [29], we showed how symmetry transforms can be used to pro-
duce new reachsets from other previously computed reachsets for non-parameterized
dynamical systems. In this paper, we introduce the use of symmetry transforms of
parameterized dynamical systems for safety verification. We present an algorithm
symComputeReachtube (Algorithm 1) which caches and reuses reachsets, avoiding
repeating expensive computations. We show how an infinite number of reachsets can
be obtained by transforming a single one using symmetry transforms (Corollary 2).
Building on it, we provide unbounded time safety guarantees using finite cached safety
checking results (Theorem 6).

The key contributions of this paper are as follows.
First, we show how symmetry transformations for parameterized dynamical systems

can be used to compute reachable states (Theorem 2). Going well beyond the previous
theory [29], this enables cached reachtubes to be reused for verification across different
modes and across multiple agents.

We develop a notion of virtual system (Section 4) which automatically defines
symmetry transformations for a broad swathe of hybrid and dynamical systems modeling
agents visiting a sequence of waypoints (see Theorem 3 and Examples 3 and 4). That
is, reachability analysis of a multi-agent system, with possibly different dynamics and
different parameters, can be performed in a common transformed coordinate system, and
thus, increases the possibility of reuse. We show how this principle can make it possible
to verify systems over unbounded time and with infinite number of agents (Theorem 6),
provided that no new unproven scenarios appear for the virtual system.

We present a prototype implementation of a tool that uses symComputeReachtube.
We name it CacheReach. It builds a cache of reachtubes for the virtual system, from
different sets of initial states. In performing reachability analysis of a multi-agent hybrid
or dynamical system, for each agent and each mode, the algorithm proceeds as follows:
(1) transform the initial set X to an initial set of the virtual system to get γ(X). (2) If
the transformed set γ(X) has already been stored in the cache, then extract it and apply
γ−1 to get the actual reachset. (3) Otherwise, compute the reachset from γ(X) and cache
it. Our algorithm symComputeReachtube and its implementation in CacheReach are
agnostic of the representation of the reachsets and the reachability analysis subroutine,
and therefore, any of the ever-improving libraries can be plugged-in for step 3.

Our experimental evaluation of CacheReach shows safety verification computation
time savings of up to 64% on scenarios with multiple agents with 3-dimensional linear
and 4-dimensional nonlinear fixed-wing aircraft model following sequences of waypoints.
These savings illustrate the potential benefits of using symmetry transformations and
caching in the safety verification of multi-agent systems.
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2 Model and problem statement

Notations. We denote by N, R, and R≥0 the sets of natural numbers, real numbers and
non-negative reals. Given a finite set S, its cardinality is denoted by |S|. Given N ∈N, we
denote by [N] the set {1, . . . ,N}. Given a vector v ∈ Rn and a set L ⊆ [n], we denote the
projection of v to the indices in L by v[L]. We define an n-dimensional hyper-rectangle by
a 2d-array specifying its bottom-left and upper-right corners. We denote the projection
of a hyper-rectangle H on the set of dimensions L by H[L]. Given a function γ : Rk →Rk

and a set S ⊆ Rk, we abuse notation and define γ(S) = {γ(x) | x ∈ S}. Moreover, given
S ∈ 2R

k ×R≥0, we define γ(S) = {(γ(X), t) | (X , t) ∈ S}.

2.1 Agent mode dynamics

In this section, we define the syntax and semantics of the model that determines the
dynamics of an agent. We present the syntax first.

Definition 1 (syntax). The agent dynamics are defined by a tuple A = 〈S,P, f 〉, where
S ⊆ Rn is its state space, P ⊆ Rm is its parameter or mode space, and the dynamic
function f : S×P → S that is Lipschitz in the first argument.

The semantics of an agent dynamics is defined by trajectories, which describe the
evolution of states over time.

Definition 2 (semantics). For a given agent A = 〈S,P, f 〉, we call a function ξ : S×P×
R≥0 → S a trajectory if ξ is differentiable in its third argument, and given an initial state
x0 ∈ S and a mode p ∈ P, ξ (x0, p,0) = x0 and for all t > 0,

dξ
dt

(x0, p, t) = f (ξ (x0, p, t), p). (1)

We say that ξ (x0, p, t) is the state of A at time t when it starts from x0 in mode p.

Given an initial state x0 ∈ S and mode p ∈ P, the trajectory ξ (x0, p, ·) is the unique
solution of the ordinary differential equation (ODE) (1) since f is Lipschitz continuous.

Given a compact initial set K ⊆ S, a parameter p ∈ P, the set of reachable states of
A over a time interval [ftime,etime] is defined as

Reach(K, p, [ftime,etime]) = {x ∈ S | ∃x0 ∈ K, t ∈ [ftime,etime],x = ξ (x0, p, t)}. (2)

We let Reach(K, p, t) denote the set of reachable states at time t. Unbounded reachset
from K and p is Reach(K, p, [ftime,∞)).

The bounded time safety verification problem requires one to check if any state
reachable by A for a given initial set K and mode p is unsafe within a given time bound.
That is, given a time bound T > 0, p ∈ P, and an unsafe set U ⊆ S, we want to check
whether Reach(K, p, [0,T ])∩U = /0.
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2.2 Reachtubes

Computing reachsets exactly is theoretically hard [22]. There are many reachability anal-
ysis tools [8,1,3] that can compute bounded-time over-approximations of the reachsets.
Generally, given an initial set K for a set of ODEs, these tools can return a sequence of
sets that contain the exact reachset over small time intervals. Motived by this, we define
reachtubes as sequences of time-annotated over-approximations of exact reachsets:

Definition 3. For a given agent A = 〈S,P, f 〉, an initial set K ⊆ T , a mode p ∈ P, and
a time interval [ftime,etime], a (K, p, [ftime,etime])-reachtube ReachTb(K, p, [0,T ]) is
a sequence {(Xi, [τi−1,τi])} j

i=1 such that Reach(K, p, [τi−1,τi])⊆ Xi, and τ0 = ftime <
τ1 < · · ·< τ j = etime. Without loss of generality, we assume equal separation between
the time points, i.e. ∃ τs > 0,∀i ∈ [ j],τi − τi−1 = τs.

For a given (K, p, [ftime,etime])-reachtube rtube, we denote its parameters by rtube.K,
rtube.p, rtube.ftime, and rtube.etime, respectively, and its cardinality by rtube.len.

We define union, truncation, concatenate, and time-shift operators on reachtubes. Fix
rtube1 = {(Xi,1, [τi−1,1,τi,1])} j1

i=1 and rtube2 = {(Xi,2, [τi−1,2,τi,2])} j2
i=1 to be two reach-

tubes, where j1 = rtube1.len and j2 = rtube2.len. If τi,1 = τi,2 for all i ∈ [min( j1, j2)], we
say they are time-aligned. Without loss of generality, assume that j1 ≤ j2. The operators
are defined as follows:

– timeShift(rtube1, ts) = {(Xi,1, [ts + τi−1,1, ts + τi,1])} j1
i=1,

– union: rtube1 ∪ rtube2 = {(Xi,1 ∪Xi,2, [τi−1,1,τi,1])} j1
i=1 ∪{(Xi,2, [τi−1,2,τi,2])} j2

i= j1+1,

– concatenation: rtube1
� rtube2 = rtube1 ∪{(Xi,2, [τ j1,1 + τi−1,2,τ j1,1 + τi,2))} j2

i=1,
– truncate(rtube1, tc) = {(Xi,1, [τi−1,1,τi,1])}k

i=1, where τk,1 ≥ tc and τk−1,1 < tc.

A simulation of system (1) is a reachtube with X0 being a singleton state x0 ∈ K. That
is, a simulation is a representation of ξ (x0, p, ·). Several numerical solvers can compute
such simulations as VNODE-LP1 and CAPD Dyn-Sys library 2.

Example 1 (Fixed-wing aircraft following a single waypoint). Consider an agent with
state space S = R4, parameter space P = R4, and f : S×P → S defined as follows: for
any x ∈ S and p ∈ P,

f (x, p) = [
Tc − cd1x[0]2

m
,

g
x[0]

sinφ ,x[0]cosx[1],x[0]sinx[1]],

where Tc = k1m(vc−x[0]), φ = k2
vc
g (ψc−x[1]), ψc = arctan2(

x[2]−p[2]
x[3]−p[3] ), and k1,k2,m,g,

cd1, and vc are positive constants. The agent models a fixed-wing aircraft starting from
a waypoint and following another in the 2D plane: x[0] is its speed, x[1] is its heading
angle, (x[2],x[3]) is its position in the plane, [p[0], p[1]] is the position of the source
waypoint, and (p[2], p[3]) is the position of the destination one. Note that the source
waypoint does not affect the dynamics, but will be useful later in the paper.

1 http://www.cas.mcmaster.ca/~nedialk/vnodelp/
2 http://capd.sourceforge.net/capdDynSys/docs/html/odes_rigorous.html

http://www.cas.mcmaster.ca/~nedialk/vnodelp/
http://capd.sourceforge.net/capdDynSys/docs/html/odes_rigorous.html
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3 Symmetry and Equivariant Dynamical Systems

Symmetry plays a fundamental role in the analysis of dynamical systems. It has been
used for studying stability of feedback systems [25], designing observers [5] and con-
trollers [30], and analyzing neural networks [20]. In this section, we present definitions
of symmetries and their implications on systems that posses them.

3.1 Symmetry of systems with inputs

In the following, symmetry transformations are defined by the ability of computing new
solutions of (1) using already computed ones. First, let Γ be a group of smooth maps
acting on S.

Definition 4 (Definition 2 in [27]). We say that γ ∈ Γ is a symmetry of (1) if for any
solution ξ (x0, p, ·), γ(ξ (x0, p, ·)) is also a solution.

Using γ-symmetry, we can get a new trajectory without simulating the system but
instead by just transforming the entire old trajectory using γ .

In the following definition we characterize the conditions under which a transforma-
tion is a symmetry of (1).

Definition 5. The dynamic function f : S×P → S is said to be Γ -equivariant if for any
γ ∈ Γ , there exists ρ : P → P such that for all x ∈ S, ∂γ

∂x
f (x, p) = f (γ(x),ρ(p)).

The following theorem shows that it is enough to check the condition in Definition 5
to prove that a transformation is a symmetry of (1).

Theorem 1 (part of Theorem 10 in [27]). If f is Γ -equivariant, then all maps in Γ
are symmetries of (1). Moreover, for any solution ξ (x0, p, ·) and γ ∈ Γ , γ(ξ (x0, p, ·)) =
ξ (γ(x0),ρ(p), ·), where ρ is the transformation associated with γ in Definition 5.

Proof. Let y = γ(x), then ẏ = ∂γ
∂x
(ẋ) = ∂γ

∂x
( f (x, p)) = f (γ(x),ρ(p)) = f (y,ρ(p)). The

second equality is a result of the derivative chain rule. The 3rd equality uses Definition 5.

Remark 1. If γ in Theorem 1 is linear, the condition in Definition 5 for a map γ to be a
symmetry becomes γ( f (x, p)) = f (γ(x),ρ(p)).

Example 2 (Fixed-wing aircraft coordinate transformation symmetry). Consider the
fixed-wing aircraft model of Example 1. Fix goal ∈ R2 and θ ∈ R. Let γ : R4 → R4 and
ρ : R4 → R4 be defined as:

γ(x) = [x[0],x[1]+θ ,(x[2]−goal[0])cos(θ)+(x[3]−goal[1])sin(θ),
− (x[2]−goal[0])sin(θ)+(x[3]−goal[1])cos(θ)] and (3)

ρ(p) = [0,0,(p[2]−goal[0])cos(θ)+(p[3]−goal[1])sin(θ),
− (p[2]−goal[0])sin(θ)+(p[3]−goal[1])cos(θ)]. (4)

Then, for all x ∈ S and p ∈ P, γ( f (x, p)) = f (γ(x),ρ(p)), where f is as in Section 2.1.
The transformation γ would change the origin of S from [0,0,0,0] to [0,0,goal[0],goal[1]].
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Then, it would rotate the third and four axes counter-clockwise by θ . Moreover, ρ would
set the first two coordinates of the parameters to zero as they do not affect the dynamics,
translate the origin of the parameter space P to [0,0,goal[0],goal[1]], and rotate the third
and fourth axes counter-clockwise by θ . For the aircraft, this means translating and
rotating the plane where the aircraft and the waypoint positions reside.

3.2 Symmetry and reachtubes

Computing reachtubes is computationally expensive as it requires non-trivial optimiza-
tion problems and integrating non-linear functions [13,15,16,8,6]. Compared with that,
transforming reachtubes is much cheaper, especially if the transformation is linear.

In our previous work [29], we showed how to get reachtubes of autonomous systems
from previously computed ones using symmetry transformations. In this paper, we show
how to do that for systems with parameters. This allows different modes of a hybrid
system and different agents with similar dynamics to share reachtube computations. That
was not possible when the theory was limited to non-parameterized systems.

Theorem 2. Let (1) be Γ -equivariant. Then for any γ ∈ Γ and its corresponding ρ , any
K, p, [ftime,etime] and {(Xi, [τi−1,τi])} j

i=1 as a (K, p, [ftime,etime])-reachtube,

∀i ∈ [ j],Reach(γ(K),ρ(p), [τi−1,τi]) = γ(Reach(K, p, [τi−1,τi]))⊆ γ(Xi).

Proof. (Sketch) The first part Reach(γ(K),ρ(p), [τi−1,τi]) = γ(Reach(K, p, [τi−1,τi]))
follows directly from Theorem 1. The second part γ(Reach(K, p, [τi−1,τi])) ⊆ γ(Xi)
follows from the reachtube ReachTb(K, p, [tb, te]) being an over-approximation of the
exact reachset during the small time intervals [τi−1,τi].

Theorem 2 says that we can transform a computed reachtube ReachTb(K, p, [t1, t2]) =
{(Xi, [τi−1,τi])} j

i=1 to get another reachtube {(γ(Xi), [τi−1,τi])} j
i=1, which is an over-

approximation of the reachsets starting from γ(K).
The results of this section subsume the results about transforming reachtubes of

autonomous systems-dynamical systems without parameters as presented in [29].

4 Virtual system

The challenge in safety verification of multi-agent systems is that the dimensionality
of the problem grows rapidly with the number of agents. However, often agents share
the same dynamics. For instance, several fixed-wing aircrafts of the type described in
Example 1 share the same dynamics but may have different initial conditions and follow
different waypoints. This commonality has been exploited in developing specialized
proof techniques [23]. For reachability analysis, using symmetry transforms of the
previous section, reachtubes of one agent in one mode can be used to get the reachtubes
of other modes and even other agents.

Fix a particular value pv ∈ P and call it the virtual parameter. Assume that for all
p∈ P, there exists a pair of transformations (γp,ρp) such that ρp(p) = pv, γp is invertible,
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and γp( f (x, p)) = f (γp(x),ρp(pv)) = f (γp(x), pv). Consider the resulting ODE:

dξ
dt

(y, pv, t) = f (ξ (y, pv, t), pv). (5)

Following [27], we call (5) a virtual system. Correspondingly, we call (1), the real system
for the rest of the paper. The virtual system unifies the behavior of all modes of the real
system in one representative mode, the virtual one pv.

Example 3 (Fixed-wing aircraft virtual system). Consider the fixed-wing aircraft agent
described in Example 1 and the corresponding transformations described in Example 2.
Fix p ∈ P, we set goal in the transformation of Example 2 to [p[2], p[3]] and θ to
arctan2(p[0]− p[2], p[3]− p[1]) and let γp and ρp be the resulting transformations. Then,
for all p ∈ P, ρp(p) = [0,0,0,0]. Hence, pv = [0,0,0,0] and the virtual system is that of
Example 1 with the parameter p = pv. For the aircraft, γp would translate the origin of
the plane to the destination waypoint and rotate its axes so that the y-axis is aligned with
the segment between the source and destination waypoints. Hence, in the constructed
virtual system, the destination waypoint is the origin of the plane. The source waypoint
is the origin as well as it does not affect the dynamics.

The solutions of the virtual system can be transformed to get solutions of all other
modes in P using {γ−1

p }p∈P. This is shown in the following theorem.

Theorem 3. Given any initial state y0 ∈ S, and any mode p ∈ P, γ−1
p (ξ (y0, pv, ·)) is a

solution of the real system (1) with mode p starting from γ−1
p (y0). Similarly, given any

x0 ∈ S, γp(ξ (x0, p, ·)) is the solution of the virtual system (5) starting from γp(x0).

Proof. Lets start with the first part of the theorem. Fix p ∈ P and let x0 = γ−1
p (y0).

Using Theorem 1, γp(ξ (x0, p, ·)) = ξ (γp(x0),ρp(p), ·)) and is the solution of the real
system (1). Furthermore, ρp(p) = pv, by definition, and γp(x0) = γp(γ−1

p (y0)) = y0.
Hence, γp(ξ (x0, p, ·)) = ξ (y0, pv, ·). Applying γ−1

p on both sides implies the first part of
the theorem. The second part is a direct application of Theorem 1.

The following corollary extends the result of Theorem 3 to reachtubes. It follows
from Theorem 2.

Corollary 1. Given a Kv ⊆ S and a mode p ∈ P, γ−1
p (ReachTb(Kv, pv, [tb, te])) is a

reachtube of the real system (1) with mode p starting from γ−1
p (Kv). Similarly, given

any initial set K ⊂ S, γp(ReachTb(K, p, [tb, te])) is a reachtube of the virtual system (5)
starting from γp(K).

Consequently, we get a solution or a reachtube for each mode p ∈ P of the real
system by simply transforming a single solution or a single reachtube of the virtual
system using the transformations {γp}p∈P and their inverses. This will be the essential
idea behind the savings in computation time of the new symmetry-based reachtube
computation algorithm and symmetry-based safety verification algorithms presented
next. It will be also the essential idea behind proving safety in the case of unbounded
time and infinite number of modes.
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Example 4 (Fixed-wing aircraft infinite number of reachtubes resulting from transform-
ing a single one). Consider the real system in Example 1 and the virtual one in Example 3.
Fix the initial set, which is represented as a hyper-rectangle, Kr = [[1, π

4 ,3,1], [2,
π
3 ,4,2]],

the real mode pr = [2.5,0.5,13.3,5], and the time bound 20 seconds. Then, similar to Ex-
ample 3, we fix θ = arctan2(2.5−13.3,5−0.5) =−1.176 rad and goal = [13.3,5]. We
call the resulting transformations from Example 3, γpr and ρpr . Let Kv = γpr(Kr) and pv =
ρpr(pr) = [0,0,0,0]. Assume that we have the reachtube rtuber = ReachTb(Kr, pr,T ).
Then, using Corollary 1, we can get rtubev = ReachTb(Kv, pv,T ) by transforming rtuber
using γpr . The benefit of the corollary appears in the following: for any p ∈ P = R4, we
can get the corresponding reachtube ReachTb(γ−1

p (Kv), p,T ) by transforming rtubev

using γ−1
p .

The projection of Kv on its last two coordinates Kv[2 : 3] represents the possible
initial position of the aircraft in the plane relative to the destination waypoint. It would
be a rotated square with angle θ . The distance from Kv[2 : 3] center to the origin would
be equal to the distance from K[2 : 3] center to the destination waypoint. Moreover, the
angle between the y-axis and the line connecting the origin with the center of Kv[2 : 3]
would be equal to the angle from the segment connecting the source and destination
waypoints to the line connecting the destination waypoint with the center of K[2 : 3]. On
the other hand, Kv[0] = K[0] and Kv[1] = K[1]+θ .

In summary, the absolute positions of the aircraft and waypoints do not matter. What
matters is their relative positions. The virtual system stores what matters and whenever a
reachtube is needed for a new absolute position, we can transform it from the virtual one.

5 Symmetry-based verification algorithm

In this section, we introduce a novel safety verification algorithm, symSafetyVerif,
which uses existing reachability subroutines, but exploits symmetry, unlike existing
algorithms. In our earlier work [29], we introduced reachtube transformations using
symmetry for single mode dynamical systems. Here, we extend the method across modes,
introduce the virtual system, and develop the corresponding verification algorithm.

In Section 5.1, we define tubecache—a data-structure for storing reachtubes; in 5.2,
we present the symmetry-based reachtube computation algorithm symComputeReachtube

that reuses reachtubes stored in tubecache; finally, in 5.3, we define the safetycache data-
structure which stores previously computed safety verification results. These results
would be used by the symSafetyVerif algorithm.

5.1 tubecache: shared memory for reachtubes

We show how we use the virtual system (5) to create a shared memory for the different
modes of the real system (1) to reuse each others’ computed reachtubes. We call this
shared memory tubecache.

Definition 6. A tubecache is a data structure that stores a set of reachtubes of the virtual
system (5). It has two methods: getTube, for retrieving stored tubes and storeTube, for
storing a newly computed one.
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The function getTube returns a set of reachtubes {ReachTb(Ki, pv, [0,Ti])}i∈[h], for
some h ∈ N, that are already stored in tubecache. Moreover, the union of Kis is the
largest subset of K that can be covered by the initial sets of the reachtubes in tubecache.
Formally,

tubecache.getTube(K) = argmax
{ReachTb(Ki,pv,[0,Ti])∈tubecache}i

Vol(K ∩∪iKi), (6)

where Vol(·) is the Lebesgue measure of the set. Note that for any K ⊂ Rn, a maximizer
of (6) would be the set of all reachtubes in tubecache. However, this is very inefficient
and it would be too conservative to be useful for checking safety. Therefore, getTube
should return the minimum number of reachtubes that maximize (6). Note that the
reachtubes in tubecache may have different time bounds. We will truncate or extend
them when used.

5.2 symComputeReachtube: symmetry-based reachtube computation

Given an initial set K ⊂ S, a mode p ∈ P, and time bound T , there are dozens of tools that
can return a ReachTb(K, p, [0,T ]). See [13,8,9] for examples of such tools and [26] for a
comprehensive survey. We denote this procedure by computeReachtube(K, p, [0,T ]).

Whenever a reachtube is needed, instead of calling computeReachtube, we will
use symmetry to retrieve corresponding reachtubes that are already stored in tubecache
and only compute what is not stored. We introduce Algorithm 1 which implements this
idea and name it symComputeReachtube.

It takes as input the initial set of the virtual system Kv, the time bound T , and
tubecache. It returns a reachtube of the virtual system starting from Kv and running
for T time units. Hence, to get a reachtube of the real system starting from an initial
set K and having a mode p and time bound T , we transform K using γp to get Kv, call
symComputeReachtube, and transform the result using γ−1

p .
First, it initializes restubev as an empty tube of the virtual system (5) to store the

result in line 2. It then gets the reachtubes from tubecache that corresponds to Kv using
the getTube method in line 3. Now that it has the relevant tubes in storedtubes, it adjusts
their lengths based on the time bound T . For a retrieved tube with a time bound less
than T in line 5, symComputeReachtube extends the tube for the remaining time using
computeReachtube in lines 6-7, store the resulting tube in tubecache instead of the
shorter one in line 8. If the retrieved tube is longer than T (line 9), it trims it in line 10.
However, we keep the long one in the tubecache to not lose a computation we already
did. Then, the tube with the adjusted length is added to the result tube restubev in line 11.

The union of the initial sets of the tubes retrieved storedtubes may not contain all of
the initial set Kv. That uncovered part is called K′

v in line 12. The reachtube starting from
K′

v would be computed from scratch using computeReachtube in line 13, stored in
tubecache in line 14, and added to restubev in line 15. The resulting tube of the virtual
system (5) is returned in line 16. This tube would be transformed by the calling algorithm
using γ−1

p to get the corresponding tube of the real system (5).

Theorem 4. The output of Algorithm 1 is an over-approximation of the reachtube
ReachTb(Kv, pv, [0,T ]).
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Algorithm 1 symComputeReachtube

1: input: Kv,T, tubecache
2: restubev ← /0
3: storedtubes ← tubecache.getTube(Kv)
4: for i ∈ [|storedtubes|] do

5: if storedtubes[i].T < T then

6: (Ki, [τi,Ti])← storedtubes[i].end
7: tubei ← storedtubes[i]� computeReachtube(Ki, pv, [0,T − τi])
8: tubecache.storeTube(tubei)
9: else if storedtubes[i].T > T then

10: tubei ← storedtubes[i].truncate(T )
11: restubev ← restubev ∪ tubei

12: K′
v ← Kv\∪i storedtubes[i].K

13: tube′ = computeReachtube(K′
v, pv, [0,T ])

14: tubecache.storeTube(tube′)
15: restubev ← restubev ∪ tube′
16: return: restubev

Proof. The function computeReachtube always returns over-approximations of the
reachset from a given initial set and for a given time bound. The set restube contains
reachtubes that were computed by computeReachtube at some point. There are three
types of reachtubes in restube:

1. When the time bound Ti of the stored reachtube storedtubes[i] is less than T ,
we need to extend storedtubes[i] until time T by concatenating the original tube
with computeReachtube(Ki, pv, [0,T − τi]), where (Ki, [τi,Ti]) is the last pair in
storedtubes[i]. The result is a valid (storedtubes[i].K, pv, [0,T ])-reachtube.

2. When the time bound Ti of the stored reachtube storedtubes[i] is more than T , the
truncated reachtube is also a valid (storedtubes[i].K, pv, [0,T ])-reachtube.

3. For K′
v that is not contained in the union of the initial sets in storedtubes, the function

computeReachtube will return a valid (K′
v, pv, [0,T ])-reachtube.

The union of the initial sets of the tubes in storedtubes and K′
v contains Kv, so the union

of the reachtubes the algorithm returns a (Kv, pv, [0,T ])-reachtube.

The importance of symComputeReachtube lies in that if a mode p required a
computation of a reachtube and the result is saved in tubecache, another mode with
a similar scenario with respect to the virtual system would reuse that tube instead of
computing one from scratch. Moreover, reachtubes of the same mode might be reused as
well if the scenario was repeated again.

5.3 Bounded time safety

In this section, we show how to use tubecache and symComputeReachtube of the previ-
ous section for bounded and unbounded time safety verification of the real system (1). We
consider a scenario where the safety verification of multiple modes of the real system (1)
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starting from different initial sets and for different time horizons is needed. We will
use the virtual system (5) and the transformations {γp}p∈P to share safety computations
across modes, initial sets, time horizons, and unsafe sets.

We first introduce safetycache, a shared memory to store the results of intersecting
reachtubes of the virtual system (5) with different unsafe sets. It will prevent repeating
safety checking computations of different modes under similar scenarios and can be
used in finding unbounded time safety properties of the real system (1).

Definition 7. A safetycache is a data structure that stores the results of intersecting
reachtubes of the virtual system (5) with unsafe sets. It has two functions: getIntersect,
for retrieving stored results and storeIntersect, for storing a newly computed one.

Given an initial set Kv, a time bound T , and an unsafe set Uv, the reachtube rtube =
ReachTb(Kv, pv, [0,T ]) is unsafe if there is another one rtube′= ReachTb(K′

v, pv, [0,T ′]),
is unsafe, and is an under-approximation of rtube. Similarly, if rtube′ is an over-
approximation of rtube and is safe, then rtube is safe. Formally, the getIntersect func-
tion of safetycache returns the truth value of the predicate ReachTb(Kv, pv, [0,T ])∩Uv =
/0 if a subsuming computation is stored, and returns ⊥, otherwise.

Formally, safetycache.getIntersect(Kv,T,Uv) =⎧⎪⎨⎪⎩
0, if ∃ K′

v,T
′,U ′

v | Kv ⊇ K′
v,T ≥ T ′,Uv ⊇U ′

v,safetycache(K′
v,T

′,U ′
v) = 0,

1, if ∃ K′
v,T

′,U ′
v | Kv ⊆ K′

v,T ≤ T ′,Uv ⊆U ′
v,safetycache(K′

v,T
′,U ′

v) = 1, and
⊥, otherwise,

where 0 means unsafe and 1 means safe.
It is equivalent to check the intersection of a reachtube of the real system (1) with an

unsafe set U and to check the intersection of the corresponding reachtube and unsafe set
of the virtual one. This is formalized in the following lemma.

Lemma 1. Consider an unsafe set U ⊆ Rn ×R+ and rtube = ReachTb(K, p, [t1, t2]).
Then, for any invertible γ : Rn → Rn, rtube∩U �= /0 if and only if γ(rtube)∩ γ(U) �= /0.

Now that we have established the equivalence of safety checking between the real
and virtual systems, we present Algorithm 2 denoted by symSafetyVerif. It uses
safetycache, tubecache, and symComputeReachtube in order to share safety verifica-
tion computations across modes. The method symSafetyVerif would be called several
times to check safety of different scenarios and safetycache and tubecache would be
maintained across calls.

The function symSafetyVerif takes as input an initial set K, a mode p, a time
bound T , an unsafe set U , the transformation γp, and safetycache and tubecache that
resulted from previous runs of the algorithm.

It starts by transforming the initial and unsafe sets K and U to a virtual system
initial and unsafe sets Kv and Uv using γp in line 2. It then checks if a subsuming
result of the safety check for the tuple (Kv,T,Uv) exists in safetycache using its method
getIntersect in line 3. If it does exist, it returns it directly in line 8. Otherwise,
the approximate reachtube is computed using symComputeReachtube in line 5. The
returned tube is intersected with Uv in line 6 and the result of the intersection is stored in
safetycache in line 7 and returned in line 8.
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Algorithm 2 symSafetyVerif

1: input: K, p,T,U,γp,safetycache, tubecache
2: Kv ← γp(K), Uv ← γp(U)
3: result ← safetycache.getIntersect(Kv,T,Uv)
4: if result =⊥ then

5: rtube ← symComputeReachtube (Kv,T, tubecache)
6: result ← (tube∩Uv = /0)
7: safetycache.storeIntersect(Kv,T,Uv,result)
8: return: result

Theorem 5. If symSafetyVerif returns safe, then ReachTb(K, p, [0,T ])∩U = /0.

Proof. From Theorem 4, if the result is not stored in safetycache, we know that rtube
in line 5 is an over-approximation of ReachTb(Kv, pv, [0,T ]). Moreover, we know from
Corollary 1 that ReachTb(K, p, [0,T ])⊆ γ−1

p (rtube). But, from Lemma 1, we know that
the truth value of the predicate (rtube∩Uv = /0) is equal to that of (γ−1

p (rtube)∩U = /0)
and hence result is safe if γ−1

p (rtube)∩U = /0 and thus it is safe if ReachTb(K, p,T )∩
U = /0. Finally, the stored values in safetycache are results from previous runs, and hence
have the same property.

However, if symSafetyVerif returns unsafe, it might be that rtube in line 5 inter-
sected the unsafe set because of an over-approximation error. There are two sources
of such errors: first, the method computeReachtube used by symComputeReachtube

can itself result in over-approximation errors. Actually, it will, most of the time [13,8].
But it may be exact too [3]. Second, the tubecache.getTube method which would return
a list of tubes with the union of their initial sets strictly over-approximating the needed
initial set. The first problem can be solved by asking the method computeReachtube

to compute tighter reachtubes. Existing methods provide this option at the expense
of worse computational complexity [13,8]. However, we can use symmetry in these
tightening computations as well, as we did in [29]. We can also replace saved tubes
in tubecache with newly computed tighter ones. The second problem can be solved
by asking tubecache.getTube to return only the tubes with initial sets that are fully
contained in the asked initial set. This would decrease the savings from transforming
cached results, but it would reduce the false-positive error, saying unsafe while it is safe.

5.4 Unbounded time safety

In this section, we show how infinite number of results of safety checks, i.e. results
of intersections of reachtubes with unsafe sets, can be deduced from finite ones. The
following corollary applies Lemma 1 to the transformations {γp}p∈P that map the
different modes of the real system (1) to the unique virtual one (5).

Corollary 2 (Infinite safety verification results from a single one). Fix U ⊆ Rn and
rtube= ReachTb(Kv, pv, [0,T ]). If rtube∩U = /0, then ∀p∈P, γ−1

p (rtube)∩γ−1
p (U) = /0.
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The corollary means that from a single scenario safety check, i.e. an intersection op-
eration between a reachtube ReachTb(K, pv, [0,T ]) and unsafe set U , we can deduce the
safety of any mode p ∈ P starting from γ−1

p (K) and running for T time units with respect
to the corresponding unsafe set γ−1

p (U). This would, for example, imply unbounded
time safety of a hybrid automaton under the assumption that the unsafe sets of the modes
are at the same relative position with respect to the reachtube. But, safetycache stores a
number of results of such operations. We can infer from each one of them the safety of
infinite scenarios. This is formalized in the following theorem which follows directly
from Corollary 2.

Theorem 6 (Infinite safety verification results from finite ones). For any mode p∈ P,
initial set K ⊆ S, time bound T ≥ 0, and unsafe set U ⊂ S×R≥0, such that K ⊆ γ−1

p (K′),
U ⊆ γ−1

p (U ′), and safetycache(K′,T,U ′) = 1, system (1) is safe.

As more results are added to safetycache, then we can deduce the safety of more
scenarios in all modes. If at a given point of time, we are sure that no new scenarios
would appear, we can deduce the safety for unbounded time and unbounded number of
agents with the same dynamics having scenarios already covered.

Example 5 (Fixed-wing aircraft infinite number of safety verification results from com-
puting a single one). Consider the initial set K, mode p, time bound T , their correspond-
ing virtual ones Kv and pv, and the symmetry transformation γpr considered in Example 4.
Let the unsafe set be U = [[0,−∞,11.9,5.1], [∞,∞,12.9,6.1]]×R≥0 and Uv = γpr(U).
Assume that rtubev ∩Uv = /0 and the result is stored in safetycache. Then, for all p ∈ P,
γ−1

p (rtubev)∩ γ−1
p (Uv) = /0.

For the aircraft, U could represent a mountain. Crashing with the mountain at any
speed, heading angle, and time is unsafe. Uv represents the relative position of the
mountain with respect to the segment of waypoints. Theorem 6 says that for any initial
set of states K of the aircraft and time bound T , if the relative positions of the aircraft,
unsafe set, and the segment of waypoints are the same or subsumed by those of Kv, Uv,
and the origin, we can infer safety irrespective of their absolute positions.

6 Experimental evaluation

We implemented a software safety verification tool for multi-agent hybrid systems based
on symComputeReachtube using Python 3. We named it CacheReach. By hybrid, we
mean systems that transition between different modes under different conditions. We
tested it on a linear dynamical system and the aircraft model of Example 1, following
sequences of waypoints, using DryVR [18] and Flow* [8] as reachability subroutines.
Our code is available in a figshare repository [28] and has been tested on an Ubuntu
virtual machine available in another figshare repository [21].

6.1 CacheReach: multi-agent safety verification tool

Our tool CacheReach takes as input a JSON file specifying a list of N agents of di-
mension n. It also specifies the python file that contains the dynamics function f of
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Definition 1 and two symmetry-related functions: symGamma and symGammaInv. Given
a p ∈ P and a polytope3 poly of dimension n representing a set of states of the agent,
symGamma returns γp(poly), where γp is the symmetry map to the virtual system.
Similarly, symGammaInv would return γ−1

p (poly). The list of modes that the ith agent
transition between sequentially and their corresponding transitions conditions, denoted
by guards, are specified as well and denoted by Hi. The guard of the jth mode of the ith

agent Hi[ j].guard is a hyper-rectangle in the state space which when the agent reaches,
it transitions to the ( j+1)st mode. The guard Hi[ j] has time bound Hi[ j].T on how long
the agent can stay in the mode. Moreover, it specifies the initial set of states for each
agent as a hyper-rectangle. Finally, it specifies the static unsafe set U and the subset of
dimensions O ⊆ [n] that is relevant for dynamic safety checking between agents. If the
reachtubes of two agents projected on O intersect each other, it would model a collision
between the agents. For example, O would be {2,3} for the aircraft model in Example 1
as (x[2],x[3]) represents its position.

CacheReach would return unsafe if the reachtubes of the agents starting from their
initial sets of states and following the sequence of modes intersect a static unsafe set,
or when projected to O, intersect each other. It would return safe, otherwise. Currently,
CacheReach assumes that all agents share the same dynamics but do not interact. Hence,
it has a single tubecache that is shared by all.

CacheReach computes the reachtubes of individual agents iteratively. It would com-
pute the reachtube mtubei of the jth mode of the ith agent using symComputeReachtube.
Then, it intersects it with the guard using the function guardIntersect to get the initial set
initseti for the next mode. In addition to initseti, guardIntersect computes the minimum
and maximum times: mintimei and maxtimei, respectively, at which mtubei intersects the
guard. The value mintimei is the time at which a trajectory of the next mode may start at
and maxtimei is the maximum such time. These values are used to check safety against
time-annotated unsafe sets such as collision between agents.

The computed tube mtubei gets appended to atubei storing the full reachtube of the
ith agent. The benefit of this method is that now all modes of all agents can be mapped
to a single virtual system. They can resuse each others reachtubes using tubecache that
is getting updated at every call to symComputeReachtube. Moreover, the static safety
is done in the usual way.

The collision between agents is done by the function checkDynamicSafety. It takes
two full reachtubes of two agents atube1 and atube2 along with two arrays lookback1 and
lookback2. For agent i, the array lookbacki consists of pairs of integers (ind j, timerange j)

specifying the index identifying the beginning of the jth mode tube in atubei and the un-
certainty in the starting time of the trajectories from its initial set. checkDynamicSafety
would use this information to time-align parts of atube1 and atube2 so that the intersec-
tion check happens only between two sets that may have been reached at the same time
by the two agents.

3 https://github.com/tulip-control/polytope

https://github.com/tulip-control/polytope
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6.2 Experimental results

We ran experiments using our tool CacheReach on two models: a 3-dimensional linear
dynamical system example and the nonlinear aircraft model described in Example 1. The
linear model is of the form ẋ=A(x− p[3 : 5]), where A= [[−3,1,0], [0,−2,1], [0,0,−1]],
x ∈ R3, and p ∈ R6. We considered scenarios with single, two, and three agents for each
model following different sequences of waypoints. The sequences of waypoints for the
linear model are translations and rotations of a digital-S shaped path. For the aircraft
model, the paths are random crossing paths going north-east. In every scenario, all the
agents have the same model. In the aircraft scenarios, the agent would switch to the next
waypoint once its x, y position is within 0.5 units from the current waypoint in each
dimension. The initial set of the aircraft was of size 1 in the position components, 0.1 in
the speed, and 0.01 in the heading angle. We used Flow* [8] and DryVR [18] to compute
reachtubes from scratch for the linear example. We only used DryVR for the aircraft
model since our C++ Flow* wrapper does not handle a model having arctan2 in the
dynamics. We ran all scenarios in CacheReach with and without using tubecache. The
symmetry used for the aircraft was the one we showed in Example 3. For the linear model,
the symmetry transformation γp that was used to map the state to the virtual system
was a coordinate transformation where the new origin is at the next waypoint p[3 : 5]
and rotating the xy-plane by the angle between the previous and the next waypoints
p[0 : 2] and p[3 : 5] projected to the plane. We compared the computation time with and
without symmetry and show the results in Table 1. The reachtubes for three nonlinear
and three linear agents are shown in Figure 1. The different colors represent reachtubes
of different agents, the black points represent the waypoints, the black segments connect
consecutive waypoints, and the red rectangles represent the unsafe sets. The figures
on the top represent the real reachtubes while those on the bottom represent the ones
corresponding to the virtual system saved in tubecache.

Table 1: Results.
tool \ agent model Linear(1,2,and 3 agents) aircraft(1,2,and 3 agents)

Sym-DryVR
computed 57 90 90 635.23 1181.38 1550.62
transformed 42 165 264 20.76 286.62 501.38
time (min) 0.093 0.163 0.187 3.42 8.2 10.59

Sym-Flow*
computed 39.8 61.14 66.15
transformed 19.2 84.85 143.85 NA NA NA
time (min) 0.387 0.62 0.684

NoSym-DryVR
computed 99 255 354 656 1468 2052
time (min) 0.062 0.355 0.52 3.71 10.78 15.47

NoSym-Flow*
computed 59 151 210
time (min) 0.53 1.328 1.5 NA NA NA

In Table 1, we call CacheReach, when ran with DryVR while using tubecache,
Sym-DryVR, for symmetric DryVR. We call it Sym-Flow* if we are using Flow*
instead. If we are not using tubecache, we call them NoSym-DryVR and NoSym-
Flow*, respectively. Remember in symComputeReachtube, some tubes may be cached
but they have shorter time horizons than the needed tube. So, we compute the rest from
scratch. Here, we report the fractions of tubes computed from scratch and tubes that were
transformed from cached ones. Moreover, we report the execution time till the tubes are
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Fig. 1: Reachtubes for three fixed-wing aircrafts (left) and three linear models (right).
Real reachtubes (top) vs. the virtual ones saved in tubecache (bottom).

computed. In the experiments, we always compute the full tubes even if it was detected
to be unsafe earlier to have a fair comparison of running times. Moreover, the execution
time does not include dynamic safety checking as the four versions of the experiments are
doing the same computations for that purpose. We are using CacheReach in all scenarios
with other reachability computation tools to decrease the degrees of freedom and show
the benefits of transforming reachtubes over computing them. The Sym versions result
in decrease of running time up-to 64% in the linear case with three agents. The ratio of
transformed vs. computed tubes increases as the number of agents increase. This means
that different agents are sharing reachtubes with each other in the virtual system. The
total number of reachtubes is the same, whether tubecache is used or not. This means that
the quality of the tubes, i.e. how tight they are, is the same whether we are transforming
from tubecache or computing from scratch since the initial sets of modes are computed
from intersections of reachtubes with guards. The fatter the reachtube is, the larger the
initial set gets and the larger the number of reachtubes need to be computed.

7 Discussion and conclusions

In this paper, we investigated how symmetry transformations and caching can help
achieve scalable, and possibly unbounded, verification of multi-agent systems. We
developed a notion of virtual system which define symmetry transformations for a broad
class of hybrid and dynamical agent models visiting waypoint sequences. Using virtual
system, we present a prototype tool called CacheReach that builds a cache of reachtubes
for the transformed virtual system, in a way that is agnostic of the representation of the
reachsets and the reachability analysis subroutine used. Our experimental evaluation
show significant improvement in computation time on simple examples and increased
savings as number of agents increase.
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kolcak@lsv.fr

2 National Institute of Informatics, Tokyo, Japan
{dubut,hasuo,s-katsumata,sprunger,akihisayamada}@nii.ac.jp

3 Japanese-French Laboratory for Informatics, CNRS IRL 3527, Tokyo, Japan
4 The Graduate University for Advanced Studies (SOKENDAI), Tokyo, Japan

Abstract. In the field of quality assurance of hybrid systems, Platzer’s
differential dynamic logic (dL) is widely recognized as a deductive veri-
fication method with solid mathematical foundations and sophisticated
tool support. Motivated by case studies provided by our industry part-
ner, we study a relational extension of dL, aiming to formally prove
statements such as “an earlier engagement of the emergency brake yields
a smaller collision speed.” A main technical challenge is to combine two
dynamics, so that the powerful inference rules of dL (such as the differ-
ential invariant rules) can be applied to such relational reasoning, yet in
such a way that we relate two different time points. Our contributions
are a semantical theory of time stretching, and the resulting synchroniza-
tion rule that expresses time stretching by the syntactic operation of Lie
derivative. We implemented this rule as an extension of KeYmaera X,
by which we successfully verified relational properties of a few models
taken from the automotive domain.

Keywords: hybrid system · cyber-physical system · formal verification
· theorem proving · dynamic logic.

1 Introduction

Hybrid Systems Cyber-physical systems (CPSs) have been studied as a sub-
ject in their own right for over a decade, but the rise of automated driving in
the last few years has created a panoply of challenges in the quality assurance of
these systems. In the foreseeable future, millions of cars will be driving on streets
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with unprecedented degrees of automation; ensuring the safety and reliability of
these automated driving systems is a pressing social and economic challenge.

The hybridity of cyber-physical systems, the combination of continuous phys-
ical dynamics and discrete digital control, poses unique scientific challenges. To
address these challenges, two communities have naturally joined forces: control
theory whose traditional application domain is continuous dynamics and formal
methods that have mainly focused on the analysis of software systems. This has
been a fruitful cross-pollination: techniques from formal methods such as bisim-
ilarity [9] and temporal logic specification [8] have been imported to control
theory, and conversely, control theory notions such as Lyapunov functions have
been used in formal methods [26].

Deductive Verification of Hybrid Systems In the formal methods com-
munity, two major classes of techniques are model checking (usually automata-
based and automatic) and deductive verification (based on logic and can be
automated or interactive). Model checking techniques rely on exhaustive search
in state spaces and therefore cannot be applied per se to hybrid systems with
infinite state spaces. This has led to the active study of discrete abstraction of
hybrid dynamics, see e.g. [9]; or of bounded model checking, see [5].

In contrast, nothing immediately rules out the use of the deductive approach
for hybrid systems. Finitely many variables in logical formulas can represent
infinitely many states, and proofs in suitably designed logics are valid even when
the semantic domain is uncountable. That said, designing such a logic, proving
the soundness of its rules, and showing that logics is actually useful in hybrid
system verification is a difficult task.

Platzer’s differential dynamic logic dL [21] is a remarkable success in this di-
rection. Its syntax is systematic and intuitive, extending the classic formalism of
dynamic logic [10] with differential equations as programs. Its proof rules encap-
sulate several essential proof principles about differential equations, including a
differential invariant (DI) rule for universal properties and side deduction for
existential properties. The logic dL has served as a general platform that accom-
modates a variety of techniques, including those which come from real algebraic
geometry [22]. Furthermore, dL comes with sophisticated tool support: the latest
tool KeYmaera X [15] comes with graphical interface for interactive proving
and a number of automation heuristics.

Relational Reasoning on Hybrid Systems In this work, we introduce
proof-based techniques for relational reasoning to the deductive verification of
hybrid systems. Here, by relational reasoning we mean analyzing how changes in
the system will affect the overall system behavior. One of the applications of such
reasoning in our mind is to deduce the safety of a system by checking the most
aggressive settings. To make such reduction sound, we need to verify that less
aggressive versions result in less dangerous outcomes than the aggressive ones.
As a simple example, consider the following case distilled from our collaboration
with an industrial partner.

Example 1 (leading example: collision speed). Consider two cars C and
C, whose positions and velocities are real numbers denoted by x, x and v, v,
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v

The two hatched areas designate the trav-
eled distances (x = x = 1). We can compute
the collision speeds (v =

√
2 and v = 2)

via the closed-form solutions of the differ-
ential equations (1), concluding v ≤ v when
x = x = 1.

Fig. 1. An ad-hoc proof for Example 1

respectively. Their dynamics are governed by the following differential equations:

ẋ = v, v̇ = 1; ẋ = v, v̇ = 2. (1)

Both cars start at the same position at rest (x = x = 0 ∧ v = v = 0), and
both drive towards a wall at position 1. We consider this question: which car is
traveling faster when it hits the wall?

The second car, C, has strictly greater acceleration all the time, so we can
imagine that C hits the wall harder. This hypothesis turns out to be correct, but
we are more interested in how this claim could be proven.

A simple proof would be to solve the differential equation exactly and notice
C has greater velocity at the end of its run. However, it is known that closed-form
solutions are scarce for ODEs—we want a proof method that is more general.

Another possible argument is based on the relationship between the accel-
erations. Since the second car’s acceleration is greater at every point in time,
we might be tempted to conclude that the second car’s velocity must always
be greater than the first car’s, based on the monotonicity of integration: a(t) ≤
a(t) ⇒ v(t) =

∫ T

0
a(t) dt ≤

∫ T

0
a(t) dt = v(t). However, this reasoning has a flaw.

C reaches the wall at an earlier point in time than C, and therefore C has more

time to accelerate. In the end, we have to compare
∫ T

0
a(t) dt and

∫ T

0
a(t) dt

where a(t) ≤ a(t) for all t ∈ [0, T ] but T > T , as depicted in figure 1.
Our solution, roughly stated, is to compare the two cars at the same points

in space by reparametrizing time for one of the two cars. This parametrization
is specially chosen to ensure the two cars pass through the same points in space
at the same points in time.

Our current work is about a logical infrastructure needed to support this
kind of relational reasoning comparing two different dynamics, based on dL. Our
semantical theory, as well as the resulting syntactic extension of dL by what
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we call the synchronization rule, generalizes the kind of reasoning in Example 1
using the notion of time stretching.

Technical Contributions We make the following technical contributions.

1. Formulation of relational reasoning in dL. We find that relational prop-
erties are expressible in dL, using disjoint variables in a sequential composi-
tion. This representation, however, does not allow the use of the rich logical
infrastructure of dL (such as the (DI) rule).

2. Time stretching, semantically and syntactically. To alleviate this dif-
ficulty, we first develop the theory of time stretching, so that we can compare
two dynamics at different timepoints (cf. Example 1). Accommodating this
semantical notion in dL and KeYmaera X is not possible per se. We intro-
duce an indirect syntactic alternative, which turns out to be better suited
in fact to many case studies (where we compare the two dynamics at the
same “position,” much like in Example 1). The resulting synchronization
rule in dL has a clean presentation (Theorem 24), owing to the syntactic Lie
derivative operator in dL.

3. Implementation and case studies. We implemented the new synchro-
nization rule as an extension of KeYmaera X. We used it successfully for
establishing nontrivial relational properties in case studies taken from the
automotive domain.

Relational Reasoning in Practice We contend relational reasoning has
practical significance based on our collaboration with an industry partner. Rela-
tional properties, especially with an aspect of monotonicity, abound in real-world
examples. In particular, we have often encountered situations where we have a
parametrized model M(p) and need to show a property of the form:

p1 < p2 implies M(p2) is less safe than M(p1). (2)

These properties occur especially in the context of product lines, where the same
model can come in many slight variants. Example 1 is such a situation.

Relational statements (such as monotonicity) are easy to state and interpret.
Intuitions about the direction of the change in a behavior of a system resulting
from the change of a parameter are more often valid than intuitions about the
amount of such a change. These kinds of simple statements are often used by
engineers to establish the basic credibility of a model. Qualitative, relational
properties also tend to be easier to prove than exact, quantitative properties.

Finally, monotonicity can serve as a powerful technique in test-case reduction.
If a safety property is too complex to be deductively verified, one usually turns
to testing. It is often still possible to establish a simple monotonicity property of
the form (2). This can powerfully boost testing efforts: one can focus exclusively
on establishing safety for the extreme case M(pmax).

Related Work Since this work is about its relational extension, the works
we mentioned on dL are naturally relevant. We discuss other related works here.
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Simulink (Mathworks, Inc.) is an industry standard in modeling hybrid sys-
tems, but unfortunately Simulink models do not come with rigorously defined se-
mantics. Therefore, while integration with Simulink is highly desirable any qual-
ity assurance methods for hybrid systems, formal verification methods require
some work to set up the semantics for Simulink models. The recent work [12]
tackles this problem, identifying a fragment of Simulink, and devising a trans-
lator from Simulink models to dL programs. Their translation is ingenious, and
their tool is capable of proving rather complicated properties when used in com-
bination with KeYmaera X [15].

Relational extensions of the Floyd–Hoare logic—which can be thought of as
a discrete-time version of dL—have been energetically pursued especially in the
context of differential privacy [4,2,3].

In deductive verification of hybrid systems, an approach alternative to dL
uses nonstandard analysis [23] and regards continuous dynamics as if they were
discrete due to the existence of infinitesimal elements [24,25]. The logic used in
that framework is exactly the same as the classic Floyd–Hoare logic, and the
soundness of the logic in the hybrid setting is shown by a model-theoretic result
called the transfer principle. Its tool support has been pursued as well [11].

This is not the first time that relational reasoning—in a general sense—
has been pursued in dL. Specifically, Loos and Platzer introduce the refinement
primitive β ≤ α, which asserts a refinement relation between two hybrid dy-
namics, meaning the set of successor states of β is included in that of α [14].
This kind of relation is inspired by the software engineering paradigm of incre-
mental modeling (supported by languages and tools such as Event-B [1,6]); the
result is a rigorous deductive framework for refining an abstract model (with
more nondeterminism) into a more concrete one (with less nondeterminism). In
contrast, we compare one concrete model (not necessarily with nondeterminism)
with another. Thus, our notion of relational reasoning builds more on relational
extensions of the Floyd–Hoare logic [4,2,3] than on Event-B. Combining these
two orthogonal kinds of relational extensions of dL is important future work.

Organization In Section 2, we recall some basics of differential dynamic logic
dL: its syntax, semantics and some proof rules. Our main goal, relational reason-
ing, is formulated in Section 3, where we identify difficulties in doing so in the
original dL. In Section 4 we introduce the semantical notion of time stretching,
and turn its theory into the new synchronization rule. After introducing our
implementation in Section 5, we describe our three case studies in Section 6.

The appendix containing omitted proofs and details, the source code and the
artifact are found at http://group-mmm.org/rddl tacas 2020/.

2 Preliminaries: Syntax and Semantics of the Logic dL

We recall some of the basics of differential dynamic logic (dL). The interested
reader is referred to [19,20] for full details.

http://group-mmm.org/rddl_tacas_2020/
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Definition 2 (language). We fix a set V of variables, denoted by x, y, . . . . The
set of terms is defined by the following grammar:

e, f, g, . . . ::= x | n | −e | e+ f | e ·f | e/f

where x ∈ V and n ∈ N. First-order formulas are defined by

P,Q, . . . ::= e ≤ f | ¬P | P ∧Q | ∀x. P

A state is a function mapping each variable to a real number, ω : V → R.
We denote the set of all states by RV . Given a state, each term has a valua-
tion in the reals, and each formula has a valuation in Booleans defined by the
usual induction. We denote these by

�
e
�
ω ∈ R and

�
P

�
ω ∈ {true, false},

respectively. The models of a first-order formula P are the states satisfying P ,�
P

�
:= {ω ∈ RV |

�
P

�
ω = true}.

We use classical shorthands, including e = f := e ≤ f ∧ f ≤ e, P ∨
Q := ¬(¬P ∧ ¬Q), ∃x. P := ¬(∀x.¬P ), and 
 := 0 ≤ 0. We denote a vector
(e1, . . . , en) of terms (or variables) by e when the length n is irrelevant or clear
from the context.

We now introduce the syntax of hybrid programs.

Definition 3 (hybrid programs). The set HP(V) of hybrid programs over
variables V is given by the following grammar:

α1, α2, . . . ::= ?P | x := e | ẋ1 = e1, . . . , ẋn = en &Q | α1;α2 | α1 ∪ α2 | α∗
1

We may also abbreviate ẋ1 = e1, . . . , ẋn = en by ẋ = e. Hybrid programs
of the form ẋ = e & Q are especially important in this work. We call such a
program differential dynamics, where ẋ = e is its differential equation and the
first-order formula Q is its evolution domain constraint. The intuitive meaning
of such a program is that the values of the variables x evolve continuously in
time according to ẋ = e, as long as Q is satisfied at the current value of x. If we
see differential dynamics as a continuous analog of loops, then Q plays the role
of guard and ẋ = e plays the role of body.5 We write ẋ = e instead of ẋ = e&
.

Definition 4 (solutions). A mapping ψ : [0, T ) → RV with T ∈ [0,∞] is called
a solution of a differential equation ẋ1 = e1, . . . , ẋn = en if ψ is differentiable
in [0, T ) and, whenever t ∈ [0, T ), ψ̇(t)(xi) =

�
ei

�
ψ(t) for i ∈ {1, . . . , n} and

ψ̇(t)(y) = 0 for any y ∈ V \ {x1, . . . , xn}.

According to the Picard–Lindelöf theorem [13], for each differential equation
ẋ = e and each state ω, there is a unique maximal solution ψω : [0, Tω) → RV

of the differential equation satisfying ψω(0) = ω.

Definition 5 (semantics of hybrid programs). The semantics of a hybrid
program α is a relation −

�
α
�
→ ⊆ RV × RV on states, defined by:

5 This analogy is not perfect: a typical while loop can only exit when its guard is false,
whereas a hybrid program can exit the differential dynamics while Q is satisfied.
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1. −
�
?P

�
→ = {(ω, ω) | ω ∈

�
P

�
},

2. −
�
x := e

�
→ = {(ω, ω′) | ω′(x) =

�
e
�
ω
and ω′(y) = ω(y) for all y �= x},

3. −
�
ẋ = e&Q

�
→ = {(ω, ψω(t)) | ω ∈ RV , t ∈ [0, Tω), ψω([0, t]) ⊆

�
Q

�
},

4. −
�
α1 ∪ α2

�
→ = −

�
α1

�
→ ∪−

�
α2

�
→,

5. −
�
α1;α2

�
→ = −

�
α1

�
→;−

�
α2

�
→ where ; denotes relation composition, and

6. −
�
α∗�→ = (−

�
α
�
→)∗ where ∗ denotes the reflexive transitive closure.

Definition 6 (dL formulas). Modal formulas extend first-order formulas and
are defined by the following grammar:

ϕ,ϕ1, ϕ2, . . . ::= e ≤ f | ¬ϕ | ϕ1 ∧ ϕ2 | ∀x. ϕ |
[
α
]
ϕ.

As usual, we write 〈α〉ϕ to abbreviate ¬
[
α
]
¬ϕ. We will also call modal for-

mulas “dL formulas” since these are the widest class of formulas in dL.
The Boolean valuation

�
ϕ
�
ω
of a modal formula ϕ in a state ω is defined in

the same way as for first-order formulas, with the addition of
�[
α
]
ϕ
�
ω
= true

if and only if
�
ϕ
�
ω′ = true for all ω′ such that ω −

�
α
�
→ ω′.

We take the sequent-calculus style proof system for dL, following [22]. It has
judgments of the form Γ � ϕ, where Γ is a set of modal formulas and ϕ is a
single modal formula. One of the most fundamental axiom is[

ẋ = e&Q
]
φ ⇐⇒ ∀t ≥ 0. (∀v ∈ [0, u]. [x := f(v)]Q) ⇒ [x := f(u)]φ (solve)

where f(t) is a term with a fresh variable t such that
�
f
�
is a solution of ẋ = e

and
�
f(0)

�
= id.

Some other rules of dL, such as the differential invariant rule (DI) that is
central in many proofs, are introduced later in Definition 13.

3 Relational Differential Dynamic Logic

Intuitively, we want a way to describe two dynamics that are executed in parallel,
and compare their outputs. In terms of (nondeterministic) transition systems,
parallel composition is available via tensor products.

Definition 7 (tensor product). Given two transition systems (S,R) and
(S′, R′), their tensor product (S × S′, R ⊗ R′) is defined to be the transition
system whose transition relation is given by

R⊗R′ := {(s, s′), (t, t′) | (s, t) ∈ R, (s′, t′) ∈ R′}.

No extension of the dL syntax is needed to model tensor products: disjointness
of the variables of the two systems suffices. From now on we split variables into
two disjoint sets: V = V � V . We denote variables in V by x, y, . . . and those in
V by x, y, . . . . Terms in T (V ), first-order formulas in Fml(V ), and programs

in HP(V ) are denoted by e, f , . . . , P ,Q, . . . , and α, β, . . . , and similarly for the
corresponding constructs with V .

An easy proof of the following fact can be found in the appendix.
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Proposition 8. −
�
α
�
→ ⊗−

�
α
�
→ = −

�
α;α

�
→ ��

Scenarios with two parallel differential dynamics are the main focus of this
work. We formalize an assertion relating two dynamics using the following for-
mat. It is a syntactic counterpart of Proposition 8.

Definition 9 (relational differential dynamics). We call hybrid programs
of the following form relational differential dynamics (RDD)

ẋ = e&Q ; ẋ = e&Q (3)

Now that we have ways to express separate systems evolving in parallel, we
turn to the construction of proofs which reason about their relationships.

Example 10. Using RDD, the problem in Example 1 is expressed as ΓC �[
δC ; δC

]
φC where δC :=

(
ẋ = v, v̇ = 1

)
, δC := (ẋ = v, v̇ = 2), ΓC := {x =

x = 0, v = v = 0} is the precondition, and φC := (x = x = 1 ⇒ v ≤ v) is the
postcondition.

Let us prove, in KeYmaera X, the RDD sequent ΓC �
[
δC ; δC

]
φC . In

KeYmaera X, the only applicable rule to this sequent turns it into ΓC �[
δC

][
δC

]
φC . We then explicitly “solve” the second dynamics, yielding the fol-

lowing goal:

ΓC �
[
δC

]
∀t ≥ 0.

(
x = x+ v ·t+ t2 = 1 ⇒ v ≤ v + t

)
(4)

where x and v in φC are replaced by their explicit solutions with respect to the
freshly introduced time variable t. Again differential invariant rules do not apply
to (4), so one must solve the first dynamics, too, yielding

ΓC � ∀t ≥ 0. ∀t ≥ 0.
(
x+ v ·t+ t

2
/2 = x+ v ·t+ t2 = 1 ⇒ v + t ≤ v + t

)
Since this goal is first order, the quantifier elimination, a central proof technique
in KeYmaera X [18], proves the goal.

The above example worked out since it admits explicit solutions expressible
in dL. This is not always the case as the following example demonstrates.

Example 11. We consider two objects moving through fluids subjected to dif-
ferent kinds of drag. One object moves through a viscous fluid and is therefore
subject to linear drag; its dynamics are δF := (ẋ = v, v̇ = −v).

The other object moves through a less viscous fluid and is subject to turbulent
drag; its dynamics are δF := (ẋ = v, v̇ = −v2). Our goal is to show that
the latter has higher speed when both objects reach a certain point in space
(x = x = l).

The following functions v∗, x∗, v∗ and x∗ are solutions of the dynamics.

v∗(t) = v0 · e−t x∗(t) = x0 + v0 ·(1− e−t)

v∗(t) =
v0

1 + v0 ·t
x∗(t) = x0 + log(1 + v0 ·t)
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where v0 etc. denote the initial values. Unfortunately, we cannot express expo-
nentiations and logarithms in KeYmaera X, and thus the “solve” rule that we
used in Example 10 cannot be applied here.

One obvious solution to this would be to add support for exponentiations
and logarithms in KeYmaera X, but this would break the decidability of the
underlying first order logic, which is a major feature of dL [18]. In fact, the same
issue occurs even in standard use cases of KeYmaera X, and motivated the
introduction of proof rules which do not demand explicit solutions to differential
dynamics [20,22] using the Lie derivative.

Definition 12 (formal Lie derivative in dL from [20,22]). The formal Lie
derivative of a term f along dynamics δ ≡ (ẋ = e & Q) of dimension n is a dL
term Lδ f ∈ T (V) given by6

Lδ f := ∂
∂x1

f · e1 + · · ·+ ∂
∂xn

f · en

Definition 13 (proof rules from [20,22]). The following rules are sound:

Γ,Q � f ∼ 0 Γ �
[
δ
]
Lδ f � 0

Γ �
[
δ
]
f ∼ 0

DI
Γ � p ∼ 0 Q � Lδ p � g · p

Γ �
[
δ
]
p ∼ 0

Dbx

where δ ≡ (ẋ = e & Q), (∼,�) ∈ { (=,=), (>,≥), (≥,≥) }, and g is any term
without division.

The differential invariant rule (DI) is the central rule for proving safety proper-
ties [20,22]: it reduces a global property of the dynamics to local reasoning by
means of Lie derivatives. The Darboux inequality rule (Dbx) is derived from real
algebraic geometry; see e.g. [22].

Example 14. Consider an example differential dynamics in one variable, ẋ =
2. Suppose we want to show that x ≥ 0 holds after following these dynamics
for any amount of time, starting from x = 1. One way to do this is to show
that (1) this predicate holds initially and (2) the time derivative of x is always
nonnegative. These are precisely the two premises of the (DI) rule: to show the
sequent x = 1 � [ẋ = 2]x ≥ 0 (DI) requires us to prove (1) x = 1 � x ≥ 0 and
(2) x = 1 � [ẋ = 2]Lẋ=2 x ≥ 0, where Lẋ=2 x = 2. Note that we give an initial
condition x = 1 in the precedent of this sequent.

4 Synchronizing Dynamics

The intuitive explanation of the RDD construction of Definition 9 is a “serial-
ization” of two dynamics. This construction however does not match the (DI)

6 It is easy to see that the derivative of a term t ∈ T (V) with respect to x ∈ V can be
given as a dL term ∂

∂x
e ∈ T (V) such that

�
∂
∂x

e
�
= ∂

∂x

�
e
�
. The definition of ∂

∂x
e is

inductive with respect to the term e.
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and (Dbx) rules, as they accept only one dynamics followed by a comparison. In
order to make use of these rules in our relational reasoning, we introduce another
proof method. It “synchronizes” two dynamics.

After some theoretical preparations we define the new rule and prove its
soundness. We will illustrate the usefulness of this rule in Section 6, through
some case studies that are inspired by our collaboration with the industry.

4.1 Time Stretching

A key theoretical tool towards the soundness of our synchronization rule is called
time stretching. Its idea is very similar to the technique of time-reparametrization
for ODEs [7].

Definition 15 (time stretch function). Let T ∈ R≥0. A functionK : [0, T ] →
R≥0 is a time stretch function if K(0) = 0, K is continuously differentiable and

K̇(t) > 0 for each t ∈ [0, T ].

Remark 16. The condition K̇(t) > 0 ensures thatK is strictly increasing and is
a bijection from [0, T ] to [0,K(T )]. The inverse of K is K−1 : [0,K(T )] → [0, T ],
and it is straightforward to check K−1 is another time stretch function.

The next results tell us how to turn an ODE into another, given a time
stretching function K, so that a time-stretch ψ◦K of a solution ψ of one becomes
a solution of the other.

Lemma 17. Suppose f : RV → RV is a vector field and K : [0, T ] → [0,K(T )]
is a time stretch function. If ψ : [0,K(T )) → RV satisfies ψ̇(s) = f(ψ(s))
for all s ∈ [0,K(T )), then the function ρ = ψ ◦ K : [0, T ) → RV satisfies
ρ̇(t) = K̇(t) · f(ρ(t)) for all t ∈ [0, T ).

Proof. We have ρ̇(t) = K̇(t)·ψ̇(K(t)) = K̇(t)·f(ψ(K(t))) = K̇(t)·f(ρ(t)), where
the first equality is by the definitions and the chain rule, the second equality is
by the assumption on ψ̇, and the last equality is by the definition of ρ. ��

Since the inverse of a time stretch function is another time stretch function,
we obtain the following corollary of Lemma 17.

Corollary 18. Let K : [0, T ] → [0,K(T )] be a time stretch function. Let ρ :
[0, T ) → RV satisfy ρ̇(t) = K̇(t) · f(ρ(t)) whenever 0 ≤ t < T . Then the function
ψ : [0,K(T )) → RV , defined by ψ(s) := ρ(K−1(s)), satisfies ψ̇(s) = f(ψ(s))
whenever 0 ≤ s < K(T ). ��

4.2 Towards a Syntactic Representation

So far our time-stretch function K has been a semantical object. Here we in-
troduce a syntactic way of reasoning via time-stretch functions. Since a desired
time-stretch function is not necessarily expressible in dL, our syntactic reasoning
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uses an indirect method that exploits a pair of functions called a synchronizer.
We will be eventually led to a syntactic reasoning rule (Sync) (Thm. 24).

Given a term g ∈ T (X) and a mapping ψ : [0, T ) → RX , we define gψ :
[0, T ) → R by

gψ(t) :=
�
g
�
ψ(t). (5)

Intuitively, gψ(t) is the value of g at time t when we follow the dynamics whose
solution is ψ.

Definition 19 (synchronizers). Let (δ, δ) be a pair of dynamics, (ω, ω) ∈
RV × RV be a pair of states, and ψ : [0, T ) → RV and ψ : [0, T ) → RV be the

unique solutions of δ and δ from ω and ω, respectively. We say a pair of dL terms
(g, g) ∈ T (V )× T (V ) synchronizes (δ, δ) from (ω, ω) if the following hold.

– gψ(0) = gψ(0)
– The derivatives of gψ and gψ are both strictly positive.

The following lemma ensures that, for any synchronizer, a corresponding time
stretch function exists.

Lemma 20. In the setting of Definition 19, let t ∈ [0, T ) and t ∈ [0, T ) be such
that gψ(t) = gψ(t). Then the function K, defined by K(s) := gψ

−1(gψ(s)), is a

time stretch function from [0, t] to [0, t]. Moreover we have K̇(s) =
˙gψ(s)

˙gψ(K(s)) .

Proof. Since gψ is strictly monotonic on [0, t], it has an inverse gψ
−1 defined

from gψ([0, t]) to [0, t]. By assumption we have gψ(0) = gψ(0), and thus K(0) =

gψ
−1(gψ(0)) = gψ

−1(gψ(0)) = 0. Also since gψ(t) = gψ(t), we see that gψ
−1 is

defined from gψ([0, t]) to [0, t]. Thus K = gψ
−1 ◦ gψ is defined from [0, t] to [0, t].

K̇(s) = ˙gψ(s) · ˙(
gψ−1

)
(gψ(s)) derivative of K = gψ

−1 ◦ gψ

=
˙gψ(s)

ġψ(gψ−1(gψ(s)))
derivative of gψ

−1

=
˙gψ(s)

ġψ(K(s))

whose value is positive by assumptions on the derivatives of gψ and gψ. ��

We remark that time stretch functions we obtain in Lemma 20 are not nec-
essarily expressible as a dL term, as exemplified by the following example.

Example 21. Consider two dynamics δF := (ẋ = v, v̇ = −v2) and δ := (ẋ =
1). Their solutions ψ,ψ : R≥0 → R2 from initial value x = 0, v = 1 are

ψ(s) =
(
log(1 + s), (1 + s)−1

)
ψ(s) = (s, 0)

Now let g = x and g = x. Then gψ(s) = log(1 + s), gψ = gψ
−1 = id and thus

K(s) = gψ
−1(gψ(s)) = log(1+ s). This is not rational and not expressible in dL.
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Using the syntactic Lie derivative (Definition 12), we state a sound inference
rule that does not need K to be represented explicitly. We note that there is
strong support for Lie derivatives in the tool KeYmaera X, as a key syntactic
operation behind the differential invariant (DI) rule (Definition 13).

Definition 22. Let δ :=
(
ẋ = e&Q

)
and δ :=

(
ẋ = e&Q

)
be two dynamics

and let (g, g) ∈ T (V ) × T (V ) (which is supposed to be a synchronizer). We

define the synchronized dynamics of (δ, δ) with respect to (g, g) as follows:

δ ⊗(g,g) δ :=

(
ẋ = e, ẋ =

Lδ g

Lδ g
· e

)
&
(
Q ∧Q ∧ Lδ g > 0 ∧ Lδ g > 0

)
Lemma 23. Let (g, g) be a synchronizer of (δ, δ) from (ω0, ω0). The following
are equivalent, where the semantical transition relations are from Definition 5.

1. (ω0, ω0) −
�
δ; δ

�
→ (ω, ω) and (ω, ω) ∈

�
g = g

�

2. (ω0, ω0) −
�
δ ⊗(g,g) δ

�
→ (ω, ω)

Proof. We first prove (1 ⇒ 2). In the proof of Lemma 20, we can observe that
˙gψ(s) =

�
Lδ g

�
ψ(s), and analogously, ġψ(s) =

�
Lδ g

�
ψ(s). Hence we obtain

K̇(s) =

�
Lδ g

�
ψ(s)�

Lδ g
�
ψ(K(s))

=

�
Lδ g

Lδ g

�

ρ(s)

(6)

where ρ : [0, t) → RV�V is defined by ρ(s) :=
(
ψ(s), ψ(K(s))

)
.

We note that K : [0, t] → [0,K(t)] is a time-stretch function, and that ψ

is a solution of ẋ = e, that is, ψ̇(u) =
�
e
�
ψ(u) whenever 0 ≤ u < t = K(t).

Combined with Lemma 17, we obtain

˙(
ψ ◦K

)
(s) = K̇(s) ·

�
e
�
ψ(K(s)) = K̇(s) ·

�
e
�
ρ(s) whenever 0 ≤ s < t.

Hence, with the fact that ψ is a solution of ẋ = e, we obtain

ρ̇(s) =
(
ψ̇(s), ˙(

ψ ◦K
)
(s)

)
=

(�
e
�
ρ(s), K̇(s) ·

�
e
�
ρ(s)

)
=

�(
e,

Lδ g

Lδ g
· e

)�
ρ(s)

whenever 0 ≤ s < t. Here the last equality is from (6). This concludes that ρ is
a solution of the dynamics δ ⊗(g,g) δ. It remains to prove that for all τ ∈ [0, t],
�
Q ∧Q ∧ Lδ g > 0 ∧ Lδ g > 0

�
ρ(τ) is true. This is an easy consequence of item 1,

and the fact that (g, g) is a synchronizer of (δ, δ) from (ω0, ω0).

For the direction (2 ⇒ 1), let (ξ, ξ) : [0, T ) → RV×RV be the unique solution

of δ⊗(g,g) δ from (ω0, ω0). Then there is t ∈ [0, T ) such that (ξ(t), ξ(t)) = (ω, ω).

Let us prove that (ω, ω) ∈
�
g = g

�
. The function h : s ∈ [0, T ) �→

�
g
�
ξ(s) −�

g
�
ξ(s) is equal to 0 at s = 0 and its derivative is given by:

ḣ(s) =
�
Lδ g

�
ξ(s) −

�
Lδ g

�
ξ(s).

�
Lδ g

�
ξ(s)�

Lδ g
�
ξ(s)

= 0
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Consequently, h is the constant function equal to 0, which implies that (ω, ω) ∈�
g = g

�
. By definition, ξ is a solution of δ, so ω0 −

�
δ
�
→ ω. Furthermore, by

Corollary 18, ξ ◦K−1 is a solution of δ. Thus ω0 −
�
δ
�
→ ω and

(ω0, ω0) −
�
δ; δ

�
→ (ω, ω). ��

The above lemma is a key observation in the current work. It allows us to
turn the relational dynamics δ; δ—expressed as a sequential composition in dL—
into a combined dynamics δ ⊗(g,g) δ. Moreover, we can do so in a way that
the two dynamics are synchronized in a reparametrized manner, as specified
by (g, g). Such combination of two dynamics is crucial in exploiting the logical
infrastructure of dL and KeYmaera X—we emphasize again that the (DI) rule
does not support invariant reasoning about the relationship between δ and δ,
when the relational dynamics is expressed in the original form δ; δ.

The following is an incarnation of Lemma 23 as a proof rule. We assume that
a postcondition is a conditional form E ⇒ ϕ; E is called an exit condition. By
assuming that E implies g = g, we enforce the second condition (ω, ω) ∈

�
g = g

�

in item 1 of Lemma 23. The first three premises are there to ensure that (g, g)
is a synchronizer. Under these premises (the first four), the rule allows one to
transform its conclusion (about δ; δ) into one about the combined dynamics
δ ⊗(g,g) δ, which is amenable to application of the (DI) rule, for example.

Theorem 24 (synchronization rule). The following inference rule is sound:

Γ � [ δ ]Lδ g > 0 Γ � g = g

Γ � [ δ ]Lδ g > 0 E � g = g Γ � [ δ ⊗(g,g) δ ](E ⇒ ϕ)

Γ � [ δ; δ ](E ⇒ ϕ)
(Sync)

Recall the definition of δ ⊗(g,g) δ (Definition 22), where time stretching for the
second dynamics δ is expressed syntactically by Lie derivatives. We call the four
premises Γ � g = g, E � g = g, Γ � [ δ ]Lδ g > 0, and Γ � [ δ ]Lδ g > 0
the synchronizability conditions. These obligations are usually easy to discharge.
The last premise, which we call the synchronized formula, is typically the core
remaining obligation.

Remark 25 (choice of (g, g)). In applying the (Sync) rule, one still has to
find a suitable synchronizer (g, g). This turns out to be straightforward in many
examples. In all the case studies in Section 6 and in Example 1, the exit condition
E is of the form x = x = C where C is a constant. This suggests the use of g = x,
g = x. Indeed, all our proofs use this choice of (g, g).

5 Implementation

KeYmaera X [17] is an interactive theorem prover based on the sequent calculus
formulation of dL. It is implemented in Scala, replacing its former system KeY-
maera [16]. It has a web-based GUI environment, and a support of automated
theorem proving using computer algebra systems such as Mathematica [27].
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For the formalization of case studies in Section 6, we extended KeYmaera X
version 4.7 (available at [17]) with the (Sync) rule. This extension of KeYmaera
X, together with our proofs in case studies, are currently available at http://
group-mmm.org/rddl tacas 2020/.

The KeYmaera X implementation is structured in a flexible manner, from
which we benefited. To add a rule to KeYmaera X, one has to implement a
Scala program that take the conclusion of the rule and generate the premises of
the rule as subgoals. The fact that any Scala program is allowed here enabled
us to implement complex algorithms, such as inductive translation of formulas.

In implementing the (Sync) rule, the functions in KeYmaera X called
helpers helped us, such as in the Lie derivative computation and the functional-
ity to simplify formulas into equivalent ones. The bulk of our effort regarded the
⊗(g,g) operator. There we did a bit more general than we stated in the paper: not
only taking dynamics of form ẋ = e & Q, we also allow sequences of dynamics
possibly interleaved by guards and nondeterministic choices. This feature was
utilized in the case study that will be described in Section 6.3.

6 Case Studies

We describe three case studies where we proved relational properties of hybrid
dynamics. We did so formally in our extension of KeYmaera X described in
Section 5. In all the examples, we apply the (Sync) rule as a main proof step,
in conjunction with the existing rules in dL. Below, we describe our example
systems and outline the important steps in the formal proofs.

6.1 Collision Speed with Constant Acceleration

In this section we apply the (Sync) rule to the running Example 1. For this exam-
ple we consider two dynamics δC :=

(
ẋ = v, v̇ = a

)
and δC := (ẋ = v, v̇ = a).

Both dynamics represent a car with constant acceleration. Our claim is that if
acceleration is larger in the first system, then the first car is necessarily faster
than the second car after traveling the same distance l; formally,

Γ �
[
δC ; δC

]
(x = l ∧ x = l ⇒ v ≤ v) (7)

where

Γ := {0 = x = x, 0 < v = v0, v = v0, v0 ≥ v0, 0 ≤ a ≤ a}

We apply the (Sync) rule, where g := x and g := x. The first two synchro-
nizability conditions are Γ � x = x and x = l, x = l � x = x, which are trivial.
The last two synchronizability conditions are

Γ �
[
δC

]
LδC

g = v > 0 Γ �
[
δC

]
LδC g = v > 0

which are proven using differential invariants (DI). The synchronized formula is

Γ �
[
δC , ẋ = v ·(v/v), v̇ = a ·(v/v) & v > 0 ∧ v > 0

]
(x = l ∧ x = l ⇒ v ≤ v)

http://group-mmm.org/rddl_tacas_2020/
http://group-mmm.org/rddl_tacas_2020/
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One might try to show the inequality v − v ≥ 0 by the differential invariant
(DI) rule, but the Lie derivative of the term v − v is a− a · (v/v), which is not
obviously nonnegative. Instead, a trickier expression a·(v2−v20)−a·(v2−v20) = 0
turns out to be an invariant. Its Lie derivative is a · (2v) · a · (v/v)− a · (2v) · a,
which is clearly 0, since we also know v > 0.

We do not have an intuitive explanation for this invariant, but it was found
by a template-based search, like many other invariants in dL. By positing the
existence of a polynomial invariant of a certain degree, we can find conditions on
the coefficients by requiring its Lie derivative and initial value are zero. Solving
these conditions for a second-degree invariant on the velocities in the system
yielded the invariant above.

After finding our invariant, we additionally have to show the invariant entails
our desired result, v ≤ v. This can be shown with a standard monotonicity
property of modal logics: from φ � ψ and Γ � [α]φ, we can conclude Γ � [α]ψ,
where φ states the expression above is an invariant and the velocities are always
greater than their initial value, and ψ is our goal: v ≤ v.

6.2 Collision Speed with Different Kinds of Friction

Here we continue Example 11, where we consider two dynamics δF ≡ (ẋ = v, v̇ =
−v2) and δF ≡ (ẋ = v, v̇ = −v). Our goal is ΓF � [ δF ; δF ](x = x = l ⇒ v ≤ v),
with ΓF := {x = x = 0, 0 < v ≤ v ≤ 1}.

First, we establish the fact that the objects in this example always have
positive velocity. We show this by the (Dbx) rule (Definition 13), where LδF

v =

−v2 and LδF v = −v. This allows us to infer v > 0 and v > 0 hold at all times.
We apply the (Sync) rule along x = x, yielding the synchronized dynamics

ẋ = v, v̇ = −v2, ẋ = v ·(v/v), v̇ = −v ·(v/v) & v > 0 ∧ v > 0

Note that the new evolution domain condition v > 0 allows us to rewrite v ·(v/v)
to v. The synchronizability conditions follow immediately from the fact that
v > 0 and v > 0. For the synchronized formula, we apply the (DI) rule, so the
desired inequality v ≥ v is reduced to v2 ≤ v, that is, v ≤ 1. To this end, v > 0
tells us that the derivative of v, that is, −v2, is always negative, therefore v ≤ 1.

6.3 Model Refinement

In this example, we consider two abstract models of cars. The first car is able
to provide a high amount of constant acceleration a at low velocities, but at a
certain velocity vcut the engine switches to a different mode and then provides a
lesser, but still constant acceleration acut. The second car is an abstracted version
of the first, which ignores this mode change and provides the same constant
amount of acceleration a at all velocities. Our aim in this example is to establish
a safety envelope around the first car’s behavior using the more simply stated
second car’s dynamics. Hence we show that the second car’s velocity is greater
than the first’s at any position x = x = l. More formally, the behavior of the
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first car is expressed as a hybrid program α := ( δ1; ?v = vcut; δ2 ) with two
modes: δ1 := (ẋ = v, v̇ = a& v ≤ vcut) and δ2 := (ẋ = v, v̇ = acut). The second
car follows the simple dynamics δ := (ẋ = v, v̇ = a). Our goal is to prove the
sequent Γ �

[
α; δ

]
(x = x = l ⇒ v ≤ v), where the initial conditions are given

by

Γ := (x = x = 0, 0 < v = v = v0, 0 < vcut, 0 < acut ≤ a)

Technically, the (Sync) rule merges one differential dynamics with another,
but the program the first car executes is a more complicated composition of
dynamics and testing. However, it is possible to synchronize piecewise, first syn-
chronizing δ with δ1 until the first car changes modes, then synchronizing δ
with δ2 for the remainder of their runs. This slightly generalized synchronization
procedure means that we can instead show

Γ �
[
δ1 ⊗(x,x) δ; ?v = vcut; δ2 ⊗(x,x) δ

]
(x = x = l ⇒ v ≤ v)

There are also now two sets of synchronizability conditions to satisfy, but both
are again straightforward. Since δ1 and δ are nearly identical (except for the
evolution domain constraint), their synchronization δ1⊗(x,x)δ basically identifies

the two dynamics. The synchronization of δ2 and δ is exactly the synchronization
performed above in Section 6.1, and proceeds in the same way.

7 Conclusions and Future Work

In this paper, we present a relational extension of the differential dynamic logic
based on time stretching of dynamics. This reparametrization enables us to en-
force that comparisons between two systems occur when certain conditions are
satisfied, for example when two cars are passing through the same position.
While such reparametrizations can be thought of as stretching or compressing
time for one of the dynamics, we also show they can be conducted by a trans-
formation of the dynamics themselves, based on Lie derivatives. We call this
process synchronizing the dynamics (Definition 19), and it leads us to a new
dL proof rule, the (Sync) rule (Theorem 24). We implemented the new rule in
the KeYmaera X tool and use our extension to demonstrate several nontrivial
relational properties of dynamical systems.

In the future, we think it would be interesting to combine our relational
logic with orthogonal relational extensions of dL [14] which focus on refinement
relations with varying levels of nondeterminism. We also hinted in our last case
study that it is possible to synchronize wider classes of hybrid programs than just
two differential dynamics. We also think that the level of automated proof search
available in KeYmaera X may enable the automatic detection of monotonic
properties in product lines. This may be useful in industry both to provide sanity
checks on formalized models of products, as well as enabling strong guarantees
to be more easily obtained for those models.



Relational Differential Dynamic Logic 207

References

1. Abrial, J.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press (2010)

2. Aguirre, A., Barthe, G., Gaboardi, M., Garg, D., Strub, P.: A rela-
tional logic for higher-order programs. PACMPL 1(ICFP), 21:1–21:29 (2017).
https://doi.org/10.1145/3110265

3. Azevedo de Amorim, A., Gaboardi, M., Hsu, J., Katsumata, S.: Probabilis-
tic Relational Reasoning via Metrics. In: LICS 2019. pp. 1–19. IEEE (2019).
https://doi.org/10.1109/LICS.2019.8785715

4. Benton, N.: Simple relational correctness proofs for static analyses and program
transformations. In: Jones, N.D., Leroy, X. (eds.) POPL 2004. pp. 14–25. ACM
(2004). https://doi.org/10.1145/964001.964003

5. Bryce, D., Sun, J., Bae, K., Zuliani, P., Wang, Q., Gao, S., Schmarov, F., Kong,
S., Chen, W., Tavares, Z.: dReach homepage. http://dreal.github.io/dReach/

6. Butler, M.J., Abrial, J., Banach, R.: Modelling and Refining Hybrid Systems in
Event-B and Rodin. In: Petre, L., Sekerinski, E. (eds.) From Action Systems to Dis-
tributed Systems: The Refinement Approach, pp. 29–42. Chapman and Hall/CRC
(2016). https://doi.org/10.1201/b20053-5

7. Chicone, C.: Ordinary Differential Equations with Applications, Texts in Applied
Mathematics, vol. 34. Springer-Verlag New York, 2 edn. (2006)

8. Fainekos, G.E., Pappas, G.J.: Robustness of Temporal Logic Specifications. In:
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Abstract. We present Assume-Guarantee-Repair (AGR) – a novel framework which not only verifies
that a program satisfies a set of properties, but also repairs the program in case the verification fails.
We consider communicating programs – these are simple C-like programs, extended with synchronous
communication actions over communication channels. Our method, which consists of a learning-based
approach to assume-guarantee reasoning, performs verification and repair simultaneously: in every it-
eration, AGR either makes another step towards proving that the (current) system satisfies the speci-
fication, or alters the system in a way that brings it closer to satisfying the specification. We manage
handling infinite-state systems by using a finite abstract representation, and reduce the semantic prob-
lems in hand – satisfying complex specifications that also contain first-order constraints – to syntactic
ones, namely membership and equivalence queries for regular languages. We implemented our algo-
rithm and evaluated it on various examples. Our experiments present compact proofs of correctness and
quick repairs.

1 Introduction
Verification of large-scale systems is a main challenge in the field of formal verification. Often, the ver-
ification process of such a system does not scale well. Compositional verification aims to verify small
components of a system separately, and from the correctness of the individual components, to conclude the
correctness of the entire system. This, however, is not always possible, since the correctness of a component
often depends on the behavior of its environment.

The Assume-Guarantee (AG) style compositional verification [22,26] suggests a solution to this prob-
lem. The simplest AG rule checks if a system composed of components M1 and M2 satisfies a property P
by checking that M1 under assumption A satisfies P and that any system containing M2 as a component
satisfies A. Several frameworks have been proposed to support this style of reasoning. Finding a suitable
assumption A is then a common challenge in such frameworks.

In this work, we present Assume-Guarantee-Repair (AGR) – a fully automated framework which ap-
plies the Assume-Guarantee rule, and while seeking a suitable assumption A, incrementally repairs the
given program in case the verification fails. Our framework is inspired by [24], which presented a learning-
based method to finding an assumption A, using the L∗ [5] algorithm for learning regular languages.

Our AGR framework handles communicating programs. These are infinite-state C-like programs, ex-
tended with the ability to synchronously read and write messages over communication channels. We model
such programs as finite-state automata over an action alphabet, which reflects the program statements. The
accepting states in these automata model points of interest in the program that the specification can relate
to. The automata representation is similar in nature to that of control-flow graphs. Its advantage, however,
is in the ability to exploit an automata-learning algorithm such as L∗.
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The composition of the two program components, M1 and M2, denoted M1||M2, synchronizes on
read-write actions on the same channel. Between two synchronized actions, the individual actions of both
systems interleave.

1: while(true)
2: password:=readInput;
3 while(password≤ 999)
4: password:=readInput;
5: password2:=encrypt(password);

q0

q1

q2

q3

q4

read?xpw

xpw≤999

read?xpw

999<xpw

enc!xpw

getEnc?xpw2

Fig. 1: Modeling a communicating program as an automaton M2

Figure 1 presents the code of a communicating program (left) and its corresponding automaton M2

(right). The automaton alphabet consists of constraints (e.g. xpw ≤ 999), assignment actions (e.g. ypw :=
2 · ypw in M1 of Figure 2), and communication actions (e.g. enc!xpw sends the value of variable xpw over
channel enc, and getEnc?xpw2 reads a value to xpw2 on channel getEnc).

The specification P is modeled as an automaton that does not contain assignment actions. It may contain
communication actions in order to specify behavioral requirements, as well as constraints over the variables
of both system components, that express requirements on their values in various points in the runs.

Consider, for example, the program M1 and the specification P seen in Figure 2, and the program M2

of Figure 1. M2 reads a password on channel read to the variable xpw, and once it is long enough (has
at least four digits), it sends the value of xpw to M1 through channel enc. M1 reads this value to variable
ypw and then applies a simple function that changes its value, and sends the changed variable back to M2.
The property P reasons about the parallel run of the two programs. The pair (getEnc?xpw2, getEnc!ypw)
denotes a synchronization of M1 and M2 on channel getEnc. P makes sure that the parallel run of M1 and
M2 always reads a value and then encrypts it – a temporal requirement. In addition, it makes sure that the
value after encryption is different than the original value, and that there is no overflow – both are semantic
requirements on the program variables. That is, P expresses temporal requirements that contain first order
constraints. In case one of the requirements does not hold, P reaches the state r4 which is an error state.
Note that P here is not complete, for simplicity of presentation (see Definition 5 for a formal definition of
a complete program).

p0

p1

p2

enc?ypw

ypw :=2·ypw

getEnc!ypw

r1

r2

r0

r4

r3

read?xpw

(getEnc?xpw2,getEnc!ypw)

read?xpw

xpw !=xpw2

ypw<264

xpw==xpw2ypw≥264

M1 P

Fig. 2: The programs M1, M2, and the specification P
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The L∗ algorithm aims at learning a regular language U . Its entities consist of a teacher – an oracle
who answers membership queries (“is the word w in U?”) and equivalence queries (“is A an automaton
whose language is U?”), and a learner, who iteratively constructs a finite deterministic automaton A for U
by submitting a sequence of membership and equivalence queries to the teacher.

In using the L∗ algorithm for learning an assumption A for the AG-rule, membership queries are an-
swered according to the satisfaction of the specification P : If M1||t satisfies P , then the trace t in hand
should be in A. Otherwise, t should not be in A. Once the learner constructs a stable system A, it submits
an equivalence query. The teacher then checks whether A is a suitable assumption, that is, whether M1||A
satisfies P , and whether the language of M2 is contained in the language of A. According to the results, the
process either continues or halts with an answer to the verification problem. The learning procedure aims at
learning the weakest assumption Aw, which contains all the traces that in parallel with M1 satisfy P . The
key observation that guarantees termination in [24] is that the components in this procedure – M1,M2, P
and Aw – are all regular.

Our setting is more complicated, since the traces in the components – both the programs and the speci-
fication – contain constraints, which are to be checked semantically and not syntactically. These constraints
may cause some traces to become infeasible. For example, if a trace contains an assignment x := 3 followed
by a constraint x ≥ 4 (modeling an “if” statement), then this trace does not contribute any concrete runs,
and therefore does not affect the system behavior. Thus, we must add feasibility checks to the process.

Constraints in the specification also pose a difficulty, as satisfiability of a specification is determined by
the semantics of the constraints and not only by the language syntax, and so there is more here to check
than standard language containment. Moreover, in our setting Aw above may no longer be regular, see
Example 3. However, our method manages to overcome this problem.

As we have described above, not only do we construct a learning-based method for the AG-rule for
communicating programs, but we also repair the programs in case the verification fails. An AG-rule can
either conclude that M1||M2 satisfies P , or return a real, non-spurious counterexample of a computation t
of M1||M2 that violates P . In our case, instead of returning t, we repair M2 in a way that eliminates this
counterexample. Our repair is both syntactic and semantic, where for semantic repair we use abduction [25]
to infer a new constraint which makes the counterexample t infeasible.

Consider again M1 and P of Figure 2 and M2 of Figure 1. The composition M1||M2 does not satisfy
P . For example, if the initial value of xpw is 263, then after encryption the value of ypw is 264, violating P .
Our algorithm finds a bad trace during the AG stage which captures this bad behavior, and the abduction in
the repair stage finds a constraint that eliminates it: xpw < 263, and inserts this constraint to M2.

Following this step we now have an updated M2, and we continue with applying the AG-rule again,
using information we have gathered in the previous steps. In addition to removing the error trace, we update
the alphabet of M2 with the new constraint.

Continuing our example, in a following iteration AGR will verify that the repaired M2 together with
M1 satisfy P , and terminate.

Thus, AGR operates in a verify-repair loop, where each iteration runs a learning-based process to deter-
mine whether the (current) system satisfies P , and if not, eliminates bad behaviors from M2 while enriching
the set of constraints derived from these bad behaviors, which often leads to a quicker convergence. In case
the current system does satisfy P , we return the repaired M2 together with an assumption A that abstracts
M2 and acts as a smaller proof for the correctness of the system.

We have implemented a tool for AGR and evaluated it on examples of various sizes and of various
types of errors. Our experiments show that for most examples, AGR converges and finds a repair after 2-5
iterations of verify-repair. Moreover, our tool generates assumptions that are significantly smaller then the
(possibly repaired) M2, thus constructing a compact and efficient proof of correctness.
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Contributions To summarize, the main contributions of this paper are:

1. A learning-based Assume-Guarantee algorithm for infinite-state communicating programs, which man-
ages to overcome the difficulties such programs present. In particular, our algorithm overcomes the in-
herent irregularity of the first-order constraints in these programs, and offers syntactic solutions to the
semantic problems they impose.

2. An Assume-Guarantee-Repair algorithm, in which the Assume-Guarantee and the Repair procedures
intertwine to produce a repaired program which, due to our construction, maintains many of the “good”
behaviors of the original program. Moreover, in case the original program satisfies the property, our
algorithm is guaranteed to terminate and return this conclusion.

3. An incremental learning algorithm that uses query results from previous iterations in learning a new
language with a richer alphabet.

4. A novel use of abduction to repair communicating programs over first order constraints.
5. An implementation of our algorithm, demonstrating the effectiveness of our framework.

Related Work Assume-guarantee style compositional verification [22,26] has been extensively studied.
The assumptions necessary for compositional verification were first produced manually, limiting the prac-
ticality of the method.

More recent works [9,16,14,6] proposed techniques for automatic assumption generation using learn-
ing and abstraction refinement techniques, making assume-guarantee verification more appealing. In [24,6]
alphabet refinement has been suggested as an optimization, to reduce the alphabet of the generated assump-
tions, and consequently their sizes. This optimization can easily be incorporated into our framework as
well.

Other learning-based approaches for automating assumption generation have been described in [7,17,8].
All these works address non-circular rules and are limited to finite state systems. Automatic assumption
generation for circular rules is presented in [12,13], using compositional rules similar to the ones studied
in [21,23].

Our approach is based on a non-circular rule but it targets complex, infinite-state concurrent systems,
and addresses not only verification but also repair. The compositional framework presented in [19] addresses
L∗-based compositional verification and synthesis but it only targets finite state systems.

Also related is the work in [18], which addresses automatic synthesis of circular compositional proofs
based on logical abduction; however the focus of that work is sequential programs, while here we target
concurrent programs. A sequential setting is also considered in [3], where abduction is used for automati-
cally generating a program environment. Our computation of abduction is similar to that of [3]. However,
we require our constraints to be over a predefined set of variables, while they look for a minimal set.

The approach presented in [27] aims to compute the interface of an infinite-state component. Simi-
lar to our work, the approach works with both over- and under- approximations but it only analyzes one
component at a time. Furthermore, the component is restricted to be deterministic (necessary for the per-
missiveness check). In contrast we use both components of a system to compute the necessary assumptions,
and as a result they can be much smaller than in [27]. Furthermore, we do not restrict the components to be
deterministic and, more importantly, we also address the system repair in case of dissatisfaction.

2 Communicating Programs
In this section we present the notion of communicating programs. These are C-like programs, extended
with the ability to synchronously read and write messages over communication channels. We model such
programs as automata over an action alphabet that reflects the program statements. The alphabet includes
constraints, which are quantifier-free first-order formulas, representing the conditions in if and while state-
ments. It also includes assignment statements and read and write communication actions. The automata
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representation is similar in nature to that of a control-flow graph. Its advantage, however, is in the ability to
exploit an automata-learning algorithm such as L∗ for its verification.

We first formally define the alphabet over which communicating programs are defined. Let G be a
finite set of communication channels. Let X be a finite set of variables (whose ordered vector is x̄) and D
be a (possibly infinite) data domain. For simplicity, we assume that all variables are defined over D. The
elements of D are also used as constants in arithmetic expressions and constraints.

Definition 1. An action alphabet is α = G ∪ E ∪ C where:

1. G ⊆ { g?x1, g!x1, (g?x1, g!x2), (g!x1, g?x2) |g ∈ G, x1, x2 ∈ X} is a finite set of communication
actions. g?x is a read action of a value to the variable x through channel g, and g!x is a write action of
the value of x on channel g. We use g ∗ x to indicate some action, either read or write, through g. The
pairs (g?x1, g!x2) and (g!x1, g?x2) represent a synchronization of two programs on read-write actions
over channel g (defined later).

2. E ⊆ { x := e | e ∈ E, x ∈ X} is a finite set of assignment statements, where E is a set of expressions
over X ∪D.

3. C is a finite set of constraints over X ∪D.

Definition 2. A communicating program (or, a program) is M = 〈Q,X,α, δ, q0, F 〉, where:

1. Q is a finite set of states and q0 ∈ Q is the initial state.
2. X is a finite set of variables that range over D.
3. α = G ∪ E ∪ C is the action alphabet of M .
4. δ ⊆ Q× α×Q is the transition relation, where for each q ∈ Q, only one of the following holds:

– α ∈ C for all (q, α, q′) ∈ δ
– α ∈ G ∪ E for all (q, α, q′) ∈ δ
That is, for each state it holds that either all outgoing edges are labeled with constraints, or that all
outgoing edges are labeled with assignments or communication actions.

5. F ⊆ Q is the set of accepting states.

The words that are read along a communicating program are a symbolic representation of the program
behaviors. We refer to such a word as a trace. Each such trace induces concrete runs of the program, which
are formed by concrete assignments to the program variables in a way that conforms with the actions along
the word.

We now formally define these notions.

Definition 3. A path in a program M is a finite sequence of states and actions p = (q0, a1,
q1, . . . , an, qn), starting with the initial state q0, such that ∀0 ≤ i < n we have (qi, ai+1, qi+1) ∈ δ. The
induced trace of p is the sequence t = (a1, . . . , an) of the actions in p. If qn is accepting, then t is an
accepted trace of M .

From now on we assume that every trace we discuss is induced by some path. We turn to define the
concrete runs of the program.

Definition 4. Let t = (a1, . . . , an) be a trace and let (β0, . . . , βn) be a sequence of valuations (i.e., as-
signments to the program variables)4. Then a sequence r = (β0, a1, β1, a2, . . . , an, βn) is a run of t if the
following holds.

4 Such valuations are usually referred to as states. We do not use this terminology here in order not to confuse them
with the states of the automaton.
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1. β0 is an arbitrary valuation.
2. If ai = g?x, then βi(y) = βi−1(y) for every y �= x. Intuitively, x is arbitrarily assigned by the read

action, and the rest of the variables are unchanged.
3. If ai is an assignment x := e, then βi(x) = e[x̄ ← βi−1(x̄)] and βi(y) = βi−1(y) for every y �= x.
4. If ai = (g?x, g!y) or ai = (g!y, g?x) then βi(x) = βi−1(y) and βi(z) = βi−1(z) for every z �= x.

That is, the effect of a synchronous communication on a channel is that of an assignment.
5. If ai does not involve a read or an assignment, then βi = βi−1.
6. Finally, if ai is a constraint in C, then βi(x̄) � ai (and since ai does not change the variable assign-

ments, then βi−1(x̄) � ai holds as well).

We say that t is feasible if there exists a run of t.

The symbolic language of M , denoted T (M), is the set of all accepted traces induced by paths of M .
The concrete language of M is the set of all runs of accepted traces in T (M). We will mostly be interested
in feasible traces, which represent (concrete) runs of the program. Intuitively, the symbolic language of a
program M corresponds to its syntactic behavior, while the concrete language corresponds to the semantics
of the program.

Example 1. – The trace (x := 2 ·y, g?x, y := y+1, g!y) is feasible, as it has a run (x = 1, y = 3), (x =
6, y = 3), (x = 20, y = 3), (x = 20, y = 4), (x = 20, y = 4).

– The trace (g?x, x := x2 , x < 0) is not feasible since no β can satisfy the constraint x < 0 if x := x2

is executed beforehand.

2.1 Parallel Composition

We now describe and define the parallel run of two communicating programs, and the way in which they
communicate.

Let M1 and M2 be two programs, where Mi = 〈Qi, Xi, αi, δi, q0
i, Fi〉 for i ∈ {1, 2}. Let G1, G2 be

the sets of communication channels occurring in actions of M1,M2, respectively. We assume X1∩X2 = ∅.
The interface alphabet αI of M1 and M2 consists of all communication actions on channels that are

common to both components. That is, αI = { g?x, g!x | g ∈ G1 ∩G2, x ∈ X1 ∪X2}.
In parallel composition, the two components synchronize on their communication interface only when

one component writes data through a channel, and the other reads it through the same channel. The two com-
ponents cannot synchronize if both are trying to read or both are trying to write. We distinguish between
communication of the two components with each other (on their common channels), and their communi-
cation with their environment. In the former case, the components must “wait” for each other in order to
progress together. In the latter case, the communication actions of the two components interleave asyn-
chronously.
Formally, the parallel composition of M1 and M2, denoted M1||M2, is the program M = 〈Q, x, α, δ, q0, F 〉
defined as follows.

1. Q = (Q1×Q2)∪ (Q′
1×Q′

2), where Q′
1 and Q′

2 are new copies of Q1 and Q2, respectively. The initial
state is q0 = (q10 , q

2
0).

2. X = X1 ∪X2.
3. α = { (g?x1, g!x2), (g!x1, g?x2) | g∗x1 ∈ (α1∩αI) and g∗x2 ∈ (α2∩αI)}∪((α1∪α2)\αI). That is,

the alphabet includes pairs of read-write communication actions on channels common to M1 and M2.
It also includes individual actions of M1 and M2 – assignment actions, constraints and communication
actions which are not communications on common channels.
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4. δ is defined as follows.
(a) For (g ∗ x1, g ∗ x2) ∈ α:

i. δ((q1, q2), (g ∗ x1, g ∗ x2)) = (q′1, q
′
2).

ii. δ((q′1, q
′
2), x1 == x2) = (δ1(q1, g ∗ x1), δ2(q2, g ∗ x2)).

That is, when a communication is performed synchronously in both components, the data is trans-
formed through the channel from the writing component to the reading component. As a result, the
values of x1 and x2 equalize. This is enforced in M by adding a transition labeled by the constraint
x1 == x2 that immediately follows the synchronous communication.

(b) For a ∈ α1 \ αI we define δ((q1, q2), a) = (δ1(q1, a), q2).
(c) For a ∈ α2 \ αI we define δ((q1, q2), a) = (q1, δ2(q2, a)).
That is, on actions that are not in the interface alphabet, the two components interleave.

5. F = F1 × F2

Figure 3 demonstrates the parallel composition of components M1 and M2 of Figures 1 and 2. The
program M = M1||M2 reads a password from the environment through channel read . The two components
synchronize on channels enc and getEnc.

(q0,p0)(q1,p0)

(q2,p0)

(q3,p0)

(q4,p1) (q4,p2)

(q′3,p
′
0)

(q′4,p
′
2)

read?xpw

xpw≤999 read?xpw

999<xpw

ypw :=2·ypw

(enc!xpw,

enc?ypw)

xpw==ypw (getEnc?xpw2,

getEnc!ypw)

xpw2==ypw

Fig. 3: Parallel composition M = M1||M2 of components M1 and M2 from Figures 1, 2

3 Regular Properties and Their Satisfaction
In this section we define the syntax and semantics of the properties that we consider. These are properties
that can be represented as finite automata, hence the name regular. However, the alphabet of such automata
includes communication actions and first-order constraints over program variables. Thus, such automata are
suitable for specifying the desired and undesired behaviors of communicating programs over time.

In order to define our properties, we first need the notion of a deterministic and complete program. The
definition is somewhat different from the standard definition for finite automata, since it takes the semantic
meaning of constraints into account.

Intuitively, in a deterministic and complete program, every concrete run has exactly one trace that in-
duces it.

Definition 5. A program over alphabet α is deterministic and complete if for every state q and for every
action a ∈ α the following hold:

1. There is exactly one state q′ such that (q, a, q′) is in δ.5

5 in our examples we sometimes omit the actions that lead to a rejecting sink for the sake of clarity.
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2. If (q, c1, q′) and (q, c2, q
′′) are in δ for constraints c1, c2 ∈ C and q′ �= q′′, then c1 ∧ c2 ≡ false.

3. Let Cq be the set of all constraints on transitions leaving q. Then (
∨

c∈Cq
c) ≡ true .

A property is a deterministic and complete program with no assignment actions.
A trace is accepted by a property P if it reaches a state in F , the set of accepting states of P . Otherwise,

it reaches a state in Q \ F , and is rejected by P .
Next, we define the satisfaction relation � between a program and a property. Intuitively, a program M

satisfies a property P (denoted M � P ) if all runs induced by accepted traces of M reach an accepting state
in P .

A property P specifies the behavior of a program M by referring to communication actions of M and
imposing constraints over the variables of M . Thus, the set of variables of P is identical to that of M . Let
G be the set of communication actions of M . Then, αP includes a subset of G as well as constraints over
the variables of M . The interface of M and P , which consists of the communication actions that occur in
P , is defined as αI = G ∩ αP .

In order to capture the satisfaction relation between M and P , we define a conjunctive composition
between M and P , denoted M × P . In conjunctive composition, the two components synchronize on their
common communication actions when both read or both write through the same communication channel.
They interleave on constraints and on actions of αM that are not in αP .

Definition 6. Let M = 〈QM , XM , αM, δM , qM0 , FM 〉 be a program and P = 〈QP , XP , αP, δP , q
P
0 , FP 〉

be a property, where XM = XP . The conjunctive composition of M and P is M×P = 〈Q,X,α, δ, q0, F 〉,
where:

1. Q = QM ×QP . The initial state is q0 = (qM0 , qP0 ).
2. X = XM = XP .
3. α = { g!x, g?x, (g?x, g!y), (g!x, g?y) | g ∗ x, (g ∗ x, g ∗ y) ∈ αI} ∪ ((αM ∪ αP ) \ αI))6. That is, the

alphabet includes communication actions on channels common to M and P . It also includes individual
actions of M and P .

4. δ is defined as follows.
(a) For a = (g ∗ x, g ∗ y) ∈ αI , or a = g ∗ x ∈ αI: δ((q1, q2), a) = (δM (q1, a), δP (q2, a)).
(b) For a ∈ αM \ αI: δ((q1, q2), a) = (δM (q1, a), q2).
(c) For a ∈ αP \ αI: δ((q1, q2), a) = (q1, δP (q2, a)).
That is, on actions that are not common communication actions to M and P , the two components
interleave.

5. F = FM ×BP , where BP = QP \ FP .

Note that accepted traces in M×P are those that are accepted in M and rejected in P . Such traces are called
error traces and their corresponding runs are called error runs. Intuitively, an error run is a run along M
which violates the properties modeled by P . Such a run either fails to synchronize on the communication
actions, or reaches a point in the computation in which its assignments, coming from M , violate some
constraint described by P . These runs are manifested in the traces that are accepted in M but are composed
with matching traces that are rejected in P . We can now formally define when a program satisfies a property.

Definition 7. For a program M and a property P , we define M � P iff M × P contains no feasible
accepted traces.

6 Note that communication actions of the form (g ∗ x, g ∗ y) can only appear if M is a parallel composition of two
programs.

218 H. Frenkel et al.



Thus, a feasible error trace in M ×P is an evidence to M �� P , since it indicates the existence of a run that
violates P .

Example 2. Consider the program M of Figure 3 and the property P of Figure 2. As we discussed in
Section 1, M � P . The trace t = 〈read?xpw, 999 < xpw, (enc!xpw, enc?ypw), xpw == ypw, ypw :=
2 · ypw, (getEnc?xpw2, getEnc!ypw), xpw2 == ypw, xpw! = xpw2, ypw ≥ 264〉 is a feasible error trace in
M × P proving that an overflow is possible.

4 The Assume-Guarantee-Repair (AGR) Framework
In this section we discuss our Assume-Guarantee-Repair (AGR) framework for communicating programs.
The framework consists of a learning-based Assume-Guarantee algorithm, called AGL∗ , and a REPAIR
procedure, which are tightly joined.

Let M1 and M2 be two programs, and let P be a property. The classical Assume-Guarantee (AG)
proof rule [26] assures that if we find an assumption A (in our case, a communicating program) such
that M1||A � P and M2 � A both hold, then M1||M2 � P holds as well. For LTSs [9], the AG-rule is
guaranteed to either prove correctness or return a real (non-spurious) counterexample. The work in [9] relies
on the L∗ algorithm [5] for learning an assumption A for the AG-rule. In particular, L∗ aims at learning
Aw, the weakest assumption for which M1||Aw � P holds. A crucial point of this method is the fact that
Aw is regular [15], and thus can be learned by L∗.

Lemma 1. For infinite-state communicating programs, the weakest assumption Aw is not always regular.

Example 3. Consider the programs M1,M2 and the property P of Figure 4. The weakest assumption with
which M1 satisfies P should contain exactly all traces (over the alphabet of M2) that contain equally many
actions of the form x := x + 1 and y := y + 1. This set of traces is not regular, and therefore cannot be
learned by L∗.

q0 q1sync

true

p0

p1

p2

p3

x:=0 y:=0

x:=x+1

y:=y+1

sync

true

r0

r1 r2

r3

sync x==y

truex!=y ∗

M1 M2 P

Fig. 4: A system for which the weakest assumption is not regular

To cope with this difficulty, we change the target of learning. Instead of learning the (possibly) non-
regular language of Aw, we learn T (M2), the set of accepted traces of M2. This language is guaranteed to
be regular, as it is represented by the automaton M2.

Note that in case that M1||M2 � P , repair is never needed, and M2 is a valid assumption. In the worst
case, the procedure halts once it has learned M2. In particular, in case there are no error traces, termination
of our algorithm is guaranteed. If M1||M2 � P then there does not exist a matching assumption, and
attempting to learn M2 will reveal this. Therefore, using T (M2) as a learning goal matches the AG rule.
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The nature of AGL∗ is such that the assumptions it learns before it reaches M2 may contain the traces
of M2 and more, but still be represented by a smaller automaton. Therefore, similarly to [9], AGL∗ often
terminates with an assumption A that is much smaller than M2. Indeed, our tool often produces very small
assumptions (see Section 5).

As mentioned before, not only that we determine whether M1||M2 � P , but we also repair the program
in case it violates the specification. When M1||M2 � P , the AGL∗ algorithm returns an error trace t as
a witness for the violation. In this case, we initiate the REPAIR procedure, which eliminates t from M2.
REPAIR applies abduction in order to learn a new constraint which, when added to t, creates an infeasible
trace.7 The new constraint enriches the alphabet in a way which may make similar traces infeasible as well.
We elaborate on our use of abduction in Section 4.2. The removal of t and the addition of the new constraint
result in a new goal M ′

2 for AGL∗ to learn. We now return to AGL∗ to search for a new assumption A′ that
allows to verify M1||M ′

2 � P .
An important feature of our AGR algorithm is its incrementality. When learning an assumption A′ for

M ′
2 we can use the membership queries previously asked for M2, since the answer for them has not been

changed. In the full version [1] we prove that the difference between the languages of M2 and M ′
2 lies in

words (traces) whose membership has not yet been queried on M2. This allows the learning of M ′
2 to start

from the point where the previous learning has left off, resulting in a more efficient algorithm.
As opposed to the case where M1||M2 � P , we cannot guarantee the termination of the repair process

in case M1||M2 � P . This, since we are only guaranteed to remove one (bad) trace and add one (infeasible)
trace in every AGR REPAIR iteration (although in practice, every iteration may remove a larger set of
traces). Thus, we may never converge to a repaired system. Nevertheless, in case of property violation, our
algorithm always finds an error trace, thus a progress towards a “less erroneous” program is guaranteed.

It should be noted that the AGL∗ part of our AGR algorithm deviates from the AG-rule of [9] in two
important ways. First, since the goal of our learning is M2 rather than Aw, our membership queries are
different in type and order. Second, in order to identify real error traces and send them to REPAIR as early
as possible, we add additional queries to the membership phase that reveal such traces. We then send them to
REPAIR without ever passing through equivalence queries, which improves the overall efficiency. Indeed,
our experiments include several cases in which all repairs were invoked from the membership phase. In these
cases, AGR ran an equivalence query only when it has already successfully repaired M2, and terminated.

4.1 The Assume-Guarantee-Repair (AGR) Algorithm

We now describe our AGR algorithm in more detail (see Algorithm 1). Figure 5 describes the flow of the
algorithm. AGR comprises two main parts, namely AGL∗ and REPAIR.

The input to AGR are the components M1 and M2, and the property P . While M1 and P stay unchanged
during AGR, M2 keeps being updated as long as the algorithm recognizes that it needs repair (we can
guarantee termination in certain cases, as we discuss in Section 4.4).

The algorithm works in iterations, where in every iteration the next updated M i
2 is calculated, starting

with iteration i = 0, where M0
2 = M2. An iteration starts with the membership phase in line 2, and ends

either when AGL∗ successfully terminates (line 16) or when procedure REPAIR is called (lines 7 and 24).
When a new system M i

2 is constructed, AGL∗ does not start from scratch. The information that has been
used in previous iterations is still valid for M i

2. The new iteration is given additional new trace(s) that have
been added or removed from the previous M i

2 (lines 9,11,20, 27).
AGL∗ consists of two phases: membership, and equivalence.
The membership phase (lines 2-11) consists of a loop in which the learner constructs the next assump-

tion Ai
j according to answers it gets from the teacher on a sequence of membership queries on various

7 There are also cases in which we do not use abduction, as discussed in Section 4.3
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Fig. 5: The flow of AGR

traces. These queries are answered in accordance with traces we allow in Ai
j : traces in M i

2 that in parallel
with M1 satisfy P . If a trace t ∈ T (M i

2) in parallel with M1 does not satisfy P , then t is a bad behavior of
M2. Therefore, if such a t is found during the membership phase, REPAIR is invoked.

Once the learner reaches a stable assumption Ai
j , it passes it to the equivalence phase (lines 12-27). Ai

j

is a suitable assumption if both M1||Ai
j � P and T (M i

2) ⊆ T (Ai
j) hold. In this case, AGR terminates

and returns M i
2 as a successful repair of M2. If M1||Ai

j � P , then a counterexample t is returned, that is
composed of bad traces in M1, A

i
j , and P . If the bad trace t2, the restriction of t to the alphabet of Ai

j , is
also in M i

2, then t2 is a bad behavior of M i
2, and here too the REPAIR phase is invoked. Otherwise, AGR

returns to the membership phase with t2 as a trace that should not be in Ai
j , and continues to learn Ai

j+1.
As we have described, REPAIR is called when a bad trace t is found in (M1||M i

2) × P and should
be removed. If t contains no constraints then its sequence of actions is illegal and its subtrace t2 from M i

2

should be removed from M i
2. In this case, REPAIR returns to AGL∗ with a new learning goal M i+1

2 such
that T (M i+1

2 ) ⊆ T (M i
2) \ {t2}, along with the answer “no” to the membership query on t2. In 4.3 we

discuss different methods for removing t2 from M i
2.

The more interesting case is when t contains constraints. In this case, we not only remove the matching
t2 from M i

2, but we also add a new constraint c to the alphabet of M i+1
2 , which causes t2 to be infeasible.

This way we eliminate t2, and may also eliminate a family of bad traces that violate the property in the
same manner. We deduce c using abduction, see Section 4.2. As before, REPAIR returns to AGL∗ with a
new goal to be learned, but now also with an extended alphabet. The membership phase is then provided
with two new answers to the membership query: t2 that should not be included in the new assumption, and
(t2 · c) that should be included.

Incremental learning One of the advantages of AGR is that it is incremental, in the sense that membership
answers from previous iterations remain unchanged for the repaired system. Indeed, since this is the first
time that AGL∗ queries t2, we can return to AGL∗ with the answer t2 /∈ T (M i+1

2 ), without contradicting
any previous queries. In addition, t′2 obtained by abduction is a new word (over a new alphabet), which also
was not queried earlier. Therefore, we can incrementally add t2 and t′2 as answers from the teacher, and
continue to use answers from previous queries on all other traces.
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Algorithm 1 AGR
1: function AGL∗

2: //Membership Queries
3: Let t2 ∈ (αM i

2)
∗.

4: if t2 ∈ T (M i
2) then

5: if M1||t2 � P then
6: Let t ∈ (M1||t2)× P be an error trace. � t is a cex proving M1||M i

2 � P
7: REPAIR(M i

2, t)
8: else � M1||t2 � P
9: Return to AGL∗ in Line 2 with t2 ∈ T (Ai

j).

10: else � t2 /∈ T (M i
2)

11: Return to AGL∗ in Line 2 with t2 /∈ T (Ai
j).

12: //Equivalence Queries
13: Let Ai

j be the candidate assumption generated by the learner.
14: if M1||Ai

j � P then
15: if T (M i

2) ⊆ T (Ai
j) then

16: Terminate and return M1||M i
2 � P .

17: else
18: Let t2 ∈ T (M i

2) \ T (Ai
j).

19: Set j := j + 1
20: Return to AGL∗ in Line 2 with t2 ∈ T (Ai

j).

21: else � M1||Ai
j � P

22: let t ∈ (M1||Ai
j)× P be an error trace, and denote t = (t1||tA)× tP .

23: if tA ∈ T (M i
2) then

24: REPAIR(M i
2, tA) � tA is a cex proving M1||M i

2 � P
25: else
26: Set j := j + 1.
27: Return to AGL∗ in Line 2 with tA /∈ T (Ai

j).

28: function REPAIR(M i
2, t)

29: Let t1 ∈ M1, t2 ∈ M i
2, tp ∈ P such that t = (t1||t2)× tp.

30: if t does not contain constraints then
31: Return to AGL∗ in Line 2 with M i+1

2 such that T (M i+1
2 ) = T (M i

2) \ {t2} and t2 /∈ T (Ai+1
0 ).

32: else � t contains constraints
33: Use abduction to eliminate t.
34: Let c be the new constraint learned during abduction.
35: Update αM i+1

2 = αM i
2 ∪ {c}.

36: Let t′2 = t2 · c be the output of the abduction.
37: Return to AGL∗ in Line 2 with M i+1

2 such that T (M i+1
2 ) = (T (M i

2) \ {t2}) ∪ {t′2},
38: and t2 �∈ T (Ai+1

0 ), t′2 ∈ T (Ai+1
0 )

4.2 Repair by Abduction

We now describe the repair we apply to M i
2, in case the error trace t contains constraints (see Algorithm 1,

line 32). Error traces with no constraints are removed from M i
2 syntactically (line 31), while in abduction

we semantically eliminate t by making it infeasible. The new constraints are then added to the alphabet
of M i+1

2 in a way that may eliminate additional error traces. Note that even-though we add new alphabet
letters to M2, we do not add new feasible traces, since the constraints added by abduction can only restrict
the behavior of M2, making more traces infeasible. Therefore, we do not add counterexamples to M2.
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The process of inferring new constraints from known facts about the program is called abduction [11].
We now describe how we apply it. Given a trace t, let ϕt be the first-order formula (a conjunction of
constraints), which constitutes the SSA representation of t [4]. In order to make t infeasible, we look for a
formula ψ such that ψ ∧ ϕt → false8.

Note that t ∈ T (M1||M i
2) × P , and so it includes variables both from X1, the set of variables of M1,

and from X2, the set of variables of M i
2. Since we wish to repair M i

2, the learned ψ is over the variables in
X2 only.

The formula ψ ∧ ϕt → false is equivalent to ψ → (ϕt → false). Thus, ψ = ∀x ∈ X1(ϕt → false) ≡
∀x ∈ X1(¬ϕt), is such a desired constraint: ψ makes t infeasible and is defined only over X2. We now
use quantifier elimination [28] to produce a quantifier-free formula over X2. Computing ψ is similar to the
abduction suggested in [11], but the focus here is on finding a formula over X2 rather than over any minimal
set of variables. We use Z3 [10] to apply quantifier elimination and to generate the new constraint. After
generating ψ(X2), we add it to the alphabet of M i+1

2 (line 35 of Algorithm 1). In addition, we produce a
new trace t′2 = t2 · ψ(X2). The trace t′2 is returned as the output of the abduction.

Example 4. Recall the error trace t = 〈read?xpw, 999 < xpw, (enc!xpw, enc?ypw), xpw == ypw, ypw :=
2 · ypw, (getEnc?xpw2, getEnc!ypw), xpw2 == ypw, xpw! = xpw2, ypw ≥ 264〉 of Example 2. From t we
create the formula ϕt = (999 < xpw)∧ (ypw = xpw)∧ (y′pw = 2 ·ypw)∧ (xpw2 = y′pw)∧ (xpw �= xpw2)∧
(y′pw ≥ 264). We then apply quantifier elimination and simplification on the formula ∀ypw∀y′pw(¬ϕt) and
get the new constraint xpw < 263.

Lemma 2. Let t = (t1||t2)× tP . If t2 is infeasible, then t is infeasible as well.

This is due to the fact that tP can only restrict the behaviors of t1 and t2, thus if t2 is infeasible, t cannot be
made feasible. See the full version of the paper [1] for a formal proof. Therefore, by making t2 infeasible,
we eliminate the error trace t.

We now want to build a repaired component M i+1
2 of M i

2, which includes t2 · ψ(X2) but not t2. To do
so, we split the state q that t2 reaches in M i

2 into two states q, q′, and add a transition labeled ψ(X2) from
q to q′, where only q′ is now accepting9. Thus, we eliminated a violating trace from M1||M i

2. AGR now
returns to AGL∗ in order to learn an assumption for the repaired component M i+1

2 , which now includes t′2
but not t2.

4.3 Removal of Error Traces

Recall that the goal of REPAIR is to remove a bad trace t from M2 once it is found by AGL∗ . If t contains
constraints, we remove it using abduction. Otherwise, we can remove t by constructing a system whose
language is T (M2) \ {t}. We call this the exact method for repair. However, removing a single trace at
a time may lead to slow convergence, and to an exponential blow-up in the size of the repaired systems.
Moreover, as we have discussed, in some cases there are infinitely many such error traces, in which case
AGR may never terminate.

For faster convergence, we have implemented two additional heuristics, namely approximate and ag-
gressive. These heuristics may remove more than a single trace at a time, while keeping the size of the
systems small. While “good” traces may be removed as well, the correctness of the repair is maintained,
since no bad traces are added. Moreover, an error trace is likely to be in an erroneous part of the system,
and in these cases our heuristics manage removing a set of error traces in a single step.
We briefly survey the three methods.

8 Usually, in abduction, we look for ψ such that ψ ∧ ϕt is not a contradiction. In our case, however, since ϕt is a
violation of the specification, we want to infer a formula that makes ϕt unsatisfiable.

9 Note that q is an accepting state in M i
2 since t ∈ T (M i

2).
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– Exact. To eliminate only t from M2, we construct a program (an automaton) At that accepts only t, and
complement it to construct A′

t that accepts all traces except for t. Finally, we intersect A′
t with M2.

– Approximate. Similarly to our repair via abduction in Section 4.2, we prevent the last transition that t
takes from reaching an accepting state. Let q be the state that t reaches. We mark q as non-accepting,
and add an accepting state q′, to which all in-going transitions to q are diverted, except for the last
transition on t. This way, some traces that lead to q are preserved by reaching q′ instead, and the traces
that share the last transition of t are eliminated along with t. As we have argued, these transitions may
also be erroneous.

– Aggressive. In this simple method, we remove q, the state that t reaches, from the set of accepting states.
This way we eliminate t along with all other traces that lead to q. In case that every accepting state is
reached by some error trace, this repair might result in an empty language, creating a trivial repair.
However, our experiments show that in most cases, this method quickly leads to a non-trivial repair.

4.4 Correctness and Termination

For this discussion, we assume a sound and complete teacher who can answer the membership and equiv-
alence queries in AGL∗ , which require verifying communicating programs and properties with first-order
constraints.

As we have discussed earlier, AGR is not guaranteed to terminate, and there are cases where the REPAIR
stage may be called infinitely many times. However, in case that no repair is needed, or if a repaired system
is obtained after finitely many calls to REPAIR, then AGR is guaranteed to terminate with a correct answer.

To see why, consider a repaired system M i
2 for which M1||M i

2 � P . Since the goal of AGL∗ is to
syntactically learn M i

2, which is regular, this stage will terminate at the latest when AGL∗ learns exactly
M i

2 (it may terminate sooner if a smaller appropriate assumption is found). Notice that, in particular, if
M1||M2 � P , then AGR terminates with a correct answer in the first iteration of the verify-repair loop.

REPAIR is only invoked when a (real) error trace t is found in M i
2, in which case a new system M i+1

2 ,
that does not include t, is produced by REPAIR. If M1||M i

2 � P , then an error trace is guaranteed to be
found by AGL∗ either in the membership or equivalence phase. Therefore, also in case that M i

2 violates P ,
the iteration is guaranteed to terminate. To conclude, we have the following.

Theorem 1. – An iteration i of AGR ends with an error trace t iff M1||M i
2 � P , where M i

2 is the repaired
system at iteration i.

– If, after finitely many iterations, a repaired program M ′
2 is such that M1||M ′

2 � P , then AGR terminates
with a correct answer.

We have shown that every iteration of AGR is guaranteed to terminate with a correct answer. The
detailed correctness proofs are in the full version of this paper [1].

In particular, since every iteration of AGR finds and removes an error trace t, and no new erroneous
traces are introduced in the updated system, then in case that M2 has finitely many error traces, AGR is
guaranteed to terminate with a correctly repaired system.

5 Experimental Results and Conclusions
We implemented our AGR framework in Java, integrating L∗ implementation from the LTSA tool [20]. We
used Z3 [10] as the teacher for the satisfaction queries in AGL∗ , and for abduction in REPAIR.

Table 1 displays some results of running AGR on various examples, varying in their sizes, types of errors
– semantic and syntactic – and their amount. Additional results are in the full version of this paper [1],
and the full examples are available on [2]. The iterations column indicates the number of iterations of
the verify-repair loop, until a repaired M2 is achieved. Examples with no errors were verified in the first
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iteration, and are indicated by verification. We tested the three repair methods described in Section 4.3
for counterexamples without constraints, and used abduction when needed. Figure 6 presents comparisons
between the three methods in terms of run-time and the size of the repair and assumptions (note that the
graphs are given in logarithmic scale).

Table 1: AGR algorithm results on various examples
Example M1 Size M2 Size P Size Time (sec.) A size Repair Size Repair Method #Iterations

#4 64 64 3 95 7 verification

#6 2 27 2
0.106 5 27 aggress. 2
0.126 6 28 approx. 2
0.132 8 81 exact 2

#7 2 81 2
0.13 6 81 aggress. 2
0.138 7 82 approx. 2
0.165 9 243 exact 2

#8 2 243 2
0.15 8 243 aggress. 2
0.17 8 244 approx. 2
0.223 10 729 exact 2

#11 5 256 6 4.88 92 verification
#14 5 256 6 4.44 109 verification

#15 3 16 5
0.69 12 16 aggress. 5
0.28 13 18 approx. 3
4.27 44 864 exact 5

#16 4 256 8
6.63 113 256 aggress. 2
5.94 113 257 approx. 2

12.87 155 1280 exact 2

#19 3 16 5
1.07 18 18 aggress. 3
1.12 18 18 approx. 3
1.26 18 18 exact 3

#22 2 4 2
0.09 1 4 (trivial) aggress. 4
0.21 6 8 approx. 5

timeout exact timeout

Most of our examples model multi-client-server communication protocols, with varying sizes. Our tool
managed repairing all these examples when needed.

As can be seen in Table 1, our tool successfully generates assumptions that are significantly smaller
than the repaired and the original M2.

For the examples that needed repair, in most cases our tool needed 2-5 iterations of verify-repair in
order to successfully construct a repaired component. Interestingly, in example #15 the aggressive method
converged slower than the approximate method. This is due to the structure of M2, in which different
error traces lead to different states. Marking these states as non-accepting removed each trace separately.
However, some of these traces have a common transition, and preventing this transition from reaching an
accepting state, as done in the approximate method, managed removing several error traces in a single
repair. This example also includes repairs by abduction (as do examples #16,#18 and #19).

Assume, Guarantee or Repair 225



#5 #6 #7 #8 #15 #16 #18 #19 #22

102

103

104
tim

e
(m

s)
aggress.
approx.
exact

#5 #6 #7 #8 #15 #16 #18 #19 #22
100

101

102

103

re
pa

ir
an

d
as

su
m

pt
io

n
si

ze
s repair size

assumption size

Fig. 6: Comparing repair methods: time and repair size (logarithmic scale).

Example #22 models a simple structure in which, due to a loop in M2, the same alphabet sequence can
generate infinitely many error traces. The exact repair method timed out, since it attempted removing one
error trace at a time. On the other hand, the aggressive method removed all accepting states, creating an
empty program – a trivial (yet valid) repair. However, the approximate method created a valid, non-trivial
repair.

Conclusion AGR offers a new take on the learning-based approach to assume-guarantee verification, and
manages coping with complex properties and repairing infinite-state programs. Our experimental results
show that using existing semantic tools, AGR produces very succinct proofs, and quickly and efficiently
repairs flawed communicating programs.
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Structural Invariants for the Verification of Systems

with Parameterized Architectures
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We consider parameterized concurrent systems consisting of a finite but unknown
number of components, obtained by replicating a given set of finite state automata.
Components communicate by executing atomic interactions whose participants update
their states simultaneously. We introduce an interaction logic to specify both the type of
interactions (e.g. rendez-vous, broadcast) and the topology of the system (e.g. pipeline,
ring). The logic can be easily embedded in monadic second order logic of κ ≥ 1 succes-
sors (WSκS), and is therefore decidable.

Proving safety properties of such a parameterized system, like deadlock freedom
or mutual exclusion, requires to infer an inductive invariant that contains all reachable
states of all system instances, and no unsafe state. We present a method to automati-
cally synthesize inductive invariants directly from the formula describing the interac-
tions, without costly fixed point iterations. We experimentally prove that this invariant
is strong enough to verify safety properties of a large number of systems, including
textbook examples (dining philosophers, synchronization schemes), classical mutual
exclusion algorithms, cache-coherence protocols and self-stabilization algorithms, for
an arbitrary number of components.

1 Introduction

The problem of parameterized verification asks whether a system composed of n repli-
cated processes is safe, for all n ≥ 2. By safety we mean that every execution of the
system stays clear of a set of global error configurations, such as deadlocks or mutual
exclusion violations. Even if we assume each process to be finite-state and every inter-
action to be a synchronization of actions without exchange of data, ranging over large or
infinite domains, the problem remains challenging because we ask for a general proof
of safety that works for any number of processes.

Parameterized verification is undecidable, even if processes only manipulate data
from a bounded domain [6]. Various restrictions of communication and architecture3

define decidable subproblems [18,31,27,5]. Seminal works consider rendez-vous com-
munication, with participants placed in a ring [18,27] or a clique [31] of arbitrary size.
Recently, MSO-definable graphs (with bounded tree- and clique-width) and point-to-
point rendez-vous communication have been considered [5]. Most approaches to de-
fine decidable problems focus on manually proving a cut-off bound c ≥ 2 such that

�� Institute of Engineering Univ. Grenoble Alpes
3 We use the term architecture for the shape of the graph along which the interactions take place.
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correctness for at most c processes implies correctness for any number of processes
[18,27,26,7,34]. Other methods identify systems with well-structured transition rela-
tions [31,1,29]. An exhaustive chart of decidability results for verification of parameter-
ized systems is drawn in [12]. When decidability is not of concern, over-approximation
and semi-algorithmic techniques such as regular model checking [36,2], SMT-based
bounded model checking [4,21], abstraction [10,14] and automata learning [19] can be
used to deal with more general classes of systems.

The efficiency of a verification method crucially relies on its ability to synthesize an
inductive safety invariant, i.e., an infinite set of configurations that contains the initial
configurations, is closed under the transition relation, and excludes the error configura-
tions. In general, automatically synthesizing invariants requires computationally expen-
sive fixpoint iterations [22]. In the particular case of parameterized systems, invariants
can be either global, relating the local states of all processes [23], or modular, relating
the local states of a few processes whose identity is irrelevant [38,20].
Our Contributions. The novelty of the approach described in this paper is three-fold:
1. The architecture of the system is not fixed a priori, but given as a parameter of

the verification problem. In fact, we describe parameterized systems using the
Behavior-Interaction-Priorities (BIP) framework [9], in which processes are in-
stances of finite-state component types, whose interfaces are sets of ports, labeling
transitions between local states, and interactions are sets of strongly synchronizing
ports, described by formulae of an interaction logic. An interaction formula cap-
tures the architecture of the interactions (pipeline, ring, clique, tree) and the com-
munication scheme (rendez-vous, broadcast), which are not hardcoded, but rather
specified by the designer of the system.

2. We synthesize parameterized invariants directly from the interaction formula of a
system, without iterating its transition relation. Such invariants depend only on the
structure (and not on the operational semantics) of an infinite family of Petri Nets,
one for each instance of the system, and are thus structural invariants. Essentially,
the invariants we infer use the traps4 of the system, which are sets W of local states
with the property that, if a process is initially in a state from W, then always some
process will be in a state from W. Following [11,17], we call them (parameter-
ized) trap invariants. Computing trap invariants only requires a simple syntactic
transformation of the interaction formula and the result is expressed using WSκS,
the weak monadic second order logic of κ ≥ 1 successor functions. Thus invariant
computation is very cheap, and the verification problem (proving the emptiness of
the intersection between the invariant and the set of error states) is reduced to the
unsatisfiability of a WSκS formula with a single quantifier alternation. In practice,
this check can be carried out quite efficiently by existing tools, such as Mona [33].

3. We refine the approach by considering so called 1-invariants, that can also be de-
rived cheaply from the interaction formula of the system. We show that 1-invariants
in conjunction with trap invariants successfully verify additional examples.

Comparison to related work. Trap invariants have been very successfully used in the
verification of non-parameterized systems [11,28,13]. The technique was lifted to pa-
rameterized systems in [17], but the work there is only applicable to clique architec-

4 Called in this way by analogy with the notion of traps for Petri Nets [39].
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tures, in which processes are indistinguishable, and the system can be described by
one single Petri Net with an infinite family of initial markings. Here, for the first time,
we show that the trap technique can be extended to pipelines, token rings and trees,
where the system is defined by an infinite family of Petri Nets, each with a different
structure. These systems cannot be analyzed using the techniques of [31,1,29], because
they do not yield well-structured transition systems. Contrary to [18,27,26,7,34], our
approach does not require a manual cut-off proof. Contrary to regular model checking
and automata learning [2,19], it does not require any symbolic state-space exploration.
Finally, our approach produces an explanation of why the property holds in terms of the
trap invariant and 1-invariants used. Summarizing, our approach provides a compara-
tively cheap technique for parameterized verification, that succeeds in numerous cases.
It is ideal as preprocessing step that can very quickly lead to success with a very clear
explanation of why the property holds, and otherwise provides at least a strong invariant
that can be used for further analysis.
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Fig. 1: Parameterized Dining Philosophers

Running Example. Consider the dining philosophers system in Fig. 1, consisting of
n≥ 2 components of type Fork and Philosopher respectively, placed in a ring of size 2n.
The k-th philosopher has a left fork, of index k, and a right fork, of index (k+1) mod n.
Each component is an instance of a finite state automaton with states f (ree) and b(usy)
for Fork, respectively w(aiting) and e(ating) for Philosopher. A fork goes from state f
to b via a t(ake) transition and from f to b via a �(eave) transition. A philosopher goes
from w to e via a g(et) transition and from e to w via a p(ut) transition. The g action of the
k-th philosopher is executed jointly with the t actions of the k-th and [(k+1) mod n]-th
forks, in other words, the philosopher takes both its left and right forks simultaneously.
Similarly, the p action of the k-th philosopher is executed simultaneously with the �
action of the k-th and [(k + 1) mod n]-th forks, i.e. each philosopher leaves both its
left and right forks at the same time. We describe these interactions by the interaction
formula:

Γphilo = (g(i)∧ t(i)∧ t(succ(i))) ∨ (p(i)∧ �(i)∧ �(succ(i))) (1)
where the free variable i refers at some arbitrary component index.
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Intuitively, the transitions of the system with n dining philosophers and n forks are
given by the minimal models of the disjuncts of Γphilo with universe {0,1, . . . ,n−1}, and
succ interpreted as “successor modulo n’. In particular, for each 0 ≤ k ≤ n− 1 the first
disjunct has a minimal model that interprets the predicates g and t as the sets {k} and
{k, (k+ 1) mod n}. This model describes the interaction in which the k-th philosopher
takes a g-transition (from waiting to eating), while, simultaneously, the k-th and (k+1)-
th forks take t-transitions (from free to busy). This is graphically represented by one of
the dashed lines in Fig. 1. Observe that the ring topology of the system is implicit in the
modulo-n interpretation of the successor function.

Since philosophers can only grab their two forks simultaneously, the system is
deadlock-free for any number n ≥ 2 of philosophers. An automatic proof requires to
compute an invariant, and prove that it has an empty intersection with the set of dead-
lock configurations defined by the WSκS formula

deadlock(Xw,Xe,X f ,Xb) = ∀i . [¬Xw(i)∨¬X f (i)∨¬X f (succ(i))] ∧
[¬Xe(i)∨¬Xb(i)∨¬Xb(succ(i))] (2)

where Xw, Xe, X f , Xb are set variables, the intended meaning of Xw(i) resp. Xe(i) is that
the i-th philosopher is waiting, resp. eating, and the intended meaning of X f (i) resp.
Xb(i) is that the i-th fork is free, resp. busy. Our method automatically computes from
Γphilo a formula trap-invariantS which formalizes an inductive invariant of the system.
Moreover, we express the consistency requirement that every component is in one of
its state at all times in a formula markingS and derive the deadlock-freeness for any
number of philosophers by the unsatisfiability of the formula

deadlock∧ trap-invariantS∧markingS .

2 Parameterized Component-based Systems

A component type is a tuple C = 〈P,S, s0,Δ〉, where P = {p,q,r, . . .} is a finite set of
ports, S is a finite set of states, s0 ∈ S is an initial state and Δ ⊆ S×P×S is a set of
transitions denoted s

p−→ s′, for s, s′ ∈ S and p ∈ P. We assume there are no two different
transitions with the same port.

A component-based system S = 〈C1, . . . ,CN ,Γ〉 consists of a fixed number N ≥ 1
of component types Ck = 〈Pk,Sk, s0

k,Δk〉 and an interaction formula Γ. In the dining
philosophers there are two component types, Philosopher and Fork, each with two
states and two transitions, as shown in Fig. 1. We assume that Pi∩P j = ∅ and Si∩S j = ∅,
for all 1 ≤ i < j ≤ N. We denote the component type of a port p or a state s by type(p)
and type(s), respectively. For instance, in Fig. 1 we have type(p) = type(g) = type(w) =
type(e) = Philosopher and type(t) = type(�) = type( f ) = type(b) = Fork.

The interaction formula Γ determines the family of systems we can construct out
of these components. It does so by specifying, for each possible number of replicated
instances (for example, 3 philosophers and 3 forks), which are the possible interac-
tions between them. An interaction consists of a set of transitions that are executed
simultaneously. For example, in an interaction philosopher 3 executes a g(et) transition
simultaneously with t(ake) transitions of the forks 2 and 3. Before formalizing this, we
introduce the syntax and semantics of Interaction Logic.
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Interaction Logic. For a constant κ ≥ 1, fixed throughout the paper, the Interaction
Logic ILκ is built on top of a countably infinite set Var of variables, the set Pred =⋃N

k=1 Pk of monadic predicate symbols ranged over by pr (i.e. the logic has a predicate
symbol for each port), the binary predicate ≤, and the successor functions succ0, . . .,
succκ−1, of arity one. The formulae of ILκ are generated by the syntax

t := i ∈ Var | succ0(t) | . . . | succκ−1(t) terms
φ := t1 ≤ t2 | pr(t) | φ1∧φ2 | ¬φ1 | ∃i . φ1 formulae

Abbreviations like t1 = t2, t1 < t2, φ1 ∨ φ2, φ1 ↔ φ2, and ∀i . φ are defined as usual.
ILκ is interpreted over finite ranked trees of arity κ, which we identify with a prefix-
closed language of words, also called nodes, over the alphabet {0, . . . , κ−1}. The root of
the tree is the empty word ε, and the children of w are w0,w1, . . . ,w(κ−1). Formally,
an interpretation or structure is a pair I = (U, ι), where the universe U is a tree and
ι assigns a node to each variable and a set of nodes to each predicate in Pred. The
predicate ≤ and the functions succ0, . . . ,succk−1 have the usual fixed interpretations: If t
and t′ are interpreted as w and w′, then t1 ≤ t2 holds iff w is a prefix of w′, and succi(t) is
interpreted as the node wi, if wi ∈ U, and as the root ε otherwise. So, loosely speaking,
successor functions wrap around to the root.

When κ = 1, formulae are interpreted on languages {ε,0,00, . . . ,0n−1} for some num-
ber n. To simplify notation, in this case we assume that they are interpreted over the set
{0,1, . . . ,n−1}, and succ0 is the usual successor function on numbers, modulo n.

Intuitively, a universe U determines an instance of the component-based system,
with one instance of each component for each w ∈ U. So, for example, for κ = 1 and
U = {0,1,2, . . . ,n− 1} in our running example we have philosophers 0,1, . . . ,n− 1 and
forks 0,1, . . . ,n− 1. Generally, with κ = 1 we can describe pipeline and token-ring ar-
chitectures, whereas higher values describe tree-shaped architectures.

Interaction formulae. A formula of ILκ is an interaction formula if it is the conjunction
of the following formula:

∀i∀ j .
∧

p,q∈Pred
type(p)=type(q)

p(i)∧q( j)→ i � j (3)

with a finite disjunction of formulae of the form:

C(i1, . . . , i�)
def
= ϕ ∧ ∧�j=1 p j(i j) ∧ ∧m

j=1∀k . ψ j→ q j(k) (4)

where ϕ,ψ1, . . . ,ψm are conjunctions of atomic formulae of the form t1 ≤ t2 and their
negations. Intuitively, formula (3) is a generic axiom that prevents two ports of the same
instance of a component type from interacting. The formulae of form (4) are called the
clauses of the interaction formula.

Example 1. Consider a component-based system S = 〈C1,C2,Γ〉, where C1 and C2 have
ports p1 and p2, respectively, and Γ has one single clause

C(i, j,k) = (i < j∧ k = succ( j)) ∧ (p1(i)∧ p2( j)) ∧ ∀i.i > k→ p1(i)
Γ states that an interaction consists of: the i-th process of type C1 executes transition p1;
the j-th process of type C2 executes p2; and, for every i > ( j+1) mod n, the i-th process
of type C1 executes transition p1 as well; all this happens simultaneously in one atomic
step. �
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Loosely speaking, (4) states that in an interaction � components can simultaneously
engage in a multiparty rendez-vous, together with a broadcast to the ports q1, . . . ,qm of
the components whose indices satisfy the constraints ψ1, . . . ,ψm, respectively. An ex-
ample of peer-to-peer rendez-vous with no broadcast is the dining philosophers system
in Fig. 1, whereas examples of broadcast are found among the benchmarks in §5. In
the next section we show that, despite this generality, it is possible to construct a trap
invariant for any interaction formula in a purely syntactic way.

Observe that the interaction formula does not explicitly specify that every other
process remains idle. Formally, as we will see in the next section, the system has an
interaction for each minimal model of (4), which allows us not to have to specify idle-
ness. Given structures I1 = (U, ι1) and I2 = (U, ι2) sharing the same universe U, we say
I1 � I2 if and only if ι1(pr) ⊆ ι2(pr) for every pr ∈ Pred. Given a formula φ, a structure
I is a minimal model of φ if I |= φ and, for all structures I′ such that I′ � I and I′ �I,
we have I′ �|= φ.

2.1 Execution Semantics of Component-based Systems

The semantics of a component-based system S = 〈C1, . . . ,CN ,Γ〉 is an infinite family of
Petri Nets, one for each universe of Γ. The reachable markings and actions of the Petri
Net characterize the reachable global states and transitions of the system, respectively.
To fix notations, we recall several basic definitions.
Preliminaries: Petri Nets. A Petri Net (PN) is a tuple N = 〈S ,T,E〉, where S is a set
of places, T is a set of transitions, S ∩T = ∅, and E ⊆ (S ×T )∪ (T ×S ) is a set of arcs.
The elements of S ∪T are called nodes. Given nodes x,y ∈ S ∪T , we write E(x,y) def

= 1
if (x,y) ∈ E and E(x,y) def

= 0, otherwise. For a node x, let •x def
= {y ∈ S ∪T | E(y, x) = 1},

x• def
= {y ∈ S ∪T | E(x,y) = 1} and lift these definitions to sets of nodes.
A marking of N is a function m : S →N. A transition t is enabled in m if and only if

m(s)> 0 for each place s ∈ •t. For all markings m, m′ and transitions t, we write m
t−→ m′

whenever t is enabled in m and m′(s) =m(s)−E(s, t)+E(t, s), for all s ∈ S . Given two
markings m and m′, a finite sequence of transitions σ = t1, . . . , tn is a firing sequence,
written m

σ−→ m′ if and only if either (i) n = 0 and m = m′, or (ii) n ≥ 1 and there exist

markings m1, . . . ,mn−1 such that m
t1−→ m1 . . .mn−1

tn−→ m′.
A marked Petri Net is a pair N = (N,m0), where m0 is the initial marking of N.

A marking m is reachable in N if there exists a firing sequence σ such that m0
σ−→ m.

We denote by R(N) the set of reachable markings of N . A marked PN N is 1-safe if
m(s) ≤ 1, for each s ∈ S and m ∈ R(N). All PNs considered in the following will be
1-safe and we shall silently blur the distinction between a marking m : S → {0,1} and
the boolean valuation βm : S → {⊥,�} defined as βm(s) = � ⇐⇒ m(s) = 1. A set of
markingsM is an inductive invariant ofN = (N,m0) if and only if m0 ∈M and for each
m

t−→ m′ such that m ∈M, we have m′ ∈ M.
Petri Net Semantics of Component-Based Systems. We define the semantics of a
component-based system as an infinite family of 1-safe Petri Nets. For k = 1, . . . ,N let
Ck = 〈Pk,Sk, s0

k,Δk〉 be a component type and, then, let S = 〈C1, . . . ,CN ,Γ〉 be a system.
Fix a universe U of Γ. We define a marked Petri Net NUS

def
= (〈S ,T,E〉,m0) as follows:
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– S def
=
(⋃N

k=1 Sk
)
×U. That is, the net has a place (s,u) for each state s of each com-

ponent type, and for each node u.
– For each minimal model I = (U, ι) of a clause C of Γ, the set T contains a transition
tι ∈ T , and the set E contains edges ((s,u), tι) and (tι, (s′,u)) for every s

p−→ s′ ∈(⋃N
k=1Δ

k
)

such that u ∈ ι(p). Nothing else is in T or E. Intuitively, tι “synchronizes”

all the transitions s
p−→ s′ of the different components occurring in the interaction.

– For each 1 ≤ k ≤ N, each s ∈ Sk and each u ∈ U, m0((s,u)) = 1 if s = s0
k and

m0((s,u)) = 0, otherwise. That is, m0 contains the places (s,u) such that s is an
initial state.
It follows immediately from this definition thatNUS is a 1-safe Petri Net. Indeed, for

every u ∈ U, for every component-type Ck, and for every reachable marking m, we have∑
s∈Sk m((s,u)) = 1. This reflects that the instance of Ck at u is always in exactly one of

the states of Sk; if s is that state, then (s,u) is the place carrying the token.

Example 2. Consider our running example, with U= {0,1, . . . ,n−1}, i.e., n philosophers
and n forks. Since the interaction formula (1) has no constants, its models are pairs
(U, ι), where ι gives the interpretation of the free variable i and the predicates g, t, etc.
The first disjunct of (1) is [g(i)∧ t(i)∧ t(succ(i))]. It has a minimal model for each k ∈ U,
namely the model with ι(i) = k, ι(g) = {k} and ι(t) = {k, (k+1) mod n}. In the interaction
produced by this model, the k-th philosopher executes transition g(et), the forks with
numbers k and (k+ 1) mod n execute transition t(ake), and all other philosophers and
forks remain idle. The second disjunct yields the interactions in which a philosopher
puts down its forks. Fig. 2 shows the Petri NetNUS for universe U = {0,1,2}. For clarity,

(w,0) (w,1) (w,2)

(e,0) (e,1) (e,2)

( f ,0)

(b,0)

( f ,1)

(b,1)

( f ,2)

(b,2)

( f ,0)

(b,0)

i1 i2 i3 i4 i5 i6

Fig. 2: Petri Net of the dining philosophers for the universe U = {0,1,2}. In reality, the
two pink and green places are only one place.

the places ( f ,0) and (b,0) have been duplicated; in reality the two copies are merged.
The places of each philosopher are {(w, i), (e, i)} for i = 0,1,2. For example, transition
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i3 corresponds to the minimal model {(g,1), (t,1), (t,2)}, in which philosopher 1 takes
forks 1 and 2.

3 Trap Invariants

Given a Petri Net N = (S ,T,E), a set of places W ⊆ S is called a trap if and only if
W• ⊆ •W. A trap W of N is an initially marked trap (IMT) of the marked PNN = (N,m0)
if and only if m0(s) = � for some s ∈W.

Example 3. {( f ,1), (b,1)} and {( f ,0), (b,1), ( f ,2), (e,2)} are two traps of the Petri Net in
Figure 2.

An IMT defines an invariant of the Petri Net, because some place in the trap will
always be marked, no matter which sequence of transitions is fired. The trap invariant
of N is the set of markings that mark each IMT of N . Clearly, since marked traps
remain marked, the set of reachable markings is contained in the trap invariant. Hence,
to prove that a certain set of markings is unreachable, it is sufficient to prove that the set
has empty intersection with the trap invariant. For self-completeness, we briefly discuss
the computation of the trap invariant for a given marked Petri Net of fixed size, before
explaining how this can be done for the infinite family of marked Petri Nets defining
the executions of parameterized systems.

The trap constraint of a Petri Net N = (S ,T,E) is the formula:

Θ(N) def
=
∧

t∈T
(∨

x ∈ •t x
)→ (∨y ∈ t• y

)

where each place x,y ∈ S is viewed as a propositional variable. It is not hard to show5

that any boolean valuation β : S → {⊥,�} that satisfies the trap constraint Θ(N) defines
a trap Wβ of N in the obvious sense Wβ = {s ∈ S | β(s) = �}. Further, if m0 : S → {0,1}
is the initial marking of a 1-safe Petri Net N and μ0

def
=
∨

m0(s)=1 s is a propositional for-
mula, then every valuation of μ0∧Θ(N) defines an IMT of (N,m0). Usually, computing
invariants requires building a sequence of underapproximants whose limit is the least
fixed point of an abstraction of the transition relation of the system [22]. This is not the
case of the trap invariant, that can be directly computed from the trap constraint and the
initial marking [11,17].

In the rest of the section we construct a parameterized trap constraint that charac-
terizes the traps, not of one single net, as Θ(N), but of the infinite family of Petri Nets
obtained from a component-based system. The parameterized trap constraint is a for-
mula of WSκS. In Section 3.1 we first explain how to embed our interaction logic into
WSκS, and in Section 3.2 we construct the parameterized trap constraint.

3.1 From ILκ to WSκS

We briefly recall the syntax and semantics of WSκS, the monadic second order logic
WSκS of κ successors (see e.g. [37]). Let SVar be a countably infinite set of second-

5 See e.g. [8] for a proof.
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order variables (also called set variables), denoted as X,Y, . . . in the following. The syn-
tax of WSκS is:

t := ε | x | succ0(t) | . . . | succκ(t) terms
φ := t1 = t2 | pr(t) | X(t) | φ1∧φ2 | ¬φ1 | ∃x . φ1 | ∃X . φ1 formulae

So WSκS extends ILκ with the constant symbol ε, atoms X(t) and monadic second
order quantifiers ∃X . φ. We can consider w.l.o.g. equality atoms t1 = t2 instead of the
inequalities t1 ≤ t2 in ILκ, because the latter can be defined in WSκS as usual:

x ≤ y def
= ∀X . closed(X)∧X(x)→ X(y) closed(X) def

= ∀x . X(x)→∧κ−1
i=0 X(succi(x))

Like ILκ, the formulae of WSκS are interpreted on ordered trees of arity κ. The
models of WSκS are structures (U, ι), where ι assigns the root of the tree to ε, a node
ι(x) to each variable x ∈ Var and a set ι(X) ⊆ U to each set variable X ∈ SVar. The
satisfaction relation (U, ι) |=WSκS φ is defined as for ILκ, with one difference: in ILκ, the
successor of a leaf of a tree is the root of the tree, while in WSκS the successor of leaf
is, by convention, the leaf itself [37, Example 2.10.3]. This is the only reason why ILκ
is not just a fragment of WSκS.

We define an embedding of ILκ formulae, without occurrences of predicates and
set variables, into WSκS. W.l.o.g. we consider ILκ formulae that have been previ-
ously flattened, i.e the successor function occurs only within atomic propositions of
the form succi(x) = y. This is done by replacing each atomic proposition of the form
succi1 (. . .succin (x) . . .) = y by the formula ∃x1 . . .∃xn . xn = succin (x)∧ y = succi1 (x1)∧∧n−1

j=1 x j = succi j (x j+1). The translation of an ILκ formula φ into WSκS is the formula
Tr(φ), defined recursively on the structure of φ such that Tr simply preserves first-order
connectives and, secondly, yields:

Tr(succi(x) = y) def
= (¬max(x)∧ succi(x) = y)∨ (max(x)∧ y = ε).

We show that a formula φ of ILκ and its WSκS counterpart Tr(φ) are equivalent:

Lemma 1. Given an ILκ formula φ, for any structure I = (U, ι), we have I |=IL φ ⇐⇒
I |=WSκS Tr(φ).

3.2 Defining Parameterized Trap Invariants in WSκS

Fix a component-based system S = 〈C1, . . . ,CN ,Γ〉 and recall that every universe U in-
duces a Petri Net NUS whose set of places is

⋃N
k=1 Sk ×U. For every state s ∈⋃N

i=1 Si, let
Xs be a monadic second-order variable, and let X be the tuple of these variables in an
arbitrary but fixed order. We define a formula trap-predS(X), with X as set of free vari-
ables, that characterizes the traps of the infinitely many Petri Nets NUS corresponding to
S. Formally, trap-predS(X) has the following property:

For every universe U and for every set P ⊆⋃N
k=1 Sk ×U of places of NUS:

P is a trap of NUS iff the assignment Xq �→ {u ∈U | (q,u) ∈ P} satisfies trap-predS(X).

Observe that every assignment to X encodes a set of places, and vice versa. So, abusing
language, we can speak of the set of places X.

We define auxiliary predicates that capture the intersection of the set of places X
with the pre (•t) and postset (t•) of a transition t in NUS. For every clause C of Γ, of the
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form (4), we define the WSκS formulae:

intersects-preCS(X, x1, . . . , x�) =
∨�

j=1 X•p j (x j)∨∨�+m
j=�+1∃x j . Tr(ψ j)∧X•p j (x j) and

intersects-postCS(X, x1, . . . , x�) =
∨�

j=1 Xpj
• (x j)∨∨�+m

j=�+1∃x j . Tr(ψ j)∧Xpj
• (x j).

Now we can define trap-predS(X) as the conjunction of the following formulae, one for
each clause C (in the form described in (4)) of Γ

∀x1 . . .∀x� .
[
Tr(ϕ)∧ intersects-preCS(X, x1, . . . , x�)

]

→ intersects-postCS(X, x1, . . . , x�).
(5)

So, intuitively, trap-predS(X) states that for every transition of the Petri Net, if the set
X of places intersects the preset of the transition, then it also intersects its postset. This
is the condition for the set of places to be a trap. Formally, we obtain:

Lemma 2. Given a component-based system S = 〈C1, . . . ,CN ,Γ〉 and a structure I =
(U, ι), where ι is an interpretation of the set variables X, the set P= {〈s,u〉 ∈⋃N

k=1 Sk×U |
u ∈ ι(Xs)} is a trap of NUS if and only if (U, ι) |=WSκS trap-predS(X).

Parameterized Trap Invariants in WSκS. Loosely speaking, the intended meaning
of trap-predS(X) is “the set of places X is a trap”. Our goal is to construct a formula
stating: “the marking m marks all initially marked traps”.

Recall that the Petri Nets obtained from component-based systems are always 1-
safe, and so a marking is also a set of places. Recall, however, that all reachable mark-
ings have the property that they place exactly one token in the set of places modeling the
set of states of a component (loosely speaking, the set of places of the k-th philosopher
is (w,k) and (e,k), and there is always one token in the one or the other). So we define
a formula markingS(X) with intended meaning “the set of places X is a legal marking”,
and another one, trap-invariantS(X) with intended meaning “the set of places X marks
every initially marked trap”.

In addition to the tuple of set variables X defined above, we consider now the “copy”
tuple X′ def

= 〈X′s〉s∈Si,1≤i≤N . Intuitively, X and X′ represent one set of places each. First,
we define a (1-safe) marking as a set of places that marks exactly one state of each copy
of each component:

markingS(X) = ∀x .
∧

1≤i≤N

∨

s∈S i

⎛⎜⎜⎜⎜⎜⎜⎜⎝Xs(x)∧
∧

s′∈S i \ {s}
¬Xs′ (x)

⎞⎟⎟⎟⎟⎟⎟⎟⎠ .

Second, we give a formula describing the intersection of two sets of places:

intersectionS(X,X′) = ∃x .
∨

s∈⋃1≤i≤N Si

(Xs(x)∧X′s(x)).

Finally, to actually capture IMTs we need to determine if a trap is initially marked.
However, this can be easily described by the formula:

initially-markedS(X) = ∃x .
∨

1≤i≤N

Xs0i (x).

So we can define the trap-invariant by the WSκS formula:
trap-invariantS(X) = ∀X′ .

[
trap-predS(X′)∧ initially-markedS(X′)

]

→ intersectionS(X,X′).
(6)
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Relying on Lemma 2 we are assured that the set represented by X intersects all IMTs.
Now, let ϕ(X) be any formula that defines a set of good global states of the component-
based systems (or, equivalently, a good set of markings of their corresponding Petri
nets), with the intuition that, at any moment during execution, the current global state of
the component-based system should be good. We can now state the following theorem,
that captures the soundness of the verification method based on trap invariants:

Theorem 1. Given a component-based system S and a WSκS formula ϕ(X), if the
formula

∃X . markingS(X)∧ trap-invariantS(X)∧¬ϕ(X) (7)
is unsatisfiable, then for every universe U, the property defined by the formula ϕ(X)
holds in every reachable marking of NUS .

In the light of the above theorem, verifying the correctness of a component-based
system with any number of active components boils down to deciding the satisfiability
of a WSκS formula. The latter problem is known to be decidable, albeit with non-
elementary worst-case complexity. A closer look at the verification conditions of the
form (7) generated by our method suffices to see that the quantifier alternation is finite,
which implies that the time needed to decide the (un)satisfiability of (7) is elementary.
Moreover, our experiments show that these checks are very fast (less than 1 second on
an average machine) for a non-trivial set of examples.

4 Refining Trap Invariants

Since the safety verification problem is undecidable for parameterized systems [6], the
verification method based on trap invariants cannot be complete. As an example, con-
sider the alternating dining philosophers system, of which an instance (for n = 3) is
shown in Fig. 3. The system consists of two philosopher component types, namely
Philosopherrl, which takes its right fork before its left fork, and Philosopherlr, tak-
ing the left fork before the right one. Each philosopher has two interaction ports for
taking the forks, namely g� (get left) and gr (get right) and one port for releasing the
forks p (put). The ports of the Philosopherrl component type are overlined, in order
to be distinguished. The Fork component type is the same as in Fig. 1. The interaction
formula for this system Γalt

philo, shown in Fig. 3, implicitly states that only the 0-index
philosopher component is of type Philosopherrl, whereas all other philosophers are of
type Philosopherlr. Note that the interactions on ports g�, gr and p are only allowed if
zero(x) def

= ∀y . x ≤ y holds, in other words if x is interpreted as the root of the universe
(in our case, 0 since U = {0, . . . ,n−1}).

It is well-known that any instance of the parameterized alternating dining philoso-
phers system consisting of at least one Philosopherrl and one Philosopherlr is deadlock-
free. However, trap invariants are not enough to prove deadlock freedom, as shown by
the global state {〈b,0〉, 〈h,0〉, 〈b,1〉, 〈w,1〉, 〈 f ,2〉, 〈e,2〉}, marked with thick red lines in
Fig. 3. Note that no interaction is enabled in this state. Moreover, this state intersects
with any trap of the marked PN that defines the executions of this particular instance, as
proved below. Consequently, the trap invariant contains a deadlock configuration, and
the system cannot be proved deadlock-free by this method.
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Fig. 3: Alternating Dining Philosophers
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Proposition 1. Consider an instance of the alternating dining philosophers system in
Fig. 3, consisting of components Fork(0), Philosopherrl(0), Fork(1), Philosopherlr(1),
Fork(2) and Philosopherlr(2) placed in a ring, in this order. Then each nonempty trap
of this system contains one of the places 〈b,0〉, 〈h,0〉, 〈b,1〉, 〈w,1〉, 〈 f ,2〉 or 〈e,2〉.

However, the configuration is unreachable by a real execution of the PN, started in
the initial configuration that marks 〈 f , i〉 and 〈w, i〉, for all i = 0,1,2. An intuitive reason
is that, in any reachable configuration, each fork is in state f (ree) only if none of its
neighboring philosophers is in state e(ating). In order to prove deadlock freedom, one
must learn this and other similar constraints. Next, we present a heuristic method for
strengthening the trap invariant that infers such universal constraints.

4.1 One Invariants

As shown by the example above, trap constraints do sometimes fail to prove interesting
properties. Hence, it is desirable to refine the overapproximation of viable markings to
exclude more spurious counterexamples. In order to do so, we consider a special class
of linear invariants, called 1-invariants in the following. Although linear invariants are
not structural and rely on the set of reachable markings of a marked Petri Net, the set of
1-invariants can be sufficiently under-approximated by structural conditions.

Definition 1. Given a marked PN N = ((S ,T,E),m0), with S = {s1, . . . , sn}, a vector
a = (a1, . . . ,an) ∈ {0,1}n is a 1-invariant of N if and only if, for each reachable marking
m ∈ R(N), we have

∑n
i=1 ai ·m(si) = 1.

The following lemma relates 1-invariants to some structural properties. However,
there are 1-invariants not captured by these conditions. Taking the intersection of this set
of 1-invariants defines a weaker invariant, which is sound for our verification purposes.

Lemma 3. Given a marked PN N = ((S,T,E),m0), a set of places F ⊆ S is a 1-
invariant if the following hold:
1.
∑
s∈F

m0(s) = 1,

2. either ||F∩•t || = ||F∩ t• || = k with k ∈ {0,1} or ||F∩•t || > 1 for every t ∈ T.
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We devote the rest of this section to describe WSκS formulae which capture the
structural properties necessary to define 1-invariants as laid down by Lemma 3 (2). As
demonstrated in Section 3 the pre- and postset of transitions, as well as general sets of
places in a PN describing the execution semantics can be defined in WSκS. Hence, we
present the definitions of the following formulae only in the full version of this article
[16] and just give the intuitions here.

As before, we fix two tuples of set variables X and X′, with one variable Xs for each
state s ∈⋃N

i=1 Si and define the following formulae:
– unique-initS(X), which captures that the set of places induced by an interpretation

of X uniquely intersects the set of all initial states, and
– unique-intersectionS(X,X′), which states that the set of places induced by an inter-

pretation of X and X′ share precisely one place.
Given a transition t of the marked Petri Net NUS defining the execution semantics of a
component-based system S, for a universe U, we consider the following formulae:

– uniquepreCS(X, x1, . . . , x�), which describes that the set of places encoded by the in-
terpretation of X uniquely intersects •t, and

– uniquepostCS(X, x1, . . . , x�), which in the same sense captures the unique intersection
with t•.

Now we define a predicate 1-predS which consists of a conjunction of unique-initS and
the formulae:

∀x1, . . . ,∀x� . (Tr(ϕ)→ [¬ intersects-preCS∧¬ intersects-postCS
∨uniquepreCS∧uniquepostCS

∨ intersects-preCS∧¬uniquepreCS])
(8)

one for each clause C in Γ. We show the soundness of this definition, by the following:

Lemma 4. Let S = 〈C1, . . . ,CN ,Γ〉 be a component-based system and let X be a tuple
of set variables, one for each state in a component of S. Then, for any structure (U, ι)
such that ι interprets the variables in X, the set P = {〈s,u〉 ∈⋃N

i=1 Si ×U | u ∈ ι(Xs)} is a
1-invariant of NUS if (U, ι) |=WSκS 1-predS(X).

We may now define the 1-invariant analogously to the trap-invariant before:

1-invariantS(X) = ∀X′ . 1-predS(X′)→ unique-intersectionS(X,X′). (9)
Reasoning as before we obtain a refinement of Theorem 1 since every reachable

marking has to satisfy both invariants.

Theorem 2. Given a component-based system S and a WSκS formula ϕ(X), if the
formula:

∃X . markingS(X)∧1-invariantS(X)∧ trap-invariantS(X)∧¬ϕ(X) (10)
is unsatisfiable, then for every universe U, the property defined by the formula ϕ(X)
holds in every reachable marking of NUS .

5 Experiments

We have implemented a prototype (called ostrich [15]) of this verification proce-
dure to evaluate the viability of our approach. The current version of the prototype
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can only handle token-ring and pipeline topologies, but not trees; for these topologies
the verification reduces to checking satisfiability of a formula of WS1S. We have also
considered one example with tree-topology (see below), for which the formula was
constructed manually. Satisfiability of WS1S and WSκS formulae was checked using
version 1.4/17 of Mona [33]. We consider various examples separated in categories:

Cache Coherence. Following [24] we formalized and checked the described safety
properties and deadlock-freedom of the following cache coherence protocols: Illi-
nois, Berkeley, Synapse, Firefly, MESI, MOESI, and Dragon.

Mutual Exclusion. We modelled and checked for deadlock-freedom and mutual ex-
clusion Burns’ [35], Dijkstra’s and Szymanski’s [3] algorithms as well as a formu-
lation of Dijkstra’s algorithm on a ring structure with token passing [30]. Further-
more, we check synchronization via a semaphore which is atomically aquired and
by broadcasting to ensure everyone else is not in the critical section.

Dining Philosophers. This is the classical problem of dining philosophers which all
take first the right fork and then the left fork. We consider the following “flavors”
of this problem:

– there is one philosopher who takes first her left and then her right fork,
– as above but the forks remember whom took them, and
– there are two global forks everyone grabs in the same order.

Preemptive Tasks. There are tasks which can be either waiting, ready, executing or
preempted. Initially one task is executing while all others are waiting. At any point
a task may become ready and any ready task may preempt the currently executing
task. Upon finishing the executing task re-enables one preempted task. Here, we
have additionally two alternatives: Firstly, we consider the case where always the
agent with highest index resumes execution. Secondly, we let the processes estab-
lish the initial condition from a position where everyone is waiting (referenced later
as uninitialized).

Dijkstra-Scholten. This is an algorithm that is used to detect termination of distributed
systems by message passing along a tree [25]. Since the prototype only supports
linear topologies we can generate the necessary formula automatically only for this
case.

Herman. This algorithm implements self-stabilizing token passing in rings. The for-
mulation is modelled after [19]. This applies for all following examples. Hence, we
describe the examples only in little detail.

Israeli-Jalfon. This is another self-stabilizing token passing algorithm in rings.
Lehmann-Rabin. This is a randomized solution to the dining philosophers problem.
Dining Cryptographers. A group of cryptographers want to determine if one of them

paid for a meal or a stranger but do not reveal how they acted individually.

The results are shown in Table 1. The first column reports the size of the example
in terms of the amount of states (#st.) and clauses (#cls.). The second column indicates
which properties could (�) and could not be verified (×) because the conjunction of
trap and one-invariant was not strong enough to prove the given property. The third
column reports the time (in second) it takes to prove all considered properties. These
results are measured on the provided virtual machine for artifacts [32] where the host
system is an average laptop. To understand the next four columns, recall that Mona
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constructs for a given formula φ(X) a finite automaton recognizing all the sets X for
which ϕ holds. Since the automaton can have very large alphabets, its transition rela-
tion is encoded as a binary decision diagram (BDD). The columns report the number of
states and the number of nodes of the BDD for different formulas. More precisely, the
columns trap, trap-inv, flow, and flow-inv give the sizes of the automata for the formula
trap-predS∧ initially-markedS, trap-invariantS, 1-predS and 1-invariantS respectively.
We write “n.a.” (for “not available”) to indicate that Mona timed out before the automa-
ton was computed.

The first observation is that the satisfiability checks often can be done in very short
time. This is surprising, because the formulas to be checked, namely (7) and (10), ex-
hibit one quantifier alternation (recall that trap-invariantS and 1-invariantS contain uni-
versal quantifiers). More specifically, since trap-invariantS is obtained by universally
quantifying over trap-predS∧ initially-markedS, one would expect the automaton for
the former to be much larger than the one for the latter, at least in some cases. But this
does not happen: In fact, the automaton for trap-invariantS is almost always smaller.
Similarly, there is no blowup from 1-predS to 1-invariantS. A possible explanation
could be that the exponential blowup caused by universal quantification in WSκS man-
ifests only on theoretical corner cases, which do not occur in our examples.

6 Conclusions

We have shown that the trap technique used in [11,28,13] for the verification of single
systems can be extended to parameterized systems with sophisticated communication
structures, like pipelines, token rings and trees. Our extension constructs a parame-
terized trap invariant, a formula of WSκS satisfied by the reachable global states of all
instances of the system. The core of the approach is a purely syntactic, automatic deriva-
tion of the trap invariant from the interaction formula describing the possible transitions
of the system. When the set of safe global states can also be expressed in WSκS, which
is usually the case, we check using the Mona tool whether the trap invariant implies
the safety formula. The technique proves correctness of systems that do not produce
well-structured transition systems in the sense of [1,29], and of systems with broadcast
communication, for which, to the best of our knowledge, cut-off results have not been
obtained yet.

Our experiments demonstrate that trap invariants can be very effective in finding
proofs of correctness (inductive invariants) of common benchmark examples. In prac-
tice, the technique is very cheap, since it avoids costly fixpoint computations. This
suggests incorporating it into other verifiers as a preprocessing step.

Data Availability Statement and Acknowledgements. The work of the second and fifth
author has received funding from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme under grant agreement No 787367
(PaVeS).
The tool ostrich and associated files are available in the Zenodo repository: https://zenodo.org/
record/3676940
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Benchmark
size

#st. / #cls.
Properties

time
(s.)

trap
#st. / #tr.

trap-inv
#st. / #tr.

flow
#st. / #tr.

flow-inv
#st. / #tr.

Berkeley 4 / 8
deadlock-freedom �
consistency properties �

0.37 18 / 95 18 / 78 12 / 50 7 / 18

Dragon 5 / 24
deadlock-freedom �
consistency properties �

1.63 39 / 433 32 / 159 54 / 537 11 / 57

Firefly 5 / 13
deadlock-freedom �
consistency properties �

0.53 55 / 409 36 / 200 38 / 309 11 / 44

Illinois 4 / 13
deadlock-freedom �
consistency properties �

0.46 14 / 83 11 / 32 16 / 95 9 / 38

MESI 4 / 8
deadlock-freedom �
consistency properties �

0.36 12 / 62 11 / 32 12 / 49 7 / 18

MOESI 5 / 10
deadlock-freedom �
consistency properties �

0.56 20 / 150 16 / 64 12 / 57 7 / 20

Synapse 3 / 6
deadlock-freedom �
consistency properties �

0.32 12 / 44 11 / 30 12 / 42 7 / 16

Dijkstra-
Scholten

4 / 6 deadlock-freedom � 0.25 13 / 48 11 / 31 10 / 35 9 / 31

Bakery 3 / 4
deadlock-freedom �
mutual exclusion �

0.26 10 / 27 10 / 24 8 / 23 7 / 20

Burns 6 / 12
deadlock-freedom �
mutual exclusion �

0.30 10 / 64 9 / 30 8 / 35 7 / 32

Dijkstra 12 / 14
deadlock-freedom �
mutual exclusion �

11.86 375 / 11840 106 / 2887 13 / 148 10 / 110

Broadcast
MutEx

2 / 2
deadlock-freedom �
mutual exclusion �

0.23 9 / 22 9 / 21 8 / 19 7 / 16

Preemptive
(high)

5 / 4
deadlock-freedom �
mutual exclusion �

0.26 41 / 279 17 / 71 16 / 88 10 / 46

Preemptive 5 / 4
deadlock-freedom �
mutual exclusion �

0.25 28 / 173 22 / 97 20 / 113 12 / 62

Preemptive
(uninitialized)

3 / 3
deadlock-freedom �
mutual exclusion × 0.25 20 / 80 11 / 37 8 / 23 7 / 20

Semaphore 4 / 2
deadlock-freedom �
mutual exclusion �

0.23 14 / 39 9 / 32 10 / 36 8 / 30

Szymanski 15 / 31
deadlock-freedom n.a.
mutual exclusion n.a.

19.35 495 / 34990 n.a. 8 / 84 7 / 66

Dijkstra (ring) 10 / 9
deadlock-freedom �
mutual exclusion �

75.63 703 / 10160 1149 / 23195 20 / 247 20 / 387

Dining Cryp-
tographers

7 / 15
deadlock-freedom ×
correctness �

1.54 250 / 3232 288 / 2484 10 / 72 9 / 60

Dining
Philosophers
(global)

5 / 3 deadlock-freedom � 0.23 32 / 145 19 / 98 15 / 77 11 / 56

Herman (lin-
ear)

3 / 3
deadlock-freedom ×
no token loss �

0.25 19 / 70 14 / 42 10 / 33 9 / 27

Herman (ring) 3 / 4
deadlock-freedom �
no token loss �

0.26 19 / 71 14 / 42 10 / 33 9 / 27

Israeli-Jalfon 3 / 5
deadlock-freedom �
no token loss �

0.25 43 / 187 14 / 42 8 / 23 7 / 20

Dining
Philosophers
(lefty)

5 / 5 deadlock-freedom � 0.25 37 / 219 27 / 167 12 / 63 11 / 57

Dining
Philoso-
phers (lefty,
rem. forks)

6 / 5 deadlock-freedom � 0.26 37 / 270 21 / 119 14 / 101 11 / 66

Lehmann-
Rabin

6 / 7 deadlock-freedom � 0.26 39 / 361 23 / 211 11 / 67 11 / 73

Table 1: Experimental results of ostrich.
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Abstract. Model checking algorithms are typically complex graph algo-
rithms, whose correctness is crucial for the usability of a model checker.
However, establishing the correctness of such algorithms can be challeng-
ing and is often done manually. Mechanising the verification process is
crucially important, because model checking algorithms are often paral-
lelised for efficiency reasons, which makes them even more error-prone.

This paper shows how the VerCors concurrency verifier is used to
mechanically verify the parallel nested depth-first search (NDFS) graph
algorithm of Laarman et al. [25]. We also demonstrate how having a
mechanised proof supports the easy verification of various optimisations
of parallel NDFS. As far as we are aware, this is the first automated
deductive verification of a multi-core model checking algorithm.

1 Introduction

Model checking is an automated procedure for verifying behavioural properties
of reactive systems. To avoid a false sense of safety, it is essential that model
checkers are themselves correct. However, model checkers use ever more inge-
nious algorithms [12] and even parallel implementations [2] to be able to combat
the large state spaces of critical industrial systems, which makes it increasingly
difficult to guarantee their correctness.

This paper focusses on the mechanical verification of a multi-core model
checking algorithm for detecting accepting cycles in automata, called nested
depth-first search (NDFS). This algorithm solves the model checking problem
for Linear-time Temporal Logic (LTL), a widely used logic for specifying reactive
systems. Multi-core NDFS is developed by Laarman et al. in 2011 [25] and is
currently deployed in the high-performance model checker LTSmin [23].

The mechanical verification of parallel NDFS is carried out in VerCors [6], a
verifier based on concurrent separation logic that targets real-world concurrent
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and parallel programs. The presented verification is inspired by a previous me-
chanical verification of sequential NDFS [37] that was carried out in Dafny [30].

This paper demonstrates the feasibility of mechanical program verification of
parallel graph algorithms, like multi-core NDFS. To the best of our knowledge
we present the first mechanical verification of a parallel graph algorithm. Our
formalisation provides reusable components that can be used to verify variations
of parallel NDFS, as well as other algorithms for parallel model checking.

Before listing our contributions (§1.3) we first provide more background on
model checking algorithms (§1.1) and related work on their verification (§1.2).

1.1 Background on Model Checking

Pnueli introduced the Linear-time Temporal Logic (LTL) [36] to specify proper-
ties of reactive systems. The model checking problem [12] decides whether a tran-
sition system satisfies a given LTL property. The automata-based approach [45]
reduces the model checking problem to the graph-theoretic problem of checking
the reachability of accepting cycles. Reachability of accepting cycles in directed
graphs can be checked in linear time, with the nested depth-first search (NDFS)
algorithm [13,19,41], which forms the basis of the Spin model checker [17].

Several distributed and parallel model checking algorithms have been pro-
posed, to allocate more memory and processors to the problem [2]. NDFS is
based on depth-first search, which is considered hard (impossible) to parallelise
efficiently [39]. For distributed approaches, the best strategy is to turn to BFS al-
gorithms [3], which are straightforward to parallelise but at the cost of increasing
the amount of work beyond linear time. For the shared-memory setting, swarm
verification was proposed [18], where each worker runs its own instance of NDFS.
Various DFS-based multi-core algorithms for full LTL model checking have been
devised for this strategy [14,15,25]. This paper considers the version by Laarman
et al. [25], which is a parallel version of improved sequential NDFS [41].

The correctness of parallel NDFS is quite subtle. In particular, parallel DFS
does not fully respect a global depth-first ordering, since each worker maintains
its own search stack, yet the correctness of NDFS depends on the search order.
Also, to realise speedups, the implementation avoids locking shared data struc-
tures by using atomics. This raises the question whether the implementation of
a parallel model checker, meant to verify the correctness of safety-critical sys-
tems, is itself correct. For this reason the original paper [25] contains a detailed
pen-and-paper correctness proof, which is based on a number of invariants.

1.2 Related Work

To raise the level of confidence in model checkers, one approach is to certify each
of their individual runs. Obviously, the counterexample returned by a model
checker is itself a certificate that can easily be verified independently. However,
double-checking the absence of errors is harder. Namjoshi [33] proposed to in-
strument a μ-calculus model checker, to generate a deductive proof that can
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be checked independently, also in case the property holds. Recently, an IC3-
style symbolic LTL model checker has been extended with deductive proofs as
well [16]. However, these approaches do not prove correctness of the model check-
ing algorithm, but only validate its outcome for each specific use.

Alternatively, one can formalise the model checking algorithm and its correct-
ness proof in an interactive theorem prover. An early example of this approach
was the verification of a model checker for the modal μ-calculus in Coq [43]. A
framework for verifying sequential depth-first search algorithms was developed
in Isabelle [27,28], and applied to the verification of NDFS with partial order
reduction [9] as well as a model checker for timed automata [47]. The recent
formalisations of Tarjan’s SCC algorithm [10] fit in the same line of research.
These approaches require to model and verify the algorithm in an interactive
theorem prover, allowing one to use the full power of the theorem prover.

If one wishes to verify the code of the algorithm directly, yet another ap-
proach is to model the algorithm and its specification in a (semi-)automated
program verifier, where the code is enriched with sufficient annotations to prove
its correctness. This approach was followed for several standard sequential graph
algorithms in Why3 [46] and for sequential NDFS in Dafny [37]. However, there
is hardly any work on automated verification of parallel graph algorithms. Raad
et al. [38] verified four concurrent graph algorithms in the context of CoLoSL,
but the proofs have not been automated. Sergey et al. [42] verified a concurrent
spanning tree algorithm, but interactively, through an embedding in Coq.

To support the verification of shared-memory parallel software, program ver-
ifiers typically use concurrent separation logic. VeriFast [20] aims at sequential
and multi-threaded C and Java programs. VerCors [6] verifies concurrent pro-
grams in Java and OpenCL, by applying a correctness-preserving translation into
a sequential imperative language, delegating the generation of the verification
conditions to Viper [32] and their verification ultimately to Z3 [31].

1.3 Contributions and Outline

This paper discusses the mechanical verification of the parallel NDFS algorithm
of Laarman et al. [25] using VerCors. To the best of our knowledge, this is the
first mechanical verification of a parallel graph (and model checking) algorithm.

Section 2 recalls both sequential and parallel NDFS (§2.1–2.2), and gives pre-
liminaries on concurrency verification with VerCors (§2.3). It also explains that
parallel NDFS uses various colour markings on the input graph to administer
the status of the nested searches of workers. Some of these colours are local to a
single worker, while other colours are globally shared among all workers.

Section 3.1 presents our new (informal) correctness proof of parallel NDFS,
that is based on a number of global invariants on the possible colour configu-
rations. The main challenge lies in proving completeness, which is particularly
difficult since workers can delegate the detection of accepting cycles to other
workers. To be able to mechanise our completeness proof, we contribute a new
invariant (Lemma 4) that guarantees the preservation of so-called special paths.
This allows to circumvent using the complicated inductive argument used by [25].



Section 3.2 discusses how parallel NDFS is specified in VerCors. In particular,
this requires the specification of permissions, to verify data race-free access to
shared data structures. Moreover, we encode the colour maps and the transition
relation of the input automaton as matrices, which greatly contribute to the feasi-
bility of proof checking. We also explain how atomic updates are specified, which
was left implicit in the high-level pseudo code. Similarly, we implement asym-
metric termination detection: if one worker finds a counterexample, all workers
can terminate immediately; if, on the other hand, all workers have completely
finished their exploration, only then may one conclude that the model is correct.

Section 3.3 explains the techniques to formalise the full functional correctness
proof in VerCors. In particular, this requires the distribution of permissions and
invariants over threads and locks, and the introduction of auxiliary ghost state
to track the precise progress of the various nested search phases of all workers.

Section 4 demonstrates how our verification is reused to verify optimisations
to the algorithm. In particular, we check the optimisation “early cycle detection”
that, for weak LTL properties, detects all cycles in the outer search instead of
the nested inner search. We also propose and verify a repair to the “all-red”
extension, by inserting an extra check that was missing in [25]. This extension
improves the speedup of parallel NDFS by sharing more global information.

Finally, Section 5 concludes with a perspective on reusing our techniques for
verifying other parallel graph algorithms.

2 Preliminaries

Section 2.1 recalls the standard sequential NDFS algorithm for finding reachable
accepting cycles in automata. We verified a parallel version of NDFS, which is
introduced in Section 2.2. The verification has been performed with VerCors;
Section 2.3 gives prerequisites on concurrency verification and separation logic.

Before discussing the NDFS algorithms, let us first recall the basic definitions
of automata and accepting cycles. An automaton G is a quadruple (S, sI , succ,A)
consisting of a finite set S of states, an initial state sI ∈ S, a next-state relation
succ : S → 2S and a set A ⊆ S of accepting states. A path in G is a sequence
P = s0, . . . , sn+1 of S-states so that si+1 ∈ succ(si) for every 0 ≤ i ≤ n. The
notation |P | � n+ 2 denotes the length of P , P [i] � si the ith state on P , and
P [i..] the subpath si, . . . , sn+1. Any state s is defined to be reachable (in G) if
there exists an (sI , s)-path. Any path P is a cycle whenever P [0] = P [|P | − 1]
and 1 < |P |. Finally, any cycle P is accepting if P [i] ∈ A for some 0 ≤ i < |P |.

2.1 Nested Depth-First Search

Figure 1 presents a standard, sequential implementation of NDFS, consisting
of two nested DFS searches: dfsblue and dfsred. The blue search processes
successors recursively in DFS order, marking them blue when done on line 8. The
colour cyan indicates a partially explored state, i.e., not all of its successors have
been visited yet by the blue search. Just before backtracking from an accepting
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1 void dfsblue(s)
2 s.color1 := cyan;
3 for t ∈ succ(s) do
4 if t.color1 = white then
5 dfsblue(t);

6 if s ∈ A then
7 dfsred(s);

8 s.color1 := blue;

9 void dfsred(s)
10 s.color2 := pink;
11 for t ∈ succ(s) do
12 if t.color1 = cyan then
13 report cycle; exit;

14 if t.color2 = white then
15 dfsred(t);

16 s.color2 := red;

Fig. 1: A standard sequential implementation of nested DFS.

state, dfsblue calls the red search on line 7, to report any accepting cycle. This
colours a state red after processing its successors recursively on line 16. The pink
colour denotes states that are only partially explored by dfsred5.

It is straightforward to see that NDFS is sound, meaning that it only reports
true accepting cycles. To see that NDFS is also complete, i.e., finds an accepting
cycle if one exists, observe that dfsred will indeed be started from every ac-
cepting state. This in itself is not enough: the red search ignores states marked
red in a previous call. It is essential that dfsred explores accepting states in the
right order. The crucial insight is that dfsred only visits cyan and blue states
and that accepting states coloured blue cannot be part of any accepting cycle.

The correctness of NDFS has been verified with Dafny [37]. We ported this
correctness proof to VerCors as the basis for the verification of parallel NDFS.

2.2 Parallel Nested Depth-First Search

A naive strategy for parallelising NDFS is swarming [18]: running several in-
stances of NDFS in parallel, each working on a private set of colours. Swarmed
NDFS tends to find accepting cycles faster, since its workers are expected to ex-
plore different parts of the input graph. The correctness of swarmed NDFS with
respect to sequential NDFS is almost immediate, except for termination han-
dling: workers only share information about the exit condition. We also verified
swarmed NDFS in VerCors, as a stepping stone for verifying parallel NDFS.

Laarman et al. improve on the swarming algorithm by sharing information
of the red search in the backtrack phase. Figure 2 presents the improved algo-
rithm. Here every line of code is supposed to be executed atomically. The entry
point is pndfs(sI , n), which spawns n parallel instances of dfsblue(sI , tid) in
the fashion of swarming. However, the red colourings are shared now, by which
workers can guarantee that certain states are, or will be, sufficiently explored. So
the red states can now be skipped in both the red search (line 19) and the blue
search (line 4). PNDFS thus improves performance, since workers prune each
other’s search space. At the same time this significantly complicates the correct-
ness argument, since workers may now prevent each other from finding accepting

5 In the sequential algorithm, pink and red do not need to be distinguished, but having
the distinction here makes the parallel version easier to explain.



1 void dfsblue(s, tid)
2 s.color [tid ] := cyan;
3 for t ∈ succ(s) do
4 if t.color [tid ] = white ∧ ¬t.red then
5 dfsblue(t, tid);

6 if s.acc ∧ ¬s.red then
7 s.count := s.count + 1;
8 dfsred(s, tid);

9 s.color [tid ] := blue;

10 void pndfs(s,nthreads)
11 par tid = 0 to nthreads do
12 dfsblue(s, tid);

13 report no cycle;

14 void dfsred(s, tid)
15 s.pink [tid ] := true;
16 for t ∈ succ(s) do
17 if t.color [tid ] = cyan then
18 report cycle; exit all;

19 if ¬t.pink [tid ] ∧ ¬t.red then
20 dfsred(t, tid);

21 if s.acc then
22 s.count := s.count − 1;
23 await s.count = 0;

24 s.pink [tid ] := false, s.red := true;

Fig. 2: An implementation of parallel NDFS, where the red colours are shared.

cycles. Moreover, if multiple workers initiated dfsred from the same accepting
state s, they must now finish their red search simultaneously for the algorithm
to be correct. The await synchroniser on line 23 ensures this, by blocking thread
execution until s.count—the number of workers in dfsred(s, ·)—reaches 0.

The original correctness argument of Laarman et al. relies on a complicated
inductive invariant stating that not all accepting cycles can be missed due to
pruning. However, this invariant is unsuitable for use in a (semi-)automated
verifier. Section 3 discusses the verification of pndfs and provides a new invariant
on the red colours that allows its correctness to be proven mechanically. It also
discusses how our verification handles concurrency and thread synchronisation.

2.3 Concurrency Verification with VerCors

Before discussing the actual verification, let us first briefly introduce VerCors, an
automated program verifier for parallel programs. VerCors uses concurrent sep-
aration logic with permissions as its logical foundation. Its annotation language
contains fractional permission predicates of the form Perm(s, π), in the style of
Boyland [7], that capture the notion of ownership enforced by separation logic,
where s is a shared memory location (e.g., a class field) and π ∈ (0, 1]Q a frac-
tional value. The fractional permissions denote access rights: if π = 1 it denotes
write access to s, whereas π < 1 denotes a read access to s. Sometimes Perm(s)
is written as shorthand for ∃π : Perm(s, π), to indicate some ownership of s.
Soundness of the underlying logic ensures that the total sum of permissions for
any shared memory location does not exceed 1, which implies data race freedom.

In addition to ownership predicates, the annotation language supports the ∗∗
connective, which is the separating conjunction of separation logic. The assertion
P ∗∗Q expresses that the ownerships captured by P and Q are disjoint, e.g., it is
disallowed that both express write access to the same shared location. Ownership
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predicates can be split into disjoint parts and be combined as follows:

Perm(s, π1 + π2) ⇐⇒ Perm(s, π1) ∗∗ Perm(s, π2)

A standard pattern in concurrency verification is to split and distribute the
ownership of all shared memory over threads and locks. Clarifying the latter; in
case multiple threads need to write to a common footprint of shared memory,
the ownerships to this footprint are typically protected by a resource invariant.
Threads can then only use the resources protected by this invariant when they
execute atomic instructions (i.e., when no other threads can interfere). For more
details we refer to the standard papers on concurrent separation logic [34,8,44].

3 Automated Verification of Parallel NDFS

This section elaborates on the verification of pndfs with VerCors [35]. Section 3.1
presents and discusses our new correctness argument for pndfs, which includes
the new invariant on the red colours and a proof of its correctness. Sections 3.2
and 3.3 discuss the mechanisation of this proof in VerCors.

3.1 Correctness of pndfs

The soundness proof of pndfs is not very different from the soundness argument
of sequential NDFS: every time report cycle is executed, a witness cycle can be
found. The main challenge lies in proving completeness, i.e., proving that if there
exists any accepting cycle, pndfs will report it. This is difficult since workers can
obstruct each other’s red searches and thereby prevent the detection of accepting
cycles. This section proposes a new key invariant and completeness proof that
is suitable for deductive verification.

We start by introducing a number of low-level invariants on the local configu-
rations of colours that can arise during a run of pndfs. Let Cyantid be the set of
cyan-coloured states {s ∈ S | s.color [tid ] = cyan} private to worker tid , and like-
wise for Whitetid , Bluetid and Pink tid . Moreover, let Red be the set of globally
red states, and succ(X) �∪s∈Xsucc(s) the successor set of a given set X ⊆ S.
Lemma 1. pndfs maintains the following global invariants during execution:

1.1. ∀tid : succ(Bluetid ∪ Pink tid) ⊆ Bluetid ∪ Cyantid ∪ Red
1.2. succ(Red) ⊆ Red ∪∪tid(Pink tid \ Cyantid)
1.3. ∀tid : A ∩ Bluetid ⊆ Red
1.4. ∀tid : A ∩ Pink tid ⊆ Cyantid

1.5. ∀tid : Pink tid ⊆ Bluetid ∪ Cyantid

1.6. ∀tid : |A ∩ Pink tid | ≤ 1

Proof. The proof basically checks their preservation by each line of the program.

Invariants 1.1–1.5 are reused from [25], whereas 1.6 is new and needed for
the new completeness proof. Proving completeness amounts to proving that not
all reachable accepting cycles can be missed due to search space pruning. To help
proving this, we identify a new class of paths, which we call tid-special paths.



Definition 1 (Special path). Any path P = s0, . . . , sn+1 is defined to be tid-
special if s0 ∈ Pink tid , sn+1 ∈ Cyantid , and none of the states on P are red, i.e.,
sk ∈ Red for every k such that 0 ≤ k ≤ n+ 1.

Any path P is special if P is tid -special for some worker tid . Intuitively, the
existence of a tid -special path during execution of pndfs means that (i) worker
tid is doing a red search, since it has pink states, and (ii) this worker will even-
tually find an accepting cycle, unless other workers obstruct this path. Thus the
above definition allows to formally define obstruction: a worker tid is obstructed
(will miss an accepting cycle) if any state on a tid -special path is coloured red.

Our main strategy for proving completeness involves showing that every time
a worker gets obstructed, a new special path can be found. A direct consequence
of this is that not all accepting cycles can be missed: upon termination of pndfs,
there are no more cyan or pink states. To help prove this, we use the following
property (taken from [25], but rephrased to handle our special paths), that allows
to find special paths by using the colouring invariants.

Lemma 2. If invariants 1.1–1.6 are satisfied, then every path P = s0, . . . , sn+1

with s0 ∈ Red and sn+1 ∈ A \ Red contains a special subpath.

Proof. The original handwritten proof from [25] shows that this lemma follows
from invariants 1.1–1.6 , by induction on P . ��

The original completeness proof of [25] performs induction on the number of
obstructed accepting cycles, to show the absence of such cycles upon termination
as a result of Lemma 2. However, such an argument is out of reach for Hoare-style
reasoning, since it is not an inductive invariant. We propose a new invariant that
is inductive, which builds on the insight that, under certain colouring conditions,
new special paths can always be found when workers get obstructed, as is shown
by Lemma 3. In particular, pndfs guarantees that if there exists a special path
before executing line 24, then there also exists a special path after its execution.

Lemma 3. For any non-red state r ∈ S \ Red that is on a tid-special path, if:

i. r ∈ A =⇒ succ(r) ⊆ Red, and
ii. r ∈ A ∩ Pink tid =⇒ Pink tid = {r},
then there still exists a special path after adding r to Red.

Proof. Let P = s0 . . . sn+1 be a tid-special path and assume that r is on P , so
that r = s� for some � such that 0 ≤ � ≤ n+ 1. Since Pink tid = ∅, worker tid is
performing dfsred that was started from some accepting state a ∈ A ∩ Pink tid.
Then a = r, as otherwise s0 = a due to ii., which by i. would contradict that P
is special. Moreover, since sn+1 ∈ Cyantid there exists a (sn+1, a)-path Q (this
is a standard property of dfsblue; the path Q must be on the recursive call
stack). Then Lemma 2 applies on the path s�, . . . , sn+1, Q[1..] and gives a new
special path when considering Red ∪ {r} as the new set of red states. ��

Lemma 3 implies that every time an accepting cycle is missed due to pruning,
there is always another accepting cycle that will eventually be reported. This is
enough to establish completeness of pndfs, via the following key invariant.
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Lemma 4. The pndfs algorithm maintains the global invariant that either:

4.1. All reachable accepting cycles contain an accepting state that is not red; or
4.2. There exists a special path.

Proof. The interesting case is showing that this invariant remains preserved after
making a non-red state s ∈ Pink tid \ Red red (on line 24 of Fig. 2), by some
worker tid that is doing a red search from some accepting state a ∈ A ∩ Pink tid .

– Suppose s ∈ A. If s is on a special path, then Invariant 4.2 is reestablished
due to Lemma 3, and otherwise the key invariant remains preserved.

– Suppose s ∈ A. Then s = a by Invariant 1.6 . Since worker tid is about to
finish its red exploration, we have that (†) Pink tid = {s} (i.e., all other pink
states have been fully explored) and consequently that (‡) succ(s) ⊆ Red .
Furthermore, due to the await s instruction on line 23 we have that (†) and
(‡) hold for all workers that are doing a red exploration that involves s. If s
is on a special path, then Invariant 4.2 is reestablished due to Lemma 3. So
now suppose that s is on an accepting cycle P . Without loss of generality,
assume that P [0] = s. Then (‡) implies that 1 < |P | and that P [1] ∈ Red .
Thus Lemma 3 applies on the path P [1..] to establish Invariant 4.2 . ��
The next theorem shows how Lemma 4 allows deriving completeness of par-

allel NDFS. In particular, it shows that no accepting cycles can exist when all
threads have terminated, in which case all the theorem’s premises are fulfilled.

Theorem 1. If for every worker tid it holds that Pink tid = ∅, Cyantid = ∅ and
sI ∈ Bluetid , then there does not exist a reachable accepting cycle.

Proof. Towards a contradiction, suppose that there exists an accepting cycle P
that is reachable via an (sI , P [0])-path Q. Due to the theorem’s premises no
special paths can exist, and therefore by Lemma 4 there is an accepting state
on P that is not red. Without loss of generality, assume that (†) P [0] ∈ A \ Red .
Since Q[0] ∈ Blue0 (since there is at least one worker), by induction on Q to-
gether with Lemma 1 we have that P [0] ∈ Red , which contradicts (†). ��

All the above invariants and proof steps have been encoded in VerCors, which
was highly non-trivial. While mechanising the proofs, many implicit proof steps
had to be made explicit. Section 3.3 further details the proof mechanisation.

3.2 Encoding of pndfs in VerCors

Graph structures are notoriously difficult to handle in separation logics, as they
usually rely on pointer aliasing, which complicates ownership handling and pre-
vents easy use of the frame rule [38]. However, since automata have a fixed and
finite set of states, we can overcome this limitation by representing the input
automata as an |S|× |S| adjacency matrix. This does not impose serious restric-
tions: other automata encodings can be transformed at the specification level
to an adjacency matrix, e.g., via model fields in the style of JML [11,29]. The
suitability of adjacency matrices for deductive verification is confirmed by [24].



1 enum Color {white, cyan, blue};
2 int N ; // the number of automata states (equal to |S|)
3 int nthreads ; // the total number of participating workers
4 bool[N ][N ] G; // adjacency matrix representation of the input automaton
5 bool[N ] acc; // the encoding of the set of accepting states
6 Color[nthreads ][N ] color ; // the colour sets for dfsblue (one for each thread)
7 bool[nthreads ][N ] pink ; // the pink colour sets for dfsred (one per thread)
8 bool[N ] red ; // the global set of red colourings
9 bool abort ; // global termination flag

10

11 resource resource invariant � · · · ; // full definition is deferred to Fig. 4.
12

13 bool Path(int s, int t, seq〈int〉 P ) � // the encoding of (s, t)-paths in G
14 0 ≤ s, t < N ∧ 0 < |P | ∧ P [0] = s ∧ P [|P | − 1] = t ∧
15 (∀i : 0 ≤ i < |P | ⇒ 0 ≤ P [i] < N)∧(∀i : 0 ≤ i < |P |−1 ⇒ G[P [i]][P [i+1]]);

16 bool Path(seq〈int〉 P ) � 0 < |P | ∧ Path(P [0], P [|P | − 1], P );

17 bool ExPath(int s, int t, int n) � ∃P : n ≤ |P | ∧ Path(s, t, P );

18 bool SpecialPath(seq〈int〉 P, int tid) � // the encoding of tid-special paths
19 pink [tid ][P [0]] ∧ color [tid ][P [|P | − 1]] = cyan ∧ ∀i : 0 ≤ i < |P | ⇒ ¬red [P [i]];

20 bool ExSpecialPath(int tid) � ∃P : 1 < |P | ∧ Path(P ) ∧ SpecialPath(P, tid);
21

22 /∗ An excerpt of the top-level contract (further discussed in Section 3.3). ∗/
23 ensures \result⇒(∃a : 0≤a<N∧acc[a]∧ExPath(sI , a, 1)∧ExPath(a, a, 2));
24 ensures (∃a : 0≤a<N∧acc[a]∧ExPath(sI , a, 1)∧ExPath(a, a, 2))⇒\result;
25 bool pndfs(int sI);

Fig. 3: The automata representation and an excerpt of pndfs’s top-level contract.

Figure 3 shows the encoding of the input automaton G in VerCors. The
thread-local colour sets are represented as matrices of dimension nthreads×|S|, so
that each thread tid uses color [tid ][·] and pink [tid ][·] to administrate their (local)
status of exploration. The sets of red and accepting states are shared between
threads and thus encoded as |S|-sized Boolean arrays. The succ function can now
be defined such that t ∈ succ(s) whenever G[s][t] is true for every 0 ≤ s, t < N .

This encoding of automata, together with an encoding of the definition of
paths (on lines 13–17) is sufficient to express the main correctness property that
is proven by VerCors. More specifically, line 23 expresses soundness : a positive
return value indicates the existence of an accepting cycle. Line 24 expresses
completeness : if there exists an accepting cycle, then pndfs returns positively.

Atomic operations. The handwritten correctness argument of [25] for Figure 2
assumes that all program lines are executed atomically. This is reflected in the
VerCors encoding: all updates to shared memory are made within atomic oper-
ations, which specification-wise all give access to the same shared resources. For
example, the assignment s.pink [tid ] := true on line 15 (Fig. 2) is implemented
as the atomic operation “atomic { pink [tid ][s] := true }”. On the specification
level, the atomic sub-program receives all the missing access rights required for
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the assignment, which are otherwise protected by the resource invariant declared
on line 11 (Fig. 3). The exact definition of resource invariant is deferred to
§3.3, and the type resource is the type of separation logic assertions. Moreover,
the await instruction on line 23 (Fig. 2) is implemented as a busy while-loop
that only stops when s.count = 0, which is checked atomically in every iteration.

Termination handling. The pseudocode in Figure 2 uses an “exit all” com-
mand to terminate all threads when an accepting cycle has been found. However,
this mechanism was left implicit. Our formalisation in VerCors makes the termi-
nation system explicit: it consists primarily of a global abort flag that is declared
on line 9 in Figure 3. All workers regularly poll this flag to determine whether
they continue or not. The abort flag is set to true by the main thread—the thread
that started pndfs and spawned all worker threads on line 11 of Fig. 2—as soon
as one of the workers returns with an accepting cycle.

3.3 Verification of pndfs in VerCors

One major challenge of concurrency verification is finding a proper distribution
of shared-memory ownership, that allows proving memory safety as well as any
functional properties of interest. This section starts by discussing how we dis-
tribute the ownership of the input automaton over threads and the resource
invariant, in such a way that Invariants 1.1–1.6 and 4.1–4.2 can be encoded.

To prove the preservation of these invariants after every computation step,
auxiliary bookkeeping is needed on the specification level. For example, to mech-
anise the proof of Lemmas 3 and 4 we need to make explicit that all workers
tid with Pink tid = ∅ are doing a red search that was started from some root
state a ∈ A ∩ Pink tid . This auxiliary bookkeeping is maintained in the resource
invariant, via auxiliary ghost state, which is explained later. Finally, we give the
fully annotated version of pndfs and explain how completeness is proven from
Lemma 4, by applying the VerCors encoding of Theorem 1.

Ownership distribution. We start by explaining how the ownership of the
automaton encoding (lines 2–8 in Fig. 3) is distributed among workers and the
resource invariant. First observe that all colouring invariants express global prop-
erties that span over (i) the shared red colourings, as well as (ii) the local con-
figurations color [tid ] and pink [tid ] of every worker tid . To define the ownership
distribution for (i), observe that the only way to distribute the access rights to
red to enable all threads to regain write access, is to let the resource invariant
protect full ownership of red . The resource invariant therefore fully captures the
properties about red states expressed in Lemmas 1 and 4. However, to be able
to specify that, it also requires partial ownership of all thread-local colourings.

Figure 4 presents the full resource invariant, that includes: access rights to
both global and thread-local colourings on lines 2–4; the encoding of Lemma 1 on
lines 10–17 and 22; and the encoding of Lemma 4 on lines 30–32. In addition, the
resource invariant holds partial ownership of the abort flag on line 8, to ensure
that global termination is only announced when an accepting cycle is found.



1 resource resource invariant �
2 Perm(N) ∗∗Perm(nthreads) ∗∗Perm(G) ∗∗Perm(acc) ∗∗
3 (∀tid , s : Perm(color [tid ][s], 1

2
) ∗∗Perm(pink [tid ][s], 1

2
)) ∗∗

4 (∀s : Perm(red [s], 1)) ∗∗
5 termination() ∗∗ colourings() ∗∗ dfsred status() ∗∗ keyinvariant();
6

7 resource termination() � // Resources for termination handling.
8 Perm(abort , 1

2
) ∗∗ abort ⇒ ∃s : acc[s] ∧ ExPath(sI , s, 1) ∧ ExPath(s, s, 2);

9

10 resource colourings() � // The low-level colouring invariant encodings.
11 ∀tid , s : (color [tid ][s] = blue ∨ pink [tid ][s]) ⇒ ∀s′ ∈ succ(s) :
12 color [tid ][s′] = blue ∨ color [tid ][s′] = cyan ∨ red [s′] ∗∗ // Inv. 1.1
13 ∀s : red [s] ⇒ ∀s′ ∈ succ(s) :
14 red [s′] ∨ ∃tid : pink [tid ][s′] ∧ color [tid ][s′] �= cyan ∗∗ // Inv. 1.2
15 ∀tid , s : (acc[s] ∧ color [tid ][s] = blue) ⇒ red [s] ∗∗ // Inv. 1.3
16 ∀tid , s : (acc[s] ∧ pink [tid ][s]) ⇒ color [tid ][s] = cyan ∗∗ // Inv. 1.4
17 ∀tid , s : pink [tid ][s] ⇒ (color [tid ][s] = cyan ∨ color [tid ][s] = blue); // 1.5
18

19 /∗ Auxiliary ghost state for proving Lemma 3 and preserving Inv. 4. ∗/
20 resource dfsred status() � ∀tid : (
21 Perm(exploringred [tid ], 1

2
) ∗∗Perm(redroot [tid ], 1

2
) ∗∗Perm(waiting [tid ], 1

2
) ∗∗

22 ∀s : pink [tid ][s] ⇒ (exploringred [tid ] ∧ (acc[s] ⇒ s = redroot [tid ])) ∗∗ // 1.6
23 exploringred [tid ] ⇒ acc[redroot [tid ]] ∧
24 (∀s : pink [tid ][s] ⇒ ExPath(redroot [tid ], s, 1)) ∧
25 (∀s : color [tid ][s] = cyan ⇒ ExPath(s, redroot [tid ], 1)) ∧
26 (¬waiting [tid ] ⇒ ¬red [redroot [tid ]]) ∧
27 (waiting [tid ] ⇒ ∀s : pink [tid ][s] ⇔ s = redroot [tid ])

)

28

29 /∗ The encoding of Lemma 4, from which completeness of pndfs follows. ∗/
30 resource keyinvariant() �
31 (∀s : acc[s] ∧ ExPath(sI , s, 1) ∧ ExPath(s, s, 2) ⇒ ¬red [s]) ∨
32 (∃tid : ExSpecialPath(tid));

Fig. 4: The full definition of the resource invariant. Several bound checks have
been omitted for presentational clarity.

Observe that the resource invariant holds a lot of quantified information. As a
result, we experienced that proving the reestablishment of resource invariant

after finishing atomics is expensive performance-wise. To make verification more
efficient, we extracted all atomic operations (e.g., colour updates) into separate
methods and prove their contracts in a function-modular way. This improves
performance, as it cuts the problem of verifying dfsred and dfsblue into smaller
sub-problems that are individually more manageable for the SMT solver.

Finally, Figure 5 presents an excerpt of the contract of dfsblue, which shows
the ownership pattern of all threads. Notably, every thread tid receives the re-
maining ownership of color [tid ] and pink [tid ] on line 4. Thus threads can always
read from their thread-local colour fields, and may write to them while doing so
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1 context Perm(N) ∗∗Perm(nthreads) ∗∗Perm(G) ∗∗Perm(acc);
2 context 0 ≤ s < N ;
3 context 0 ≤ tid < nthreads ;
4 context ∀t : 0 ≤ t < N ⇒ Perm(color [tid ][t], 1

2
) ∗∗Perm(pink [tid ][t], 1

2
);

5 requires color [tid ][s] = white;
6 requires ∀t : (0 ≤ t < N ∧ color [tid ][t] = cyan) ⇒ ExPath(t, s, 1);
7 ensures \result ⇒ ∃a : 0 ≤ a < N ∧ acc[a]∧ExPath(sI , a, 1)∧ExPath(a, a, 2);
8 ensures ¬\result ⇒ ∀t : color [tid ][t] = cyan ⇔ \old(color [tid ][t]) = cyan;
9 ensures ¬\result ⇒ pink [tid ] = \old(pink [tid ]) ∧ color [tid ][s] = blue;

10 bool dfsblue(s, tid)
11 · · ·

Fig. 5: The ownership specification in the contract dfsblue for thread tid . An-
notations of the form context P abbreviate requires P ; ensures P .

atomically. This distribution of ownership matches with the encoding of atomic
operations discussed earlier. Line 7 expresses soundness of dfsblue, captured
in the resource invariant (line 8 of Fig. 4) on global termination. This allows to
deduce soundness of pndfs from the resource invariant, after all threads have
terminated as result of the detection of an accepting cycle.

Auxiliary ghost state. As mentioned earlier, to prove that pndfs also pre-
serves the (encodings of) Invariants 1.1–1.6 and 4.1–4.2 after every computa-
tion step, additional ghost state needs to be maintained. In particular, we need
to make explicit that every worker tid with Pink tid = ∅ is doing a dfsred search
that was started from some root state a ∈ A ∩ Pink tid . In addition, the proof of
Lemma 3 needs that there exists an (s, a)-path for every s ∈ Cyantid . To prove
the preservation of Lemma 4 we also need that, if worker tid is not yet executing
the await instruction, we have that a ∈ Red , and otherwise that Pink tid = {a}.

This extra information is encoded in the loop invariant on lines 20–27 (Fig-
ure 4), via three ghost arrays, named exploringred , redroot and waiting . Firstly,
exploringred administrates which workers are doing a red search. For verification
purposes we added ghost code to the program, to set exploringred [tid ] to true
whenever dfsred(a, tid) is invoked by worker tid from a blue search, and back
to false whenever dfsred(a, tid) returns. Secondly, redroot stores the root state
on which dfsred was invoked. Finally, waiting administrates which workers are
executing an await instruction. These three ghost arrays together are closely re-
lated to the s.count fields in the program of Figure 2, via the following invariant:
∀s : s.count = |{tid | exploringred [tid ] ∧ redroot [tid ] = s ∧ ¬waiting [tid ]}|.

Establishing that pndfs adheres to the invariants in Lemmas 1 and 4 was
highly non-trivial and required various complex auxiliary lemmas to be encoded
and proven. These are all encoded in VerCors as ghost methods : side-effect-free
helper methods on which the lemma is encoded in the method’s contract [21,22].
Induction proofs, for example, are encoded using either loop invariants or recur-
sion. Application of a lemma then translates to a function call on the specification
level. The proofs in Section 3.1 are all encoded and applied in this way.



1 context Perm(N) ∗∗Perm(nthreads) ∗∗Perm(G) ∗∗Perm(acc) ∗∗Perm(abort , 1
2
);

2 context ∀tid , s : Perm(color [tid ][s], 1
2
) ∗∗Perm(pink [tid ][s], 1

2
);

3 context ∀tid : Perm(exploringred [tid ], 1
2
) ∗∗Perm(redroot [tid ], 1

2
);

4 context ∀tid : Perm(waiting [tid ], 1
2
);

5 context 0 ≤ sI < N ;
6 requires ∀tid , s : ¬exploringred [tid ] ∧ color [tid ][s] = white ∧ ¬pink [tid ][s];
7 ensures \result ⇒ (∃a : acc[a] ∧ ExPath(sI , a, 1) ∧ ExPath(a, a, 2));
8 ensures (∃a : acc[a] ∧ ExPath(sI , a, 1) ∧ ExPath(a, a, 2)) ⇒ \result;
9 bool pndfs(sI)

10 par tid = 0 to nthreads
11 context Perm(N) ∗∗Perm(nthreads) ∗∗Perm(G) ∗∗Perm(acc);
12 context ∀s : Perm(color [tid ][s], 1

2
) ∗∗Perm(pink [tid ][s], 1

2
);

13 context Perm(term[tid ], 1
2
) ∗∗Perm(exploringred [tid ], 1

2
);

14 context Perm(redroot [tid ], 1
2
) ∗∗Perm(waiting [tid ], 1

2
);

15 requires ¬exploringred [tid ] ∧ ∀s : color [tid ][s] = white ∧ ¬pink [tid ][s];
16 ensures ¬abort ⇒ ∀s : color [tid ][s] �= cyan ∧ ¬pink [tid ][s];
17 ensures ¬abort ⇒ color [tid ][sI ] = blue;
18 do
19 bool found := dfsblue(sI , tid);
20 if found then
21 atomic { abort := true; } // initiate global termination.

22 atomic { if ¬abort then theorem one() }; // apply Thm. 1’s encoding.
23 return abort ;

Fig. 6: The annotated version of pndfs, extending the excerpt given in Figure 3.

Correctness of pndfs. Figure 6 gives the annotated version of pndfs6 that
extends the excerpt given earlier, in lines 23–25 of Figure 3. The main thread
requires partial ownership of all thread-local colour fields on line 2 and distributes
these over the appropriate threads on line 12. The contract associated to the
parallel block (lines 11–17) is called an iteration contract and assigns pre- and
postconditions to every parallel instance. For more details on iteration contracts
we refer to [5]. Most importantly, the iteration contract of each thread holds
enough resources to satisfy all the preconditions of dfsblue, on line 19.

Soundness of pndfs (line 7) is proven as follows. Suppose that all threads have
terminated and abort has been set to true. In that case, the resource invariant
states that an accepting cycle has been found. This information can be retrieved
by briefly obtaining the resource invariant in ghost code on line 22, which directly
allows to deduce soundness. Note that this information is not lost upon releasing
the resource invariant, as it is a Boolean property and thus duplicable.

To prove completeness, suppose that abort is still false when all workers have
terminated. This implies that Pink tid = ∅ and Cyantid = ∅ for every worker tid
(line 16), as well as sI ∈ Bluetid (line 17), since all threads started their blue

6 Observe that every thread reads abort in their contract on lines 16–17, even though
they do not have the required access rights to do so. This is resolved by adding some
auxiliary ghost state, but this is omitted for presentational clarity.
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1 void dfsblue(s, tid)
2 s.color [tid ] := cyan;
3 for t ∈ succ(s) do
4 if t.color [tid ] = cyan then
5 if s.acc ∨ t.acc then
6 report cycle; exit all;

7

( )
if t.color [tid ] = cyan then
if s.acc ∨ t.acc then
report cycle; exit all;

if t.color [tid ] = white then
8 if ¬t.red then
9 dfsblue(t, tid);

10 if s.acc ∧ ¬s.red then
11 s.count := s.count + 1;
12 dfsred(s, tid);

13 s.color [tid ] := blue;

(a) The “early cycle detection” extension

1 void dfsblue(s, tid)
2 allred := true;
3

,
allred := true;
s.color [tid ] := cyan;

4 for t ∈ succ(s) do
5 if t.color [tid ] = white then
6 if ¬t.red then

dfsblue(t, tid);

7 if ¬t.red then allred := false;if ¬t.red then allred := false;

8 if allred then
9 await s.count = 0;

10 s.red := true;

11

if allred then
await s.count = 0;
s.red := true;

else if s.acc ∧ ¬s.red then
12 s.count := s.count + 1;
13 dfsred(s, tid);

14 s.color [tid ] := blue;

(b) The “all-red” extension

Fig. 7: Two extensions (highlighted grey) to dfsblue that improve work sharing.

search from sI . Combining this information with the information in the resource
invariant allows one to prove all the premises of Theorem 1. Therefore its ghost
method encoding can be applied on line 22, from which completeness is derived.

The encoding of parallel NDFS in VerCors [35] comprises roughly 2500 lines
of code (of which ∼85% is proof overhead), which includes the mechanisation of
all proof steps described in §3.1. The verification time is about 140s, measured
on a Macbook with an Intel Core i5 CPU with 2,9 GHz, and 8Gb memory.

4 Optimisations

One major benefit of mechanically verified code is that optimisations can be
applied with full confidence. Without verification, changes to critical code are
often avoided, to ensure that no errors are introduced. A verified algorithm allows
to apply optimisations easily, as these often do not change the outer contract, at
most requiring only minor adaptions to the invariants. We illustrate this with two
optimisations, for which [25] experimentally demonstrated improved speedup.

“Early cycle detection” checks already in the blue search if an accepting cycle
is closed, cf. lines 4–6 in Figure 7a. It is known that for weak LTL properties,
all accepting cycles will be found in the blue search when applying early cycle
detection. To show that this optimisation indeed preserves all invariants, we
simply inserted these 3 lines in the VerCors specification. The proof introduces
a case distinction on whether s or t is accepting and constructs a witness path.
This adds another 10 lines: two for the case distinction and four in each branch
to show that a witness accepting cycle exists. Collectively, these extra 13 lines
constitute indeed very little effort to prove this particular optimisation correct.

The second optimisation, called “all-red”, checks if all successors of s became
red during the blue search (lines 2 and 7 in Figure 7b). If so, we can mark s.red



early (lines 8–10). This optimisation is important, since it allows the global red
colour to spread even in portions of the graph that are not under an accepting
state, thereby allowing more pruning. However, this optimisation only preserves
the invariants if we wait until s.count = 0 (on line 9). This test was erroneously
omitted in [25]7. Fortunately, the version in Figure 7b is correct, which has now
been checked in VerCors in a straightforward manner.

5 Conclusion

This paper presents the first automated deductive verification of a parallel graph
algorithm: we verified soundness and completeness of parallel nested depth-first
search using VerCors. We also show that this mechanisation is helpful in quickly
discovering whether optimisations of the algorithm preserve its correctness.

Many of the presented verification techniques, e.g., the use of separate con-
tracts for single statements, the way we handle termination, and the construction
of explicit witnesses through ghost variables, will be useful for the verification of
other similar algorithms. Moreover, our encoding of parallel nested DFS closely
resembles the implementation of such an algorithm in mainstream programming
languages like C++ and Java. It would be interesting to investigate how our
VerCors encoding can be automatically deployed on multi-core architectures,
for example to enable comparing its performance and scalability with LTSmin.

There are many possibilities to extend the line of research on the verifica-
tion of parallel model checking algorithms initiated in this paper. First, one may
consider to extend the scope of this verification closer towards the actual effi-
cient C-implementation in LTSmin. This would involve verifying the underlying
concurrent hash table to store visited states (a simplified version of which has
been verified before with VerCors [1]), the encoding of the colours as “bits” in
the hash table buckets, and the use of CAS to manipulate these bits.

One might consider alternative parallel NDFS versions, notably [15], which
shares the blue colour, invoking a repair procedure when the depth-first order is
violated. Both algorithms have been reconciled in [14], sharing both blue and red.
This work could be extended to a wealth of other optimisations like partial-order
reduction, or other parallel model checking algorithms, for example [26,4,40].

Our work can be considered as a first step towards a library for the verification
of graph-based (multi-core) model checking algorithms. It will be an interesting
line of future work to continue this: developing a full-fledged verification library
for common subtasks, like graph manipulations and termination detection.

Acknowledgments and data availability statement. This work is partially
supported by the NWO VICI 639.023.710 Mercedes project and by the NWO
TOP 612.001.403 VerDi project. The datasets for this case study are available
at: https://doi.org/10.4121/uuid:36c00955-5574-44d9-9b26-340f7a1ea03b.

7 Wan Fokkink and his students Stefan Vijzelaar and Pieter Hijma already found in
2012 that the “all-red” extension required an extra check ’await s.count = 0’ in [25],
and wondered whether ’await s.count ≤ 1’ would be sufficient. Independently, Akos
Hajdu reported this omission in 2015.
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Abstract. This paper presents Discourje: a runtime verification frame-
work for communication protocols in Clojure. Discourje guarantees safety
of protocol implementations relative to specifications, based on an ex-
pressive new version of multiparty session types. The framework has a
formal foundation and is itself implemented in Clojure to offer a seamless
specification–implementation experience. Benchmarks show Discourje’s
overhead can be less than 5% for real/existing concurrent programs.

1 Introduction

Background. To take advantage of today’s and tomorrow’s multi-core pro-
cessors, shared-memory concurrent programming—a notoriously complex enter-
prise—is becoming increasingly important. To alleviate some of the complexities,
in addition to low-level synchronization primitives, several modern programming
languages have started to offer core support for higher-level communication prim-
itives as well, in the guise of message passing through channels (e.g., Go [25],
Rust [42], Clojure [17]). The idea is that, beyond their usage in distributed com-
puting, channels can also serve as a programming abstraction for shared memory,
supposedly less prone to concurrency bugs than locks, semaphores, and the like.
However, in a recent study of 171 concurrency bugs in popular open source Go
programs [48], Tu et al. found that “message passing does not necessarily make
multi-threaded programs less error-prone than shared memory.”

From a programmer’s perspective, a key problem is this: if we already know
which roles (threads), infrastructure (channels between threads), and protocols
(communications through channels) our program should consist of, then how can
we ensure our implementation is indeed safe relative to our specification? Safety
means “bad” channel actions never occur: if a send, receive, or close happens
in the implementation, then it is allowed by the protocol in the specification.
For instance, typical protocols rule out common message-passing concurrency
bugs [48], such as sends without receives, receives without sends, and type mis-
matches (actual type sent �= expected type received). Essentially, thus, we face
a classical verification problem, with classical ingredients: an implementation
language I, a specification language S, and an inclusion relation �.

Over the past years, a significant body of research in this area has been based
on multiparty session types (MPST) [27]. The idea is to specify protocols as be-
havioral types [1,30] against which threads are subsequently type-checked; the
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theory guarantees that static well-typedness of threads at compile-time implies
dynamic safety of their channel actions at run-time. Originally [27], I was a
dialect of pi-calculus, S was a calculus of behavioral types, and � was defined
through formal typing rules, but more recently, practical implementations were
developed as well [14,28,29,37,38,44], where I is an existing general-purpose lan-
guage (GPL; Erlang, F#, Go, Java, Scala), S is a new domain-specific language
(DSL; Scribble), and � encodes behavioral types in S as non-behavioral types
in I (e.g., through custom communication API generation [29]). These works
highlight two key strengths of the MPST methodology, namely it supports:

#1 fully automated verification of concrete programs (vs. abstract models);

#2 user-friendly programming language-based notation to write specifications of
protocols (vs. dynamic logic or temporal logic).

Problem. One of the key open problems of MPST concerns expressiveness. For
instance, suppose we need to write a program in which messages are repeatedly
communicated from threads I1 and I2 to thread I3, non-deterministically ordered
(i.e., standard producers–consumer); this protocol is not supported by MPST.

We identify two reasons why expressiveness is limited.

First, MPST were originally developed for distributed computing (service
choreographies [10,11]); accordingly, decoupled verification of roles (per-service
type-checking) has always been a key requirement [14]. This is reflected in the
MPST workflow (Fig. 1): first, the programmer writes a global protocol specifica-
tion; then, an MPST tool projects it onto every role to infer local protocol spec-
ifications; then, the implemented threads are type-checked. However, role-based
decomposition of global behavior into equivalent local behaviors often cannot be
done statically (e.g., [12]), so expressiveness is limited by “projectability”.

Second, MPST prescribes static type-checking, which limits expressiveness,
because: (a) type-checking is sound, but not complete, so the static MPST ap-
proach rejects implementations that are conservatively ill-typed but actually
safe; (b) protocols whose execution relies on value-dependent control flow are
supported only in limited circumstances. To alleviate (b), value-dependent type
constructors can be added to S [20,47], but this raises practical issues (i.e.,
dependent types are only scarcely supported by mainstream GPLs).
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Contributions. To simplify shared-memory concurrent programming in lan-
guages with channels, we aim to consolidate strengths #1 and #2 (page 267),
but alleviate MPST’s expressiveness issues. Specifically, this paper is founded on
two tenets that depart from existing work in significant ways (Fig. 2).

First, we exploit the fact that in our context, channels serve “merely” as pro-
gramming abstractions for shared memory; there is no distribution whatsoever.
Thus, whereas MPST-based verification for distributed computing requires pro-
jection, this is not the case in our setting, opening the door to fully automated
projection-free MPST and eliminating a significant source of restrictions.

Second, instead of adopting MPST-based verification through static type-
checking at compile-time, we explore MPST-based verification through dynamic
monitoring at run-time. This enables soundness and completeness, while it also
supports value-dependent protocols in a generally implementable way (i.e., we are
not aware of a mainstream GPL that does not support our monitoring approach).

In this paper, we present our practical embodiment of these ideas: Discourje
(pronounced “discourse”), a runtime verification framework for communication
protocols in Clojure [17,26]. Discourje consists of two components: a DSL to spec-
ify protocols and construct monitors, and an API to implement protocols (sup-
plementing Clojure) and add instrumentation. While we could have developed
this framework for any language with channel-based programming abstractions,
including Go and Rust, Clojure is particularly interesting, because: (1) Clojure
has a powerful macro system that enabled us to develop the Discourje DSL as
an extension to Clojure, thereby offering programmers a seamless specification–
implementation experience; (2) contrasting Go and Rust, Clojure is not a sys-
tems language but an applications language, so runtime verification overheads
might be more tolerable. We summarize our contributions as follows:

– Overview (Sect. 2): Discourje guarantees safety of protocol implementa-
tions, it provides freedom from data races in pure Clojure, and it is more
expressive than existing MPST tools, as demonstrated through examples.

– Design (Sect. 3): We developed core calculi, including operational semantics,
for Clojure and the Discourje DSL as a theoretical foundation.

– Implementation (Sect. 4): We implemented Discourje fully in Clojure. The
Discourje DSL comprises Clojure macros, while the Discourje API is a wrap-
per around Clojure functions to add instrumentation, non-invasively.

– Evaluation (Sect. 5): Through benchmarks, we show that Discourje’s over-
head can be less than 5% for real/existing concurrent programs.

Our artifact is available at https://github.com/discourje.

2 Overview

Clojure (in a nutshell). Clojure [17,26] is a general-purpose, impure func-
tional language that compiles to Java bytecode. As a dialect of Lisp, Clojure fol-
lows the code-as-data philosophy, provides a powerful macro system, and adopts

https://github.com/discourje
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parenthesized prefix notation. Clojure offers asynchronous channel-based pro-
gramming abstractions through core library clojure.core.async [16]. In the an-
nual Clojure survey [15], Clojure programmers indicate “ease of development” is
more important than “runtime performance”; this makes Clojure an interesting
target for runtime verification (viz. overheads).

To introduce the core features of Clojure relevant to this paper, Fig. 3 shows a
channel-based concurrent Tic-Tac-Toe program in Clojure,3 while Fig. 4 summa-
rizes the meaning of every primitive (“;;” indicates comments). Lines 1–9 define
constants (blank, cross, nought, initial-grid) and functions (get-blank, add,
not-final?) to represent Tic-Tac-Toe concepts. Lines 11-12 define two channels
(a->b and b->a) that implement the infrastructure through which players Alice
and Bob communicate. Channels in Clojure are bounded: sends/receives block
until a channel is not full/empty. Lines 14–24 and 25–35 define threads that im-
plement Alice and Bob. Both players execute a loop, starting with a blank grid.
In each iteration, Alice first gets the index of some blank space on the grid, then
plays a cross in that space, then sends a message to Bob to communicate the
index, then awaits a message from Bob, and then updates the grid accordingly;
Bob acts symmetrically. After every grid update, Alice or Bob checks if it has
reached a final configuration; if so, the loop is exited and channels are closed.

Every Clojure data structure, including the vector that implements the grid,
is persistent, and therefore, effectively immutable. This means that every opera-
tion on an existing data structure leaves it intact, and instead, it returns a new
data structure. Thus, Alice and Bob initially share the same initial grid, but
because it cannot be modified in-place, modifications need to be explicitly com-
municated. Persistence of Clojure data structures is also why we can guarantee
freedom from data races in pure Clojure (= Clojure without Java objects): if
users communicate only Clojure data through channels, race freedom is guaran-
teed (if Java objects are communicated, the user is responsible to avoid races).

Basic Discourje: Tic-Tac-Toe. A basic Discourje specification of the Tic-
Tac-Toe protocol for Alice and Bob is shown in Fig. 5. We typeset Discourje
“keywords” (which are actually just Clojure functions and macros) bold violetbold violetbold violet.

Lines 1–2 define two roles (rolerolerole) to represent Alice and Bob. Lines 4–6 define
an auxiliary specification, inserted twice into the main specification (insinsins); it
states that the channels between Alice and Bob are closed (-##-##-##), in parallel (parparpar).
Lines 7–13 define the main specification; it states that recursively (fixfixfix), first a
message of type Long (the index of a grid) is communicated from Alice to Bob
(-->-->-->), and then from Bob to Alice, unless the channels are closed (the game is
done). Square brackets are used to build lists of sub-specifications (sequencing).

The Tic-Tac-Toe protocol depends on value-dependent control flow, as Alice
and Bob close the channels only once the grid has reached a final configuration.
This is a non-protocol-related property that no existing MPST tool supports.

3 Tic-Tac-Toe is a two-player game played on a 3x3 grid. Players take turns to fill the
initially blank spaces of the grid with crosses (“X”) and noughts (“O”). The first
player to fill three adjacent spaces, in any direction, with the same symbol wins.
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1 (defdefdef blank " ") (defdefdef cross "x") (defdefdef nought "o")

2

3 (defdefdef initial-grid [blank blank blank ;; an initial 3x3 grid of blank spaces,
4 blank blank blank ;; implemented as a vector of length 9
5 blank blank blank]) ;; (persistent data structure)
6

7 (defdefdef get-blank (fnfnfn [g] ...)) ;; returns a blank space in g

8 (defdefdef add (fnfnfn [g i x-or-o] ...)) ;; returns g, but with i set to x-or-o

9 (defdefdef not-final? (fnfnfn [g] ...)) ;; returns true iff g is not final
10

11 (defdefdef a->b (chanchanchan 1)) (defdefdef b<-a a->b) ;; b<-a is an alias of a->b
12 (defdefdef b->a (chanchanchan 1)) (defdefdef a<-b b->a) ;; a<-b is an alias of b->a
13

14 (threadthreadthread ;; alice
15 (looplooploop [g initial-grid]

16 (letletlet [i (get-blank g)

17 g (set g i cross)]

18 (>!!>!!>!! a->b i)

19 (ififif (not-final? g)

20 (letletlet [i (<!!<!!<!! a<-b)

21 g (set g i nought)]

22 (ififif (not-final? g)

23 (recurrecurrecur g))))))

24 (close!close!close! a->b))

25 (threadthreadthread ;; bob
26 (looplooploop [g initial-grid]

27 (letletlet [i (<!!<!!<!! b<-a)

28 g (set g i cross)]

29 (ififif (not-final? g)

30 (letletlet [i (get-blank g)

31 g (set g i nought)]

32 (>!!>!!>!! b->a i)

33 (ififif (not-final? g)

34 (recurrecurrecur g))))))

35 (close!close!close! b->a))

Fig. 3. Clojure implementation of Tic-Tac-Toe (dashed arrows: matching send/receive)

Library clojure.core (basic):

– (defdefdef x e): first evaluates e to v; then binds x to v in the global environment.
– (fnfnfn [x1 ... xn] e1 ... em): evaluates to a function with parameters x1, ...,

xn and creates a recursion point; then, when applied to arguments v1, ..., vn,
sequentially evaluates e1, ..., em with x1, ..., xn bound to v1, ..., vn.

– (letletlet [x1 e1 ... xn en] e): first evaluates e1 to v1; then evaluates e2 to v2
with x1 bound to v1; ...; then evaluates en to vn with x1, ..., xn−1 bound to v1,
..., vn−1; then evaluates e with x1, ..., xn bound to v1, ..., vn.

– (looplooploop [x1 e1 ... xn en] e): same as letletlet, but also creates a recursion point.
– (recurrecurrecur e1 ... en): first evaluates e1, ..., en to v1, ..., vn; then evaluates the

nearest recursion point with x1, ..., xn bound to v1, ..., vn.
– (ififif e1 e2 e3): first evaluates e1; if true, evaluates e2; else, evaluates e3.

Library clojure.core.async (concurrency):

– (>!!>!!>!! c e): first evaluates e to v; then sends v through channel c.
– (<!!<!!<!! c): receives a value through channel c.
– (close!close!close! c): closes channel c.
– (chanchanchan n): evaluates to a channel with a buffer of size n.
– (threadthreadthread e): creates a new thread that evaluates e

Fig. 4. Clojure primitives
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1 (defdefdef alice (rolerolerole "alice")) ;; roles
2 (defdefdef bob (rolerolerole "bob"))

3

4 (defdefdef ttt-close (dsldsldsl ;; auxiliary spec
5 (parparpar (-##-##-## alice bob)

6 (-##-##-## bob alice))))

7 (defdefdef ttt (dsldsldsl ;; main spec
8 (fixfixfix :X

9 [(-->-->--> alice bob Long)

10 (altaltalt (insinsins ttt-close)

11 [(-->-->--> bob alice Long)

12 (altaltalt (insinsins ttt-close)

13 (fixfixfix :X))])])))

Fig. 5. Discourje specification of Tic-Tac-Toe

10 (defdefdef m (monimonimoni (specspecspec ttt)))

11 (defdefdef a->b (chanchanchan 1 alice bob m)) (defdefdef b<-a a->b)

12 (defdefdef b->a (chanchanchan 1 bob alice m)) (defdefdef a<-b b->a)

Fig. 6. Changes to Fig. 3 to monitor Alice and Bob against the specification in Fig. 5

To monitor the implementations of Alice and Bob against this specification,
first, we need to load library discourje.core.async instead of clojure.core.async
(implicitly loaded in Fig. 3). All other code modifications are shown in Fig. 6: on
line 10, the specification is evaluated to an internal form (specspecspec) and wrapped in
a new monitor (monimonimoni), while on lines 11–12, we associate the intended sender, re-
ceiver, and monitor with the channels. No other changes are needed: notably, the
code for Alice (Fig. 3, lines 14–24) and Bob (lines 25–35) is unaffected; Discourje
is non-invasive to start using. Running the monitor alongside the implementa-
tion guarantees safety: if a non-compliant channel action were to be attempted,
the monitor prevents it from happening and throws an exception.

The implementation in Fig 3 can indeed violate the specification in Fig. 5:
the specification states channels are allowed to be closed only after (the re-
ceive of) the previous communication is done, but in the implementation, Alice
or Bob could attempt to close already before. In our artifact, we have a so-
lution where we mix channels with barrier synchronization from the standard
java.util.concurrent library (readily usable in Clojure), to let Alice and Bob
first await each other and then close. Thus, channel-based programming abstrac-
tions monitored through Discourje can be mixed seamlessly with other concur-
rency libraries, which happens regularly in message passing programs [46,48].

Advanced Discourje: common patterns. Discourje specifications of com-
mon patterns of communication are shown in Fig. 7; they make use of Discourje’s
role indexing and finite repetition (repreprep) features.

Imagine we have a sequence of worker threads, organized in a pipeline (i.e.,
the i-th worker receives from its predecessor, i−1, and sends to it successor,
i+1). Lines 1–2 define the specification of a communication from a worker to its
successor. Intuitively, succ is a function that maps three parameters to a specifi-
cation. For instance, (insinsins succ bob 5 Turn) inserts (-->-->--> (bob 5) (bob 6) Turn),
where (bob 5) and (bob 6) are indexed roles. We note that every role created
with rolerolerole allows indexing (with arbitrary types), and that specifications can be
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1 (defdefdef succ (dsldsldsl :w :i :t

2 (-->-->--> (:w :i) (:w (inc :i)) t)))

3

4 (defdefdef pipe (dsldsldsl :w :k :t

5 (repreprep seq [:i (range (dec :k))]

6 (insinsins succ :w :i :t))))

7

8 (defdefdef ring (dsldsldsl :w :k :t

9 [(insinsins pipe :w :k :t)

10 (-->-->--> (:w (dec :k)) (:w 0) :t)]))

11 (defdefdef one-one-one (dsldsldsl :m :w :k :t :u

12 (repreprep alt [:i (range :k)]

13 [(-->-->--> :m (:w :i) :t)

14 (-->-->--> (:w :i) :m :u)]))

15

16 (defdefdef one-all-one (dsldsldsl :m :w :k :t :u

17 (repreprep par [:i (range :k)]

18 [(-->-->--> :m (:w :i) :t)

19 (-->-->--> (:w :i) :m :u)]))

Fig. 7. Discourje specification of common patterns

parametrized by roles (:w), indices (:i), and/or types (:t). We also note that any
Clojure function can be used in specifications (e.g., inc, to manipulate indices).

Lines 4–6 define the specification of a pipeline communication pattern; it
states that specification (insinsins succ :w :i :t) is repeated for each value :i from
0 to k-1, and the iterations are composed sequentially (seq). Lines 8–10 extend
the pipeline to a ring, where the last worker also communicates with the first.

Lines 11–14 define the specification of a communication from a “master” to
one of k workers, and back. Similarly, lines 16–19 define the specification of a
communication from a master to all of k workers, and back. In these specifica-
tions, loop iterations are composed alternatively (alt) and in parallel (par).

3 Design

Implementation calculus. To formalize our verification problem, we first de-
fine a calculus to model Clojure implementations. Let � range over heap loca-
tions, x over variables, v over values, and I over implementations. The calculus
is generated by the following grammar:

v ::= nil | � | fn x I | true | false | 0 | 1 | 2 | ...

I ::= v | I1 I2 | x | def x I | let x I1 I2 | loop x I1 I2 | recur I |
if I1 I2 I3 | I1 · I2 | send I1 I2 | recv I | close I | chan I | I1 ‖ I2

Calculus notation corresponds closely with Clojure notation (Fig. 4), with the
exception of application (I1 I2), sequencing (I1 · I2), and threading (I1 ‖ I2).

The operational semantics of the calculus is defined in terms of labeled reduc-
tions of triples (I, E ,H): I is an implementation, E is a global environment (from
variables to values), and H is a heap (from heap locations to channel states).
Channel states are represented as pairs (w, n), where w is a list of values (mes-
sages in transit, from left to right), and n the buffer size. Labels, ranged over by
α, are of the form �!v (send), �?v (receive), �# (close), and τ (anything else; we
verify only channel actions). The reduction rules are shown in Fig. 8.

Rule [I-Ctxt] executes the first step of implementation I in context C: it
first substitutes I for � in C (notation: C[I]), and then executes the first step.
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(I, E ,H)
α−→ (I ′, E ′,H′)

(C[I], E ,H)
α−→ (C[I ′], E ′,H′)

[I-Ctxt]
I[v/x]

α−→ I ′

((fn x I) v, E ,H)
α−→ (I ′, E ,H)

[I-App]

E(x) = v

(x, E ,H)
τ−→ (v, E ,H)

[I-Var]
(def x v, E ,H)

τ−→ (nil, E [x �→ v],H)
[I-Def]

I[v/x]
α−→ I ′

(let x v I, E ,H)
α−→ (I ′, E ,H)

[I-Let]
I[v/x][(fn xr (loop x xr I))/recur ]

α−→ I ′

(loop x v I, E ,H)
α−→ (I ′, E ,H)

[I-Loop]

v ∈ {true, false} (Iv, E ,H)
α−→ (I ′v, E ,H)

(if v Itrue Ifalse, E ,H)
α−→ (I ′v, E ,H)

[I-If]
(I, E ,H)

α−→ (I ′, E ,H)

(v · I, E ,H)
α−→ (I ′, E ,H)

[I-Seq]

H(�) = (w, n) and |w| < n

(send � v, E ,H)
�!v−−→

(nil, E ,H[� �→ (v·w, n)])

[I-Send]
H(�) = (w·v, n)

(recv �, E ,H)
�?v−−→

(v, E ,H[� �→ (w, n)])

[I-Recv]

H(�) = (w, n) and n > 0

(close �, E ,H)
�#−−→

(nil, E ,H[� �→ (w, 0)])

[I-Close]
H(�) = ⊥ and �v� > 0

(chan v, E ,H)
τ−→

(�, E ,H[� �→ (ε, �v�)])

[I-Chan]

Fig. 8. Operational semantics of the implementation calculus

Contexts are generated by the following grammar:

C ::= � | C I | (fn x I) C | def x C | let x C I | loop x C I | if C It If | C · I |
send C I | send � C | recv C | close C | chan C | C ‖ I | I ‖ C

Rule [I-App] executes the first step of a function: it first substitutes value v for
variable x in body I (notation: I[v/x]), and then executes the first step. Rule [I-
Var] executes a read in the global environment. Rule [I-Def] executes a write to
the global environment (notation: E [x �→ v]). Rule [I-Let] executes the first step
of a let binder, similar to rule [I-App]. Rule [I-Loop] executes the first step of a
loop: it first substitutes value v for variable x (the loop parameter) in body I,
then substitutes the loop itself (wrapped in a function to rebind x in the loop’s
next iteration) for recur, and then executes the first step. Rule [I-If] executes
the first step of a branch of a conditional, if the condition is boolean. Rule [I-
Seq] executes the first step of the suffix of a sequence, after the prefix has been
executed using rule [I-Ctxt]. Rule [I-Send] executes the send through a channel,
if that channel exists and is not full. Rule [I-Recv] executes the receive through a
channel, if that channel exists and is not empty. Rule [I-Close] executes the close
of a channel, if that channel exists and is not yet closed. Rule [I-Chan] executes
the creation of a new channel.

Specification calculus. Next, we define a calculus to model Discourje specifi-
cations. Let p, q range over roles, f over boolean functions (from the implementa-
tion calculus), n,m over number expressions (from the implementation calculus),
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1 ↓ [S↓-One]
Si∈{1,2} ↓
S1 + S2 ↓ [S↓-Alt]

S1 ↓ and S2 ↓
S1 · S2 ↓ [S↓-Seq] S1 ↓ and S2 ↓

S1 ‖ S2 ↓ [S↓-Par]

Fig. 9. Operational semantics of the specification calculus (termination)

(f v, ∅, ∅) τ−→∗ (true, ∅, ∅)
p[n]�q[m] :f

p[n]q[m]!v−−−−−−−→ p[n]q[m]?v
p[n]q[m]?v−−−−−−−→ 1

[S-Com]
S = p[n] ��q[m]

S
p[n]q[m]#−−−−−−→ 1

[S-Cls]

Si∈{1,2}
β−→ S′

S1 + S2
β−→ S′

[S-Alt]
S1

β−→ S′
1

S1 · S2
β−→ S′

1 · S2

[S-Seq1]
S1 ↓ and S2

β−→ S′
2

S1 · S2
β−→ S′

2

[S-Seq2]

S[fixXS/X]
β−→ S′

fixXS
β−→ S′

[S-Rec]
S1

β−→ S′
1

S1 ‖ S2
β−→ S′

1 ‖ S2

[S-Par1]
S2

β−→ S′
2

S1 ‖ S2
β−→ S1 ‖ S′

2

[S-Par2]

S[n/x] ⊗ (... ⊗ (S[n′−1/x] ⊗ S[n′/x]))
β−→ S′⊗⊗

n≤x≤n′ S
β−→ S′

[S-Rep]

Fig. 10. Operational semantics of the specification calculus (reduction)

and ⊗ over {+, ·, ‖}. The calculus is generated by the following grammar:

S ::= 1
∣∣ p[n]�q[m] :f

∣∣ p[n]q[m]?v
∣∣ p[n] ��q[m]

∣∣ S1 + S2

∣∣ S1 · S2

∣∣
S1 ‖ S2

∣∣ fixXS
∣∣ X

∣∣ ⊗⊗
n≤x≤n′ S

Calculus notation corresponds with Discourje notation (Sect. 2): p[n]�q[m] :f
specifies communication of a value that satisfies f from p[n] to p[m]; p[n] ��q[m]
specifies closing of the channel from p[n] to q[m]; S1 ⊗ S2 specifies the alterna-
tive, sequential, and parallel composition of S1 and S2; fixXS and X specify
recursion; and

⊗⊗
n≤x≤n′ S specifies repetition of S for every value x between n

and n′, where iterations are composed using ⊗. “Boxed” specifications (1 and
p[n]q[m]?v; the box is not part of the syntax) are auxiliary in the sense they
are used in defining the operational semantics (below), but they are not written
directly in specifications by programmers: 1 specifies a skip; p[n]q[m]?v specifies
a receive of v by q[m], previously sent by p[n].

The operational semantics of the calculus is defined in terms of termination
predicate ↓ and labeled reduction relation →. Labels, ranged over by β, are of the
form p[n]q[m]!v (send), p[n]q[m]?v (receive), and p[n]q[m]# (close). The termi-
nation and reduction rules are shown in Figs. 9–10. (This operational semantics
coincides with Basic Process Algebra [22], plus free merge, recursion, and rep-
etition.) Rule [S-Com] induces two reductions (first a send, then a receive), via
auxiliary specification p[n]q[m]?v. We note that the specification calculus has no
τ -reductions (which are not monitored; we verify only channel actions). We also
note that it can express some, but not all, context-free languages: it can count
(using

⊗
), but it cannot encode a stack.
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S �S� �S�

monitor

specspecspec monimonimoni

Fig. 11. DSL workflow

I I

instr.

API

Fig. 12. API workflow

Inclusion relation. Finally, we define a relation to decide if the behavior of an
implementation I is included in the behavior of a specification S.

First, let † range over functions from heap locations to sender–receiver pairs;
informally, † establishes a correspondence between channel references in the im-
plementation (characterized by their heap locations) and channel references in
the specification (characterized by the roles that use them as sender/receiver).

Next, let→I ⊆ →. We call→I an execution of I if it satisfies these conditions:

– (I, ∅, ∅) α−→I (Î ′, E ′,H′);
– if (Î , E ,H)

α−→I (Î ′, E ′,H′), then (Î ′, E ′,H′) α′
−→I (Î ′′, E ′′,H′′) or Î ′ is a value;

– if (Î , E ,H)
α1−→I (Î ′1, E ′

1,H′
1) and (Î , E ,H)

α2−→I (Î ′2, E ′
2,H′

2), then α1 = α2

and (Î ′1, E ′
1,H′

1) = (Î ′2, E ′
2,H′

2).

Finally, a (†,→I)-simulation R is a binary relation such that if (Î , E ,H)
α−→I

(Î ′, E ′,H′) and (Î , E ,H) R S, then for some S′:

– if α ∈ {�!v, �?v, �#} for some �, v, then S
α[†(�)/�]−−−−−→ S′ and (Î ′, E ′,H′) R S′;

– if α = τ , then (Î ′, E ′,H′) R S.

In words, (Î , E ,H) R S iff whenever Î can reduce to Î ′, S can reduce accordingly
to S′ (and Î ′ and S′ are again related by R), up to τ -reductions (R is weak [24]).

Implementation I is safe relative to specification S, denoted as I � S, if for
every execution →I of I, there is a (†,→I)-simulation R such that (I, ∅, ∅) R S.

4 Implementation

The DSL. The DSL consists of: Clojure macros to write specifications (cf.
syntax of the specification calculus; Sect. 3); Clojure data structures to represent
specifications as state machines (cf. operational semantics of the specification
calculus); Clojure functions to instantiate these data structures and construct
monitors. The workflow is shown in Fig. 11: first, the programmer writes a
specification S using the macros; then, at run-time, function specspecspec is applied to S
to expand and evaluate the macros to a data structure �S�; then, function monimonimoni

is applied to �S� to construct a monitor.
Essentially, the monitor provides two operations, depicted as “lollipops” in

Fig. 11: checking if a given channel action α is allowed by �S� (formally: S
α−→

S′ for some S′), and subsequently updating �S� to its successor. In this way,
effectively, the monitor incrementally builds a formal simulation to ensure safety
(Sect. 3, page 275). We note that checking/updating is protected by lock-free
synchronization (compare-and-set): an α reduction happens only if it was already
checked if α is allowed, and the state has not yet been updated after that check.
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The API. The API consists of Clojure functions that act as proxies for Clo-
jure’s own functions to send, receive, close channels, and construct channels. The
workflow is shown in Fig. 12: first, the programmer writes an implementation
I using Clojure’s own functions; then, by loading library discourje.core.async

instead of clojure.core.async, the programmer adds instrumentation to the im-
plementation that allows channel actions to be monitored. As the signatures of
Discourje’s send, receive, and close functions are identical to Clojure’s, adding
instrumentation in this way is non-invasive and nearly effortless; the only changes
needed, pertain to channel creation (Sect. 2, Fig. 6), since we require the pro-
grammer also to specify which roles will use the channel and associate a monitor
(this is the practical embodiment of function † in Sect. 3, page 275).4

Discourje’s send function works as follows. When invoked, first, it waits until
the underlying channel c is not full (recall channels in Clojure are bounded and
blocking). Then, at time t1, it calls the monitor associated with c to check if
the send is allowed. If yes, at time t2, it calls the monitor to update accordingly
and the “actual send” happens through c; if no, only an exception is thrown.
If, between t1 and t2, multiple threads call the monitor to update, only one will
succeed; the others need to retry from the start. Discourje’s receive and close
functions work similarly. In this way, Discourje detects safety violations in a way
that is both sound (if an exception is thrown, the violating action really was not
allowed) and complete (if no exception is thrown, all actions were really allowed).

Extensions. We implemented a number of extensions to the basic framework:

– Multi-cast: Adding to Clojure’s send, receive, and close functions, the API
also contains a multi-cast function to send the same value through n>1 chan-
nels, along with special monitoring support in the DSL (more efficient than
monitoring individual communications). Also, the API contains a “multi-
receive” function that optionally synchronizes all receivers of a multi-cast.

– Java interoperability: Clojure compiles to Java bytecode and runs on the
JVM; this enabled us to extend Discourje to Java. Specifically, we wrote a
thin Java wrapper around Discourje, so Java programmers can easily con-
struct and use Discourje channels, write specifications, and have them moni-
tored from inside their Java programs, regardless of the threading mechanism
(e.g., classical Java threads, thread pools, and parallel streams can be used).

5 Evaluation

General setup. We developed Discourje for two primary usage types:

4 We currently support the following main channel operations of clojure.core.async:
sending, receiving, and closing. Discourje works out-of-the-box for all Clojure pro-
grams, except those that use unsupported clojure.core.async features; mixing
Discourje with other concurrency libraries is fine (Sect. 2).

An interesting next step is to also support clojure.core.async’s transducers (op-
erations on data-in-transit): to our knowledge, no existing work on MPST supports
transducers, so supporting those requires significant new theoretical work.
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A. as a testing/debugging tool for concurrent programs in development, to reli-
ably find/diagnose communication-related concurrency bugs;

B. as a fail-safe mechanism for concurrent programs in production, to prevent
propagation of spurious results caused by concurrency bugs to end-users (i.e.,
it is better to throw a runtime error, cf. ArrayIndexOutOfBoundsException.)

A key factor that determines Discourje’s fitness for purpose is overhead. We
therefore conducted two kinds of benchmarks: microbenchmarks to study the
scalability of Discourje and whole-program benchmarks to study the slowdown
it inflicts relative to unmonitored code.

We used two different hardware configurations to run our benchmarks: vm2
is an instance of the TACAS’20 Artifact Evaluation Virtual Machine for Vir-
tualBox, configured with 2 virtual cores and 8 GB of virtual memory; lisa is
a high-end machine with 16 physical cores (Intel Xeon 6130 processor; hyper-
threading disabled) and 96 GB of physical memory (far more than needed for
our benchmarks). We hosted vm2 on a machine with 4 physical cores (Intel Core
i7-8569U; hyper-threading enabled) and 16 GB of physical memory.

Microbenchmarks. In the microbenchmarks, we studied Discourje’s scalabil-
ity under extreme circumstances where threads perform only sends/receives and
no real computations; this is the worst-case scenario for the lock-free algorithm
to synchronize monitor access, as it gives rise to maximal thread contention.

We considered three specifications to investigate the core features/operators
offered by the Discourje DSL in isolation, using our built-in common patterns
(Fig. 7): ring for sequential composition, one-one-one (OOO) for alternative
composition, and one-all-one (OAO) for parallel composition. Each pattern was
recursively repeated (i.e., wrapped in (fixfixfix :X [... (fixfixfix :X)]). For Ring and
OAO, a round consists of 1000 repetitions; for OOO, a round consists of 1000·n
repetitions, where n is the number of worker threads.

For each implementation I ∈ {Ring,OOO,OAO} with n ∈ {2, 4, 6, 8, 10, 12,
14, 16} worker threads,5 we recorded the mean round latency μI

n in eight hours
of execution on lisa, the standard deviation σI

n, and the coefficient of variation
cIn=

μI
n

σI
n
. We found cIn ≤ 6% for all I and n, except cOOO

6 = 14% and cOOO
8 = 8%.

As a measure of scalability, we computed normalized means |μI
n| = μI

n

0.5·n·μI
2
:

this metric is a dimensionless number that indicates the extent to which imple-
mentations scale linearly in the number of worker threads, relative to n = 2. For
instance, if |μI

16| = 1, I with 16 workers threads is exactly 8× as slow as I with 2
worker threads; this is reasonable, because the worker threads perform 8× more
sends and receives in each round (due to the adversarial microbenchmark con-
ditions, the sends and receives are effectively linearized by the monitor, which
can check and update at most one channel action at a time).

The normalized means are shown in Fig. 13; our raw data (including standard
deviations) are included in our artifact. We summarize the findings:

5 For Ring, the total number of threads is n; for OOO and OAO, the total number of
threads is n+1 (the master thread).



278 R. Hamers and S.-S. Jongmans

Fig. 13. Microbenchmarks on lisa: Ring
(blue), OOO (red), and OAO (yellow);
number of threads (x-axis) vs. scalability
relative to n = 2 (y-axis)

Fig. 14. Whole-program benchmarks on
vm2: Chess (left) and NPB (right); play
time (x-axis, left) and program (x-axis,
right) vs. monitoring slowdown (y-axis)

Fig. 15. Whole-program benchmarks on lisa: CG, FT, IS, and MG (from left to right);
number of threads (x-axis) vs. monitoring slowdown (y-axis)

– Ring (blue) scales sub-linearly. This is because at any point in time, only one
worker thread contends for monitor access (the current receiver or sender;
the others are blocked, waiting for incoming channels to become non-empty).

– OOO (red) scales linearly, stabilizing around a constant factor of 1.4. This
is because the number of branches in the monitor’s internal state machine
grows linearly in the number of worker threads. Thus, the cost of using the
monitor grows proportionately, but the factor is constant.

– OAO (yellow) scales super-linearly, getting progressively worse as the number
of worker threads increases. This is because all worker threads contend for
monitor access all the time, and the number of branches in the monitor’s
state machine increases linearly.

To conclude, Ring (which exercises sequential composition) enjoys excellent scal-
ability, while OOO (which exercises alternative composition) enjoys decent scal-
ability, even under the adversarial microbenchmark conditions. Scalability of
OAO (parallel composition) can be improved; we discuss one avenue in Sect. 7.
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Whole-program benchmarks. In our whole-program benchmarks, we studied
Discourje’s possible slowdown in five real(istic)/existing concurrent programs:

– Chess: Simulates a game of chess between two player threads.

– Conjugate Gradient (CG-n): Computes an estimate of the largest eigen-
value of a symmetric positive definite sparse matrix with a random pattern
of nonzeros, using the conjugate gradient algorithm, with n worker threads.

– Fourier Transform (FT-n): Computes the solution of a partial differential
equation, using the forward and inverse Fast Fourier Transform algorithm,
with 2·n worker threads.

– Integer Sort (IS-n): Computes a sorted list of uniformly distributed integer
keys, using histogram-based integer sorting, with n worker threads.

– Multi-Grid (MG-n): Computes an approximate solution u to the discrete
Poisson problem ∇2u = v, using the V-cycle multigrid algorithm, with 4·n
worker threads.

For Chess, we used Clojure code similar to threads Alice and Bob in Tic-Tac-Toe
(Fig. 3), combined with invocations of the open source chess engine Stockfish
10 (https://stockfishchess.org) to compute moves. For CG, FT, IS, and MG,
we adapted existing Java implementations from the NAS Parallel Benchmarks
(NPB) [23] suite, which consists of computational fluid dynamics kernels, by
taking advantage of our Java interoperability wrapper (Sect. 4) to replace the
monitor-based synchronization used in the original versions.

We also wrote specifications for these implementations in the Discourje DSL.
For Chess, the specification is the same as the Tic-Tac-Toe specification (Sect. 2);
for CG, FT, IS, and MG, the specifications consist of recursively repeated choices
among various instances of the one-all-one pattern (each of which involves dif-
ferent subsets of worker threads and message types); the key difference between
the specifications, then, is the frequency in which repetitions occur.

We recorded execution times of each of the implementations without and
with monitoring enabled, using existing/standardized workloads. For Chess, the
workload is controlled by the total amount of time each player has to compute
its moves during the entire game; we used the four smallest such workloads
supported by the open source chess server Lichess (https://lichess.org), namely
{15, 30, 45, 60} seconds, and we limited games to a maximum of 40 turns per
player (UltraBullet chess).6 For CG, FT, IS, and MG, the workload is controlled
by the input size; we used the standardized inputs that are predefined by NPB.

We ran Chess on vm2; we ran CG-n, FT-n, IS-n, and MG-n on vm2 for
n = 2 and on lisa for n ∈ {2, 4, 6, 8, 10, 12, 14, 16}. We repeated each of the
runs 50 times to smooth out variability; the resulting coefficients of variation are
below 5% for CG, FT, IS, and MG, and between 19%–22% for Chess (because
moves are not computed deterministically, which affects the number of turns per
game). As a measure of slowdown, we computed normalized means of execution
times with monitoring, μw, against those without monitoring, μwo (i.e.,

μw

μwo
): this

6 We allow concurrent “ponder” computations during opponents’ turns.

https://stockfishchess.org
https://lichess.org
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metric is a dimensionless number that indicates the factor by which monitoring
slows down the implementation.

The normalized means are shown in Figs. 14-15; the raw data (including
standard deviations) are included in our artifact. We summarize the findings:

– For Chess, for three workloads, slowdowns are <1. As the number of instruc-
tions per channel action is, objectively, higher with monitoring than without,
we suspect these observed speedups might be an artifact of the variability in
the measurements. That said, the general trend suggests both usage types
of Discourje (page 277) are very well possible for Chess.

– For FT and IS, the slowdowns are low: less than 5% and 2% respectively. This
seems low enough not only for Discourje’s usage type A (testing/debugging
in development), but even usage type B (fail-safe mechanism in production).

– For CG and MG, the slowdowns are higher: less than 5× and 2.5× respec-
tively. Although this might be too much for Discourje’s usage type B, it
seems low enough for usage type A (cf. the industrial-strength Valgrind tool
for memory debugging [35], which typically inflicts a ≥10× slowdown).
The difference in performance between {FT, IS} and {CG, MG} may be
explained by the fact the latter are more communication-intensive than the
former, so the overhead of monitoring communications is more pronounced.

– For CG, FT, IS, and MG, the slowdowns grow only linearly as the number of
threads increases. This shows that the super-linear scalability we observed
under the adversarial microbenchmark conditions for the one-all-one pat-
tern, does not manifest in these real programs.

To conclude, we believe it is encouraging to see that even (extended versions
of) the specification that scaled poorest in our microbenchmarks, can give well
enough performance in real concurrent programs for both usage types A and B.

6 Related Work

Expressiveness issues of multiparty session types (MPST) have received some
attention, but efforts have primarily been geared towards adding more advanced
features (e.g., time [5,36], security [7,8,9,13], and parametrisation [14,20,39]); in
contrast, restrictions on the usage of core features like choice and interleaving
have remained, even though they limit MPST’s applicability in practice (e.g.,
our Tic-Tac-Toe specification cannot be expressed; Fig. 5). Recently, work has
been done to improve MPST’s expressiveness in this regard using static tech-
niques [31], but our specification language in this paper is still more expressive.

Closest to our work, then, are hybrid MPST approaches that combine static
type-checking with a form of distributed runtime monitoring and/or assertion
checking [3,4,19,36,37]. In contrast to this paper, however, these dynamic tech-
niques still rely on projection, which limits expressiveness (Sect. 1); none of the
specifications in this paper are supported.

Projection-free MPST has also been explored by López et al. [34,43]. Their
idea is to specify MPI communication protocols in an MPI-tailored DSL, inspired



Discourje: Runtime Verification of Communication Protocols in Clojure 281

by MPST, and verify the implementation against the specification using deduc-
tive verification tools (VCC [18] and Why3 [21]). However, this approach does
not support push-button verification: considerable manual effort is required. In
contrast, our approach is fully automated.

We are aware of only two other works that use formal techniques to reason
about Clojure programs: Bonnaire-Sergeant et al. [6] formalized the optional type
system for Clojure and proved soundness, while Pinzaru et al. [41] developed a
translation from Clojure to Boogie [2] to verify Clojure programs annotated with
pre/post-conditions. Ours is the first paper that targets concurrency in Clojure.

Verification of shared-memory concurrency with channels has received at-
tention in the context of Go [40,32,33,45]. However, emphasis in these works is
on checking deadlock-freedom, liveness, and generic safety properties, while we
focus on program-specific protocol compliance. Castro et al. [14] also consider
protocol compliance, but their specification language (of global types) is less
expressive than ours and does not support this paper’s examples.

7 Conclusion

We presented Discourje: a runtime verification framework for channel-based com-
munication protocols in Clojure. Discourje is based on a projection-free inter-
pretation of multiparty session types, trading static type-checking for dynamic
runtime monitoring to alleviate expressiveness issues. A key design principle of
Discourje has been ergonomics: we aim to make Discourje’s use as comfortable
as possible. Specifically, programmers can decide to start using Discourje at any
stage of development (and doing so requires little effort); Discourje is itself imple-
mented in Clojure (so no need to use a different IDE, learn completely new syn-
tax, or install special compilers); and Discourje can be used seamlessly alongside
other concurrency libraries. The framework has a formal foundation, and bench-
marks indicate that monitoring overhead can be less than 5% for real/existing
concurrent programs. This makes Discourje suitable both as a testing/debugging
tool in development, and as a fail-safe mechanism in production.

We list two interesting avenues for future work. First, we want to refine our
lock-free synchronization algorithm to enhance the way parallel composition is
handled. Second, a much more profound extension pertains to feedback and re-
covery. Specifically, we want to explore the idea that whenever a monitor detects
a violation, instead of throwing an exception, it should simply delay the violat-
ing action as a corrective measure, in an attempt to steer the implementation
toward safe behavior. When done naively, such delays can easily yield deadlocks,
so our plan is to combine this with runtime model-checking/reachability analysis
to check if eventually, the violating action is allowed (if yes, delay; if no, throw).
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Abstract. We consider Markov decision processes (MDPs) in which
the transition probabilities and rewards belong to an uncertainty set
parametrized by a collection of random variables. The probability distri-
butions for these random parameters are unknown. The problem is to
compute the probability to satisfy a temporal logic specification within
any MDP that corresponds to a sample from these unknown distributions.
In general, this problem is undecidable, and we resort to techniques from
so-called scenario optimization. Based on a finite number of samples of
the uncertain parameters, each of which induces an MDP, the proposed
method estimates the probability of satisfying the specification by solving
a finite-dimensional convex optimization problem. The number of samples
required to obtain a high confidence on this estimate is independent from
the number of states and the number of random parameters. Experiments
on a large set of benchmarks show that a few thousand samples suffice to
obtain high-quality confidence bounds with a high probability.

Keywords: MDP, Uncertainty, Verification, Scenario optimisation

1 Introduction

MDPs. Markov decision processes (MDPs) model sequential decision-making
problems in stochastic dynamic environments [51]. They are widely used in
areas like planning [52], reinforcement learning [53], formal verification [48], and
robotics [24]. Mature model checking tools like PRISM [21] and Storm [35]
employ efficient algorithms to verify the correctness of MDPs against temporal
logic specifications [2] provided all transition probabilities and cost functions
are exactly known. In many applications, however, this assumption may be
unrealistic, as certain system parameters are typically not exactly known and
under control by external sources.
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Uncertain MDPs. A common approach to deal with unknown system parameters
is to let transition probabilities and cost functions of an MDP belong to uncer-
tainty sets, resulting in so-called uncertain MDPs [25,14,28], which generalize
interval MDPs [20,27,7]. However, solution approaches, e.g., in [25,14,28], usually
rely on the potentially limiting assumption that the uncertainty sets at different
states of the MDP are independent from each other.

Consider a simple motion planning scenario where an unmanned aerial vehicle
(UAV) is tasked to transport a certain payload to a target location. The problem
is to compute a policy for the UAV to successfully deliver the payload while
taking into account the weather conditions. External factors like wind strength
or direction may affect the movement of the UAV. The assumption that such
weather conditions are independent between the different possible states of UAV
is unrealistic, and does not adequately model the scenario at hand.

For settings in which the uncertainties at different states depend on each
other, an option is to account for all possible–albeit infinitely many–values in the
uncertainty sets. The policy synthesis problem can be formulated as a so-called
semi-infinite convex optimization problem, which includes finitely many variables
but infinitely many constraints [28]. This problem, however, is NP-hard [28,18].
Furthermore, it fails to exploit additional information that may be available as
random variables over the uncertainty sets [36], and may be very conservative.
For instance, weather-data in the form of probability distributions may provide
additional information on potential changes during the mission.

In this paper, we study a setting in which the fact the uncertain parameters
are random variables and the dependencies between them are accounted for
explicitly. Furthermore, each random parameter follows an unknown probability
distribution from which we can sample the parameter values.

Problem statement. Compute the probability with which there exists a policy
such that a reachability or an expected-cost specification is satisfied for any
randomly drawn parameter value.

We call this probability the satisfaction probability. The intuition is that the
question of whether all (or some) parameter values satisfy a specification—as
is often done in parameter synthesis [46]—is replaced by the question of how
much we expect the (sampled) model to satisfy a specification. For example, a
satisfaction probability of 80% tells that, if we randomly sample the parameters,
with a probability of 80% there exists a policy for the resulting MDP that satisfies
the specification. Computing the satisfaction probability is in general undecidable,
even for known probability distributions over the parameter values [37].

Scenario-based verification. Therefore, we resort to sampling-based algorithms
that yield a confidence (probability) on the bounds of the satisfaction probability.
Referring back to the UAV example, we want to compute a confidence probability
in the probability that there exists a policy for the UAV to successfully finish the
mission. As a first step, we take the aforementioned semi-infinite optimization
problem that accounts for all possible parameter values as a basis. Each concrete
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parameter value is referred to as a scenario in the convex optimization literature
[15]. For specific problems where a distribution over individual scenarios is
present, a technique called scenario-based optimization provides guarantees on
the satisfaction probability via efficient sampling techniques [15,16]. The basic
idea is to consider a finite set of samples from the distribution over the scenarios
and restrict the semi-infinite problem to these samples. The resulting convex
optimization problem with finitely many constraints can be solved efficiently [50].

For our setting, we first sample a finite number of parameter instantiations
each of which induces a concrete MDP. We can solve the synthesis problem for
this MDP efficiently using, e.g., a probabilistic model checker. Based on the
results, we compute a satisfaction probability and an estimate of its potential
error. For example, a 90% estimate in a satisfaction probability of 80%, means
that the error is at most 10%. We show that the error in the estimate diminishes
to zero exponentially rapidly with increasing number of samples. Moreover, we
show that the number of required samples does neither depend on the size of the
state space nor the number of random parameters. We validate the theoretical
results using several MDPs that have different sizes of state and parameter spaces
and demonstrate experimentally that the required number of samples is indeed
not sensitive to the dimension of the state and parameter space. In addition, we
show the effectiveness of our method with a new dedicated case study based on
the aforementioned UAV example which incorporates 2 500 random parameters.

Related work. The so-called parameter synthesis problem is concerned with
computing parameter values such that there exists a policy in the induced non-
parametric MDP that satisfies the specifications. Most of the work in parameter
synthesis focus on finding one parameter value that satisfies the specification.
The approaches involve computing a rational function of the reachability prob-
abilities [11,17,41], utilizing convex optimization [34,40], and sampling-based
methods [26,29]. The problem of whether there exists a value in the parameter
space that satisfies a reachability specification is ETR-complete4 [47], and finding
a satisfying parameter value is exponential in the number of parameters.

The work in [45] considers the analysis of Markov models in the presence of
uncertain rewards, utilizing statistical methods to reason about the probability
of a parametric MDP satisfying an expected cost specification. This approach
is restricted to reward parameters and does not explicitly compute confidence
bounds. [43] computes bounds on the long-run probability of satisfying a specifi-
cation with probabilistic uncertainty for Markov chains. Other related techniques
include multi-objective model checking to maximize the average performance with
probabilistic uncertainty sets [36], sampling-based methods which minimize the
regret with uncertainty sets [33], and Bayesian reasoning to compute parameter
values that satisfy a metric temporal logic specification on a continuous-time
Markov chain [38]. [37] considers a variant of the problem in this paper where

4 The ETR satisfiability problem is to decide if there exists a satisfying assignment to
the real variables in a Boolean combination of a set of polynomial inequalities. It is
known that NP ⊆ ETR ⊆ PSPACE.
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the probability distribution of the uncertainty sets is assumed to be known. The
paper formulates the policy synthesis problem as an (undecidable [30]) partially
observable Markov decision process (POMDP) synthesis problem and use off-
the-shelf point-based POMDP methods [10,6]. The work in [27,25] consider the
verification of MDPs with convex uncertainties. However, the uncertainty sets
for different states in an MDP are restricted to be independent, which does not
hold in our problem setting where we have parameter dependencies.

Uncertainties in MDPs have received quite some attention in the artificial
intelligence and planning literatures. Interval MDPs [27,7] use probability intervals
in the transition probabilities. Dynamic programming, robust value iteration and
robust policy iteration have been developed for MDPs with uncertain transition
probabilities whose parameters are statistically independent, also referred to as
rectangular, to find a policy ensuring the highest expected total reward at a given
confidence level [14,25]. The work in [28] relaxes this independence assumption a
bit and determines a policy that satisfies a given performance with a pre-defined
confidence provided an observation history of the MDP is given by using conic
programming. State-of-the art exact methods can handle models of up to a few
hundred of states [42]. Multi-model MDPs [44] treat distributions over probability
and cost parameters and aim at finding a single policy maximizing a weighted
value function. For deterministic policies this problem is NP-hard, and it is
PSPACE-hard for history-dependent policies.

2 Preliminaries

A probability distribution over a finite set X is a function μ : X → [0, 1] ⊆ R with∑
x∈X μ(x) = 1. The set of all distributions on X is denoted by Distr(X). Let

V = {x1, . . . , xn} be a finite set of parameters over Rn. The set of polynomials
over V is denoted by Q[V ]. We denote the cardinality of a set U by |U|.

2.1 Parametric Models

Definition 1 (pMDP). A parametric Markov decision process (pMDP) M is
a tuple M = (S,Act , sI , V,P) with a finite set S of states, a finite set Act of
actions, an initial state sI ∈ S, a finite set V of real-valued variables (parameters)
and a transition function P : S × Act × S → Q[V ].

For s ∈ S, ActS (s) = {α ∈ Act | ∃s′ ∈ S, P(s, α, s′) �= 0} is the set of
enabled actions at s. Without loss of generality, we require ActS (s) �= ∅ for s ∈ S.
If |ActS (s)| = 1 for all s ∈ S, M is a parametric discrete-time Markov chain
(pMC). We denote the transition function for pMCs by P(s, s′).

A pMDP M is a Markov decision process (MDP) if the transition function
yields well-defined probability distributions, i.e., P : S × Act × S → [0, 1] and∑

s′∈S P(s, α, s′) = 1 for all s ∈ S and α ∈ ActS (s). We denote the parameter
space of M by VM. Applying an instantiation u ∈ VM to a pMDP M yields
the instantiated MDP M[u] by replacing each f ∈ Q[V ] in M by f [u]. An
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instantiation u is well-defined for M if the resulting model M[u] is an MDP. We
assume that all parameter instantiations in VM yield well-defined MDPs. We call
u graph-preserving if for all s, s′ ∈ S and α ∈ Act it holds that P(s, α, s′) �= 0 ⇒
P(s, α, s′)[u] ∈ (0, 1]. If P(s, α, s′) ∈ {p, 1− p | p ∈ V } ∪Q, then the parameter
space VM is given by the rectangle [0, 1]|V |. We also consider a state-action cost
function c : S ×Act → Q[V ]. We denote the set of cost parameters as W.

To define measures on MDPs, nondeterministic choices are resolved by a
so-called policy σ : S → Act with σ(s) ∈ ActS (s). The set of all policies over
M is StrM. For the specifications that we consider in this paper, memoryless
deterministic policies are sufficient [48]. Applying a policy to an MDP yields an
induced Markov chain where all nondeterminism is resolved.

For an MC D, the reachability specification ϕr = P≤λ(♦T ) asserts that a set
T ⊆ S of target states is reached with probability at most λ ∈ [0, 1]5. If ϕr holds
for D, we write D |= ϕr. Model checking for the more general PCTL [4] or ω-
regular specifications is often reducible to checking reachability specifications [48].
For an MDP M, ϕr holds if for all σ ∈ StrM such that the induced MC D by the
policy σ reaches the set T with a probability of at most λ. For an expected cost
specification ϕc = EC≤κ(♦G), it holds that D |= ϕc if and only if the expected
cost of reaching a set G ⊆ S is at most κ ∈ R. The expected cost of reaching G
is well-defined if and only if P(♦T ) = 1 for all policies in an MDP.

2.2 Uncertain MDPs

We now introduce the setting that we study in this paper. Specifically, we use
parameters to define the uncertainty in the transition probabilities and cost
functions of an MDP. Each random parameter follows an unknown probability
distribution from which we can sample the parameter values.

Definition 2 (uMDP). An uncertain Markov decision process MP (uMDP)
is a tuple MP = (M,P) where M is a pMDP, and P is a probability distribution
over the parameter space VM. If M is a pMC, then we call MP a uMC.

Intuitively, a uMDP is a pMDP with an associated distribution over possible
(graph-preserving) parameter instantiations. That is, a realization of P yields a
concrete MDP M[u] with the respective instantiation u ∈ VM (and P(u) > 0).

Remark 1. In a uMDP, we distinguish controllable and uncontrollable parameters.
The uncontrollable parameters follow the probability distribution P. In contrast,
we can actively instantiate the controllable parameters. In the following, we
specifically allow cost parameters to be controllable.

Definition 3 (Satisfaction Probability). Let MP = (M,P) be a uMDP and
ϕ a specification. The (weighted) satisfaction probability of ϕ is

F (MP, ϕ) =

∫
VM

Iϕ(u) dP(u)

5 The theory also applies to lower bounded properties.
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Fig. 1. Left: A uMC with parameter v. Right: The probability of satisfying the reacha-
bility specification ϕr = P≤λ(♦T ) versus the value of the parameter v. Intervals that
satisfy ϕr are green, intervals that violate ϕr are red.

with u ∈ VM and Iϕ : VM → {0, 1} is the indicator for ϕ, i.e. Iϕ(u) = 1 iff
M[u] |= ϕ.

Note that Iϕ is measurable, as VM is the finite union of semi-algebraic sets [49].
Moreover, we have that F (MP, ϕ) ∈ [0, 1] and F (MP, ϕ) + F (MP,¬ϕ) = 1.

Example 1. Consider the uMC in the left figure of Fig. 1 with the uncontrollable
parameter set V = {v}, initial state s0, target set T = {s3} and an uniform
distribution for the parameter v over the interval [0, 1]. We plot the probability of
satisfying the specification ϕr = P≤λ(♦T ) as a function of v in the right figure of
Fig. 1. We also show the satisfying region and its complementary as green and red
regions. The satisfying region is given by the union of the intervals [0.13, 0.525]
and [0.89, 1.0], and the satisfaction probability F (MP, ϕr) is 0.395+0.11 = 0.505.

3 Problem Statement

In this section, we state the problem that we study in this paper. We seek to
compute the satisfaction probability of the parameter space for a reachability or
an expected cost specification ϕ on a uMDP. Intuitively, we seek the probability
that a randomly sampled instantiation from the parameter space induces an MDP
which satisfies ϕ. Formally: Given a uMDP MP = (M,P), and a specification
ϕ, compute the satisfaction probability F (MP, ϕ). However, as mentioned, the
problem is in general undecidable [37]. Therefore, we consider an approximation
of computing the satisfaction probability:

Problem 1. Given a uMDP MP = (M,P), a reachability specification ϕr =
P≤λ(♦T ), and a tolerance probability ν, compute a confidence probability
αν such that F (MP, ϕr) ≥ 1− ν holds with a probability of at least 1− αν .

We illustrate the problem statement with the following example.
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Example 2. For the UAV motion planning example, consider the question “What
is the probability on a given day such that there exists a policy for the UAV
to successfully finish the mission.” A possible result is, e.g., 0.78 (confidence
probability: 0.99) and 0.81 (confidence probability: 0.95). Then, with a confidence
probability of 0.99, the actual satisfaction probability is indeed greater than 0.78,
and with a (slightly lower) confidence probability of 0.95 it is greater than 0.81.
Such a result shows that it is quite likely that the UAV will finish the mission
successfully with a probability that is at least 81%.

Similar to Problem 1, we also consider expected cost specifications.

Problem 2. Given a uMDPMP = (M,P), and an expected cost specification
ϕc = EC≤κ(♦G), a tolerance probability ν, and a confidence probability αν

determine if there exists an instantiation to the cost parameters such that
F (MP, ϕc) ≥ 1− ν holds with a probability of at least 1 − αν .

Remark 2. The main difference between Problem 1 and Problem 2 is that we
consider controllable cost parameters. We seek to compute an instantiation to
these parameters such that the satisfaction probability is greater than 1− ν with
high confidence.

4 Scenario-Based Verification

In this section, we present our approach to solving Problem 1 and 2, that is,
to approximate the satisfaction probability with respect to a specification. We
first consider the robust policy synthesis problem that accounts for all possible
values in the uncertainty set, potentially leading to a very pessimistic result.
This problem can be formulated as a semi-infinite convex optimization problem,
which is NP-hard [28]. Here, we exploit the structure of this problem, which
includes finitely many variables but infinitely many constraints. Our approach is
based on scenario optimization [15,16]: We sample a finite number of parameter
values and restrict the semi-infinite problem to these samples. The resulting
finite-dimensional convex optimization problem can be solved efficiently [50].
Based on the solution of the optimization problem, we compute high confidence
in the estimate of the satisfaction probability. The estimate also generalizes to
the samples from the probability distribution that are not in the sample set.

Remark 3. For ease of presentation, we focus on uncertain Markov chains (uMCs).
Our results and methods generalize to uncertain MDPs (uMDPs).

We first develop the main results for the simple setting where all sampled
instantiated MCs from the parameter space VD satisfy the reachability specifica-
tion ϕr. This assumption does not imply that all instantiated MCs satisfy ϕr:
The sample set does not contain an MC that violates ϕr even though there exists
such an MC in the parameter space. In Section 4.2, we drop this assumption
and allow sampled points in VD to violate ϕr. This completes our treatment of
Problem 1. In Section 4.3, we show how our results generalize to expected cost
specifications ϕc, to solve Problem 2.
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4.1 Restriction to Satisfying Samples

In this section, we assume that all instantiated MCs satisfy ϕr. We then generalize
our method to any values of ν. We want to check if a uMC D satisfies a reachability
specification ϕr = P≤λ(♦T ) for all instantiations in the sample set U . For each
instantiation, we can formulate a linear program (LP) that is feasible if and only
if ϕr is satisfied [51]. For a subset U ⊆ VD of the parameter space VD of the uMC
D, we can then write the conjunction of these LPs. We assume that |U| is finite
and sampled from the probability distribution P over the parameter space VD.

For each instantiation u ∈ U , we introduce a set of linear constraints that
are parametrized by u6. We use the following variables. For s ∈ S and u ∈ U ,
the variable pus ∈ [0, 1] represents the probability of reaching the target set
T ⊆ S from state s. The variable τ represents an upper bound on the probability
of satisfying ϕr for all instantiations in U . Note that τ is a variable in our
formulation, whereas λ is the threshold of the reachability specification, and
thus constant. The set ¬∃♦T represents the set of states which cannot reach the
target set T . The probability of reaching T from these states is zero, and the set
¬∃♦T does not change for different graph-preserving instantiations [17]. The set
¬∃♦T can be found in polynomial time in the size of a uMC by using standard
graph-based search algorithms [48]. We solve the following LP Lr(U), which is
parametrized by each instantiation u in U ,

minimize τ (1)

subject to ∀u ∈ U ,
pusI ≤ τ, (2)

pusI ≤ λ, (3)

pus = 1, ∀s ∈ T, (4)

pus = 0, ∀s ∈ ¬∃♦T, (5)

pus =
∑

s′∈S
P(s, s′)[u] · pus′ , ∀s ∈ S \ (T ∪ ¬∃♦T ) . (6)

The objective (1) minimizes the maximal probability that can be achieved by
all MCs induced by U . The constraint (2) represents an upper bound on the
reachability probability for all instantiations. We minimize the upper bound to
compute the maximal probability of satisfying ϕr for all instantiated MCs. The
constraint (3) ensures that the probability of reaching T from the initial state sI
is below the threshold λ. The constraint (4) sets the probability to reach a state
in T from T to 1. The constraint (5) sets the reachability probabilities from the
states in ¬∃♦T to zero. The constraint (6) computes the probability of satisfying
the specification for each non-target state s ∈ S in the standard way.

There are infinitely many constraints in the semi-infinite LP Lr(VD) as the
cardinality of (VD) is infinite and Lr(VD) has infinitely many constraints in the
form of (2)–(6). Our approach is based on scenario optimization [13,15,16], where

6 we assume that each sample has a unique index
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we instantiate the parameters u ∈ VD by sampling the probability distribution
P. Then, for a given violation probability ν ∈ (0, 1), we compute a solution that
violates the constraints in the LP Lr(VD) with a probability that is not larger
than ν. We first give some properties of the LP Lr(U).
Theorem 1. Let uMC D and the sample sets U ⊆ VD with K = |U| ≥ 2. Assume
for all u ∈ U , D[u] |= ϕr. For a given tolerance probability ν ∈ [0, 1), let the
associated confidence probability

αν =
∑1

i=0

(
K

i

)
(1− ν)K−iνi. (7)

Then, with a probability of at least 1− αν , we have

F (DP, ϕr) ≥ 1− ν. (8)

Proof. The key idea of the proof is to relate the finite LP Lr(U) induced by a
sampled set U to the semi-infinite LP Lr(VD). Then, we use the results given
in [16, Theorem 1] to obtain the lower bound 1−αν . Let the convex set CDP

U (λ, τ )
be generated by the set U according to the probability distribution P over VD as

CDP
U (λ, τ) = {(λ, τ) | ∀u ∈ U satisfying (2)− (6)}. (
)

The convex set CDP
U (λ, τ) constitutes the set of feasible instantiations to the

LP Lr(U) and is exactly in the form of Equation 5 in [16]. Using CDP
U (λ, τ), we

reformulate Lr(U) as the convex program

minimize τ

subject to (λ, τ) ∈ CDP
U (λ, τ),

(9)

where the last constraint denotes that for a given (λ, τ), the feasible set of
CDP

U (λ, τ) is not empty, i.e., there exists a feasible solution pair (λ, τ) to the
scenario problem Lr(U). This convex program asserts that all MCs in U should
induce a reachability probability that is less than τ , satisfying the specification
ϕr. Moreover, the convex program constitutes a scenario approximation to the so-
called chance-constrained problem [1]. Such an optimization problem states that
the probability of satisfying a (chance) constraint is above a certain threshold:

minimize τ
subject to (λ, τ) ∈ R× R,

P
(
(λ, τ) ∈ CDP

VD (λ, τ)
)
≥ 1− ν.

(10)

The chance constraint in (10) ensures that the probability that an instantiation—
obtained via distribution P—satisfies the specification ϕr is at least 1−ν. Theorem
1 in [16] shows that any feasible solution to the problem in (9) is feasible to the
problem in (10) with a confidence probability of 1 − αν , which shows that the
violation probability of the solution is at most ν. In our case, the probability of
violation is exactly the probability that the instantiated MCs do not satisfy the
specification ϕr. Thus, the claim follows.
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Remark 4 (Independence to model size). The confidence probability in Theo-
rem 1 is in fact independent from the number of states, transitions, or random
parameters of the uMC. From a practical perspective, the number of samples
that are needed for a certain confidence does not depend on the model size.

Finally, Theorem 1 asserts that with a probability of at least 1−αν , the next
sampled point from VD will satisfy the specification with a probability of at least
1− ν. Note that αν is the tail probability of a binomial distribution. It converges
exponentially rapidly to 0 in |U| [16].

4.2 Satisfaction Probability by Treating Violating Samples

Theorem 1 assumes that all sampled points, that is, the induced MCs, satisfy the
specification ϕr. This is a severe assumption in general. To lift this assumption,
we consider the discarding approach from [19]. Specifically, after sampling a set of
instantiations U from VD according to the probability distribution P, we remove
the constraints for the MCs that violate the specification ϕr from the LP. We
construct the set R = U \Q, where Q denotes the set of samples that induce MCs
violating the specification ϕr. Therefore, the set R denotes the set of sampled
MCs that satisfy the specification ϕr. We then solve the LP Lr(R)

minimize τ
subject to ∀u ∈ R,
(2)− (6),

(11)

where for u ∈ R and s ∈ S, pus gives the probability of satisfying the reachability
specification of the instantiated MC D[u] at state s. The other constraints in the
optimization problem in LP Lr(R) are identical to the LP Lr(U). We give the
main result of this section.

Theorem 2. Let uMC D and the sample sets U ,Q ⊆ VD, with K = |U| ≥ 2 and
L = |Q|. For a given tolerance probability ν ∈ [0, 1), the associated confidence
probability is

αν =

(
L+ 1

L

)∑L+1

i=0

(
K

i

)
(1− ν)K−iνi. (12)

Then, with a probability of at least 1− αν , we have

F (DP, ϕr) ≥ 1− ν. (13)

Proof. Similar to the proof of Theorem 1, the main idea is to relate the LP Lr(R)
to the chance-constrained convex problem in (10). Then, we invoke the results
from [19, Theorem 1] to get the desired result. Let the convex set CDP

R (λ, τ),
which is generated by the samples in R, be defined by

CDP
R (λ, τ) = {(λ, τ) | ∀u ∈ R such that (∗) is satisfied}.
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The set CDP
R (λ, τ ) is in the form of the Definition 2.1 in [16]. We reformulate the

LP Lr(R) as the convex program

minimize τ

subject to (λ, τ) ∈ CDP
R (λ, τ).

(14)

where the last constraint denotes that the instantiated MCs from the parameter
values of the set R should induce a reachability probability less than τ , and thus,
satisfy the specification ϕr. The problem in (14) is a scenario approximation to
the problem in (10). Theorem 2.1 in [19] asserts that with a probability of αν ,
the violation probability of the solution is at most ν, which is the probability
of violating the specification for the next sample. Similar to Theorem 1, the
violation probability ν is the probability that an instantiated MC does not satisfy
the specification ϕr. Thus, the claim follows.

4.3 Expected Cost Specifications

So far, we have focused on parameters that were uncontrollable, and assumed to
be random. Now, we consider the case where the cost function c is parametric
and the cost parameters are controllable. Therefore, the parameters in the cost
function are now variables that we can optimize over to satisfy an expected cost
specification ϕc = EC≤κ(♦G) for the instantiated MCs. Similar to the previous
sections, we assume that we sample a set of instantiations Uc from the probability
distribution P over the parameter space VD. In this case, we modify the LP Lr(U)
to obtain the following LP, which we denote by Lc(Uc),

minimize τ
subject to ∀u ∈ Uc,
cusI ≤ τ,
cusI ≤ κ,
cus = 0 ∀s ∈ G,

cus = c(s) +
∑

s′∈S
P(s, s′)[u] cus′ ∀s ∈ S \G,

(15)

where for s ∈ S, c(s) ∈ R|W|
≥0 is the cost function at state s, |W| is the number of

the cost parameters, and for u ∈ Uc, c
k
s gives the expected cost of reaching the

target G of the instantiated MC D[k] at state s. Note that the cost parameters W
are in the LP Lc(Uc) as variables for the parametric cost function,. In the scenario
problem (15), we optimize over c(s) and cks to minimize the maximal induced
cost of the instantiated MCs. If c is an affine function, then the optimization
problem Lc(Uc) is convex. In this case, the probabilistic properties of the scenario
problem are given by the following theorem.

Theorem 3. Let uMC D and the sample set Uc ⊆ VD with W = |W|, and
K = |Uc| ≥ W + 1. Assume for all u ∈ Uc, D[k] |= ϕc. For a given tolerance
probability ν ∈ [0, 1), let the associated confidence probability

αν =
∑W+1

i=0

(
K

i

)
(1− ν)K−iνi. (16)
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Then, with a probability of at least 1− αν , we have F (MP, ϕc) ≥ 1− ν.

Proof. Following the proof of Theorem 1, we define the convex set

CDP
Uc

(κ, τ, c) =
{
(κ, τ, c) | ∀u ∈ Uc such that

cusI ≤ τ,
cusI ≤ κ,
cus = 0 ∀s ∈ G,

cus = c(s) +
∑

s′∈S
P(s, s′)[u] cus′ ∀s ∈ S \G}

The main difference compared to the proof of Theorem 1 is that we have
cost parameters in c as the decision variables and we consider an expected cost
specification instead of a reachability specification. Similarly to the proof of
Theorem 1, we reformulate the LP Lc(Uc) as the following convex problem

minimize τ

subject to (κ, τ, c) ∈ R× R× R|W|,
(κ, τ, c) ∈ CDP

Uc
(κ, τ, c).

(17)

This convex problem is a scenario approximation to the chance constrained
problem given by

minimize τ

subject to (κ, τ, c) ∈ R× R× R|W|,
P
(
(κ, τ, c) ∈ CDP

VD (κ, τ, c)
)
≥ 1− ν.

(18)

Therefore, similar to the Theorem 1, we obtain the desired claim.

We now consider the case that we compute an instantiation of the cost
variables, and some of the instantiated MCs satisfy the expected cost specification.
We construct the set Rc = Uc \ Qc, where Qc denotes the set of samples that
induce MCs which violate the specification ϕc. For this case, we obtain:

Theorem 4. Let uMC D and the sample sets Uc,Qc ⊆ VD, with W = |W|,
K = |Uc| ≥ 2 and L = |Q|. For a given tolerance probability ν ∈ [0, 1), let the
associated confidence probability

αν =

(
l +W + 1

l

)∑l+W+1

i=0

(
K

i

)
(1− ν)K−iνi. (19)

Then, with a probability of at least 1− αν , we have F (MP, ϕc) ≥ 1− ν.

Proof. The proof is similar to the proofs of Theorem 2 and 3, and omitted.

4.4 Building Scenario-Based Algorithms

The question remains how we leverage the theoretical results to compute an
estimate on the satisfaction probability to solve Problems 1 and 2. For instance,
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let ν be a violation probability and U the sample set. Then, we can use Theorem 2
or 4 to compute the confidence probability αν by using the discarding approach
from [19]. Similarly, for a the sample set U and a threshold on the confidence
probability αν we do a bisection on ν. Specifically, we repeatedly apply Theorem 2
or 4 for different values of ν ∈ (0, 1), to see if the corresponding confidence
probability αν is below the threshold. We then approximate the lower and upper
bounds on ν.

The correctness of the approach is based on scenario-based optimization.
However, it also applies to an obtained solution by any procedure [39]. For
instance, for any obtained value for the controlled parameters, we can construct
a scenario program by sampling from random parameters. We can then apply
Theorem 2 or 4 to compute the confidence probability αν or the violation
probability ν.

Generalization to uMDPs. Recall that we want to compute the satisfaction
probability for a uMDP. The probability that for any sampled MDP we are able
to synthesize a policy that satisfies the specification ϕr. To generalize our results
to uMDPs, we can modify the constraint (6) in the LP Lr(U) as

pus ≤
∑

s′∈S
P(s, α, s′)[u] · pus′ , ∀s ∈ S \ (T ∪ ¬∃♦T ) , ∀α ∈ ActS (s), (20)

asserting that, for each non-target state s ∈ S and action α ∈ ActS (s), the
probability induced by the minimizing policy is an upper bound to the probability
variables pus . The reachability specification ϕr is satisfied if and only if the
reachability probability at the initial state induced by the minimizing policy is
less than λ. We can assert if ϕr is satisfied by combining the constraints (20)
with the constraints (2)–(5). Then, our theoretical results apply to the uMDPs.

5 Numerical Examples

We implemented the approach from Section 4 using the model checker Storm [35]
to construct and analyze samples of MDPs. To solve the scenario optimization
problems with cost parameters, we used the SCS solver [31]. All computations
ran on a computer with 8 2.2 GHz cores, and 32 GB of RAM.

We report on a set of well-known benchmarks used in parameter synthesis [46]
that are, for instance, available on the website of the tools PARAM [17] or part
of the PRISM benchmark suite [23]. Moreover, we created a dedicated case study
that is based on the aforementioned UAV example.

5.1 Parameter Synthesis Benchmarks

Setup. In our first set of benchmarks, we adopt parametric MDPs and MCs
from [32]. Essentially, the technique from that paper allows to approximate the
percentage of instantiations that satisfy (or do not satisfy) a specification. We
assume a uniform distribution over the parameter space and set ν equal to the
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Table 1. Information for the benchmark instances taken from [32].

Model Information Satisfaction Probability

benchmark instance ϕ #pars #states #trans sat (1 − ν) unsat (ν)

brp
(256,5) P 2 19 720 26 627 0.055 0.898
(16,5) E 4 1 304 1 731 0.275 0.676
(32,5) E 4 2 600 3 459 0.232 0.718

crowds
(10,5) P 2 104 512 246 082 0.537 0.413
(20,7) P 2 45 421 597 164 432 797 0.416 0.534

nand
(10,5) P 2 35 112 52 647 0.218 0.733
(25,5) P 2 865 592 1 347 047 0.206 0.744

consensus
(2,2) P 2 272 492 0.280 0.669
(4,2) P 4 22 656 75 232 0.063 0.888

Table 2. Confidence probabilities αν for different numbers of samples.

Samples 100 1,000 10,000

benchmark instance αν , sat αν , unsat αν , sat αν , unsat αν , sat αν , unsat Time (s)

brp
(256,5) 9.99 · 10−2 7.02 · 10−1 1.60 · 10−2 7.77 · 10−2 1.12 · 10−6 3.55 · 10−6 1761.45
(16,5) 2.72 · 10−1 1.97 · 10−1 1.14 · 10−1 3.36 · 10−2 5.52 · 10−6 1.80 · 10−8 39.76
(32,5) 4.01 · 10−1 2.95 · 10−1 1.39 · 10−1 7.76 · 10−2 1.24 · 10−6 2.63 · 10−6 78.17

crowds
(10,5) 2.57 · 10−1 3.72 · 10−1 1.65 · 10−1 1.16 · 10−1 9.33 · 10−7 8.22 · 10−4 0.19
(20,7) 4.18 · 10−1 1.38 · 10−1 2.41 · 10−1 9.48 · 10−2 5.81 · 10−5 2.83 · 10−5 0.45

nand
(10,5) 3.48 · 10−1 2.95 · 10−1 3.64 · 10−2 3.41 · 10−1 2.64 · 10−9 1.48 · 10−4 144.26
(25,5) 4.42 · 10−1 3.71 · 10−1 4.12 · 10−2 3.78 · 10−1 3.49 · 10−6 2.91 · 10−4 5327.82

consensus
(2,2) 3.38 · 10−1 3.56 · 10−1 1.32 · 10−1 1.32 · 10−1 5.67 · 10−7 8.37 · 10−4 0.72
(4,2) 1.79 · 10−1 1.41 · 10−1 6.51 · 10−2 4.75 · 10−3 4.26 · 10−5 9.29 · 10−8 300.21

percentage of instantiations that do not satisfy the specification (and vice versa
for 1 − ν). We solve Problem 1 and show that the satisfaction probability is
with confidence αν as least as high as the approximate satisfaction percentages
from [32]. We adapt the Consensus protocol [3] and the Bounded Retransmission
Protocol (brp) [5] to uMDPs; the Crowds Protocol (crowds) [12] and the NAND
Multiplexing benchmark (nand) [8] become uMCs. In Table 1 we list the type of
specification checked (ϕ) and the number of parameters, states, and transitions.
We also list the satisfaction probability (as obtained in [32]) for satisfying (sat)
and falsifying (unsat) the specification ϕ.

Results. Table 2 shows the confidence probability αν for each benchmark to
satisfy and falsify the specification after 100, 1 000 and 10 000 samples from the
parameter space. In particular, for each number of samples, we report the average
αν after running 10 full iterations of the same benchmark. Furthermore, we list
the time to solve 1 000 samples for each instance (Time (s)).

The results in Table 2 show that for some benchmarks we get a high confidence
probability already after 1 000 samples. For other benchmarks, the confidence
probability is still considerably low, for instance considering nand and falsifying
the specification. After 10 000 samples, we get a very high confidence in the
satisfaction probability for all benchmarks. These results demonstrate that we
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Fig. 2. An example of a 3D UAV benchmark with obstacles and a target area.

can efficiently compute a high confidence in the satisfaction probability. In
particular, for the same number of samples, the obtained confidence probabilities
are consistent for varying number of states and parameters of the underlying
models. Therefore, no dependence on the size of models is shown (see Remark 4).

5.2 UAV Motion Planning

In our second benchmark, we consider the previously mentioned UAV motion
planning example to model a realistic problem with a high number of random
parameters. We model the problem as a uMDP, where the parameters represent
how the weather conditions affect the movement of the UAV, and how the weather
may change. In particular, different wind conditions induce specific satisfaction
probabilities. We assume that the planning area is a certain valley where we
have historic weather data which provide distributions over parameter values.
The mission of the UAV is to transport a payload to a specific location and
return safely to its initial position. The problem is to compute the satisfaction
probability, that is, the probability that for any sampled MDP for this scenario
we are able to synthesize a UAV policy that satisfies the specification.

We model the problem as follows: States encode the position of the UAV, the
current weather situation, and the general wind direction in the valley. Parameters
describe how the weather affects the position of the UAV for different zones in
the valley, and how the weather/wind may change during the day. Fig. 2 shows
an example environment with zones to avoid (red) and a target zone (green).
We define four different weather conditions that each induce certain probability
distributions over the eight different wind directions. The parameters of the
model determine the probabilities of transitioning between different weather and
wind conditions at each time step. The specification is to reach the target zone
safely with a probability of at least 0.9. The number of states in our example is
266 880, and the number of parameters is 2 500.
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For the distributions over parameter values, that is, over weather conditions,
we consider the following cases. First, we assume a uniform distribution over the
different weather conditions in each zone. Second, the probability for a weather
condition inducing a wind direction that pushes the UAV into the positive y-
direction is five times more likely than others. Similarly, in the third case, it is
five times more likely to push the UAV into the negative x-direction. We depict
some example trajectories of the UAV for three different conditions in Fig. 2.
The trajectory given by the blue dashed line represents the expected trajectory
for the first case, taking a direct route to reach the target area. Similarly, the
trajectories given by the black dotted and solid green lines represent the expected
trajectories for the second and third cases. For the second case, we observe that
the UAV tries to avoid to get closer to the obstacles in x direction as the wind
may push the UAV to the obstacles. For the third case, the UAV avoids the
obstacle at the bottom and then reaches the target area.

We sample 1 000 parameters for each case and approximate the maximal
satisfaction probability with a confidence probability of at least 1 − αν , with
αν = 10−6. The highest satisfaction probability is given by the first weather
condition with 0.86, and the other conditions have a satisfaction probability of
0.78 and 0.75, showing that it may be harder to navigate around the obstacles
with non-uniform probability distributions. The average time to compute the
satisfaction probabilities is 1 341 seconds.

Finally, we introduce costs to a 2-dimensional example, where hitting an
obstacle causes (1) a cost of 100 and (2) the UAV to return to the initial position.
Specifically, we introduce cost parameters for transitions that steer the UAV
towards x or y-directions. We minimize the maximal possible expected cost
(under all parameter values) to reach the target location. The specification asserts
that the resulting expected cost should be less than 20.

We uniformly sample 1 000 parameter values for weather conditions and note
that the UAV policies favor on average transitioning to y-direction more compared
to the x-direction to minimize the cost while ensuring that the probability of
hitting an obstacle is minimized. The average expected cost of the induced MDPs
is 7.41 and the satisfaction probability is 0.71. The solving time for this example
is 2 274 seconds.

6 Conclusion

We presented a new sampling-based approach to uncertain Markov models. Theo-
retically, we showed how to effectively and efficiently approximate the probability
that any randomly drawn sample satisfies a temporal logic specification. Further-
more, we showed the computational tractability of our approaches by means of
well-known benchmarks and a new, dedicated case study.

In the future, we plan to exploit our approaches for more involved models
such as parametric extensions to continuous-time Markov chains [9] or Markov
automata [22]. Another line of future work will be a closer integration with a
parameter synthesis framework.
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Abstract. We characterize the class of nondeterministic ω-automata that can be
used for the analysis of finite Markov decision processes (MDPs). We call these
automata ‘good-for-MDPs’ (GFM). We show that GFM automata are closed un-
der classic simulation as well as under more powerful simulation relations that
leverage properties of optimal control strategies for MDPs. This closure enables
us to exploit state-space reduction techniques, such as those based on direct and
delayed simulation, that guarantee simulation equivalence. We demonstrate the
promise of GFM automata by defining a new class of automata with favorable
properties—they are Büchi automata with low branching degree obtained through
a simple construction—and show that going beyond limit-deterministic automata
may significantly benefit reinforcement learning.

1 Introduction

System specifications are often captured in the form of finite automata over infinite
words (ω-automata), which are then used for model checking, synthesis, and learn-
ing. Of the commonly-used types of ω-automata, Büchi automata have the simplest
acceptance condition, but require nondeterminism to recognize all ω-regular languages.
Nondeterministic machines can use unbounded look-ahead to resolve nondeterministic
choices. However, important applications—like reactive synthesis or model checking
and reinforcement learning (RL) for Markov Decision Process (MDPs [23])—have a
game setting, which restrict the resolution of nondeterminism to be based on the past.

Being forced to resolve nondeterminism on the fly, an automaton may end up reject-
ing words it should accept, so that using it can lead to incorrect results. Due to this dif-
ficulty, initial solutions to these problems have been based on deterministic automata—
usually with Rabin or parity acceptance conditions. For two-player games, Henzinger
and Piterman proposed the notion of good-for-games (GFG) automata [15]. These are
nondeterministic automata that simulate [21,14,9] a deterministic automaton that rec-
ognizes the same language. The existence of a simulation strategy means that nondeter-
ministic choices can be resolved without look-ahead.
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The situation is better in the case of probabilistic model checking, because the game
for which a strategy is sought is played on an MDP against “blind nature,” rather than
against a strategic opponent who may take advantage of the automaton’s inability to
resolve nondeterminism on the fly. As early as 1985, Vardi noted that probabilistic
model checking can be performed with Büchi automata endowed with a limited form
of nondeterminism [34]. Limit deterministic Büchi automata (LDBA) [4,11,29] perform
no nondeterministic choice after seeing an accepting transition. Still, they recognize
all ω-regular languages and are, under mild restrictions [29], suitable for probabilistic
model checking.
Related Work. The production of deterministic and limit deterministic automata for
model checking has been intensively studied [24,22,1,26,33,32,27,29,8,30,20], and sev-
eral tools are available to produce different types of automata, incl. MoChiBA/Owl
[29,30,20], LTL3BA [1], GOAL [33,32], SPOT [8], Rabinizer [19], and Büchifier [16].

So far, only deterministic and a (slightly restricted [29]) class of limit determin-
istic automata have been considered for probabilistic model checking [34,4,11,29].
Thus, while there have been advances in the efficient production of such automata
[11,29,30,20], the consideration of suitable LDBAs by Courcoubetis and Yannakakis
in 1988 [3] has been the last time when a fundamental change in the automata founda-
tion of MDP model checking has occurred.
Contribution. The simple but effective observation that simulation preserves the suit-
ability for MDPs (for both traditional simulation and the AEC simulation we introduce)
extends the class of automata that can be used in the analysis of MDPs. This provides us
with three advantages: The first advantage is that we can now use a wealth of simulation
based statespace reduction techniques [7,31,10,9] on an automaton A (e.g. an SLDBA)
that we would otherwise use for MDP model checking. The second advantage is that
we can use A to check if a different language equivalent automaton, such as an NBA
B (e.g. an NBA from which A is derived) simulates A. For this second advantage, we
can dip into the more powerful class of AEC simulation we define in Section 4 that use
properties of winning strategies on finite MDPs. While this is not a complete method
for identifying GFM automata, our experimental results indicate that the GFM property
is quite frequent for NBAs constructed from random formulas, and can often be estab-
lished efficiently, while providing a significant statespace reduction and thus offering a
significant advantage for model checking.

A third advantage is that we can use the additional flexibility to tailor automata
for different applications than model checking, for which specialized automata classes
have not yet been developed. We demonstrate this for model-free reinforcement learn-
ing (RL). We argue that RL benefits from three properties that are less important in
model checking: The first—easy to measure—property is a small number of succes-
sors, the second and third, are cautiousness, the scope for making wrong decisions, and
forgiveness, the resilience against making wrong decisions, respectively.

A small number of successors is a simple and natural goal for RL, as the lack of
an explicit model means that the product space of a model and an automaton cannot
be evaluated backwards. In a forward analysis, it matters that nondeterministic choices
have to be modeled by enriching the decisions in the MDPs with the choices made
by the automaton. For LDBAs constructed from NBAs, this means guessing a suit-
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able subset of the reachable states when progressing to the deterministic part of the
automaton, meaning a number of choices that is exponential in the NBA. We show that
we can instead use slim automata in Section 3.2 as a first example of NBAs that are
good-for-MDPs, but not limit deterministic. They have the appealing property that their
branching degree is at most two, while keeping the Büchi acceptance mechanism that
works well with RL [12]. (Slim automata can also be used for model checking, but they
don’t provide similar advantages over suitable LDBAs there, because the backwards
analysis used in model checking makes selecting the correct successor trivial.)

Cautiousness and forgiveness are further properties, which are—while harder to
quantify—very desirable for RL: LDBAs, for example, suffer from having to make
a correct choice when moving into the deterministic part of the automaton, and they
have to make this correct choice from a very large set of nondeterministic transitions.
While this is unproblematic for standard model checking algorithms that are based on
backwards analysis, applications like RL that rely on forward analysis can be badly
affected when more (wrong) choices are offered, and when wrong choices cannot be
rectified. Cautiousness and forgiveness are a references to this: an automaton is more
cautious if it has less scope for making wrong decisions and more forgiving if it allows
for correcting previously made decisions (cf. Figure 5 for an example). Our experiments
(cf. Section 5) indicate that cautiousness and forgiveness are beneficial for RL.
Organization of the Paper. After the preliminaries, we introduce the “good-for-MDP”
property (Section 3) and show that it is preserved by simulation, which enables all
minimization techniques that offer the simulation property (Section 3.1). In Section 3.2
we use this observation to construct slim automata—NBAs with a branching degree of
2 that are neither limit deterministic nor good-for-games—as an example of a class of
automata that becomes available for MDP model checking and RL. We then introduce
a more powerful simulation relation, AEC simulation, that suffices to establish that an
automaton is good-for-MDPs (Section 4). In Section 5, we evaluate the impact of the
contributions of the paper on model checking and reinforcement learning algorithms.

2 Preliminaries

A nondeterministic Büchi automaton is a tuple A = 〈Σ,Q, q0,Δ, Γ 〉, where Σ is a
finite alphabet, Q is a finite set of states, q0 ∈ Q is the initial state, Δ ⊆ Q × Σ × Q
are transitions, and Γ ⊆ Q×Σ ×Q is the transition-based acceptance condition.

A run r of A on w ∈ Σω is an ω-word r0, w0, r1, w1, . . . in (Q×Σ)ω such that r0 =
q0 and, for i > 0, it is (ri−1, wi−1, ri) ∈ Δ. We write inf(r) for the set of transitions
that appear infinitely often in the run r. A run r of A is accepting if inf(r) ∩ Γ �= ∅.

The language, LA, of A (or, recognized by A) is the subset of words in Σω that have
accepting runs in A. A language is ω-regular if it is accepted by a Büchi automaton. An
automaton A = 〈Σ,Q,Q0,Δ, Γ 〉 is deterministic if (q, σ, q′), (q, σ, q′′) ∈ Δ implies
q′ = q′′. A is complete if, for all σ ∈ Σ and all q ∈ Q, there is a transition (q, σ, q′) ∈
Δ. A word in Σω has exactly one run in a deterministic, complete automaton.

A Markov decision process (MDP) M is a tuple (S,A, T,Σ, L) where S is a finite
set of states, A is a finite set of actions, T : S × A −⇁ D(S), where D(S) is the set of
probability distributions over S, is the probabilistic transition (partial) function, Σ is
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an alphabet, and L : S × A × S → Σ is the labeling function of the set of transitions.
For a state s ∈ S, A(s) denotes the set of actions available in s. For states s, s′ ∈ S and
a ∈ A(s), we have that T (s, a)(s′) equals Pr (s′|s, a).

A run of M is an ω-word s0, a1, . . . ∈ S×(A×S)ω such that Pr (si+1|si, ai+1) >
0 for all i ≥ 0. A finite run is a finite such sequence. For a run r = s0, a1, s1, . . .
we define the corresponding labeled run as L(r) = L(s0, a1, s1), L(s1, a2, s2), . . . ∈
Σω . We write Ω(M) (Paths(M)) for the set of runs (finite runs) of M and Ωs(M)
(Pathss(M)) for the set of runs (finite runs) of M starting from state s. When the MDP
is clear from the context we drop the argument M.

A strategy in M is a function μ : Paths → D(A) such that supp(μ(r)) ⊆
A(last(r)), where supp(d) is the support of d and last(r) is the last state of r. Let
ΩM

μ (s) denote the subset of runs ΩM(s) that correspond to strategy μ and initial state
s. Let ΠM be the set of all strategies. We say that a strategy μ is pure if μ(r) is a point
distribution for all runs r ∈ Paths and we say that μ is positional if last(r) = last(r′)
implies μ(r) = μ(r′) for all runs r, r′ ∈ Paths. The behavior of an MDP M under a
strategy μ with starting state s is defined on a probability space (Ωμ

s ,Fμ
s ,Pr

μ
s ) over the

set of infinite runs of μ from s.

3 Good-for-MDP (GFM) Automata

Given an MDP M and an automaton A = 〈Σ,Q, q0,Δ, Γ 〉, we want to compute an
optimal strategy satisfying the objective that the run of M is in the language of A. We
define the semantic satisfaction probability for A and a strategy μ from state s as:

PSemM
A (s, μ)=Pr μs {r∈Ωμ

s : L(r)∈LA} and PSemM
A (s)= sup

μ∈ΠM

(
PSemM

A (s, μ)
)
.

When using automata for the analysis of MDPs, we need a syntactic variant of the ac-
ceptance condition. Given an MDP M = (S,A, T,Σ, L) with initial state s0 ∈ S and
automaton A = 〈Σ,Q, q0,Δ, Γ 〉, the product M×A=(S×Q, (s0, q0), A×Q,T×, Γ×)
is an MDP [17] augmented with an initial state (s0, q0) and accepting transitions Γ×.
The (partial) function T× : (S ×Q)× (A×Q) −⇁ D(S ×Q) is defined by

T×((s, q), (a, q′))((s′, q′)) =

{
T (s, a)(s′) if (q, L(s, a, s′), q′) ∈ Δ

undefined otherwise.

Finally, Γ× ⊆ (S×Q)×(A×Q)×(S×Q) is defined by ((s, q), (a, q′), (s′, q′)) ∈ Γ×

if, and only if, (q, L(s, a, s′), q′) ∈ Γ and T (s, a)(s′) > 0. A strategy μ on the MDP
defines a strategy μ× on the product, and vice versa. We define the syntactic satisfaction
probabilities as

PSynMA ((s, q), μ×) = Pr μs {r ∈ Ωμ×

(s,q)(M×A) : inf(r) ∩ Γ× �= ∅} , and

PSynMA (s) = sup
μ×∈ΠM×A

(
PSynMA ((s, q0), μ

×)
)
.

Note that PSynMA (s) = PSemM
A (s) holds for a deterministic A. In general, PSynMA (s)

≤ PSemM
A (s) holds, but equality is not guaranteed because the optimal resolution of

nondeterministic choices may require access to future events (see Figure 1).



310 E. M. Hahn et al.

a, b

b

a, b

a

1
2
: a 1

2
: b

Fig. 1. An NBA, which accepts all words over the alphabet {a, b}, that is not good for MDPs.
The dotted transitions are accepting. For the Markov chain on the right where the probability of
a and b is 1

2
, the chance that the automaton makes infinitely many correct predictions is 0

Definition 1 (GFM automata). An automaton A is good for MDPs if, for all MDPs
M, PSynMA (s0) = PSemM

A (s0) holds, where s0 is the initial state of M.

For an automaton to match PSemM
A (s0), its nondeterminism is restricted not to rely

heavily on the future; rather, it must possible to resolve the nondeterminism on-the-fly.
For example, the Büchi automaton presented on the left of Figure 1, which has to guess
whether the next symbol is a or b, is not good for MDPs, because the simple Markov
chain on the right of Figure 1 does not allow resolution of its nondeterminism on-the-fly.

There are three families of automata that are known to be good for MDPs: (1) de-
terministic automata, (2) good for games automata [15,18], and (3) limit deterministic
automata that satisfy a few side constraints [4,11,29].

A limit-deterministic Büchi automaton (LDBA) is a nondeterministic Büchi au-
tomaton (NBA) A = 〈Σ,Qi ∪ Qf , q0,Δ, Γ 〉 such that Qi ∩ Qf = ∅; q0 ∈ Qi;
Γ ⊆ Qf × Σ × Qf ; (q, σ, q′), (q, σ, q′′) ∈ Δ and q, q′ ∈ Qf implies q′ = q′′; and
(q, σ, q′) ∈ Δ and q ∈ Qf implies q′ ∈ Qf . An LDBA behaves deterministically once
it has seen an accepting transition. Usual LDBA constructions [11,29] produce GFM
automata. We refer to LDBAs with this property as suitable (SLDBAs), cf. Theorem 1.

In the context of RL, techniques based on SLDBAs are particularly useful, because
these automata use the Büchi acceptance condition, which can be translated to reacha-
bility goals. Good for games and deterministic automata require more complex accep-
tance conditions, like parity, that do not have a natural translation into rewards [12].

Using SLDBA [4,11,29] has the drawback that they naturally have a high branching
degree in the initial part, as they naturally allow for many different transitions to the
accepting part of the LDBA. This can be avoided, but to the cost of a blow-up and a
more complex construction and data structure [29]. We therefore propose an automata
construction that produces NBAs with a small branching degree—it never produces
more than two successors. We call these automata slim. The resulting automata are not
(normally) limit deterministic, but we show that they are good for MDPs.

Due to technical dependencies we start with presenting a second observation, namely
that automata that simulate language equivalent GFM automata are GFM. As a side re-
sult, we observe that the same holds for good-for-games automata. The side result is not
surprising, as good-for-games automata were defined through simulation of determin-
istic automata [15]. But, to the best of our knowledge, the observation from Corollary
1 has not been made yet for good-for-games automata.
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3.1 Simulating GFM

An automaton A simulates an automaton B if the duplicator wins the simulation game.
The simulation game is played between a duplicator and a spoiler, who each control a
pebble, which they move along the edges of A and B, respectively. The game is started
by the spoiler, who places her pebble on an initial state of B. Next, the duplicator puts
his pebble on an initial state of A. The two players then take turns, always starting
with the spoiler choosing an input letter and a transition for that letter in B, followed
by the duplicator choosing a transition for the same letter in A. This way, both players
produce an infinite run of their respective automaton. The duplicator has two ways to
win a play of the game: if the run of A he constructs is accepting, and if the run the
spoiler constructs on B is rejecting. The duplicator wins this game if he has a winning
strategy, i.e., a recipe to move his pebble that guarantees that he wins. Such a winning
strategy is “good-for-games,” as it can only rely on the past. It can be used to transform
winning strategies of B, so that, if they were witnessing a good for games property or
were good for an MDP, then the resulting strategy for A has the same property.

Lemma 1 (Simulation Properties). For ω-automata A and B the following holds.

1. If A simulates B then L(A) ⊇ L(B).
2. If A simulates B and L(A) ⊆ L(B) then L(A) = L(B).
3. If A simulates B, L(A) = L(B), and B is GFG, then A is GFG.
4. If A simulates B, L(A) = L(B), and B is GFM, then A is GFM.

Proof. Facts (1) and (2) are well known observations. Fact (1) holds because an accept-
ing run of B on a word α can be translated into an accepting run of A on α by using the
winning strategy of A in the simulation game. Fact (2) follows immediately from Fact
(1). Facts (3) and (4) follow by simulating the behaviour of B on each run. ��
This observation allows us to use a family of state-space reduction techniques, in par-
ticular those based on language preserving translations for Büchi automata based on
simulation relation [7,31,10,9]. This requires stronger notions of simulations, like di-
rect and delayed simulation [9]. For the deterministic part of an LDBA, one can also
use space reduction techniques for DBAs like [25].

Corollary 1. All statespace reduction techniques that turn an NBA A into an NBA B
that simulates A preserve GFG and GFM: if A is GFG or GFM, then B is GFG or
GFM, respectively.

3.2 Constructing Slim GFM Automata

Let us fix Büchi automaton B =
〈
Σ,Q,Q0,Δ, Γ

〉
. We can write Δ as a function

δ̂ : Q × Σ → 2Q with δ̂ : (q, σ) �→ {q′ ∈ Q | (q, σ, q′) ∈ Δ}, which can be lifted
to sets, using the deterministic transition function δ : 2Q × Σ → 2Q with δ : (S, σ) �→⋃

q∈S δ̂(q, σ). We also define an operator, ndet, that translates deterministic transition
functions δ : R×Σ → R to relations, using

ndet : (R×Σ → R) → 2R×Σ×R with ndet : δ �→ {
(q, σ, q′) | q′ ∈ δ({q}, σ)}.
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This is just an easy means to move back and forth between functions and relations,
and helps one to visualize the maximal number of successors. We next define the vari-
ations of subset and breakpoint constructions that are used to define the well-known
limit deterministic GFM automata—which we use in our proofs—and the slim GFM
automata we construct. Let 3Q :=

{
(S, S′) | S′ � S ⊆ Q

}
and 3Q+ :=

{
(S, S′) | S′ ⊆

S ⊆ Q
}

. We define the subset notation for the transitions and accepting transitions as
δS , γS : 2

Q ×Σ → 2Q with

δS : (S, σ) �→
{
q′ ∈ Q | ∃q ∈ S. (q, σ, q′) ∈ Δ

}
and

γS : (S, σ) �→
{
q′ ∈ Q | ∃q ∈ S. (q, σ, q′) ∈ Γ

}
.

We define the raw breakpoint transitions δR : 3Q×Σ→3Q+ as
(
(S, S′), σ

)�→(
δS(S, σ),

δS(S
′, σ) ∪ γS(S, σ)

)
. In this construction, we follow the set of reachable states (first

set) and the states that are reachable while passing at least one of the accepting transi-
tions (second set). To turn this into a breakpoint automaton, we reset the second set to
the empty set when it equals the first; the transitions where we reset the second set are
exactly the accepting ones. The breakpoint automaton D =

〈
Σ, 3Q, (Q0, ∅), δB , γB

〉
is

defined such that, when δR :
(
(S, S′), σ

) �→ (R,R′), then there are three cases:

1. if R = ∅, then δB
(
(S, S′)

)
is undefined (or, if a complete automaton is preferred,

maps to a rejecting sink),
2. else, if R �= R′, then δB :

(
(S, S′), σ

) �→ (R,R′) is a non-accepting transition,
3. otherwise δB , γB :

(
(S, S′), σ

) �→ (R′, ∅) is an accepting transition.

Finally, we define transitions ΔSB ⊆ 2Q ×Σ × 3Q that lead from a subset to a break-
point construction, and γ2,1 : 3

Q×Σ → 3Q that promote the second set of a breakpoint
construction to the first set as follows.

1. ΔSB =
{(

S, σ, (S′, ∅)) | ∅ �= S′ ⊆ δS(S, σ)
}

are non-accepting transitions,

2. if δS(S′, σ) = γS(S, σ) = ∅, then γ2,1
(
(S, S′), σ

)
is undefined, and

3. otherwise γ2,1 :
(
(S, S′), σ

) �→ (
δS(S

′, σ)∪γS(S, σ), ∅
)

is an accepting transition.

We can now define standard limit deterministic good for MDP automata.

Theorem 1. [11] A =
〈
Σ, 2Q ∪ 3Q, Q0, ndet(δS)∪ΔSB ∪ ndet(δB), ndet(γB)

〉
rec-

ognizes the same language as B. It is limit deterministic and good for MDPs.

We now show how to construct a slim GFM Büchi automaton.

Theorem 2 (Slim GFM Büchi Automaton). The automaton

S =
〈
Σ, 3Q, (Q0, ∅), ndet(δB) ∪ ndet(γ2,1), ndet(γB) ∪ ndet(γ2,1)

〉
simulates A. S is slim, language equivalent to B, and good for MDPs.

Proof. S is slim: its set of transitions is the union of two sets of deterministic transi-
tions. We show that S simulates A by defining a strategy in the simulation game, which
ensures that, if the spoiler produces a run S0 . . . Sj−1(Sj , S

′
j)(Sj+1, S

′
j+1) . . . for A,
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then the duplicator produces a run (T0, T
′
0) . . . (Tj−1, T

′
j−1)(Tj , T

′
j)(Tj+1, T

′
j−1) . . .

for S, such that (1) Si ⊆ Ti holds for all i ∈ ω, and (2) if there are two accepting tran-
sitions

(
(Sk−1, S

′
k−1), σk, (Sk, S

′
k)
)

and
(
(Sl−1, S

′
l−1), σl, (Sl, S

′
l)
)

with k < l, there
is an k < m ≤ l, such that

(
(Tm−1, T

′
m−1), σm(Tm, T ′

m)
)

is accepting.
To obtain this, we describe a winning strategy for the duplicator while arguing in-

ductively that it mainains (1). Note that (1) holds initially (T0 = S0, induction basis).

Initial Phase: Every move of the spoiler—with some letter σ—that uses a transition
from δS—the subset part of A—is followed by a move from δB with the same letter
σ. When the duplicator follows this strategy the following holds: when, after a pair of
moves, the pebble of the spoiler is on state S ⊆ Q, then the pebble of the duplicator is
on some state (S, S′). In particular, (1) is preserved during this phase (induction step).

Transition Phase: The one spoiler move—with some letter σ—that uses a transition
from ΔSB—the transition to the breakpoint part of A—is followed by a move from δB
with the same letter σ. When the duplicator follows this strategy, and when, after the
pair of moves, the pebble of the spoiler is on state (S, ∅), then the pebble of the duplica-
tor is on some state (T, T ′) with S ⊆ T . In particular, (1) is preserved (induction step).

Final Phase: When the spoiler moves from some state (S, S′)—with some letter σ—
that uses a transition from δB—the breakpoint part of A—to (S̄, S̄′), and when the
duplicator is in some state (T, T ′), then the duplicator does the following. He calcu-
lates (T̄ , ∅) = γ2,1

(
(T, T ′), σ

)
and checks if S̄ ⊆ T̄ holds. If S̄ ⊆ T̄ holds, he plays

this transition from γ2,1 (with the same letter σ). Otherwise, he plays the transition from
δB (with the same letter σ). In either case (1) is preserved (induction step), which closes
the inductive argument for (1).

Note that no accepting transition of A is passed in the initial or tansition phase, so
the two accepting transitions from (2) must both fall into the final phase.

To show (2), we first observe that S′
k = ∅, and thus S′

k ⊆ T ′
k holds. Assuming for

contradition that all transitions of S for σk+1 . . . σl−1 are non-accepting, we obtain—
using (1)—by a straightforward inductive argument that S′

i ⊆ T ′
i for all i with k≤i<l.

(Note that transitions in δB are accepting when they are also be in γB .)
Using that Sl = δS(S

′
l−1, σl) ∪ γS(Sl−1, σl) ⊆ δS(T

′
l−1, σl) ∪ γS(Tl−1, σl) holds,

the spoiler uses an accepting transition from γ2,1 in this step.
Using Lemma 1, it now suffices to show that the language of S is included in the lan-

guage of B. To show this, we simply argue that an accepting run ρ = (Q0, Q
′
0), (Q1, Q

′
1),

(Q2, Q
′
2), (Q3, Q

′
3), . . . of S on an input word α = σ0, σ1, σ2, . . . can be interpreted

as a forest of finitely many finitely branching trees of overall infinite size, where all
infinite branches are accepting runs of B. Kőnig’s Lemma then proves the existence of
an accepting run of B.

This forest is the usual one. The nodes are labeled by states of B, and the roots (level
0) are the initial states of B. Let I =

{
i ∈ N | ((Qi−1, Q

′
i−1), σi−1, (Qi, Q

′
i)
) ∈ Γ :=

ndet(γB)∪ndet(γ2,1)
}

be the set of positions after accepting transitions in ρ. We define
the predecessor function pred : N → I∪{0} with pred : i �→ max

{
j ∈ I∪{0} | j < i

}
.

We call a node with label ql on level l an end-point if one of the following applies:
(1) ql /∈ Ql or (2) l ∈ I and for all j such that pred(l) ≤ j < l, where qj is the label of
the ancestor of this node on level j, we have (qj , σj , qj+1) /∈ Γ .
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Fig. 2. An NBA for GF a (in the upper right corner) together with an SLDBA and a slim NBA
constructed from it. The SLDBA and the slim NBA are shown sharing their common part.
State {0, 1}, produced by the subset construction, is the initial state of the SLDBA, while state
({0, 1}, ∅)—the initial state of the breakpoint construction—is the initial state of the slim NBA.
States ({1}, ∅) and ({0}, ∅) are states of the breakpoint construction that only belong to the
SLDBA because they are not reachable from ({0, 1}, ∅). The transitions out of {0, 1}, except the
self loop, belong to ΔSB . The dashed-line transition from ({0, 1}, {0}) belongs to γ2,1

(1) may only happen after a transition from γ2,1 has been taken, and the ql is not
among the states that is traced henceforth. (2) identifies parts of the run tree that do not
contain an accepting transition.

A node labeled with ql on level l that is not an endpoint has
∣∣δS(ql, σl)

∣∣ children,
labeled with the different elements of δS(ql, σl). It is now easy to show by induction
over i that the following holds.

1. For all q ∈ Qi, there is a node on level i labeled with q.
2. For i /∈ I and q ∈ Q′

i, there is a node labeled q on level i, a j with pred(i) ≤ j < i,
and ancestors on level j and j+1 labeled qj and qj+1, such that (qj , σj , qj+1) ∈ Γ .
(The ‘ancestor’ on level j + 1 might be the state itself.)
For i ∈ I and q ∈ Q′

i, there is a node labeled q on level i, which is not an end point.

Consequently, the forest is infinite, finitely branching, and finitely rooted, and thus con-
tains an infinite path. By construction, this path is an accepting run of B. ��

The resulting automata are simple in structure and enable symbolic implementation
(See Fig. 2). It cannot be expected that there are much smaller good for MDP automata,
as its explicit construction is the only non-polynomial part in model checking MDPs.

Theorem 3. Constructing a GFM Büchi automaton G that recognizes the models of an
LTL formula ϕ requires time doubly exponential in ϕ, and constructing a GFM Büchi
automaton G that recognizes the language of an NBA B requires time exponential in B.

Proof. As resulting automata are GFM, they can be used to model check MDPs M
against this property, with cost polynomial in product of M and G. If G could be pro-
duced faster (and if they could, consequently be smaller) than claimed, it will contradict
the 2-EXPTIME- and EXPTIME-hardness [4] of these model checking problems. ��
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4 Accepting End-Component Simulation

An end-component [5,2] of an MDP M is a sub-MDP M′ of M such that its underlying
graph is strongly connected. A maximal end-component is maximal under set-inclusion.
Every state of an MDP belongs to at most one maximal end-component.

Theorem 4 (End-Component Properties. Theorem 3.1 and Theorem 4.2 of [5]).

Once an end-component C of an MDP is entered, there is a strategy that visits every
state-action combination in C infinitely often with probability 1 and stays in C forever.

For a product MDP, an accepting end-component (AEC) is an end-component that
contains some transition in Γ×. There is a positional pure strategy for an AEC C that
surely stays in C and almost surely visits a transition in Γ× infinitely often.

For a product MDP, there is a set of disjoint accepting end-components such that,
from every state, the maximal probability to reach the union of these accepting end-
components is the same as the maximal probability to satisfy Γ×. Moreover, this prob-
ability can be realized by combining a positional pure (reachability) strategy outside of
this union with the aforementioned positional pure strategies for the individual AECs.

Lemma 1 shows that the GFM property is preserved by simulation: For language-
equivalent automata A and B, if A simulates B and B is GFM, then A is also GFM.
However, a GFM automaton may not simulate a language-equivalent GFM automaton.
(See Figure 3.) Therefore we introduce a coarser preorder, Accepting End-Component
(AEC) simulation, that exploits the finiteness of the MDP M. We rely on Theorem 4 to
focus on positional pure strategies for M×B. Under such strategies, M×B becomes
a Markov chain [2] such that almost all its runs have the following properties:

– They will eventually reach a leaf strongly connected component (LSCC) in the
Markov chain.

– If they have reached a LSCC L, then, for all � ∈ N, all sequences of transitions of
length � in L occur infinitely often, and no other sequence of length � occurs.

With this in mind, we can intuitively ask the spoiler to pick a run through this Markov
chain, and to disclose information about this run. Specifically, we can ask her to signal
when she has reached an accepting LSCC5 in the Markov chain, and to provide infor-
mation about this LSCC, in particular information entailed by the full list of sequences
of transitions of some fixed length � described above. Runs that can be identified to
either not reach an accepting LSCC, to visit transitions not in this list, or to visit only a
subset of sequences from this list, form a 0 set. In the simulation game we define below,
we make use of this observation to discard such runs.

A simulation game can only use the syntactic material of the automata—-neither
the MDP nor the strategy are available. The information the spoiler may provide can-
not explicitly refer to them. What the spoiler may be asked to provide is information
on when she has entered an accepting LSCC, and, once she has signaled this, which
sequences of length l of automata transitions of B occur in the LSCC. The sequences
of automata transitions are simply the projections on the automata transitions from the

5 There is nothing to show when a non-accepting LSCC is reached—if B rejects, then A may
reject too—nor when no LSCC is reached, as this occurs with probability 0.
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sequences of transitions of length � that occur in the LSCC L. We call this information
a gold-brim accepting end-component claim of length �, �-GAEC claim for short.

The term “gold-brim” in the definition indicates that this is a powerful approach,
but not one that can be implemented efficiently. We will define weaker, efficiently im-
plementable notions of accepting end-component claims (AEC claims) later.

The AEC simulation game is very similar to the simulation game of Section 3.1.
Both players produce an infinite run of their respective automata. If the spoiler makes
an AEC claim, e.g., an �-GAEC claim, we say that her run complies with it if, starting
with the transition when the AEC claim is made, all states, transitions, or sequences of
transitions in the claim appear infinitely often, and all states, transitions, and sequences
of transitions the claim excludes do not appear. For an �-GAEC claim, this means that
all of the sequences of transitions of length � in the claim occur infinitely often, and no
other sequence of length � occurs henceforth.

Thus, like a classic simulation game, an �-GAEC simulation game is started by the
spoiler, who places her pebble on an initial state of B. Next, the duplicator puts his
pebble on an initial state of A. The two players then take turns, always starting with
the spoiler choosing an input letter and an according transition from B, followed by the
duplicator choosing a transition for the same letter in A.

Different from the classic simulation game, in an �-GAEC simulation game, the
spoiler has an additional move that she can (and, in order to win, has to) perform once
in the game: In addition to choosing a letter and a transition, she can claim that she
has reached an accepting end-component, and provide a complete list of sequences of
automata transitions of length � that can henceforth occur. This store is maintained, and
never updated. It has no further effect on the rules of the game: Both players produce
an infinite run of their respective automata. The duplicator has four ways to win:

1. if the spoiler never makes an AEC claim,
2. if the run of A he constructs is accepting,
3. if the run the spoiler constructs on B does not comply with the AEC claim, and
4. if the run that the spoiler produces is not accepting.

For �-GAEC claims, (4) simply means that the set of transitions defined by the se-
quences does not satisfy the Büchi, parity, or Rabin acceptance condition.

Theorem 5. [�-GAEC Simulation] If A and B are language equivalent automata, B is
GFM, and there exists an � such that A �-GAEC simulates B, then A is GFM.

For the proof, we use an arbitrary (but fixed) MDP M, and an arbitrary (but fixed)
pure optimal positional strategy μ for M×B, resulting in the Markov chain (M×B)μ.
We assume w.l.o.g. that the accepting LSCCs in (M×B)μ are identified, e.g., by a bit.

Let τ be a winning strategy of the duplicator in an �-GAEC simulation game. Abus-
ing notation, we let τ ◦ μ denote the finite-memory strategy6 obtained from μ and τ for
M×A, where τ is acting only on the automata part of (M×B), and where the spoiler

6 The strategy τ consists of one sub-strategy to be used before the AEC claim is made and one
sub-strategy for each possible �-GAEC claim. The memory of τ ◦ μ tracks the position in
(M×B)μ. When an accepting LSCC is detected (via the marker bit) analysis of (M×B)μ
reveals the only possible �-GAEC claim. This claim is used to select the right entry from τ .
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makes the move to the end-component when she is in some LSCC B of (M×B)μ and
gives the full list of sequences of transitions of length � that occur in B.

Proof. As B is good for MDPs, we only have to show that the chance of winning in
(M × A)τ◦μ is at least the chance of winning in (M × B)μ. The chance of winning
in (M×B)μ is the chance of reaching an accepting LSCC in (M×B)μ. It is also the
chance of reaching an accepting LSCC L ∈ (M × B)μ and, after reaching L, to see
exactly the sequences of transitions of length � that occur in L, and to see all of them
infinitely often.

By construction, τ ◦μ will translate those runs into accepting runs of (M×A)τ◦μ,
such that the chance of an accepting run of (M × A)τ◦μ is at least the chance of an
accepting run of (M × B)μ. As μ is optimal, the chance of winning in M × A is at
least the chance of winning in M×B. As B is GFM, this is the chance of M producing
a run accepted by B (and thus A) when controlled optimally, which is an upper bound
on the chance of winning in M×A. ��

An �-GAEC simulation, especially for large �, results in very large state spaces,
because the spoiler has to list all sequences of transitions of B of length � that will
appear infinitely often. No other sequence of length � may then appear in the run7. This
can, of course, be prohibitively expensive.

As a compromise, one can use coarser-grained information at the cost of reducing
the duplicator’s ability of winning the game. E.g., the spoiler could be asked to only
reveal a transition that is repeated infinitely often, plus (when using more powerful
acceptance conditions than Büchi), some acceptance information, say the dominating
priority in a parity game or a winning Rabin pair. This type of coarse-grained claim can
be refined slightly by allowing the duplicator to change at any time the transition that
is to appear infinitely often to the transition just used by the spoiler. Generally, we say
that an AEC simulation game is any simulation game, where

– the spoiler provides a list of states, transitions, or sequences of transitions that will
occur infinitely often and a list of states, transitions, or sequences of transitions that
will not occur in the future when making her AEC claim, and

– the duplicator may be able to update this list based on his observations,
– there exists some �-GAEC simulation game such that a winning strategy of the

spoiler translates into a winning strategy of the spoiler in the AEC simulation game.

The requirement that a winning spoiler strategy translates into a winning spoiler strategy
in an �-GAEC game entails that AEC simulation games can prove the GFM property.

Corollary 2. [AEC Simulation] If A and B are language equivalent automata, B is
good for MDPs, and A AEC-simulates B, then A is good for MDPs.

7 The AEC claim provides information about the accepting LSCC in the product under the cho-
sen pure positional strategy. When the AEC claim requires the exclusion of states, transitions,
or sequences of transitions, then they are therefore surely excluded, whereas when it requires
inclusion of, and thus inclusion of infinitely many occurrances of, states, trasitions, or se-
quences of transitions, then they (only) occur almost surely infinitely often. Yet, runs that do
not contain them all infinitely often form a zero set, and can thus be ignored.
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Fig. 3. Automata A (left) and B (right) for ϕ = (GF a) ∨ (GF b). The dotted transitions are
accepting. The NBA A does not simulate the DBA B: B can play a’s until A moves to either
the state on the left, or the state on the right. B then wins by henceforth playing only b’s or only
a’s. However, A is good for MDPs. It wins the AEC simulation game by waiting until an AEC
is reached (by B), and then check if a or b occurs infinitely often in this AEC. Based on this
knowledge, A can make its decision. This can be shown by AEC simulation if B has to provide
sufficient information, such as a list of transitions—or even a list of letters—that occur infinitely
often. The amount of information the spoiler has to provide determines the strength of the AEC
simulation used. If, e.g., B only has to reveal one accepting transition of the end-component,
then it can select an end-component where the revealed transition is (b1, c, b0), which does not
provide sufficient information. Whereas, if the duplicator is allowed to update the transition, then
the duplicator wins by updating the recorded transition to the next a or b transition

Of course, for every AEC simulation, one first has to prove that winning strategies for
the spoiler translate. We have used two simple variations of the AEC simulation games:

accepting transition: the spoiler may only make her AEC claim when taking an ac-
cepting transition; this transition—and no other information—is stored, and the spoiler
commits to—and commits only to—seeing this transition infinitely often;

accepting transition with update: different to the accepting transition AEC simulation
game, the duplicator can—but does not have to—update the stored accepting transition
whenever the spoiler passes by an accepting transition.

Theorem 6. Both, the accepted transition and the accepted transition with update AEC
simulation, can be used to establish the good for MDPs property.

To show this, we describe the strategy translations in accordance with Corollary 2.

Proof. In both cases, the translation of a winning strategy of the spoiler for the 1-GAEC
simulation game are straightforward: The spoiler essentially follows her winning strat-
egy from the 1-GAEC simulation game, with the extra rule that she will make her AEC
claim to the duplicator on the first accepting transition on or after her AEC claim in the
1-GAEC claim. If the duplicator is allowed to update the transition, this information is
ignored by the spoiler—she plays according to her winning strategy from the 1-GAEC
simulation game. Naturally, the resulting play will comply with her 1-GAEC claim, and
will thus also be winning for the—weaker—AEC claim made to the duplicator. ��

We use AEC simulation to identify GFM automata among the automata produced
(e.g., by SPOT [8]) at the beginning of the transformation. Figure 3 shows an example
for which the duplicator wins the AEC simulation game, but loses the ordinary simula-
tion game. Candidates for automata to simulate are, e.g., the slim GFM Büchi automata
and the limit deterministic Büchi automata discussed above.
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5 Evaluation

5.1 Size of General Büchi Automata for Probabilistic Model Checking

As discussed, automata that simulate slim automata or SLDBAs are good for MDPs.
This fact can be used to allow Büchi automata produced from general-purpose tools
such as SPOT’s [8] ltl2tgba rather than using specialized automata types. Automata
produced by such tools are often smaller because such general-purpose tools are highly
optimized and not restricted to producing slim or limit deterministic automata. Thus,
one produces an arbitrary Büchi automaton using any available method, then transforms
this automaton into a slim or limit deterministic automaton, and finally checks whether
the original automaton simulates the generated one.

We have evaluated this idea on random LTL formulas produced by SPOT’s tool
randltl. We have set the tree size, which influences the size of the formulas, to 50,
and have produced 1000 formulas with 4 atomic propositions each. We left the other
values to their defaults. We have then used SPOT’s ltl2tgba (version 2.7) to turn these
formulas into non-generalized Büchi automata using default options. Finally, for each
automaton, we have used our tool to check whether the automaton simulates a limit
deterministic automaton that we produce from this automaton. For comparison, we have
also used Owl’s [29] tool ltl2ldba (version 19.06.03) to compute limit deterministic non-
generalized Buchi automata. We have also used the option of this tool to compute Büchi
automata with a nondeterministic initial part. We used 10 minute timeouts.

Of these 1000 formulas, 315 can be transformed to deterministic Büchi automata.
For an additional 103 other automata generated, standard simulation sufficed to show
that they are GFM. For a further 11 of them, the simplest AEC simulation (the spoiler
chooses an accepting transition to occur infinitely often) sufficed, and another 1 could
be classed GFM by allowing the duplicator to update the transition. 501 automata turned
out to be nonsimulatable and for 69 we did not get a decision due to a timeout.

For the LTL formulas for which ltl2tgba could not produce deterministic automata,
but for which simulation could be shown, the number of states in the generated automata
was often lower than the number of states in the automata produced by Owl’s tools. On
average, the number of states per automaton was ≈15.21 for SPOT’s ltl2tgba; while for
Owl’s ltl2ldba it was ≈46.35. The extended version of this paper [13] contains more
details about the evaluation.

1 2 3 4 5

0.6

0.8

1

Fig. 4. Deciles ratio ltl2tgba
/semi-deterministic automata

Let us consider the ratio between the size of automata
produced by ltl2tgba and the size of semi-deterministic
automata produced by Owl. The average of this number
for all automata that are not deterministic and that can
be simulated in some way is ≈ 1.0335. This means that
on average, for these automata, the semi-deterministic
automata are slightly smaller. If we take a look at the
first 5 deciles depicted in Fig. 4, we see that there is a
large number of formulas for which ltl2tgba and Owl

produce automata of the same size. For around 24.3478% of the cases, automata by
SPOT are smaller than those produced by Owl (ratio < 1).
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5.2 GFM Automata and Reinforcement Learning

SLDBAs have been used in [12] for model-free reinforcement learning of ω-regular
objectives. While the Büchi acceptance condition allows for a faithful translation of
the objective to a scalar reward, the agent has to learn how to control the automaton’s
nondeterministic choices; that is, the agent has to learn when the SLDBA should cross
from the initial component to the accepting component to produce a successful run of a
behavior that satisfies the given objective.

Any GFM automaton with a Büchi acceptance condition can be used instead of
an SLDBA in the approach of [12]. While in many cases SLDBAs work well, GFM
automata that are not limit-deterministic may provide a significant advantage.

Early during training, the agent relies on uniform random choices to discover poli-
cies that lead to successful episodes. This includes randomly resolving the automaton
nondeterminism. If random choices are unlikely to produce successful runs of the au-
tomaton in case of behaviors that should be accepted, learning is hampered because
good behaviors are not rewarded. Therefore, GFM automata that are more likely to
accept under random choices will result in the agent learning more quickly. We have
found the following properties of GFM automata to affect the agent’s learning ability.
Low branching degree. A low branching degree presents the agent with fewer alterna-
tives, reducing the expected number of trials before the agent finds a good combination
of choices. Consider an MDP and an automaton that require a specific sequence of k
nondeterministic choices in order for the automaton to accept. If at each choice there
are b equiprobable options, the correct sequence is obtained with probability b−k.
Cautiousness. An automaton that enables fewer nondeterministic choices for the same
finite input word gives the agent fewer chances to choose wrong. The slim automata
construction has the interesting property of “collecting hints of acceptance” before a
nondeterministic choice is enabled because S′ has to be nonempty for a γ2,1 transition
to be present and that requires going through at least one accepting transition.
Forgiveness. Mistakes made in resolving nondeterminism may be irrecoverable. This
is often true of SLDBAs meant for model checking, in which jumps are made to select
a subformula to be eventually satisfied. However, general GFM automata, thanks also
to their less constrained structure, may be constructed to “forgive mistakes” by giving
more chances of picking a successful run.

Figure 5 compares a typical SLDBA to an automaton that is not limit-deterministic
and is not produced by the breakpoint construction, but is proved GFM by AEC simu-
lation. This latter automaton has a nondeterministic choice in state q0 on letter x ∧ ¬y
that can be made an unbounded number of times. The agent may choose q1 repeatedly
even if eventually FGx is false and GF y is true. With the SLDBA, on the other hand,
there is no room for error.
A Case Study. We compared the effectiveness in learning to control a cart-pole model
of three automata for the property

(
(FGx)∨ (GF y)

)∧G safe. The safety component
of the objective is to keep the pole balanced and the cart on the track. The left two thirds
of the track alternate between x and y at each step. The right third is always labeled y,
but in order to reach it, the cart has to cross a barrier, with probability 1/3 of failing.

The three automata are an SLDBA (4 states), a slim automaton (8 states), and a
handcrafted forgiving automaton (4 states) similar to the one of Fig. 5.
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Fig. 5. Two GFM automata for (FGx) ∨ (GF y). SLDBA (left), and forgiving (right)

Fig. 6. Learning curves

Training of the continuous-statespace
model employed PPO [28] as imple-
mented in OpenAI Baselines [6]. Fig-
ure 6 shows the learning curves for the
three automata averaged over ten runs.
They underline the importance of choos-
ing the right automaton in RL. Training
parameters, more details on the model,
and additional examples can be found in
the extended version of this paper [13].

6 Conclusion

We have defined the class of automata that are good for MDPs—nondeterministic au-
tomata that can be used for the analysis of MDPs—and shown it to be closed under
different simulation relations. This has multiple favorable implications for model check-
ing and reinforcement learning. Closure under classic simulation opens a rich toolbox
of statespace reduction techniques that come in handy to push the boundary of analysis
techniques, while the more powerful (and more expensive) AEC simulation has promise
to identify source automata that happen to be good for MDPs.

The wider class of GFM automata also shows promise: the slim automata we have
defined to tame the branching degree while retaining the desirable Büchi condition for
reinforcement learning are able to compete even against optimized SLDBAs.

As outlined in Section 5.2, a low branching degree, cautiousness, and forgiveness
make automata particularly well-suited for learning. From a practical point of view,
much of the power of this new approach is in harnessing the power of simulation for
learning, and forgiveness is closely related to simulation.

The natural follow-up research is to tap the full potential of simulation-based states-
pace reduction instead of the limited version that we have implemented. Besides using
this to get the statespace small—useful for model checking—we will use simulation to
construct forgiving automata, which is promising for reinforcement learning.

Datasets generated and analyzed during the current study are available at:
https://doi.org/10.6084/m9.figshare.11882739 [35,36]

https://doi.org/10.6084/m9.figshare.11882739
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Abstract. This paper introduces Farkas certificates for lower and upper
bounds on minimal and maximal reachability probabilities in Markov
decision processes (MDP), which we derive using an MDP-variant of
Farkas’ Lemma. The set of all such certificates is shown to form a poly-
tope whose points correspond to witnessing subsystems of the model and
the property. Using this correspondence we can translate the problem
of finding minimal witnesses to the problem of finding vertices with a
maximal number of zeros. While computing such vertices is computation-
ally hard in general, we derive new heuristics from our formulations that
exhibit competitive performance compared to state-of-the-art techniques.
As an argument that asymptotically better algorithms cannot be hoped
for, we show that the decision version of finding minimal witnesses is
NP-complete even for acyclic Markov chains.

1 Introduction

The goal of program verification is to consolidate the user’s trust that a given
system works as intended, and if this is not the case, to provide her with useful
diagnostic information. Verification tools may, however, contain bugs and so a last
grain of insecurity regarding their results always remains. A widely acknowledged
approach to overcome this dilemma has been made in the form of certifying
algorithms [17, 64]. These algorithms provide every result with an accompanying
certificate, i.e., a token that can be used to verify the result independently and
with little ressources. In this way, certificates enable the user (or a third party)
to quickly give a mathematically rigorous proof for the correctness of the result
irrespective of whether the algorithm itself works correctly.

Counterexamples, i.e. certificates for the violation of a property, can often be
obtained as a byproduct of verification procedures. What constitutes a counterex-
ample is highly context-dependent. Finite executions suffice as counterexamples
for safety properties and single, possibly infinite, executions are viable coun-
terexamples for LTL [29]. Tree-like counterexamples have been considered for
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fragments of CTL [28]. For a probabilistic system M and a linear time property
φ, the most prominent notion of counterexample to PrM(φ) < λ is a set of paths
satisfying φ whose probability mass is at least λ (see [1] for a survey).

Another notion of counterexample for probabilistic systems M and properties
of the form PrM(φ) < λ are critical subsystems [1]. We adopt the reverse
perspective and call a subsystem M′ of M a witnessing subsystem for the
property PrM(φ) ≥ λ if PrM′(φ) ≥ λ. Small witnessing subsystems offer an
insight into what parts of the system are responsible for the satisfaction of the
property. Nonetheless, witnessing subsystems can hardly be regarded as viable
certificates since verifying PrM′(φ) ≥ λ is as hard as checking PrM(φ) ≥ λ itself.

In this paper we build a solid bridge between certificates and witnessing
subsystems. The systems we consider are modeled as Markov decision processes
(MDP), which contain an absorbing goal state representing a desirable outcome.
This approach is motivated by the fact that numerous model checking tasks can
be reduced to reachability problems [3, 31, 32, 46, 73, 74].

Using Farkas’ Lemma, we introduce certificates for bounds on the minimal
and maximal probability to reach the goal state. We show that the set of these
certificates forms a polytope and we provide a direct translation of a certificate
to a witnessing subsystems for lower bounded threshold properties. Thereby, we
bridge the gap between an abstract gadget, serving solely as a proof that the
result is correct, and a concrete object, containing crucial diagnostic information
about why the result holds. Moreover, our translation reduces the computation
of minimal witnessing subsystems to a purely geometric problem, for which we
provide and evaluate new exact and heuristic algorithms.

All omitted proofs can be found in the full version of this paper [42].

Contributions.

– Following the concept of certificates in certifying algorithms, we introduce
Farkas certificates for reachability problems in MDPs (Table 1).

– We give a uniform notion of witnessing subsystem (WS) for Prmax
s0 (♦ goal) ≥

λ and Prmin
s0 (♦ goal) ≥ λ (Definition 4.1). To the best of our knowledge,

witnesses for Prmin
s0 (♦ goal) ≥ λ have not been considered previously.

– We establish NP-completeness for finding minimal WS even for acyclic discrete
time Markov chains (DTMC) (Theorem 4.5).

– Our main result establishes a strong connection between the polytopes of
Farkas certificates for Prmin

s0 (♦ goal) ≥ λ and Prmax
s0 (♦ goal) ≥ λ and WS of

the same property (Theorem 5.4). In particular, one can read off a minimal WS
from a vertex of the polytope with a maximal number of zeros (Corollary 5.5).

– From our polytope characterizations we derive two algorithms for computing
minimal WS: one based on vertex enumeration and one based on mixed integer
linear programming (Section 6). We also introduce a linear programming
based heuristic aimed at computing small WS. We evaluate our approach
on DTMC and MDP benchmarks, where particularly our heuristics show
competitive results compared to state-of-the-art techniques (Section 7).
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Table 1: Overview of Farkas certificates for reachability properties in
MDPs (where � ∈ {≤, <} and � ∈ {≥, >}).

Property Certificate dimension Certificate condition

Prmin
s0 (♦ goal) � λ z ∈ RS Az ≤ b ∧ z(s0) � λ

Prmax
s0 (♦ goal) � λ y ∈ RM

≥0 yA ≤ δs0 ∧ yb � λ

Prmin
s0 (♦ goal) � λ y ∈ RM

≥0 yA ≥ δs0 ∧ yb � λ

Prmax
s0 (♦ goal) � λ z ∈ RS Az ≥ b ∧ z(s0) � λ

Related work. The fundament of certifying algorithms has been surveyed
in [64]. In the context of model checking, the most prominent approach for the
certification of a positive result has been to construct a proof of the property
in the system [15, 66, 67]. Rank-based certificates for the emptiness of a certain
automaton [57] can be used to certify positive model checking results. Model
checking MDPs in the presence of multiple objectives has been studied in [37, 39].

Heuristic approaches for computing small witnessing subsystems in DTMCs
have been proposed in [5, 7, 49, 51, 52] and implemented in the tool Comics [50].
Witnessing subsystems in MDPs have been considered in [6, 9] and [19], which
focuses on succinctly representing witnessing schedulers. The mixed integer linear
programming (MILP) formulation of [77, 78] allows for an exact computation
of minimal witnessing subsystems for the property Prmax

s0 (♦ goal) � λ. NP-
completeness of computing minimal witnessing subsystems in MDPs was shown
in [24], but the exact complexity has, to the best of our knowledge, not been
determined for DTMCs (the problem was conjectured to be NP-complete in [77]).

Minimal probabilistic counterexamples given as sets of paths can be computed
by reframing the problem as a k-shortest-path problem [44, 45]. Regular expres-
sions have been considered to succinctly represent the set of paths in [33], and
extensions were proposed in [18, 76]. The tool Dipro [4] computes probabilistic
counterexamples, and a translation of these to fault trees was given in [56]. An-
other, learning-based, approach [20] also enumerates paths and produces a witness-
ing subsystem as a byproduct. But none of these approaches considers state-based
minimality. Probabilistic counterexamples can be used to automatically guide
iterative and refinement-based model checking techniques [23–25, 27, 48, 53].

Farkas’ Lemma is a well-known source of certificates for the (in)feasibility
of tasks in combinatorial optimization, operations research, and economics, as
presented in the detailed historical account given in [70, pp. 209–226] as well
as [62, Chapter 2] and [30, 65, 75]. The lecture notes [71] contain a rich variety of
applications of linear programming in general and Farkas’ Lemma in particular.

2 Preliminaries

Polyhedra and Farkas’ Lemma. Throughout the article we write the dot
product of two vectors x,y ∈ Rn as xy or x · y. A halfspace in Rn is a set
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H = {v ∈ Rn | a · v ≤ b} for some non-trivial a ∈ Rn and b ∈ R. A polyhedron
is the intersection of finitely many halfspaces, and a polytope is a bounded
polyhedron. A face of a polyhedron P is a subset F ⊆ P of the form F = {x ∈
P | a ·x = max{a ·y | y ∈ P}} for some a ∈ Rn. A vertex of P is a face consisting
of only one point.

Farkas’ Lemma [38] is part of the fundament of polyhedra theory and linear
programming. It provides a natural source of certificates showing the infeasibility
of a given system of inequalites, or in other words, the emptiness of the polyhedron
described by the system. We will use it in the following version.

Lemma 2.1 (Farkas’ Lemma, cf. [70, Corollary 7.1f on p. 90]). Let
A ∈ Rm×n and b ∈ Rm. Then there exists z ∈ Rn

≥0 with Az ≤ b if and only if
there does not exist y ∈ Rm

≥0 with yA ≥ 0 ∧ yb < 0.

Markov decision processes. A Markov decision process (MDP) is a tuple
M = (S,Act, ι,P), where S is a finite set of states, Act is a finite set of actions,
ι is a probability distribution on S called the initial distribution of M , and
P : S × Act×S → [0, 1] is the transition probability function where we require∑

s′∈S P(s, α, s′) ∈ {0, 1} for all s ∈ S and α ∈ Act. An action α is enabled in
state s ∈ S if

∑
s′∈S P(s, α, s′) = 1. The set of enabled actions at state s are

denoted by Act(s), and we require Act(s) �= ∅ for all s ∈ S. A path in an MDP
M is an infinite sequence s0α0s1α1... such that P(si, αi, si+1) > 0 for all i ≥ 0.
A finite path is a finite sequence π = s0α0s1α1...sn with the same condition for
all 0 ≤ i ≤ n− 1. In this case, we define last(π) = sn. Denote by Paths(M) and
Pathsfin(M) the set of infinite and finite paths in M.

A discrete-time Markov chain (DTMC) is an MDP with a single action
which is enabled at every state. If M is a DTMC, then Paths(M) carries a
probability measure, where the associated σ-algebra is generated by the cylinder
sets Cyl(τ) = {π ∈ Paths(M) | π has prefix τ} of finite paths τ = s0s1...sn in
M with probability Pr(Cyl(τ)) = ι(s0) ·

∏
0≤i<n P(si, si+1) (fore more details

see [13, Section 10.1]). In the following we denote for a finite set X the set of
probability distributions on X by Dist(X). Given μ ∈ Dist(X) let the support of
μ be supp(μ) = {x ∈ X | μ(x) > 0}.

A deterministic scheduler is a function S : Pathsfin(M) → Act such that
S(π) ∈ Act(last(π)) and a randomized scheduler is a function S : Pathsfin(M) →
Dist(Act) such that supp(S(π)) ⊆ Act(last(π)) for all π ∈ Pathsfin(M). Given a
deterministic (or randomized) scheduler S, a path π = s0α0s1α1... in M is an
S-path if αi = S(s0α0...si) (or αi ∈ supp(S(s0α0...si))) for all i ≥ 0.

We denote by PrS the probability measure on infinite S-paths (see [13,
Definition 10.92 on page 843] for more details). If we replace ι with the distribution
concentrated on state s, then we obtain a probability measure PrSM,s or short Pr

S
s

on infiniteS-paths starting in s. The scheduler ismemoryless ifS(π) = S(last(π))
for all π ∈ Pathsfin(M). We abbreviate memoryless deterministic schedulers as
MD-schedulers and memoryless randomized schedulers as MR-schedulers.
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Given a state t ∈ S, we let

Prmax
s (♦t) = sup

S
PrSs (♦t) and Prmin

s (♦t) = inf
S

PrSs (♦t)

denote the maximal and minimal probability to reach t eventually when starting
in s and set Prmin(♦t) = (Prmin

s (♦t))s∈S and Prmax(♦t) = (Prmax
s (♦t))s∈S . The

supremum and infimum is indeed attained by an MD-scheduler [13, Lemmata
10.102 and 10.113], thus justifying the superscripts.

Setting 2.2. Henceforth we will assume that M = (Sall,Act, ι,P) has a unique
initial state s0 ∈ S and two distinguished absorbing states fail and goal ∈
Sall, i.e., P(goal, α, s) = 0 for all α ∈ Act and s ∈ Sall with s �= goal, and
likewise for fail. Here goal represents a desirable outcome of the modeled system
and fail an outcome that is to be avoided. We use the notation S = Sall \
{fail, goal}, we assume that every state s ∈ S is reachable from s0. We also
assume that under every scheduler fail or goal is reachable from any state, i.e.,
Prmin

s (♦(goal∨ fail)) > 0 for all s ∈ S. If M does not satisfy this condition from
the start, we can apply a standard preprocessing step, which is essentially given
by taking the MEC quotient of M, see [2, 3] and also [26]. While it is often
easier to verify the condition Prmin

s (♦(goal∨ fail)) > 0, it is in fact equivalent to
Prmin

s (♦(goal∨ fail)) = 1 (see the full version [42]).
Whenever suitable, we denote by M also the set of enabled state-action pairs,

i.e., M = {(s, α) ∈ S ×Act | α ∈ Act(s)}. Let A ∈ RM×S be defined by

A((s, α), t) =

{
1−P(s, α, s), if s = t

−P(s, α, t), if s �= t

We denote by b = (b(s, α))(s,α)∈M ∈ RM with b(s, α) = P(s, α, goal) and by
δs0 the probability distribution that assigns 1 to s0, and 0 to all other states.

The vectors Prmin(♦ goal) and Prmax(♦ goal) can be characterized using the
following linear programs. Although this characterization is well-known, we give a
proof in the full version [42] due to slight differences with the standard literature.

Proposition 2.3 (LP characterization, cf. [16, Lemma 8]). Let M be
an MDP as in Setting 2.2 and let δ ∈ Rn

>0. Then the vectors Prmin(♦ goal) and
Prmax(♦ goal) are, respectively, the unique solution of the LPs

max δ · z s.t. Az ≤ b and min δ · z s.t. Az ≥ b.

3 Farkas certificates for reachability in MDPs

In this section we establish certificates for the following statements:

(1) All schedulers S satisfy PrSs0(♦ goal) � λ (i.e., Prmin
s0 (♦ goal) � λ).

(2) Some scheduler S satisfies PrSs0(♦ goal) � λ (i.e., Prmax
s0 (♦ goal) � λ).

(3) All schedulers S satisfy PrSs0(♦ goal) � λ (i.e., Prmax
s0 (♦ goal) � λ).

(4) Some scheduler S satisfies PrSs0(♦ goal) � λ (i.e., Prmin
s0 (♦ goal) � λ).

where � ∈ {≤, <} and � ∈ {≥, >}. The basis of our construction is the LP
characterization of the probabilities above and, crucially, Farkas’ Lemma.
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Certificates for universally-quantified statements. In order to deal with
the cases (1) and (3), we need the following lemma proved in the full version [42].

Lemma 3.1. For A ∈ RM×S ,b ∈ RM as in Setting 2.2, we have for all z ∈ RS :

Az ≤ b =⇒ z ≤ Prmin(♦ goal)

Az ≥ b =⇒ z ≥ Prmax(♦ goal)

Corollary 3.2. For � ∈ {≥, >} and � ∈ {≤, <} we have

Prmin
s0 (♦ goal) � λ ⇐⇒ ∃z ∈ RS . Az ≤ b ∧ z(s0) � λ

Prmax
s0 (♦ goal) � λ ⇐⇒ ∃z ∈ RS . Az ≥ b ∧ z(s0) � λ

Proof. For the direction from left to right, we take z to be Prmin(♦ goal). The
opposite direction follows from Lemma 3.1. �

The right hand sides of Corollary 3.2 provide certifying formulations for prob-
lems (1) and (3): to check whether the corresponding threshold statement holds,
one must merely check whether z satisfies the inequalities, rather than checking
whether Prmin /max

s0 (♦ goal) was computed correctly. If the threshold condition is

satisfied, then the vectors Prmin /max
s0 (♦ goal) are also valid certificates.

Certificates for existentially-quantified statements. To find certificates
for the cases (2) and (4), we calculate:

Prmin
s0 (♦ goal) < λ

Cor. 3.2⇐⇒ ¬∃z ∈ RS
≥0. Az ≤ b ∧ z(s0) ≥ λ

⇐⇒ ¬∃z ∈ RS
≥0.

⎛⎝ A

−1 0 . . . 0

⎞⎠ z ≤
⎛⎝ b

−λ

⎞⎠
Lem. 2.1⇐⇒ ∃y ∈ RM

≥0, y
∗ ≥ 0. (y, y∗)

⎛⎝ A

−1 0 . . . 0

⎞⎠ ≥ 0 ∧ (y, y∗)

⎛⎝ b

−λ

⎞⎠ < 0

⇐⇒ ∃y ∈ RM
≥0. yA ≥ δs0 ∧ yb < λ.

For non-strict inequalities, we apply Farkas’ Lemma in the opposite direction:

Prmin
s0 (♦ goal) ≤ λ

Cor. 3.2⇐⇒ ¬∃z ∈ RS
≥0. Az ≤ b ∧ z(s0) > λ

⇐⇒ ¬∃z ∈ RS
≥0, z

∗ ≥ 0.
(
−A b

)⎛⎝ z

z∗

⎞⎠ ≥ 0 ∧
(
−δs0 λ

)⎛⎝ z

z∗

⎞⎠ < 0

Lem. 2.1⇐⇒ ∃y ∈ RM
≥0. y

(
−A b

)
≤

(
−δs0 λ

)
⇐⇒ ∃y ∈ RM

≥0. yA ≥ δs0 ∧ yb ≤ λ.

The deductions for Prmax(♦ goal) are analogous, so that we get:
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Proposition 3.3. For � ∈ {≥, >} and � ∈ {≤, <} we have

Prmin
s0 (♦ goal) � λ ⇐⇒ ∃y ∈ RM

≥0. yA ≥ δs0 ∧ yb � λ

Prmax
s0 (♦ goal) � λ ⇐⇒ ∃y ∈ RM

≥0. yA ≤ δs0 ∧ yb � λ

Together, Corollary 3.2 and Proposition 3.3 give us all certificate conditions
of Table 1.

4 Minimal witnesses for reachability in MDPs

In this section we consider the following problem: Given an MDP M that satisfies
the property Prmin

M,s0(♦ goal) ≥ λ (or Prmax
M,s0(♦ goal) ≥ λ), find a small subsystem

M′ of M that still satisfies these thresholds. Such a subsystem is a witness to
the satisfaction of the property in M. We first define subsystems and consider
different measures of size which we show to be equivalent. Then we deal with the
question of finding minimal witnessing subsystems.

Subsystems, witnesses and notions of minimality. Our definition of sub-
system is essentially the same to the definition in [77, 78] that was used for
witnessing subsystems of Prmax

M,s0(♦ goal) � λ. From now on we restrict our

attention to properties of the form Pr
min /max
M,s0

(♦ goal) � λ. One can deal with
upper bounds by exchanging the roles of fail and goal and invoking the equality
Prmin

M,s0(♦ goal) = 1−Prmax
M,s0(♦ fail), which holds by the conditions of Setting 2.2.

Intuitively, a subsystem M′ of M contains a subset of states of M, and
a transition of M originating in a state of M′ remains unchanged in M′ or
is redirected to fail (instead of explicitely redirecting to fail, sub-stochastic
distributions are used in [77, 78] with the same effect).

Definition 4.1 (Subsystem and witness). Let M = (Sall,Act, s0,P) be an
MDP as in Setting 2.2. A subsystem M′ ⊆ M is an MDP M′ = (S′

all,Act, s0,P
′)

with fail, goal ∈ S′
all ⊆ Sall, ActM′(s) = ActM(s) for all s ∈ S′

all, and for all
s, t ∈ S′

all with t �= fail and α ∈ Act we have

P′(s, α, t) > 0 =⇒ P′(s, α, t) = P(s, α, t).

We say that the states Sall\S′
all and the transitions (s, α, t) with P(s, α, t) > 0 and

P′(s, α, t) = 0 have been deleted in M′. A witness for Pr
min /max
M,s0

(♦ goal) � λ is

a subsystem M′ ⊆ M such that Pr
min /max
M′,s0 (♦ goal) � λ.

Remark 4.2. The condition ActM′(s) = ActM(s) ensures that the probability of
a deleted transition (s, α, t) is added to (s, α, fail). This is essential for witnesses
for Prmin

M,s0(♦ goal) � λ as one could otherwise remove entire actions causing

low probabilities and obtain greater Prmin in M′ than in M as a result. For
witnesses of Prmax

M′,s0(♦ goal) � λ one could delete this condition, thus leading to
the notion of [77, 78].
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Fig. 1: An MDP (with omitted probabilities (a)) and a subsystem (b), where
redirected transitions are dashed.

Example 4.3. Figure 1a depicts an MDP and Figure 1b indicates the subsystem
that is obtained by deleting the state t and additionally the transition (u, α, s0).

The following lemma ensures that we can use the subsystems as witnesses for
both Prmax

M,s0(♦ goal) � λ and Prmin
M,s0(♦ goal) � λ.

Lemma 4.4. Let M be an MDP as in Setting 2.2 and M′ ⊆ M. Then:

Prmin
M′,s0(♦ goal) ≤ Prmin

M,s0(♦ goal) and Prmax
M′,s0(♦ goal) ≤ Prmax

M,s0(♦ goal)

We consider the following notions of minimality for subsystems:

(1) State-minimality: |S′
all| is minimal.

(2) Transition-minimality: The number of transitions, i.e. triples (s, α, t)
satisfying P′(s, α, t) > 0, is minimal;

(3) Size-minimality: The sum of states and transitions is minimal.

Depending on the situation, one notion might be more suitable than the
others. However, in the full version [42] we show that finding transition-minimal
(respectively, size-minimal) witnesses can be reduced to finding state-minimal
witnesses with a linear (respectively, quadratic) blow-up. We will therefore restrict
ourselves to state-minimality for the rest of this paper.

NP-completeness of finding minimal witnesses for DTMCs. In this
section we determine the computational complexity of the witness problem:
Given a DTMC M, a positive integer k, and a rational number λ ∈ [0, 1],
decide whether there exists a witness M′ ⊆ M for PrM,s0(♦ goal) ≥ λ with
at most k states. The corresponding problem for MDPs is known to be NP-
complete [24, 78]1. In this section we show that the witness problem is already

1 Although the framework in [24] considers a richer logic, the hardness proof uses only
probabilistic reachability formulas such as the ones we consider.
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NP-complete for acyclic DTMCs, where acyclicity means that the underlying
graph with V = S and E = {(s, t) ∈ S × S | P(s, t) > 0} is acyclic (as before, we
take S = Sall\{goal, fail}). This answers a conjecture of [77] in the affirmative and
also shows NP-completeness of finding minimal witnesses for Prmin

M,s0(♦ goal) ≥ λ.

Theorem 4.5. The witness problem is NP-complete for acyclic DTMCs.

Proof (Sketch). An NP-algorithm for the witness problem is given by guessing a
set of states of size k and verifying in polynomial time that the corresponding
subsystem satisfies PrM′,s0(♦ goal) ≥ λ.

For hardness, we give a reduction from the clique problem, which is among
Karp’s 21 NP-complete problems [54]. The idea is the following: Given an instance
of the clique problem with graph G = (V,E) and integer k, construct an acyclic
Markov chain M with states S = {s0}∪V ∪E ∪{goal, fail} and edges from each
vertex v ∈ V to all edges to which it is incident. Then the existence of a k-clique
can be reduced to the existence of a “saturated” subsystem in M with k states
in V . To check whether the subsystem is saturated, we require it to have more
probability than a certain threshold, which depends on k and |V |. Details can be
found in the full version [42].

Remark 4.6. NP-completeness of transition-minimal and size-minimal versions
of the witness problem for acyclic DTMCs follows along the same lines, where
only the sizes and thresholds for the subsystems need to be adapted.

However, DTMCs whose underlying graph is a tree permit an efficient algo-
rithm for computing minimal witnesses (for the proof see the full version [42]).

Proposition 4.7. Minimal witnesses in tree-shaped DTMCs can be computed
in polynomial time.

Proof (Sketch). The algorithm first transforms the DTMC at hand into a binary
(tree-shaped) DTMC, and then works bottom up by storing for each state the
highest probability that can be obtained with a subsystem of size k, for all k up
to the size of the subtree.

5 Relating Farkas certificates and minimal witnesses

In this section we establish a strong connection between Farkas certificates on
the one hand and witnesses for probabilistic reachability constraints on the other
hand. We first note that the set of Farkas certificates for non-strict lower bounds
forms a polytope, i.e., a bounded polyhedron.

Lemma 5.1 (Polytopes of Farkas certificates). Let M = (Sall,Act, s0,P)
be an MDP as in Setting 2.2 and consider A ∈ RM×S and b ∈ RS introduced
there. Then for every λ ∈ [0, 1] the polyhedra

Pmin(λ) = {z ∈ RS | Az ≤ b ∧ z(s0) ≥ λ}
Pmax(λ) = {y ∈ RM | y ≥ 0 ∧ yA ≤ δs0 ∧ yb ≥ λ}

are both polytopes, called the polytopes of Farkas certificates.
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Remark 5.2. For any vector v ∈ Rn the support is defined as supp(v) = {i ∈
{1, ..., n} | vi > 0}, and analogously for the vector spaces RS and RM. As our
connection between subsystems of M and points in Pmin(λ) is based on taking the
support, we restrict our attention to the subpolytope Pmin

≥0 (λ) = Pmin(λ) ∩ RS
≥0.

Notation 5.3. Given an MDP M = (Sall,Act, s0,P) as in Setting 2.2 and a
subset R ⊆ M, where M also denotes the state-action pairs (compare with
Section 2). We let MR = (S′

all,Act, s0,P
′) be the subsystem where, roughly

speaking, the state-action pairs in R remain. More precisely, let

S′
all = {s ∈ S | ∃α ∈ Act . (s, α) ∈ R} ∪ {goal, fail}

P′(s, α, t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
P(s, α, t) if (s, α) ∈ R and t ∈ S′

all \ {fail}
1−∑

t∈S′
all\{fail} P(s, α, t) if (s, α) ∈ R and t = fail

1 if (s, α) /∈ R,α ∈ Act(s) and t = fail

0 else

For R ⊆ S we set MR = MR′ for R′ =
⋃

s∈R{s} ×Act(s).

Theorem 5.4 (Farkas certificates yield witnesses). Let M be an MDP as
in Setting 2.2 and λ ∈ [0, 1]. Then for a set R ⊆ S the following statements are
equivalent:

(1) The subsystem MR is a witness for Prmin
M,s0(♦ goal) ≥ λ.

(2) There is a point p in Pmin
≥0 (λ) such that supp(p) ⊆ R.

(3) There is a vertex v of Pmin
≥0 (λ) such that supp(v) ⊆ R.

Moreover, for a set R ⊆ M the following statements are equivalent:

(a) The subsystem MR is a witness for Prmax
M,s0(♦ goal) ≥ λ.

(b) There is a point p in Pmax(λ) such that supp(p) ⊆ R.
(c) There is a vertex v of Pmax(λ) such that supp(v) ⊆ R.

One consequence of Theorem 5.4 is that every MD-schedulerS with PrSs0(♦ goal) ≥
λ corresponds to a point in Pmax(λ), i.e. to a certificate for Prmax

M,s0(♦ goal) ≥ λ.

Corollary 5.5 (Detecting minimal witnesses by vertices of P). Let M =
(Sall,Act, s0,P) be an MDP as in Setting 2.2 and λ ∈ [0, 1]. Then a vertex v of
Pmin
≥0 (λ) has a maximal number of zeros among all vertices of Pmin

≥0 (λ) if and

only if Msupp(v) is a minimal witness for Prmin
s0 (♦ goal) ≥ λ.

Dually, a vertex v of Pmax(λ) has a maximal number of zeros among all
vertices of Pmax(λ) if and only if all of the following hold:

(1) Msupp(v) = (S′
all,Act, s0,P

′) is a minimal witness for Prmax
s0 (♦ goal) ≥ λ,

(2) for every s ∈ S′ there is precisely one α ∈ Act(s) with (s, α) ∈ supp(v),
(3) the corresponding map S : S′ → Act is an MD-scheduler on Msupp(v) with

PrSs0(♦ goal) ≥ λ.
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6 Computing witnessing subsystems

In this section we use the results of Section 5 to derive two algorithms for the
computation of minimal witnesses for reachability constraints in MDPs. As the
problem is NP-hard, we also present a heuristic approach aimed at computing
small witnessing subsystems.

Vertex enumeration. Corollary 5.5 gives rise to the following approach of com-
puting minimal witnessing subsystems: enumerate all vertices in the corresponding
polytope and choose one with a maximal amount of zeros. Vertex enumeration of
polytopes has been studied extensively [11, 12, 14, 21, 22, 35, 36, 40, 41, 63, 68]
and has been shown to be computationally hard [55, Corollary 2].

First experiments that we have conducted with the SageMath2 toolkit which
supports vertex enumeration have not scaled well in the dimension, which in
our case is the number of states in the original system. Also, we found no tool
support for vertex enumeration that is able to handle sparse matrices, which is
essential for bigger benchmarks.

Mixed integer linear programming. An approach that computes minimal
witnesses to the threshold problem Prmax

s0 (♦ goal) ≥ λ using mixed integer linear
programs (MILP) was presented in [77, 78]. Using the following lemma, we can
derive MILP formulations from our polytope formulations.

Lemma 6.1. Let P = {x | Ax ≤ b,x ≥ 0} ⊆ Rn be a polytope and K ≥ 0 be
such that for all p ∈ P and 1 ≤ i ≤ n we have p(i) ≤ K. Consider the MILP

min
∑

1≤i≤n

σ(i) s.t. x ∈ P, x ≤ K · σ, σ(i) ∈ {0, 1}

Then a vector (σ,x) is an optimal solution of this MILP if and only if x is a
point in P with a maximal number of zeros.

For Pmin
≥0 (λ) we can use Lemma 3.1 to derive that K = 1 is a viable bound.

By invoking again Corollary 5.5, this means that a solution (z,σ) of the MILP

min
∑
s∈S

σ(s) s.t. z ∈ Pmin
≥0 (λ), z ≤ σ, σ(i) ∈ {0, 1}

encodes a minimal witnessing subsystem in the integral variables σ. This MILP
was used in [77, 78] for the computation of minimal witnessing subsystems of
DTMCs .

An upper bound K as in Lemma 6.1 for Pmax(λ) can be found in polynomial
time by taking the objective value of an optimal solution to the LP

max
∑

(s,α)∈M
y(s, α) s.t. y ∈ Pmax(λ)

2 http://www.sagemath.org/

http://www.sagemath.org/
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Remark 6.2. To compute minimal witnesses for Prmax
s0 (♦ goal) ≥ λ, [77, 78]

(witnesses for Prmin
s0 (♦ goal) ≥ λ were not considered) propose the MILP with

objective: min
∑

(s,α)∈M σ(s, α), subject to the conditions

∀(s, α) ∈ M. z(s) ≤ 1− σ(s, α) +
∑
s′∈S

P(s, α, s′) · z(s′) + b(s) (6.1)

∀s ∈ S. z(s) ≤
∑

α∈Act(s)

σ(s, α), z(s0) ≥ λ (6.2)

where σ(s, α) are binary integer variables. It was implemented in the tool
ltlsubsys. The idea is to directly encode a scheduler in the set of equations
Az ≤ b using σ. In [77, 78] a number of additional redundant constraints are
given to guide the search. In contrast to [77, 78] we do not need to handle so-called
problematic states, as our precondition Prmin

s (♦(goal∨ fail)) > 0 guarantees that
no such states exist.

k-step quotient sum (QSk) heuristics. Approximating the maximal number
of zeros in a polytope is computationally hard in general [8]. We now derive
a heuristic approach for this problem called quotient sum heuristic which is
based on iteratively solving LPs over the polytope, where the objective function
for each iteration depends on an optimal solution of the previous LP. More
precisely, we take o1 = (1, . . . , 1) and take an optimal solution QS1 of the LP
mino1 ·y s.t. y ∈ Pmax(λ). Many entries in QS1 may be small, but still greater
than zero. In order to push as many of the small values of QS1 to zero, we define
a new objective function by

o2(i) =

{
1/QS1(i), if QS1(i) > 0

C, if QS1(i) = 0
(6.3)

where C is a value that is greater than any value 1/QS1(i). We now take
a solution QS2 of the new LP mino2 · y s.t. y ∈ Pmax(λ) and form the next
objective function o3 as in (6.3). Inductively this generates a sequence of objective
functions (ok)k≥1 and corresponding optimal solutions (QSk)k≥1 in Pmax /min(λ).
By Theorem 5.4 we can construct a witnessing subsystem with as many states as
the number of non-zero entries in QSk.

7 Experiments

In this section we evaluate our MILP formulations and heuristics on a number
of DTMC and MDP benchmarks from the Prism benchmark-suite [58, 59]. We
compare our results with the tool Comics [50], which implements heuristic
approaches to compute small subsystems for DTMCs. It has two modes: the local
search extends a given subsystem by short paths that carry much probability,
whereas the global search searches for the next most probable path from the
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initial state to goal, and adds it to the subsystem. Both approaches iteratively
extend a subsystem until it carries more probability than the given threshold
and thus have to compute the probability of the subsystem at each iteration.

All computations were performed on a computer with two Intel E5-2680 8
cores at 2.70GHz running Linux, with a time bound of 30 minutes, a memory
bound of 100GB and with each benchmark instance having access to 4 cores.
For the LP and MILP instances we use the Gurobi solver, version 8.1.1 [43]. The
recorded times of our computations include the construction of the LPs/MILPs
and are wall clock times. Pre-processing steps, such as collapsing states that
cannot reach goal, are not counted in the time consumption. For Comics, we
use the time that is reported as counterexample generation time by the tool.

To validate our implementation, we used Prism to verify that the subsystems
that we compute indeed satisfy the probability thresholds. We noticed that for a
few instances (< 0.5%) Prism reported a deviation of less than 10−8, which can
be explained by the fact that both Prism and the solvers that we use rely on
floating-point arithmetic, which is approximate by nature.

Our implementation, together with the models we use and benchmark results
can be found at https://github.com/simonjantsch/farkas.

(a) QS-heuristic applied to Pmax(λ). (b) QS-heuristic applied to Pmin
≥0 (λ).

Fig. 2: crowds-2-8: comparing QSk for growing k.

DTMC benchmarks. As Prmax and Prmin coincide on DTMCs, we can use
the heuristics and exact computations derived from either the Pmax or the Pmin

≥0

polytope for DTMCs (in Comics we use the standard query Prs0(♦ goal) ≥ λ).
We consider two DTMC benchmarks: a model of the crowds-N -K protocol [69, 72]
for ensuring anonymous web browsing (with N members and K protocol runs)
and a model of the bounded retransmission protocol [34, 47] for file transfers
(where brp-N -K is the instance with N chunks and K retransmissions).

https://github.com/simonjantsch/farkas
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(a) crowds-5-8 (46,873 states). Comics-global runs out of memory for λ ≥ 0.23.

(b) brp-512-2 (15,875 states). Comics-local reports an error for λ ≥ 2.1 · 10−5 and
Comics-global runs out of memory for λ = 2.6 · 10−5.

Fig. 3: Comparison of heuristic methods on DTMC benchmarks.

Figure 2 shows the effect of increasing the number of iterations of the QS-
heuristic for the model crowds-2-8. While the first iteration (taking QS2 instead
of QS1) has an impact on the number of states, more iterations do not improve
the result significantly. For QS1, the sizes of subsystems increase monotonically
with growing λ. Starting with QS2 the results may, interestingly, have “spikes”:
increasing λ can lead to smaller subsystems.

Figure 3 shows the results of the QS2-heuristic compared to the two modes
of Comics for λ that ranges between 0 and the actual reachability probability
of the model. A general observation is that the runtime of the QS-heuristic is
independent of λ, whereas both modes of Comics use significantly more time
with increasing λ. The same observation can be done for memory consumption,
which stayed below 200 MB for our heuristics. Also, especially for crowds-5-8,
one can see that relatively small subsystems are possible even for large λ. The
exact computations via MILPs hit the timeout for almost all instances.
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(a) Witnesses for Prmin
s0 (♦ goal) ≥ λ. (b) Witnesses for Prmax

s0 (♦ goal) ≥ λ.

Fig. 4: MDP benchmark: consensus-2-4 (528 states)

In Figure 3 it can be seen that the QS heuristics derived from the two polytopes
Pmax and Pmin

≥0 may produce different results. However, for both models one of
them gives monotonically growing subsystems and outperforms Comics. While
QS2 applied to Pmin

≥0 performs better on crowds-5-8 (Figure 3a), it is the other
way around on brp-512-2 (Figure 3b). In future work we intend to investigate
what properties determine which of the two formulations performs better for a
given DTMC.

MDP benchmarks. We consider two MDP models: the randomized consensus-
N -K protocol of [10, 60] (with N processes and a bound K on the random walk)
and the CSMA-N -K protocol for data channels [61] (where N is the number of
stations, and K is the maximal backoff count). The results of both heuristic and
exact computations can be seen in Figure 4 and Figure 5. Whereas the heuristics
all needed less than 5 minutes, all MILP instances ran into the timeout except for
the ones in Figure 4a. Whenever a MILP instance could not be solved optimally
in 30 minutes, we plot both the found upper and lower bound, with the region in
between shaded. It should be noted that the condition Prmin(♦(goal∨ fail)) holds
for the instances of these models, and reachability properties, that we consider.

The comparison between the MILP formulation that we derived from Pmax(λ)
and the one presented in [77, 78] (labeled by ltlsubsys, see also Section 6)
shows that both compute comparable upper and lower bounds in Figure 4b,
whereas ltlsubsys found worse upper bounds in Figure 5b. In all instances
apart from Figure 4b the corresponding QS2 heuristics performs well and gen-
erates subsystems that are as good, or better, than the best upper bounds
computed by the MILPs in 30 minutes. As expected, the witnessing subsystems
for Prmin

s0 (♦ goal) ≥ λ tend to the entire state space as λ tends to the actual

value Prmin
s0 (♦ goal) (which is 1 in these two models). However, subsystems for

Prmax
s0 (♦ goal) ≥ λ may be substantially smaller even for large λ.
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(a) Witnesses for Prmin
s0 (♦ goal) ≥ λ. (b) Witnesses for Prmax

s0 (♦ goal) ≥ λ.

Fig. 5: MDP benchmark: CSMA-3-2 (36,850 states)

8 Conclusion

In this paper we brought together two a priori unrelated notions in the context of
probabilistic reachability constraints: on the one hand Farkas certificates, which
are vectors satisfying certain linear inequalities that we derive using MDP-specific
variants of Farkas’ Lemma, and on the other hand witnessing subsystems, which
provide insight into which parts of the system are essential for the satisfaction of
the considered property. This connection reduces the computation of minimal
(respectively, small) witnessing subsystems to finding a Farkas certificate with a
maximal (respectively, large) number of zeros. Furthermore, it leads to a unified
notion of witnessing subsystem for Prmax

s0 (♦ goal) ≥ λ and Prmin
s0 (♦ goal) ≥ λ.

We showed that the decision version of computing minimal witnessing sub-
systems is NP-complete for acyclic DTMCs and introduced heuristics for the
computation of small witnesses based on Farkas certificates. Experiments of the
heuristics exhibited competitive results compared to the approach implemented
in Comics and showed that they scale well with the system size and threshold. As
expected, computing minimal subsystems using the derived MILP formulations
consumed significantly more time than the heuristics and often triggered timeouts.
The upper and lower bounds that were computed in the given time by the new
MILP formulation for Prmax

s0 (♦ goal) ≥ λ were comparable to known techniques.

We have considered MDPs in which the probability to reach goal or fail is
positive under each scheduler. In future work, we plan to extend our techniques to
weaken this assumption. Exploring how vertex enumeration techniques could be
adapted to the MDP-specific form of the Farkas polytopes is another interesting
line of future work. We also plan to implement a tool for working with Farkas
certificates in practice, which encompasses their generation as well as their
independent validation.
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Florent Delgrange1,2,† , Joost-Pieter Katoen1 ,
Tim Quatmann1 , and Mickael Randour2

1 RWTH Aachen University, Aachen, Germany
2 UMONS – Université de Mons, Mons, Belgium

Abstract We consider the verification of multiple expected reward ob-
jectives at once on Markov decision processes (MDPs). This enables a
trade-off analysis among multiple objectives by obtaining a Pareto front.
We focus on strategies that are easy to employ and implement. That is,
strategies that are pure (no randomization) and have bounded memory.
We show that checking whether a point is achievable by a pure stationary
strategy is NP-complete, even for two objectives, and we provide an MILP
encoding to solve the corresponding problem. The bounded memory case
is treated by a product construction. Experimental results using Storm
and Gurobi show the feasibility of our algorithms.

1 Introduction

MDPs. Markov decision processes (MDPs) [4,3] are a key model in stochastic
decision making. The classical setting involves a system subject to a stochastic
model of its environment, and the goal is to synthesize a system controller, repre-
sented as a strategy for the MDP, ensuring a given level of expected performance.
Tools such as Prism [30] and Storm [16] support MDP model checking.
Multi-objective MDPs. MDPs where the goal is to achieve a combination of objec-
tives (rather than just one) are popular in e.g., AI [41] and verification [2]. This is
driven by applications, where controllers have to fulfill multiple, potentially con-
flicting objectives, requiring a trade-off analysis. This includes multi-dimension
MDPs [14,20,40,13] where weight vectors are aggregated at each step and MDPs
where the specification mixes different views (e.g., average and worst case perfor-
mance) of the same weight [11,8]. With multiple objectives, optimal strategies
no longer exist in general: instead, Pareto-optimal strategies are considered. The
Pareto front, i.e., the set of non-dominated achievable value vectors is usually
non-trivial. Elaborate techniques are needed to explore it efficiently, e.g., [23,24].
Simple strategies. Another stumbling block in multi-objective MDPs is the com-
plexity of strategies: Pareto-optimal strategies typically need both memory and
randomization. A simple conjunction of reachability objectives already requires
randomization and exponential memory (in the number of reachability sets) [40].
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Some complex objectives even need infinite memory, e.g., [11,8]. In controller
synthesis, strategies requiring randomization and/or (much) memory may not
be practical. Limited-memory strategies are required on devices with limited re-
sources [7]. Randomization is elegant and powerful from a theoretical view, but
has practical limitations, e.g., it limits reproducibility which complicates debug-
ging. Randomized strategies are also often despised for medical applications [33]
and product design – all products should have the same design, not a random
one. This motivates to consider the analysis of simple strategies, i.e., strategies
using no randomization and a limited amount of memory (given as a parameter).
While most works study the Pareto front among all strategies, we establish ways
to explore efficiently the Pareto front among simple strategies only.
Problem statement. We consider pure (i.e., no randomization) and bounded-
memory strategies and study two problems: (a) achievability queries – is it pos-
sible to achieve a given value vector – and (b) approximation of the Pareto
front. Considering pure, bounded-memory strategies is natural as randomiza-
tion can be traded for memory [12]: without randomization, optimal strategies
may require arbitrarily large memory, (see Ex. 4). We study mixtures of expected
(accumulated) reward objectives, covering various studied settings like reachabil-
ity [20,40], shortest path [39,40,28,9] and total reward objectives [23,24].
Contributions. We first consider the achievability problem for pure stationary
(i.e., memoryless) strategies and show that finding optimal strategies for multi-
objective MDPs is NP-complete, even for two objectives. This contrasts the
case of general strategies, where the problem is polynomial-time if the number
of objectives is fixed [40]. We provide a mixed integer linear program (MILP)
encoding. The crux lies in dealing with end components. The MILP is polynomial
in the input MDP and the number of objectives. Inspired by [22], we give an
alternative MILP encoding which is better suited for total reward objectives. To
approximate the Pareto front under pure stationary strategies, we solve multiple
MILP queries. This iteratively divides the solution space into achievable and
non-achievable regions. Bounded-memory strategies are treated via a product
construction. Our approach works for finite and infinite expected rewards.
Practical evaluation. We successfully compute Pareto fronts for 13 benchmarks
using our implementation in Storm, exploiting the MILP solver Gurobi. Despite
the hard nature of the problem, our experiments show that Pareto fronts for
models with tens of thousands of states can be successfully approximated.
Related work. NP completeness for discounted rewards under pure strategies was
shown in [14]. [19] claims that this generalizes to PCTL objectives but no proof is
given. [42] treats multi-objective bounded MDPs whose transition probabilities
are intervals. A set of Pareto optimal policies is computed using policy iteration
and an efficient heuristic is exploited to compute a set of mutually non-dominated
policies that are likely to be Pareto optimal. Pure stationary Pareto optimal
strategies for discounted rewards are obtained in [44] using value-iteration but is
restricted to small MDPs where all probabilities are 0 or 1. In [34],Tchebycheff-
optimal strategies for discounted rewards are obtained via an LP approach; such
strategies minimize the distance to a reference point and are not always pure.
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2 Preliminaries

For a finite set Ω, let Dist(Ω) =
{
μ : Ω → [0, 1] | ∑ω∈Ω μ(ω) = 1

}
be the set of

probability distributions over Ω with support supp(μ) = {ω ∈ Ω | μ(ω) > 0}. We
write R≥0 = {|x| | x ∈ R} and R∞ = R∪{∞} for the non-negative and extended
real numbers, respectively. 1� = 〈1, . . . , 1〉 denotes the vector of size � ∈ N with
all entries 1. We just write 1 if � is clear. Let p�i� denote the ith entry and p ·p′

the dot product of p,p′ ∈ (R∞)�. p ≤ p′, p + p′, and |p| are entry-wise. For
Boolean expression cond , let [cond ] = 1 if cond is true and [cond ] = 0 otherwise.

2.1 Markov Decision Processes, Strategies, and End Components

Definition 1 (Markov decision process [36]). A Markov decision process
(MDP) is a tuple M = 〈S,Act ,P, sI 〉 with finite set of states S, initial state
sI ∈ S, finite set of actions Act , and transition function P : S×Act ×S → [0, 1]
with

∑
s′∈S P(s, α, s′) ∈ {0, 1} for all s ∈ S and α ∈ Act .

We fix an MDP M = 〈S,Act ,P, sI 〉. Intuitively, P(s, α, s′) is the probability to
take a transition from s to s′ when choosing action α. An infinite path in M is a
sequence π = s0α1s1α2 · · · ∈ (S×Act)ω with P(si, αi+1, si+1) > 0 for all i ∈ N.
We write π[i] = si for the (i+1)th state visited by π and define the length of π
as |π| = ∞. A finite path is a finite prefix π̂ = s0α1 . . . αnsn of infinite path π,
where last(π̂) = sn ∈ S, |π̂| = n and π̂[i] = si for i ≤ n. The set of finite (infinite)
paths in M is denoted by PathsMfin (PathsMinf). The enabled actions at a state
s ∈ S are given by the set Act(s) = {α ∈ Act | ∃ s′ ∈ S : P(s, α, s′) > 0}. We
assume Act(s) 
= ∅ for all s. If |Act(s)| = 1 for all s ∈ S, M is called a Markov
Chain (MC). We write Ms for the MDP obtained by replacing the initial state
of M by s ∈ S. For s ∈ S and α ∈ Act , we define the set of successor states
succ(s, α) = {s′ | P(s, α, s′) > 0}. For s′ ∈ S, the set of predecessor state-action
pairs is given by pre(s′) = {〈s, α〉 | P(s, α, s′) > 0}. For a set E ⊆ S × Act , we
define S�E� = {s ∈ S | ∃α : 〈s, α〉 ∈ E}, Act�E� = {α ∈ Act | ∃ s : 〈s, α〉 ∈ E},
and P�E�(s, α, s′) = [〈s, α〉 ∈ E ] · [s′ ∈ S�E�] · P(s, α, s′). We say E is closed for
M if ∀ 〈s, α〉 ∈ E : α ∈ Act(s) and succ(s, α) ⊆ S�E�.

Definition 2 (Sub-MDP). The sub-MDP of M, closed E ⊆ S × Act , and
s ∈ S�E� is given by M�E , s� = 〈S�E�,Act�E�,P�E�, s〉. We also write M�E� for
the sub-MDP M�E , s� and an arbitrary state s ∈ S�E�.

Definition 3 (End Component). A non-empty set E ⊆ S × Act is an end
component (EC) of M if E is closed for M and for each pair of states s, s′ ∈ S�E�
there is a finite path π̂ ∈ Paths

M�E�
fin with π̂[0] = s and last(π̂) = s′. An EC E

is maximal, if there is no other EC E ′ with E � E ′. The set of all maximal end
components of M is MECS (M).

The maximal ECs of a Markov chain are also called bottom strongly connected
components (BSCCs). A strategy resolves nondeterminism in MDPs:
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Definition 4 (Strategy). A (general) strategy for MDP M is a function
σ : PathsMfin → Dist(Act) with supp(σ(π̂)) ⊆ Act(last(π̂)) for all π̂ ∈ PathsMfin .

Let σ be a strategy for M. Intuitively, σ(π̂)(α) is the probability to perform
action α after observing history π̂ ∈ PathsMfin . A strategy is pure if all histories
are mapped to Dirac distributions, i.e., the support is a singleton. A strategy
is stationary if its decisions only depend on the current state, i.e., ∀ π̂, π̂′ ∈
PathsMfin : last(π̂) = last(π̂′) implies σ(π̂) = σ(π̂′). We often assume σ : S →
Dist(Act) for stationary and σ : S → Act for pure stationary strategies σ. Let
ΣM and ΣM

PS be the sets of general and pure stationary strategies, respectively. A
set of paths Π ⊆ PathsMinf is compliant with σ ∈ ΣM if for all π = s0α1s1 · · · ∈ Π
and prefixes π̂ of π satisfy σ(π̂)(α|π̂|+1) > 0. The induced Markov chain of M
and σ ∈ ΣM

PS is given by Mσ = M�Eσ, sI � with Eσ = {〈s, σ(s)〉 | s ∈ S}.
MDP M and strategy σ ∈ ΣM induce a probability measure PrMσ on subsets

Π ⊆ PathsMinf given by a standard cylinder set construction [4,22]. The expected
value of X : PathsMinf → R∞ is EM

σ (X) =
∫
π
X(π) dPrMσ ({π}). For σ ∈ ΣM

PS,
PrMσ and EM

σ coincide with the corresponding measures on MC Mσ.

2.2 Objectives

A reward structure R : S × Act × S → R≥0 assigns non-negative rewards to
transitions. We accumulate rewards on (in)finite paths π = s0α1s1α2 . . . : R(π) =∑|π|

i=1 R(si−1, αi, si). For a set of goal states G ⊆ S, let R♦G(π) = R(π̂), where
π̂ is the smallest prefix of π with last(π̂) ∈ G (or π̂ = π if no such prefix
exists). Intuitively, R♦G(π) is the reward accumulated on π until a state in
G is reached. A (reward) objective has the form E∼(R♦G) for ∼ ∈ {≥,≤}.
We write 〈M, σ, p〉 |= E∼(R♦G) iff EM

σ (R♦G) ∼ p, i.e., for M and σ, the
expected accumulated reward until reaching G is at least (or at most) p ∈ R∞.
We call the objective maximizing if ∼ = ≥ and minimizing otherwise. If G = ∅
(i.e., R♦G(π) = R(π) for all paths π), we call the objective a total reward
objective. Let the reward structure RG be given by R(s, α, s′) = [s′ ∈ G]. Then,
PrMσ (♦G) = EM

σ (RG♦G) for every σ ∈ ΣM, where ♦G ⊆ PathsMinf denotes the
set of paths that visit a state in G. We use P∼(♦G) as a shortened for E∼(RG♦G)
and call such an objective a reachability objective.

Definition 5 (Multi-objective query). For MDP M, an �-dimensional multi-
objective query is a tuple Q = 〈ψ1, . . . , ψ�〉 of � objectives ψj = E∼j

(Rj♦Gj).

Each objective ψj considers a different reward structure Rj . The MDP M,
strategy σ, and point p ∈ (R∞)� satisfy a multi-objective query Q = 〈ψ1, . . . , ψ�〉
(written 〈M, σ,p〉 |= Q) iff ∀ j : 〈M, σ,p�j�〉 |= ψj . Then, we also say σ achieves
p and call p achievable. Let AchM(Q) (AchM

PS(Q)) denote the set of points
achieved by a general (pure stationary) strategy. The closure of a set P ⊆ (R∞)�

with respect to query Q is clQ(P ) =
{
p ∈ (R∞)� | ∃p′ ∈ P : ∀ j : p′�j� ∼j p�j�

}
.

For p,p′ ∈ (R∞)�, we say that p dominates p′ if p′ ∈ clQ({p}). In this case,
〈M, σ,p〉 |= Q implies 〈M, σ,p′〉 |= Q for any σ ∈ ΣM. We are interested in the
Pareto front, which is the set of non-dominated achievable points.
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Figure 1: An MDP and a plot of the pure stationary and general Pareto fronts.

Definition 6 (Pareto front). The (general) Pareto front for M and Q is
ParetoM(Q) =

{
p ∈ AchM(Q) | ∀p′ ∈ AchM(Q) : p ∈ clQ({p′}) =⇒ p = p′

}
.

The Pareto front is the smallest set P ⊆ (R∞)� with clQ(P ) = AchM(Q). In a
similar way, we define the pure stationary Pareto front ParetoM

PS(Q) which only
consider points in AchM

PS(Q).

Example 1. Let M be the MDP in Fig. 1a and Q = 〈P≥(♦G�),P≥(♦G�)〉. A
pure stationary strategy choosing β at s1 reaches both, s4 ∈ G� and s3 ∈ G�

with probability 0.7 and thus achieves 〈0.7, 0.7〉. Similarly, 〈0, 1〉 and 〈1, 0〉 are
achievable by a pure stationary strategy. Point 〈1, 0.8〉 is achievable by a non-
stationary pure strategy that chooses α at s1, γ at the first visit of s2, and δ
in all other cases. Changing this strategy by picking γ only with probability
0.5 achieves 〈0.5, 0.9〉. Fig. 1b illustrates ParetoM

PS(Q) (dots), AchM
PS(Q) (green

area), ParetoM(Q) (dotted line), and AchM(Q) (blue and green area).

3 Deciding Achievability

The achievability problem asks whether a given point is achievable.

For GMA, the point can be achieved by a general strategy that can potentially
make use of memory and randomization. As discussed earlier, this class of strate-
gies is not suitable for various applications. In this work, we focus on a variant of
the achievability problem that only considers pure stationary strategies. Sect. 5
also addresses pure strategies that can store more information from the history,
e.g., whether a goal state set has been reached already.

General Multi-objective Achievability Problem (GMA)

Input: MDP M, �-dimensional multi-objective query Q, point p ∈ (R∞)�

Output: Yes iff p ∈ AchM(Q) holds

Pure Stationary Multi-objective Achievability Problem (PSMA)

Input: MDP M, �-dimensional multi-objective query Q, point p ∈ (R∞)�

Output: Yes iff p ∈ AchM
PS(Q) holds
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3.1 Complexity Results

GMA is PSPACE hard (already with only reachability objectives) [40] and solvable
within exponential runtime [20,23]. To the best of our knowledge, a PSPACE up-
per bound on the complexity of GMA is unknown. This complexity is rooted in the
dimension � of the query Q: for fixed �, the algorithms of [20,23] have polynomial
runtime. In contrast, PSMA is NP-complete, even if restricted to 2 objectives.

Lemma 1. PSMA with only reachability objectives is NP-hard.

Proof. The result follows by a reduction from the subset sum problem. Given
n ∈ N, a ∈ Nn and z ∈ N, the subset sum problem is to decide the existence of
v ∈ {0, 1}n such that v · a = z. This problem is NP-complete [25]. For a given
instance of the subset sum problem, we construct the MDP M� = 〈S,Act ,P, sI 〉
with state space S = {sI , s1, . . . , sn, g1, g2}, actions Act = {α, Y,N}, and for all
i ∈ {1, . . . , n}, P(sI , α, si) =

a�i�
1·a and P(si, Y, g1) = P(si, N, g2) = 1. States g1

and g2 are made absorbing, i.e., P(g1, α, g1) = P(g2, α, g2) = 1.
We claim that the PSMA problem for M�, Q = 〈P≥(♦ {g1}),P≥(♦ {g2})〉,

and p =
(

z
1·a , 1− z

1·a
)

answers “yes” iff there is a vector v satisfying the subset
sum problem for n, a and z. Consider the bijection f : ΣM�

PS → {0, 1}n with
f(σ)�i� = [σ(si)=Y ] for all σ ∈ ΣM�

PS and i ∈ {1, . . . , n}. We get PrM
�

σ (♦ {g1}) =∑n
i=1

a�i�
1·a [σ(si)=Y ] = f(σ)·a

1·a . Moreover, PrM
�

σ (♦ {g2}) = 1 − PrM
�

σ (♦ {g1}) =

1− f(σ)·a
1·a . It follows that σ achieves p iff f(σ) is a solution to the instance of the

subset sum problem. Our construction is inspired by similar ideas from [14,40].

Lemma 2 ([14]). PSMA with only total reward objectives is NP-hard.

Theorem 1. PSMA is NP-complete.

Proof. Containment follows by guessing a pure stationary strategy and evalu-
ating it on the individual objectives. This can be done in polynomial time [4].
Hardness follows by either Lemma 1 or 2.

Proofs of Lemmas 1 and 2 only consider 2-dimensional multi-objective queries.
Hence, in contrast to GMA, the hardness of PSMA is not due to the size of the query.

Corollary 1. PSMA with only two objectives is NP-complete.

3.2 A Mixed Integer Linear Programming Approach

An MDP M = 〈S,Act ,P, sI 〉 has exactly |ΣM
PS| =

∏
s∈S |Act(s)| many pure

stationary strategies. A simple algorithm for PSMA enumerates all σ ∈ ΣM
PS and

checks whether 〈M, σ,p〉 |= Q holds. In practice, however, such a brute-force
approach is not feasible. For the MDPs that we consider in our experiments in
Sect. 6, the number of pure stationary strategies often exceeds 1010 000. Instead,
our approach is to encode an instance for PSMA as an MILP problem.
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For an MILP instance as above, each of the n rows of the inequation system
Ax ≤ b represent a constraint that is linear over the � integral and m real-valued
variables given by x. We call the constraints feasible if there is a solution to the
inequation system. The task is to decide whether the constraints are feasible
and if so, find a solution that maximizes a linear optimization function cTx.
The optimization function can be omitted if we are only interested in feasibility.
MILP is NP-complete [35]. However, tools such as Gurobi [27] and SCIP [26]
implement practically efficient algorithms that can solve large instances.

For the rest of this section, let M = 〈S,Act ,P, sI 〉, Q = 〈ψ1, . . . , ψ�〉 with
ψj = E∼j

(Rj♦Gj), and p ∈ (R∞)� be an instance for PSMA. We provide a
translation of the PSMA instance to an instance for MILP that has a feasible
solution iff p ∈ AchM

PS(Q). The MILP encoding considers integer variables to
encode a pure stationary strategy σ ∈ ΣM

PS. The other variables and constraints
encode the expected reward for each objective on the induced MC Mσ.

3.3 Unichain MDP and Finite Rewards

Restriction 1 (Unichain MDP). MDP M has exactly one end component.

Restriction 2 (Reward Finiteness). EMs
σ (Rj♦Gj) < ∞ holds for each ob-

jective ψj = E∼j (Rj♦Gj), state s, and pure stationary strategy σ.

For simplicity, we first explain our encoding for unichain MDP with finite reward.
Sect. 3.5 lifts Restriction 1 and Sect. 3.6 lifts Restriction 2 with more details given
in [17, App. B]. Sect. 3.4 presents an alternative to the encoding of this section,
which is smaller but restricted to total reward objectives.

Fig. 2 shows the MILP encoding in case Restrictions 1 and 2 hold. We assume
∀ j : p�j� 
= ∞ for the point p since (i) EM

σ (Rj♦Gj) ≤ ∞ holds trivially and
(ii) EM

σ (Rj♦Gj) ≥ ∞ will never hold due to Restriction 2. For j ∈ {1, . . . , �},
let Sj

0 = {s ∈ S | ∀σ ∈ ΣM : EM
σ (Rj♦Gj) = 0} and Sj

? = {s ∈ S \ Sj
0 |

s can be reached from sI without visiting a state in Sj
0}. These sets can be ob-

tained a priori by analyzing the graph structure of M [4]. Moreover, we con-
sider upper bounds U j

s ∈ Q for the expected reward at state s ∈ Sj
? such that

U j
s ≥ maxσ∈ΣM EMs

σ (Rj♦Gj). We compute such upper bounds using single-
objective model checking techniques [4,5]. The MILP encoding applies the char-
acterization of expected rewards for MCs as a linear equation system [4].

Lemma 3. For every σ ∈ ΣM
PS, the following equation system has a unique

solution Φ : {xs | s ∈ S} → R|S| satisfying Φ(xs) = EMs
σ (Rj♦Gj):

∀ s ∈ Sj
0 : xs = 0 ∀ s ∈ Sj

? : xs =
∑
s′∈S

P(s, σ(s), s′) · (xs′ +R(s, σ(s), s′)
)

Mixed Integer Linear Programming Problem (MILP)

Input: �,m, n ∈ N, A ∈ Qn×(�+m), b ∈ Qn, c ∈ Q�+m

Output:

{
x ∈ argmaxx∈X cTx if X 
= ∅
infeasible if X = ∅ with X = {x ∈ Z� ×Rm | Ax ≤ b}
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∀ s ∈ S : �Select an action at each state
∀α ∈ Act(s) : as,α ∈ {0, 1} (1)∑

α∈Act(s)

as,α = 1 (2)

∀ j ∈ {1, . . . , �} : �Compute expected reward values
∀ s ∈ Sj

0 : xj
s = 0 (3)

If ψj is maximising, ± = + and [min] = 0. Otherwise, ± = − and [min] = 1.
∀ s ∈ Sj

? : ±xj
s ∈ [0, U j

s ] (4)

∀α ∈ Act(s) : ±xj
s,α ∈ [0, U j

s ] (5)

xj
s,α ≤

∑
s′∈S

P(s, α, s′) ·
(
xj
s′ ±Rj(s, α, s

′)
)

(6)

xj
s,α ≤ U j

s · (as,α − [min]) (7)

xj
s ≤

∑
α∈Act(s)

xj
s,α + [min] · (|Act(s)| − 1) · U j

s (8)

±xj
sI ∼j p�j� �Assert value at initial state (9)

Figure 2: MILP encoding for unichain MDP and finite rewards.

Proof. Since M is unichain and we do not collect infinite reward, the only EC
of M (i.e., the only BSCC of Mσ for any σ) either contains a goal state or only
contains transitions with zero reward. It follows that ∀σ ∈ ΣM

PS : PrMσ (♦Sj
0) = 1.

Lemma 3 follows by standard arguments for MCs with rewards [4, Section 10.5.1].

We discuss the intuition of each constraint in Fig. 2. Let Φ : Var → R be
an assignment of the occurring variables Var to values. Φ is a solution of the
constraints if all (in)equations are satisfied upon replacing all variables v by Φ(v).

Lines 1 and 2 encode a strategy σ ∈ ΣM
PS by considering a binary variable

as,α for each state s and enabled action α such that σ(s)(α) = 1 iff Φ(as,α) = 1
for a solution Φ. Due to Line 2, exactly one action has to be chosen at each state.

Lines 3 to 8 encode for each objective ψj the expected rewards obtained for
the encoded strategy σ. For every s ∈ S, the variable xj

s represents a (lower
or upper) bound on the expected reward at s. Line 3 sets this value for all
s ∈ Sj

0, reflecting the analogous case from Lemma 3. For s ∈ Sj
? , we distinguish

maximizing (∼j = ≥) and minimizing (∼j = ≤) objectives ψj .
For maximizing ψj , we have Φ(xj

s) ≤ EMs
σ (Rj♦Gj) for every solution Φ. This

is achieved by considering a variable xj
s,α for each enabled action α ∈ Act(s). In

Line 6, we use the equation system characterization from Lemma 3 to assert that
the value of xj

s,α can not be greater than the expected reward at s, given that
the encoded strategy σ selects α. If σ does not select α (i.e., Φ(as,α) = 0), Line 7
implies Φ(xj

s,α) = 0. Otherwise, this constraint has no effect. Line 8 ensures that
every solution satisfies Φ(xj

s) ≤ Φ(xj
s,α) ≤ EMs

σ (Rj♦Gj) for α with Φ(as,α) = 1.
For minimizing ψj , we have −Φ(xj

s) ≥ EMs
σ (Rj♦Gj) for every solution Φ,

i.e., we consider the negated reward values. The encoding is as for maximizing
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objectives. However, Line 7 yields Φ(xj
s,α) = −U j

s if α is not selected. Thus, in
Line 8 we add U j

s for each of the (|Act(s)| − 1) non-selected actions.
Line 9 and our observations above yield EMs

σ (Rj♦Gj) ≥ Φ(xj
sI ) ≥ p�j� for

maximizing and EMs
σ (Rj♦Gj) ≤ −Φ(xj

sI ) ≤ p�j� for minimizing objectives.
Therefore, p is achievable if a solution Φ exists. On the other hand, if p is
achievable by some σ ∈ ΣM

PS, the solution Φ exists with Φ(as,α) = σ(s)(α),
Φ(xj

s) = Φ(xj
s,α) = ±EMs

σ (Rj♦Gj) if α = σ(s), and Φ(v) = 0 for other v ∈ Var .

Theorem 2. For unichain M and finite rewards, the constraints in Fig. 2 are
feasible iff p ∈ AchM

PS(Q).

Proposition 1. The MILP encoding above considers O(|S| · |Act | · �) variables.

3.4 Alternative Encoding for Total Rewards

We now consider PSMA instances where all objectives ψj = E∼j (Rj♦Gj) are
expected total reward objectives, i.e., Gj = ∅. For such instances, we can employ
an encoding from [23] (restated in Lemma 4) for GMA. In fact, we can often
translate reachability reward objectives to total reward objectives, e.g., if the
set of goal states can not be left or if all objectives consider the same goal states.

Lemma 4 ([23]). For S0 ⊆ S, let Φ : Var → R≥0 be an assignment of variables
Var = {ys,α | s ∈ S \ S0, α ∈ Act(s)} and let σΦ be a stationary strategy satisfy-
ing σΦ(s)(α) = Φ(ys,α)/

∑
β∈Act(s) Φ(ys,β) for all s ∈ S \ S0 and α ∈ Act(s) for

which the denominator is non-zero. Then, Φ is a solution to the equation system

∀ s ∈ S \ S0 :
∑

α∈Act(s)

ys,α = [s = sI ] +
∑

〈s′,α′〉∈pre(s)

P(s′, α′, s) · ys′,α′

1 =
∑

ys,α∈Var

ys,α ·
∑
s′∈S0

P(s, α, s′)

iff PrMσΦ
(♦S0) = 1 and ∀ ys,α ∈ Var : Φ(ys,α) = EM

σΦ
(Rs,α♦S0) with reward

structure Rs,α given by Rs,α(ŝ, α̂, s
′) = [ŝ = s and α̂ = α].

In [23], the lemma is applied to decide achievability of multiple total reward ob-
jectives under strategies that are stationary, but not necessarily pure. Intuitively,
EM
σΦ

(Rs,α♦S0) coincides with the expected number of times action α is taken at
state s until S0 is reached. Since this value can be infinite if PrMσΦ

(♦S0) < 1, a
solution Φ can only exist if it induces a strategy that almost surely reaches S0.

The encoding for unichain MDP with finite rewards and total reward objec-
tives is shown in Fig. 3, where S0 =

⋂
j S

j
0 and S? = S \ S0. We consider the

constraints in conjunction with Lines 1 and 2 from Fig. 2. Let Φ be a solution
and let σ be the strategy encoded by such a solution, i.e., σ(s)(α) = Φ(as,α).

Lines 10 to 12 reflect the equations of Lemma 4. Since M is unichain and
we assume finite rewards, there is just one end component in which no reward
can be collected. Hence, S0 is almost surely reached. Line 10 ensures that the
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∀ s ∈ S?, α ∈ Act(s) : ys,α ∈ [0, Vs · as,α] (10)∑
α∈Act(s)

ys,α = [s = sI ] +
∑

〈s′,α′〉∈pre(s)

P(s′, α′, s) · ys′,α′ (11)

1 =
∑
s∈S?

∑
α∈Act(s)

ys,α ·
∑

s′∈S0

P(s, α, s′) (12)

∀ j ∈ {1, . . . , �} : xj
sI =

∑
s∈S?

∑
α∈Act(s)

ys,α ·
∑
s′∈S

(
P(s, α, s′) ·Rj(s, α, s

′)
)

(13)

xj
sI ∼j p�j� (14)

Figure 3: MILP encoding for total reward objectives.

strategy in Lemma 4 coincides with the encoded pure strategy σ. We write Vs

for an upper bound of the value a solution can possibly assign to ys,α, i.e.,
∀σ ∈ ΣM

PS : Vs ≥ EM
σ (Rs,α♦S0). Such an upper bound can be computed based

on ideas of [5]. More details are given in [17, App. A].
With Lemma 4 we get that Φ(ys,σ(s)) is the expected number of times state s

is visited under strategy σ. Therefore, in Line 13 we sum up for each state s ∈ S?

the expected amount of reward collected at s. This yields Φ(xj
sI ) = EM

σ (Rj♦Gj).
Finally, Line 14 asserts that the resulting values exceed the thresholds given by p.

Theorem 3. For unichain M, finite rewards, and total reward objectives, the
constraints in Fig. 3 and Lines 1 and 2 of Fig. 2 are feasible iff p ∈ AchM

PS(Q).

Proposition 2. The MILP encoding above considers O(|S| · |Act |+ �) variables.

The encoding for total reward objectives considers fewer variables compared
to the encoding of Sect. 3.3 (cf. Proposition 1). In practice, this often leads to
faster solving times as we will see in Sect. 6.

3.5 Extension to Multichain MDP

We now lift the restriction to unichain MDP, i.e., we consider multichain MDP
with finite rewards. We focus on the encoding of Sect. 3.3. Details for the ap-
proach of Sect. 3.4 are in [17, App. C]. The key challenge is that the equation
system in Lemma 3 does not yield a unique solution for multichain MDP.

Example 2. For the multichain MDP in Fig. 5a with G = {s1} we have S0 = {s1}
and S? = {s0} (the superscript j is omitted as there is only one objective). For
σ with σ(s0) = α we get EM

σ (R♦G) = 0, but every Φ :
{
xs0 , xs1

} → R× {0} is
a solution for the equation system in Lemma 3.

For multichain MDP it can be the case that for some strategy σ the set Sj
0 is

not reached with probability 1, i.e., there is a positive probability to stay in the
set Sj

? forever. For the induced Markov chain Mσ, this means that there is a
reachable BSCC consisting only of states in Sj

? . Since BSCCs of Mσ coincide
with end components of M, we need to inspect the ECs of M that only consist of
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∀ j ∈ {1, . . . , �} , E ∈ MECS (M�E j
?�) : �Detect states with zero reward

∀ s ∈ S�E� : ±xj
s ≤ U j

s · (1− ejs) (15)

∀ 〈s, α〉 ∈ E : ejs,α ∈ {0, as,α} (16)

∀ s′ ∈ succ(s, α) : ejs,α ≤ ejs′ (17)

∀ s ∈ S�E� : ejs =
∑

α∈Act(s)

[〈s, α〉 ∈ E ] · ejs,α (18)

∀α ∈ Act(s) : zjs,α ∈ [0, Vs · as,α] (19)

zjs,⊥ ∈ [0, Vs · ejs] (20)

zjs,⊥ +
∑

α∈Act(s)

zjs,α =
1

|S�E�| +
∑

〈s′,α′〉∈pre(s)∩E
P(s′, α′, s) · zjs′,α′ (21)

1 =
∑

s∈S�E�

(
z
ψj

s,⊥ +
∑

α∈Act(s)

[〈s, α〉 /∈ E ] · zjs,α
)

(22)

Figure 4: MILP encoding for detection of end components.

Sj
? -states. These ECs correspond to the ECs of the sub-MDP M�Ej

? �, where Ej
? is

the largest subset of Sj
?×Act that is closed for M. For each E ∈ MECS (M�E j

?�),
we need to detect whether the encoded strategy induces a BSCC E ′ ⊆ E .

To cope with multiple ECs, we consider the constraints from Fig. 2 in con-
junction with the constraints from Fig. 4. Let Φ be a solution to these constraints
and let σ be the encoded strategy σ with σ(s)(α) = Φ(as,α). For each objective
ψj and state s, a binary variable ejs is set to 1 if s lies on a BSCC of the induced
MC Mσ. We only need to consider states s ∈ S�E� for E ∈ MECS (M�E j

?�).
Line 15 ensures that the value of xj

s is set to 0 if s lies on a BSCC of Mσ.
Lines 16 to 18 introduce binary variables ejs,α for each state-action pair in the EC
such that any solution Φ satisfies Φ(ejs,α) = 1 iff Φ(ejs) = Φ(as,α) = 1. Line 17
yields that Φ(ejs,α) = 1 implies Φ(ejs′) = 1 for all successors s′ of s and the
selected action α. Hence, for all s with Φ(ejs) = 1 and for all s′ reachable from s
in Mσ, we have Φ(ejs′) = 1 and 〈s′, σ(s′)〉 ∈ E . Therefore, we can only set ejs to 1
if there is a BSCC E ′ ⊆ E that either contains s or that is almost surely reached
from s without leaving E . As finite rewards are assumed, E can not contain a
transition with positive reward, yielding EM

σ (Rj♦Gj) = 0 if Φ(ejs) = 1.
An assignment that sets all variables ejs and ejs,α to 0 trivially satisfies the

constraints in Lines 15 to 18. In Lines 19 to 22 we therefore ensure that if a BSCC
E ′ ⊆ E exists in Mσ, Φ(ejs) = 1 holds for at least one s ∈ S�E ′�. The idea is based
on the observation that if a BSCC E ′ ⊆ E exists, there is a state s ∈ S�E� that
does not reach the set S \S�E� almost surely. We consider the MDP ME , a mild
extension of M�E� given by ME = (S�E� � {

sEI , s
E
⊥
}
,Act � {αI ,⊥} ,PE , sEI ),

where PE extends P�E� such that PE(sE⊥,⊥, sE⊥) = 1 and ∀ s ∈ S�E� :
– PE(sEI , αI , s) = 1/|S�E�|, PE(s,⊥, sE⊥) = 1, and
– ∀α ∈ {α̂ ∈ Act(s) | 〈s, α̂〉 /∈ E} : PE(s, α, sE⊥) = 1.
Lines 21 and 22 reflect the equation system from Lemma 4 for MDP ME and
S0 = {s⊥}. Additionally, Lines 19 and 20 exclude negative solutions and assert
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s0 s1
β : 1

α : 0

(a) Multichain MDP

s1 s2 s3 s4

α

β

0.5

0.5

(b) MDP with nontrivial memory requirements

Figure 5: MDPs referenced in Examples 2 and 4.

Φ(zjs,α) = 0 if Φ(as,α) = 0 and Φ(z
ψj

s,⊥) = 0 if Φ(ejs) = 0 for any solution Φ. Hence,
for states s ∈ S�E� where Φ(ejs) = 0, the strategy σ encoded by the variables
as,α coincides with the strategy considered in Lemma 4. Assume that solution
Φ yields a BSCC within the states of E in Mσ and therefore also a BSCC in
(ME)σ. Since sE⊥ has to be reached almost surely in ME (cf. Lemma 4), the
BSCC has to contain at least one state s with Φ(ejs) = 1.

In summary, Lines 19 to 22 imply that every BSCC E ′ ⊆ E of Mσ contains at
least one state s with Φ(ejs) = 1. Then, with Lines 16 to 18 we get that Φ(ejs′) = 1

has to hold for all s′ ∈ S�E ′�. In Mσ, the set Sj
0 ∪ {

s | Φ(ejs) = 1
}

is therefore
reached almost surely and all the states in this set get assigned value 0. In this
case, the solution of the equation system from Lemma 3 becomes unique again.

Theorem 4. For finite rewards, the constraints in Figs. 2 and 4 are feasible iff
p ∈ AchM

PS(Q).

3.6 Extension to Infinite Rewards

Our approach can be modified to allow PSMA instances where infinite expected
reward can be collected, i.e., where Restriction 2 does not hold. Infinite reward
can be collected if we cycle through an EC of M that contains a transition with
positive reward. Such instances are of practical interest as this often corresponds
to strategies that do not accomplish a certain goal (e.g., a robot that stands still
and therefore requires infinite time to finish its task).

We sketch the necessary modifications. More details are in [17, App. B]. Let
S∞ be the set of states where every pure strategy induces infinite reward for
at least one minimizing objective. To ensure that the MILP instance has a (real-
valued) solution, we consider the sub-MDP of M obtained by removing S∞.

If infinite reward can be collected in an EC, it should not be considered
in Fig. 4. We therefore let E range over maximal ECs that only consist of (a)
states in Sj

? and (b) transitions with reward 0.
The upper bounds U j

s for the maximal expected rewards at each state can
not be set to ∞. However, for the encoding it suffices to compute values that are
sufficiently large. However, we remark that in practice our approach from [17,
App. B] can lead to very large values, yielding numerical instabilities.

For maximizing objectives, we introduce one additional objective which, in a
nutshell, checks that the probability to reach a 0-reward BSCC is below 1. If this
is the case, there is a positive probability to reach a BSCC in which infinitely
many reward can be collected.
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4 Computing the Pareto Front

Our next goal is to compute the pure stationary Pareto front ParetoM
PS(Q) for

MDP M and multi-objective query Q. This set can be very large, in particular if
the objectives are strongly conflicting with many different tradeoffs. In the worst
case, every pure stationary strategy induces a point p ∈ ParetoM

PS(Q) (e.g., for
Q = 〈E≤(R♦G),E≥(R♦G)〉). We try to find an approximation of ParetoM

PS(Q).

Definition 7. Let ε ∈ (R>0)
�. An ε-approximation of P ⊆ (R∞)� is a pair

〈L,U〉 with L ⊆ P ⊆ U and ∀p ∈ P : ∃p′ ∈ L ∪ ((R∞)� \ U) : |p− p′| ≤ ε.

For simplicity, we only consider inputs that satisfy restriction Restriction 2, i.e.,
for ψj = E∼j

(Rj♦Gj) there is U j 
= ∞ such that ∀σ ∈ ΣM
PS : U j ≥ EM

σ (Rj♦Gj).
Ideas of Sect. 3.6 can be used for some other inputs. An all-embracing treatment
of infinite rewards, in particular for maximizing ψj , is subject to future work.

Our approach for PSP≈ successively divides the solution space into candidate
regions. For each region R (initially, let R = [0, U1] × · · · × [0, U �]), we use
the MILP encoding from Sect. 3 with an optimization function to find a point
p ∈ R ∩ ParetoM

PS(Q) (or find out that no such point exists). The region R is
divided into (i) an achievable region RA ⊆ AchM

PS(Q), (ii) an unachievable region
RU ⊆ R�\AchM

PS(Q), (iii) further candidate regions R1, . . . ,Rn that are analyzed
subsequently, and (iv) the remaining area R\ (RA ∪RU ∪R1 ∪ · · · ∪Rn) which
does not require further analysis as we are only interested in an ε-approximation.
The procedure stops as soon as no more candidate regions are found.

Example 3. Fig. 6 sketches the approach for an MDP M and a query Q with two
maximizing objectives. We maintain a set of achievable points (light green) and
a set of unachievable points (red). Initially, our candidate region corresponds to
R1 = [0, U1]×[0, U2] given by the white area in Fig. 6a. We consider the direction
vector w1 which is orthogonal to the line connecting

〈
U1, 0

〉
and

〈
0, U2

〉
. To

find some point p ∈ ParetoM
PS(Q) ∩ R1, we solve the MILP resulting from the

constraints as in Sect. 3, the constraint
〈
x1
sI , x

2
sI

〉 ∈ R1, and the optimization
function w1 ·

〈
x1
sI , x

2
sI

〉
. Fig. 6b shows the obtained point p1 ∈ R1. Since p1 is

achievable, we know that any point in clQ({p1}) has to be achievable as well.
Moreover, the set {p ∈ R1 | w1 · p > w1 · p1} indicated by the area above the
diagonal line in Fig. 6b can not contain an achievable point. The gray areas do
not have to be checked in order to obtain an ε-approximation. We continue with
R2 indicated by the white area and the direction vector w2, orthogonal to the line
connecting

〈
0, U2

〉
and p1. As before, we solve an MILP now yielding the point

p2 in Fig. 6c. We find achievable points clQ({p2}) but no further unachievable
points. The next iteration considers candidate region R3 and direction vector

Pure Stationary Pareto Approximation Problem (PSP ≈)

Input: MDP M, �-dimensional multi-objective query Q, precision ε ∈ (R>0)
�

such that ParetoM
PS(Q) ⊆ R�

Output: An ε-approximation of clQ(ParetoM
PS(Q))
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〈
U1, 0

〉

〈
0, U2

〉

R1

w1

(a)

p1

R2

w1

w2

(b)

p1

p2

R3

w1

(c)

p1

p2

p3

R4

w1

(d)

Figure 6: Example exploration of achievable points.

w1, yielding point p3 shown in Fig. 6d. The trapezoidal area is added to the
unachievable points whereas clQ({p3}) is achievable. Finally, we check R4 for
which the corresponding MILP instance is infeasible, i.e., R4 is unachievable.

The ideas sketched above can be lifted to � > 2 objectives. Inspired by [24,
Alg. 4], we choose direction vectors that are orthogonal to the convex hull of
the achievable points found so far. In fact, for total reward objectives we can
apply the approach of [24] to compute the points in ParetoM

PS(Q)∩ParetoM(Q)
first and only perform MILP-solving for the remaining regions. As the distance
between two found points p,p′ is at least |p − p′| ≥ ε, we can show that our
approach terminates after finding at most

∏
j U

j/ε�j� points. Other strategies
for choosing direction vectors are possible and can strongly impact performance.

5 Bounded Memory

For GMA, it is necessary and sufficient to consider strategies that require memory
exponential in the number of objectives [20,24,40] by storing which goal state
set has been reached already. In contrast, restricting to pure (but not necessarily
stationary) strategies imposes nontrivial memory requirements that do not only
depend on the number of objectives, but also on the point that is to be achieved.

Example 4. Let M be the MDP in Fig. 5b and Q = 〈P≥ (♦G�) ,P≥ (♦G�)〉. The
point pk =

〈
0.5k, 1−0.5k

〉
for k ∈ N is achievable by taking α with probability

0.5k. pk is also achievable with the pure strategy σk where σk(π̂) = α iff |π̂| ≥ k.
σk uses k memory states. Pure strategies with fewer memory states do not suffice.

We search for pure strategies with bounded memory. For an MDP M and K > 0,
let ΣM

P,K denote the set of pure K-memory strategies, i.e., any σ ∈ ΣM
P,K can be

represented by a Mealy machine using up to K states (c.f. [17, App. D]). For a
query Q, let AchM

P,K(Q) be the set of points achievable by some σ ∈ ΣM
P,K .

Pure Bounded Multi-objective Achievability Problem (PBMA)

Input: MDP M, multi-objective query Q, memory bound K, point p ∈ (R∞)�

Output: Yes iff p ∈ AchM
P,K(Q)
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Table 1: Results for stationary strategies.
Bench- Instance 1 ε=0.01 ε=0.001 Instance 2 ε=0.01 ε=0.001
mark � Par. |S| %E Act Time |P | Time |P | Par. |S| %E Act Time |P | Time |P |
dpm 2∗ 2 1272 32 3.2 17 37 315 377 3 1696 30 3.2 82 30 TO
eajs 2∗ 2-3 689 0 1.2 5 23 45 202 3-6 2·104 0 1.2 201 52 3787 375
jobs 3∗ 3-2 17 0 1.1 3 3 2 3 5-2 117 0 1.5 2042 76 TO
mutex 3∗ 1 1795 36 2.2 TO TO 2 1·104 33 2.3 TO TO
polling 2 2-2 233 86 1.5 6 5 23 6 3-2 990 84 1.8 299 5 TO
rg 2∗ 2-1-20 2173 14 2.9 5 5 12 5 5-2-50 3·104 5 3.1 496 27 TO
rover 2∗ 2500 2·104 0 1.2 110 47 417 251 5000 4·104 0 1.2 258 47 3105 472
serv 2∗ 5·104 93 1.9 1828 38 TO
str 2∗ 30 1426 0 1.3 11 21 822 218 500 4·105 0 1.3 2428 17 TO
team2 2∗ 2 1847 24 1.2 2 5 2 5 3 1·104 21 1.2 18 43 MO
team3 3∗ 2 1847 24 1.2 165 15 166 15 3 1·104 21 1.2 TO TO
uav 2∗ 750 2·105 29 1.6 400 39 5799 332 1000 4·105 31 1.8 3546 36 TO
wlan 2∗ 0 2954 0 1.3 160 16 TO 2 3·104 0 1.3 6728 23 TO

The pure bounded Pareto approximation problem is defined similarly. We reduce
a PBMA instance to an instance for PSMA. The idea is to incorporate a memory
structure of size K into M and then construct a pure stationary strategy in this
product MDP (see, e.g., [29] for a similar construction). The set of strategies
can be further refined by considering e.g., a memory structure that only allows
counting or that only remembers visits of goal states. See [17, App. D] for details.

6 Evaluation

We implemented our approach for PSP≈ in the model checker Storm [16] using
Gurobi [27] as back end for MILP-solving. The implementation takes an MDP
(e.g., in Prism syntax), a multi-objective query, and a precision ε > 0 as input
and computes an ε-approximation of the Pareto front. Here, we set ε�j� = ε · δj ,
where δj is the difference between the maximal and minimal achievable value for
objective ψj . We also support reward objectives for Markov automata via [38].
The computations within Gurobi might suffer from numerical instabilities. To
diminish their impact, we use the exact engine of Storm to confirm for each
MILP solution that the encoded strategy achieves the encoded point. However,
sub-optimal solutions returned by Gurobi may still yield inaccurate results.

We evaluate our approach on 13 multi-objective benchmarks from [24,28,38],
each considering one or two parameter instantiations. Application areas range
over scheduling (dpm [37], eajs [1], jobs [10], polling [43]), planning (rg [6], rover [28],
serv [32], uav [21]), and protocols (mutex [38], str [38], team [15], wlan [31]).

The results for pure stationary strategies are summarized in Table 1. For each
benchmark we denote the number of objectives � and whether the alternative
encoding from Sect. 3.4 has been applied (∗). For each parameter instantiation
(Par.), the number of states (|S|), the percentage of the states that are contained
in an end component (%E), and the average number of available actions at each
state (Act) are given. For each precision ε ∈ {0.01, 0.001}, we then depict the
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Figure 7: Comparison of the two encodings (left) and impact of memory (right).

runtime of Storm and the number of points on the computed approximation
of the Pareto front. TO denotes that the approach did not terminate within 2
hours, MO denotes insufficient memory (16 GB). All experiments used 8 cores of
an Intel R© Xeon R© Platinum 8160 Processor.

Storm is often able to compute pure stationary Pareto fronts, even for mod-
els with over 100 000 states (e.g., uav). However, the model structure strongly
affects the performance. For example, the second instance of jobs is challenging
although it only considers 117 states, a low degree of nondeterminism, and no
(non-trivial) end components. Small increments in the model size can increase
runtimes significantly (e.g., dpm or uav). If a higher precision is requested, much
more points need to be found, which often leads to timeouts. Similarly, for more
than 2 objectives the desired accuracy can often not be achieved within the time
limit. The approach can be stopped at any time to report on the current ap-
proximation, e.g., after 2 hours Storm found 65 points for Instance 1 of mutex.

For almost all benchmarks, the objectives could be transformed to total re-
ward objectives, making the more efficient encoding form Sect. 3.4 applicable.
We plot the runtimes of the two encoding in Fig. 7a. The alternative encoding
is superior for almost every benchmark. In fact, the original encoding timed out
for many models as indicated at the horizontal line at the top of the figure.

In Fig. 7b we plot the Pareto front for the first polling instance under general
strategies (Gen), pure 2-memory strategies that can change the memory state
exactly once (PM2), pure strategies that observe which goal state set Gj has
been visited already (PMG), and pure stationary strategies (PS). Adding simple
memory structures already leads to noticeable improvements in the quality of
strategies. In particular, PM2 strategies perform quite well, and even outperform
PMG strategies (which would be optimal if randomization were allowed).

Data availability. The artifact [18] accompanying this paper contains source code,
benchmark files, and replication scripts for our experiments.

Acknowledgments. The authors thank Sebastian Junges for his valuable contri-
butions during early stages of this work.
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Abstract. Symbolic model checking has become an important part of
the verification flow in industrial hardware design. However, its use is
still limited due to scaling issues. One way to address this is to exploit
the large amounts of symmetry present in many real world designs. In
this paper, we adapt partial order reduction for bounded model checking
of synchronous hardware and introduce a novel technique that makes
partial order reduction practical in this new domain. These approaches
are largely automatic, requiring only minimal manual effort. We evaluate
our technique on open-source and commercial packet mover circuits –
designs containing FIFOs and arbiters.

1 Introduction

Modern society relies increasingly on electronic systems, powered by hardware
components that continue to grow in complexity and variety. Ensuring the func-
tional correctness of these components is essential, as bugs and errors can have
consequences ranging from undermining a company’s reputation to jeopardiz-
ing human safety [1,22,25,32,33]. Most electronic designs must therefore include
a significant verification effort, and this effort often consumes more time and
resources than all other aspects of the design process [17,34].

Formal methods such as symbolic model checking have become a crucial part
of the verification effort because of their strong guarantees and automation [24].
However, due to the state space explosion problem [14], model checking typically
only works well for small- to medium-sized circuits with primarily control logic,
limiting its potential for addressing industry verification challenges.

One approach for combating the state space explosion problem is partial or-
der reduction [14]. While symbolic partial order reduction has been successfully
applied for the verification of asynchronous systems [37], its use in synchronous
systems has been limited. In this paper, we introduce a novel approach for adapt-
ing symbolic partial order reduction to model checking of synchronous hardware
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and demonstrate dramatic reductions in the time to reach deep bugs on cer-
tain classes of synchronous circuits. Moreover, the technique requires only an
interface-level annotation of the circuit, and when fully automated approaches
fail, can be guided by the user. The paper makes the following contributions:

1. We adapt partial order reduction for synchronous hardware verification.
2. We introduce a novel technique for reducing the possible inputs to a circuit

at a single time step, which is crucial for practical application of partial order
reduction to synchronous hardware.

3. We provide a set of sufficient conditions, which, if proven, guarantee that
the proposed techniques maintain the reachable states.

4. We introduce conservative proof techniques for verifying these conditions,
which empirically work well on packet movers.

5. We evaluate our techniques on a set of open-source and commercial packet
mover circuits, demonstrating dramatic speed-ups with minimal manual ef-
fort.

The rest of the paper is organized as follows. We first provide a motivating
example, below. Then, in Section 2, we cover relevant background material and
notation. We explain our partial order reduction in Section 3 and our interface
simplification technique in Section 4. We provide an experimental evaluation in
Section 5. Section 6 covers related work, and Section 7 concludes.

1.1 Motivating Example

Throughout this paper we use the running example shown in Code Snippet 1. We
chose this example because: i) it is easy to understand; ii) it resembles real-world
packet mover circuits; and iii) it contains a difficult to reach bug.

The system has a synchronizing clock and takes two 1-bit inputs: inc x and
inc y. The 6-bit registers (state elements) x and y index the valid vector
and are initialized to 0. The 64-bit registers valid and data start at 0 and 1,
respectively. The 64x64 bit memory is uninitialized. If inc x and en x are true,
the system increments the value of x. When inc y is true, the system increments
y, sets the valid bit at index y, writes data to the memory at location y, and
rotates the data vector to the left. Notice that the en x signal ensures that x
never surpasses y (until all bits in valid are set). This incrementing pointer
logic is similar to that found in a circular pointer FIFO. To ensure the asserted
property, the code attempts to maintain the invariant: data = 1 << y.

At first, it appears that the asserted property should hold based on this
invariant, but it does not. There is a bug that can first occur at cycle 65: the
overflow check in the data update uses integers, which are assumed to be 32-
bits. Since y is zero-extended to be 32-bits, y+1 can never be equal to 0. Thus,
when y has the value 63 and is incremented, data, which is supposed to be
one-hot, is set to 0.

Although the system is small, this is a surprisingly difficult bug to reach using
model checking. We believe this is due in part to the non-determinism in the
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Code Snippet 1: Buggy Toy Example

1 module deep_bug(input clk, input inc_x, input inc_y);
2 reg [5:0] x = 0;
3 reg [5:0] y = 0;
4 reg [63:0] valid = 0;
5 reg [63:0] data = 1;
6 reg [63:0] mem [63:0];
7 wire en_x;
8 assign en_x = valid[x];
9

10 always @(posedge clk) begin
11 if (inc_x & en_x)
12 x <= x + 1;
13 if (inc_y) begin
14 y <= y + 1; valid[y] <= 1’b1; mem[y] <= data;
15 data <= (y+1 == 0) ? 1 : (data << 1);
16 end
17 end
18

19 always @*
20 assert ((mem[x] == (1 << x)) || ˜valid[x]);
21 endmodule // deep_bug

update logic. In every state, there are 4 possible input combinations. As a result,
there are an exponential number of execution paths. Model checkers routinely
verify hardware designs with an exponential number of reachable states; however,
we have observed that systems such as this which also have an exponential
number of execution paths are difficult for a model checker to manage.

Specifically, all but two of the model checker configurations we tried timed
out at 2 hours before reaching the bug. Since bounded model checking (BMC) is
one of the best approaches for bug-finding, we focus on improvements to BMC
that help reach this bug. We introduce automated, best effort techniques that
reduce the time to hit this bug from over 1000 seconds to 46 seconds by safely
adding temporal symmetry breaking constraints to the system.

2 Background

Before explaining our algorithm, we adapt the standard notion of synchronous
transition systems and review fundamental model checking concepts below. For
a more thorough introduction to model checking, we refer the reader to [14,15].

– S: a set of states
– Init ⊆ S: a set of initial states

Definition 1. A Synchronous Transition System (STS) is a tuple, 〈S, Init , A,En, D, T 〉:
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– A: a finite set of atomic actions - logically distinct operations of the system
– En = {ena|a ∈ A}: where ena : S → B is a state predicate that holds iff

action a is enabled in a given state
– D: a set of data inputs to the system
– T ⊆ S×(P(A)×D)×S: the state transition relation, where P denotes power

set

For our purposes, an STS instruction can perform multiple atomic actions
simultaneously. We define the system’s instruction set (i.e. the set of actions
that the system can perform in one transition) as I := P(A). We then define the
set of inputs of an STS as Input := I ×D. Thus, the transition relation T is a
subset of S × Input × S.

We denote the cardinality of an instruction i as |i|. For s, s′ ∈ S, in ∈ Input ,
T (s, in, s′) holds iff it is possible to reach s′ from s by applying input in.
It is often convenient to reason about sequences using vector notation. Let
in ∈ Inputn and s ∈ Sn+1, with n > 0. We use subscripts to name individ-
ual elements of vectors, e.g. s := 〈s0, s1, . . . 〉. We use the notation T (in , s)
to denote

∧
0≤i<n T (si, ini, si+1). The length of a vector is given by | · |, e.g.

|s| = n + 1, and prepending is represented as · : ·, e.g. s = s0 : s′ for
some s′ ∈ Sn. With some abuse of notation, we allow prepending both se-
quences and single elements. For k > 0, we say that s ∈ Sk is reachable if
∃n ∈ N, s′ ∈ Sn+1, in ∈ Inputn+k . Init(s′0) ∧ T (in , s′ : s).

The set of enabledness predicates En constrain the valid states in which an
action can occur. For an instruction i ∈ I and s ∈ S, let eni(s) :=

∧
a∈i ena(s).

In the remainder of the paper, we only consider transition relations T that respect
the enabledness conditions. That is, we assume ∀ s, i.(eni(s) ↔ ∃ s′, d.T (s, 〈i, d〉, s′)).
Depending on the context, this can be checked with a model checker or added
as an environmental assumption. We also assume that the existence of a transi-
tion does not depend on the data input, that is, ∀ s, i. (∃ d, s′. T (s, 〈i, d〉, s′) =⇒
∀ d. ∃ s′. T (s, 〈i, d〉, s′)).

Example 1. We can define an STS for the motivating example. Let BVk denote
the set of all bitvectors of width k. Because there is only a single clock with
no negative edge behavior, we model the system without the clock, where every
transition corresponds to a clock cycle. Define an STS 〈S, Init , A,En, D, T 〉,
where:

– S = BV6 × BV6 × BV64 × BV64 × (BV64)
64 is the set of values for

〈x, y, valid, data,mem〉
– Init is the set containing all states where x = 0, y = 0, valid = 0 and data

= 1
– A = {inc x, inc y}
– En = {en inc x := valid[x] = 1, en inc y := true}
– D = {nil} (here, nil is just a dummy placeholder used to ensure that T is

not empty).
– T is the relation describing the next state updates in Code Snippet 1.
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Model Checking. Given an STS S, let a safety property P ⊆ S be a set con-
taining acceptable states. The model checking problem is to determine whether
the system stays within this acceptable set for all possible execution traces.
Formally, we want to check whether the following holds:

∀n ≥ 0, in ∈ Inputn, s ∈ Sn+1. (Init(s0) ∧ T (in , s)) =⇒ sn ∈ P (1)

When equation (1) holds, we say that P is an invariant of S. A number of
techniques exist for solving this problem, including Binary Decision Diagram
(BDD)-based [12] approaches, Interpolant-based [27] approaches, and IC3/PDR
(property directed reachability) techniques [10,16]. We refer the interested reader
to [15] for a more complete survey of model checking algorithms.

In this paper, we will focus on bounded model checking (BMC). In BMC,
instead of proving (1) for all n, we prove it for all n less than some finite bound
k. Though it typically cannot be used to prove properties, BMC can be quite
effective at finding bugs [6] and is especially useful when full model checking is
infeasible.

Symmetry. Early on in the development of model checking, researchers rec-
ognized the importance of symmetry reduction to combat the state explosion
problem [13]. Existing approaches in the hardware domain perform data sym-
metry reduction and data type reduction through the use of bit-width reduction
preprocessing passes or syntactic restrictions such as scalarsets [8,20,28]. There
have also been abstraction-refinement loop algorithms proposed to handle mem-
ory symmetries [9]. All of these approaches are focused on symmetries present
in the transition system description, such as the presence of large data types.
We refer to these types of symmetries as data symmetries. Most of these tech-
niques are intended to speed up proofs of true properties rather than accelerate
bug-finding.

Model checking of asynchronous systems such as concurrent programs faces
an orthogonal issue due to the many possible redundant interleavings of inde-
pendent processes. Throughout this paper, we refer to this as path symmetry.
Path symmetry is a temporal symmetry: it relates to executions of a system
rather than just its size. Path symmetries occur when there are many distinct
ways of reaching the same state in a system execution. Exploring all such paths
can result in exponential case splitting.

This paper provides evidence that path symmetry can also severely hurt
model checking performance in synchronous systems. One of the first techniques
proposed to handle path symmetry was partial order reduction.

Partial Order Reduction. Partial order reduction was first developed in the
explicit-state model checking context but was later extended to symbolic model
checking [37]. The approach is named “partial order reduction” for historical rea-
sons, but Clarke noted in [14] that “model checking using representatives” [30,31]
may have been a more appropriate name. In particular, partial order reduction
attempts to develop equivalence classes of behaviors so that only one represen-
tative from each class needs to be considered during model checking. Note that
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partial order reductions are sound only for checking state invariants. If the prop-
erty of interest is temporal, the reduction could disallow input sequences that
trigger the property. This can be avoided by first instantiating a monitor [15]
and, if necessary, converting liveness properties to safety [5].

Partial order reduction is less natural in the synchronous setting, because
synchronous transition systems do not have easily expressible independent ac-
tions. Nevertheless, these systems can still benefit from partial order reduction.
Consider our motivating example: despite the huge number of system execution
paths to consider, many of them are redundant. Observe that if both inputs are
zero, then the state does not change. Furthermore, there is a temporal symmetry
in the system execution: from any state where en x is true, driving only inc x
followed by only inc y results in the same state as driving them in the opposite
order. Thus, this system has a large number of redundant interleavings, much
like a multi-threaded program. To address this problem, we introduce a par-
tial order reduction for synchronous hardware. Our goal is to remove redundant
interleavings by adding constraints to the system. To maintain soundness, we
provide a set of conditions which must pass before we can add constraints.

3 Synchronous Partial Order Reduction

In order to be able to apply partial order reduction to a synchronous transition
system, we are interested in identifying pairs of instructions that can be reordered
without affecting the resulting state. More generally, we also want to be able
to find pairs that can only be reordered under certain conditions. To formalize
these notions, we adapt the notation and representation of guarded independence
relations from [37].1

Definition 2. Given an STS: 〈S, Init , A,En, D, T 〉 with instruction set I, let
G := P(S) be the set of predicates over the states. Let 〈i0, i1, g〉 be a guarded
independence tuple iff for all d0, d1 ∈ D and reachable s ∈ S3, the following
condition holds:

eni0(s0)∧g(s0)∧T (〈〈i1, d1〉, 〈i0, d0〉〉, s) =⇒ ∃ s′.T (〈〈i0, d0〉, 〈i1, d1〉〉, 〈s0, s′, s2〉).
According to this definition, if we can prove that 〈i0, i1, g〉 is a guarded indepen-
dence tuple, then we can reorder 〈i1, i0〉 instruction sequences as long as i) i0 is
enabled in the first state; ii) g holds in the first state; and iii) we also reorder the
corresponding data inputs. We check only the enabledness of i0 because 〈i0, i1〉 is
the representative order, and we only need to be able to reorder to the represen-
tative, not from it. The guard allows us to consider partial order reductions that
only hold for a subset of the reachable states. To avoid trivially overconstraining
the system with conflicting reorderings, we will only consider one ordering for
each pair of instructions.

The condition in Definition 2 is difficult to check automatically because of
the existential quantifier. We instead check two slightly weaker conditions that

1 The main differences are our STS formalism and that we consider reachability.
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Fig. 1: Partial Order Reduction Condition (3) Proof Goal

imply guarded independence. These conditions are also standard in the POR
literature [14,37]. The first condition states that instruction i0 cannot disable i1
under guard g:

∀ d ∈ D, s ∈ S2. (eni1(s0) ∧ g(s0) ∧ T (s0, 〈i0, d〉, s1)) =⇒ eni1(s1) (2)

Intuitively, this condition ensures that we do not remove reachable states by
disabling instructions. The second condition is that executing the instructions
in either order leads to the same final state:

∀d0, d1 ∈ D, s, s′ ∈ S3 . (g(s0) ∧ (s0 = s′0) ∧
T (〈〈i0, d0〉, 〈i1, d1〉〉, s) ∧ T (〈〈i1, d1〉, 〈i0, d0〉〉, s′)) =⇒ (s2 = s′2)

(3)

When applying partial order reduction to concurrent programs, the standard
approach is to check conservative syntactic properties which guarantee conditions
(2) and (3). Synchronous systems do not typically have these syntactic proper-
ties, because there is no notion of distinct processes. Instead, we must check
these conditions directly. In real circuits, it is unlikely that (2) will hold over
arbitrary states. However, it is sufficient to prove that it holds for all reachable
states. This can be done with a model checker.

To prove (3), we could encode it as an LTL property or build a monitor
automaton and use a model checker. Alternatively, we have found that we can
often use a straightforward commuting-diagram approach starting from a sym-
bolic initial state, depicted in Fig. 1. We duplicate the system, unroll it twice,
then start both copies in the same symbolic state and check that applying the
instructions in either order results in the same final state. This simple approach
has the disadvantage that a symbolic initial state ignores reachability which
could lead to spurious counterexamples. However, notice that the initial state
is constrained by enabledness assumptions. To apply an instruction it must be
enabled, so both instructions must be enabled in the initial state. We have found
that these enabledness assumptions often constrain the initial state enough to
rule out spurious counterexamples.
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If both conditions pass, then we can choose a representative order and dis-
allow the opposite ordering for that pair of instructions. If the proof of con-
dition (3) fails, it provides a counterexample which should either convince the
user that partial order reduction does not apply for that pair of instructions
(a real counterexample), or serve as a guide for the user to write guards that
would remove the spurious counterexample. Other invariants of the system, ei-
ther obtained automatically or manually guessed by the user, could also remove
spurious counterexamples. We can now state the first theorem of synchronous
partial order reduction: that these conditions guarantee guarded independence
over all reachable states.

Theorem 1. Given an STS S := 〈S, Init , A,En, D, T 〉, with instruction set I :=
P(A): if conditions (2) and (3) hold for instructions io, i1 ∈ I, and guard g ∈
P(S), then 〈i0, i1, g〉 is a guarded independence tuple.

Proof. Assume conditions (2) and (3) and that for some d0, d1 ∈ D and reachable
s ∈ S3, we have:

eni0(s0) ∧ g(s0) ∧ T (〈〈i1, d1〉, 〈i0, d0〉〉, s)

Because eni0(s0), we have ∃s′, d′ . T (s0, 〈i0, d′〉, s′) because of our enabledness
assumption. Furthermore, by the data-input independence property of transition
relations, it follows that for some s′1, T (s0, 〈i0, d0〉, s′1) Now, because one of our
assumptions is a transition from s0 using i1, eni1(s0) must be true. Condition
(2) implies that eni1(s

′
1), thus ∃ s′, d′. T (〈〈i0, d0〉, 〈i1, d′〉〉, 〈s0, s′1, s′〉). As before,

this implies that for some s′2, we also have that T (〈〈i0, d0〉, 〈i1, d1〉〉, 〈s0, s′1, s′2〉).
It then follows from (3) that s′2 = s2, and thus, 〈i0, i1, g〉 satisfies the condition
from Definition 2. �

Let a guarded independence relation, R ⊆ I × I × G, be a set of guarded
independence tuples. We now describe how to apply partial order reductions,
given some R. For each 〈i0, i1, g〉 ∈ R, and for every s ∈ S2, d ∈ D, whenever
T (s0, 〈i1, d1〉, s1)∧eni0(s0)∧g(s0) holds, we remove from T every transition of the
form 〈s1, 〈i0, d〉, s〉 (for any d and s). Let TR be the result. To apply this reduction
in practice, we add a constraint to the BMC encoding: (g(s0)∧eni0(s0)∧i1) =⇒
¬next(i0).

This makes it impossible for the STS system to ever execute an instruction
i0 after an instruction i1 when starting from a state where i0 is enabled and g
holds. This effectively gives preference to i0 as long as it is enabled. The effect
of partial order reduction on a pair of instructions in a synchronous system is
depicted in Fig. 2. Red X’s show removed transitions, and for simplicity, we
assume a trivial guard of true. Notice that all states are still reachable via some
path from the initial state in the bottom left corner.

Theorem 2. Given S := 〈S, Init , A,En, D, T 〉, let R be a guarded independence
relation and let SR be the reduced STS obtained by replacing T with TR in S.
Then, if a property P is an invariant for SR, it is also an invariant for S.



Partial Order Reduction for Deep Bug Finding in Synchronous Hardware 375

Fig. 2: Effect of Partial Order Reduction for Instructions i0 and i1. Initial state
is green.

Proof. It suffices to show that SR can reach all the same states as S. We prove
this by contradiction. Assume there is some in , s such that Init(s0)∧T (in , s) and
0 ≤ j ≤ |s|−1 such that sj is the first state that is unreachable in SR. The value
of j cannot be 0 or 1, because S and SR have the same initial states and TR only
excludes sequences of length 2. Then, by the definition of TR, 〈inj−2, inj−1〉must
be a sequence excluded by TR. Conditions (2) and (3) guarantee that permuting
inj−2 and inj−1 results in an enabled sequence that ends in the same state,
sj , which contradicts the assumption. Thus, there cannot be a state which is
reachable in S but not SR. �

4 Reduced Instruction Sets

Now that we can apply partial order reduction to synchronous systems, our main
goal is to identify a maximal guarded independence relation, R. Recall that we
defined instructions as sets of atomic actions. We call an instruction contain-
ing at most one action atomic (this includes the instruction with no actions).
Non-atomic instructions are complex. Instructions thus reflect the parallelism of
synchronous hardware, and lead to natural candidates for R: pairs of atomic
instructions.

Furthermore, notice that the number of instructions is exponential in the
number of actions. Thus, it could be prohibitively expensive to check every pair
of instructions for guarded independence. In contrast, the number of atomic
instructions is equal to the number of actions (plus one). Furthermore, it is
likely that many complex instruction pairs will not have a guarded independence
relationship because they contain common actions. Our goal in this section is to
disallow as many complex instructions as possible without losing any reachable
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states, thereby reducing the number of pairs of instructions we need to check
while also making it more likely for the checks to succeed. Note that, in isolation,
removing instructions might be problematic, because it could extend the bound
needed to reach a property violation. However, as we will demonstrate in the
experimental section, this disadvantage is more than compensated for when it is
applied in combination with partial order reduction.

Given an STS with instruction set I, we seek a reduced instruction set,
Ir ⊆ I, which preserves the reachable states of the system. Let Inputr be the
set of inputs which only use instructions from Ir. Given an input in ∈ Input ,
our goal is to prove the existence of a witness w(in) ∈ Inputnr (for some n > 0)
that simulates the behavior of in using only reduced instructions. Formally, the
witness function w should satisfy:

∀ s, s′ ∈ S, in ∈ Input . T (s, in, s′) =⇒
∃n ∈ N, s ∈ Sn. T (w(in), s : s) ∧ (sn−1 = s′)

(4)

In other words, we need to show that for every instruction in the original in-
struction set, there exists a sequence of inputs, using only instructions from the
reduced instruction set (RIS), that results in the same final state. Notice that
a witness function that also depended on the state would be more general, but
for our purposes, it is sufficient for the witness function to depend only on the
input.

4.1 Atomic instruction sets

The condition in (4) is quite general and does not provide any intuition on how
to choose w. Here, we focus on a specific case where w is easy to construct: we
choose Ir to be an atomic instruction set, defined as an instruction set containing
only atomic instructions. We then must prove that the set of reachable states is
not affected by restricting the instructions to those in Ir.

It is sufficient to prove that for each complex instruction, we can remove one
of its actions and perform that action in the next step, with the same result. For
some complex instruction i containing a and some data input d, let wa(〈i, d〉) be
〈〈i−{a}, d〉, 〈{a}, d〉〉. We must show that for each input in containing a complex
instruction, there exists some a where wa(in) has the equivalent effect on the
system as in. Formally, the requirement is:

∀i ∈ I \ Ir, d ∈ D, s ∈ S2.

T (s0, 〈i, d〉, s1) =⇒ ∃ a ∈ i, s′ ∈ S3. T (wa(〈i, d〉), s′) ∧ s0 = s′0 ∧ s1 = s′2
(5)

Condition (5) is still difficult to prove because of the existential quantifier. One
conservative approach is to replace the existential quantifier with a universal
quantifier and attempt to prove that stronger condition. For real systems, this
is unlikely to hold. Instead, we propose a counterexample blocking procedure
which, if it succeeds, guarantees (5). We introduce symbolic values for i, d, and
a and then iteratively add constraints over them until the proof succeeds or
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Fig. 3: Equivalence of original and reduced instruction sequences. Circles repre-
sent states.
we have enumerated all possibilities. This algorithm is a specialized ∀∃ decision
procedure that exploits the structure of (5) and additional domain knowledge
about the proof goal. We use a constraint solver as an oracle.

Algorithm 1 ProveRIS(S)

1: S′ := 〈S′, Init ′, A′,En ′, D′, T ′〉 ← copy sys(S)
2: I := P(A), I′ := P(A′) // instruction sets are power sets of actions
3: var i : I, var i′ : I′, var a : A
4: var s : S2, var s′ : S′3, var d : D, var d′ : D′

5: add constraint(s0 = s′0 ∧ d = d′ ∧ i′ = i− {a})
6: add constraint(T (〈〈i, d〉〉,s) ∧ T ′(〈〈i′, d′〉, 〈{a}, d′〉〉,s′))
7: for c = 2 ... |A| do
8: while check sat(|i| = c ∧ s1 �= s′2) do
9: μ ← get model()
10: iμ ← assignment(μ, i)
11: aμ ← assignment(μ, a)
12: add constraint(iμ ⊆ i =⇒ a �= aμ)
13: if ¬check sat(i = iμ) then
14: return false // exhausted all possible decompositions for this instruction
15: end if
16: end while
17: end for
18: return true // every instruction can be decomposed

Algorithm 1 takes an STS, S := 〈S, Init , A,En, D, T 〉 and returns true if the
instruction set can be decomposed into an atomic instruction set by delaying a
single action from each instruction.2 For simplicity, the algorithm assumes (and
we check this assumption separately) that if a complex instruction i is enabled,
then for each a ∈ i, executing i − {a} results in a state where a is enabled.

2 We also implemented a more general version of this algorithm which can drop more
than one action at a time from the instruction i, but this simpler version is sufficient
for the results we report in this paper.
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Formally:

∀ i∈I\Ir, d∈D, s∈S2, a∈ i. eni(s0) ∧ T (s0, 〈i−{a}, d〉, s1) =⇒ ena(s1) (6)

Note that this is only a slight generalization of the property that atomic instruc-
tions do not disable each other, a condition that we will need anyway in order to
apply partial order reduction to the atomic instruction set (see condition (2)).

The algorithm first creates an identical copy of the STS in line 1. Lines 2-4 set
up symbolic variables for the instructions, data, and states of each system. Line
5 adds constraints to the solver enforcing that both systems start in the same
state, use the same data, and that i′ is i but with symbolic action a dropped.
Line 6 adds the transition relation constraint for each STS. The initial symbolic
set up is depicted in Fig. 3.

The outer loop at line 7 iterates over all possible complex instruction cardinal-
ities. The inner loop starting at line 8 attempts to show that for each cardinality
c, instructions of that cardinality can be decomposed by delaying one action
(symbolically represented by a). If all instructions of cardinality c have been
decomposed, then the while loop condition is false and the outer loop continues.
Otherwise, it gets variable assignments from the constraint solver in lines 9-11
and learns a constraint at line 13 that prevents this particular action, aμ, from
being chosen for decomposition again. To ensure that we have not blocked all
possible actions, there is an additional check at line 13, which returns false in
the case that no action can be delayed for the current instruction.

Importantly, the algorithm assumes that if the delay of action aμ does not
create a valid witness sequence for a given complex instruction iμ, then the
same is true whenever the instruction i includes iμ. We call this a monotonicity
assumption, and it typically holds when actions are somewhat independent. The
monotonicity assumption motivated the current structure of the algorithm and
can significantly reduce the number of iterations in the algorithm. We can remove
this assumption by changing iμ ⊆ i to iμ = i in the antecedent in line 13.
Note that the monotonicity assumption does not make the algorithm unsound:
if it returns true, then (as we prove below) condition (5) holds. However, if the
algorithm returns false, then it may be that the version without the assumption
would return true. For each of our experiments, we were able to get a true result
with the monotonicity assumption.

Because the algorithm does not consider state reachability and looks for a
witness function that only depends on inputs, it can still return false when an
equivalent sequence might exist for reachable states. In such cases, users can
examine the constraint solver models and attempt to remove some of them by
proving other invariants.3

If algorithm 1 returns true, we replace T with Tr, where Tr is the result of
removing from T all transitions 〈s, 〈i, d〉, s′〉 where |i| > 1. Practically, this is

3 This was rarely necessary in our experiments. Our implementation also extended
the algorithm to support predicate abstraction, which could also rule out spurious
counterexamples, but this feature was never needed in our experiments.
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achieved by adding a disjunctive constraint over the possible atomic actions. We
can now state the main results for reduced instruction sets.

Theorem 3. Let S be an STS. If condition (6) holds and ProveRIS(S) returns
true, then (5) holds.

Proof. We maintain the loop invariant at line 8 that for every instruction i′,
there is some action a′ such that check sat(|i| = c ∧ i = i′ ∧ a = a′) is true. It’s
true initially for each c by condition (6). Afterwards, the check on line 14 ensures
that it is maintained. Furthermore, the check on line 9 ensures that when the
while loop is exited, then any satisfying assignment for check sat(|i| = c) is such
that s1 = s′2. Together, these conditions guarantee that (5) holds.

Theorem 4. Let S := 〈S, Init , A,En, D, T 〉 be an STS such that condition (6)
holds and ProveRIS(S) returns true, and let Tr be the transition relation for
the reduced instruction set. Let Sr be the reduced STS obtained by replacing T
with Tr in S. Then, safety property P ∈ S is an invariant for Sr if and only if
it is also an invariant for S.

Proof. It suffices to show that the reachable states of S and Sr are identical.
Init does not change, so the initial states cannot be different. Furthermore, Tr

is obtained by removing transitions from T , we know that Sr cannot add any
reachable states. To show that it also does not remove any reachable states,
consider an arbitrary trace Init(s0) ∧ T (in , s) with |s| = n, we must show
∃ in ′,m, s′ ∈ Sm. Init(s′0)∧Tr(in

′, s′)∧sn−1 = s′m−1. We prove this by showing
by induction that it holds whenever in contains instructions of cardinality at
most c.

In the base case, c = 1, so all instructions are of size one or less. All of these
are already atomic and thus we can take in ′ = in and s′ = s by the definition
of Tr.

For the inductive step, suppose that it holds for cardinalities up to c−1, and
assume Init(s0) ∧ T (in , s) with |s| = n. Let inj = 〈i, d〉 be an input containing
an instruction of size at most c. If |i| < c, there is nothing to be done. Thus we
only consider the case where |i| = c. We know that T (sj , inj , sj+1) holds. By
Theorem 3 and condition (5), it follows that T (〈〈i−{a}, d〉, 〈{a}, d〉〉, 〈sj , s, sj+1〉)
holds for some a and s. We can thus replace inj in in by 〈i − {a}, d〉 followed
by 〈{a}, d〉 to obtain an input sequence inc and insert s between sj and sj+1 in
s to obtain sc with final state sn−1 such that Init(s0) ∧ T (inc, sc). Repeating
this process for each input containing an instruction of size c yields a final inc

such that the maximum cardinality of any instruction is c−1. The property then
holds by the inductive hypothesis. �

Note that if there is some instruction i ∈ I which cannot be decomposed
into atomic instructions, we could always keep this instruction in Ir and still
benefit from removing other complex instructions. In many cases, we can also
remove the empty instruction, ie = ∅. If applying ie cannot change the state of
the system, regardless of the data input, then it is considered a stutter step [14].
It is straightforward to check whether ie can be removed by comparing the state
before and after applying ie.
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5 Experimental Results

We developed a prototype flow for proving the POR and RIS conditions and
applying the necessary constraints. We use the IC3/PDR implementation in
ABC [11], pdr, to prove condition (6) (which implies condition (2)). This requires
manually writing a Verilog property for each atomic instruction.4 We imple-
mented the ProveRIS algorithm in our SMT-based model checker, CoSA [26],
configured with boolector [29] on the smtcomp19 branch, using CaDiCaL [4] as
the underlying SAT solver.5 We check the commuting diagram for condition (3)
in CoSA as well. It tries the trivial guard true by default, and allows the user
to provide additional candidate guards if necessary. The set up for proofs in
CoSA is automated based on user-provided annotations for the actions and en-
able conditions. We show our best results which used an encoding leveraging the
SMT theory of arrays to represent memories for proving conditions, and a pure
bitvector encoding for bounded model checking.

Our flow applies the following steps: i) read in a system description in Verilog
using Yosys [38] and generate AIGER [7] for ABC (or BTOR2 [29] for other
tools); ii) check condition (6) for each atomic instruction; iii) run the ProveRIS
algorithm, and if it returns true, add constraints to rule out all but atomic
instructions; and iv) check POR condition (3) for each pair of atomic instructions
and add constraints for each passing pair of instructions with the associated
guard. Each step depends on the previous step passing successfully. In each of
our experiments described below, we successfully completed every step of this
flow, though in some cases guards were required in step (iv). For POR and RIS
runtimes, we always include the time to check the conditions. We tried running
with POR alone, but it resulted in negligible improvements in runtime and thus
we omit these results. This demonstrates the importance of RIS. We ran all
experiments on a 3.5GHz Intel Xeon CPU with 16GB of RAM.

5.1 Motivating Example

First, we return to our motivating example. We compare the time to reach
the bug using the SAT-based ABC [11] engines pdr and bmc, and SMT-based
bounded model checking using btormc [29] and CoSA. We ran the SMT-based
model checkers both with and without the SMT theory of arrays for the encoding
of the memory. Both btormc and CoSA without the array encoding were able to
reach the bug in 1230s and 1437s, respectively, but all other approaches timed
out at two hours. In particular, pdr times out at 2 hours on the property, but can

4 This could be automated based on user-tagged actions and user-provided enable
conditions.

5 GitHub Commit Hashes for Tools:
Boolector/Btormc: 1989080261235f33e344cbd095e70a337c45bd16
CoSA: ff3c8cee1f0834c03167b2a8ecdd1223031312b3
PySMT: 09dc303185812149550110123ad266326beb1179
Yosys: a4b59de5d48a89ba5e1b46eb44877a91ceb6fa44
ABC: 5776ad07e7247993976bffed4802a5737c456782
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prove condition (6) for every atomic instruction in less than a second. Intuitively,
this makes sense because the enabledness conditions do not involve data or mem.
Thus, none of the datapath falls in the cone of influence, leaving only control
logic for IC3 to reason about. The remaining conditions, (3) and (5), are proven
in less than three seconds. Since all the conditions pass, we apply the POR and
RIS constraints, which reduces the time to hit the bug from 1437s to 46s in
CoSA, including the time to check the conditions.

5.2 Packet Movers

We now evaluate our approach on data integrity properties for a variety of
packet-mover circuits. Data integrity is a safety property that ensures no packets
are dropped or corrupted. In practice, data integrity is often checked by instan-
tiating a monitor, called a scoreboard. It provides the necessary infrastructure
for formal verification. In our case, it non-deterministically tags a magic packet
and checks that this packet exits the system when it should. Crucially, the score-
board is a reusable module which can check data integrity of arbitrary packet
movers.

Notice that existing symmetry reduction techniques will not be very effective
for this scoreboard setup. For example, consider a circular pointer FIFO which
maintains two incrementing pointers that index a memory for reading and writ-
ing, respectively. We cannot use scalarsets to break symmetries in the memory
addresses because the pointers index the memory and are involved in arithmetic,
breaking the syntactic requirements for scalarsets [28]. Furthermore, sequential
memory abstraction [9] could reduce the size of the memory, but does not ad-
dress the path symmetry. In addition, both these symmetry reduction techniques
are focused on proofs, not bug-finding.

We evaluate our approach on two commercial library components from a
major hardware company. We also implemented simpler, open-source versions of
these designs. Our open-source benchmarks include: i) a circular pointer FIFO
which assumes power-of-two depth but is instantiated with a non-power-of-two
depth (one greater than the provided parameter); ii) a shift register FIFO which
does not properly add data to the last register in the pipeline; and iii) 2-5

Design # #Solved #Solved PR Time Time PR

com 1 49 35 47 103.8 20.3
com 2 49 25 34 470.8 4.9
cp 49 35 47 230.3 18.9
sr 49 25 33 912.6 5.6
arb n=2 49 35 42 89.1 20.5
arb n=3 49 35 42 94.0 21.9
arb n=4 49 35 42 101.3 35.5
arb n=5 49 35 42 111.7 31.8

Table 1: Number Solved and Average Runtime

R

Fig. 4: Runtime Comparison
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correct circular pointer FIFOs in parallel with a non-deterministic arbiter and
credit counters for managing data flow. The reset state of the credit counter has
one too many credits, so data can be pushed to a full FIFO. The single FIFOs
have two actions each: one for pushing data, and one for popping data. For the
arbitrated circuits, there is a separate action for pushing data onto each FIFO as
well as a single request action which is enabled whenever any FIFO is non-empty.
There is an inherent symmetry in all of these designs. Consider any of the FIFOs.
There are two main actions: pushing data (which is enabled if the FIFO is not
full); and popping data (which is enabled if the FIFO is not empty). In a state
where both are enabled, pushing data followed by popping results in the same
state as popping and then pushing the same data. Furthermore, the actions can
be performed simultaneously, but requiring that they are performed separately
should not change the reachable states (depending on the implementation), so
RIS is applicable.

Our experiments vary both the parameterizable data width and depth of the
packet movers, by sweeping all powers of two between 2 and 128. All benchmarks
contain injected bugs and reach the bug at a deep bound relative to the depth.
We used a timeout of 4 hours. We use our prototype flow for checking the
conditions and CoSA for bounded model checking.6 For condition (3), we had
to write one guard which is true whenever the scoreboard counter is greater
than zero to handle an edge case. This same guard was used for every design,
but an appropriate invariant relating the scoreboard counter to the internal
state of the system being verified would also have worked. The open-source shift
register FIFO required one more guard about the number of stored elements.
We obtained both guards by observing counterexamples.

Table 1 compares the number of solved instances (49 total per row) within
the timeout and the average runtime of commonly solved instances in seconds.
Columns marked “PR” used the POR and RIS constraints. We additionally use
the following abbreviations: “com” for commercial, “cp” for circular pointer, “sr”
for shift register and “arb” for arbitrated. In Fig. 4 we plot the actual runtime on
a log-scale for all the benchmarks with and without POR and RIS. The dotted
lines show 10x and 100x improvements.

Analysis. There is a cluster of points in the bottom left of Fig. 4 which are solved
extremely quickly by both approaches, but slightly faster without POR and RIS.
These are results on benchmarks with very small parameter values, where the
bug occurs at a low depth, and so the POR and RIS results are dominated by
the time taken to check the conditions. However, as the parameter sizes, and
runtimes, increase, it is clear that POR and RIS can result in exponential speed
ups.

Recall that one concern is that RIS could extend the bound needed to reach
the bug. In the shift register and arbitrated FIFO systems, it extended the bound
by a few steps. However, for the bug in the open-source circular pointer FIFO,
it doubled the bound needed to reach the bug. Regardless, this was more than

6 Note: CoSA’s bounded model checking performance is comparable to commercial
model checkers on these benchmarks.
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compensated for by the symmetry-breaking of POR, as evidenced by the faster
times to reach the bug. The deepest bound was 260 which occurred at FIFO
depth 129.

It is interesting to note that encoding the transition systems to SMT using
the theory of arrays was always slower for bounded model checking, but was
noticeably faster for checking RIS and POR conditions. Perhaps this is because
the state comparison is easier for the solver to reason about using array exten-
sionality [23].

We have demonstrated that these techniques work well for packet movers.
In part, this is because packet movers are often well-constrained by their envi-
ronmental assumptions, and their behavior is largely independent of incoming
data values. Furthermore, we typically expect the POR and RIS conditions to
hold for a correct packet-mover implementation, so a failure in a condition could
identify a bug.

6 Related Work

Various techniques have been employed to accelerate bounded model checking.
The authors of [19] use BDDs to accelerate BMC, and the techniques intro-
duced in [35,36] exploit the structure of BMC queries to help the SAT solver.
The authors of [18] take advantage of structural information with an SMT frame-
work tailored for BMC. Our technique is similar in that we speed up bounded
model checking by adding constraints to the transition system, but we obtain
constraints using partial order reduction analysis.

Wang et al. [37] pioneered partial order reduction for symbolic software model
checking, guaranteeing optimal reduction for two threads. Their follow-up paper,
[21], extended this framework to find the optimal reduction for any number of
threads. We adapted their symbolic POR technique for synchronous hardware
model checking, and developed reduced instruction sets to improve the efficacy of
POR in this new domain. Bhattacharya et al. used a SAT solver to directly check
guarded independence conditions (as opposed to checking syntactic properties)
for asynchronous rule-based languages [3]. We also check conditions directly, but
in a synchronous setting.

The techniques developed by McMillan, temporal case splitting and path split-
ting [28], provide a framework for splitting on possible values at a given timestep.
These approaches deal with system executions, but still rely on breaking data
symmetries for performance. In contrast, our techniques focus on mitigating path
symmetries.

The work of Bengtsson et al. [2] extended POR to timed automata using
a local-time desynchronization of clocks, followed by resynchronization with an
added global clock. Similarly, our techniques adapt POR by modifying the sys-
tem. However, our approach targets a different domain, and only modifies the
original system by adding constraints.
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7 Conclusion

We have presented a set of conservative conditions over transition systems and
automated techniques for proving these conditions. If the conditions can be
proved, then constraints can be added to the system that break path symme-
tries. We evaluated our approach on parameterized open-source and commercial
packet-mover circuits and demonstrated significant improvements in bounded
model checking performance.

Some potential future work includes improvements to the ProveRIS proce-

packet movers, developing more targeted condition proofs by associating actions
with particular data inputs, and building an interactive tool which helps the
user identify and manage reduced instruction sets and partial order reductions.

8 Data Availability Statement

The experimental results and the necessary software for reproducing results in
a standard Ubuntu 18.04 installation are available in the Figshare repository:
https://doi.org/10.6084/m9.figshare.11874687.
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Abstract Boolean programs with multiple recursive threads can be cap-
tured as pushdown automata with multiple stacks. This model is Turing
complete, and hence, one is often interested in analyzing a restricted
class that still captures useful behaviors. In this paper, we propose a
new class of bounded underapproximations for multi-pushdown systems,
which subsumes most existing classes. We develop an efficient algorithm
for solving the under-approximate reachability problem, which is based
on efficient fix-point computations. We implement it in our tool BHIM
and illustrate its applicability by generating a set of relevant benchmarks
and examining its performance. As an additional takeaway BHIM solves
the binary reachability problem in pushdown automata. To show the
versatility of our approach, we then extend our algorithm to the timed
setting and provide the first implementation that can handle timed multi-
pushdown automata with closed guards.

Keywords: Multipushdown Systems · Underapproximate Reachability
· Timed pushdown automata.

1 Introduction

The reachability problem for pushdown systems with multiple stacks is known
to be undecidable. However, multi-stack pushdown automata (MPDA hereafter)
represent a theoretically concise and analytically useful model of multi-threaded
recursive programs with shared memory. As a result, several previous works
in the literature have proposed different under-approximate classes of behav-
iors of MPDA that can be analyzed effectively, such as Round Bounded, Scope
Bounded, Context Bounded and Phase Bounded [18,19,27,14,20,28]. From a prac-
tical point of view, these underapproximations have led to efficient tools includ-
ing, GetaFix [21], SPADE [23]. It has also been argued (e.g., see [24]) that such
bounded underapproximations suffice to find several bugs in practice. In many
such tools efficient fix-point techniques are used to speed-up computations.

We extend known fix-point based approaches by developing a new algo-
rithm that can handle a larger class of bounded underapproximations than
the well-known bounded context and bounded scope underapproximations for
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multi-pushdown systems while remaining efficiently implementable. Our algo-
rithm works for a new class of underapproximate behaviors called hole bounded
behaviors, which subsumes context/scope bounded underapproximations, and
is orthogonal to phase bounded underapproximations. A “hole” is a maximal
sequence of push operations of a fixed stack, interspersed with well-nested se-
quences of any stack. Thus, in a sequence α = βγ where β = [push1(push2push3

pop3pop2)push1(push3pop3)]
10 and γ = push2push1pop2pop1(pop1)

20, β is a hole
with respect to stack 1. The suffix γ has 2 holes (the push2 and the push1).
Thus we say that α is 3-hole bounded. On the other hand, the number of con-
text switches (and scope bound) in α is > 50. A (k-)hole bounded sequence is one
such, where, at any point of the computation, the number of “open” holes are
bounded at this point (by k). We show that the class of hole bounded sequences
subsumes most of the previously defined classes of underapproximations and is,
in fact, contained in the very generic class of tree-width bounded sequences. This
immediately shows decidability of the reachability problem for our class.

Analyzing the more generic class of tree-width bounded sequences is often
much more difficult; for instance, building bottom-up tree automata for this
purpose does not scale very well as it explores a large (and often useless) state
space. Our technique is radically different from using tree automata. Under the
hole bounded assumption, we pre-compute information regarding well-nested
sequences and holes using fix-point computations and use them in our algorithm.
Using efficient data structures to implement this approach, we develop a tool
(BHIM) for Bounded Hole reachability in Multi-stack pushdown systems.

Highlights of BHIM.

• Two significant aspects of the fix-point approach in BHIM are: (i) we efficiently
solve the binary reachability problem for pushdown automata. i.e., BHIM com-
putes all pairs of states (s, t) such that t is reachable from s with empty stacks.
This allows us to go beyond reachability and handle some liveness questions; (ii)
we pre-compute the set of pairs of states that are endpoints of holes. This allows
us to greatly limit the search for an accepting run.

• While the fix-point approach solves (binary) reachability efficiently, it does not
a priori produce a witness of reachability. We remedy this situation by proposing
a backtracking algorithm, which cleverly uses the computations done in the fix-
point algorithm, to generate a witness efficiently.

• BHIM is parametrized with respect to the hole bound: if non-emptiness can
be checked or witnessed by a well-nested sequence (this is an easy witness and
BHIM looks for easy witnesses first, then gradually increases complexity, if no
easy witness is found), then it is sufficient to have the hole bound 0. Increasing
this complexity measure as required to certify non-emptiness gives an efficient
implementation, in the sense that we search for harder witnesses only when no
easier witnesses (w.r.t this complexity measure) exist. In examples described in
the experimental section, a small (less than 4) bound suffices and we expect this
to be the case for most practical examples.

• Finally, we extend our approach to handle timed multi-stack pushdown sys-
tems. This shows the versatility of our approach and also requires us to solve
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several technical challenges which are specific to the timed setting. Implementing
this approach in BHIM makes it, to the best of our knowledge, the first tool that
can analyze timed multi-stack pushdown automata with closed guards.

We analyze the performance of BHIM in practice, by considering benchmarks
from the literature, and generating timed variants of some of them. One of our
benchmarks is a variant of the Bluetooth example [11,23], where BHIM was
able to catch a known race detection error. Another interesting benchmark is
a model of a parameterized multiple producer consumer example, having pa-
rameters M,N on the quantities of two items A,B produced. Here, BHIM could
detect bugs by finding witnesses having just 2 holes, while, it is unlikely that ex-
isting tools working on scope/context bounded underapproximations can handle
them as the number of scope/context switches is dependent on M,N (in fact,
it is twice the least common multiple of M and N). In the timed setting, one
of the main challenges has been the unavailability of timed benchmarks; even in
the untimed setting, many benchmarks were unavailable due to their proprietary
nature. Due to lack of space, proofs, technical details and parametric plots of
experiments are in [4].
Related Work. Among other under-approximations, scope bounded [27] sub-
sumes context and round bounded underapproximations, and it also paves path
for GetaFix [21], a tool to analyze recursive (and multi-threaded) boolean pro-
grams. As mentioned earlier hole boundedness strictly subsumes scope bounded-
ness. On the other hand, GetaFix uses symbolic approaches via BDDs, which is
orthogonal to the improvements made in this paper. Indeed, our next step would
be to build a symbolic version of BHIM which extends the hole-bounded approach
to work with symbolic methods. Given that BHIM can already handle synthetic
examples with 12-13 holes (see [4]), we expect this to lead to even more drastic
improvements and applicability. For sequential programs, a summary-based al-
gorithm is used in [21]; summaries are like our well-nested sequences, except that
well-nested sequences admit contexts from different stacks unlike summaries. As
a result, our class of bounded hole behaviors generalizes summaries. Many other
different theoretical results like phase bounded [18], order bounded [8] which
gives interesting underapproximations of MPDA, are subsumed in tree-width
bounded behaviors, but they do not seem to have practical implementations.
Adding real-time information to pushdown automata by using clocks or timed
stacks has been considered, both in the discrete and dense-timed settings. Re-
cently, there has been a flurry of theoretical results in the topic [10,1,2,5,6]. How-
ever, to the best of our knowledge none of these algorithms have been successfully
implemented (except [6] which implements a tree-automata based technique for
single-stack timed systems) for multi-stack systems. One reason is that these al-
gorithms do not employ scalable fix-point based techniques, but instead depend
on region automaton-based search or tree automata-based search techniques.

2 Underapproximations in MPDA

A multi-stack pushdown automaton (MPDA) is a tuple M = (S,Δ, s0,Sf ,
n,Σ, Γ ) where, S is a finite non-empty set of locations, Δ is a finite set of
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transitions, s0 ∈ S is the initial location, Sf ⊆ S is a set of final locations,
n ∈ N is the number of stacks, Σ is a finite input alphabet, and Γ is a finite
stack alphabet which contains ⊥. A transition t ∈ Δ can be represented as a
tuple (s, op, a, s′), where, s, s′ ∈ S are respectively, the source and destination
locations of the transition t, a ∈ Σ is the label of the transition, and op is one of
the following operations (1) nop, or no stack operation, (2) (↓i α) which pushes
α ∈ Γ onto stack i ∈ {1, 2, . . . , n}, (3) (↑i α) which pops stack i if the top of
stack i is α ∈ Γ .

For a transition t = (s, op, a, s′) we write src(t) = s, tgt(t) = s′ and op(t) =
op. At the moment we ignore the action label a but this will be useful later when
we go beyond reachability to model checking. A configuration of the MPDA is
a tuple (s, λ1, λ2, . . . , λn) such that, s ∈ S is the current location and λi ∈
Γ ∗ represents the current content of ith stack. The semantics of the MPDA
is defined as follows: a run is accepting if it starts from the initial state and
reaches a final state with all stacks empty. The language accepted by a MPDA
is defined as the set of words generated by the accepting runs of the MPDA.
Since the reachability problem for MPDA is Turing complete, we consider under-
approximate reachability.

A sequence of transitions is called complete if each push in that sequence
has a matching pop and vice versa. A well-nested sequence denoted ws is
defined inductively as follows: a possibly empty sequence of nop-transitions is
ws, and so is the sequence t ws t′ where op(t) = (↓iα) and op(t′) = (↑iα) are a
matching pair of push and pop operations of stack i, ∀i ∈ {1 . . . n}. Finally the
concatenation of two well-nested sequences is a well-nested sequence, i.e., they
are closed under concatenation. The set of all well-nested sequences defined by
an MPDA is denoted WS. If we visualize this by drawing edges between pushes
and their corresponding pops, well-nested sequences have no crossing edges, as
in and , where we have two stacks, depicted with red and violet
edges. We emphasize that a well-nested sequence can have well-nested edges
from any stack. In a sequence σ, a push (pop) is called a pending push (pop)
if its matching pop (push) is not in the same sequence σ.

Bounded Underapproximations. As mentioned in the introduction, differ-
ent bounded under-approximations have been considered in the literature to get
around the Turing completeness of MPDA. During a computation, a context is
a sequence of transitions where only one stack or no stack is used. In context
bounded computations the number of contexts are bounded [25]. A round is a se-
quence of (possibly empty) contexts for stacks 1, 2, . . . , n. Round bounded compu-
tations restrict the total number of rounds allowed [19,5,6]. Scope bounded com-
putations generalize bounded context computations. Here, the context changes
within any push and its corresponding pop is bounded [19,20,28]. A phase is a
contiguous sequence of transitions in a computation, where we restrict pop to
only one stack, but there are no restrictions on the pushes [18]. A phase bounded
computation is one where the number of phase changes is bounded.

Tree-width. A generic way of looking at them is to consider classes which
have a bound on the tree-width [22]. In fact, the notions of split-width/clique-
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width/tree-width of communicating finite state machines/timed push down sys-
tems has been explored in [3], [13]. The behaviors of the underlying system are
then represented as graphs. It has been shown in these references that if the fam-
ily of graphs arising from the behaviours of the underlying system (say S) have
a bounded tree-width, then the reachability problem is decidable for S via, tree-
automata. However, this does not immediately give rise to an efficient implemen-
tation. The tree-automata approach usually gives non-deterministic or bottom-
up tree automata, which when implemented in practice (see [6]) tend to blow up
in size and explore a large and useless space. Hence there is a need for efficient
algorithms, which exist for more specific underapproximations such as context-
bounded (leading to fix-point algorithms and their implementations [21]).

2.1 A new class of under-approximations

Our goal is to bridge the gap between having practically efficient algorithms
and handling more expressive classes of under-approximations for reachability
of multi-stack pushdown systems. To do so, we define a bounded approximation
which is expressive enough to cover previously defined practically interesting
classes (such as context bounded etc), while at the same time allowing efficient
decidable reachability tests, as we will see in the next section.

Definition 1. (Holes). Let σ be complete sequence of transitions, of length n in
a MPDA, and let ws be a well-nested sequence.

– A hole of stack i is a maximal factor of σ of the form (↓i ws)+, where
ws ∈ WS. The maximality of the hole of stack i follows from the fact that
any possible extension ceases to be a hole of stack i; that is, the only possible
events following a maximal hole of stack i are a push ↓j of some stack j �= i,
or a pop of some stack j �= i. In general, whenever we speak about a hole,
the underlying stack is clear.

– A push ↓i in a hole (of stack i) is called a pending push at (i.e., just before)
a position x ≤ n, if its matching pop occurs in σ at a position z > x.

– A hole (of stack i) is said to be open at a position x ≤ n, if there is a
pending push ↓i of the hole at x. Let #x(hole) denote the number of open
holes at position x. The hole bound of σ is defined as max1≤x≤|σ|#x(hole).

– A hole segment of stack i is a prefix of a hole of stack i, ending in a ws, while
an atomic hole segment of stack i is just the segment of the form ↓i ws.
As an example, consider the sequence σ in Figure 1 of transitions of a MPDA

having stacks 1,2 (denoted respectively red and blue). We use superscripts for

s0

ws1

↓11 ↓21 ↓31
ws2 ws3 ws4

↓12 ↓22 ↑31 ↑21
ws5

↓41 ↓51 ↑22 ↑51 ↑12 ↑41 ↑11 sf↓11 ↓21 ↓31 ↓12 ↓22 ↓41 ↓51

Figure 1. A run σ with 2 holes (2 red patches) of the red stack and 1 hole (one blue
patch) of the blue stack.
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each push, pop of each stack to distinguish the ith push, jth pop and so on of
each stack. There are two holes of stack 1 (red stack) denoted by the red patches,
and one hole of stack 2 (blue stack) denoted by the blue patch. The subsequence
↓11↓21 ws2 of the first hole is not a maximal factor, since it can be extended by
↓31 ws3 in the run σ, extending the hole. Consider the position in σ marked with
↓12. At this position, there is an open hole of the red stack (the first red patch),
and there is an open hole of the blue stack (the blue patch). Likewise, at the
position ↑51, there are 2 open holes of the red stack (2 red patches) and one open
hole of the blue stack 2 (the blue patch). The hole bound of σ is 3. The green
patch consisting of ↑31, ↑21 and ws5 is a pop-hole of stack 1. Likewise, the pops
↑22, ↑51, ↑12 are all pop-holes (of length 1) of stacks 2,1,2 respectively.

Definition 2. (Hole Bounded Reachability Problem) Given a MPDA
and K ∈ N, the K-hole bounded reachability problem is the following: Does there
exist a K-hole bounded accepting run of the MPDA?

Proposition 1. The tree-width of K-hole bounded MPDA behaviors is at most
(2K + 3).

With this, from [22][5][6], decidability and complexity follow. Thus,

Corollary 1. The K-hole bounded reachability problem for MPDA is decidable
in O(|M|2K+3) where, M is the size of the underlying MPDA.

Next, we turn to the expressiveness of this class with respect to the classical
underapproximations of MPDA: first, the hole bounded class strictly subsumes
scope bounded which already subsumes context bounded and round bounded
classes. Also hole bounded MPDA and phase bounded MPDA are orthogonal.

Proposition 2. Consider a MPDA M . For any K, let LK denote a set of se-
quences accepted by M which have number of rounds or number of contexts or
scope bounded by K. Then there exists K ′ ≤ K such that LK is K ′ hole bounded.
Moreover, there exist languages which are K hole bounded for some constant K,
which are not K ′ round or context or scope bounded for any K ′. Finally, there
exists a language which is accepted by phase bounded MPDA but not accepted by
hole bounded MPDA and vice versa.

Proof. We first recall that if a language L is K-round, or K-context bounded,
then it is also K ′-scope bounded for some K ′ ≤ K [20,19]. Hence, we only show
that scope bounded systems are subsumed by hole bounded systems.

Let L be a K-scope bounded language, and let M be a MPDA accepting
L. Consider a run ρ of w ∈ L in M . Assume that at any point i in the run ρ,
#i(holes) = k′, and towards a contradiction, let, k′ > K. Consider the leftmost
open hole in ρ which has a pending push ↓p whose pop ↑p is to the right of
i. Since k′ > K is the number of open holes at i, there are at least k′ > K
context changes in between ↓p and ↑p. This contradicts the K-scope bounded
assumption, and hence k′ ≤ K.
To show the strict containment, consider the visibly pushdown language [7] given
by Lbh = {anbn(ap1cp1+1bp

′
1dp

′
1+1 · · · apncpn+1bp

′
ndp

′
n+1) | n, p1, p′1, . . . , pn, p′n ∈
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N}. A possible word w ∈ Lbh is a3b3 a2c3b2d3 a2c3bd2 ac2bd2 with a, b repre-
senting push in stack 1,2 respectively and c, d representing the corresponding
matching pop from stack 1,2. A run ρ accepting the word w ∈ Lbh will start
with a sequence of pushes of stack 1 followed by another sequence of pushes of
stack 2. Note that, the number of the pushes n is same in both stacks. Then
there is a group G consisting of a well-nested sequence of stack 1 (equal a and
c) followed by a pop of the stack 1 (an extra c), another well-nested sequence
of stack 2 (equal b and d) and a pop of the stack 2 (an extra d), repeated n
times. From the definition of the hole, the total number of holes required in G
is 0. But, we need 1 hole for the sequence of a’s and another for the sequence
of b’s at the beginning of the run, which creates at most 2 holes during the run.
Thus, the hole bound for any accepting run ρ is 2, and the language Lbh is 2-hole
bounded.

However, Lbh is not k-scope bounded for any k. Indeed, for each m ≥ 1,
consider the word wm = ambm(ac2bd2)m ∈ Lbh. It is easy to see that wm is 2m-
scope bounded (the matching c, d of each a, b happens 2m context switches later)
but not k-scope bounded for k < 2m. It can be seen that Lbh is not k-phase
bounded either. Finally, L′ = {(ab)ncndn | n ∈ N} with a, b and c, d respectively
being push and pop of stack 1,2 is not hole-bounded but 2-phase bounded. ��

3 A Fix-point Algorithm for Hole Bounded Reachability

In the previous section, we showed that hole-bounded underapproximations are
a decidable subclass for reachability, by showing that this class has a bounded
tree-width. However, as explained in the introduction, this does not immediately
give a fix-point based algorithm, which has been shown to be much more effi-
cient for other more restricted sub-classes, e.g., context-bounded. In this section,
we provide such a fix-point based algorithm for the hole-bounded class and ex-
plain its advantages. Later we discuss its versatility by showing extensions and
evaluating its performance on a suite of benchmarks.

We describe the algorithm in two steps: first we give a simple fix-point based
algorithm for the problem of 0-hole or well-nested reachability, i.e, reachability by
a well-nested sequence without any holes. For the 0-hole case, our algorithm com-
putes the reachability relation, also called the binary reachability problem [15].
That is, we accept all pairs of states (s, s′) such that there is a well-nested run
from s with empty stack to s′ with empty stack. Subsequently, we combine this
binary reachability for well-nested sequences with an efficient graph search to
obtain an algorithm for K-hole bounded reachability.
Binary well-nested reachability for MPDA. Note that single stack PDA are
a special case, since all runs are indeed well-nested.

1. Transitive Closure: LetR be the set of tuples of the form (si, sj) represent-
ing that state sj is reachable from state si via a nop discrete transition. Such
a sequence from si to sj is trivially well-nested. We take the TransitiveClosure
of R using Floyd-Warshall algorithm [12]. The resulting set Rc of tuples an-
swers the binary reachability for finite state automata (no stacks).
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Algorithm 1: Algorithm for Emptiness Checking of hole bounded
MPDA
1 Function IsEmpty(M = (S, Δ, s0,Sf , n,Σ, Γ ), K):

Result: True or False
2 WR := WellNestedReach(M); \\Solves binary reachability for pushdown system
3 if some (s0, s1) ∈ WR with s1 ∈ Sf then
4 return False;
5 forall i ∈ [n] do
6 AHSi := ∅; Seti := ∅;
7 forall (s, ↓i(α), a, s1) ∈ Δ and (s1, s

′) ∈ WR do
8 AHSi := AHSi ∪ {(i, s, α, s′)}; Seti := Seti ∪ {(s, s′)};
9 HSi := {(i, s, s′) | (s, s′) ∈ TransitiveClosure(Seti)};

10 μ := [s0]; μ.NumberOfHoles := 0;
11 SetOfListsnew := {μ}; SetOfLists := ∅;
12 do
13 SetOfLists := SetOfLists ∪ SetOfListsnew;
14 SetOfListstodo := SetOfListsnew; SetOfListsnew := ∅;
15 forall μ′ ∈ SetOfListstodo do
16 if μ′.NumberOfHoles < K then
17 forall i ∈ [n] do

\\ Add hole for stack i

18 SetOfListsh := AddHolei(μ
′, HSi) \ SetOfLists;

19 SetOfListsnew := SetOfListsnew ∪ SetOfListsh;

20 if μ′.NumberOfHoles > 0 then
21 forall i ∈ [n] do

\\ Add pop for stack i

22 SetOfListsp := AddPopi(μ
′,M,AHSi, HSi, WR) \ SetOfLists;

23 SetOfListsnew := SetOfListsnew ∪ SetOfListsp;
24 forall μ3 ∈ SetOfListsp do
25 if μ3.last ∈ Sf and μ3.NumberOfHoles = 0 then
26 return False; \\If reached destination state

27 while SetOfListsnew 
= ∅;
28 return True;

2. Push-Pop Closure: For stack operations, consider a push transition on
some stack (say stack i) of symbol γ, enabled from a state s1, reaching state
s2. If there is a matching pop transition from a state s3 to s4, which pops
the same stack symbol γ from the stack i and if we have (s2, s3) ∈ Rc, then
we can add the tuple (s1, s4) to Rc. The function WellNestedReach repeats
this process and the transitive closure described above until a fix-point is
reached. Let us denote the resulting set of tuples by WR. Thus,

Lemma 1. (s1, s2) ∈ WR iff ∃ a well-nested run in the MPDA from s1 to s2.

Beyond well-nested reachability. A naive algorithm for K-hole bounded
reachability for K > 0 is to start from the initial state s0, and do a Breadth
First Search (BFS), nondeterministically choosing between extending with a
well-nested segment, creating hole segments (with a pending push) and closing
hole segments (using pops). We accept when there are no open hole segments
and reach a final state; this gives an exponential time algorithm. Given the expo-
nential dependence on the hole-bound K (Corollary 1), this exponential blowup
is unavoidable in the worst case, but we can do much better in practice. In par-
ticular, the naive algorithm makes arbitrary non-deterministic choices resulting
in a blind exploration of the BFS tree.
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In this section, we use the binary well-nested reachability algorithm as an
efficient subroutine to limit the search in BFS to its reachable part (note that
this is quite different from DFS as well since we do not just go down one path).
The crux is that at any point, we create a new hole for stack i, only when (i)
we know that we cannot reach the final state without creating this hole and (ii)
we know that we can close all such holes which have been created. Checking (i)
is easy, since we just use the WR relation for this. Checking (ii) blindly would
correspond to doing a DFS; however, we precompute this information and simply
look it up, resulting in a constant time operation after the precomputation.

Precomputing hole information. Recall that a hole of stack i is a maximal
sequence of the form (↓i ws)+, where ws is a well-nested sequence and ↓i rep-
resents a push of stack i. A hole segment of stack i is a prefix of a hole of stack
i, ending in a ws, while an atomic hole segment of stack i is just the segment
of the form ↓i ws. A hole-segment of stack i which starts from state s in the
MPDA and ends in state s′, can be represented by the triple (i, s, s′), that we
call a hole triple. We compute the set HSi of all hole triples (i, s, s′) such that
starting at s, there is a hole segment of stack i which ends at state s′, as detailed
in lines (5-9) of Algorithm 1. In doing so, we also compute the set AHSi of all
atomic hole segments of stack i and store them as tuples of the form (i, sp, α, sq)
such that sp and sq are the MPDA states respectively at the left and right end
points of an atomic hole segment of stack i, and α is the symbol pushed on stack

i (sp
↓i(α)ws−−−−−→ sq).

A guided BFS exploration. We start with a list μ0 = [s0] consisting of
the initial state and construct a BFS exploration tree whose nodes are lists of
bounded length. A list is a sequence of states and hole triples representing a
K-hole bounded run in a concise form. If Hi represents a hole triple for stack i,
then a list is a sequence of the form [s,Hi, Hj , Hk, Hi, . . . , H�, s

′]. The simplest
kind of list is a single state s. For example, a list with 3 holes of stacks i, j, k is
μ = [s0,(i, s, s

′),(j, r, r′),(k, t, t′),t′′]. The hole triples (in red) denote open holes
in the list. The maximum number of open holes in a list is bounded, making the
length of the list also bounded. Let last(μ) represent the last element of the list
μ. This is always a state. For a node v storing list μ in the BFS tree, if v1, . . . vk
are its children, then the corresponding lists μ1, . . . μk are obtained by extending
the list μ by one of the following operations:

1. Extend μ with a hole. Assume there is a hole of some stack i, which starts
at last(μ) = s, and ends at s′. If the list at the parent node v is μ = [. . . , s],
then for all (i, s, s′) ∈ HSi, we obtain the list trunc(μ) ·append[(i, s, s′), s′] at
the child node (i.e., we remove the last element s of μ, then append to this
list the hole triple (i, s, s′), followed by s′).

2. Extend μ with a pop. Suppose there is a transition t = (sk, ↑i(α), a, s′k)
from last(μ) = sk, where μ is of the form [s0, . . . , (h, u, v), (i, s, s

′), (j, t, t′) . . . , sk],
such that there is no hole triple of stack i after (i, s, s′), we extend the run
by matching this pop (with its push). However, to obtain the last pend-
ing push of stack i corresponding to this hole, just HSi information is not
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enough since we also need to match the stack content. Instead, we check
if we can split the hole (i, s, s′) into (1) a hole triple (i, s, sa) ∈ HSi,
and (2) a tuple (i, sa, α, s

′) ∈ AHSi. If both (1) and (2) are possible,
then the pop transition t corresponds to the last pending push of the hole
(i, s, s′). t indeed matches the pending push recorded in the atomic hole
(i, sa, α, s

′) in μ, enabling the firing of transition t from the state sk, reach-
ing s′k. In this case, we add the child node with the list μ′ obtained from
μ as follows. We replace (i) sk with s′k, and (ii) (i, s, s′) with (i, s, sa), re-
spectively signifying firing of the transition t and the “shrinking” of the
hole, by shifting the end point of the hole segment to the left. When we
obtain the hole triple (i, s, s) (the start and end points of the hole seg-
ment coincide), we may have uncovered the last pending push and thereby
“closed” the hole segment completely. At this point, we may choose to remove
(i, s, s) from the list, obtaining [s0, . . . , (h, u, v), (j, t, t

′) . . . , s′k]. For every
such μ′ = [s0, . . . , (h, u, v), (i, s, sa), (j, t, t

′), . . . , s′k] and all (s′k, sm) ∈ WS
we also extend μ′ to μ′′ = [s0, . . . , (h, u, v), (i, s, sa), (j, t, t

′), . . . , sm]. Notice
that the size of the list in the child node obtained on a pop, is either the
same as the list in the parent, or is smaller.

The number of lists is bounded since the number of states and the length of
the lists are bounded. The BFS exploration tree will thus terminate. Combining
the above steps gives us Algorithm 1, whose correctness gives us:

Theorem 1. Given a MPDA and a positive integer K, Algorithm 1 terminates
and answers “false” iff there exists a K-hole bounded accepting run of the MPDA.

Complexity of the Algorithm. The maximum number of states of the sys-
tem is |S|. The time complexity of transitive closure is O(|S|3), using a Floyd-
Warshall implementation. The time complexity of computing WellNestedReach
which uses the transitive closure, is O(|S|5)+O(|S|2 × (|Δ| × |S|)). To compute
AHS for n stacks the time complexity is O(n× |Δ| × |S|2) and to compute HS
for n stacks the complexity is O(n×|S|2). For multistack systems, each list keeps
track of (i) the number of hole segments(≤ K), and (ii) information pertaining
to holes (start, end points of holes, and which stack the hole corresponds to). In
the worst case, this will be (2K + 2) possible states in a list, as we are keeping
the states at the start and end points of all the hole segments and a stack per
hole. So, there are ≤ |S|2K+3 × nK+1 lists. In the worst case, when there is no
K-hole bounded run, we may end up generating all possible lists for a given
bound K on the hole segments. The time complexity is thus bounded above by
O(|S|2K+3 × nK+1 + |S|5 + |S|3 × |Δ|).
Beyond Reachability. We can solve the usual safety questions in the (bounded-
hole) underapproximate setting, by checking for underapproximate reachability
on the product of the given system with the complement of the safe set. Given
the way Algorithm 1 is designed, the fix-point algorithm allows us to go beyond
reachability. In particular, we can solve several (increasingly difficult) variants
of the repeated reachability problem, without much modification.

Consider the question : For a given state s and MPDA, does there exist a
run ρ starting from s0 which visits s infinitely often? This is decidable if we can
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decompose ρ into a finite prefix ρ1 and an infinite suffix ρ2 s.t. (1) both ρ1, ρ2
are well-nested, or (2) ρ1 is K-hole bounded complete (all stacks empty), and ρ2
is well-nested, or (3) ρ1 is K-hole bounded, and ρ2 = (ρ3)

ω, where ρ3 is K-hole
bounded. It is easy to see that (1) is solved by two calls to WellNestedReach
and choosing non-empty runs. (2) is solved by a call to Algorithm 1, modified
so that we reach s, and then calling WellNestedReach. Lastly, to solve (3), first
modify Algorithm 1 to check reachability to s with possibly non-empty stacks.
Then run the modified algorithm twice : first start from s0 and reach s; second
start from s and reach s again.

4 Generating a Witness

We next focus on the question of generating a witness for an accepting run when
our algorithm guarantees non-emptiness. This question is important to address
from the point of view of applicability: if our goal is to see if bad states are
reachable, i.e., non-emptiness corresponds to presence of a bug, the witness run
gives the trace of how the bug came about and hence points to what can be done
to fix it (e.g., designing a controller). We remark that this question is difficult in
general. While there are naive algorithms which can explore for the witness (thus
also solving reachability), these do not use fix-point techniques and hence are
not efficient. On the other hand, since we use fix-point computations to speed
up our reachability algorithm, finding a witness, i.e., an explicit run witnessing
reachability, becomes non-trivial. Generation of a witness in the case of well-
nested runs is simpler than the case when the run has holes, and requires us to
“unroll” pairs (s0, sf ) ∈ WR recursively and generate the sequence of transitions
responsible for (s0, sf ).
Getting Witnesses from Holes. Now we move on to the more complicated
case of behaviours having holes. Recall that in BFS exploration we start from
the states reachable from s0 by well-nested sequences, and explore subsequent
states obtained either from (i) a hole creation, or (ii) a pop operation on a stack.
Proceeding in this manner, if we reach a final configuration (say sf ), with all
holes closed (which implies empty stacks), then we declare non-emptiness. To
generate a witness, we start from the final state sf reachable in the run (a leaf
node in the BFS exploration tree) and backtrack on the BFS exploration tree
till we reach the initial state s0. This results in generating a witness run in the
reverse, from the right to the left.
• Assume that the current node of the BFS tree was obtained using a pop
operation. There are two possibilities to consider here (see below) depending on
whether this pop operation closed or shrunk some hole. Recall that each hole
has a left end point and a right end point and is of a specific stack i, depending
on the pending pushes ↓i it has. So, if the MPDA has k stacks, then a list in the
exploration tree can have k kinds of holes. The witness algorithm uses k stacks
called witness stacks to correctly implement the backtracking procedure, to deal
with k kinds of holes. Witness stacks should not be confused with the stacks of
the MPDA.



398 S. Akshay et al.

• Assume that the current pop operation is closing a hole of kind
i as in Figure 2. This hole consists of the atomic holes , and . The
atomic hole consists of the push and the well-nested sequence (same
for the other two atomic holes). Searching among possible push transitions, we
identify the matching push associated with the current pop, resulting in closing
the hole. On backtracking, this leads to a parent node with the atomic hole
having as left end point, the push , and the right end point as the target of
the ws . We push onto the witness stack i, a barrier (a delimiter symbol #)
followed by the matching push transition and then the ws, . The barrier
segregates the contents of the witness stack when we have two pop transitions
of the same stack in the reverse run, closing/shrinking two different holes.

Figure 2. Backtracking to spit
out the hole in reverse.
The transitions of the atomic hole

are first written in the reverse
order, followed by those of in
reverse, and then of in reverse.

• Assume that the current pop operation is
shrinking a hole of kind i. The list at the
present node has this hole, and its parent will
have a larger hole (see Figure 2, where the par-
ent node of has ). As in the
case above, we first identify the matching push
transition, and check if it agrees with the push
in the last atomic hole segment in the parent.
If so, we populate the witness stack i with the
rightmost atomic hole segment of the parent
node (see Figure 2, is populated in the
stack). Each time we find a pop on backtrack-
ing the exploration tree, we find the rightmost
atomic hole segment of the parent node, and
keep pushing it on the stack, until we reach the
node which is obtained as a result of a hole cre-
ation. Now we have completely recovered the
entire hole information by backtracking, and
fill the witness stack with the reversed atomic

hole segments which constituted this hole. Notice that when we finish processing
a hole of kind i, then the witness stack i has the hole reversed inside it, followed
by a barrier. The next hole of the same kind i will be treated in the same manner.
• If the current node of the BFS tree is obtained by creating a hole of kind i
in the fix-point algorithm, then we pop the contents of witness stack i till we
reach a barrier. This spits out the atomic hole segments of the hole from the
right to the left, giving us a sequence of push transitions, and the respective ws
in between. The transitions constituting the ws are retrieved and added. Notice
that popping the witness stack i till a barrier spits out the sequence of transitions
in the correct reverse order while backtracking.

5 Adding Time to Multi-pushdown systems

In this section, we briefly describe how the algorithms described in section 3
can be extended to work in the timed setting. Due to lack of space, we focus on
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some of the significant challenges and advances, leaving the formal details and
algorithms to the supplement [4]. A TMPDA extends a MPDA S with a set X
of clock variables. Transitions check constraints which are conjunctions/disjunc-
tions of constraints (called closed guards in the literature) of the form x ≤ c or
x ≥ c for c ∈ N and x any clock from X . Symbols pushed on stacks “age” with
time elapse; that os, they store the time elapsed since they were pushed onto the
stack. A pop is successful only when the age of the symbol lies within a certain
interval. The acceptance condition is as in the case of MPDA.

The first main challenge in adapting the algorithms in section 3 to the timed
setting was to take care of all possible time elapses along with the operations
defined in Algorithm 1. The usage of closed guards in TMPDA means that it suf-
fices to explore all runs with integral time elapses (for a proof see e.g., Lemma 4.1
in [5]). Thus configurations are pairs of states with valuations that are vectors of
non-negative integers, each of which is bounded by the maximal constant in the
system. Now, to check reachability we need to extend all the precomputations
(transitive closure, well-nested reachability, as well as atomic and non-atomic
hole segments) with the time elapse information. To do this, we use a weighted
version of the Floyd-Warshall algorithm by storing time elapses during precom-
putations. This allows us to use this precomputed timed well-nested reachability
information while performing the BFS tree exploration, thus ensuring that any
explored state is indeed reachable by a timed run. In doing so, the most challeng-
ing part is extending the BFS tree wrt a pop. Here, we not only have to find a
split of a hole into an atomic hole-segment and a hole-segment as in Algorithm 1,
but also need to keep track of possible partitions of time, making the algorithm
quite challenging.

Timed Witness: As in the untimed case, we generate a witness certifying non-
emptiness of TMPDA. But, producing a witness for the fix-point computation
as discussed earlier requires unrolling. The fix-point computation generates a
pre-computed set WRT of tuples ((s, ν), t, (s′, ν′)), where s, s′ are states t is time
elapsed in the well-nested sequence and ν, ν′ ∈ N|X | are integral valuations, i.e.,
integer values taken by clocks. This set of tuples does not have information
about the intermediate transitions and time-elapses. To handle this, using the
pre-computed information, we define a lexicographic progress measure which
ensures termination of this search. The main idea is as follows: the first progress
measure is to check if there a time-elapse t transition possible between (s, ν) and
(s′, ν′) and if so, we print this out. If not, ν′ �= ν + t, and some set of clocks
have been reset in the transition(s) from (s, ν) to (s′, ν′). The second progress
measure looks at the sequence of transitions from (s, ν) to (s′, ν′), consisting of
reset transitions (at most the number of clocks) that result in ν′ from ν. If neither
the first nor the second progress measure apply, then ν = ν′, and we are left to
explore the last progress measure, by exploring at most |S| number of transitions
from (s, ν) to (s′, ν′). Using this progress measure, we can seamlessly extend the
witness generation to the timed setting. The challenges involved therein, can be
seen in the full version [4].
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6 Implementation and Experiments

We implemented a tool BHIM (Bounded Holes In MPDA) in C++ based on
Algorithm 1, which takes an MPDA and a constant K as input and returns True
iff there exists a K-hole bounded run from the start state to an accepting state of
the MPDA. In case there is such an accepting run, BHIM generates one such, with
minimal number of holes. For a given hole bound K, BHIM first tries to produce
a witness with 0 holes, and iteratively tries to obtain a witness by increasing the
bound on holes till K. In most cases, BHIM found the witness before reaching
the bound K. Whenever BHIM’s witness had K holes, it is guaranteed that there
are no witnesses with a smaller number of holes.

To evaluate the performance of BHIM, we looked at some available bench-
marks and modeled them as MPDA. We also added timing constraints to some
examples such that they can be modeled as TMPDA. Our tests were run on a
GNU/Linux system with Intel R© CoreTM i7–4770K CPU @ 3.50GHz, and 16GB
of RAM. Details of all examples here, as well as an additional example of a linux
kernel bug can be found [4].
• Bluetooth Driver [25]. The Bluetooth device driver example [25], has an
arbitrary number of threads, working with a shared memory. We model this
using a 2-stack pushdown system, where a system state represents the current
valuation of the global variables, and the stacks are used to maintain the call-
return between different functions, as well as to keep track of context switches
between threads. A known error as pointed out in [25] is a race condition between
two threads where one thread tries to write to a global variable and the other
thread tries to read from it. BHIM found this error, with a well-nested witness.
A timed extension of this example was also considered, where, a witness was
obtained again with hole bound 0.
• Bluetooth Driver v2 [11,23]. A modified version of Bluetooth driver is con-
sidered [11,23], where a counter is maintained to count the number of threads
actively using the driver. We model this with a A two stack MPDA. With a well-
nested witness, BHIM found the error of interrupted I/O, where the stopping
thread kills the driver while the other thread is busy with I/O.
• A Multi-threaded Producer Consumer Problem. The producer con-
sumer problem (see e.g., [26]) is a classic example of concurrency and synchro-
nization. An interesting scenario is when there are multiple producers and con-
sumers. Assume that two ingredients called ’A’ and ’B’ are produced in a pro-
duction line in batches (of M and N respectively). These parameters M and
N are fixed for each day but may vary across days. There is another consumer
machine that (1) consumes one unit of ’A’ and one unit of ’B’ in that order; (2)
repeats this process until all ingredients are consumed. In between if one of the
ingredients runs out, then we non-deterministically produce more batches of the
ingredient and then continue. To avoid wastage the factory aims to consume all
ingredients produced in a day, hence the problem of interest is to check if all
A’s and B’s produced in a day are consumed. We can model this factory using
a two-stack pushdown system, one stack per product, A,B, where the sizes of
the batches, M > 0 and N > 0 respectively, are parameters. The production
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Name Locations Transitions Stacks Holes Time Empty (mili sec) Time Witness (mili sec) Memory(KB)

Bluetooth 45 89 2 0 149.3 0.241 6934

Bluetooth v2 47 134 2 0 92.2 0.176 5632

MultiProdCons(3,2) 7 11 2 2 126.529 0.281 5632

MultiProdCons(24,7) 32 34 2 2 1879.33 10.63 21836

Binary Search Tree 29 78 2 2 60.8 5.1 5143

untimed-Lcrit 6 10 2 2 14.9 0.7 4692

untimed-Maze 9 12 2 0 8.25 0.07 5558

Lbh (from Sec. 2.1) 7 13 2 2 22.2 0.6 4404

Table 1. Experimental results: Time Empty and Time Witness column represents no.
of milliseconds needed for emptiness checking and to generate witness respectively.

and consumption of the ‘A’s and ‘B’s are modeled using push and pop in the
respective stack. For a given M and N , the language accepted by the system
is non-empty iff there is a run where all the produced ‘A’s and ‘B’s are con-
sumed. The language accepted by the two-stack pushdown system is given by
LM,N = ((aM + bN )+(āb̄)+)+, where a, b represent respectively, the push on
stack 1, 2 and ā, b̄ represent the pop on stack 1, 2 and hence must happen equal
number of times.

For any M,N > 0, any accepting run of the two stack pushdown system
cannot be well-nested. Further, in an accepting run, the minimum number of
items produced (and hence its length) must be a multiple of LCM(M,N). As
the consumption of ‘A’s and ‘B’s happen in an order one by one i.e., in a sequence
where consumption of ‘A’ and ‘B’ alternate, the minimum number of context
changes (and the scope bound) required in an accepting run depends on M and
N (in fact it is O(2× LCM(M,N)). On the other hand, the shortest accepting
run is 2-hole bounded: at any position of the word, the open holes come from
the unmatched sequences of a and b seen so far. Thus for any M,N>0, BHIM
was able to check for non-emptiness of LM,N with a witness of hole bound 2.

• Critical time constraints [9]. This is one of the timed examples, where
we consider the language Lcrit = {aybzcydz | y, z ≥ 1} with time constraints
between occurrences of symbols. The first c must appear after 1 time-unit of the
last a, the first d must appear within 3 time-units of the last b, and the last b
must appear within 2 time units from the start, and the last d must appear at
4 time units. Lcrit is accepted by a TMPDA with two timed stacks. Lcrit has no
well-nested word, is 4-context bounded, but only 2 hole-bounded.

• Concurrent Insertions in Binary Search Trees. Concurrent insertions
in binary search trees is a very important problem in database management
systems. [17,11] proposes an algorithm to solve this problem for concurrent
implementations. However, incorrect implementation of locks allows a thread
to overwrite others. We modified the algorithm [17] to capture this bug, and
modeled it as MPDA. BHIM found the bug with a witness of hole-bound 2.

•Maze Example. Finally we consider a robot navigating a maze, picking items;
an extended (from single to multiple stack) version of the example from [6]. In
the untimed setting, a witness for non-emptiness was obtained with hole-bound
0, while in the extension with time, the witness had a hole-bound 2.
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Name Locations Transitions Stacks Clocks cmax Aged(Y/N) Holes Time Empty(mili sec) Time Witness (mili sec) Memory(KB)

Bluetooth 45 89 2 0 2 Y 0 152.8 0.119 5568

Lcrit 6 10 2 2 8 Y 2 9965.2 3.7 203396

Maze 9 12 2 2 5 Y 2 349.3 0.31 11604

Table 2. Experimental results of timed examples. The column cmax is defined as the
maximum constant in the automaton, and Aged denotes if the stack is timed or not

Results and Discussion. The performance of BHIM is presented in Table 1
for untimed examples and in Table 2 for timed examples.

Apart from the results in the tables, to check the robustness of BHIM wrt
parameters like the number of locations, transitions, stacks, holes and clocks (for
TMPDA), we looked at examples with an empty language, by making accepting
states non-accepting in the examples considered so far. This forces BHIM to
explore all possible paths in the BFS tree, generating the lists at all nodes. The
scalability of BHIM wrt all these parameters are in [4].
BHIM Vs. State of the art. What makes BHIM stand apart wrt the existing
state of the art tools is that (i) none of the existing tools handle underapprox-
imations captured by bounded holes, (ii) none of the existing tools work with
multiple stacks in the timed setting (even closed guards!). The state of the art
research in underapproximations wrt untimed multistack pushdown systems has
produced some robust tools like GetaFix which handles multi-threaded programs
with bounded context switches. While we have adapted some of the examples
from GetaFix, the latest available version of GetaFix has some issues in handling
those examples3. Likewise, SPADE, MAGIC and the counter implementation [16]
are currently not maintained, resulting in a non-comparison of BHIM and these
tools. Most examples handled by BHIM correspond to non-context bounded, or
non-scope bounded, or timed languages which are beyond GetaFix : the 2-hole
bounded witness found by BHIM for the language L9,5 for the multi producer
consumer case cannot be found by GetaFix/MAGIC/SPADE with less than 90
context switches. In the timed setting, the Maze example which has a 2 hole-
bounded witness where the robot visits certain locations equal number of times
is beyond [6], which can handle only single stack.

7 Future Work

As immediate future work, we are working on BHIM v2 to be symbolic, in-
spired from GetaFix. The current avatar of BHIM showcases the efficiency of
fix-point techniques extended to larger bounded underapproximations; indeed
going symbolic will make BHIM much more robust and scalable. This version
will also include a parser to handle boolean programs, allowing us to evaluate
larger repositories of available benchmarks.
Acknowledgements. We would like to thank Gennaro Parlato for the discussions
on GetaFix and for providing us benchmarks and anonymous reviewers for more
pointers.

3 we did get in touch with one of the authors, who confirmed this.
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Abstract. We present AVR, a push-button model checker for verifying
state transition systems directly at the source-code level. AVR uses infor-
mation embedded in the word-level syntax of the design representation
to automatically perform scalable model checking by combining a novel
syntax-guided abstraction-refinement technique with a word-level imple-
mentation of the IC3 algorithm. AVR provides independently-verifiable
certificates that offer provable assurance and are easy to relate to the
word-level system. Moreover, proof certificates can be further used in
innovative ways to extract key design information and are useful in a
growing number of applications.

1 Introduction

Model checking [27,28] techniques based on incremental induction (like IC3
[19,31]) have gained significant success [21] due to their property-directed na-
ture and clever use of incremental SAT solving. Bit-level implementations of IC3,
however, struggle with scalability due to being overwhelmed by low-level propo-
sitional learning [33]. Rapid advances in SMT solving [54,12] offer a solution and
allow for performing IC3 directly at the word level by combining the incremental
induction algorithm with an abstraction-refinement procedure [18,41,23,34].

AVR [2] is a model checker designed, primarily, for verifying safety properties
of hardware. It uses syntax-guided abstraction [34], a generalization of implicit
predicate abstraction [22], to perform IC3-style reachability on a first-order logic
encoding of the transition relation resulting in word-level clause learning. Upon
termination, AVR will either produce a proof certificate, in the form of a state
formula representing an inductive invariant, if the safety property holds or a
counterexample execution trace if it fails. In both cases, confidence in the veri-
fication output is achieved by using an external proof checker to independently
confirm the correctness of the proof certificate or a trace simulator depicting the
sequence of transitions leading to the failure. Beyond hardware, these features
allow AVR to be used in innovative ways including the verification of distributed
protocols defined over unbounded domains [44,45]. AVR also provides a variety of
complementary verification techniques, such as data abstraction and interpola-
tion, to increase its scalability, as well as useful utilities, such as design statistics
and graphical visualizations, to provide high-level insights on the input design.
AVR was independently evaluated to be the best word-level verifier in the single
bit-vector track of Hardware Model Checking Competition (HWMCC) 2019 [17].
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2 Motivation

Consider a predicate p := (a + b < 1) defined over two 32-bit variables a and
b. An equivalent propositional-level representation of p will involve a bit-blasted
expression involving 64 Boolean variables and several hundred clauses. As a
consequence, bit-level model checking algorithms do not scale as variable bit
widths increase and suffer from the so-called state-space explosion problem [26].

AVR derives its motivation from the fact that the word-level representation
of a problem contains useful high-level information that can be exploited for
better scalability. Building on our previous work [33,34], AVR uses this insight
to infer an implicit syntax-guided abstraction using terms built from objects
present in the word-level syntactic description of the problem (like a, b, 1, +,
<). The approach can be further combined with data abstraction using unin-
terpreted functions [20,11] to simplify reasoning for the underlying query solver.
This, coupled with efficient SMT solving, allows for an effective word-level model
checking algorithm that can scale better than bit-level engines for a variety of
verification problems. Moreover, the underlying induction-based verification pro-
cedure has the unique strength of producing word-level proof certificates that
are useful in a variety of applications [32,37,45,44].

3 System Architecture

Fig. 1: Verification flow with AVR
UF: uninterpreted functions, BV: bit-vectors, LIA: linear integer arithmetic

Fig. 1 shows the architecture and verification flow of AVR.

Frontends in AVR extract the model checking problem from inputs in different
formats using openly-available tools.

– Verilog + SystemVerilog Assertions [9] (using Yosys [55])
– VMT [8] (using MathSAT 5 [24])
– BTOR2 [51] (using Btor2Tools [3])
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AVR core performs IC3 with syntax-guided abstraction (IC3+SA) and imple-
ments several verification techniques and utilities (detailed in §3.1, §3.2).
SMT solver backends use the latest versions of state-of-the-art SMT solvers
(Yices 2 [30], Boolector [50], MathSAT 5 [24] and Z3 [48]) to efficiently integrate
incremental solver reasoning with AVR core using a C++ interface.

Multi-engine wrapper allows for process-level parallelism by running multiple
instances of AVR in parallel using proof race (as elaborated later in §3.3).

3.1 Techniques

At its core, AVR implements a word-level IC3 procedure where terms in the
implicit syntax of the problem are used as building blocks to perform IC3-style
clause learning at the word level using SMT solving. The key differences be-
tween IC3+SA [34], as implemented in AVR, and bit-level IC3 [19,31] can be
summarized as follows:
– IC3+SA uses relations defined over syntax terms (referred as atoms) instead

of individual state bits to implicitly represent an abstract state space.
– SMT solving is used instead of propositional SAT solving for solver reasoning.
– Counterexample-guided abstraction refinement [25] is used to automatically

eliminate the spurious behavior in the syntactically abstracted domain by
identifying new terms from the proof of unsatisfiability [42].

Within the core IC3+SA framework, AVR implements several optimizations and
important features that are helpful in improving model checking performance.

Core features

– Pre-processor optimizations perform simple transformations to standardize
and optimize the input model extracted from different input formats.

– Incremental refinement performs abstract counterexample analysis in an in-
cremental fashion by using single-step solver queries instead of conventional
multi-step path queries.

– Incremental caching allows caching frequently-used data structures to speed
up incremental SMT solving (at the cost of increasing memory usage).

– Multiple SMT backends allow configuring usage of different SMT solvers for
different kinds of SMT queries based on the type of query.

Add-on techniques

– Property-directed splitting breaks wide words at bit-field extraction and con-
catenation boundaries [10] in a property-directed manner.

– Data abstraction focuses on the control structure of the problem by com-
bining IC3+SA with data abstraction which converts data operations to
uninterpreted functions [20,11,41],.

– Interpolation adds Craig interpolants [46] and incremental refinement to
extract new terms from a spurious abstract counterexample.

– Extract/Concat handler adds a novel dedicated engine to deal with light-
weight interpretation of bit-field extraction and concatenation operations.
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– Bounded model checking (BMC) [15] allows for an alternative to the IC3+SA
engine for quick bug hunting, especially for shallow bugs.

– Other options include adding global assumptions lazily, minimizing proof
certificates, making syntax-guided abstraction closer to (resp. farther from)
implicit predicate abstraction by decreasing (resp. increasing) abstraction
granularity, exploiting randomness during solving, and a few others.

Utilities

AVR also provides a number of useful utilities to the user including:
– Printing the problem in SMT-LIB format [13].
– Graphical visualizations of the problem and the word-level clause learning.
– Detailed statistics report on the input design and the verification run.

3.2 Certificates

Once a model checking problem is solved, there can be two possible outcomes:
either the property holds (safe), or it fails (unsafe).

If the property holds, IC3+SA produces an inductive invariant, i.e. an ap-
proximate fixpoint that establishes the property to be true in all executions of
the system. Inductive invariants act as proof certificates that guarantee the cor-
rectness of the verification outcome. AVR prints such proof certificates directly in
the SMT-LIB format, which allows for independent checking of their correctness
using an external SMT solver like Yices 2 or Z3. Since proof certificates are in
the word-level format, they are human-readable and much easier to relate to the
word-level input directly at the source-code level (as against bit-level invariants
which are usually too hard to understand). Proof certificates have many use-
ful applications, including the derivation of inductive validity cores [32], gaining
deeper insights on design behavior, deriving assume-guarantee verification condi-
tions [37,53], deriving helper assertions during multi-property verification [36,29],
and generalizing to quantified domains (as elaborated later in §4.3).

When the property fails, AVR produces a counterexample trace that estab-
lishes how to reach a bad state (a state where the property is false) starting from
an initial state. AVR prints the counterexample witness in BTOR2 witness for-
mat [51], which allows for independent verification of the execution trace using
a BTOR2 witness simulator [4]. This allows the designer to debug and pin-point
the source of error by analyzing the execution leading to the buggy state.

3.3 Proof Race

AVR supports a variety of configurations and add-on features (as discussed
in §3.1). Without detailed knowledge of the input, it is hard to tell upfront which
technique will perform the best. Different configurations are useful to tackle dif-
ferent types of problems, though manually trying different configurations can
become tedious for the user. To counter this, AVR offers a multi-engine wrap-
per called proof race that automatically runs multiple instances of AVR with
different configurations in parallel and offers process-level parallelism. Given a
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set of specified resource limits, proof race initiates multiple AVR instances and
terminates execution as soon as one of these instances successfully races to the
result. Such a portfolio-based approach is crucial in practice for fast verification
performance since no single technique performs best in all cases [21,16]. It is
also further strengthened by complementing AVR’s word-level techniques with
state-of-the-art model checking engines like ABC dprove [14], IC3ia [23] etc.

4 Case Studies1

4.1 Apache Buffer Overflow

We consider patched versions of two buffer overflow vulnerabilities [40] from
standard modules of the Apache web server [1].

apache-escape-absolute corrects a high severity vulnerability CVE2006-3747

[7] that fixes the out-of-bounds buffer overflow exploitation which allows a remote
attacker to cause a denial of service and execute arbitrary code via crafted URLs.
The patched version corrects a check (c < TOKEN SZ) to (c < TOKEN SZ− 1).

apache-get-tag fixes a medium severity vulnerability CVE-2004-0940 [6] that
exploits a buffer overflow when copying user-supplied tag strings into finite
buffers. A local attacker may leverage this issue to execute arbitrary code on
the affected computer with the privileges of the affected Apache server. The
patched version corrects a check that validates the length of the tag strings.

In less than a minute, AVR successfully verifies that both of these buffer
overflow exploits are unreachable in the patched versions for any buffer size.
AVR also provides human-readable proof certificates that are externally verified
using Z3, and provides provable assurance against these security vulnerabilities.

4.2 Public Key Authentication Protocol

The Needham-Schroeder public key authentication protocol [49] allows establish-
ing mutual authentication between an initiator A and a responder B, after which
some session involving the exchange of messages between them can take place.
Unfortunately, this protocol is vulnerable to a man-in-the-middle attack [43]. If
an intruder I can persuade A to initiate a session with him, he can relay the
messages to B and convince B that he is communicating with A.

We consider an instance of the protocol from HWMCC’19 [17,52] with 3
initiators and responders each, and with an unsafe state defined as a responder
being finished authentication with the intruder as a party. Within a minute,
AVR finds an execution trace that establishes how to reach an unsafe state. The
counterexample witness produced by AVR can be replayed using the BtorSIM
simulator [4] to verify the execution trace and to debug the protocol.

4.3 Verifying Distributed Protocols

Beyond verifying model checking problems from finite domains, AVR has shown
preliminary application in the verification of distributed protocols, which are

1 All results presented in this paper can be replicated from [35,5].
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generally expressed over unbounded domains (with an unbounded number of
clients, servers, epochs, messages, etc.). The I4 system [45,44] demonstrates how
AVR can be used to verify a simpler finite version of the protocol, followed by
generalizing AVR’s proof certificates to the unbounded domain. For example, a
finite-domain invariant saying “clients C1 and C2 cannot both link to the server
S” i.e. ¬(link(C1, S)∧ link(C2, S)) can be generalized to the unbounded domain
as “no two different clients can both link to a server” i.e.
∀C1,C2,S (C1 �= C2) =⇒ ¬(link(C1, S) ∧ link(C2, S)).

5 Strengths

Control-centric properties, where much of the complexity lies in the control logic
(such as sequential equivalence checking, microprocessor instruction control unit,
key-value store) are much easier to verify using AVR. Syntax-guided abstraction
hides the domain complexity outside of the problem syntax, and automatically
separates important control-flow details from the irrelevant data component.
This, combined with data abstraction, allows for scalable model checking with
the capacity to scale independently of the variable bit widths [33,34].

Push-button verification using AVR eliminates the need for tedious human inter-
vention in verification (such as manual identification of abstraction predicates,
manually adding helper assertions) by automatic incremental construction of
abstraction and word-level clauses using the IC3+SA algorithm.

Provable assurance on the verification outcome is guaranteed by AVR using
independently-checkable proof certificates and counterexample traces.

Useful utilities that AVR provides, such as support for multiple input formats,
efficient integration with state-of-the-art SMT solvers, proof race, high-level sys-
tem statistics, graphical visualizations, etc. contribute to a user-friendly experi-
ence and ease of use.

6 Limitations

Heavy data dependency can make word-level techniques in AVR ineffective for
certain problems, especially when a majority of bit-precise values in the data
domain play an important role (for example, puzzle solving problems like Tower
of Hanoi [39], Peg Solitaire [38], etc. formulated as reachability problems [52]).
Logic synthesis and bit-level optimizations [14,47] can be very useful for such
problems and help bit-level checkers perform better than word-level techniques
by significantly decreasing the problem complexity at the bit level.

First-order logic fragments beyond quantifier-free bit-vectors, arrays and unin-
terpreted functions (such as non-linear arithmetic, floating-point numbers, quan-
tifiers, etc.) and properties beyond safety (such as liveness and fairness) have
limited support in the current tool implementation. AVR’s primary focus has
been on verification of safety properties defined on hardware systems.
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7 Conclusions

AVR provides a variety of techniques to efficiently perform automatic word-level
verification using SMT solvers with provable guarantees and security. AVR has
been effective in hardware verification [17,33,34] and shows significant promise
for the verification of distributed protocols [44,45]. In the future, we plan to
address some of its current limitations and extend its application to practical
verification problems beyond the hardware domain.
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Abstract. Prior research has shown how to construct a mechanically
verified model checker for timed automata, a popular formalism for
modeling real-time systems.
In this paper, we shift the focus from verified model checking to certify-
ing unreachability. This allows us to benefit from better approximation
operations for symbolic states, and reduces execution time by exploring
fewer states and by exploiting parallelism. Moreover, this gives us the
ability to audit results of unverified model checkers that implement a
range of further optimizations, including certificate compression.
The resulting tool is evaluated on a set of standard benchmarks to
demonstrate its practicality, using a new unverified model checker imple-
mentation in Standard ML to construct the certificates.

Keywords: Timed automata · Certification · Model Checking · Interac-
tive Theorem Proving · Isabelle/HOL

Timed automata [1] are a widely used formalism for modeling real-time systems,
which is employed in a class of successful model checkers such as Uppaal [4].
These tools can be understood as trust-multipliers: we trust their correctness to
deduce trust in the safety of systems checked by these tools. As a consequence,
one wants to ensure as rigorously as possible that the computation results of
timed automata model checkers are correct.

Previous work [31] has addressed this problem by constructing a model checker
for timed automata that is fully verified using Isabelle/HOL [25]. This tool is
intended to be a reference implementation that can be used to scrutinize the
correctness of other model checkers. As such, it is mainly able to check small
and medium-sized benchmark examples, but the performance gap w.r.t. more
practical model checkers prevents it from checking realistic benchmark models
within reasonable time and space bounds.

We address this issue by shifting the focus from full verified model checking to
only certifying that the result produced by an unverified model checker is correct.
We only study reachability: it is the most important property that is checked
with timed automata model checkers, and some model checkers only support
reachability. It is crucial to ensure that a bad state is certainly not reachable if
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the model checker claims so, thus we want to certify unreachability. Certifying
that a state is indeed reachable would amount to extracting a timed trace and
certifying that the trace is compatible with the model. While implementing this
in a verified manner would be comparatively easy, we consider it less important
because it corresponds to the bug finding functionality of model checkers, which
carries less trust.

The recipe for certifying unreachability is simple: the model checker explores a
number of states until it determines that there are no more states to be found. If
none of the states fulfill the final state predicate (i.e. violates the safety property),
then the model checker will answer “unreachable”. We use the set of explored
states as the unreachability certificate. In essence, we only need to check that
the initial state is contained in this set, that there are no outgoing edges from
this set, and that none of the states in the set fulfill the final state predicate.

The switch to certification holds many advantages. Timed automata model
checking uses over-approximations of symbolic states to ensure termination. A
large variety of these approximation operators has been studied [2,3,14]. Our
previous work [29] has shown that, while formally proving the correctness of these
approximation operations is feasible in principle with an interactive theorem
prover, the effort is rather high. Instead, to certify unreachability, it is sufficient
to only know that the approximation operator indeed yields a state that is at
least as big as the precise symbolic state. Certifying this property is cheap.

Moreover, certification eases parallelization. Checking that a state is not final
and that all its successors are covered by the state set are local properties. We
show how to exploit this in a verified implementation, while only mildly increasing
the verification effort and the size of the trusted code base.

Finally, the number of states explored by a model checker can vary immensely,
depending on a range of factors such as the chosen approximation operator or
the search order. Thus, an efficient unverified tool can exploit different heuristics
and strategies to compute a state space that is as small as possible, and thereby
speedup the certification effort. In this context, we also study a number of
compression techniques to reduce the number of states in the certificate after the
model checker has concluded its search.

We use a new unverified model checker called Mlunta, which is implemented
in Standard ML (SML), to generate certificates for a set of standard benchmarks,
and to evaluate our verified certifier’s performance on these benchmarks 1.

Related Work This work is based on an existing Isabelle/HOL formalization of
timed automata model checking [29,31]. Other proof-assistant formalizations of
timed automata focus on proving elementary properties about the basic formalism
[33,34], or proving properties about concrete automata [26,10,8], but none of
them are concerned with model checking.

Earlier work formalizes a model checker for the modal μ-calculus [28], and
constructs a verified finite state LTL model checker [9,24,6].

1 Both tools are available online: https://doi.org/10.5281/zenodo.3679245.

https://doi.org/10.5281/zenodo.3679245
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The idea of extracting certificates from the model checking process has
previously been studied in the context of the μ-calculus [23] and finite state
LTL model checking [27]. However, these works are not accompanied by a
verified certificate checker and do not attempt to scale the approach to practical
examples. Only the recent work of Griggio et al. [11] provides a practical extraction
mechanism and a certificate checker for LTL model checking, but the checker is
not verified. To the best of our knowledge, we are the first to examine certification
in the context of timed automata model checking.

Finally, in the context of software verification, the idea of producing certificates
for the correctness of a program has been broadly studied [16,5].

Isabelle/HOL Isabelle/HOL [25] is an interactive theorem prover based on Higher-
Order Logic (HOL). HOL can be thought of as a combination of a functional
programming language and mathematical logic. Isabelle/HOL mostly resembles
standard mathematical notation. Some conventions that are borrowed from
functional programming need to be explained, however. Functions are mostly
curried, i.e. of type τ1 ⇒ τ2 ⇒ τ instead of τ1 × τ2 ⇒ τ . As a consequence,
function application is usually denoted as f a b instead of f(a, b). Function
abstraction with lambda terms uses the standard syntax λx. t (the function that
maps x to t) and can also have paired arguments λ(x, y). t. Type variables are
written ′a, ′b, etc. Compound types are written in postfix syntax: τ set is the
type of sets of elements of type τ . We use the Isabelle/HOL convention that
free variables are implicitly all-quantified throughout the paper. In parts of the
paper, formulas or syntax have been simplified for readability, but we have stayed
largely faithful to the Isabelle/HOL formalization.

Contributions In short, these are the main contributions of our work:

– To the best of our knowledge, we are the first to study certification of the
model checking results of reachability checking for timed automata, including
techniques to compress certificates.

– We construct a verified implementation of such a certificate checker, including
a number of optimization techniques to make it practically usable.

Outline The remainder of the paper is organized as follows. The first section
briefly recalls the theory of timed automata, and sketches the state-of-the-art
model checking process. The second section details our approach to certification
and explains how, starting from an abstract theory, a concrete verified imple-
mentation of the certificate checker can be obtained. Section three illustrates a
number of techniques to improve the certificate checker’s performance, while only
mildly increasing the formalization effort. Section four discusses two methods for
certificate compression. The paper is concluded by an experimental evaluation
and remarks on potential future work.



428 S. Wimmer and J. von Mutius

1 Timed Automata and Model Checking

Transition Systems We take a very simple view of transition systems: they are
simply a relation → of type ′a ⇒ ′a ⇒ bool for a type of states ′a. We write
a →∗ b to denote that b can be reached from a via a sequence of →-transitions.

Timed Automata To make the paper self-contained, this paragraph briefly de-
scribes timed automata and is mostly reproduced from Wimmer and Lammich
[29]. For a thorough introduction see the tutorial paper of Bengtsson and Yi [4].

Compared to standard finite automata, timed automata introduce a notion
of clocks. Figure 1 depicts an example of a timed automaton. We will assume
that clocks are of type nat . A clock valuation u is a function of type nat ⇒ real .
Locations and transitions are guarded by clock constraints, which have to be

l1 l2

c1 ≤ 1 ∧ c2 ≤ 100

l3

c1 > 0, a1, c2 := 0

a3, c1 := c2 := 0

a2, c1 := 0

c1 > 100, a4

Fig. 1: Example of a timed automaton with two clocks.

fulfilled to stay in a location or to take a transition. Clock constraints are
conjunctions of constraints of the form c ∼ d for a clock c, an integer d, and
∼ ∈ {<,≤,=,≥, >}. We write u |= cc if the clock constraint cc holds for the
clock valuation u. We define a timed automaton A as a pair (T , I) where I is
a mapping from locations to clock constraints (also named invariants); and T
is a set of transitions written as A 	 l −→g,a,r l′ where l and l′ are start and
successor location, g is the guard of the transition, a is an action label, and r is
a list of clocks that will be reset to zero when the transition is taken. States of
timed automata are pairs of a location and a clock valuation. The operational
semantics defines two kinds of steps (given as their HOL descriptions):

– Delay: (l, u) →d (l, u⊕ d) if d ≥ 0 and u⊕ d |= I l;
– Action: (l, u) →a (l′, [r := 0]u)

if A 	 l −→g,a,r l′, u |= g, and [r := 0]u |= I l′;

where u ⊕ d = (λc. u c + d) offsets all clocks by d in the valuation u, and
[r := 0]u = (λc. if c ∈ r then 0 else u c) resets all clocks in r to 0 in valuation u.
For any (timed) automaton A, we consider the transition system

(l, u) →A (l′, u′) = (∃d ≥ 0. ∃a u′′. (l, u) →d (l, u′′) ∧ (l, u′′) →a (l′, u′)) .
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That is, each transition consists of a delay step that advances all clocks by some
amount of time, followed by an action step that takes a transition and resets the
clocks annotated to the transition. Given a final state predicate F and an initial
state (l0, u0), we are interested in whether (l0, u0) →∗

A (l, u) for any l, u with F l.
In Figure 1, the final state is l3 (i.e. F l ←→ l = l3). As the guard for action a4
is never enabled, l3 is unreachable.

Model Checking Due to the use of clock valuations, the state space of timed
automata is inherently infinite. Thus, model checking algorithms for timed
automata are based on the idea of abstracting from concrete valuations to sets
of clock valuations of type (nat ⇒ real) set, often called zones. The resulting
transition system of reachable states from an initial zone is called the zone graph.
It is explored in an on-the-fly manner, computing successors on zones, which
are typically represented symbolically as Difference Bound Matrices (DBMs).
Knowledge of this data structure is not necessary to understand the rest of the
paper. Thus we refer the interested reader to Bengtsson and Yi [4] and to Wimmer
and Lammich [29,31] for a verification of this data structure. In the remainder
we will only use the term “zones” instead of referring to their implementation as
DBMs.

The delicate part of this method is that the number of reachable zones could
still be infinite. Therefore, over-approximations (or abstractions) of zones are
computed to obtain a finite search space. For our purpose, it sufficient to assume
an abstraction operator α indeed computes an over-approximation, i.e. Z ⊆ α(Z)
for any zone Z. We call the version of the zone graph where abstractions are
applied the abstract zone graph [13]. For a number of such abstraction operators,
it can be shown that the abstract zone graph is sound and complete 2. The
proofs are rather intricate, however. Thus formalizing them would be a big effort.
By focusing on certification of unreachability, this problem vanishes, as we only
need to ensure that any state (l, Z) that we deem reachable in the zone graph is
subsumed by some state (l, Z ′) with Z ⊆ Z ′ that is part of the certificate and
that was computed by the abstraction (i.e. Z ′ = α(Z1) for some Z1).

Certificates by Example Figure 2 depicts the zone graph of the automaton in
Figure 1. Each zone Z is given as a clock constraint cc such that Z = {u |u |= cc}.
A model checker like Munta would have to explore the full zone graph before
being able to decide that l3 is unreachable. Any model checker that uses the same
abstraction technique as Munta [2] would not be able to benefit from abstractions
for this example and thus the abstract zone graph is the same as the zone graph.
However, such a model checker could apply subsumptions while exploring the zone
graph. That is, when a symbolic state of the form (l2, {u |u |= c1 = 0∧c2 < k+1})
is explored, the state (l2, {u |u |= c1 = 0 ∧ c2 < k}) can safely be discarded.

This means that at the end of the model checking process, only the three
states in Figure 3a will be stored. The solid edges are part of the zone graph,

2 Soundness: for every abstract run, there is a concrete instantiation. Completeness:
every concrete run can be abstracted.
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l2, 0 < c1 ≤ 1 ∧ c2 = 0

l2, c1 = 0 ∧ c2 < 1

l2, c1 = 0 ∧ c2 < 2

· · ·

l2, c1 = 0 ∧ c2 ≤ 100

l1, c1 = c2 = 0

Fig. 2: The zone graph of the automaton depicted in Figure 1.

while the dashed edge indicates that the zone at its tail has a successor in the
zone graph ((l2, {u |u |= c1 = 0 ∧ c2 < 1})) that is subsumed by the tip of
the edge. The set of these three states can act as a certificate of unreachability.
They essentially form an inductive invariant of the zone graph: for each state in
the certificate, all its successors in the zone graph are either contained in the
certificate themselves or subsumed by another state in the certificate. Thus we
know that any symbolic state that is reachable from the initial state is subsumed
by some state in the certificate, and as the final state is not contained in the
certificate, we can conclude that it is unreachable.

Figure 3b shows a certificate with only two states that replaces the two states
for l2 by the state with a dashed border. Note that this state is not part of the
original zone graph. The certificate fulfills the same invariant property and thus
also proves unreachability. We will use this technique of adding larger states to
the certificate that are not part of the zone graph for our compression techniques
in section 4.

l2, 0 < c1 ≤ 1 ∧ c2 = 0

l1, c1 = c2 = 0

l2, c1 = 0 ∧ c2 ≤ 100

(a) Stored states

l1, c1 = c2 = 0

l2, c2 ≤ 100

(b) Smaller certificate

Fig. 3: Two certificates of unreachability for the automaton from Figure 1.
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2 From Model Checking to Certifying Unreachability

This section first describes our approach to certification abstractly. Then, we
detail how the existing formalization of a timed automata model checker was
extended—with rather low effort—to a verified certifier. In practice, networks
of timed automata with additional modeling features such as, e.g. shared state
variables, are used. However, due to the existing verified product construction for
such a formalism [31], it is sufficient to study the case of a single timed automaton
here.

2.1 An Abstract Correctness Theorem

To work towards a rigorous justification of the certification process, we first study
the problem on a more abstract level. Consider a transition system → on states
of type ′l × ′s where ′l corresponds to the finite state part of timed automata
and ′s corresponds to zones. We assume an invariant P on states, i.e.:

P (l1, s1) ∧ (l1, s1) → (l2, s2) =⇒ P (l2, s2) .

This invariant essentially represents a restriction of → to valid states. While this
would usually be assumed implicitly, we explicate P here as it is technically more
convenient to do so in the Isabelle/HOL formalization.

The interesting feature that sets timed automata model checking apart is
subsumption. Recall that during the model checking process, it is possible to
first discover some (symbolic) state (l, Z) (a pair of a discrete state l and a zone
Z), and to find at some later point that another reachable state (l, Z ′) subsumes
(l, Z) because Z ′ semantically contains Z ′, i.e. Z ⊆ Z ′. At this point the state
(l, Z) can be discarded as we know that anything that is reachable from (l, Z) is
also reachable from (l, Z ′). Abstractly, subsumption is modeled by some fixed
preorder (i.e. a reflexive and transitive relation) � on ′s which is a simulation
relation between → and itself:

s1 � s2 ∧ (l1, s1) → (l2, t1) ∧ P (l1, s1) ∧ P (l2, s2)

=⇒ ∃t2. t1 � t2 ∧ (l1, s2) → (l2, t2)

In the abstract setting, a certificate consists of a set of discrete states L of
type ′l set, and a mapping M of type ′l ⇒ ′s set that gives the set of reachable
symbolic states that were computed for any discrete state l ∈ L. We say that
(L,M) satisfies P if all states in the certificate (L,M) satisfy P :

l ∈ L ∧ s ∈ M l =⇒ P (l, s)

Moreover, the certificate needs to be closed. Following Herbreteau et al. [13],
we call a state covered if it is subsumed by another state in the certificate. A
certificate is closed if for each state in the certificate all its successors are covered:

l1 ∈ L ∧ s1 ∈ M l1 ∧ (l1, s1) → (l2, s2) =⇒ l2 ∈ L ∧ (∃s3 ∈ M l2. s2 � s3) (∗)

The following key theorem states that all reachable states are covered if the
initial state is covered:
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Theorem 1. Let (L,M) be closed and invariant under P . Assume l0 ∈ L,
s′0 ∈ M l0, s0 � s′0, and (l0, s0) →∗ (l, s). Then l ∈ L and there exists s′ such
that s′ ∈ M l and s � s′.

Proof. By induction on the number of steps in (l0, s0) →∗ (l, s). The following
sketches how the run of covering states is constructed. The first line represents
(l0, s0) →∗ (l, s) and the states in the third line are all part of the certificate.

(l0, s0) → (l1, s1) → . . . → (l, s)

� �
(l1, t1) . . . (l, t)

� ↗ � ↗ ↗ �
(l0, s

′
0) (l1, s

′
1) . . . (l, s′)

From the assumptions on l0, s0, and s′0, we can first apply the self-simulation
property of → to (l0, s0) → (l1, s1) to obtain a t1 such that s1 � t1 and (l0, s

′
0) →

(l1, t1). As the certificate is closed we thus get l1 ∈ L and we can find an s′1 ∈ M l1
such that t1 � s′1 (and thus s1 � s′1 by transitivity). The induction hypothesis
can then be applied to l1, s1, and s′1. ��

We will now say that a certificate (L,M) is admissible iff

– it satisfies P ,
– it is closed,
– it covers the initial state (i.e. there is an s′0 ∈ M l0 such that s0 � s′0),
– and there is no l ∈ L with F l.

Corollary 1. If F is monotone w.r.t. � and the certificate (L,M) is admissible,
then �l s. (l0, s0) →∗ (l, s) ∧ F l .

2.2 An Abstract Certificate Checker

In practice, the certification process has to consider one additional complication.
A model is typically described in terms of human-readable identifiers, while most
model checkers and the verified model checker Munta [30] in particular represent
these as natural numbers internally to allow for efficient indexing. In our certifier,
this is accounted for by relabeling the human-readable identifiers in a given model
to natural numbers in a first (verified) pre-processing step. To save additional
transformations of the certificate after it was emitted, we let the unverified model
checker additionally emit a textual description of such a renaming. The certifier
then just needs to check that the given renaming is injective to ensure that it
can safely be applied.

Together with the theoretical analysis laid out in the last section, we can thus
derive the following strategy for certifying unreachability:

– An unverified model checker explores the reachable state space of a given
model symbolically and checks that none of the discovered states (l, s) fulfills
F l.
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1 definition check (L,M) ≡
2 monadic list all L (λl. do {
3 let S = M l ;
4 let next = succs l S ;
5 monadic list all next (λ(l′, S′). do {
6 xs ← SPEC (λxs. set xs = S′) ;
7 if xs = [] then return True else do {
8 b1 ← return (l′ ∈ L) ;
9 ys ← SPEC (λxs. set xs = M l′) ;

10 b2 ← monadic list all xs (λx.
11 monadic list ex ys (λy. return (x � y))
12 ) ;
13 return (b1 ∧ b2)
14 }
15 })
16 })

Listing 1.1: Monadic program to check whether a certificate is closed.

– The set of explored states is emitted as a certificate, possibly followed by
compression (see section 4).

– The model, the final state predicate F , the certificate, and a description of
the renaming that was used for the states are passed to the verified certifier.

– The certifier checks that the given renaming is injective, renames the model
accordingly, applies the product construction and checks that the certificate
is admissible.

If the process is successful, we can conclude by Corollary 1 that no “bad” state
(l, s) (i.e. with F l) is reachable symbolically. We will argue that this really implies
that the model is safe in the concrete case of timed automata in section 2.3.

We now lay out how a verified certificate checker that implements said
strategy for an abstract transition system can be constructed in Isabelle/HOL.
Listing 1.1 displays the definition of the core of the checker that checks whether
the certificate is closed in the sense defined above. The program is defined in the
non-determinism monad of the Imperative Refinement Framework (IRF) [20].
Some parts, such as checking set membership or converting a (finite) set to a
list are still left abstract. A non-deterministic specification SPECQ returns some
value v with Qv.

The body of the program (lines 2-16) iterates over all discrete states in the
certificate L and checks that all corresponding symbolic states are covered. Line
3 retrieves the symbolic states that correspond to discrete state l and in line 4
their symbolic successor states are computed. The result (next) is a list of pairs
of a discrete state and the set of its corresponding symbolic states. The loop
ranging from lines 5 to 15 iterates over this list to ensure that all the successor
states are covered. Given a discrete state l′ and a set of symbolic states S′, line 6
first converts it into a list xs that can be iterated over. This turns into a vacuous
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operation when the algorithm is refined to an executable version where sets are
implemented as lists. Line 8 checks that l′ is also part of the certificate. Then, in
line 9 the set of corresponding symbolic states is retrieved and converted to a list
ys. Finally, lines 10-12 ensure that all states in xs are subsumed by some state
in ys.

To prove soundness of check , we mainly need correctness theorems for the
monadic combinators monadic list all and monadic list ex. Given a list xs and
a monadic implementation Qi of a predicate Q, they check whether all states
(at least one state) in xs satisfy (satisfies) Q. This is the correctness theorem for
monadic list all, for instance:

(∀x.Qi x ≤ SPEC (λr. r ←→ Qx))

=⇒ monadic list all xsQi ≤ SPEC (λr. r ←→ list all xsQ)

where list all xsQ holds if and only if Q holds for all elements in xs. After setting
up the IRF’s verification condition generator with this rule and the corresponding
rule for monadic list ex, it is easy to prove that check is sound:

check (L,M) ≤ SPEC (λr. r =⇒ closed (L,M))

where the property closed (L,M) corresponds to condition (∗) from above.
We then use standard refinement techniques to obtain an algorithm checki that

refines check , replacing sets by lists. However, the algorithm is still specified in the
non-determinism monad and therefore not executable. We use a simple technique
to make it executable. Consider the following theorem for monadic list all :

monadic list all xs (λx. return (P x)) = return (list all xsP ) .

It allows us to replace the non-deterministic combinator monadic list all by the
deterministic list all , pushing return to the outside. By exhaustively applying a
set of such rewrite rules we obtain an alternative definition of checki where return
appears only on the outermost level, and the inner term is deterministic and thus
executable. Using these techniques, we obtain a simple certificate checker that
is executable, provided that we can implement the elementary model checking
primitives such as the subsumption check or computing the list of successors of a
state.

2.3 Transferring the Correctness Theorem

For timed automata, the abstract transition system studied above is the zone
graph →ZG(A) of a given (single) automaton A. One can show that it simulates
→A (completeness of →ZG(A)):

(l, u) →A (l′, u′) ∧ u ∈ Z =⇒ (∃Z ′. (l, Z) →ZG(A) (l
′, Z ′) ∧ u′ ∈ Z ′) .

This simulation property is sufficient to establish that if there is no reachable
state (l, Z) in →ZG(A) with F l, then no final state (l, u) is reachable in →A:

(�l, Z. (l0, Z0) →∗
ZG(A) (l, Z) ∧ F l) ∧ u0 ∈ Z0

=⇒ (�l, u. (l0, u0) →∗
A (l, u) ∧ F l)



Verified Certification of Reachability Checking for Timed Automata 435

In the formalization, these proofs rely on instantiating a general theory of
simulations in transition systems that is derived from the theory of Wimmer and
Lammich [31]. From Corollary 1 we get that there is no reachable final state in
→ZG(A) if the certificate check is passed. Finally, by correctness of the renaming
process and the product construction, we can conclude that there is no final
reachable state in the input model if there is no final reachable state in →A.

2.4 Implementing a Concrete Checker

All the elementary model checking primitives we need for certification have
already been implemented [31]. The abstract implementation presented above
assumes that the model checking primitives are implemented in a purely functional
manner (as they are just regular HOL functions). The existing (verified) model
checker [31], however, is an imperative implementation in the Imperative HOL
framework. Imperative HOL [7] is a framework for specifying and reasoning about
imperative programs in Isabelle/HOL. It provides a heap monad in which one
can use—analogously to the ML family of programming languages—imperative
references and arrays to express imperative programs. Usually, once we have used
an imperative implementation anywhere, the whole program would need to be
stated in the heap monad. However, we can employ a technique similar to the
one that is used for Haskell’s ST monad [21] to erase the heap monad in a safe
way under certain circumstances.

More precisely, if it can be deduced from the type of an imperative computation
that no information about references or arrays on the heap can be leaked to the
outside of the computation in its result, then the heap monad can be erased for
this computation, yielding a pure computation. In the certifier, this is primarily
used for computing the symbolic successor of a zone Z for a certain transition.
To that end, an immutable representation of the DBM M corresponding to Z is
copied to the a newly allocated imperative array, then the imperative pipeline
of computations to compute the successor M ′ is applied to M , and finally M ′

is copied back to an immutable array. Taken together, this whole computation
does not contain the type of an array or reference in its result type, and thus
can safely be turned into a pure computation. As a consequence, we are able to
reuse the existing verified model checking primitives, while being able to state
the certificate checking algorithm purely functionally.

In the concrete checker, the mapping M is implemented using a verified
functional hash table implementation based on so-called diff arrays [19]. This
data structure provides a purely functional interface to an underlying imperative
array. When a diff array is updated, it performs the update on the imperative
array, and stores a difference that can be used to re-compute the old state of the
array. Reading from the most recent version of a diff array is fast as the value
can directly be read from the underlying imperative array. If an old version is
accessed, the whole array has to be copied to recompute the old version. This
gives diff arrays good performance characteristics, as long as they are mostly
used linearly. This is the case in our application as the hash table is filled in an
initial phase, after which the hash table is used in a read-only manner.
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2.5 Parallel Execution

The attentive reader may wonder why we care about a purely functional imple-
mentation of the certificate checker at all. Indeed, we could use existing techniques
[31] to obtain an imperative implementation of the certificate checker in the
heap monad. However, in this setting it would be hard to justify the soundness
of executing parts of the checker in parallel. In the purely functional setting,
this is much simpler. Our approach to parallel execution is minimalist: we only
provide means to execute the map combinator on lists in parallel. This is achieved
by another custom code translation that is part of the trusted code base. The
parallel implementation of map uses a task queue that will contain the individual
computations that need to be run for each element of xs , and uses a fixed number
of threads to work through this list and assemble the final result.

We exploit this map implementation to work through the list of discrete states
L in parallel, using the equivalence:

list all Qxs = list all id (mapQxs) .

In doing so, we lose the ability to stop execution early once a list element does
not satisify Q. For the certificate checker, however, we assume that usually
the certificate is correct, meaning that we have to go through the whole list
anyway. We only parallelize the outermost loop of checki because this should
yield reasonably-sized work portions, given that the size of L will typically at
least be in the hundreds.

3 Scaling Performance

In this section we discuss two techniques to improve the performance of the
certificate checker without increasing the verification effort significantly.

3.1 Monomorphization

Isabelle/HOL supports polymorphism and type classes, which are valuable fea-
tures for sizeable formalization efforts. Large parts of our formalization also make
use of these features, e.g., most of the timed automata semantics are formalized
for a general time domain, and operations on DBMs are applicable on DBMs
whose entries are formed from more general algebraic structures than the ring of
integers. While this yields an abstract and general formalized theory, it can get
in our way when trying to obtain efficient code.

When generating SML code from HOL, Isabelle uses a so-called dictionary
construction to compile out type classes, which are not supported by SML. This
means that most functions carry a large number of additional parameters, which
are used to look up elementary operations, such as addition of two numbers.
These additional lookup operations degrade performance. One solution is to
ensure that all relevant constants that are exported to SML are monomorphic
(i.e. specialized to the integer type), eliminating the need for the dictionary
construction in most places. Thus, we apply a semi-automated procedure to
achieve this monomorphization.
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3.2 Integer Representation

Types such as int or nat are unbounded in Isabelle/HOL meaning they are
implemented with the help of big integers in the target languages. To improve per-
formance, we want to use machine integers instead, and instruct Isabelle/HOL’s
code generator to do that. This is still sound: SML’s standard integer operations
throw an exception if an overflow occurs instead of silently wrapping around. The
code generator can only achieve partial correctness anyway: if program execution
does not fail, then its result is consistent with the evaluated HOL term.

3.3 Refined Code Equations

The last type of optimizations we use can be considered to belong to the cate-
gory of micro-optimizations. These are improved code generator translations for
elementary operations and combinators. We employ such improved translations
to use native implementation language primitives to convert from mutable to
immutable arrays and back. The other such optimizations we use, is to directly
use integer values as counters in imperative loops instead of a natural number
representation that would box the integers in a data constructor. In the same
way, we use integers directly for array indexing.

4 Certificate Compression

In this section, we present two techniques to compress the unreachability certifi-
cate. By compression we mean reducing the number of zones that are present in
the certificate for each discrete state, using the unverified model checker. The
first technique relies on subsumption. As explained above, it is possible that the
model checker adds a zone Z to the set of explored states and later another zone
Z ′ with Z ⊆ Z ′ (i.e. Z ′ subsumes Z). Thus the first technique simply filters the
set w.r.t. ⊆ in the end.

The second technique relies on the following idea: we replace one or more
zones by their union, and check that the state space is still closed. This means
that we have to check that all the successors of the larger zone are still covered
by the current set of states. In that case, we can discard the old zones, and
replace them by their union. As the union of two zones is not necessarily convex
and thus cannot be represented as a DBM, we do not compute a precise union
of zones but their convex hull. This operation is rather cheap as it amounts to
taking the pointwise maximum of DBM entries. After computing the convex hull
of a number of zones (in canonical form), we only need to apply the expensive
operation to restore a canonical form once.

The latter technique yields a whole family of compression algorithms by
iterating one of the following operations for each discrete state until a fixed-point
is reached:

a) the convex hull of all zones is computed;
b) the convex hull of the first two zones is computed;
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c) the convex hull of the first two zones that can successfully be joined is put to
the front of the list;

d) same as c) but considering only discrete states for which compression was
successful in the last round;

e) same as d) but iterating the operation until saturation.

The next section contains an experimental evaluation of these techniques.
Note that similar techniques for reducing the search-space could also be applied

already during model checking. By doing so, the number of states explored and
the runtime of model checking could be reduced. This, however, comes at the
risk of producing spurious model checking results (i.e. a final state might be
deemed reachable, although there is no corresponding reachable state in the
timed automaton).

5 Experimental Evaluation

We evaluate the checker on a set of benchmarks that is derived from Uppaal’s
standard benchmark suite [22]. Additionally, to cover the advanced modeling
features of committed locations and broadcast channels, we use a set of bench-
marks that is derived from the pacemaker models of Jiang et al. [17] and a
modified version of the FDDI benchmark with broadcast channels. A prototype
SML implementation of a timed automata model checker (Mlunta) is used to
compute the certificates. We use reachability properties of the form E♦ false to
enforce that the model checker explores the complete state space. The results are
given in Table 1. The problem size is specified as the number of automata in the
network. We report the total runtime (wall time) of:

1. the tandem consisting of Mlunta (using the first compression technique) and
the (verified) certificate checker, both compiled with MLton;

2. the individual runtime of the (verified) certificate checker for a varying number
of threads for parallel computation, compiled with Poly/ML as it is the only
SML compiler that supports multi-threading;

3. the runtime of Uppaal configured for depth-first search (like Mlunta);
4. the runtime of an unverified SML implementation of the certificate checker

based on Mlunta (compiled with MLton);
5. and the runtime of the fully verified model checker Munta [31] extended with

the improvements from sections 2 and 4 and compiled with MLton.

As can be seen from the results, the tandem is still one order of magnitude
slower than Uppaal, but certificate checking in isolation is also up to one order of
magnitude faster than the previous verified model checker [31]. Note that Mlunta
explores significantly more states than Uppaal and Munta for “Pacemaker”.
Multi-core scale beyond two threads is relatively unsatisfactory, however. In micro-
benchmarks, we have identified that the problem appears to be with memory
allocation on the heap, even if no data is shared among threads (in our case, only
the certificate is shared but successors are computed locally). There does not
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seem to be an obvious way to improve on this situation for SML implementations.
Finally, one can see that the verified certifier is not drastically slower than the
unverified implementation based on Mlunta, indicating that the verified certifier
is not missing any obvious significant optimizations.

Certifier for #threads

Model Size Uppaal Tandem Munta Unverif. 1-MLton 1 2 3 4

FDDI 8 0.33 0.79 1.01 0.14 0.21 0.99 0.64 0.57 0.53
10 5.93 1.77 2.50 0.40 0.45 2.13 1.36 1.26 1.20
12 92.66 3.93 5.42 0.90 1.20 3.41 2.33 2.25 2.18
14 1874.28 7.28 10.73 1.86 2.22 5.36 3.94 3.90 3.88
16 *** 12.80 19.51 3.47 3.72 11.09 6.49 6.50 6.51

FDDI broad 8 0.34 0.28 1.07 0.10 0.08 0.26 0.19 0.17 0.16

Fischer 5 0.24 2.78 6.33 0.72 0.53 1.76 1.07 0.98 0.91
6 34.74 143.72 377.70 40.99 26.58 40.60 25.47 24.16 23.67

CSMA 5 0.04 0.94 4.42 0.31 0.28 1.44 0.87 0.80 0.76
6 1.53 13.48 65.16 5.24 4.18 12.16 8.04 7.87 7.76

Mode

Pacemaker 1 0.02 0.16 0.37 0.03 0.03 0.25 0.16 0.14 0.13
2 0.02 0.75 3.20 0.17 0.26 1.23 0.75 0.68 0.65
3 0.03 1.39 4.23 0.34 0.46 2.53 1.55 1.40 1.31
4 0.02 11.80 0.70 3.24 3.71 12.13 8.38 6.69 6.66
5 0.02 30.84 0.86 9.13 10.07 26.60 18.58 18.15 17.95

Table 1: Benchmarks results on a machine with 16 GB RAM and an Intel(R) Core(TM)
i7-4610M CPU at 3.00GHz with two cores and two threads per core. The column
labeled “Tandem” gives the runtime for a combination of the unverified SML tool and
the verified certificate checker. The next column gives the runtime of the unverified
SML certifier, followed by the runtimes of the verified checker for a varying number of
threads. All times are given in seconds.

Table 2 gives the results of evaluating the different compression algorithms
on the same set of benchmarks. The second variant is always applied to the
compression result of the first variant to avoid trivial computations of the
convex hull. Variant 2c) (the most expensive one) can produce drastically smaller
certificates than any other variant, and its minimum compression factor is an
order of a magnitude higher than for any other variant. Nevertheless, only variants
1 and 2a) appear to be useful in practice, as they are relatively cheap to compute.
The other variants could prove useful if the certificates were produced by a
significantly more efficient model checker, such as Uppaal or TChecker [15]. On
a final note, we have constructed a more than 95% smaller but valid certificate
for the Fischer benchmark, suggesting that there is room for improvement on
the compression algorithms.
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Variant

Model Size 1 2a 2b 2c 2d 2e

FDDI 8 0.21 0.21 1.72 69.53 3.65 3.43

FDDI broadcast 8 0.00 48.94 48.94 48.94 1.06 1.06

Fischer 5 22.03 22.03 22.72 43.06 30.40 30.40

CSMA/CD 5 26.06 41.54 43.84 81.16 58.94 47.54
6 24.86 41.91 44.02 88.35 63.24 47.02

Mode

Pacemaker 1 16.07 25.00 30.80 58.04 29.02 29.02
2 24.00 26.38 30.37 58.68 35.87 35.22
3 12.96 17.62 19.23 46.92 25.30 25.01
4 13.82 20.02 23.60 41.48 26.16 24.71
5 17.14 22.48 25.46 39.69 28.18 26.88

Average 15.71 26.61 29.07 57.58 30.18 27.03

Table 2: Certificate compression factors (given in %).

6 Conclusion and Future Work

We have presented a verified certifier of unreachability certificates for a timed
automata. The certificates are ought to be produced by an unverified model
checker. Experimentation shows that verified certificate checking in isolation is up
to an order of magnitude faster than what was previously possible with a verified
model checker [31]. The performance of a tandem of an unverified model checker
and the verified certifier could be improved by replacing the certificate-producing
part with a highly optimized tool, possibly opening room to use some of the more
powerful certificate compression techniques we suggested above. As we pointed
out above, there appears to be further room for improvement on the certificate
compression algorithms as well.

Moreover, more sophisticated tools also employ more powerful abstraction
techniques, for which our proposed certification technique is still suitable—to a
large extent without requiring additional verification effort. An exception is the
implicit abstraction technique studied by Herbreteau et al. [14] as it does not
compute abstractions of zones explicitly but rather checks subsumptions of the
form Z ⊆ α(Z ′) implicitly, meaning that one would have to prove correctness of
the subsumption check to validate certificates produced by such a model checking
process.

Finally, we intend to extend this work to certification of emptiness of timed
Büchi automata in the future, using the idea of subsumption graphs [13] and
relying on an unverified model checker implementation for timed Büchi automata
to produce the certificates [13,18].



Verified Certification of Reachability Checking for Timed Automata 441

Data Availability Statement

The datasets generated and/or analyzed during the current study are available in
the Zenodo repository [32]: https://doi.org/10.5281/zenodo.3679245. The artifact
has been tested on the TACAS artifact evaluation VM [12].
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Abstract. We present an algorithm for active learning of deterministic timed au-

tomata with a single clock. The algorithm is within the framework of Angluin’s

L∗ algorithm and inspired by existing work on the active learning of symbolic

automata. Due to the need of guessing for each transition whether it resets the

clock, the algorithm is of exponential complexity in the size of the learned au-

tomata. Before presenting this algorithm, we propose a simpler version where the

teacher is assumed to be smart in the sense of being able to provide the reset

information. We show that this simpler setting yields a polynomial complexity of

the learning process. Both of the algorithms are implemented and evaluated on

a collection of randomly generated examples. We furthermore demonstrate the

simpler algorithm on the functional specification of the TCP protocol.

Keywords: Automaton learning · Active learning · One-clock timed automata ·
Timed language · Reset-logical-timed language.

1 Introduction

In her seminal work [10], Angluin introduced the L∗ algorithm for learning a regu-

lar language from queries and counterexamples within a query-answering framework.

The Angluin-style learning therefore is also termed active learning or query learning,

which is distinguished from passive learning, i.e., generating a model from a given data

set. Following this line of research, an increasing number of efficient active learning

methods (cf. [38]) have been proposed to learn, e.g., Mealy machines [34,30], I/O au-

tomata [2], register automata [25,1,15], nondeterministic finite automata [12], Büchi

automata [19,28], symbolic automata [29,18,11] and Markov decision processes [36],

to name just a few. Full-fledged libraries, tools and applications are also available for

automata-learning tasks [13,27,20,21].
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For real-time systems where timing constraints play a key role, however, learning

a formal model is much more complicated. As a classical model for real-time systems,

timed automata [4] have an infinite set of timed actions. This yields a fundamental

difference to finite automata featuring finite alphabets. Moreover, it is difficult to detect

resets of clock variables from observable behaviors of the system. This makes learning

formal models of timed systems a challenging yet interesting problem.

Various attempts have been carried out in the literature on learning timed models,

which can be classified into two tracks. The first track pursues active learning methods,

e.g. [22] for learning event-recording automata (ERA) [5] and [9] for learning real-time

automata (RTA) [17]. ERA are time automata where, for every untimed action a, a clock

is used to record the time of the last occurrence of a. The underlying learning algorithm

[22], however, is prohibitively complex due to too many degrees of freedom and mul-

tiple clocks for recording events. RTA are a class of special timed automata with one

clock to record the execution time of each action by resetting at the starting. The other

track pursues passive learning. In [42,41], an algorithm was proposed to learn determin-

istic RTA. The basic idea is that the learner organizes a tree sketching traces of the data

set while merging nodes of the tree following a certain heuristic function. A passive

learning algorithm for timed automata with one clock was further proposed in [39,40].

A common weakness of passive learning methods is that the generated model merely

accepts all positive traces while it rejects all negative ones for the given set of traces,

without guaranteeing that it is a correct model of the target system. A theoretical result

was established in [40] showing it is possible to obtain the target system by continu-

ously enriching the data set, however the number of iterations is unknown. In addition,

the passive learning methods cited above concern only discrete-time semantics of the

underlying timed models, i.e., the clock takes values from non-negative integers. We

furthermore refer the readers to [14,32] for learning specialized forms of practical timed

systems in a passive manner, [37] for passively learning timed automata using genetic

programming which scales to automata of large sizes, [33] for learning probabilistic

real-time automata incorporating clustering techniques in machine learning, and [36]

for L∗-based learning of Markov decision processes with testing and sampling.

In this paper, we present the first active learning method for deterministic one-clock

timed automata (DOTAs) under continuous-time semantics1. Such timed automata pro-

vide simple models while preserving adequate expressiveness, and therefore have been

widely used in practical real-time systems [35,3,16]. We present our approach in two

steps. First, we describe a simpler algorithm, under the assumption that the teacher is

smart in the sense of being able to provide information about clock resets in member-

ship and equivalence queries. The basic idea is as follows. We define the reset-logical-

timed language of a DOTA and show that the timed languages of two DOTAs are equiv-

alent if their reset-logical-timed languages are equivalent, which reduces the learning

problem to that of learning a reset-logical-timed language.Then we show how to learn

the reset-logical-timed language following Maler and D’Antoni’s learning algorithms

for symbolic automata [29,18]. We claim the correctness, termination and polynomial

complexity of this learning algorithm. Next, we extend this algorithm to the case of a

normal teacher. The main difference is that the learner now needs to guess the reset

1 The proposed learning method applies trivially to discrete-time semantics too.
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information on transitions discovered in the observation table. Due to these guesses,

the latter algorithm features exponential complexity in the size of the learned automata.

The proposed learning methods are implemented and evaluated on randomly generated

examples. We also demonstrate the simpler, polynomial algorithm on a practical case

study concerning the functional specification of the TCP protocol. Detailed proofs for

theorems and lemmas in this paper can be found in Appendix A of the full version [7].

In what follows, Sect. 2 provides preliminary definitions on one-clock timed au-

tomata. The learning algorithm with a smart teacher is presented and analyzed in Sect. 3.

We then present the situation with a normal teacher in Sect. 4. The experimental results

are reported in Sect. 5. Finally, Sect. 6 concludes this paper.

2 Preliminaries

Let R≥0 and N be the set of non-negative reals and natural numbers, respectively, and B
the Boolean set. We use � to stand for true and ⊥ for false. The projection of an n-tuple

x onto its first two components is denoted by Π{1,2}x, which extends to a sequence of

tuples as Π{1,2}(x1, . . . ,xk) =
(
Π{1,2}x1, . . . , Π{1,2}xk

)
.

Timed automata [4], a kind of finite automata extended with a finite set of real-

valued clocks, are widely used to model real-time systems. In this paper, we consider

a subclass of timed automata with a single clock, termed one-clock timed automata

(OTAs). Let c be the clock variable, denote by Φc the set of clock constraints of the

form φ ::= � | c �� m | φ ∧ φ, where m ∈ N and �� ∈ {=, <,>,≤,≥}.

Definition 1 (One-clock timed automata). A one-clock timed automatonA = (Σ,Q,

q0, F, c,Δ), where Σ is a finite set of actions, called the alphabet; Q is a finite set of

locations; q0 ∈ Q is the initial location; F ⊆ Q is a set of accepting locations; c is the

unique clock; and Δ ⊆ Q×Σ × Φc × B×Q is a finite set of transitions.

A transition δ = (q, σ, φ, b, q′) allows a jump from the source location q to the

target location q′ by performing the action σ ∈ Σ if the constraint φ ∈ Φc is satisfied.

Meanwhile, clock c is reset to zero if b = �, and remains unchanged otherwise.

A clock valuation is a function ν : c 	→ R≥0 that assigns a non-negative real number

to the clock. For t ∈ R≥0, let ν + t be the clock valuation with (ν + t)(c) = ν(c) + t.

According to the definitions of clock valuation and clock constraint, a transition guard

can be represented as an interval whose endpoints are in N∪{∞}. For example,φ1 : c <
5∧ c ≥ 3 is represented as [3, 5), φ2 : c = 6 as [6, 6], and φ3 : � as [0,∞). We will use

the inequality- and interval-representation interchangeably in this paper.

A state s of A is a pair (q, ν), where q ∈ Q and ν is a clock valuation. A run

ρ of A is a finite sequence ρ = (q0, ν0)
t1,σ1

−−−→ (q1, ν1)
t2,σ2

−−−→ · · ·
tn,σn

−−−→ (qn, νn),
where ν0(c) = 0, ti ∈ R≥0 stands for the time delay spending on qi−1 before δi =
(qi−1, σi, φi, bi, qi) ∈ Δ is taken, only if (1) νi−1+ti satisfies φi, (2) νi(c) = νi−1(c)+
ti if bi = ⊥, otherwise νi(c) = 0, for all 1 ≤ i ≤ n. A run ρ is accepting if qn ∈ F .

The trace of a run ρ is a timed word, denoted by trace(ρ). trace(ρ) = ε if ρ =

(q0, ν0), and trace(ρ) = (σ1, t1)(σ2, t2) · · · (σn, tn) if ρ = (q0, ν0)
t1,σ1

−−−→ (q1, ν1)
t2,σ2

−−−→

· · ·
tn,σn

−−−→ (qn, νn). Since ti is the time delay on qi−1, for 1 ≤ i ≤ n, such a timed
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word is also called delay-timed word. The corresponding reset-delay-timed word can

be defined as tracer(ρ) = (σ1, t1, b1)(σ2, t2, b2) · · · (σn, tn, bn), where bi is the reset

indicator for δi, for 1 ≤ i ≤ n. If ρ is an accepting run ofA, trace(ρ) is called an accept-

ing timed word. The recognized timed language of A is the set of accepting delay-timed

words, i.e.,L(A) = {trace(ρ) | ρ is an accepting run of A}. The recognized reset-timed

language Lr(A) is defined as {tracer(ρ) | ρ is an accepting run of A}.

The delay-timed word ω = (σ1, t1)(σ2, t2) · · · (σn, tn) is observed outside, from

the view of the global clock. On the other hand, the behavior can also be observed

inside, from the view of the local clock. This results in a logical-timed word of the form

γ = (σ1, μ1)(σ2, μ2) · · · (σn, μn) with μi = ti if i = 1∨ bi−1 = � and μi = μi−1+ ti
otherwise. We will denote the mapping from delay-timed words to logical-timed words

above by Γ .

Similarly, we introduce reset-logical-timed word γr = (σ1, μ1, b1)(σ2, μ2, b2) · · ·
(σn, μn, bn) as the counterpart of ωr = (σ1, t1, b1)(σ2, t2, b2) · · · (σn, tn, bn) in terms

of the local clock. Without any substantial change, we can extend the mappingΓ to map

reset-delay-timed words to reset-logical-timed words. The recognized logical-timed

language of A is given as L(A) = {Γ (trace(ρ)) | ρ is an accepting run of A}, and

the recognized reset-logical-timed language of A as Lr(A) = {Γ (tracer(ρ)) | ρ is an

accepting run of A}.

An OTA is a deterministic one-clock timed automaton (DOTA) if there is at most

one run for a given delay-timed word. In other words, for any location q ∈ Q and action

σ ∈ Σ, the guards of transitions outgoing from q labelled with σ are disjoint subsets of

R≥0. We say a DOTA is complete if for any of its location q ∈ Q and action σ ∈ Σ,

the corresponding guards form a partition of R≥0. This means any given delay-timed

word has exactly one run. Any DOTA A can be transformed into a complete DOTA

(referred to as COTA) A accepting the same timed language as follows: (1) Augment Q

with a “sink” location qs which is not an accepting location; (2) For every q ∈ Q and

σ ∈ Σ, if there is no outgoing transition from q labelled with σ, introduce a (resetting)

transition from q to qs with label σ and guard [0,∞); (3) Otherwise, let S be the subset

of R≥0 not covered by the guards of transitions from q with label σ. Write S as a union

of intervals I1, . . . , Ik in a minimal way, then introduce a (resetting) transition from q

to qs with label σ and guard Ij for each 1 ≤ j ≤ k.

From now on, we therefore assume that we are working with COTAs.

Example 1. Fig. 1 depicts the transformation of a DOTA A (left part) into a COTA A
(right part). First, a non-accepting “sink” location qs is introduced. Second, we intro-

duce three fresh transitions (marked in blue) from q1 to qs as well as transitions from

qs to itself. At last, for location q0 and label a, the existing guards cover (1, 3), with

complement [0, 1] ∪ [3,∞). Hence, we introduce transitions (q0, a, [0, 1],�, qs) and

(q0, a, [3,∞),�, qs). Two fresh transitions from q1 to qs are introduced similarly.

3 Learning from a Smart Teacher

In this section, we consider the case of learning a COTA A with a smart teacher. Our

learning algorithm relies on the following reduction of the equivalence over timed lan-

guages to that of reset-logical timed languages.
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q0start q1
a, (1, 3), ⊥

b, [0,∞), � b, [2, 4),�

q0start q1

qs

a, (1, 3), ⊥

b, [0,∞), � b, [2, 4), �

a, [0, 1], �

a
, [3,∞

), �

a,
[0
,∞

),
�

b,
[0
, 2
),
�

b,
[4
,∞

),
�

a, [0,∞), � b, [0,∞), �

Fig. 1: A DOTA A on the left and the corresponding COTA A on the right. The initial location is

indicated by ‘start’ and an accepting location is doubly circled.

Theorem 1. Given two DOTAs A and B, if Lr(A) = Lr(B), then L(A) = L(B).

Theorem 1 assures that Lr(H) = Lr(A) implies L(H) = L(A), that is, to construct

a COTA A that recognizes a target timed language L = L(A), it suffices to learn a hy-

pothesis H which recognizes the same reset-logical timed language. For equivalence

queries, instead of checking directly whether Lr(H) = Lr(A), the contraposition of

Theorem 1 guarantees that we can perform equivalence queries over their timed coun-

terparts: if L(H) = L(A), then H recognizes the target language already; otherwise, a

counterexample making L(H) �= L(A) yields an evidence also for Lr(H) �= Lr(A).
We now describe the behavior of the teacher who keeps an automatonA to be learnt,

while providing knowledge about the automaton by answering membership and equiv-

alence queries through an oracle she maintains. For the membership query, the teacher

receives a logical-timed word γ and returns whether γ is in L(A). In addition, she is

smart enough to return the reset-logical-timed word γr that corresponds to γ (the ex-

act correspondence is described in Sect. 3.1). For the equivalence query, the teacher is

given a hypothesis H and decides whether L(H) = L(A). If not, she is smart enough

to return a reset-delayed-timed word ωr as a counterexample. The usual case where a

teacher can deal with only standard delay-timed words will be discussed in Sect. 4.

Remark 1. The assumption that the teacher can respond with timed words coupled with

reset information is reasonable, in the sense that the learner can always infer and detect

the resets of the logical clock by referring to a global clock on the wall, as long as he can

observe running states of A, i.e., observing the clock valuation of the system whenever

an event happens therein. This conforms with the idea of combining automata learning

with white-box techniques, as exploited in [24], providing that in many application

scenarios source code is available for the analysis.

In what follows, we elaborate the learning procedure including membership queries,

hypotheses construction, equivalence queries and counterexample processing.

3.1 Membership query

In our setting, the oracle maintained by the smart teacher can be regarded as a COTA

A that recognizes the target timed language L, and thereby its logical-timed language

L(A) and reset-logical-timed counterpartLr(A). In order to collect enough information
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for constructing a hypothesis, the learner makes membership queries as “Is the logical-

timed word γ in L(A)?”. If there does not exist a run ρ such that Γ (trace(ρ)) = γ,

meaning that there is some k such that the run is blocked after the k’th action (i.e.

γ is invalid) and hence the teacher gives a negative answer, associated with a reset-

logical-timed word γr where all bi’s with i > k are set to �; If there exists a run ρ

(which is unique due to the determinacy of A) that admits γ (i.e., γ is valid), the teacher

answers “Yes”, if ρ is accepting, or “No” otherwise, while in both cases providing the

corresponding reset-logical-timed word γr, with Π{1,2}γr = γ.

For the sake of simplicity, we define a function π that maps a logical-timed word to

its unique reset-logical-timed counterpart in membership queries. Information gathered

from the membership queries is stored in a timed observation table defined as follows.

Definition 2 (Timed observation table). A timed observation table for a COTA A is a

7-tuple T = (Σ,Σ,Σr,S,R,E, f) where Σ is the finite alphabet; Σ = Σ × R≥0

is the infinite set of logical-timed actions; Σr = Σ × R≥0 × B is the infinite set of

reset-logical-timed actions; S,R ⊂ Σ
∗
r and E ⊂ Σ

∗ are finite sets of words, where S

is called the set of prefixes, R the boundary, and E the set of suffixes. Specifically,

– S and R are disjoint, i.e., S ∪R = S �R;

– The empty word is by default both a prefix and a suffix, i.e., ε ∈ E and ε ∈ S;

– f : (S ∪R) ·E 	→ {−,+} is a classification function such that for a reset-logical-

timed word γr, γr ·e ∈ (S∪R)·E, f(γr ·e) = − if Π{1,2}γr ·e is invalid, otherwise

if Π{1,2}γr · e /∈ L(A), f(γr · e) = −, and f(γr · e) = + if Π{1,2}γr · e ∈ L(A).

Given a table T, we define row : S ∪R 	→ (E 	→ {+,−}) as a function mapping

each γr ∈ S ∪R to a vector indexed by e ∈ E, each of whose components is defined

as f(γr · e), denoting a potential location.

Before constructing a hypothesis H based on the timed observation table T, the

learner has to ensure that T satisfies the following conditions:

– Reduced: ∀s, s′ ∈ S : s �= s′ implies row(s) �= row(s′);
– Closed: ∀r ∈ R, ∃s ∈ S : row (s) = row(r);
– Consistent: ∀γr, γr

′ ∈ S ∪ R, row(γr) = row(γr
′) implies row(γr · σr) =

row(γr
′ · σr

′), for all σr,σr
′ ∈ Σr satisfying γr · σr, γr

′ · σr
′ ∈ S ∪ R and

Π{1,2}σr = Π{1,2}σr
′;

– Evidence-closed: ∀s ∈ S and ∀e ∈ E, the reset-logical-timed word π(Π{1,2}s · e)
belongs to S ∪R;

– Prefix-closed: S ∪R is prefix-closed.

A timed observation table T is prepared if it satisfies the above five conditions. To

get the table prepared, the learner can perform the following operations:

Making T closed. If T is not closed, there exists r ∈ R such that for all s ∈ S

row(r) �= row(s). The learner thus can move such r from R to S. Moreover, each

reset-logical-timed word π(Π{1,2}r · σ) needs to be added to R, where σ = (σ, 0) for

all σ ∈ Σ. Such an operation is important since it guarantees that at every location all

actions in Σ are enabled, while specifying a clock valuation of these actions, despite

that some invalid logical-timed words might be involved. Particularly, giving a bottom

value 0 as the clock valuation satisfies the precondition of the partition functions that

will be described in Sect. 3.2.
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Making T consistent. If T is not consistent, one inconsistency is resolved by adding

σ · e to E, where σ and e can be determined as follows. T being inconsistent implies

that there exist two reset-logical-timed words γr, γr
′ ∈ S ∪ R at least, such that γr ·

σr, γr
′ · σr

′ ∈ S ∪ R and Π{1,2}σr = Π{1,2}σr
′ for some σr,σr

′ ∈ Σr , with

row(γr) = row (γr
′) but row(γr · σr) �= row(γr

′ · σr
′). So, let σ = Π{1,2}σr =

Π{1,2}σr
′ and e ∈ E such that f(γrσr · e) �= f(γr

′
σr

′ · e). Thereafter, the learner

fills the table by making membership queries. Note that this operation keeps the set E

of suffixes being a set of logical-timed words.

Making T evidence-closed. If T is not evidence-closed, then the learner needs to add

all prefixes of π(Π{1,2}s · e) to R for every s ∈ S and e ∈ E, except those already in

S ∪R. Similarly, the learner needs to fill the table through membership queries.

The condition that a timed observation table T is reduced and prefix-closed is in-

herently preserved by the aforementioned operations, together with the counterexample

processing described later in Sect. 3.3. Furthermore, a table may need several rounds of

these operations before being prepared (cf. Algorithm 1), since certain conditions may

be violated by different, interleaved operations.

3.2 Hypothesis construction

As soon as the timed observation table T is prepared, a hypothesis can be constructed

in two steps, i.e., the learner first builds a DFA M based on the information in T, and

then transforms M to a hypothesis H, which will later be shown as a COTA.

Given a prepared timed observation table T = (Σ,Σ,Σr,S,R,E, f), a DFA

M = (QM , ΣM , ΔM , q0M , FM ) can be built as follows:

– the finite set of locations QM = {qrow(s) | s ∈ S};

– the initial location q0M = qrow(ε) for ε ∈ S;

– the set of accepting locations FM = {qrow(s) | f(s · ε) = + for s ∈ S and ε ∈ E};

– the finite alphabet ΣM = {σr ∈ Σr | γr · σr ∈ S ∪R for γr ∈ Σ
∗
r};

– the finite set of transitions ΔM = {(qrow(γr),σr, qrow(γr·σr)) | γr · σr ∈ S ∪
R for γr ∈ Σ

∗
r and σr ∈ Σr}.

The constructed DFA M is compatible with the timed observation table T in the

sense captured by the following lemma.

Lemma 1. For a prepared timed observation table T = (Σ,Σ,Σr,S,R,E, f), for

every γr ·e ∈ (S∪R)·E, the constructed DFA M = (QM , ΣM , ΔM , q0M , FM ) accepts

π(Π{1,2}γr · e) if and only if f(γr · e) = +.

The learner then transforms the DFA M to a hypothesis H = (Σ,Q, q0, F, c,Δ),
with Q = QM , q0 = q0M , F = FM , c being the clock and Σ the given alphabet as in T.

The set of transitions Δ in H can be constructed as follows: For any q ∈ QM and σ ∈
Σ, let Ψq,σ = {μ | (q, (σ, μ, b), q′) ∈ ΔM}, then applying the partition function P c(·)
(defined below) to Ψq,σ returns k intervals, written as I1, · · · , Ik, satisfying μi ∈ Ii for

any 1 ≤ i ≤ k, where k = |Ψq,σ|; consequently, for every (q, (σ, μi, bi), q
′) ∈ ΔM , a

fresh transition δi = (q, σ, Ii, bi, q
′) is added to Δ.
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T5 ε

ε −
(a, 1.1,⊥) +

(a, 0,�) −
(b, 0,�) −

(a, 1.1,⊥)(a, 0,�) −
(a, 1.1,⊥)(b, 0,�) −
(a, 1.1,⊥)(b, 2,�) +

(a, 3,�) −

q−start q+

(a, 0,�)
(a, 3,�)

(b, 0,�)

(a, 1.1,⊥)

(b, 2,�)

(a, 0,�)

(b, 0,�)M5

q−start q+

a, [0, 1],�
a, [3,∞),�

b, [0,∞),�

a, (1, 3),⊥

b, [2,∞),�

a, [0,∞),�

b, [0, 2),�H5

Fig. 2: The prepared timed observation table T5, the corresponding DFA M5 and hypothesis H5.

Definition 3 (Partition function). Given a list of clock valuations � = μ0, μ1, · · · , μn

with 0 = μ0 < μ1 · · · < μn, and �μi� �= �μj� if μi, μj ∈ R≥0 \ N and i �= j for

all 1 ≤ i, j ≤ n, let μn+1 = ∞, then a partition function P c(·) mapping � to a set of

intervals {I0, I1, . . . , In}, which is a partition of R≥0, is defined as

Ii =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

[μi, μi+1), if μi ∈ N ∧ μi+1 ∈ N;

(�μi�, μi+1), if μi ∈ R≥0 \ N ∧ μi+1 ∈ N;

[μi, �μi+1�], if μi ∈ N ∧ μi+1 ∈ R≥0 \ N;

(�μi�, �μi+1�], if μi ∈ R≥0 \ N ∧ μi+1 ∈ R≥0 \ N.

Remark 2. Definition 3 is adapted from that in [18] by imposing additional assumptions

of the list of clock valuations in order to guaranteeμi ∈ Ii, for any 0 ≤ i ≤ n, due to the

underlying continuous-time semantics. Whereas, by T being prepared and the normal-

ization function described in Sect. 3.3, the set of clock valuations Ψq,σ can be arranged

into a list �q,σ = μ0, μ1, . . . , μn satisfying such assumptions given in Definition 3 for

any q ∈ QM and σ ∈ Σ.

Example 2. Suppose A in Fig. 1 recognizes the target timed language. Then the pre-

pared table T5, the corresponding DFA M5 and hypothesis H5 are depicted in Fig. 2.

Here, the subscript 5 indicates the fifth iteration of T (Details concerning the construc-

tions and the entire learning process are enclosed in Appendix B of [7].).

Lemma 2. Given a DFA M = (QM , ΣM , δM , q0M , FM ), which is generated from a

prepared timed observation table T, the hypothesis H = (Σ,Q, q0, F, c,Δ) is trans-

formed from M. For all γr · e ∈ (S ∪R) ·E, H accepts the reset-logical-timed word

π(Π{1,2}γr · e) iff f(γr · e) = +.

Theorem 2. The hypothesis H is a COTA.

Given a clock valuation μ, we denote the region containing μ as �μ�, defined as

�μ� = [μ, μ] if μ ∈ N, and �μ� = (�μ�, �μ� + 1) otherwise. The following theorem

establishes the compatibility of the constructed hypothesisH with the timed observation

table T.

Theorem 3. For γr ·e ∈ (S∪R)·E, let π(Π{1,2}γr ·e) = (σ1, μ1, b1) · · · (σn, μn, bn).
Then for every μ′

i ∈ �μi�, the hypothesis H accepts the reset-logical-timed word γ′
r =

(σ1, μ
′
1, b1) · · · (σn, μ

′
n, bn) if f(γr · e) = +, and cannot accept it if f(γr · e) = −.
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3.3 Equivalence query and counterexample processing

Suppose that the teacher knows a COTA A which recognizes the target timed language

L. Then to answer an equivalence query is to determine whether L(H) = L(A), which

can be divided into two timed language inclusion problems, i.e., whether L(H) ⊆
L(A) and L(A) ⊆ L(H). Most decision procedures for language inclusion proceed

by complementation and emptiness checking of the intersection [23]: L(A) ⊆ L(B) iff

L(A)∩L(B) = ∅. The fact that deterministic timed automata can be complemented [6]

enables solving the inclusion problem by checking the emptiness of the resulted product

automataH×A andH×A. The complementation technique, however, does not apply to

nondeterministic timed automata even if with only one single clock [4], which we plan

to incorporate in our learning framework in future work. We therefore opt for2 the al-

ternative method presented by Ouaknine and Worrell in [31] showing that the language

inclusion problem of timed automata with one clock (regardless of their determinacy)

is decidable by reduction to a reachability problem on an infinite graph. That is, there

exists a delay-timed word ω that leads to a bad configuration if L(H) � L(A). In de-

tail, the corresponding run ρ of ω ends in an accepting location in H but the counterpart

ρ′ of ω in A is not accepting. Consequently, the teacher can provide the reset-delay-

timed word ωr resulted from ω as a negative counterexample ctx−. Similarly, a posi-

tive counterexample ctx+ = (ωr,+) can be generated if L(A) � L(H). An algorithm

elaborating the equivalence query is provided in Appendix C of the full version [7].

When receiving a counterexample ctx = (ωr,+/−), the learner first converts it to

a reset-logical-timed word γr = Γ (ωr) = (σ1, μ1, b1)(σ2, μ2, b2) · · · (σn, μn, bn). By

definition, γr and ωr share the same sequence of transitions in A. Furthermore, by the

contraposition of Theorem 1, γr is an evidence for Lr(H) �= Lr(A) if ωr is an evidence

for L(H) �= L(A).
Additionally, by the definition of clock constraints Φc, at any location, if an action σ

is enabled, i.e., its guard is satisfied, w.r.t. the clock value μ ∈ R≥0\N, then σ should be

enabled w.r.t. any clock value �μ�+θ at the location, where θ ∈ (0, 1). Specifically, only

one transition is available for σ at the location on the interval �μ�, because the target

automaton is deterministic. Therefore, in order to avoid unnecessarily distinguishing

timed words and violating the assumptions of the list � for the partition function, the

learner needs to apply a normalization function g to normalize γr.

Definition 4 (Normalization). A normalization function g maps a reset-logical-timed

word γr = (σ1, μ1, b1)(σ2, μ2, b2) · · · (σn, μn, bn) to another reset-logical-timed word

by resetting any logical clock to its integer part plus a constant fractional part, i.e.,

g(γr) = (σ1, μ
′
1, b1)(σ2, μ

′
2, b2) · · · (σn, μ

′
n, bn), where μ′

i = μi if μi ∈ N, μ′
i = �μi�+

θ for some fixed constant θ ∈ (0, 1) otherwise.

We will instantiate θ = 0.1 in what follows. Clearly our approach works for any

other θ valued in (0, 1). This normalization process guarantees the assumptions needed

for Definition 3.

2 Remark that the learning complexity (Sect. 3.5) is measured in terms of the number of queries

rather than the time complexity of the specific method for checking the equivalence (nor mem-

bership). Additionally, the specific method of equivalence checking is not the main concern.
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T5 ε

ε −
(a, 1.1,⊥) +

(a, 0,�) −
(b, 0,�) −

(a, 1.1,⊥)(a, 0,�) −
(a, 1.1,⊥)(b, 0,�) −
(a, 1.1,⊥)(b, 2,�) +

(a, 3,�) −

ωr=(a,0,�)(a,1.3,�),−
=============⇒

γr=(a,0,�)(a,1.3,�)

T6 ε

ε −
(a, 1.1,⊥) +

(a, 0,�) −
(b, 0,�) −

(a, 1.1,⊥)(a, 0,�) −
(a, 1.1,⊥)(b, 0,�) −
(a, 1.1,⊥)(b, 2,�) +

(a, 3,�) −
(a, 0,�)(a, 1.3,�) −

q−start q+

(a, 0,�)

(a, 3,�)

(a, 1.3,�)

(b, 0,�)

(a, 1.1,⊥)

(b, 2,�)

(a, 0,�)

(b, 0,�)M6

Fig. 3: An illustration of the necessity of normalization by the normalization function.

Algorithm 1: Learning one-clock timed automaton with a smart teacher

input : the timed observation table T = (Σ,Σ,Σr,S,R,E, f).

output: the hypothesis H recognizing the target language L.

1 S ← {ε}; R ← {Γ (ω) | ω = (σ, 0), ∀σ ∈ Σ}; E ← {ε} ; // initialization

2 fill T by membership queries;

3 equivalent ← ⊥;

4 while equivalent = ⊥ do

5 prepared ← is prepared(T) ; // whether the table is prepared

6 while prepared = ⊥ do

7 if T is not closed then make closed(T) ;

8 if T is not consistent then make consistent(T) ;

9 if T is not evidence-closed then make evidence closed(T) ;

10 prepared ← is prepared(T);

11 M ← build DFA(T) ; // transforming T to a DFA M

12 H ← build hypothesis(M) ; // constructing a hypothesis H from M

13 equivalent , ctx ← equivalence query(H);

14 if equivalent = ⊥ then

15 ctx processing(T, ctx ) ; // counterexample processing

16 return H;

Example 3. Consider the prepared table T5 in Fig. 3 (as in Fig. 2). When the leaner asks

an equivalence query with hypothesis H5, the teacher answers that L(H5) �= L(A),
where A in Fig. 1 is the target automaton, and provides a counterexample (ωr,−) with

ωr = (a, 0,�)(a, 1.3,�), which can be transformed to a reset-logical-timed word γr =
(a, 0,�)(a, 1.3,�). If he adds prefixes of γr to the table directly, the learner will get a

prepared table T6 and thus construct a DFA M6. Unfortunately, the partition function

defined in Definition 3 is not applicable to (a, 1.3,�) and (a, 1.1,⊥) any more. On

the other hand, if he adds the prefixes of the normalized reset-logical-timed word, i.e.,

γ′
r = (a, 0,�)(a, 1.1,�), to T5, the learner will then get an inconsistent table whose

consistency can be retrieved by the operation of “making T consistent” as expected.

The following theorem guarantees that the normalized reset-logical-timed word γ′
r

is also an evidence for Lr(H) �= Lr(A). Therefore, the learner can use it as a coun-

terexample and thus adds all the prefixes of γ′
r to R except those already in S ∪R.

Theorem 4. Given a valid reset-logical-timed word γr of A, its normalization γ′
r =

g(γr) shares the same sequence of transitions in A.

3.4 Learning algorithm

We present in Algorithm 1 the learning procedure integrating all the previously stated

ingredients, including preparing the table, membership and equivalence queries, hy-

pothesis construction and counterexample processing. The learner first initializes the
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timed observation table T = (Σ,Σ,Σr,S,R,E, f), where S = {ε}, E = {ε},

while for every σ ∈ Σ, he builds a logical-timed word γ = (σ, 0) and then obtains

its reset counterpart π(γ) = (σ, 0, b) by triggering a membership query to the teacher,

which is then added to R. Thereafter, the learner can fill the table by additional mem-

bership queries. Before constructing a hypothesis, the learner performs several rounds

of operations described in Sect. 3.1 until T is prepared. Then, a hypothesis H is con-

structed leveraging an intermediate DFA M and submitted to the teacher for an equiva-

lence query. If the answer is positive, H recognizes the target language. Otherwise, the

learner receives a counterexample ctx and then conducts the counterexample process-

ing to update T as described in Sect. 3.3. The whole procedure repeats until the teacher

gives a positive answer to an equivalence query.

To facilitate the analysis of correctness, termination and complexity of Algorithm 1,

we introduce the notion of symbolic state that combines each location with its clock

regions: a symbolic state of a COTA A = (Σ,Q, q0, F, c,Δ) is a pair (q, �μ�), where

q ∈ Q and �μ� is a region containing μ. If κ is the maximal constant appearing in

the clock constraints of A, then there exist 2κ + 2 such regions, including [n, n] with

0 ≤ n ≤ κ, (n, n+1) with 0 ≤ n < κ, and (κ,∞) for each location, so there are a total

of |Q|× (2κ+2) symbolic states. Then the correctness and termination of Algorithm 1

is stated in the following theorem, based on the fact that there is an injection from S (or

equivalently, the locations of H) to symbolic states of A.

Theorem 5. Algorithm 1 terminates and returns a COTA H which recognizes the target

timed language L.

3.5 Complexity

Given a target timed language L which is recognized by a COTA A, let n = |Q| be the

number of locations of A, m = |Σ| the size of the alphabet, and κ the maximal constant

appearing in the clock constraints of A. In what follows, we derive the complexity of

Algorithm 1 in terms of the number of queries.

By the proof of Theorem 5, H has at most n(2κ+ 2) locations ( the size of S) dis-

tinguished by E. Thus, |E| is at most n(2κ+2) in order to distinguish these locations.

Therefore, the number of transitions of H is bounded by mn2(2κ+ 2)3. Furthermore,

as every counterexample adds at least one fresh transition to the hypothesis H, where

we consider each interval of the partition corresponds to a transition, this means that

the number of counterexamples and equivalence queries is at most mn2(2κ+ 2)3.

Now, we consider the number of membership queries, that is, to compute (|S| +
|R|) × |E|. Let h be the maximal length of counterexamples returned by the teacher,

which is polynomial in the size of A according to Theorem 5 in [40], bounded by

n2. There are three cases of extending R by adding fresh rows, namely during the

processing of counterexamples, making T closed, and making T evidence-closed. The

first case adds at most hmn2(2κ + 2)3 rows to R, while the latter two add at most

n(2κ+2)×m and n2(2κ+2)2, respectively, yielding that the size of R is bounded by

O(hmn2κ3), where O(·) is the big Omicron notation. As a consequence, the number of

membership queries is bounded by O(mn5κ4). So, the total complexity is O(mn5κ4).
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It is worth noting the above analysis is given in the worst case, where all partitions

need to be fully refined. But, in practice we can learn the automaton without refining

most partitions, and therefore the number of equivalence and membership queries, as

well as the number of locations in the learned automaton are much fewer than the cor-

responding worst-case bounds. This will be demonstrated by examples in Sect. 5.

3.6 Accelerating Trick

In the timed observation table, the function f maps invalid reset-logical-timed words as

well as certain valid ones to “−” when the teacher maintains a COTA A as the oracle.

The learner thus needs multiple rounds of queries to distinguish the “sink” location from

other unaccepting locations. If the function f is extended to map invalid reset-logical-

timed words to a distinct symbol, say “×”, when we let a DOTA A be the oracle, then

the learner will take much fewer queries. We will later show in the experiments that

such a trick significantly accelerates the learning process.

4 Learning from a Normal Teacher

In this section, we consider the problem of learning timed automata with a normal

teacher. As before, we assume the timed language to be learned comes from a complete

DOTA. For the normal teacher, inputs to membership queries are delay-timed words,

and the teacher returns whether the word is in the language (without giving any addi-

tional information). Inputs to equivalence queries are candidate DOTAs, and the teacher

either answers they are equivalent or provides a delay-timed word as a counterexample.

The algorithm here is based on the procedure in the previous section. We still main-

tain observation tables where the elements in S ∪R are reset-logical-timed words and

the elements in E are logical-timed words. In order to obtain delay-timed words for the

membership queries, we need to guess clock reset information for transitions in the ta-

ble. More precisely, in order to convert a logical-timed word to a delay-timed word, it is

necessary to know clock reset information for all but the last transition. Hence, it is nec-

essary to guess reset information for each word in S ∪R (since S ∪R is prefix-closed,

this is equivalent to guessing reset information for the last transition of each word).

Also, for each entry in (S ∪ R) × E, it is necessary to guess all but the last transi-

tion in E. The algorithm can be thought of as exploring a search tree, where branching

is caused by guesses, and successor nodes are constructed by the usual operations of

preparing a table and dealing with a counterexample.

The detailed process is given in Algorithm 2. The learner maintains a set of table in-

stances, named ToExplore , which contains all table instances that need to be explored.

The initial tables in ToExplore are as follows. Each table has S = E = {ε}. For

each σ ∈ Σ, there is one row in R corresponding to the logical-timed word ω = (σ, 0).
It is necessary to guess a reset b for each ω thereby transforming it to a reset-logical-

timed word γr = (σ, 0, b). There are 2|Σ| possible combinations of guesses. These

tables are filled by making membership queries (in this case, the membership queries for

each table are the same). The resulting 2|Σ| tables form the initial tables in ToExplore .
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Algorithm 2: Learning one-clock timed automaton with a normal teacher

input : the timed observation table T = (Σ,Σ,Σr,S,R,E, f).

output: the hypothesis H recognizing the target language L.

1 ToExplore ← ∅; S ← {ε}; R ← {π(Γ (ω)) | ω = (σ, 0), ∀σ ∈ Σ}; E ← {ε};

2 currentTable ← (Σ,Σ,Σr,S,R,E, f);

3 tables ← guess and fill(currentTable); // guess resets and fill all table instances

4 ToExplore.insert(tables); // insert table instances tables into ToExplore

5 currentTable ← ToExplore.pop(); // pop out head instance as the current table

6 equivalent ← ⊥;

7 while equivalent = ⊥ do

8 prepared ← is prepared(currentTable); // whether the current table is prepared

9 while prepared = ⊥ do

10 if currentTable is not closed then

11 tables ← guess and make closed(currentTable); ToExplore.insert(tables);

12 currentTable ← ToExplore.pop();

13 if currentTable is not consistent then

14 tables ← guess and make consistent(currentTable); ToExplore.insert(tables);

15 currentTable ← ToExplore.pop();

16 if currentTable is not evidence-closed then

17 tables ← guess and make evidence closed(currentTable); ToExplore.insert(tables);

18 currentTable ← ToExplore.pop();

19 prepared ← is prepared(currentTable);

20 M ← build DFA(currentTable) ; // transforming currentTable to a DFA M

21 H ← build hypothesis(M) ; // constructing a hypothesis H from M

22 equivalent, ctx ← equivalence query(H); // ctx is a delay-timed word

23 if equivalent = ⊥ then

24 tables ← guess and ctx processing(currentTable, ctx ) ; // counterexample

processing

25 ToExplore.insert(tables);

26 currentTable ← ToExplore.pop();

27 return H;

In each iteration of the algorithm, one table instance is taken out of ToExplore .

The learner checks whether the table is closed, consistent, and evidence closed. If the

table is not closed, i.e. there exists r ∈ R such that row(r) �= row(s) for all s ∈ S,

the learner moves r from R to S. Then for each σ ∈ Σ, the element r · (σ, 0) is

added to R, and a guess has to be made for its reset information. Hence, 2|Σ| unfilled

table instances will be generated. Next, for each entry in the |Σ| new rows of R, it is

necessary to guess reset information for all but the last transition in e ∈ E. After this

guess, it is now possible to fill the table instances by making membership queries with

transformed delay-timed words. Hence, there are at most 2(
∑

ei∈E\{ε}
(|ei|−1))×|Σ|

filled

table instances for one unfilled table instance. All filled table instances are inserted into

ToExplore .

If the table is not consistent, i.e. there exist some γr, γ
′
r ∈ S∪R and σr ∈ Σr such

that γr ·σr, γ
′
r ·σr ∈ S∪R and row(γr) = row(γ′

r), but row(γr ·σr) �= row(γ′
r ·σr).

Let e ∈ E be one place where they are different. Then σr ·e needs to be added to E. For

each entry in S∪R, all but the last transition in σr ·e need to be guessed, then the table

can be filled. 2(|σ·e|−1)×(|S|+|R|) filled table instances will be generated and inserted

into ToExplore . The operation for making tables evidence-closed is analogous.

Once the current table is prepared, the learner builds a hypothesis H and makes an

equivalence query to the teacher. If the answer is positive, then H is a COTA which rec-

ognizes the target timed language L; otherwise, the teacher gives a delay-timed word

ω as a counterexample. The learner first finds the longest reset-logical-timed word in
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R which, when converted to a delay-timed word, agrees with a prefix of ω. The re-

mainder of ω, however, needs to be converted to a reset-logical-timed word by guessing

reset information. The corresponding prefixes are then added to R. Hence, at most

2|ω| unfilled table instances are generated. For each unfilled table instance, at most

2(
∑

ei∈E\{ε}
(|ei|−1))×|ω|

filled tables are produced and inserted into ToExplore .

Throughout the learning process, the learner adds a finite number of table instances

to ToExplore at every iteration. Hence, the search tree is finite-branching. Moreover, if

all guesses are correct, the resulting table instance will be identical to the observation

table in the learning process with a smart teacher (apart from the guessing processes,

the basic table operations are the same as those in Section 3.1). This means, with an

appropriate search order, for example, taking the table instance that requires the least

number of guesses in ToExplore at every iteration, the algorithm terminates and re-

turns the same table as in the learning process with a smart teacher, which is a COTA

that recognizes the target language L. In conformity to Theorem 1, the algorithm may

terminate even if the corresponding reset-logical-timed languages are not equivalent,

while yielding correct COTAs recognizing the same delay-timed language.

Theorem 6. Algorithm 2 terminates and returns a COTA H which recognizes the target

timed language L.

Complexity analysis. If T = (Σ,Σ,Σr,S,R,E, f) is the final observation table for

the correct candidate COTA, the number of guessed resets in S∪R is |S|+ |R|, and the

number of guessed resets for entries in each row of the table is
∑

ei∈E\{ε} (|ei| − 1).

Hence, the total number of guessed resets is (|S|+ |R|)× (1+
∑

ei∈E\{ε} (|ei| − 1)).
Assuming an appropriate search order (for example according to the number of guesses

in each table), this yields the number of table instances considered before termination

as O(2(|S|+|R|)×(1+
∑

ei∈E\{ε}
(|ei|−1))).

5 Implementation and Experimental Results

To investigate the efficiency and scalability of the proposed methods, we implemented

a prototype3 in PYTHON for learning deterministic one-clock timed automata. The ex-

amples include a practical case concerning the functional specification of the TCP pro-

tocol [26] and a set of randomly generated DOTAs to be learnt. All of the evaluations

have been carried out on a 3.6GHz Intel Core-i7 processor with 8GB RAM running

64-bit Ubuntu 16.04.

Functional specification of the TCP protocol. In [26], a state diagram on page 23 spec-

ifies state changes during a TCP connection triggered by causing events while leading

to resulting actions. As observed by Ouaknine and Worrell in [31], such a functional

specification of the protocol can be represented as a one-clock timed automaton. In our

setting, the corresponding DOTA A to be learnt is configured to have |Q| = 11 states

with the two CLOSED states collapsed, |Σ| = 10 after abstracting the causing events

and the resulting actions, |F | = 2, and |Δ| = 19 with appropriately specified timing

constraints including guards and resets. Using the algorithm with the smart teacher, a

3 Available at https://github.com/Leslieaj/OTALearning. The evaluated artifact is archived in [8].

https://github.com/Leslieaj/OTALearning
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Table 1: Experimental results on random examples for the smart teacher situation.

Case ID |Δ|mean
#Membership #Equivalence

nmean tmean

Nmin Nmean Nmax Nmin Nmean Nmax

4 4 20 16.3 118 245.0 650 20 30.1 42 4.5 24.7

7 2 10 16.9 568 920.8 1393 23 31.3 37 9.1 14.6

7 4 10 25.7 348 921.7 1296 34 50.9 64 9.3 38.0

7 6 10 26.0 351 634.5 1050 35 44.7 70 7.8 49.6

7 4 20 34.3 411 1183.4 1890 52 70.5 93 9.5 101.7

10 4 20 39.1 920 1580.9 2160 61 73.1 88 11.7 186.7

12 4 20 47.6 1090 2731.6 5733 66 97.4 125 16.0 521.8

14 4 20 58.4 1390 2238.6 4430 79 107.7 135 16.0 515.5

Case ID: n m κ, consisting of the number of locations, the size of the alphabet and the maximum

constant appearing in the clock constraints, respectively, of the corresponding group of A’s.

|Δ|mean: the average number of transitions in the corresponding group.

#Membership & #Equivalence: the number of conducted membership and equivalence queries,

respectively. Nmin: the minimal, Nmean: the mean, Nmax: the maximum.

nmean: the average number of locations of the learned automata in the corresponding group.

tmean: the average wall-clock time in seconds, including that taken by the learner and the teacher.

correct DOTA H is learned in 155 seconds after 2600 membership queries and 28 equiv-

alence queries. Specifically, H has 15 locations excluding a sink location connected by

28 transitions. The introduction of 4 new locations comes from splitting of guards along

transitions, which however can be trivially merged back with other locations. The fig-

ures depicting A and H can be found in Appendix D of [7].

Random examples for a smart teacher. We randomly generated 80 DOTAs in eight

groups, with each group having different numbers of locations, size of alphabet, and

maximum constant appearing in clock constraints. As shown in Table 1, the proposed

learning method succeeds in all cases in identifying a DOTA that recognizes the same

timed language. In particular, the number of membership queries and that of equiv-

alence queries appear to grow polynomially with the size of the problem4, and are

much smaller than the worst-case bounds estimated in Sect. 3.5. Moreover, the learned

DOTAs do not have prominent increases in the number of locations (by comparing

nmean with the first component of Case IDs). The average wall-clock time including

both time taken by the learner and by the teacher is recorded in the last column tmean, of

which, however, often over 90% is spent by the teacher for checking equivalences w.r.t.

small T’s while around 50% by the learner for checking the preparedness condition

w.r.t. large T’s.

It is worth noting that all of the results reported above are carried out on an imple-

mentation equipped with the accelerating trick discussed in Sect. 3.6. We remark that

when dropping this trick, the average number of membership queries blow up with a

factor of 0.83 (min) to 15.02 (max) with 2.16 in average for all the 8 groups, and 0.84

(min) to 1.71 (max) with 1.04 for the average number of equivalence queries, leading

to dramatic increases also in the computation time (including that in operating tables).

4 An exception w.r.t. the group 7 6 10 is due to relatively simple DOTAs generated occasionally.
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Table 2: Experimental results on random examples for the normal teacher situation.

Case ID |Δ|mean
#Membership #Equivalence

nmean tmean #Texplored #Learnt

Nmin Nmean Nmax Nmin Nmean Nmax

3 2 10 4.8 43 83.7 167 5 8.8 14 3.0 0.9 149.1 10/10

4 2 10 6.8 67 134.0 345 6 13.3 24 4.0 7.4 563.0 10/10

5 2 10 8.8 75 223.9 375 9 15.2 24 5.0 35.5 2811.6 10/10

6 2 10 11.9 73 348.3 708 10 16.7 30 5.6 59.8 5077.6 7/10

4 4 20 16.3 231 371.0 564 27 30.9 40 4.0 137.5 8590.0 6/10

#Membership & #Equivalence: the number of conducted membership and equivalence queries

with the cached methods, respectively. Nmin: the minimal, Nmean: the mean, Nmax: the maximum.

#Texplored: the average number of the explored table instances.

#Learnt: the number of the learnt DOTAs in the group (learnt/total).

The alternative implementation and experimental results without the accelerating trick

can also be found in the tool page (under the dev branch).

Random examples for a normal teacher. Due to its high, exponential complexity, the

algorithm with a normal teacher failed (out of memory) in identifying DOTAs for al-

most all the above examples, except 6 cases out of the 10 in group 4 4 20. We therefore

randomly generated 40 extra DOTAs of smaller size classified into 4 groups. With the

accelerating trick, the learner need not guess the resets in elements of E for an entry

in S ∪ R if the querying result of the entry is the sink location. We also omitted the

checking of the evidence-closed condition, since it may add redundant rows in R, lead-

ing to more guesses and thereby a larger search space. The omission does not affect the

correctness of the learnt DOTAs. Moreover, as different table instances may generate

repeated queries, we cached the results of membership queries and counterexamples,

such that the numbers of membership and equivalence queries to the teacher can be

significantly reduced. Table 2 shows the performance of the algorithm in this setting.

Results without caching are available in the tool page (under the normal branch).

6 Conclusion

We have presented a polynomial active learning method for deterministic one-clock

timed automata from a smart teacher who can tell information about clock resets in

membership and equivalence queries. Our technique is based on converting the prob-

lem to that of learning reset-logical-timed languages. We then extend the method to

learning DOTAs from a normal teacher who receives delay-timed words for member-

ship queries, while the learner guesses the reset information in the observation table.

We evaluate both algorithms on randomly generated examples and, for the former case,

the functional specification of the TCP protocol.

Moving forward, an extension of our active learning method to nondeterministic

OTAs and timed automata involving multiple clocks is of particular interest.

Data Availability Statement The datasets generated and/or analyzed during the current study

are available in the Figshare repository: https://doi.org/10.6084/m9.figshare.11545983.v3.

https://doi.org/10.6084/m9.figshare.11545983.v3
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Abstract. Dynamic fault trees (dft) are widely adopted in industry
to assess the dependability of safety-critical equipment. Since many sys-
tems are too large to be studied numerically, dfts dependability is often
analysed using Monte Carlo simulation. A bottleneck here is that many
simulation samples are required in the case of rare events, e.g. in highly
reliable systems where components fail seldomly. Rare event simulation
(res) provides techniques to reduce the number of samples in the case of
rare events. We present a res technique based on importance splitting,
to study failures in highly reliable dfts. Whereas res usually requires
meta-information from an expert, our method is fully automatic: By
cleverly exploiting the fault tree structure we extract the so-called im-
portance function. We handle dfts with Markovian and non-Markovian
failure and repair distributions—for which no numerical methods exist—
and show the efficiency of our approach on several case studies.

1 Introduction

Reliability engineering is an important field that provides methods and tools
to assess and mitigate the risks related to complex systems. Fault tree analy-
sis (fta) is a prominent technique here. Its application encompasses a large
number of industrial domains that range from automotive and aerospace system
engineering, to energy and telecommunication systems and protocols.
Fault trees. A fault tree (ft) describes how component failures occur and
propagate through the system, eventually leading to system failures. Technically,
an ft is a directed acyclic graph whose leaves model component failures, and
whose other nodes (called gates) model failure propagation. Using fault trees
one can compute dependability metrics to quantify how a system fares w.r.t.
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certain performance indicators. Two common metrics are system reliability—the
probability that there are no system failures during a given mission time—and
system availability—the average percentage of time that a system is operational.

In this paper we consider repairable dynamic fault trees. Dynamic fault trees
(dfts [17, 43]) are a common and widely applied variant of fts, catering for
common dependability patterns such as spare management and causal depen-
dencies. Repairs [6] are not only crucial in fault-tolerant and resilient systems,
they are also an important cost driver. Hence, repairable fault trees allow one to
compare different repair strategies with respect to various dependability metrics.
Fault tree analysis. The reliability/availability of a fault tree can be computed
via numerical methods, such as probabilistic model checking. This involves ex-
haustive explorations of state-based models such as interactive Markov chains
[40]. Since the number of states (i.e. system configurations) is exponential in the
number of tree elements, analysing large trees remains a challenge today [26, 1].
Moreover, numerical methods are usually restricted to exponential failure rates
and combinations thereof, like Erlang and acyclic phase type distributions [40].

Alternatively, fault trees can be analysed using (standard) Monte Carlo sim-
ulation (smc [22, 40, 38], aka statistical model checking). Here, a large number
of simulated system runs (samples) is produced. Reliability and availability are
then statistically estimated from the resulting sample set. Such sampling does
not involve storing the full state space so, although the result provided can only
be correct with a certain probability, smc is much more memory efficient than
numerical techniques. Furthermore, smc is not restricted to exponential proba-
bility distributions. However, a known bottleneck of smc are rare events: when
the event of interest has a low probability (which is typically the case in highly
reliable systems), millions of samples may be required to observe it. Producing
these samples can take a unacceptably long simulation time.
Rare event simulation. To alleviate this problem, the field of rare event sim-
ulation (res) provides techniques that reduce the number of samples [35]. The
two leading techniques are importance sampling and importance splitting.

Importance sampling tweaks the probabilities in a model, then computes the
metric of interest for the changed system, and finally adjusts the analysis results
to the original model [23, 33]. Unfortunately it has specific requirements on the
stochastic model: in particular, it is generally limited to Markov models.

Importance splitting, deployed in this paper, does not have this limitation.
Importance splitting relies on rare events that arise as a sequence of less rare
intermediate events [28, 2]. We exploit this fact by generating more (partial)
samples on paths where such intermediate events are observed. As a simple
example, consider a biased coin whose probability of heads is p = 1/80. Suppose
we flip it eight times in a row, and say we are interested in observing at least
three heads. If heads comes up at the first flip (H) then we are on a promising
path. We can then clone (split) the current path H, generating e.g. 7 copies of it,
each clone evolving independently from the second flip onwards. Say one clone
observes three heads—the copied H plus two more. Then, this observation of
the rare event (three heads) is counted as 1/7 rather than as 1 observation, to
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account for the splitting where the clone was spawned. Now, if a clone observes
a new head (HH), this is even more promising than H, so the splitting can be
repeated. If we make 5 copies of the HH clone, then observing three heads in any
of these copies counts as 1

35 = 1
7 · 1

5 . Alternatively, observing tails as second flip
(HT ) is less promising than heads. One could then decide not to split such path.

This example highlights a key ingredient of importance splitting: the impor-
tance function, that indicates for each state how promising it is w.r.t. the event
of interest. This function, together with other parameters such as thresholds [19],
are used to choose e.g. the number of clones spawned when visiting a state. An
importance function for our example could be the number of heads seen thus far.
Another one could be such number, multiplied by the number of coin flips yet to
come. The goal is to give higher importance to states from which observing the
rare event is more likely. The efficiency of an importance splitting implementa-
tion increases as the importance function better reflects such property.

Rare event simulation has been successfully applied in several domains [34,
45, 49, 4, 5, 46]. However, a key bottleneck is that it critically relies on expert
knowledge. In particular for importance splitting, finding a good importance
function is a well-known highly non-trivial task [35, 25].
Our contribution: rare event simulation for fault trees. This paper pre-
sents an importance splitting method to analyse rfts. In particular, we auto-
matically derive an importance function by exploiting the description of a system
as a fault tree. This is crucial, since the importance function is normally given
manually in an ad hoc fashion by a domain or res expert. We use a variety
of res algorithms based in our importance function, to estimate system unre-
liability and unavailability. Our approach can converge to precise estimations
in increasingly reliable systems. This method has four advantages over earlier
analysis methods for rfts—which we overview in the related work section 6—
namely: (1) we are able to estimate both the system reliability and availability;
(2) we can handle arbitrary failure and repair distributions; (3) we can handle
rare events; and (4) we can do it in a fully automatic fashion.

Technically, we build local importance functions for the (automata-semantics
of the) nodes of the tree. We then aggregate these local functions into an im-
portance function for the full tree. Aggregation uses structural induction in the
layered description of the tree. Using our importance function, we implement
importance splitting methods to run res analyses. We implemented our theory
in a full-stack tool chain. With it, we computed confidence intervals for the un-
reliability and unavailability of several case studies. Our case studies are rfts
whose failure and repair times are governed by arbitrary continuous probability
density functions (pdfs). Each case study was analysed for a fixed runtime bud-
get and in increasingly resilient configurations. In all cases our approach could
estimate the narrowest intervals for the most resilient configurations.
Paper outline. Background on fault trees and res is provided in Secs. 2 and 3.
We detail our theory to implement res for rfts in Sec. 4. Using a tool chain,
we performed an extensive experimental evaluation that we present in Sec. 5.
We overview related work in Sec. 6 and conclude our contributions in Sec. 7.
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2 Fault tree analysis

A fault tree ‘�’ is a directed acyclic graph that models how component failures
propagate and eventually cause the full system to fail. We consider repairable
fault trees (RFTs), where failures and repairs are governed by arbitrary proba-
bility distributions.

BE1 BEn

(a) AND

BE1 BEn

(b) OR

k/n

BE1 BEn

(c) VOTk

BE1 BE2

(d) PAND

S1 SmP

(e) SPARE

T BE1 BEn

(f) FDEP

BE1 BEn (g) RBOX

Fig. 1: Fault tree gates and the repair box

Basic elements. The leaves of the tree, called basic events or basic elements
(BEs), model the failure of components. A BE b is equipped with a failure distri-
bution Fb that governs the probability for b to fail before time t, and a repair dis-
tribution Rb governing its repair time. Some BEs are used as spare components:
these (SBEs) replace a primary component when it fails. SBEs are equipped also
with a dormancy distribution Db, since spares fail less often when dormant, i.e.
not in use. Only if an SBE becomes active, its failure distribution is given by Fb.
Gates. Non-leave nodes are called intermediate events and are labelled with
gates, describing how combinations of lower failures propagate to upper levels.
Fig. 1 shows their syntax. Their meaning is as follows: the AND, OR, and VOTk

gates fail if respectively all, one, or k of their m children fail (with 1 � k � m).
The latter is called the voting or k out of m gate. Note that VOT1 is equivalent to
an OR gate, and VOTm is equivalent to an AND. The priority-and gate (PAND)
is an AND gate that only fails if its children fail from left to right (or simultane-
ously). PANDs express failures that can only happen in a particular order, e.g.
a short circuit in a pump can only occur after a leakage. SPARE gates have one
primary child and one or more spare children: spares replace the primary when
it fails. The FDEP gate has an input trigger and several dependent events: all de-
pendent events become unavailable when the trigger fails. FDEPs can model for
instance networks elements that become unavailable if their connecting bus fails.
Repair boxes. An RBOX determines which basic element is repaired next ac-
cording to a given policy. Thus all its inputs are BEs or SBEs. Unlike gates, an
RBOX has no output since it does not propagate failures.

HV
cab P S

Rcab

Fig. 2: Tiny rft

Top level event. A full-system failure occurs if the top event
(i.e. the root node) of the tree fails.
Example. The tree in Fig. 2 models a railway-signal system,
which fails if its high voltage and relay cabinets fail [21, 39].
Thus, the top event is an AND gate with children HVcab (a BE)
and Rcab. The latter is a SPARE gate with primary P and spare
S. All BEs are managed by one RBOX with repair priority HVcab > P > S.
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Notation. The nodes of a tree � are given by nodes(�) = {0, 1, . . . , n − 1}. We
let v, w range over nodes(�). A function type� : nodes(�) → {BE, SBE, AND, OR,
VOTk, PAND, SPARE, FDEP, RBOX} yields the type of each node in the tree. A
function chil� : nodes(�) → nodes(�)∗ returns the ordered list of children of a
node. If clear from context, we omit the superscript � from function names.
Semantics. Following [32] we give semantics to rft as Input/Output Stochas-
tic Automata (iosa), so that we can handle arbitrary probability distributions.
Each state in the iosa represents a system configuration, indicating which com-
ponents are operational and which have failed. Transitions among states describe
how the configuration changes when failures or repairs occur.

More precisely, a state in the iosa is a tuple x = (x0, . . . , xn−1) ∈ S ⊆ Nn,
where S is the state space and xv denotes the state of node v in �. The possible
values for xv depend on the type of v. The output zv ∈ {0, 1} of node v indicates
whether it is operational (zv=0) or failed (zv=1) and is calculated as follows:

– BEs (white circles in Fig. 1) have a binary state: xv = 0 if BE v is operational
and xv = 1 if it is failed. The output of a BE is its state: zv = xv.

– SBEs (gray circles in Fig. 1e) have two additional states: xv = 2, 3 if a
dormant SBE v is resp. operational, failed. Here zv = xv mod 2.

– ANDs have a binary state. Since the AND gate v fails iff all children fail:
xv = minw∈chil(v) zw. An AND gate outputs its internal state: zv = xv.

– OR gates are analogous to AND gates, but fail iff any child fail, i.e. zv =
xv = maxw∈chil(v) zw for OR gate v.

– VOT gates also have a binary state: a VOTk gate fails iff 1 � k � m children
fail, thus zv = xv = 1 if k �

∑
w∈chil(v) zw, and zv = xv = 0 otherwise.

– PAND gates admit multiple states to represent the failure order of the chil-
dren. For PAND v with two children we let xv equal: 0 if both children are
operational; 1 if the left child failed, but the right one has not; 2 if the right
child failed, but the left one has not; 3 if both children have failed, the right
one first; 4 if both children have failed, otherwise. The output of PAND gate
v is zv = 1 if xv = 4 and zv = 0 otherwise. PAND gates with more children
are handled by exploiting PAND(w1, w2, w3) = PAND(PAND(w1, w2), w3).

– SPARE gate v leftmost input is its primary BE. All other (spare) inputs are
SBEs. SBEs can be shared among SPARE gates. When the primary of v fails,
it is replaced with an available SBE. An SBE is unavailable if it is failed, or if
it is replacing the primary BE of another SPARE. The output of v is zv = 1
if its primary is failed and no spare is available. Else zv = 0.

– An FDEP gate has no output. All inputs are BEs and the leftmost is the
trigger. We consider non-destructive FDEPs [7]: if the trigger fails, the output
of all other BE is set to 1, without affecting the internal state. Since this can
be modelled by a suitable combination of OR gates [32], we omit the details.

For example, the rft from Fig. 2 starts with all operational elements, so the
initial state is x0 = (0, 0, 2, 0, 0). If then P fails, xP and zP are set to 1 (failed)
and S becomes xS = 0 (active and operational spare), so the state changes to
x1 = (0, 1, 0, 0, 0). The traces of the iosa are given by x0x1 · · · xn ∈ S∗, where
a change from xj to xj+1 corresponds to transitions triggered in the iosa.
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Nondeterminism. Dynamic fault trees may exhibit nondeterministic behaviour
as a consequence of underspecified failure behaviour [15, 27]. This can happen
e.g. when two SPAREs have a single shared SBE: if all elements are failed, and
the SBE is repaired first, the failure behaviour depends on which SPARE gets
the SBE. Monte Carlo simulation, however, requires fully stochastic models and
cannot cope with nondeterminism. To overcome this problem we deploy the the-
ory from [16, 32]. If a fault tree adheres to some mild syntactic conditions, then
its iosa semantics is weakly deterministic, meaning that all resolutions of the
nondeterministic choices lead to the same probability value. In particular, we
require that (1) each BE is connected to at most one SPARE gate, and (2) BEs
and SBEs connected to SPAREs are not connected to FDEPs. In addition to this,
some semantic decisions have been fixed, e.g. the semantics of PAND is fully
specified, and policies should be provided for RBOX and spare assignments.
Dependability metrics. An important use of fault trees is to compute relevant
dependability metrics. Let Xt denote the random variable that represents the
state of the top event at time t [14]. Two popular metrics are:

– system reliability: the probability of observing no top event failure before
some mission time T > 0, viz. RELT = Prob

(∀t∈[0,T ] . Xt = 0
)

;
– system availability: the proportion of time that the system remains opera-

tional in the long-run, viz. AVA = limt→∞ Prob (Xt = 0).

System unreliability and unavailability are the reverse of these metrics. That is:
UNRELT = 1 − RELT and UNAVA = 1 − AVA.

3 Stochastic simulation for Fault Trees

Standard Monte Carlo simulation (SMC). Monte Carlo simulation takes
random samples from stochastic models to estimate a (dependability) metric of
interest. For instance, to estimate the unreliability of a tree � we sample N
independent traces from its iosa semantics. An unbiased statistical estimator
for p = UNRELT is the proportion of traces observing a top level event, that is,
p̂N = 1

N

∑N
j=1 Xj where Xj = 1 if the j-th trace exhibits a top level failure before

time T and Xj = 0 otherwise. The statistical error of p̂ is typically quantified
with two numbers δ and ε s.t. p̂ ∈ [p − ε, p + ε] with probability δ. The interval
p̂ ± ε is called a confidence interval (ci) with coefficient δ and precision 2ε.

Such procedures scale linearly with the number of tree nodes and cater for a
wide range of pdfs, even non-Markovian distributions. However, they encounter
a bottleneck to estimate rare events: if p ≈ 0, very few traces observe Xj = 1.
Therefore, the variance of estimators like p̂ becomes huge, and cis become very
broad, easily degenerating to the trivial interval [0, 1]. Increasing the number
of traces alleviates this problem, but even standard ci settings—where ε is
relative to p—require sampling an unacceptable number of traces [35]. Rare
event simulation techniques solve this specific problem.
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Rare Event Simulation (RES). res techniques [35] increase the amount
of traces that observe the rare event, e.g. a top level event in an rft. Two
prominent classes of res techniques are importance sampling, which adjusts
the pdf of failures and repairs, and importance splitting (isplit [30]), which
samples more (partial) traces from states that are closer to the rare event. We
focus on isplit due to its flexibility with respect to the probability distributions.

isplit can be efficiently deployed as long as the rare event γ can be de-
scribed as a nested sequence of less-rare events γ = γM � γM−1 � · · · � γ0.
This decomposition allows isplit to study the conditional probabilities pk =
Prob(γk+1 | γk) separately, to then compute p = Prob(γ) =

∏M-1
k=0 Prob(γk+1 | γk).

Moreover, isplit requires all conditional probabilities pk to be much greater
than p, so that estimating each pk can be done efficiently with smc.

The key idea behind isplit is to define the events γk via a so called impor-
tance function I : S → N that assigns an importance to each state s ∈ S . The
higher the importance of a state, the closer it is to the rare event γM . Event γk

collects all states with importance at least �k, for certain sequence of threshold
levels 0 = �0 < �1 < · · · < �M . Formally: γk = {s ∈ S | I (s) � �k}.

To exploit the importance function I in the simulation procedure, isplit
samples more (partial) traces from states with higher importance. Two well-
known methods are deployed and compared in this paper: Fixed Effort and
restart. Fixed Effort (fe [19]) samples a predefined amount of traces in
each region Sk = γk \ γk+1 = {s ∈ S | �k+1 > I(s) � �k}. Thus, starting at γ0
it first estimates the proportion of traces that reach γ1, i.e. p0 = Prob(γ1 | γ0) =
Prob(S0). Next, from the states that reached γ1 new traces are generated to
estimate p1 = Prob(S1), and so on until pM . Fixed Effort thus requires that
(i) each trace has a clearly defined “end,” so that estimations of each pk finish
with probability 1, and (ii) all rare events reside in the uppermost region.

(a) fe5 for Prob(¬ � U �) (b) rstes for UNRELT

Fig. 3: Importance Splitting algorithms Fixed Effort & restart

Example. Fig. 3a shows Fixed Effort estimating the probability to visit states
labelled � before others labelled �. States � have importance >13, and thresh-
olds �1, �2 = 4, 10 partition the state space in regions {Si}2

i=0 s.t. all � ∈ S2.
The effort is 5 simulations per region, for all regions: we call this algorithm fe5.
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In region S0, 2 simulations made it from the initial state to threshold �1, i.e. they
reached some state with importance 4 before visiting a state �. In S1, starting
from these two states, 3 simulations reached �2. Finally, 2 out of 5 simulations
visited states � in S2. Thus, the estimated rare event probability of this run of
fe 5 is p̂ =

∏2
i=1 p̂i = 2

5
3
5

2
5 = 9.6 × 10−2.

RESTART (rst [48, 47]) is another res algorithm, which starts one trace
in γ0 and monitors the importance of the states visited. If the trace up-crosses
threshold �1, the first state visited in S1 is saved and the trace is cloned, aka
split—see Fig. 3b. This mechanism rewards traces that get closer to the rare
event. Each clone then evolves independently, and if one up-crosses threshold �2
the splitting mechanism is repeated. Instead, if a state with importance below
�1 is visited, the trace is truncated ( � in Fig. 3b). This penalises traces that
move away from the rare event. To avoid truncating all traces, the one that
spawned the clones in region Sk can go below importance �k. To deploy an
unbiased estimator for p, restart measures how much split was required to
visit a rare state [47]. In particular, restart does not need the rare event
to be defined as γM [44], and it was devised for steady-state analysis [48] (e.g.
to estimate UNAVA) although it can also been used for transient studies as
depicted in Fig. 3b [45].

4 Importance Splitting for FTA

The effectiveness of isplit crucially relies on the choice of the importance
function I as well as the threshold levels �k [30]. Traditionally, these are given
by domain and/or res experts, requiring a lot of domain knowledge. This section
presents a technique to obtain I and the �k automatically for an rft.

4.1 Compositional importance functions for Fault Trees

By the core idea behind importance splitting, states that are more likely to lead
to the rare event should have a higher importance. To achieve this, the key lies
in defining an importance function I and thresholds �k that are sensitive to both
the state space S and the transition probabilities of the system. For us, S ⊆ Nn

are all possible states of a repairable fault tree (rft). Its top event fails when
certain nodes fail in certain order, and remain failed before certain repairs occur.
To exploit this for isplit, the structure of the tree must be embedded into I .

The strong dependence of the importance function I on the structure of the
tree is easy to see in the following example. Take the rft � from Fig. 2 and
let its current state x be s.t. P is failed and HVcab and S are operational. If the
next event is a repair of P, then the new state x′ (where all basic elements are
operational) is farther from a failure of the top event. Hence, a good importance
function should satisfy I (x) > I (x′). Oppositely, if the next event had been a
failure of S leading to state x′′, then one would want that I (x) < I (x′′). The
key observation is that these inequalities depend on the structure of � as well
as on the failures/repairs of basic elements.
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In view of the above, any attempt to define an importance function for an
arbitrary fault tree � must put its gate structure in the forefront. In Table 1
we introduce a compositional heuristic for this, which defines local importance
functions distinguished per node type. The importance function associated to
node v is Iv : Nn → N. We define the global importance function of the tree (I�
or simply I) as the local importance function of the top event node of �.

Table 1: Compositional importance function for rfts

type(v) Iv(x)

BE, SBE zv

AND lcmv ·
∑

w∈chil(v)
Iw(x)
maxI

w

OR lcmv · max
w∈chil(v)

{ Iw(x)
maxI

w

}
VOTk lcmv · max

W ⊆chil(v),|W |=k

{∑
w∈W

Iw(x)
maxI

w

}
SPARE lcmv · max

(∑
w∈chil(v)

Iw(x)
maxI

w
, zv · m

)
PAND lcmv · max

( Il(x)
maxI

l

+ ord Ir(x)
maxI

r
, zv · 2

)
where ord = 1 if xv ∈ {1, 4} and ord = −1 otherwise

with maxI
v = maxx∈S Iv(x) and lcmv = lcm

{
maxI

w

∣∣ w ∈ chil(v)
}

Thus, Iv is defined in Table 1 via structural induction in the fault tree.
It is defined so that it assigns to a failed node v its highest importance value.
Functions with this property deploy the most efficient isplit implementations
[30], and some res algorithms (e.g. Fixed Effort) require this property [19].

In the following we explain our definition of Iv. If v is a failed BE or SBE,
then its importance is 1; else it is 0. This matches the output of the node, thus
Iv(x) = zv. Intuitively, this reflects how failures of basic elements are positively
correlated to top event failures. The importance of AND, OR, and VOTk gates
depends exclusively on their input. The importance of an AND is the sum of
the importance of their children scaled by a normalisation factor. This reflects
that AND gates fail when all their children fail, and each failure of a child brings
an AND closer to its own failure, hence increasing its importance. Instead, since
OR gates fail as soon as a single child fails, their importance is the maximum
importance among its children. The importance of a VOTk gate is the sum of
the k (out of m) children with highest importance value.

Omiting normalisation may yield an undesirable importance function. To
understand why, suppose a binary AND gate v with children l and r, and define
Inaive

v (x) = Il(x) + Ir(x). Suppose that Il takes it highest value in maxI
l = 2

while Ir in maxI
r = 6 and assume that states x and x′ are s.t. Il(x) = 1,
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Ir(x) = 0, Il(x′) = 0, Ir(x′) = 3. This means that in both states one child of v
is “good-as-new” and the other is “half-failed” and hence the system is equally
close to fail in both cases. Hence we expect Inaive

v (x) = Inaive
v (x′) when actually

Inaive
v (x) = 1 �= 3 = Inaive

v (x′). Instead, Iv operates with Il(x)
maxI

l

and Ir(x)
maxI

r
, which

can be interpreted as the “percentage of failure” of the children of v. To make
these numbers integers we scale them by lcmv, the least common multiple of their
max importance values. In our case lcmv = 6 and hence Iv(x) = Iv(x′) = 3.
Similar problems arise whit all gates, hence normalization is applied in general.

SPARE gates with m children (including its primary) behave similarly to
AND gates: every failed child brings the gate closer to failure, as reflected in the
left operand of the max in Table 1. However, SPAREs fail when their primaries
fail and no SBEs are available, e.g. possibly being used by another SPARE. This
means that the gate could fail in spite of some children being operational. To
account for this we exploit the gate output: multiplying zv by m we give the
gate its maximum value when it fails, even when this happens due to unavailable
but operational SBEs. For a PAND gate v we have to carefully look at the states.
If the left child l has failed, then the right child r contributes positively to the
failure of the PAND and hence the importance function of the node v. If instead
the right child has failed first, then the PAND gate will not fail and hence we let
it contribute negatively to the importance function of v. Thus, we multiply Ir(x)

maxI
r

(the normalized importance function of the right child) by −1 in the later case
(i.e. when state xv /∈ {1, 4}). Instead, the left child always contribute positively.
Finally, the max operation is two-fold: on the one hand, zv · 2 ensures that the
importance value remains at its maximun while failing (PANDs remain failed
even after the left child is repaired); on the other, it ensures that the smallest
value posible is 0 while operational (since importance values can not be negative.)

4.2 Automatic importance splitting for FTA

Our compositional importance function is based on the distribution of opera-
tional/failed basic elements in the fault tree, and their failure order. This follows
the core idea of importance splitting: the more failed BEs/SBEs (in the right
order), the closer a tree is to its top event failure.

However, isplit is about running more simulations from state with higher
probability to lead to rare states. This is only partially reflected by whether basic
element b is failed. Probabilities lie also in the distributions Fb, Rb, Db. These
distributions govern the transitions among states x ∈ S , and can be exploited
for importance splitting. We do so using the two-phased approach of [11, 12],
which in a first (static) phase computes an importance function, and in a second
(dynamic) phase selects the thresholds from the resulting importance values.

In our current work, the first phase runs breadth-first search in the iosa
module of each tree node. This computes node-local importance functions, that
are aggregated into a tree-global I using our compositional function in Table 1.

The second phase involves running “pilot simulations” on the importance-
labelled states of the tree. Running simulations exercises the fail/repair distri-
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butions of BEs/SBEs, imprinting this information in the thresholds �k. Several
algorithms can do such selection of thresholds. They operate sequentially, start-
ing from the initial state—a fully operational tree—which has importance i0 = 0.
For instance, Expected Success [10] runs N finite-life simulations. If K < N

2 sim-
ulations reach the next smallest importance i1 > i0, then the first threshold will
be �1 = i1. Next, N simulations start from states with importance i1, to deter-
mine whether the next importance i2 should be chosen as threshold �2, and so on.

Expected Success also computes the effort per splitting region Sk = {x ∈ S |
�k+1 > I(x) � �k}. For Fixed Effort, “effort” is the base number of simulations
to run in region Sk. For restart, it is the number of clones spawned when
threshold �k+1 is up-crossed. In general, if K out of N pilot simulations make it
from �k−1 to �k, then the k-th effort is

⌈
N
K

⌉
. This is chosen so that, during res

estimations, one simulation makes it from threshold �k−1 to �k on average.
Thus, using the method from [11, 12] based on our importance function I�,

we compute (automatically) the thresholds and their effort for tree �. This is all
the meta-information required to apply importance splitting res [19, 18, 11].

Importance function

Metrics  

Property query (metric)

IOSA semantic model

RFT model
(extended
Galileo)

RFT  IOSA
converter FIG

Fig. 4: Tool chain

Implementation. Fig. 4 outlines a tool chain implemented to deploy the the-
ory described above. The input model is an rft, described in the Galileo textual
format [42, 41] extended with repairs and arbitrary pdfs. This rft file is given
as input to a Java converter that produces three outputs: the iosa semantics
of the tree, the property queries for its reliability or availability, and our compo-
sitional importance function in terms of variables of the iosa semantic model.
This information is dumped into a single text file and fed to FIG: a statistical
model checker specialised in importance splitting res. FIG interprets this impor-
tance function, deploying it into its internal model representation, which results
in a global function for the whole tree. FIG can then use isplit algorithms such
as restart and Fixed Effort, via the automatic methods described above. The
result are confidence intervals that estimate the reliability or availability of the
rft. In this way, we implemented automatic importance splitting for fta. In
[9] we provide more details about our tool chain and its capabilities.

5 Experimental evaluation

5.1 General setup

Using our tool chain, we computed the unreliability and unavailability of 26
highly-resilient repairable non-Markovian dfts. These trees come from seven



474 C. E. Budde et al.

literature case studies, enriched with RBOX elements and non-Markovian pdfs.
We estimated their UNREL103 or UNAVA in increasingly resilient configurations.

To estimate these values we used various simulation algorithms: Standard
Monte Carlo (smc); Fixed Effort [19] for different number of runs performed
in each Sk region (fen for n = 8, 12, 16, 24, 32); restart [47] with thresholds
selected via a Sequential Monte Carlo algorithm [12] for different global splitting
values (rstn for n = 2, 3, 5, 8, 11); and restart with thresholds selected
via Expected Success [10], which computes splitting values independently for
each threshold (rstes). fen, rstn, and rstes, used the automatic isplit
framework based in our importance function, as described in Sec. 4.2.

An instance y is a combination of an algorithm algo, an rft, and a depend-
ability metric. An rft is identified by a case study (CS) and a parameter (p),
where larger parameters of the rft CSp indicate smaller dependability values
pCSp . Running algo for a fixed simulation time, instance y estimates the value
py = pCSp . The resulting ci (p̂y) has a certain width ‖p̂y‖ ∈ [0, 1] (we fix the
confidence coefficient δ = 0.95). The performance of algo can be measured by
that width: the smaller ‖p̂y‖, the more efficient the algorithm that achieved it.

The simulation time fixed for an rft may not suffice to observe rare events,
e.g. for smc. In such cases the FIG tool reports a “null estimate” p̂y = [0, 0].
Moreover, the simulation of random events depends on the rng—and its seed—
used by FIG, so different runs may yield different results p̂y. Therefore, for each
y we repeated n = 10 times the computation of p̂y, to assess the performance of
algo in y by: (i ) how many times it yielded not-null estimates, indicated with a
bold number at the base of the bar corresponding to y (e.g. 8 10 in Fig. 5b);
(ii ) what was the average width ‖p̂y‖, using not-null estimates only, indicated by
the height of the bar; and (iii ) what was the standard deviation of those widths,
indicated by whiskers on top of the bar. We performed n = 10 repetitions to
ensure statistical significance: a 95% ci for a plotted bar is narrower than the
whiskers and, in the hardest configuration of every CS, the whiskers of smc bars
never overlap with those of the best res algorithm.
Case studies. Our seven parametric case studies are: the synthetic models
DSPAREn and VOTm, with n ∈ {3, 4, 5} SBEs the first, m ∈ {2, 3, 4} shared
BEs the second, and one RBOX each; FTPPs [17], where we study one triad
with s ∈ {4, 5, 6} shared SBEs, using one RBOX for the processors and another
for the network elements; HECSo [43], with 2 memory interfaces, 4 RBOX (one
per subsystem), o ∈ {1, . . . , 5} shared spare processors, and 2o parallel buses;
and RWCu∈{4,...,7} [22, 21, 39], which combines subsystems RCv with one RBOX
and v ∈ {3, . . . , 6} SPAREs, and HVCw with another RBOX and w ∈ {2, . . . , 4}
shared SBEs. In total these are 26 rfts with pdfs that include exponential,
Erlang, uniform, Rayleigh, Weibull, normal, and log-normal distributions. In an
extended version of this work [9] we provide all details of our case studies.
Hardware. Experiments ran in two types of nodes in a SLURM cluster running
Linux x64 (Ubuntu, kernel 3.13.0-168): korenvliet nodes have CPUs Intel® Xeon®

E5-2630 v3 @ 2.40 GHz, and 64 GB of DDR4 RAM @ 1600 MHz; caserta has
CPUs Intel® Xeon® E7-8890 v4 @ 2.20 GHz, and 2 TB of RAM DDR4 @ 1866 MHz.
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5.2 Experimental results and discussion

Using smc and restart we computed UNAVA for VOT2,3,4, HECS1,...,5,
RC3,...,6, and RWC1,...,4. fe was not used since it requires regeneration theory
for steady-state analysis [19], which is not always feasible with non-Markovian
models. The mean widths of the cis achieved per instance are shown in Fig. 5.

For example for VOT2 (Fig. 5a), 10 independent computations with smc ran
in caserta for 5 min, and all converged to not-null cis ( 10 ). The mean width of
these cis was 1.40×10-4 and their standard deviation 7.96×10-6. For VOT3, all
smc computations yielded not-null cis (after 30 min) with an average precision
of 9.62×10-6 and standard deviation 1.52×10-6. For VOT4 all smc simulations
yielded null cis after 3 hours of simulation (0). Instead, rst2 converged to 10,
10, and 5 not-null cis resp. for VOT2,3,4, with mean widths (and standard devi-
ation): 1.24×10-4 (1.19×10-5), 5.09×10-6 (1.48×10-6), and 1.79×10-7 (3.19×10-8).
Thus for the VOT case study, rst2 was consistently more efficient than smc,
and the efficiency gap increased as UNAVA became rarer.

This trend repeats in all experiments: as expected, the rarer the metric, the
wider the cis computed in the time limit, until at some point it becomes very
hard to converge to not-null cis at all (specially for smc). For the least resilient
configuration of each case study, smc can be competitive or even more effi-
cient than some isplit variants. For instance for VOT1 and HECS1 in Figs. 5a
and 5b, all computations converged to not-null cis for all algorithms, but smc
exhibits less variable ci widths, viz. smaller whiskers. This is reasonable: truncat-
ing and splitting traces in restart adds (i ) simulation overhead that may not
pay off to estimate not-so-rare events, and on top of it (ii ) correlations of cloned
traces that share a common history, increasing the variability among indepen-
dent runs. On the other hand and as expected, smc looses this competitiveness
for all case studies as failures become rarer, here when UNAVA � 1.0×10-5. This

Fig. 5: ci precision for system unavailability

(a) VOT (b) HECS

(c) RC (d) RWC
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holds nicely for the biggest case studies: HECS5
†(a 42-nodes rft whose iosa

has 126-not-clock variables ≈ 2.89×1038 states, with 57 clocks of exponential,
uniform, and log-normal pdfs) and RWC4 (42 nodes, 181 variables ≈ 6.93×1073

states, 62 clocks of exponential, Erlang, Rayleigh, uniform, and normal pdfs).
Using smc, restart, and fe, we also estimated UNREL1000 for RWC2,3,4,

DSPARE3,4,5, FTPP4,5,6, HVC4,5,6,7, and HECS2,3,4,5. For HVC (only) we ran
20 experiments per tree, 10 in each cluster node. Fig. 6 shows the results.

Fig. 6: ci precision for system unreliability

(e) HECS

The overall trend shown for unreliability estimations is similar to the previous
unavailability cases. Here however it was possible to use Fixed Effort, since every
simulation has a clearly defined end at time T = 103. It is interesting thus to
compare the efficiency of restart vs. fe: we note for example that some
variants of fe performed considerably better than any other approach in the
most resilient configurations of FTPP and HECS. It is nevertheless difficult to
draw general conclusions from Figs. 6a to 6e, since some variants that performed
best in a case study—e.g. fe16 in HECS—did worse in others—e.g. FTPP, where
the best algorithms were fe8,12. Furthermore, fe8, which is always better than

†rst8 for HECS5 escapes this trend: analysing the execution logs it was found that
FIG crashed during the second computation.
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smc when UNREL1000 < 10−3, did not perform very well in HVC, where the
algorithms that achieved the narrowest and most not-null cis were rst5,11. Such
cases notwithstanding, fe is a solid competitor of restart in our benchmark.

Another relevant point of study is the optimal effort e for rste or fee, which
shows no clear trend in our experiments. Here, e is a “global effort” used by these
algorithms, equal for all Sk regions. e also alters the way in which the thresholds
selection algorithm Sequential Monte Carlo (seq [12]) selects the �k. The lack
of guidelines to select a value for e that works well across different systems was
raised in [8]. This motivated the development of Expected Success (es [10]),
which selects efforts individually per Sk (or �k). Thus, in rstes, a trace up-
crossing threshold �k is split according to the individual effort ek selected by es.
In the benchmark of [10], which consists mostly of queueing systems, es was
shown superior to seq. However, experimental outcomes on dfts in this work
are different: for UNAVA, rstes yielded mildly good results for HECS and RC;
for the other case studies and for all UNREL1000 experiments, rstes always
yielded null cis. It was found that the effort selected for most thresholds �k was
either too small—so splitting in ek was not enough for the rstes trace to reach
�k+1—or too large—so there was a splitting/truncation overhead. This point is
further addressed in the conclusions.

Beyond comparisons among the specific algorithms, be these for res or for
selecting thresholds, it seems clear that our approach to fta via isplit de-
ploys the expected results. For each parameterised case study CSp, we could find
a value of the parameter p where the level of resilience is such, that smc is less
efficient than our automatically-constructed isplit framework. This is partic-
ularly significant for big dfts like HECS and RWC, whose complex structure
could be exploited by our importance function.

6 Related work

Most work on dft analysis assumes discrete [43, 3] or exponentially distributed
[15, 29] components failure. Furthermore, components repair is seldom studied
in conjunction with dynamic gates [6, 3, 40, 29, 31]. In this work we address
repairable dfts, whose failure and repair times can follow arbitrary pdfs.
More in detail, rfts were first formally introduced as stochastic Petri nets in
[6, 13]. Our work stands on [32], which reviews [13] in the context of stochastic
automata with arbitrary pdfs. In particular we also address non-Markovian
continuous distributions: in Sec. 5 we experimented with exponential, Erlang,
uniform, Rayleigh, Weibull, normal, and log-normal pdfs. Furthermore and for
the first time, we consider the application of [13, 32] to study rare events.

Much effort in res has been dedicated to study highly reliable systems, de-
ploying either importance splitting or sampling. Typically, importance sampling
can be used when the system takes a particular shape. For instance, a common
assumption is that all failure (and repair) times are exponentially distributed
with parameters λi, for some λ ∈ R and i ∈ N>0. In these cases, a favourable
change of measure can be computed analytically [20, 23, 33, 34, 49, 39].
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In contrast, when the fail/repair times follow less-structured distributions,
importance splitting is more easily applicable. As long as a full system failure
can be broken down into several smaller components failures, an importance
splitting method can be devised. Of course, its efficiency relies heavily on the
choice of importance function. This choice is typically done ad hoc for the model
under study [44, 30, 46]. In that sense [24, 25, 11, 12] are among the first to
attempt a heuristic derivation of all parameters required to implement splitting.
This is based on formal specifications of the model and property query (the
dependability metric). Here we extended [11, 12, 8], using the structure of the
fault tree to define composition operands. With these operands we aggregate
the automatically-computed local importance functions of the tree nodes. This
aggregation results in an importance function for the whole model.

7 Conclusions
We have presented a theory to deploy automatic importance splitting (isplit)
for fault tree analysis of repairable dynamic fault trees (rfts). This Rare Event
Simulation approach supports arbitrary probability distributions of components
failure and repair. The core of our theory is an importance function I� defined
structurally on the tree. From such function we implemented isplit algorithms,
and used them to estimate the unreliability and unavailability of highly-resilient
rfts. Departing from classical approaches, that define importance functions ad
hoc using expert knowledge, our theory computes all metadata required for res
from the model and metric specifications. Nonetheless, we have shown that for
a fixed simulation time budget and in the most resilient rfts, diverse isplit
algorithms can be automatically implemented from I�, and always converge to
narrower confidence intervals than standard Monte Carlo simulation.

There are several paths open for future development. First and foremost, we
are looking into new ways to define the importance function, e.g. to cover more
general categories of fts such as fault maintenance trees [37]. It would also be
interesting to look into possible correlations among specific res algorithms and
tree structures, that yield the most efficient estimations for a particular metric.
Moreover, we have defined I� based on the tree structure alone. It would be
interesting to further include stochastic information in this phase, and not only
afterwards during the thresholds-selection phase.

Regarding thresholds, the relatively bad performance of the Expected Success
algorithm shows a spot for improvement. In general, we believe that enhancing
its statistical properties should alleviate the behaviour mentioned in Sec. 5.2.
Moreover, techniques to increase trace independence during splitting (e.g. re-
sampling) could further improve the performance of the isplit algorithms. Fi-
nally, we are investigating enhancements in iosa and our tool chain, to exploit
the ratio between fail and dormancy pdfs of SBEs in warm SPARE gates.
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Abstract. This paper introduces the statistical model checker FIG 1.2,
that estimates transient and steady-state reachability properties in sto-
chastic automata. This software tool specialises in Rare Event Simulation
via importance splitting, and implements the algorithms restart and
Fixed Effort. FIG is push-button automatic since the user need not define
an importance function: this function is derived from the model speci-
fication plus the property query. The tool operates with Input/Output
Stochastic Automata with Urgency, aka iosa models, described either
in the native syntax or in the jani exchange format. The theory backing
FIG has demonstrated good efficiency, comparable to optimal importance
splitting implemented ad hoc for specific models. Written in C++, FIG
can outperform other state-of-the-art tools for Rare Event Simulation.

1 Introduction

In formal analysis of stochastic systems, statistical model checking (smc [33])
emerges as an alternative to numerical techniques such as (exhaustive) proba-
bilistic model checking. Its partial, on-demand state exploration offers a memory-
lightweight option to exhaustive explorations. At its core, smc integrates Monte
Carlo simulation with formal models, where traces of states are generated dy-
namically e.g. via discrete event simulation. Such traces are samples of the states
where a (possibly non-Markovian) stochastic model usually ferrets. Given a tem-
poral logic property ϕ that characterises certain states, an smc analysis yields
an estimate γ̂ of the actual probability γ with which the model satisfies ϕ. The
estimate γ̂ typically comes together with a quantification of the statistical error:
two numbers δ ∈ (0, 1) and ε > 0 such that γ̂ ∈ [γ − ε, γ + ε] with probability δ.
Thus, if n traces are sampled, the full smc outcome is the tuple (n, γ̂, δ, ε).

With this statistical quantification—usually presented as a confidence in-
terval (ci) around γ̂—an idea of the quality of an estimation is conveyed. To
increase the quality one must increase the precision (smaller ε) or the confidence
(bigger δ). For fixed confidence, this means a narrower ci around γ̂. The number
of traces n is inversely proportional to ε and to the ci width, so smc trades
memory for runtime or precision when compared to exhaustive methods [5].

This trade-off of smc comes with one up and one down. The up is the capa-
bility to analyse systems whose stochastic transitions can have non-Markovian
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distributions. In spite of gallant efforts, this is still out of reach for most other
model checking approaches, making smc unique. The down are rare events.
If there is a very low probability to visit the states characterised by the prop-
erty ϕ, then most traces will not visit them. Thus the estimate γ̂ is either (an
incorrect) 0 or, if a few traces do visit these states, statistical error quantifi-
cation make ε skyrocket. To counter such phenomenon, n must increase as γ
decreases. Unfortunately, for typical estimates such as the sample mean, it takes
n � 384/γ to build a (rather lax!) ci where δ = 0.95 and ε = γ

10 . If e.g. γ ≈ 10−8

then n � 38400000000 traces are needed, causing trace-sampling times to grow
unacceptably long. Rare Event Simulation (res [24]) methods tackle this issue.

The two main res methods are importance sampling (is) and importance
splitting (isplit). is compromises the aforementioned up, since it must tamper
the stochastic transitions of the model. Given that the study of non-Markovian
systems is a chief reason to use smc, FIG, a statistical model checker specialised
in res, implements isplit. To deploy an efficient implementation, however,
both importance sampling and splitting require expert knowledge. The novelty
of FIG lies on its automatic derivation of the importance function (and thresholds
and splitting values) required by isplit. This derivation exploits the model and
property under study, resulting in a push-button application of res for smc.
Outline. The way in which FIG approaches res is explained in Sec. 2. Its model
and properties input syntax are presented in Sec. 3. Finally, Sec. 4 mentions some
features of FIG 1.2, before ending the paper with the briefest experimental display.
Related work. Other statistical model checkers offer res methods to some
degree of automation. Plasma Lab implements automatic is [18] and semiau-
tomatic isplit [21] for Markov chains. Its isplit engine offers a wizard that
guides the user to choose an importance function. The wizard exploits a lay-
ered decomposition of the property query—not the system model. Via apis,
the isplit engine of Plasma Lab could be extended beyond dtmc models.
SBIP 2.0 [22] implements the same (semiautomatic, property-based) engine for
dtmcs. SBIP offers a richer set of temporal logics to define the property query
in. Cosmos [1] and ftres [26] implement importance sampling on Markov
chains, the latter specialising in systems described as repairable Dynamic Fault
Trees (dfts). All these tools can operate directly on Markovian models, and
none offers fully automated isplit. Instead, the smc tool modes [5] supports
non-Markovian probability distributions and is much closer to the capabilities
of FIG, offering a similar degree of automation. As a matter of fact, all core res
algorithms in modes were inspired in or motivated by the theory behind FIG. On
the one hand, FIG is restricted to fully-stochastic iosa models, whereas modes
can also cope with nondeterminism (e.g. in Markov automata) using the LSS
algorithm [10, 5]. On the other hand, using the batch means method, FIG can
estimate steady-state properties, which modes cannot currently do. Moreover,
FIG 1.2 implements basic functionality to tailor importance functions for dfts.

Previous versions of FIG have been used for scientific experimentation and
research: the theory of [6] was first implemented and exercised with FIG 1.0; and
FIG 1.1 was presented in [2], and last used in an extended journal version of [5].
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2 Rare Event Simulation

res methods make more traces visit the rare states that satisfy a property ϕ (the
set Sϕ), to reduce the variance of smc estimators. For a fixed budget of traces
n, this yields more precise cis than classical Monte Carlo simulation (cmc).

FIG implements importance splitting: a main res method that can work on
non-Markovian systems without special considerations. isplit splits the states
of the model into layers that wrap Sϕ like an onion. Reaching a state in Sϕ from
the surface is then broken down into many steps. The i-th step estimates the
conditional probability to reach (the inner) layer i + 1 from (the outer) layer i.
This stepwise estimation of conditional probabilities can be much more efficient
than trying to go in one leap from the surface of the onion to its core [20].

Formally, let S be the states of a model with initial states S0 and rare states
Sϕ. isplit works on a partition

⊎M
i=0 Si = S , where Sϕ = SM . To estimate the

probability γ = Prob(Sϕ |S0), each conditional probability γi = Prob(Si |Si−1)
is estimated separately via cmc. Then simply γ̂ =

∏M
i=1 γ̂i ≈ ∏M

i=1 γi = γ.
This approach is correct, i.e. it yields an unbiased estimator γ̂

n→∞−−−−→ γ.
However, it is efficient iff ∀M

i=1 . γi � γ, which depends on how the Si layers
where chosen. For this, an importance function f : S → R�0 and thresholds
�i ∈ R�0 are defined: then Si = {s ∈ S | �i � f(s) < �i+1}, where �0 = 0,
and Sϕ are the states with highest importance, i.e. f(s) � �M . The efficiency of
isplit is thus delegated to the choice of {�i}M

i=1 and the importance function f .
These choices are the key challenge in isplit [20]. Theoretical developments

assume f is given [12, 8], and applications define it ad hoc via (res and domain)
expert knowledge [30, 27]. Yet there is one general rule: importance must be
proportional to the probability of reaching Sϕ. Thus for s, s′ ∈ S , if a trace
that visits s′ is more likely to observe a rare state, one wants f(s) � f(s′). This
means that f depends both on the model M and the property ϕ that define Sϕ.

FIG, an smc tool, exploits the formal definitions of M and ϕ to derive f and
{�i}M

i=1 so as to reflect this rule. For this, FIG runs bfs from Sϕ on the (invert-
ed) transitions of M. This computes the number-of-transitions distance from each
state to Sϕ. The heuristic importance function of FIG, f�, is the inverse of this
distance, stored as an array the size of S . To avoid the state explosion FIG works
on modular formalisms, deriving local f�

i for the Mi whose parallel composition
forms M. f� is an aggregation of these functions, e.g. adding the f�

i of every Mi

with variables in ϕ. Details are in [2] and also in [5], where the difference with
the (later) implementation in modes is that FIG uses the dnf of ϕ.

f� is solely based on the number-of-transitions distance. Stochastic behaviour
of M omitted by f�, such as probabilistic labels in the transitions, is captured in
the thresholds �i. For this, FIG runs short simulations that start from S0. Say K1
out of N simulations visit states with importance i1 > i0 = f�(S0). Then, 1 out
of e1 =

⌈
N
K1

⌉
simulations are expected to reach threshold �1 = i1. Next, repeat

this procedure starting from states with importance i1 to choose �2 and e2. Etc.
Such threshold-selection algorithms (see Sec. 4) are fully described in [4].

Thus, just from M and ϕ, FIG enables isplit by computing f� and {�i, ei}M
i=1.
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3 Modelling formalism and input languages
IOSA. FIG models are Input/Output Stochastic Automata with urgency [11].
In iosa, continuous variables called clocks sample random values from arbitrary
distributions (pdfs). As time evolves, all clocks count down at the same rate.
The first to reach zero can trigger events and synchronise with other modules,
broadcasting an output action that synchronises with homonymous input actions
(iosa are input-enabled). Actions can be urgent, where urgent outputs have
module M1

fc,rc : clock;
inf,brk : [0..2] init 0;
[fl!] brk==0 @ fc -> (inf’=1)

& (brk’=1);
[r??] brk==1 ->(brk’=2) & (rc’=γ);
[up!] brk==2 @ rc -> (inf’=2)

& (brk’=0)
& (fc’=μ);

[f!!] inf==1 -> (inf’=0);
[u!!] inf==2 -> (inf’=0);

endmodule

Code 1: iosa module in FIG 1.2

maximal progress. iosa can thus be nondeter-
ministic: to allow simulation, [23] gives condi-
tions to ensure determinism modulo weak bi-
simulation. iosa variables are clocks, integers,
or Booleans. Constants can also be floats and
have global scope (variables are module-local).
FIG offers array variables and can get e.g. “a-
random/the-smallest value.” Code 1 shows the
guarded command language of FIG models. Dec-
orators ?/! tell an action is input/output, e.g.

fl!. Double decorators (r??) are for urgency. Non-urgent outputs can be sent only
on clock expiration ([fl!]· · · @ fc ->). A clock can sample random values (fc’=μ).
JANI. Besides its native input syntax, FIG 1.2 reads models written in the jani
exchange format [7]. Model types supported are ctmc and a subset of sta that
matches iosa, e.g. with a single pdf per clock and broadcast synchronisation.
FIG also translates iosa to jani as sta, to share models with tools such as the
Modest Toolset [16] and Storm [13]. This is used in Sec. 4 for comparisons.
Properties. FIG estimates the probability with which input properties

P( q2>0 U q2==8 )
S( q2>=8 )
S[9:999]( q2>=8 )

endproperties

Code 2: Property
queries in FIG

models satisfy temporal logic formulæ. A formula is specified
as a (transient or steady-state) property query in the model
file. Transient properties in FIG correspond to the pctl-like
query P=? in prism [19]: e.g. the first property in Code 2
asks the probability of assigning value 8 to variable q2 before
it takes a value � 0. Steady-state properties in FIG correspond to the unbounded
csl-like query S=? in prism: e.g. S(q2>=8). For steady-state estimations FIG
implements batch means [9]. The initial (discarded) transient simulation time,
and the batch time, can be heuristically computed by the tool. These values can
also be given by the user—in Code 2, the last property specifies 9 and 999 resp.

4 FIG 1.2 showcase
The Finite Improbability Generator is written in C++14 and is available at https:
//git.snt.utwente.nl/buddece/fig under the gnu gplv3. FIG is built in modules
across three categories: simulation engines, importance functions, and thresholds
builders. Engines are nosplit, restart, and sfe, which resp. run cmc, restart
(rst [31]), and Fixed Effort (fe [14]) simulations. The latter two are isplit
algorithms: fe was described in Sec. 2, and works for transient properties; rst
also works for steady-state analysis (steady-state via fe requires regeneration

https://hitchhikers.fandom.com/wiki/Infinite_Improbability_Drive
https://git.snt.utwente.nl/buddece/fig
https://git.snt.utwente.nl/buddece/fig
https://choosealicense.com/licenses/gpl-3.0/
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theory [15], seldom applicable to non-Markovian models and unsupported by
FIG 1.2). rst and fe work with an effort e. fee means e simulations are ran in
a layer Si. rste means e − 1 clones are spawned when a simulation up-crosses
a threshold �i. Omitting e makes FIG 1.2 use respectively fe8 or rst3.

A res run yields a random value r ∈ [0, 1] of unknown distribution, so
FIG computes standard clt confidence intervals with Student’s t-distribution
quantiles. r has a Bernoulli distribution only for transient properties estimated
with cmc: FIG can then use Wilson score intervals [32]. Floating-point precision
loss is reduced by using the logarithm of r and of the number of runs.

FIG reads or computes importance functions. Option --adhoc takes as manda-
tory argument a function on the variables of the iosa modules. Instead, --amono
automatically builds f� on the parallel composition of all modules, and --acomp
builds a local f�

i per iosa module—see Sec. 2. For --acomp, FIG takes an optional
argument to aggregate all local f�

i into one global f�. This can be an associa-
tive binary arithmetic operator, or a custom function on the names of the iosa
modules. By default, f� is computed as the sum of all local functions. Option
--dft 0 indicates that the model is a fault tree: FIG then builds specialised local
importance functions for certain modules, e.g. basic events and pand gates.

Two algorithms in FIG 1.2 can compute the thresholds and efforts {�i, ei}M
i=1.

Sequential Monte Carlo [8, 6] (seq, option -t hyb) is characterised by one effort
for all regions Si, set with -g e. Instead, Expected Success [4] (es, -t es) deter-
mines each effort ei per Si region. By default FIG 1.2 uses -e restart -g 3 -t hyb.
Other customisable options are the rng, its seed, the floating point precision,
and a timeout. Mandatory arguments for FIG invocation are the model and prop-
erties file, the simulation type (--flat for cmc, or --adhoc/amono/acomp for res),
and a stop criterion (either time, or confidence and precision of the ci).
Experimental demonstration. We display the capabilities of FIG via three
experiments. First, we show how isplit implemented in FIG 1.2 is as automatic
but more efficient than cmc to estimate rare properties. Second, we test the
degree to which f� in FIG can approximate optimal importance functions chosen
ad hoc for some models. Third, we compare FIG and its closest competitor: modes.
All these experiments can be reproduced via the artifact freely available in [3].

We test different configurations of engines, efforts, and thresholds. For each
configuration we run simulations until some timeout. This yields a ci with preci-
sion 2ε for confidence coefficient δ = 0.95. The smaller the ε, the narrower the ci,
and the better the performance of the configuration (and tool) that produced it.

First, we analyse repairable dfts with warm spares and exponential (fail),
normal (repair), and lognormal (dormancy) pdfs. Using cmc, fe8,16,32 and
rst3,4,6 we estimate the probability of a top level event after the first failure,
before all components are repaired, in trees with 6, 7, and 8 spares (the small-
est iosa has 116 variables and > 2.5 e 37 states). For isplit we used seq
thresholds with --dft 0 --acomp and no arguments, i.e. as automatic as cmc.

With a 20 min timeout, each configuration was repeated 13 times in a Xeon
E5-2683v4 CPU running Linux x64 4.4.0. The height of the bars in the top plot
of Fig. 1 is the average ci precision (lower is better), using Z-scorem=2 to remove
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Fig. 1: ci precision. Top: dfts (transient). Bottom: queues (steady-state).

outliers [17]. Whiskers are standard deviation, and white numbers indicate how
many runs yielded not-null estimates. Clearly, res algorithms outperform cmc
in the hardest cases: less than half of cmc runs in DFT-8 could build (wide) cis.

Second, we estimate the steady-state overflow probability in the last node
of tandem queues, on a Markovian case with 2 buffers [29], 3 buffers [28], and
a non-Markovian 3-buffers case [30]. We study how FIG—using --amono, seq,
and rst3,4,5,7,9—approximates each optimal ad hoc function and thresholds of
[29, 28, 30]. Experiments ran as before: the bottom plot of Fig. 1 shows that FIG’s
default (rst3 with seq, legend “AUTO 3”) is always closest to the optimal.

Third, we compare FIG and modes in the original benchmark of the latter [5].
We do so for fe-seq, rst-seq, rst-es, using each tool’s default options.
We ran each benchmark instance 15 min, thrice per tool, in an Intel i7-6700
CPU with Linux x64 5.3.1. The scatter plots of Fig. 2 show the median of the ci
precisions. Sub-plots on the bottom-right are a zoom-ins in the range [10−10,10−5].

An (x,y) point is an instance whose median ci width was x for FIG 1.2 and y
for modes netcore-3.0.150, single threaded. A point over the solid diagonal line
means FIG built a narrower ci. A point on the upper boundary means that modes
built no cis in all runs. Dotted diagonal lines indicate cis twice as wide. Fig. 2
shows that both tools perform similarly, with a slight trend in favour of FIG.
This could be caused by modes operating on jani sta (translated from iosa
by FIG): modes must assign values to variables and then compare them to clocks.

Albeit modes is multi-threaded, these experiments ran on a single thread to
compare both tools on equal conditions. On the other hand, FIG also estimates
the probability of steady-state properties, for which there is no support in modes.
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Fig. 2: ci precision of FIG (x-axis) vs. modes (y-axis): medians of 3 runs × 15 min
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Abstract. We introduce MORA, an automated tool for generating invariants of
probabilistic programs. Inputs to MORA are so-called Prob-solvable loops, that
is probabilistic programs with polynomial assignments over random variables
and parametrized distributions. Combining methods from symbolic computation
and statistics, MORA computes invariant properties over higher-order moments
of loop variables, expressing, for example, statistical properties, such as expected
values and variances, over the value distribution of loop variables.

1 Introduction
Probabilistic programs (PPs) are becoming more and more commonplace. Originally
employed in randomized algorithms and cryptographic/privacy protocols, now gaining
momentum due to the several emerging applications in the areas of machine learning
and AI [5]. By introducing randomness into the program, program variables can no
longer be treated as having single values; we must think about them as distributions.
Dealing with distributions is much more challenging and some simplifications are re-
quired. Existing approaches, see e.g. [1,3,7,9,10], usually take into consideration only
expected values or upper and lower bounds over program variables, or rely on user
guidance for providing templates and hints.

One of the main challenges in analyzing PPs and computing their higher-order mo-
ments comes with the presence of loops and the burden of computing so-called quanti-
tative invariants [7]. Quantitative invariants are properties that are true before and after
each loop iteration and are crucial for analyzing the behavior of PP loops.

In this paper, we introduce the MORA tool for computing quantitative invariants of
a class of PPs, called Prob-solvable loops [2], with random assignments, parametrized
distributions, and polynomial probabilistic updates. Our implementation is available at:

https://github.com/miroslav21/mora,
and successfully evaluated on a number of challenging examples. Unlike other exist-
ing approaches, e.g. [1, 3, 7, 9], MORA computes non-linear invariants in a fully auto-
matic way, without relying on user-provided templates/hints. The proposed automatic
approach can handle an arbitrary number of loop iterations and also infinite loops. On
the contrary, tools like PSI [4] support only the automatic analysis of probabilistic pro-
grams with a specified number of loop iterations.
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x=0
while true:
u = RV(uniform, 0, b)
g = RV(gauss, 0, 1)
x = x - u @ 1/2; x + u @ 1/2
y = y + x + g

Loop conditions are ignored, yielding
non-deterministic PPs. The value of
the random variable u is sampled by
a uniform distribution with support in
the real interval [0, b], whereas the
value of g is a random number from a
normal distribution with mean (first

moment) 0 and variance (second moment) 1. Updates to variable x are probabilistic: with
probability 1/2, the variable x is updated by x-u. Similarly, with probability 1/2, x is
updated by x+u. Further, updates to u and g do not depend on other variables; the update
to x depends only on itself and u.

Fig. 1. An illustrative example of a Prob-solvable loop.

Moreover, the invariants inferred by MORA are not restricted to expected values
but are quantitative invariants over the higher-order moments of program variables. We
refer to such invariants as moment-based invariants [2]. To the best of our knowledge,
no other approach can so far automatically compute higher-order moments of PPs, not
even for the restricted yet expressive enough class of Prob-solvable loop.

The purpose of this paper is to describe what MORA can do and how it can be used.
The paper is intended as a tool demonstration and guide for potential users of MORA.
We focus on the usage and implementation aspects of MORA. For details on theoretical
foundations and algorithmic aspects of MORA for computing moment-based invariants,
we refer to [2]. We note however that, when compared to the experimental setup of [2],
MORA comes with a completely new design, fully implemented in python and sup-
porting an easy installation and use by even non-experts in PPs.

2 MORA– Programming Model

Input programs to MORA are PP loops that are Prob-solvable [2]. In Figure 1, we give
an example of a Prob-solvable loop and use this example as a running example to guide
the potential users of MORA in the rest of this paper.

In a nutshell, the probabilistic assignments of Prob-solvable loops involve (i) vari-
able values drawn from random distributions, such as uniform or normal distributions,
and (ii) random variable updates. In the sequel, we write RV to refer to a random vari-
able. Input programs to MORA thus satisfy the following two properties:
(1) Input programs to MORA are PPs generated from the grammar in Figure 2.
(2) In addition to the grammar of Figure 2, MORA requires its PP input to be Prob-
solvable, imposing further restrictions as follows:

– PP loop variables are different from each other and from parameters;
– probabilities used within a variable update sum up to 1;
– updated variables depend on themselves linearly and may depend polynomially

only on other variables that have been previously updated.

Note that Figure 1 satisfies all constraints above, and thus is Prob-solvable.
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Grammar defining PP inputs to MORA

PROGRAM → INIT ASSIGNS ” w h i l e t r u e : ” RV ASSIGNS UPD ASSIGNS

INIT ASSIGNS → INIT ASSIGN | INIT ASSIGN INIT ASSIGNS
RV ASSIGNS → RV ASSIGN | RV ASSIGN RV ASSIGNS
UPD ASSIGNS → UPD ASSIGN | UPD ASSIGN UPD ASSIGNS

INIT ASSIGN → VAR ” = ” INIT EXPR
RV ASSIGN → VAR ” = ” RV EXPR
UPD ASSIGN → VAR ” = ” UPD BRANCHES

UPD BRANCHES → UPD BRANCH | UPD BRANCH UPD BRANCHES
UPD BRANCH → UPD EXPR ”@” UPD PROB
UPD PROB → SIMP EXPR

INIT EXPR → RV EXPR | SIMP EXPR
RV EXPR → ”RV( uni form , ” SIMP EXPR ” , ” SIMP EXPR ” ) ”

| ”RV( gauss , ” SIMP EXPR ” , ” SIMP EXPR ” ) ”
UPD EXPR → UPD EXPR OP UPD EXPR | VAR | ATOM
SIMP EXPR → SIMP EXPR OP SIMP EXPR | ATOM

ATOM → NUM | PARAMETER
OP → [∗+−]
VAR → [ a−zA−Z ] [ a−zA−Z0−9]∗
PARAMETER → [ a−zA−Z ] [ a−zA−Z0−9]∗
NUM → [ − ]? [0 −9]+[ . ]? [0 −9]∗ ( [\ / ] [1 −9][0 −9]∗ )?

Fig. 2.

3 MORA– Usage
We describe the easiest way MORA can be used to generate moment-based invariants:

– Save a Prob-solvable loop to a file, for example save Figure 1 in the file running
– In the main MORA folder invoke python with python3.7 and execute:

from mora.mora import mora

– Run MORA using the command:
mora("running", goal=GOAL),

where GOAL can be (i) a specific natural number k ≥ 1, in which case MORA com-
putes the kth moments of all variables from running; (ii) a specific moment of one
loop variable of running (e.g. "xˆ2" specifying the second moment of a variable x
of Figure 1); or (iii) a list containing the goals as just specified. One can specify finitely
many goals as inputs to MORA; yet, at least one goal is required. For example, by
running mora("running", [1, "xˆ2", "xˆ3"]), MORA computes the ex-
pected values (first moments, i.e. 1) of all variables from Figure 1, as well as the second
and third moments of variable x of Figure 1 (specified by xˆ2 and xˆ3, respectively).

MORA is completely automatic. That is, once an execution of MORA is started on
a given Prob-solvable loop and input goals, MORA outputs the higher-order moments,
and thus moment-based invariants, of its loop w.r.t. the specified input goals. To this end,
MORA computes the expected values of all monomials over loop variables, on which
one of the goals from Goal depends. In general, computing the kth moment requires
computing the expected values of all monomial expressions over loop variables, such
that the total degree of the monomials is less or equal than k – see [2] for more details.
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Fig. 3. MORA workflow diagram.

In the rest of the paper, we will illustrate the main steps of MORA, by considering
Figure 1 as its input loop and [1, 2] as its list of input goals. With such an input
goal, MORA is set to compute the first and second moments of each variable of Fig-
ure 1. Note, that even if 1 was omitted from the aforementioned input goal, MORA
would still need to compute some of the first moments of the variables, as they are
required for computing the second-order moments. In the sequel, we show-case the
MORA behaviour for:

mora("running", [1, 2]). (1)

4 MORA– Tool Overview
We first give details on our implementation. We then present the overall workflow of
MORA in Figure 3, based on which we overview the main components of our tool.

Overall Implementation. MORA is implemented in python3, requiring python
version of at least 3.7. MORA relies on the diofant and scipy libraries: (i) the
python library diofant is used in MORA for symbolic mathematical computations
and recurrence solving; (ii) the scipy library, and in particular its statistics module
scipy.stats, is used in MORA to handle probability distributions and statistical
functions, as well as to simplify and compute expressions involving probability dis-
tributions and initial values of variables. Altogether, our implementation comprises of
around 350 lines of code.

MORA – Parser. MORA first checks whether a given input program is Prob-solvable,
by checking the requirements of Section 2. If the input program is not Prob-solvable, an
error is reported, and the execution of MORA stops. Otherwise, within its parser module,
MORA extracts initial values from its input loop, rewrites loop updates into equations
over expected values of monomial expressions over loop variables, and processes the
list of its input goals to identify which higher-order moments need to be computed.

For our demo execution (1), MORA extracts the initial value x(0)=0, where x(0)
denotes the initial value of x before the loop. Using the input goals specified in (1),
MORA is set to compute the expected values of {u, g, x, y, uˆ2, gˆ2, xˆ2,
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yˆ2 characterizing the first and second moments of all loop variables of Figure 1. Fur-
ther, the loop updates of Figure 1 are rewritten by MORA into equations over expected
values, as follows:{

E[xk(n+ 1)] = E[1/2 · (x(n)− u(n+ 1))k + 1/2 · (x(n) + u(n+ 1))k]
E[yk(n+ 1)] = E[(y(n) + x(n+ 1) + g(n+ 1))k]

, (2)

where n ≥ 0 is the loop counter of Figure 1, x(n) denotes the value of x at the nth loop
iteration, and E[expr] is the expected value of an expression expr.

MORA – Core. After rewriting probabilistic loop updates into equations over expected
values, MORA rewrites these equations into non-probabilistic recurrences over so-called
E-variables, with the loop counter n being the recurrence index. E-variables are simply
variables created from monomials over original variables. Thanks to the restrictions
defining PPs to be Prob-solvable, the resulting recurrences are linear recurrences with
constant coefficients, that is C-finite recurrences, whose closed forms can always be
computed [8]. MORA solves these recurrences by calling its Solver module.

Using the equations (2) over expected values, the non-probabilistic recurrences of
Figure 1 generated by MORA are as follows, using the MORA synthax:

y = x+ y
g ∗ ∗2 = 1
x = x
u = b/2
x ∗ ∗2 = b ∗ ∗2/3+ x ∗ ∗2
u ∗ ∗2 = b ∗ ∗2/3
y ∗ ∗2 = b ∗ ∗2/3+ x ∗ ∗2+ 2 ∗ x ∗ y+ y ∗ ∗2+ 1
g = 0
x ∗ y = b ∗ ∗2/3+ x ∗ ∗2+ x ∗ y

(3)

The left-hand sides of these equations represent values of E-variables at iteration n+1,
while monomials over original variables on the right-hand side represent E-variables at
iteration n. For example, the first equation of (3) stands for E[y(n + 1)] = E[x(n)] +
E[y(n)]. On the other hand, the fourth equation of (3) represents E[x(n + 1)2] =
b2

3 + E[x(n)2], as b is a constant parameter and x**k in python denotes the kth
power of x.

Solver. In this module, MORA extracts and solves recurrences from the non-probabilistic
equations over E-variables computed by its Core module. By exploiting the structure
of Prob-solvable programs, MORA also optimizes the order in which recurrences are
solved, e.g. independent recurrences are solved first. Partial solutions can be used to
reduce the complexity of the latter recurrences. MORA then uses the diofant library
to handle and solve single recurrences.

For Figure 1, using the E-variable equations of (3), the following closed form solu-
tions are computed by MORA:
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E[u2] = b2

3
E[x1] = 0
E[y1] = y(0)

E[x2] = b2n
3

E[u1] = b
2

E[y1x1] = b2n
6 (n+ 1)

E[y2] = n
18

(
2b2n2 + 3b2n+ b2 + 18

)
+ y(0)2

E[g1] = 0
E[g2] = 1

(4)

with y(0) standing for the initial value of y (treated as a parameter, since not specified).

MORA – Out Parser. MORA’s output consists of basic information about the program
and the goal, moment-based invariants computed, and computation time. By default, the
MORA output is shown only on the screen. However, an optional argument can specify
if an output file should be created. Two possible values for output format are (i)
"txt", producing a simple human-readable file, and (ii) "tex", producing a file with
invariants in LATEX format (as given in (4) above).

5 Evaluation
A proof-of-concept implementation, together with initial experiments, were already
given in our work on generating moment-based invariants [2]. MORA comes however
with a new design and re-implementation of [2], significantly improving the experi-
mental setting and evaluations of [2]. Table 1 compares MORA against the experiments
of [2], on a subset of Prob-solvable loops from [2], evidencing that MORA is faster
than our initial proof-of-concept implementation. This is due to the following reasons:

Program Moment Runtime
PoC (s)

Runtime
MORA (s)

SUM RND SERIES
1 0.31 0.22
2 2.89 0.93
3 17.7 2.47

STUTTERINGA
1 0.44 0.25
2 2.20 1.07
3 8.48 3.35

STUTTERINGC
1 1.80 0.66
2 72.5 12.2
3 2144 73.9

SQUARE
1 0.38 0.22
2 2.46 0.73
3 8.70 1.67

Table 1. Comparison of MORA vs. proof-
of-concept (PoC) implementation of [2].

– MORA now optimizes the order in which re-
currences are sent to the diofant recur-
rence solver. This reduces the amount of nec-
essary symbolic computation and speeds up
the process.

– While MORA is implemented entirely in
python, with limited usage of external li-
braries, the previous implementation was
done in Julia and relied on calls to the
sympy library of python.

– MORA does not rely on Aligator [6] for
handling systems of recurrences, allowing us
to eliminate some intermediate and redundant
steps.

6 Conclusion
We described MORA, a fully automated tool for generating invariants of probabilistic
programs. MORA combines recurrence solving, symbolic summation and statistical rea-
soning, and derives higher-order moments of loop variables in probabilistic programs.
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